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Abstract: When a system emits gravitational radiation, the Bondi mass decreases. If the
Bondi energy is Hamiltonian, it can thus only be a time-dependent Hamiltonian. In this
paper, we show that the Bondi energy can be understood as a time-dependent Hamiltonian
on the covariant phase space. Our derivation starts from the Hamiltonian formulation in
domains with boundaries that are null. We introduce the most general boundary conditions
on a generic such null boundary, and compute quasi-local charges for boosts, energy and
angular momentum. Initially, these domains are at finite distance, such that there is a
natural IR regulator. To remove the IR regulator, we introduce a double null foliation
together with an adapted Newman-Penrose null tetrad. Both null directions are surface
orthogonal. We study the falloff conditions for such specific null foliations and take the
limit to null infinity. At null infinity, we recover the Bondi mass and the usual covariant
phase space for the two radiative modes at the full non-perturbative level. Apart from
technical results, the framework gives two important physical insights. First of all, it
explains the physical significance of the corner term that is added in the Wald-Zoupas
framework to render the quasi-conserved charges integrable. The term to be added is
simply the derivative of the Hamiltonian with respect to the background fields that drive
the time-dependence of the Hamiltonian. Secondly, we propose a new interpretation of
the Bondi mass as the thermodynamical free energy of gravitational edge modes at future
null infinity. The Bondi mass law is then simply the statement that the free energy always
decreases on its way towards thermal equilibrium.
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1 Introduction

Gravitational radiation carries energy. In an asymptotically flat spacetime, an asymptotic
observer measures a flux of gravitational energy F (u), which is sourced by the incoming
radiation and satisfies the well-known Bondi mass law,

F (u) = ṀB(u) = − 1
4πG

∮
S2
u⊂I+

d2Ω |σ̇|2 ≤ 0, (1.1)

where1 σ(u, z, z̄) is the asymptotic shear that characterises the strength and polarisation
of the gravitational radiation in addition to gravitational memory [1–5]. The energy flux is
the time derivative of the Bondi mass MB(u), which is a two-dimensional integral at future
null infinity. On the relativistic phase space, energy and time are canonically conjugate
partial observables [6, 7], and the question arises whether the Bondi energy is Hamiltonian

1In the following, (u, z, z̄) are asymptotic Bondi coordinates on J+ and d2Ω = −2 i(1 + |z|2)−2dz ∧ dz̄
is the two-dimensional fiducial area element.
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— whether there is a phase space equipped with a symplectic two-form Ω such that the
Hamilton equations are satisfied,

δ[MB(u)] ?= −Ω
( d

du, δ
)
, (1.2)

with δ denoting a linearised solution of the field equations. The obvious trouble with such
a point of view is that it seems to be incompatible with the existence of gravitational
radiation, rendering it rather useless for any real-world applications. In fact, since the two-
form Ω(X,Y ) = −Ω(Y,X) is anti-symmetric and the Bondi mass M(u) is the supposed
generator of asymptotic time translations, we would find immediately that the energy
is conserved

ṀB(u) = {MB(u),MB(u)} = −Ω
( d

du,
d

du

)
= 0. (1.3)

No gravitational radiation would be seen at null infinity. If the Bondi mass is Hamiltonian,
it can thus only be a time-dependent Hamiltonian such that the Hamilton equations (1.3)
must be modified by an explicitly time-dependent term.2 One of the main motivations for
this paper is to understand such explicit time-dependence on the covariant phase space for
general relativity [8–12]. Otherwise we cannot distinguish background fields (c-numbers)
that are responsible for the explicit time-dependence of the Bondi mass, from the actual
phase space degrees of freedom (q-numbers) of the system to be studied. Our basic proposal
is to remove, in fact, the incoming radiative modes from the covariant phase space and
encode them into auxiliary background fields at null infinity. For given shear, the resulting
Hamiltonian generates the evolution on a reduced boundary phase space of gravitational
edge modes alone. Incoming radiative modes are to be swapped, therefore, for background
fields at null infinity. The situation is reminiscent of what happens in lower dimensions,
where there are no radiative modes at all, and — apart from non-local moduli — all
gravitational observables are the gravitational edge modes alone [13–22].

To set up the basic framework, we start out in section 2 with a simple toy model,
where we explain the covariant phase space approach in the presence of time-dependent
background fields that drive the time-depedence of the Hamiltonian. Section 3 deals with
the classical bulk plus boundary field theory. We introduce the symplectic potential in
terms of a Newman-Penrose (NP) tetrad on a generic null boundary and identify the
gauge symmetries and quasi-local observables on the light cone (section 4). The most
technical part is section 5, where we consider the boundary and falloff conditions of the
spin coefficients for a double null foliation. Our gauge conditions are different from what
is usefully imposed in the NP framework, where only the outgoing (radial) null vector is
surface orthogonal. However, a double null foliation is more appropriate in our context,
because it allows us to first evaluate the null symplectic potential on some generic null
surface N and obtain the radiative phase space in the limit where N is sent to I+. Finally,
we integrate the Hamilton equations and compute the energy and angular momentum from
the radial 1/r expansion of quasi-local charges (section 5 and section 6).

2Recall that the Hamilton equations for a time-dependent observable O are d
dtO = {H,O}+ ∂tO rather

than d
dtO = {H,O}. Below, we will characterise the partial time derivative ∂tH in terms of the radiative

symplectic potential on the covariant phase space.
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Notation. In the following, we will work in the first-order spin-connection representation
of general relativity [23–25]. All configuration variables are spinor-valued differential p-
forms, i.e. sections ψAB...A′B′...ab... of the tensor product bundle consisting of the spinor
bundle SAB...A′B′...(M) and the p-th exterior power of the cotangent bundle T ∗M. Indices
A,B,C, . . . and A′, B′, C ′, . . . transform under the spin (1/2, 0) and complex conjugate
spin (0, 1/2) representation of local SL(2,C) Lorentz transformations. Indices a, b, c, . . .
are abstract tensor indices.3 The spinor indices are raised and lowered using the skew-
symmetric Levi-Civita spinor εAB = −εBA, i.e. ξA = ξBεBA and ξ̄A

′ = ε̄A
′B′ ξ̄B′ . Falloff

conditions for the double null foliation and the dictionary between our conventions and
the Newman-Penrose formalism are summarised in a short appendix A at the very end of
this paper.

2 Covariant phase space with background fields

The covariant phase space approach [8–12] is frequently used in relativistic field theories. It
provides a straight-forward method to get the Poisson algebra of conserved charges without
introducing an auxiliary foliation of spacetime, which is otherwise needed cf. [26, 27]. The
formalism is manifestly covariant. However, there is an important drawback. It is some-
what cumbersome to impose boundary conditions, and distinguish external sources, which
are kept fixed at infinity — background fields that Poisson commute with the dynamical
fields — , from physical phase space degrees of freedom, see e.g. [28]. The goal of this
introductory section is to study the problem in a very simplified setting. The gravitational
case is considered below (section 3 and the rest of the paper).

Let us start with a system of N degrees of freedom on the real line with a time-
dependent Hamiltonian, whose time-dependence appears, however, only through an ex-
ternal background field ω(t). In gravity, ω(t) will play the role of fixed boundary data at
infinity. A simple example for such a system is a harmonic oscillator with a time-dependent
frequency that can be tuned freely by the experimenter, i.e.

H[~p, ~q |ω(t)] = 1
2
(
|~p|2 + ω2(t)|~q|2

)
. (2.1)

The action on phase space for such an N -dimensional system on an interval I = (0, 1) ⊂ R is

S[~p, ~q|ω] =
∫
I

(
N∑
i=1

pidqi − dtH
[
~p(t), ~q(t)

∣∣ω(t)
])
, (2.2)

where the Hamiltonian depends parametrically on the background field ω(t). Thus the
action is a functional on the infinite-dimensional space of kinematical histories,

Hkin =
{
γ ∈ C1(I : RN × RN × R) : γ(t) = (~p(t), ~q(t), ω(t))

}
, (2.3)

3We will not distinguish between four-dimensional (bulk) and three-dimensional (boundary) indices. If
there is a chance of confusion, we will use a prefix to distinguish four-dimensional tensors (vectors) from
fields that are defined intrinsically on the null boundary: if e.g. ma is a one-form on the boundary, 4ma

will denote a possible extension into the bulk.
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where γ(t) is a trajectory in the extended configuration space RN × RN × R 3 (~p, ~q, ω).
To compute the variation of the action, we introduce the pre-symplectic two-form4 on the
infinite-dimensional space of kinematical histories

Ωbulk
∣∣
t

:=
N∑
i=1

dpi(t) Λdqi(t) = dΘbulk
∣∣
t
∈ Ω2(Hkin : R). (2.4)

In addition, we define the following functional one-forms, namely the pre-symplectic po-
tential and the pre-symplectic flux,

Θbulk
∣∣
t

:=
N∑
i=1

pi(t)dqi(t), (2.5)

Θflux
∣∣
t

:= −∂H[~p(t), ~q(t)|ω(t)]
∂ω

dω(t). (2.6)

Consider then a general vector field δ ∈ THkin, and let us consider the derivative of the
action under such an infinitesimal variation, i.e.

δS = −
∫
I

dtΩbulk(∂t −XH , δ) + Θbulk(δ)
∣∣
∂I

+
∫
I

dtΘflux(δ), (2.7)

where ∂t and XH are the vector fields,

∂t =
∫
I

dt
(
q̇i(t) δ

δqi(t) + ṗi(t) δ

δpi(t)

)
∈ THkin, (2.8)

XH =
∫
I

dt
(
∂H[~p, ~q|ω]

∂pi

δ

δqi(t) −
∂H[~p, ~q|ω]

∂qi
δ

δpi(t)

)
∈ THkin. (2.9)

The space of kinematical histories is an unphysical auxiliary space. The space of physical
histories Hphys contains all trajectories that satisfy the Hamilton equations for all possible
choices of ω(t),

Hphys =
{
(~p, ~q, ω)(t) ∈ Hkin : q̇i = ∂piH, ṗi = −∂qiH

}
. (2.10)

Notice that the space of physical histories is infinite-dimensional, because we include
all possible configurations of the background field ω(t). To define the physical phase space
Pωo , which is finite-dimensional, we need to make a specific choice for the background field,

Pωo =
{
(~p, ~q, ω)(t) ∈ Hphys : ω(t) = ωo(t) ∀t ∈ I

}
. (2.11)

We thus have a triple of history spaces,

Pω ↪
ϕω−−−−→ Hphys ↪

ϕphys−−−−→ Hkin. (2.12)

For any given background field ω(t), the phase space Pω is equipped with a symplectic
two-form Ω, which is conserved and obtained from the pull-back

Ω = (ϕphys ◦ ϕω)∗Ωbulk. (2.13)
4The symbol “d” is the exterior derivative on the infinite-dimensional space of kinematical histories Hkin,

and “V ” denotes the exterior product between p-forms in
∧p

T ∗Hkin.
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Each phase space Pω is equipped with a corresponding Hamiltonian, which is a func-
tional on the space of kinematical histories: for any instant t ∈ I, the Hamiltonian is a
map Ht : Hkin 3 γ 7→ H[~p(t), ~q(t)|ω(t)] ∈ R. Given a vector field δ ∈ THkin, its variation
satisfies the generalised Hamilton equations

δHt = −(Ωbulk)t(XH , δ)− (Θflux)t(δ). (2.14)

In relativity, situations occur, where the action blows up at infinity and it is not imme-
diate to simply infer the Hamiltonian from a 3+1 split of the action. In such a situation,
the covariant phase space approach provides a simple method to infer the on-shell value
of the Hamiltonian, i.e. the pull-back of the Hamiltonian to the space of physical histo-
ries Hphys. This is possible, because on Hphys the Hamiltonian vector field XH coincides
with the time translation ∂t, see (2.8), (2.9). If we restrict equation (2.14) to the space of
physical histories, we can replace the Hamiltonian vector field XH by ∂t. Integrating the
Hamilton equations on the space of physical histories, i.e. solving

δ[H]
∣∣
Hphys

= −
(
(ϕ∗physΩbulk)(∂t, δ) + (ϕ∗physΘflux)(δ)

)
(2.15)

for all vector fields δ ∈ THphys, we will then obtain the on-shell value of the Hamiltonian.
In general, this Hamiltonian is implicitly time-dependent. In fact, by replacing the vector
field δ ∈ THphys by the infinitesimal time translation ∂t ∈ THphys, we obtain

∂t[H]
∣∣
Hphys

= −(ϕ∗physΘflux)(∂t). (2.16)

We will see in section 6 how these equations show up in gravity.

3 Null surface edge modes and quasi-local graviton

3.1 Boundary conditions

The action in the interior of the manifold is a functional of the SL(2,C) spin connection
AABa and the associate spin (1/2, 1/2) soldering form eAA′a. For the metric to be real, the
soldering form eAA′a satisfies the reality conditions5 eAA′a = −ēA′A. In addition, there are
the Infeld-van der Waerden relations,

eAC′ae
C′

B b = 1
2εAB gab − ΣABab, (3.1)

that tell us that the self-dual Plebański two-form ΣABab = ΣBAab = −ΣABba and the
signature (−+++) Lorentzian metric gab are the irreducible spin (0, 0) and spin (1, 0)
components of eAA′aeBB′b.

In terms of these variables, the action for vacuum general relativity with vanishing
cosmological constant and vanishing Immirzi parameter is then given by the sum of the
self-dual and anti-self-dual action,

Sbulk
[
eAA′a, A

A
Ba

]
=
[ i

8πG

∫
M

ΣAB ∧ FAB
]

+ c.c., (3.2)

5That the soldering form eAA′a is anti-hermitian is a result of our choice of (−+++) metric signature.
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where FAB = dAAB +AAC ∧ACB is the curvature of the self-dual connection and ΣAB is
the self-dual Plebański two-form (3.1).

In the following, we consider a manifold M that contains a light-like boundary. The
limit, where N goes to I+, will be studied in section 5. The entire boundary ∂M =
M1 ∪ N ∪ M−1

o of the manifold consists of the null surface N and two partial Cauchy
surfaces M1 and Mo that have the topology of a three-dimensional disc. Each of these
discs is anchored at N , which is a three-dimensional null surface embedded into an abstract
three-dimensional fibre bundle P (S2, π,R). Every fibre γz = π−1(z) represents a light ray,
and the canonical projection π : P → S2 maps every such light ray γz into its base point
z ∈ S2. The fibre bundle P is ruled by vertical vector fields,

`a ∈ V P ⇔ π∗`
a = 0, (3.3)

where π∗T ∗P → TS2 denotes the push-forward under the canonical projection. We call
any two such vector fields equivalent, `a ∼ `′a and [`a] is the corresponding equivalence
class. Notice that the null boundary N is only a portion (strip) of P . In fact, the boundary
of N consists of two disconnected parts, ∂N = C−1

1 ∪ Co, each of which is a section of P ,
i.e. π(Co) = π(C−1

1 ) = S2. The orientation of each of these sections is induced from the
bulk, i.e. ∂M1 = C1 and ∂Mo = Co.

To characterise the free radiative data at the null boundary N , we need to introduce
additional metrical structures that the boundary inherits from the bulk. Consider first
the pull-back6 of the soldering form eAA′a. On the null hypersurface N , we can always
find a spinor dyad7 (kA, `A) : kA`A = 1, a one-form ka ∈ T ∗N and a complex dyad
(ma, m̄a) in the complexified co-tangent space T ∗CN such that we can parametrise the pull-
back ϕ∗N : T ∗M → T ∗P of the soldering form in terms of the triad (ka,ma, m̄a) and the
associate spin dyad (kA, `A),

ϕ∗N eAA′ = − i `A ¯̀
A′k + i kA ¯̀A′m+ i `Ak̄A′m̄, (3.4)

where ka`a = −1 without loss of generality and the co-dyad (ma, m̄a) is always transversal
to the null direction `a, i.e.

`ama = 0. (3.5)

Besides the soldering form eAA′a, it is also useful to consider the self-dual Plebański
two-form ΣABab. For a given tetrad (3.4), the pull-back of the two-form ΣABab to a null
hypersurface can be parametrised by the null flag `A (i.e. a section of SA(N )) and a
spinor-valued two-form ηAab (i.e. a section of SA(N )⊗

∧2(T ∗N )),

ϕ∗NΣAB = η(A`B). (3.6)
6On a null surface N , there is no canonical projector from TM into TN , because any normal vector to

N has zero length. On the other hand, for co-vectors there is a natural notion of projection, namely the
pull-back T ∗M→ T ∗N .

7Our notation may be a little confusing, because there is now the same pair of letters for different objects:
(ka, `a), ka`a = −1 is a pair of null vectors, and (kA, `A) is an associate spin dyad, kA`A = 1, such that
i eAA

′
a`A ¯̀

A′ = `a and i eAA
′
akAk̄A′ = ka. The notation is unambiguous, since kA (resp. `A) and ka (resp.

`a) are ontologically different (spinors and vectors) and can never appear in the same spot.

– 6 –



J
H
E
P
0
4
(
2
0
2
1
)
0
9
5

If we decompose ηA in terms of the triad (ka,ma, m̄a) and the associate spin dyad (kA, `A),
we find

ηA =
(
`Ak − kAm

)
∧ m̄. (3.7)

The next step is to identify the appropriate boundary conditions and add the boundary
terms to the action in the bulk (3.2). The analysis simplifies considerably by disentangling
the boundary fields (ηAab, `A) from the self-dual two-form ΣABab in the bulk. Accordingly,
we introduce additional Lagrange multipliers ωa (a complex-valued one-form on N ) and
NA

ab (a spinor-valued two-form on N ) to impose the gluing constraints (3.6) and (3.7) on
the space of kinematical histories. The resulting bulk plus boundary action is a functional
of the bulk fields (eAA′a, AABa) and the boundary fields that consist of the boundary spinors
(ηAab, `A), the co-dyad (ma, m̄a), a vertical vector field `a, which lies tangential to the fibres
P ⊃ N , and an additional connection one-form κa ∈ Ω1(N ) that encodes the non-affinity
of `a ∈ TN . The coupled bulk plus boundary action is

S
[
eAA′a, A

A
Ba

∣∣ηAab, `A, ωa, NA
ab,κa, `a,ma

]
= i

8πG

[ ∫
M

ΣAB ∧ FAB +
∫
N

(
ηA ∧

(
D − ω − 1

2κ
)
`A

− ω ∧m ∧ m̄+NA ∧
(
`yηA + m̄`A

))]
+ c.c., (3.8)

where D denotes the induced SL(2,C) covariant derivative on the null hypersurface, i.e.
D = ϕ∗N∇, and `yηA is the interior product8 between the vertical vector field `a ∈ TN
and the two-form ηAab, which is intrinsic to the boundary. In addition, NA

ab and ωa are
Lagrange multipliers. The fixed boundary data on the null surface is a gauge equivalence
class of the boundary fields (κa, `a,ma) that will be characterised below.

To obtain the equations of motion, we need to specify the boundary conditions for
the action (3.8) on the various parts of ∂M = M1 ∪ N ∪M−1

o . On the partial Cauchy
hypersurfaces Mo and M1, we impose the usual Neumann9 boundary conditions,

ϕ∗Mo
δAAB = 0, ϕ∗M1δA

A
B = 0, (3.9)

where e.g. ϕ∗Mo
: T ∗M→ T ∗Mo is the pull-back from the bulk into the boundary. Consider

then the boundary conditions on the null surface N . In the interior of N , the boundary
fields (ηAab, `A, ωa, NA

ab) are unconstrained and we will vary them in the boundary ac-
tion to obtain the corresponding boundary field equations. Since the action contains also
derivatives of the null flag `A, we then also have to specify boundary conditions at the two
consecutive endpoints of the null surface. At these corners, Co = ∂Mo and C1 = ∂M1, we
impose additional Dirichlet boundary conditions

δ`A
∣∣
Co = 0, δ`A

∣∣
C1 = 0. (3.10)

8Using the abstract index notation, we have (`yηA)a = `bηAba.
9On shell, the imaginary part of the Ashtekar connection AABa = ωABa+ iKA

Ba is the extrinsic curva-
ture that represents the normal derivative of the metric to the hypersurface. The real part of the Ashtekar
connection contributes a boundary term to the symplectic two-form. On a closed manifold

∮
M

ΣAB ∧dωAB

is exact
∮
M

dΣAB Λ dωAB = 0 and thus generates a symplectic transformation [25, 29, 30].
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On the null surface itself, the boundary conditions constrain the variations of the triple
(κa, `a,ma), such that a gauge equivalence class of boundary fields (κa, `a,ma) is kept fixed.
A generic such boundary gauge transformation is a combination of vertical diffeomorphisms,
dilations of the null normal, shifts of the abelian connection κa and complexified conformal
transformations of the boundary fields. We will study each contribution below.

First of all, there are the fibre-preserving diffeomorphisms on N . The light-like bound-
ary N ⊃ ∂M is part of a principle bundle P (S2, π,R), which is ruled by the integral curves
of the equivalence class [`a] of null generators (vertical vector fields). Let us denote by
Diff0(N ) the group of (vertical) diffeomorphisms that preserve each individual fibre of N ,

Diff0(N ) =
{
ϕ ∈ Diff(N ) : π ◦ ϕ ◦ π−1 = idS2

}
. (3.11)

Notice that any such diffeomorphism preserves the two ends of the null boundary, i.e.
ϕ|Co = idCo and ϕ|C∞ = idC∞ . We say any two such triples (κa, `a,ma) and (κ̃a, ˜̀a, m̃a) are
gauge equivalent, if they are related by a vertical diffeomorphism,

∀ϕ ∈ Diff0(N ) :
(
(ϕ∗κ)a, `a, (ϕ∗m)a

)
∼
(
κa, (ϕ∗`)a,ma

)
. (3.12)

Next, we introduce the dilations of the null generators,

∀f : N → R, f
∣∣
∂N = 0 : (κa, `a,ma) ∼ (κa + ∂af, ef `a,ma). (3.13)

We then also have a shift symmetry that only affects the abelian connection κa,

∀ζ : N → C : (κa, `a,ma) ∼ (κa + ζ̄ma + ζm̄a, `
a,ma). (3.14)

Finally, we also have the complexified conformal transformations,

∀λ : N → C : (κa, `a,ma) ∼ (κa, e
1
2 (λ+λ̄)`a, eλma). (3.15)

The boundary data that needs to be fixed along the null hypersurface is the gauge
equivalence class of the triple (κa, `a,ma) under the combination of these gauge symmetries

δ} = 0, } = [κa, `a,ma]/∼. (3.16)

Any such gauge equivalence class } characterises two degrees of freedom at the null bound-
ary. Let us do the counting explicitly: since `a lies tangential to the fibres of N and
ξama = 0 for all ξ ∈ [`a], we see any given triple (κa, `a,ma) is characterised by 3 + 1 + 4
numbers (ma is complex and all fields (κa, `a,ma) ∈ T ∗N × TN × T ∗CN are intrinsic to
N ). The fibre-preserving diffeomorphisms and the dilations remove one degree of freedom
each, the shift symmetry removes two degrees of freedom from κa and the U(1)×R> com-
plexified conformal transformations remove another two degrees of freedom. This leaves us
with two physical degrees of freedom along the interior of N , which are the two physical
degrees of freedom of the quasi-local graviton }.

Let us briefly summarise this section. We have defined the coupled bulk plus boundary
action (3.8) and specified the boundary conditions. On the partial Cauchy hypersurfaces
Mo and M1, the pull-back of the self-dual connection is fixed. Along the null hypersurface

– 8 –
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space of kinematical histories Hkin constraints on physical histories Hphys
bu
lk eAA′a soldering form ∇eAA′ = 0

AABa self-dual connection FBA ∧ eBA′ = 0

nu
ll
bo
un

da
ry

`A null flag Da`
A =

(
ωa + 1

2κa
)
`A + `bNA

ba

ηAab spinor-valued two-form DηA = −
(
ω + 1

2κ
)
∧ ηA −NA ∧ m̄

(ωa, NA
ab) C-valued Lagrange multipliers Re(`aωa) = 0

(κa, `a,ma) non-affinity one-form, ϕ∗NΣAB = ηA`B + 1
2εABm ∧ m̄

null generator, co-dyad: `ama = 0 `yηA = −`Am̄

Table 1. On the space of kinematical histories Hkin, there is no correlation between the boundary
fields and the fields in the interior of the manifold. The correlation is established on the space of
physical histories Hphys, which consists of all solutions of the bulk plus boundary field equations:
there are the Einstein equations and the torsionless condition in the bulk, but there are also addi-
tional constraints at the boundary (boundary field equations).

N , the boundary data is given by the quasi-local graviton, which is the gauge equivalence
class (3.16). What is missing, is to demonstrate that the action is functionally differentiable
for such boundary conditions. This will be the purpose of the next section, where we
compute the boundary field equations and introduce the symplectic potentials along the
various portions of the boundary.

3.2 Bulk plus boundary field equations

The purpose of this section is to compute the saddle points of the bulk plus boundary
action for the specified boundary conditions (3.9), (3.10) and (3.16). In the interior ofM,
the situation is straight forward. The combined variation of the self-dual connection AABa
and the soldering-forms eAA′a yields the Einstein equations in the first-order formalism,

∇eAA′ = 0, (3.17a)

FBA ∧ eBA′ = 0, (3.17b)

where ∇ is the SL(2,C) covariant exterior derivative for spinor-valued differential forms
ψAB...A′B′ , and FAB is the field strength of the self-dual connection. On the other hand,
there are also the boundary fields. The variation of the boundary spinors (ηAab, `A) yields
the boundary field equations along the null hypersurface,

Da`
A = +

(
ωa + 1

2κa
)
`A + `bNA

ba, (3.18a)

DηA = −
(
ω + 1

2κ
)
∧ ηA −NA ∧ m̄, (3.18b)

where D = ϕ∗N∇ denotes the pull-back of the SL(2,C) covariant exterior derivative to
the null boundary, and ωa and NA

ab are the Lagrange multipliers that appear in the bulk
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plus boundary action (3.8). It is easy to show that the boundary field equations (3.18a)
and (3.18b) are unrestrictive. For any null surface N , one can always find boundary fields
ωa, κa and NA

ab such that (3.18a) and (3.18b) are satisfied.10 On shell, the boundary fields
(ηAab, `A) are correlated to the fields in the bulk. The correlation is obtained from the
condition that the coupled bulk plus boundary action be stationary under large variations
of the connection,11

δAS = − i
8πG

[∫
M

(∇ΣAB) ∧ δAAB−
∫
M1∪M−1

o

ΣAB ∧ δAAB+

−
∫
N

(
ΣAB − η(A`B)

)
∧ δAAB

]
+ c.c. (3.19)

The first term vanishes on-shell, namely iff the connection is torsionless, see (3.17a). The
second term vanishes provided the boundary conditions (3.9) are satisfied. The third
term vanishes for given boundary conditions (3.9), (3.10), and (3.16) provided the gluing
conditions, namely equation (3.6) is satisfied. Finally, we also have to take the variation
of the Lagrange multipliers (ωa, NA

ab) into account, which yield the additional algebraic
constraints

ηA`
A = −m ∧ m̄, (3.20a)

`bηAba = −`Am̄a. (3.20b)

Equation (3.20b) aligns the kinematical ruling of P (S2, π,R) with the causal structure in
the interior. The equation implies that the vector field `a ∈ TN is null with respect to the
metric in the interior and it also implies that the corresponding null flag is given by `A,
i.e. `a = i `A ¯̀A′eAA′a. Equation (3.20a), on the other hand, determines the area two-form
εab in terms of the boundary spinors,

εab = −2 im[am̄b] = i ηAab`A. (3.21)

Finally, and most importantly, we also have to take into account the variations of
the triple (κa, `a,ma) for given boundary conditions (3.16). Any such variation δ[·] is a
sum of four contributions: it is a sum δ = δdiff + δdilat + δshift + δcon of an infinitesimal
fibre-preserving diffeomorphism (3.11), a dilation (3.13), an infinitesimal shift (3.14) and
a complexified conformal transformations (3.15). Let us briefly discuss each contribution
separately, and show that it vanishes provided the bulk plus boundary equations of motion
are satisfied, which are listed in table 1.

Fibre-preserving diffeomorphisms. The variation of (κa, `a,ma) along the orbits of
the fibre-preserving diffeomorphisms (3.12) does not give any further boundary equations
of motion. This follows immediately from the invariance of the coupled bulk plus boundary
action under vertical diffeomorphisms. In fact, any such diffeomorphism is generated by a

10In addition, the shift symmetry (3.14) always allows us to achieve ωa = −ω̄a without loss of generality.
11The vector field δA ∈ THkin annihilates all configuration variables on the space of kinematical histories

except the connection, upon which it acts as δA[AABa] = δAABa. The variation is large, if δAABa does not
vanish at the null boundary.
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vertical vector field ξa ∈ [`a] that vanishes at the boundary of N . The components of the
corresponding vector field δdiff

ξ ∈ THkin on the space of kinematical histories are given by
the Lie derivative,

δdiff
ξ [κ] := Lξκ = ξy(dκ) + d(ξyκ), (3.22a)

δdiff
ξ [m] := Lξm = ξy(dm), (3.22b)

δdiff
ξ [`a] := Lξ`a = [ξ, `]a. (3.22c)

In addition, δdiff
ξ ∈ THkin only acts on (κa, `a,ma), and all other components vanish, i.e.

δdiff
ξ [AABa] = 0, δdiff

ξ [eAA′a] = 0 etc. The action of the Lie derivative, on the other hand, is
well-defined for all bulk plus boundary fields. If ξa ∈ TM is a vector field inM, we have

LξAAB = ξyFAB, (3.23a)

LξeAA′ = ξy(∇eAA′) +∇(ξyeAA′). (3.23b)

If, in addition, the vector field ξa happens to be tangential to the null boundary ξa
∣∣
N ∈ TN ,

the action of Lξ can be naturally extended to the boundary fields as well,

Lξ`A = ξaDa`
A, (3.24a)

LξηA = ξy(DηA) +D(ξyηA), (3.24b)

LξNA = ξy(DNA) +D(ξyNA), (3.24c)

Lξω = ξy(dω) + d(ξyω). (3.24d)

To show that the boundary conditions (3.16) are satisfied, we need to show that the action
is stationary under such δdiff

ξ -variations on the space of physical histories (i.e. on-shell),
i.e. δdiff

ξ [S]
∣∣
Hphys

= 0. This can be seen as follows: let us first smoothly extend the vertical
vector field ξa ∈ [`a] into the interior of the manifold in such a way that ξa vanishes at the
partial Cauchy hypersurfaces Mo and M1, which is possible since ξa vanishes already at
the endpoints of N , see (3.11), (3.12). The resulting Lie derivative Lξ ∈ THkin preserves
the boundary conditions (3.9), (3.10) and (3.16). The bulk plus boundary action (3.8)
is invariant under any such fibre-preserving diffeomorphism, hence Lξ[S] = 0 on Hkin.
Consider then the vector field δVξ := δdiff

ξ − Lξ ∈ THkin. Such a vector field δVξ clearly
satisfies the boundary conditions (3.9) and (3.10). In addition, it also annihilates the
triple (κa, `a,ma), i.e. δVξ [κa] = 0, δVξ [`a] = 0, δVξ [ma] = 0. Therefore, all the boundary
conditions are fulfilled. At the saddle points of the bulk plus boundary theory, the action
is stationary with respect to any such variation that satisfies the boundary conditions, i.e.
δVξ [S]

∣∣
Hphys

= 0. On the other hand, Lξ[S] = 0 anyways, since the action is invariant under
the fibre preserving diffeomorphisms (3.11). Therefore,

δdiff
ξ [S]

∣∣
Hphys

= (δVξ + Lξ)[S]
∣∣
Hphys

= 0, (3.25)

such that the action is invariant under fibre preserving diffeomorphisms (3.11) of the bound-
ary fields (κa, `a,ma) alone, provided the bulk plus boundary field equations (3.6), (3.17),
(3.18), and (3.20) are satisfied.
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Dilations. Next, we consider the dilatations (3.13) that act via (κa, `a,ma) → (κa +
∂af, ef `a,ma) for any f

∣∣
∂N

= 0 onto the triple (κa, `a,ma) of boundary fields. The corre-
sponding vector field δdilat

f ∈ THkin generates the infinitesimal transformation

δdilat
f [κa] = ∂af, (3.26a)

δdilat
f [`a] = f`a, (3.26b)

and annihilates all other bulk and boundary configuration variables on the space of kine-
matical histories, e.g. δf [eAA′a] = 0. The resulting variation of the bulk plus boundary
action (3.8) yields

δdilat
f [S] = i

8πG

[∫
N

(
− 1

2df ∧ ηA`A + fNA ∧ `yηA
)
− c.c.

]
= i

8πG

[∫
N

(1
2f d

(
ηA`

A)+ fNA ∧ `yηA
)
− c.c.

]
. (3.27)

In going from the first to the second line, we used Stokes’s theorem. There is no boundary
term, since f

∣∣
∂N = 0. Lets now simplify this expression. On shell, i.e. on the space of

physical histories, the imaginary part of the SL(2,C) invariant singlet ηAab`A equals the
area two-form εab ∈ Ω2(N ), see (3.21). The exterior derivative of the area two-form defines
the expansion of the null hypersurface,

dε = −ϑ(`)k ∧ ε, (3.28)

where the one-form ka ∈ Ω1(N ) is dual to `a, i.e. `aka = −1, as in e.g. (3.4). We then also
know that the boundary spinors satisfy the boundary field equations (3.18a) and (3.18b),
which allow us to write the expansion of the null surface in terms of the Lagrange multiplier
NA

ab. A short calculation gives

dε = i d
(
ηA`

A
)

= i(DηA)`A + i ηA ∧D`A = − iNA ∧ m̄`A + i ηA ∧ `yNA

= − iNA ∧ m̄`A − i(`yηA) ∧NA = −2 i(`yηA) ∧NA. (3.29)

Going back to the variation of the action (3.27), we thus have

δdilat
f [S]

∣∣
Hphys

= 0. (3.30)

On the space of physical histories, the dilatations of the boundary fields (κa, `a,ma) →
(κa + ∂af, ef `a,ma) for f

∣∣
∂N = 0 preserve the action.

Shifts of κa. The case for the shift symmetry (3.14) is immediate. The corresponding
vector field acts as

δshift
ζ [κa] = ζm̄a + c.c., (3.31)

and all other configuration variables are annihilated by the vector field δζ ∈ THkin, e.g.
δζ [`A] = 0. On-shell, the variation of the bulk plus boundary action (3.8) under such a
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shift of κa is now simply given by

δshift
ζ [S]

∣∣
Hphys

= − i
16πG

∫
N

(
(ζm̄+ ζ̄m) ∧ ηA`A − c.c.

)∣∣∣
Hphys

= − 1
8πG

∫
N

(ζm̄+ ζ̄m) ∧ ε, (3.32)

The last term of (3.32) is identically zero, since the area two-form εab is given by ε =
− im ∧ m̄, such that e.g. ζ̄m ∧ ε = 0. Therefore, the action is invariant under the shift
symmetry (3.14),

δshift
ζ [S]

∣∣
Hphys

= 0. (3.33)

Complexified conformal transformations. Finally, let us consider the complexified
conformal transformations (3.15). The corresponding vector field δcon

λ ∈ THkin is defined
by its components

δcon
λ [`a] = 1

2(λ+ λ̄)`a, (3.34a)

δcon
λ [ma] = λma, (3.34b)

and all other bulk and boundary configuration variables are conserved by δcon
λ , e.g.

δλ[eAA′a] = 0. For any such a vector field δcon
λ ∈ THkin, the corresponding variation

of the bulk plus boundary action is given by

δcon
λ [S] = i

8πG

∫
N

(
Re(λ)

(
− 2ω ∧m ∧ m̄+NA ∧

(
`yηA + m̄`A

))
+ i Im(λ)

(
NA ∧ m̄`A

))
+ c.c. (3.35)

On shell, the second term vanishes thanks to the gluing condition (3.20b). The third term
does not contribute either: the three-form i

2N
A ∧ m̄`A = dε is real (dε = dε̄), such that

the third term is cancelled against its complex conjugate. In other words,

δcon
λ [S] (3.18), (3.20)= i

8πG

∫
N

(
− 2Re(λ)ω ∧m ∧ m̄+ 1

2 Im(λ) dε
)

+ c.c.

= 1
2πG

∫
N
Re(λ) Re(ω) ∧ ε. (3.36)

For arbitrary λ and εab 6= 0, this variation vanishes iff

Re(`aωa) = 0. (3.37)

Therefore, the time component Re(`aωa) of the real part of the Lagrange multiplier ωa
must be set to zero on the space of physical histories Hphys. This in turn implies that the
one-form κa determines the non-affinity of `a. In fact, if we go back to the boundary field
equations (3.18a), and take into account that `aeAA′a = i `A ¯̀

A′ and ∇eAA′ = 0 (vanishing
of torsion), we find

on Hphys : `b∇b`a = i eAA′a `bDb(`A ¯̀A′) = `bκb `a ≡ κ`a. (3.38)
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Summary. In this section, we identified the saddle points of the coupled bulk plus bound-
ary action (3.8) for fixed boundary conditions (3.9), (3.10), (3.16). The saddle points of
the action are characterised by the Einstein equations in the bulk (3.17a), (3.17b), and the
boundary field equations (3.18a), (3.18b) and (3.37) that determine the evolution of the
boundary fields (ηAab, `A) along the light-like boundary N . In addition, there are the con-
straint equations (3.6) and (3.20) that follow from the variation of the selfdual connection
and the variation of the Lagrange multipliers NA

ab and ωa. The free initial data along the
lightlike portion of the boundary is given by the quasi-local graviton, i.e. the gauge equiv-
alence class } that characterises the two radiative modes along the null boundary. Table 1
summarises the field content of the bulk plus boundary field theory and the constraints
that determine the space of physical histories.

3.3 Corner terms and symplectic structure

The variation of the action (3.8) determines both the bulk plus boundary field equations
as well as the symplectic potentials,

δ[S] = −ΘMo(δ) + ΘM1(δ) + ΘN (δ) + EOM(δ). (3.39)

In here, δ ∈ THkin is a tangent vector on the space of kinematical histories, ΘMo , ΘMo

and ΘN ∈ T ∗Hkin are the pre-symplectic potentials for the various components of the
boundary (recall that ∂M = M1 ∪ N ∪M−1

o ), and EOM ∈ T ∗Hkin denotes a one-form,
whose pull-back to the space of physical histories vanishes (i.e. it determines the bulk plus
boundary field equations). Clearly, there is no unique splitting of the variation (3.39) into
the various component parts. First of all, we can always add terms to the various pre-
symplectic potentials that vanish on the space of physical histories (provided we add the
appropriate counter-terms to the one-form EOM). In addition, there are ambiguities at
the corner [31, 32]. For example, N has a boundary consisting of the two corners, ∂N =
Co ∪ C−1

1 , such that the `A-variation of the boundary action (3.8) generates a corner term,

δ`A [S] = i
8πG


∫
∂N

ηAδ`
A −

∫
N
δ`A

(
DηA +

(
ω + 1

2κ
)
∧ ηA +NA ∧ m̄)

)
︸ ︷︷ ︸

= 0 on−shell

+ c.c., (3.40)

where δ`A ∈ THkin is the vector field on field space

δ`A =
∫
N
δ`A

δ

δ`A
+ c.c. (3.41)

The second term of (3.40) vanishes provided the boundary field equations (3.18b) are sat-
isfied. The first term is a sum of two corner terms. To make sure that large SL(2,C)
transformations12 of the bulk plus boundary fields represent unphysical gauge transforma-
tions, we include these corner terms into the pre-symplectic potentials ΘMo resp. ΘM1 on

12Such gauge transformations are generated by vector fields δΛ ∈ THkin for gauge parameter ΛAB :
M→ sl(2,C) such that δΛ[AABa] = −∇aΛAB , δΛ[ΣABab] = 2Λ(A

CΣB)C
ab, δΛ[ηAab] = ΛABηAab, δΛ[`A] =

ΛAB`B and ΛAB
∣∣
∂M
6= 0.
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the partial Cauchy surfaces Mo and M1, see [31] for details. Accordingly,

ΘM = i
8πG

[∫
M

ΣAB ∧ dAAB −
∮
∂M

ηAd`
A
]

+ c.c. (3.42)

The pre-symplectic potential ΘN on the null hypersurface N is then inferred from the
variation of the action (3.39) for given boundary conditions (3.16). Taking into account
the boundary field equations (see table 1), we find13

ΘN = i
8πG

∫
N

[
− 1

2ηA`
A ∧ dκ +NA ∧ (d`)yηA +NA`A ∧ dm̄

]
+ c.c.

= i
8πG

∫
N

[
− 1

2ηA`
A ∧ dκ −

(
(d`)yNA) ∧ ηA − k ∧ (`yNA)`A ∧ dm̄

]
+ c.c., (3.43)

where ka ∈ T ∗N is a one-form dual to `a that satisfies ka`a = −1. For all practical
calculations, it is now useful to replace i ηA`A by the area two-form ε = − im ∧ m̄ and
eliminate the Lagrange multiplier NA

ab from (3.43) in terms of derivatives of `A. Going
back to the boundary field equation (3.18a), we have

`yNA`A = `AD`
A, (3.44)

We may now replace (3.43) by the following simplified expression14

ΘN = − 1
8πG

∫
N
ε ∧ dκ + i

8πG

∫
N

(
`AD`

A ∧ d(k ∧ m̄)− c.c.
)
. (3.45)

It is important to realise that the one-form ΘN depends only on the triple (κa, `a,ma).
This is obvious for the first term in (3.45). The second term, on the other hand, involves the
one-form `AD`

A, which is completely determined by shear and expansion of `a. This can be
seen as follows. Consider an adapted Newman-Penrose null co-tetrad15 ( k4 a, `

4
a, m

4
a, m̄

4
a),

whose pull-back to N is given by ϕ∗N ( k4 a, `
4
a, m

4
a, m̄

4
a) = (ka, 0,ma, m̄a), with ka`a = −1.

Let (kA, `A), kA`A = 1 be the associated spin dyad such that (3.4) is satisfied. If we then
impose the torsionless condition (3.17a), we can express shear and expansion of the null
surface in terms of the one-form `AD`

A,

σ(`) = [ m4 ]a[ m4 ]b∇a `4 b = −k̄A′`AmaDa(`A ¯̀
A′) = −`AmaDa`

A, (3.46a)
1
2ϑ(`) = [ m4 ](a[ m̄4 ]b)∇a `4 b = [ m4 ]a[ m̄4 ]b∇a `4 b = −k̄A′`Am̄aDa(`A ¯̀

A′) = −`Am̄aDa`
A,

(3.46b)

wherema is the complexified tangent vector ma ∈ TNC such that the push-forward satisfies
(ϕN )∗ma = [ m4 ]a. Since `A`aDa`

A = 0, see (3.18a), we then also have that

`AD`
A = −1

2ϑ(`)m− σ(`)m̄. (3.47)

13The null boundary N is a part of the abstract fibre bundle P (S2, π,R), whose standard fibres π−1(z)
for z ∈ S2 are light rays in N . The null vector `a lies tangential to these fibres, and the differential of `a

satisfies, therefore, d`a ∝ `a, mad`
a = 0.

14Modulo terms that vanish provided the bulk plus boundary field equations are satisfied.
15Given the boundary variables (`a,ma, m̄a), such a null tetrad is unique modulo residual Lorentz trans-

formations ( k4 a , `
4
a, m

4
a, m̄

4
a)→ ( k4 a + f̄ m4 a + f m̄4 a, `

4
a, m

4
a + f `4 a, m̄

4
a + f̄ `4 a) for f : N → C.
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Notice that shear and expansion can be easily computed without explicit knowledge of
the spin connection. In fact, the ordinary Lie derivative of the boundary intrinsic dyads
ma ∈ Ω1(N : C) along the null generators `a ∈ TN determines both shear and expansion,16

L`m = +1
2
(
ϑ(`) + iφ(`)

)
m+ σ(`)m̄. (3.48)

Therefore, shear and expansion are intrinsic to the null surface. The only extrinsic spin
coefficient that enters the pre-symplectic structure on the null surface N is the one-form κa.

3.4 Quasi-local radiative phase space

In the previous section, we identified the pre-symplectic potential (3.45) on a generic null
boundary N in terms of an adapted Newman-Penrose null tetrad. The next step is to
characterise the pull-back of the pre-symplectic structure to the space of radiative modes,
which are encoded into a gauge equivalence class (3.16) of boundary fields (κa, `a,ma) ∈
T ∗N⊗VN⊗T ∗NC. In here, `a is a vertical vector field, and the dyads (ma, m̄a), diagonalise
the intrinsic signature (0++) metric qab = 2m(am̄b) on the null surface. The space of such
boundary fields (κa, `a,ma) is equipped with a pre-symplectic two-form ΩN , which is given
by the exterior functional derivative of the pre-symplectic potential (3.45),

ΩN = dΘN . (3.49)

At the kinematical level, there are eight degrees of freedom per point: since `a is a
vertical vector field, it is characterised by only one degree of freedom (a lapse function).
The co-dyad (ma, m̄a), on the other hand, is transversal to the null direction, i.e. ∀ξa ∈ [`a],
ξa ∈ [`a] : ξama = 0, hence there are only 2× 2 = 4 degrees of freedom in ma. The entire
triple (κa, `a,ma) represents, therefore, 3 + 1 + 2 × 2 = 8 kinematical degrees of freedom.
The gauge symmetries and constraints reduce them to two physical degrees of freedom
per point.

Fibre-preserving diffeomorphisms. Let us consider the fibre-preserving diffeomor-
phisms (3.12) first. Such diffeomorphisms are generated by vertical vector fields ξa ∈ [`a]
that vanish at the boundary of N , i.e. ξa

∣∣
Co = ξa

∣∣
C1 = 0. The Lie derivative Lξ,

see (3.22a), (3.22b), (3.22c) lifts any such vector field on space time into an associated
vector field δdiff

ξ ∈ THkin on field space.
We now want to convince ourselves that such a vector field defines a degenerate null di-

rection of the pre-symplectic two-form (3.49) on the space of physical geometries. Consider
thus a second linearly independent vector field δ ∈ THkin, and assume further (without loss
of generality) that the commutator vanishes, i.e. [δ, δdiff

ξ ] = 0. Going back to the definition

16Notice that φ(`) : N → R transforms as the time component of a U(1) connection under the U(1)
transformations ma → eiϕma.
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of the pre-symplectic potential, we now immediately have

ΩN (δdiff
ξ , δ) = − 1

8πG

∫
N

(
Lξε ∧ δ[κ]− δ[ε] ∧ Lξκ

)
+ i

8πG

∫
N

(
Lξ(`AD`A) ∧ δ[k ∧ m̄]− δ[`AD`A] ∧ Lξ(k ∧ m̄)− c.c.

)
= −δ[Cξ]. (3.50)

where we repeatedly used the identity
∫
N LξX ∧ δY =

∫
∂N ξy(X ∧ δ(Y ))−

∫
N X ∧ δ(LξY ),

i.e. a partial integration and the vanishing of the commutator [δ,Lξ] = 0. In addition, Cξ
denotes the generator of fibre-preserving diffeomorphisms

Cξ = 1
8πG

∫
N
Lξε ∧ κ − i

8πG

∫
N

(
Lξ(`AD`A) ∧ (k ∧ m̄)− c.c.

)
. (3.51)

To demonstrate that Cξ generates a gauge symmetry, we must show that it vanishes
(as a constraint) on the space of physical histories.17 The first step is to compute the
Lie derivative of the one-form `AD`

A. Taking into account the boundary field equation
ξaDa`

A = 1
2ξ
a(κa + 2ωa)`A, see (3.18a), we have

Lξ(`AD`A) = d
(
ξy`AD`A

)︸ ︷︷ ︸
=0

+ξyD(`AD`A) = ξy(D`A ∧D`A)− ξyFAB`A`B

= −2ξy(D`AkA ∧ `BD`B)− ξyFAB`A`B

= +ξy(κ + 2ω)`AD`A − ξyFAB`A`B, (3.52)

where FAB is the curvature two-form. Going from the first to the second line of (3.52), we
wrote the identity εAB in terms of the spin dyad, i.e. εAB = `BkA − kB`A, and repeatedly
used the on-shell identity `AξaDa`

A ∝ `A`
A = 0. Inserting (3.52) and the expression for

`AD`
A in terms of shear and expansion, see (3.47), back into (3.51), we obtain

Lξ(`AD`A) ∧ (k ∧ m̄)− c.c. = +1
2ξy(κ + 2ω)ϑ(`)k ∧m ∧ m̄− ξyFAB`A`B ∧ k ∧ m̄− c.c.

= −1
2(ξyκ)dε− ξyFAB`A`B ∧ k ∧ m̄− c.c., (3.53)

where the one-form ωa falls out of the final result since the reality condition (3.37) is satisfied
(on-shell). If we now take the pull-back of the co-tetrad to the null boundary, recall (3.4),
we may replace the one-form `A`Bm̄ by the pull-back − iϕ∗N eAA′ ¯̀A

′ ≡ − i 3eAA′ ¯̀A
′ . This

in turn allows us to rewrite the generator solely in terms of the Einstein three-form (3.17b),

ξyFAB`A`B ∧ k ∧ m̄ = + i(ξyFAB)`A ∧ e3 B
B′

¯̀B′ ∧ k = − iFAB`A ¯̀B′ ∧ ξy( e3 B
B′ ∧ k)

= + iFAB ∧ e3 B
B′`

A ¯̀B′ξyk = −FAB ∧ e3 B
A′ξ

AA′ (3.54)

Substituting (3.53) and (3.54) back into (3.51), we find

Cξ = 1
8πG

∫
N

(ξydε) ∧ κ − 1
8πG

∫
N

(ξyκ)dε− i
8πG

∫
N

(
FAB ∧ eBA′ξAA

′ − c.c.
)
. (3.55)

17Equations (3.52), (3.53), (3.54), (3.55) are satisfied only on-shell, i.e. provided the bulk plus boundary
field equations are satisfied, see table 1.

– 17 –



J
H
E
P
0
4
(
2
0
2
1
)
0
9
5

The first two terms cancel against each other, the third term is the integral of the vector-
valued Einstein three-form (3.17b) over the null boundary. If the bulk plus boundary
field equations are satisfied, the generator Cξ vanishes. Therefore, the fibre-preserving
diffeomorphisms of N represent gauge transformation that map a given configuration of
boundary fields (κa, `a,ma) into a gauge equivalent configuration (ϕ∗κa, ϕ−1

∗ `a, ϕ∗ma).

Dilations. Next, we consider the dilations that send the triple (κa, `a,ma) into (κa +
∂af, ef `a,ma) for gauge parameters f : N → R that vanish at the two ends of the null
surface, i.e. f

∣∣
∂N = 0. The corresponding vector field δdilat

f ∈ THkin is given in (3.26).
Consider then the one-form ka ∈ T ∗N , which is dual to `a : ka`a = −1, and the one-
form `AD`

A, see (3.47). Going back to our definitions (3.26) and (3.46a) and (3.46b), we
immediately find that fields transform homogeneously, i.e.

δdilat
f [`AD`A] = f`AD`

A, (3.56)

ε ∧ δdilat
f [k] = δdilat

f [ε ∧ k] = −fε ∧ k. (3.57)

Let then δ ∈ THkin be a second linearly independent vector field. Inserting (3.56) and (3.57)
back into the definition of the pre-symplectic two-form (3.49), we obtain a total derivative,
namely

ΩN (δdilat
f , δ) = + 1

8πG

∫
N
δ[ε] ∧ df + i

8πG

∫
N
fδ
[
`AD`

A ∧ k ∧ m̄− c.c.
]

= + 1
8πG

∫
N
δ[ε] ∧ df + 1

8πG

∫
N
fδ[dε] = 1

8πG

∫
∂N

fδ[ε] = 0. (3.58)

On shell, i.e. provided the bulk plus boundary field equations are satisfied, δdilat
f is a

degenerate direction of the pre-symplectic two-form (3.49). Therefore, the vector field
δdilat
f defines an unphysical gauge direction.

U(1) frame rotations. On the null surface N , the complex-valued one-formma ∈ T ∗NC
parametrises the degenerate signature (0++) metric qab = 2m(am̄b). For any such metric,
the dyad is unique modulo U(1) gauge transformations. Given a U(1) gauge parameter
ϕ : N → R, we define the corresponding infinitesimal vector field

δU(1)
ϕ [ma] = iϕma. (3.59)

Going back to the definition of shear and expansion, see (3.46a) and (3.46b), we also see
that the one-form `AD`

A transforms homogeneously under such an infinitesimal U(1) frame
rotation, i.e.

δU(1)
ϕ [`AD`A] = iϕ `AD`A. (3.60)

On the other hand, the non-affinity one-form κa and the area two-form ε = − im ∧ m̄
are uncharged and so is the one-form ka, which is dual to the null vector `a : ka`a = −1.
Therefore, δU(1)

ϕ [εab] = 0, etc. If we then insert such an infinitesimal U(1) rotation back
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into the pre-symplectic two-form (3.49), we obtain

ΩN (δU(1)
ϕ , δ) = i

8πG

∫
N

(
iϕ δ

(
`AD`

A ∧ k ∧ m̄
)
− c.c.

)
= − 1

16πG

∫
N

(
ϕ δ
(
ϑ(`)k ∧m ∧ m̄

)
+ c.c.

)
= 0, (3.61)

which is the same as to say that the infinitesimal U(1) transformations are unphysical null
directions of the pre-symplectic potential.

Shifts of κa. Finally, we consider the shift symmetry (3.14). The corresponding vector
field δshift

ζ generates spacelike shifts of the one-form κa: δshift
ζ [κa] = ζm̄a + ζ̄ma. All other

boundary variables are annihilated by the vector field δshift
ζ ∈ Hkin, i.e. δshift

ζ [ma] = 0,
δshift
ζ [`a] = 0, etc. Let then δ ∈ Hkin be a second linearly independent vector field on the
space of kinematical histories. If we contract both such vector fields with the pre-symplectic
two-form ΩN , we find

ΩN (δshift
ζ , δ) = 1

8πG

∫
N
δ[ε] ∧ δshift

ζ [κ] = 1
8πG

∫
N
δ[ε] ∧ (ζ̄m+ c.c.) = 0. (3.62)

The last term vanishes identically since any such vector field δ ∈ Hkin preserves the direction
of the null generators of N , which implies `aδ[m]a = 0, which is the same as to say
ε∧δ[m] = 0, i.e. δ[ε]∧m = 0, since ε = − im∧m̄. We thus see that the shift transformations
define yet another degenerate direction δshift

ζ ∈ THkin of the pre-symplectic two-form (3.49).

Summary. In this section, we identified the degenerate gauge directions of the pre-
symplectic two-form on the null hypersurface N . First of all, there are the fibre preserving
diffeomorphisms (3.12). Such diffeomorphisms are generated by a Hamiltonian functional
Cξ, which is a smeared version of the Raychaudhuri equation. The Hamiltonian Cξ is a
constraint that vanishes on the space of physical histories, where the fibre preserving diffeo-
morphisms turn into degenerated gauge directions of the pre-symplectic two-form (3.49).
On the space of physical histories (on-shell), the fibre-preserving diffeomorphisms remove,
therefore, two dimensions from phase space (the gauge orbit plus the constraint Cξ = 0).
On the other hand, the dilations (3.56) and (3.57) and U(1) frame rotations (3.59) re-
move one phase space dimension each. Finally, there is the shift symmetry (3.14) that
removes another two dimensions from phase space, see (3.62). The triple of kinematical
boundary fields (κa, `a,ma), whose functional differential determines the pre-symplectic
two-form (3.49), (3.43) is characterised by eight local degrees of freedom along N . Remov-
ing the fibre-preserving diffeomorphisms and imposing the Raychaudhuri constraint (3.51)
brings this down to 8− 2 = 6 local degrees of freedom per point. The dilatations and U(1)
gauge rotations remove another two phase space dimensions per point. The shift symmetry
removes yet another directions from phase space, which brings us down to 6−4 = 2 physical
degrees of freedom along N , which are the two degrees of freedom of gravitational radia-
tion at the full non-perturbative level. The resulting physical phase space is co-ordinatized
by the quasi-local graviton (3.16), which represents the free initial data along the null
hypersurface.
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We defined the quasi-local graviton as an equivalence class (3.16). In defining this
equivalence class, we also removed the orbits of conformal transformations (3.15) from
(κa, `a,ma). From a Hamiltonian perspective, this may seem odd, since such conformal
transformations are not gauge directions (it is easy to check that they do not define de-
generate directions of the pre-symplectic two-form). However, no mistake is being made,
because on every such orbit there is only one value of the conformal factor (the gauge
parameter λ) that is compatible with the Raychaudhuri equation. In fact, the Rachaud-
huri equation turns into a constraint (3.51) on the kinematical phase space, and it selects a
unique value of λ on every such gauge orbit for given initial conditions on a cross-section Co
of N (the initial values are λo = λ|Co and λ̇o = L`λ|Co). The construction is reminiscent of
conformal methods on a spacelike hypersurface, where the orbits of three-dimensional con-
formal transformations are used often to determine a local gauge-fixing for the Hamiltonian
constraint, see [33–35].

4 Quasi-local boost and angular momentum charges

Horizontal diffeomorphisms. On the space of kinematical histories Hkin, the light rays
π−1(z) are shared among different spacetime geometries (histories), but their parametri-
sation is not. There is therefore a preferred class of bulk diffeomorphisms ϕ̂ ∈ Diff(M),
namely those, whose restriction to the light-like portion of the boundary generate horizontal
diffeomorphisms,

HDiff(N ) =
{
ϕ ∈ Diff(N ) : π ◦ ϕ ◦ π−1 ∈ Diff(S2)

}
. (4.1)

Any such horizontal diffeomorphism ϕ maps fibres onto (possibly different) fibres, hence
ϕ∗`

a ∈ [`a]. If an element ϕ ∈ HDiff(N ) is smoothly connected to the identity, it is
generated by a vector field ξa ∈ TN : ϕ = exp(ξ) that projects into a unique vector field
ξa↓ = π∗ξ

a ∈ TS2 on the base manifold (ξa is a horizontal lift of ξa↓). Since the null surface
N ⊂ P (S2, π,R) has itself a boundary, which consists of two successive horizontal sections
Co and C1 of P , i.e. ∂N = Co ∪ C−1

1 , and since the exponential exp(ξ) ∈ HDiff(N ) maps
N onto itself, the vector fields ξa ∈ TN must be tangential to the two cross sections, i.e.
ξa
∣∣
Co ∈ TCo and equally ξa

∣∣
C1 ∈ TC1.

To lift such a vector field ξa into a vector field on the infinite-dimensional space of
kinematical histories, we first need to extend it into a bulk vector field ξ̂a ∈ TM such that
ξ̂a
∣∣
N = ξa. There are infinitely many ways to do so and we will see in a moment that

they are all gauge equivalent. Given such an extension of ξa ∈ TN into the interior of the
manifold, we may now define the SL(2,C) gauge covariant Lie derivative of the bulk plus
boundary fields,

Lξ̂A
A
B = ξ̂yFAB, (4.2a)

Lξ̂eAA′ = ξ̂y∇eAA′ +∇(ξyeAA′), (4.2b)

Lξ̂ηA ≡ LξηA = ξyDηA +D(ξyηA), (4.2c)

Lξ̂`
A ≡ Lξ`A = ξyD`A, (4.2d)
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where D = ϕ∗N∇ is the induced SL(2,C) gauge covariant exterior derivative at the null
boundary. The Lie derivative is a vector field Lξ[·] ∈ THkin on the space of kinematical
histories. Since a diffeomorphisms maps solutions of Einstein’s equations onto themselves,
it is clear that the Lie derivative also defines a tangent vector to the space of physical
histories, i.e. Lξ[·]

∣∣
Hphys

∈ THphys.

Quasi-local angular momentum. To identify the Hamiltonian generator of such hor-
izontal diffeomorphisms, consider first the pre-symplectic two-form on the partial Cauchy
hypersurfcae M , whose boundary intersects the null surface in a horizontal section
C : ∂M = C ⊂ N . Given the pre-symplectic potential (3.42), the pre-symplectic two-
form is obtained by the exterior derivative,

ΩM = dΘM = i
8πG

[∫
M

dΣAB ΛdAAB −
∮
∂M

dηA Λd`A
]

+ c.c., (4.3)

where Λ is the wedge product of differential forms in T ∗Hkin. Let now δ ∈ THphys be a
second linearly independent vector field on the space of physical histories (i.e. a linearised
solution of the bulk plus boundary field equations). Contracting both Lξ[·] ∈ THkin and δ
with the pre-symplectic two-form (4.3) and restricting our results to the space of physical
histories (i.e. going on-shell), we obtain

ΩM (Lξ̂, δ)
∣∣∣
Hphys

= i
8πG

[∫
M

(
∇(ξ̂yΣAB) ∧ δAAB − δΣAB ∧ ξ̂yFAB

)
−
∮
∂M

(
LξηAδ`A − δηALξ`A

)]∣∣∣∣
Hphys

+ c.c.

= i
8πG

[∫
M

(
(ξ̂yΣAB) ∧ δFAB − δΣAB ∧ ξ̂yFAB

)
(4.4)

+
∮
∂M

(
+ ξyΣAB ∧ δAAB − LξηAδ`A + δηALξ`A

)]∣∣∣∣
Hphys

+ c.c.,

where we used Stokes’s theorem to go from the first to the second line. On shell, the bulk
integral vanishes: setting ξ̂AA′ = ξ̂yeAA′ , and taking into account the self-dual decomposi-
tion eAA′ ∧ eBB′ = −ε̄AA′ΣAB + c.c., see (3.1), we find

∫
M

(
(ξ̂yΣAB) ∧ δFAB − δΣAB ∧ ξ̂yFAB

)
= −

∫
M

(
ξ̂AC′eB

C′ ∧ δFAB − δeBC
′ ∧ eAC′ ∧ ξ̂yFAB

)
= −

∫
M

(
ξ̂AC′δ

[
eB

C′ ∧ FAB
]
− δeBC

′ ∧ ξ̂y(eAC′ ∧ FAB)
)
. (4.5)

The two terms in the last line vanish thanks to the Einstein equations (3.17b). We are
thus left with a boundary term and this boundary term is a total derivative on field space.
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Inserting the gluing conditions (3.6) back into (4.5), we obtain

ΩM (Lξ̂, δ)
∣∣∣
Hphys

= i
8πG

[∮
∂M

(
ξyΣAB ∧ δAAB − LξηAδ`A + δ[ηA]Lξ`A

)]∣∣∣
Hphys

+ c.c.

= i
8πG

[∮
∂M

(
ηAξyδ[AAB]`B + ηAξyD[δ`A] + δ[ηA]ξyD`A

)]∣∣∣
Hphys

+ c.c.

= − δ[Jξ[∂M ]], (4.6)

We have thus shown that any horizontal diffeomorphism that is generated by a vector field
ξa ∈ TN : π∗ξa ∈ S2 can be lifted into a vector field Lξ̂

∣∣
Hphys

∈ THphys on the space
of physical histories, which is Hamiltonian: the Lie derivative Lξ̂

∣∣
Hphys

∈ THphys is the
Hamiltonian vector field of the quasi-local angular momentum,

Jξ[C] = − i
8πG

∮
C

(
ηALξ`A − c.c.

)
. (4.7)

Comparison with Komar charge. The more familiar Komar charge for tangential
diffeomrophisms is given by the integral

JKomar
ξ [C] = − 1

32πG

∮
C
η̃abεab

cd∇cξd, (4.8)

where η̃ab is the two-dimensional Levi-Civita tensor density on the cross-section C ⊂ N
of the null boundary. The difference between the two charges (4.7) and (4.8) results
from the fact that the light-like normal to the null boundary N has no canonical nor-
malisation. If, in fact, the outer boundary is time-like rather than null, the pre-
symplectic potential (3.45) on the partial Cauchy hypersurface M will be replaced by
ΘM = 1

16πG
∫
M ∗Σαβ ∧dAαβ−

∮
∂M ∗Σαβz

αdzβ , where α, β, . . . are internal Lorentz indices,
∗ denotes the Hodge dual on internal indices, Aαβ is the spin connection, Σαβ = eα ∧ eβ
is the Plebański two-form and zα : zαzα = 1 is the internal and spacelike normal to the
boundary, i.e. ϕ∗∂Mzαeα = 0. The resulting Hamiltonian for tangential diffeomorphisms
is Jξ = −1/(8πG)

∮
∂M ∗Σαβz

αξaDaz
β , which is nothing but the Komar charge (4.8) for

tangential diffeomorphisms written in terms of first-order spin-connection variables [36].
Although the two charges differ for generic configurations on Hphys (the space of phys-

ical histories), they agree on those configurations that admit Killing symmetries: if the
vector field ξ̂a ∈ TM is Killing, it will Lie drag the configuration variables in the bulk up
to an internal Lorentz transformation,

Lξ̂e
AA′ = ξ̂y∇eAA′ = ΛABeBA

′ + Λ̄A′B′eAB
′
, (4.9)

Lξ̂A
A
B = ξ̂yFAB = −∇ΛAB. (4.10)

The gauge element ΛAB :M→ sl(2,C) is determined by the first derivative of the Killing
vector field: the Killing equation implies that Λab = ∇bξ̂a is anti-symmetric, its self-dual
component18 is ΛAB, thus Λab ≡ −ε̄A′B′ΛAB + cc. If such a vector field is a Killing field

18The soldering forms eAA′a allow to identify spacetime indices a, b, . . . with pairs of spinor indices
AA′, BB′, . . . .
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that lies tangential to C, it will act onto the boundary fields via the internal Lorentz
transformation ΛAB and an overall rescaling.19 We will thus have

Lξ`A = ξyD`A = ΛAB`B + λ

2 `
A, (4.11)

LξηA = ξyDηA +D(ξyηA) = −ΛBAηB −
λ

2 ηA, (4.12)

where λ : N → C defines an overall rescaling of the boundary fields. For a given solu-
tion of Einstein’s equations with Killing vector ξa, we can then always find a rescaling
of the boundary fields such that λ = 0, and the boundary charge (4.7) will return the
Komar integral,

Jξ[C] = − i
8πG

∮
C

(
ηAΛAB`B − c.c.

)
= i

8πG

∮
C

(
ΛABΣAB − c.c.

)
= 1

8πG

∮
C
∗Λ

= 1
16πG

∮
C
η̃ab(∗Λ)ab = − 1

32πG

∮
C
η̃abεab

cd∇cξd. (4.13)

Helmholtz decomposition of angular moments. The quasi-local angular momen-
tum (4.7) is evaluated against a vector field ξa that lies tangential to the two-dimensional
cross section C of the null surface N . The cross section is equipped with a Riemannian
metric qCab, which is induced from the bulk, qCab = ϕ∗Cgab. The corresponding Levi-Civita
tensor is εCab, and the dual tensors are εabC and qabC , such that e.g. εacC εCbc = qacC q

C
bc = [idC ]ab .

Given a metric, we also have the metric compatible and torsionless covariant derivative Da
on C. This derivative can be extended naturally to spinor-valued fields, where it acts via
the pull-back of the spin connection, e.g.

Da`A = ϕ∗CDa`
A. (4.14)

Since C is equipped with a Riemannian structure, we can use the Helmholtz-Hodge
decomposition of ξa ∈ TC to split the angular momentum Jξ[C] into area-preserving and
rotation-free parts. For a given vector field along C, the Hodge-Helmholtz decomposition
reads

TC 3 ξa = εabC ∂bf + qabC ∂bf̃, (4.15)

where f and f̃ are functions on the cross section C. The first and second terms are the
area-preserving and curl-free contributions respectively. To insert this decomposition back
into the quasi-local angular momentum, it is useful to introduce a dual and normalised
spinor kCA : kCA`A = 1, which is defined as follows

kCAε
C
ab := iϕ∗CηAab. (4.16)

19This can be proven by considering the finite diffeomorphism ϕε = exp(εLξ̂). Since ξ̂
a ∈ TM is Killing,

equation (4.9) will be satisfied. Thus ϕ∗εΣAB = [exp(εΛ]AC [exp(εΛ]BDΣCD, where ΣAB is the self-dual
Plebański two-form and ϕ∗εΣAB is the solution to the differential equation d

dεϕ
∗
εΣAB = LξΣAB to the

initial condition ϕ∗ε=0ΣAB = ΣAB (i.e. a combination of the ordinary pull-back of differential forms and
the spinor parallel transport along the integral curves of ξa). Consider then the pull-back of the Plebański
two-form to the null boundary, see (3.6). For given ΣAB in the bulk, the boundary fields ηA and `A are
unique up to an overall rescaling. We thus also know that there must be a function λε : N → C such that
ϕ∗εη

A = [exp(εΛ]ABηB + e−
λε
2 ηA and ϕ∗ε`A = [exp(εΛ]AB`B + e+λε

2 `A. Taking the derivative with respect
to ε, we obtain (4.11) and (4.12).
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Going back to the definition of the quasi-local angular momentum (4.7), we obtain

Jξ[C] = − 1
8πG

∮
C
ε
(
ξaACa + c.c.) = 1

8πG

∮
C

(
df ∧AC − qabC ∂af̃ACb + c.c.

)
, (4.17)

where we introduced the complexified U(1) connection20

kCAD`A = AC (4.18)

on the cross section C. The curvature of this connection is related to the self-dual part of
the curvature of the spin connection,

F C = dAC = DkCA ∧ D`A + kCAD2`A

= +kCADkAC ∧ `BD`B − (ϕ∗CFAB)kAC `B. (4.19)

The first term is a functional of the shear and expansion of the two null directions that
span the plane orthogonal to TC (i.e. the extrinsic curvature of C). As we have seen
in (3.47), the one-form `AD`

A, which is intrinsic to the null boundary, encodes the shear
and expansion of `a. In the same way, the components of the one-form kADkA determine
shear and expansion of the transversal null direction k4 a = i eAA′akAk̄A

′ such that

kCADkAC = +ϕ∗C
(1

2ϑ(k)m̄+ σ̄(k)m

)
, (4.20)

where shear and expansion are defined as in (3.46a) and (3.46b) above, i.e. σ(k) =
[ m4 ]a[ m4 ]b∇a k4 b and ϑ(k) = 2[ m4 ](a[ m̄4 ]b)∇a k4 b. If the vacuum Einstein equations are
satisfied, only the spin (2, 0) Weyl curvature component will be excited, i.e.

FAB = ΨAB
CDΣCD, ΨABCD = Ψ(ABCD), (4.21)

where ΨABCD is the spin (2, 0) Weyl spinor. For a given spin frame (kA, `A), its (2×2+1) =
5 algebraically independent components are

Ψs = ΨA1...A4`
A1 · · · `AskAs+1 · · · kA4 . (4.22)

If we align the spin frame to the cross section, i.e. if we set (kA, `A) ≡ (kCA, `A), the curvature
of the complexified U(1) connection on C will depend only on Ψ2. Restricting equation (3.6)
to C, we obtain

(ϕ∗CFAB)abkAC `B = ΨABCDk
A
C `

B(ϕ∗CΣCD)ab = − i ΨABCDk
A
C `

BkCC `
DεCab = − i ΨC2εCab.

(4.23)
Combining (4.23) with the expressions for shear and expansion along the two null directions,
i.e. (3.47) and (4.20), we obtain the curvature of the complexified U(1) connection (4.18),

F C = i
(

ΨC2 + 1
4ϑ(k)ϑ(`) − σ̄(k)σ(`)

)
εC (4.24)

20N.b. the abelian connection AC transforms as AC → AC + 1
2 dλ under (4.26) and (4.27).
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The cross section C has no boundary. Using Stokes’s theorem, we obtain

Jξ[C] = 1
4πG

∮
C
d2v f Im

(
ΨC2 − σ̄(k)σ(`)

)
+ 1

4πG

∮
C
d2v f̃ Re(DaAaC), (4.25)

where DaAaC = qabC DaACb is the two-dimensional vector divergence of the abelian connec-
tion (4.18) with respect to the induced metric on C and d2v = 1

2 η̃
abεab is the induced volume

element. The shear of the two null directions is σ(k) and σ(`), and ϑ(k) and ϑ(`) denote their
expansion respectively. The first term of (4.25) is the contribution to the quasi-local angu-
lar momentum (4.7) from area-preserving diffeomorphisms, the second term corresponds
to curl-free vector fields on the two-dimensional cross section. For these charges to have a
finite limit at I+, we must impose falloff conditions f = O(r) and f̃ = O(r).

Boost angular momentum. The null generators `a of N and therefore also the null
flag `A : `a = i eAA′a`A ¯̀A′ have no preferred normalisation. Different normalisations are
connected via a complexified scaling transformation,

δboost
λ [`A] = +λ

2 `
A, (4.26)

δboost
λ [ηA] = −λ2 ηA, (4.27)

δboost
λ [`a] = λ+ λ̄

2 `a, (4.28)

for λ : N → C. All other variation of the fundamental bulk and boundary variables vanish
under δλ, e.g. δλ[AABa] = 0 and δλ[ΣAB] = 0. We thus have a vector field δλ ∈ THkin, and
it is easy to check that this vector field is Hamiltonian. Going back to the definition of the
pre-symplectic two-form (4.3), and restricting ourselves to the space of physical histories,
we find

ΩM (δboost
λ , δ) = + i

8πG

∮
C

(
λ

2 ηAδ[`
A] + λ

2 δ[ηA]`A
)

+ c.c.

= i
16πG

∮
C

(
λδ[ηA`A]− c.c.

)
= 1

8πG

∮
C
Re(λ)δ[ε] = −δ

[
Qλ[C]

]
, (4.29)

where we introduced the boost generator,

Qλ[C] = − 1
8πG

∮
C
Re(λ)ε. (4.30)

The zero mode λ = 1, which is the generator of global dilations of the null normal, returns
the total area of the cross section. On a black hole horizon, this charge provides a quasi-
local Hamiltonian for locally non-rotating observers [37].

5 Radial regularization

5.1 Peeling for a double null foliation of spacetime

Double null foliation. In the previous sections, we considered the gravitational phase
space for a fixed bounded regionM in spacetime. The boundary ∂M consist of two partial
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Cauchy hypersurfaces Mo and M1 and a null surface N , i.e. ∂M = M1 ∪N ∪M−1
o . So far,

we have left the location of the null boundary undetermined. Natural choices will restrict
it to a portion of an isolated horizon [38–43] or a cosmological horizon or an asymptotic
boundary. In the following, we consider only the case of an asymptotic boundary, namely
future null infinity. The limit to the asymptotic boundary will be obtained by introducing
an auxiliary parameter ρ and sending ρ→∞. This limit can be understood both as a limit
in spacetime and a limit within the infinite-dimensional quasi-local phase space. In the first
case, ρ is simply an advanced time coordinate on a given solution to Einstein’s equations,
in the latter case it is to be treated as one of the canonical variables on phase space.21

Instead of working on a fixed region as in above, we consider thus a one-parameter
family of such regions {Mρ}ρ∈R> :Mρ ⊂Mρ′ for all ρ < ρ′, which are embedded into an
asymptotically flat spacetime, with conformal completion (M̃, g̃ab). The physical metric is
gab = Ω−2g̃ab, and we choose the conformal factor Ω : M̃ → R> in such a way that the
Ω = const. hypersurfaces

Nρ =
{
p ∈Mρ : Ω(p) = ρ−1} (5.1)

are light-like (null). This condition is useful for us, since it allows us to match the regions
{Mρ}ρ∈R> with the level sets of Ω. In fact, for every ρ ∈ R>, we choose these regions in
such a way that the boundary ∂Mρ consists of two partial Cauchy surfaces Mρ

o and Mρ
1

that are joined together via the null surface Nρ. Notice that every Nρ has a boundary:
∂Nρ = Cρo ∪ [Cρ1 ]−1, which are the corners of the partial Cauchy surfaces, i.e. ∂Mρ

o = Cρo
and ∂Mρ

1 = Cρ1 .
Since the family of null surfaces {Nρ}ρ∈R> defines a foliation, the normal vector `a

to every such null surface Nρ defines a one-form `a = gab`
b that satisfies the Frobenius

integrability condition
d` = −ψ(`) ∧ `. (5.2)

The one-form ψ(`) determines the non-affinity κ = −[ψ(`)]b`b of the null generators:
`b∇b`a = κ`a. The light-like normal vector `a to the boundary is unique up to overall
dilations sending `a into eλ`a. This rescaling freedom allows us to choose the normal
vectors `a such that they are all geodesic at Ω = 0, i.e.

κ
∣∣
Ω=0 = 0. (5.3)

Next, we extend the null vector `a into a null tetrad. We do this by introducing a
transveral foliation, which is defined via a time coordinate u : M̃ → R that foliates the
region

⋃
ρ∈R> Nρ into transversal null hypersurfaces that intersect future null infinity in

such a way that the two-dimensional (spherical) intersections are Lie dragged along the
null generators. In other words,

`a∇au
∣∣
Ω=0 = 1. (5.4)

21The asymptotic limit ρ → ∞ removes the radial coordinate from the quasi-local phase space. To
introduce a symplectic structure and obtain a phase space, we will also have to impose a gauge-fixing
condition on the conjugate momentum pρ (upon choosing a polarization). The asymptotic ρ→∞ limit will
remove, therefore, both ρ and pρ from the quasi-local phase space on a partial Cauchy hypersurface ΘMρ .

– 26 –



J
H
E
P
0
4
(
2
0
2
1
)
0
9
5

We thus have a double null foliation, which is defined by two scalar functions ρ and u

on M̃. The next step ahead is to introduce and adapted NP null tetrad and compute
the falloff conditions of the various spin coefficients for such a particular gauge choice.22

Let then ka = −∇au be the light-like normal to the transversal u = const. null surfaces.
The relative normalisation between the two null vectors is N(k,`) := −ka`a. Since equa-
tion (5.4) is satisfied at the asymptotic boundary, the inner product N(k,`) admits the
Ω-expansion N(k,`) = 1 + O(Ω). The Ω = const. surfaces are null, with null normals `a.
Therefore, `a∇aΩ = 0 and the gradient `a∇aN(k,`) vanishes at the asymptotic boundary,
i.e. `a∇aN(k,`) = O(Ω). By rescaling `a via `a → N−1

(k,`)`
a, we obtain a null vector field,

whose non-affinity κ : `b∇b`a = κ`a still vanishes at Ω = 0. We can assume, therefore,
without loss of generality that the two null normals ka and `a satisfy

ka = −∂au, ka`
a = −1, `b∇b`a

∣∣
Ω=0 = 0, (5.5)

where u : M̃ → R is a retarded time function, which is constant along the transversal null
surfaces. Since ∇[akb] = 0, it immediately follows that kb∇bka = 0. This implies that there
exists an affine coordinate r in M̃ such that

ka =
[ d

dr

]a
. (5.6)

Relation between the radial coordinate and advanced time. There are now two
natural radial coordinates, namely the affine parameter r, as introduced in (5.6), and the
inverse conformal factor Ω−1 =: ρ. What is the relation between the two? Since the null
vector `a lies tangential to the ρ = const. light-like hypersurfaces, there exists a lapse
function N(`) > 0 such that

`a = N(`)∇aΩ (5.7)

Consider now the physical metric,

gab = −ka`b − `akb + qab = Ω−2g̃ab. (5.8)

where g̃ab is the conformally rescaled metric and qab is the two-dimensional Riemannian
metric on the u = const. cross sections Cρ,u ⊂ Nρ. Since the metric is asymptotically flat,
and both ∇au and ∇aΩ do not vanish on I+, we can infer from (5.7) and (5.8) the following
falloff condition for the lapse function,

N(`) = O(Ω−2). (5.9)

Taking into account that ka = ∂ar and ka`a = −1, we infer the expansion of the gradi-
ent ka∇aΩ

ka∇aΩ = −ρ−2 dρ
dr = −N−1

(`) = O(ρ−2). (5.10)

If we integrate this equation along the outgoing null geodesics, we obtain

ρ = ρ(0)(u, z, z̄)r +O(r0), (5.11)
22The falloff conditions are usually given for different gauge conditions, where only the u = const. surfaces

are null, whereas the Ω = ρ−1 = const. surfaces become null only asymptotically, i.e. for Ω→ 0.
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where the complex coordinates (z, z̄) parametrise the two-dimensional surfaces, where the
u = const. surfaces, which are null, and the r = const. hypersurfaces intersect.23 Equa-
tion (5.11) implies then the falloff conditions

O(ρn) = O(rn), (5.12)

which means that we can realise the asymptotic limit either as an ρ→∞ or an r →∞ limit.

Tetrad and connection. The u = const. surfaces and the Ω = const. surfaces each
define a foliation, with corresponding null co-normals ka = −∇au and `a : ka`a = −1.
Any two such Ω = const. and u = const. surfaces intersect each other at two-dimensional
surfaces Cρ,u, which have the topology of a two-sphere. Let (ma, m̄a) be a normalised dyad
in the complexified tangent space to every such cross section, i.e. mam

a = 0, m̄am
a = 1,

and kam
a = `am

a = 0. By choosing an associate spin dyad (kA, `A) : kA`A = 1, we
introduce the soldering form

eAA
′ = − i `A ¯̀A′k − i kAk̄A′`+ i kA ¯̀A′m+ i `Ak̄A′m̄. (5.13)

Given the metric gab and the co-vector fields ka and `a, the one-form ma is unique up
to residual U(1) gauge transformations, ma → eiϕma. Using this gauge freedom, we can
always require that

m̄ak
b∇bma = −mak

b∇bm̄a = 0. (5.14)

The exterior derivative of the one-forms (ka, `a,ma) defines the anholonomy coefficients
that determine the various spin coefficients. Consider first the exterior derivative of the
one-form ma, which admits the following decomposition,

dm =− 1
2ϑ(k)` ∧m−

1
2
(
ϑ(`) + 2 iφ

)
k ∧m

+ i γ m ∧ m̄− σ(`)k ∧ m̄− σ(k)` ∧ m̄+ (α− β)k ∧ `. (5.15)

The various components have an immediate physical interpretation: the pair (σ(`), σ(k))
denotes the shear of the two null congruences (`a, ka), and (ϑ(`), ϑ(k)) denotes their ex-
pansion. The spin coefficient γ defines an abelian U(1) spin connection γm̄a + γ̄ma on
the two-dimensional cross sections Cρ,u, and φ is the time component of this abelian
connection. That the ` ∧ m component of the exterior derivative dm has no imaginary
part is a consequence of the gauge condition (5.14). The k ∧ ` component, on the other
hand, measures the failure of the transversal null directions ka and `a to commute, i.e.
[`, k]ama ≡ ma(`b∇bka − kb∇b`a) = −(α− β).

The remaining spin coefficients are given by the exterior derivative of `a, which is
determined by the one-form

ψ(`) = κ k + (ᾱ+ β̄)m+ (α+ β)m̄, (5.16)

where κ denotes the non-affinity of `a : `b∇b`a = κ`a and (α + β) determines the radial
component (i.e. ka-component) of the Lie bracket [k,m]a = kb∇bma −mb∇bka.

23In general, the intersection of an u = const and an r = const surface will not be a cross section of Nρ.
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Given the adapted null tetrad (5.13), the torsionless condition (3.17a) determines the
components of the spin connection ΓABa,

∇akA = ΓABakB, ∇a`A = ΓABa`B, (5.17)

where ΓABa are the spin coefficients with respect to the spin basis (kA, `A). A short
calculation yields

ΓABa =−
(
(κ+ iφ)ka + i(γ̄ − i ᾱ)ma + i(γ − iα)m̄a

)
k(A`B)

−
(1

2ϑ(k)m̄a + σ̄(k)ma + ᾱka

)
`A`B

+
(1

2ϑ(`)ma + σ(`)m̄a + β`a

)
kAkB. (5.18)

Radial renormalisation and evolution equations. For given boundary and U(1)
gauge fixing conditions (5.5) and (5.14), we evaluate the Einstein equations for the null
tetrad (5.13) and determine the components of the self-dual curvature two-form,

FAB = ∇ΓAB − ΓAC ∧ ΓCB = ΨA
BCDΣCD, (5.19)

where ΨABCDΣCD is the self-dual part of the Weyl tensor. All other curvature components
vanish thanks to the Einstein equations.

An advantage of the double null foliation is that the components of the Weyl tensor
neatly split into three types of equations: first of all, there are the radial evolution equa-
tions (containing radial ka-derivatives, but no `a-derivatives), next there are the boundary
evolution equations (containing `a-derivatives, but no radial ka-derivatives), and finally
there are constraint equations that contain only ma-derivatives, which are intrinsic to the
two-dimensional cross sections Cρ,u.

Consider first the radial evolution equations, which determine the evolution away from
the Ω = ρ−1 = const. null hypersurfaces {Nρ}ρ∈R> ,

d
drϑ(k) + 1

2ϑ
2
(k) + 2σ(k)σ̄(k) = 0, (5.20a)

d
drϑ(`) + 1

2ϑ(k)ϑ(`) + 2σ(`)σ̄(k) + 2
(
Lm̄[β] + i γ̄β − ββ̄

)
= 2Ψ2 (5.20b)

d
dr σ̄(k) + ϑ(k)σ̄(k) = −Ψ0 (5.20c)

d
drσ(`) + 1

2ϑ(k)σ(`) + 1
2ϑ(`)σ(k) + Lm[β] + i γβ − β2 = 0, (5.20d)

i d
dr (γ − iα) + i

2ϑ(k)(γ − iα) + iσ(k)(γ̄ − i ᾱ)− βϑ(k) = 0 (5.20e)

i d
dr (γ̄ − i ᾱ) + i

2ϑ(k)(γ̄ − i ᾱ) + i σ̄(k)(γ − iα)− 2βσ̄(k) = 2Ψ1 (5.20f)

d
dr (κ+ iϕ) + i(α− β)(γ̄ − i ᾱ) + i(ᾱ− β̄)(γ − iα)− 2ᾱβ = −2Ψ2 (5.20g)

d
dr ᾱ+ 1

2(ᾱ− β̄)ϑ(k) + (α− β)σ̄(k) = Ψ1, (5.20h)
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where Lm̄[β] denotes the ordinary derivative Lm̄[β] = m̄a∇aβ. Next, we have the evolution
equations that are intrinsic to the null surfaces {Nρ},

L`[ϑ(`)]− ϑ(`)(κ−
1
2ϑ(`)) + 2σ(`)σ̄(`) = 0 (5.21a)

L`[ϑ(k)] + ϑ(k)

(
κ+ 1

2ϑ(`)

)
+ 2σ(`)σ̄(k) + 2(Lm[ᾱ]− (i γ + α)ᾱ) = 2Ψ2

(5.21b)

L`[σ(`)]− (κ− ϑ(`) + 2 iφ)σ(`) = −Ψ4
(5.21c)

L`[σ̄(k)] +
(
κ+ 1

2ϑ(`) + 2 iφ
)
σ̄(k) + Lm̄[ᾱ]− (i γ̄ + ᾱ)ᾱ+ 1

2 σ̄(`)ϑ(k) = 0 (5.21d)

L`[β]− iφβ − 1
2(α− β)ϑ(`) − (ᾱ− β̄)σ(`) = Ψ3 (5.21e)

iL`[γ̄ − i ᾱ] + Lm̄[κ+ iφ] + i
2(ϑ(`) + 2 iφ)(γ̄ − i ᾱ) + i σ̄(`)(γ − iα) + ϑ(`)ᾱ = 0 (5.21f)

iL`[γ − iα] + Lm[κ+ iφ] + i
2(ϑ(`) − 2 iφ)(γ − iα) + iσ(`)(γ̄ − i ᾱ) + 2ᾱσ(`) = −2Ψ3,

(5.21g)

where e.g. L`[ϑ(`)] = `a∇aϑ(`) is the time derivative along the null generators of the null
surface Nρ. Finally, there are the constraint equations

−1
2(Lm̄[ϑ(k)]− ᾱϑ(k)) + Lm[σ̄(k)]− (2 i γ + α)σ̄(k) = −Ψ1

(5.22a)

−1
2(Lm[ϑ(`)] + αϑ(`)) + Lm̄[σ(`)] + (2 i γ̄ + ᾱ)σ(`) = −Ψ3

(5.22b)

i(Lm̄[γ]−Lm[γ̄])− 2γγ̄+(Lm̄[α]+i γ̄α)−(Lm[ᾱ]−i γᾱ)+ 1
2ϑ(k)ϑ(`)−2σ̄(k)σ(`) = −2Ψ2

(5.22c)

For a given metric, the system of equations (5.20a)–(5.22c) is redundant.24 The ten com-
ponents of the Einstein equations are 0 = Φ00′ = −(5.20a), Φ11′ = (5.22c) − (5.20g),
Φ22′ = −1/2× (5.21a), Φ01′ = (5.22a) + (5.20h), Φ02′ = (5.21d), Φ12′ = −(5.21f) and real
part of (5.22c)+(5.21b).

Radial renormalisation and peeling of the Weyl spinor. As mentioned before,
we may extend the radial r coordinate and the u coordinate, see (5.5) and (5.6), (5.11),
into a four-dimensional coordinate system (r, u, z, z̄) in the vicinity of I+. The complex
coordinates (z, z̄) parametrise the two-dimensional surfaces, where the r = const. and
u = const. surfaces intersect. We can then always find a coordinate transformation z →

24There are 16 complex-valued equations and two real-valued equations, which are the Raychaudhuri
equations (5.20a) and (5.21a). Of these 17 complex-valued equations, five of them define the components
of the Weyl spinor. In addition, there are the ten components of the Einstein equations. The remaining 14
real-valued equations are redundant thanks to the Bianchi identities.
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z̃ = z̃(u, z, z̄) such that the co-tetrad (ka, `a,ma, m̄a) admits the following asymptotic
expansion,25 

k

`

m

m̄

 =


−1 0 0 0
O(r) −1 O(r) O(r)
O(r) 0 O(r) O(1)
O(r) 0 O(1) O(r)




du
dr
dz
dz̄

 ≡ J ·


du
dr
dz
dz̄

. (5.23)

The inverse transformation J−1 maps the basis vectors (∂au, ∂ar , ∂az , ∂az̄ ) back into the null
tetrad (−`a,−ka, m̄a,ma) = (∂au, ∂ar , ∂az , ∂az̄ ) · J−1. We introduce the decomposition,

`a = ∂au +N∂ar + ζ̄ma + ζm̄a, (5.24)
ma = w∂ar + µ∂az̄ + ν∂az . (5.25)

The falloff conditions for (N, ζ, w, µ, ν) can be inferred algebraically from [J−1]mn =
∂

∂Jnm
ln det(J) and (5.23). We obtain,

N = O(r), ζ = O(r−1), w = O(1), µ = O(r−1), ν = O(r−2). (5.26)

In the same way, the falloff conditions for the components of the matrix-valued one-form
dJJ−1 determine the falloff conditions of the spin coefficients,

ϑ(`) = O(1), φ = O(1), κ = O(1), α− β = O(1), (5.27)
ϑ(k) = O(r−1), σ(`) = O(r−1), σ(k) = O(r−2), γ = O(r−1), α+ β = O(r−1). (5.28)

Notice that the falloff conditions (5.27) and (5.28) are a consequence of (5.23) alone. In
particular, we have not yet employed the equations of motion (5.20a)–(5.22c) nor the gauge
fixing conditions (5.3) and (5.14). So far, we only have a rough estimate and some of the
spin coefficients will fall off faster than (5.27) and (5.28) would suggest. For example, we
know from the boundary conditions (5.5) that the non-affinity κ will admit the expansion

κ = O(r−1). (5.29)

In addition, we can always find a gauge parameter ϕ = O(1) such that the U(1) gauge
transformation ma → eiϕma maps the spin coefficient φ into φ + `a∇aϕ such that
φ + `a∇aϕ = O(r−1). Notice that we may always choose ϕ such that the gauge fixing
condition (5.14) is still satisfied. Without loss of generality we can thus always assume that

κ+ iφ = O(r−1). (5.30)

Inserting the falloff condition (5.26), (5.27), (5.28) and (5.30), back into the constraint
equation (5.22c), we can see then also that Ψ2 = O(r−1) or faster. Going back to the radial
evolution equation for the tangential expansion ϑ(`), i.e. going back to equation (5.20b),
and again using the falloff conditions, i.e. (5.26), (5.27) (5.28), we infer β = O(r−1) rather

25The coordinate transformation z → z̃ = z̃(u, z, z̄) is merely used to guarantee that the Jmz̄ off-diagonal
entries of the matrix J are O(1) rather than O(r). In addition, we assume a polynomial expansion, i.e.
a = O(rn) means a = anr

n + an+1r
n−1 + . . . is convergent in a neighbourhood of I+.
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than β = O(1). Since, however, α + β = O(r−1), we thus also know α = O(r−1). Taking
the sum of equations (5.20b) and (5.22c), and solving the resulting equation to leading
order in r, we find that ϑ(`) = O(r−1). Therefore,

α = O(r−1), β = O(r−1), ϑ(`) = O(r−1). (5.31)

Next, we solve the radial evolution equations (5.20a) to leading order in O(r−n). Going
back to (5.28), we have ϑ(k) = O(r−1) and σ(k) = O(r−2), which implies that ϑ(k) admits
the 1/r-expansion

ϑ(k) = 2
r

+O(r−2). (5.32)

We have now all parts together to determine the O(r−n) expansion of the components
of the Weyl spinor, which can be derived from the Bianchi identities [23]. If the Einstein
equations are satisfied, the first Bianchi identity reads

eAA′
a∇aΨAB1B2B3 = 0. (5.33)

If we contract this equation with k̄A′ and various powers of kB and `B, we obtain the radial
evolution equations for the components of the Weyl spinor. A short calculation gives,

d
dr [Ψs] =− 1

2(5− s)ϑ(k)Ψs

+ Lm
[
Ψs−1] +

[
i(s− 3)(γ − iα)− sβ

]
Ψs−1 − (s− 1)σ(`)Ψs−2, (5.34)

where Ψs ≡ 0 for s < 0. To solve these equations to leading order in r, we will consider
ϑ

(0)
(k) = 2/r as the free radial Hamiltonian, while all other terms represent the interaction

term . Working in the interaction picture, we introduce the rescaled components of the
Weyl spinor

Ψ̃s = r5−sΨs. (5.35)

Using the falloff conditions for the metric and spin coefficients, i.e. (5.27), (5.28), (5.30)
and (5.32), we obtain the falloff conditions of the radial evolution equations,

d
dr


Ψ̃4
Ψ̃3
Ψ̃2
Ψ̃1
Ψ̃0

 =


O(r−2) O(r−2) O(r−3) 0 0

0 O(r−2) O(r−2) O(r−3) 0
0 0 O(r−2) O(r−2) O(r−3)
0 0 0 O(r−2) O(r−2)
0 0 0 0 O(r−2)




Ψ̃4
Ψ̃3
Ψ̃2
Ψ̃1
Ψ̃0

 =: − iH


Ψ̃4
Ψ̃3
Ψ̃2
Ψ̃1
Ψ̃0

, (5.36)

where we introduced a radial interaction Hamiltonian H. Next, we formally integrate these
equations along the outgoing null rays γ(u,z,z̄)(r) that generate a given u = const. null
hypersurface, with (z, z̄) denoting the angular coordinates on the r = const., u = const.
cross sections of the double null foliation. Using the radially ordered exponential, i.e. the
path ordered exponential along the outgoing null generators, we obtain

Ψ̃(u, r1, z, z̄) = Rexp
(
− i
∫ r1

ro
dr γ∗(u,z,z̄)H

)
Ψ(u, ro, z, z̄) ≡ U(ro → r1|u, z, z̄)Ψ(u, ro, z, z̄).

(5.37)
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The falloff conditions of the components of the transfer matrix U(ro → r1|u, z, z̄) can be
inferred directly from (5.36),

U(ro → r1|u, z, z̄) = 1 +O(r−1). (5.38)

Going back to the physical components of the Weyl spinor (5.35), we obtain the familiar
falloff conditions for the components of the Weyl spinor,

Ψ4 = O(r−1), (5.39a)
Ψ3 = O(r−2), (5.39b)
Ψ2 = O(r−3), (5.39c)
Ψ1 = O(r−4), (5.39d)
Ψ0 = O(r−5), (5.39e)

where the components are now computed with respect to the null tetrad (ka, `a,ma, m̄a),
which is adapted to the double null foliation (i.e. both ka and `a are surface orthogonal).

Falloff conditions for the metric coefficients N and w. To calculate physical ob-
servables, we also need to understand the subleading terms in the 1/r expansion of the
metric coefficients, in particular N and w, as defined in (5.24). To infer the subleading
terms of the 1/r expansion, consider the radial and tangential evolution equations

d
drN − (α+ β)ζ̄ − (ᾱ+ β̄)ζ = κ, (5.40a)

L`[w]− Lm[N + ζ̄w + ζw̄] = −1
2
(
ϑ(`) − 2 iφ

)
w − σ(`)w̄, (5.40b)

which are a consequence of the Lie brackets [k, `]a = kb∇b`a− `b∇bka = κka+(α−β)m̄a+
(ᾱ − β̄)ma and [`,m]a = `b∇bma −mb∇b`a = −1

2(ϑ(`) − 2 iφ)ma − σ(`)m̄
a. We have built

the double-null foliation in such a way that κ = O(r−1) and we also saw that for an
asymptotically flat spacetime the falloff conditions N = O(r), w = O(1), α = O(r−1) = β

and ζ = O(r−1) will be satisfied, see (5.26)–(5.30). These falloff conditions are compatible
with equation (5.40a), only if N = O(1) rather than N = O(r), see (5.26).

Before further expanding on N , let us now consider the O(r−1) expansion of w =
ma∇ar. Going back to (5.24), which provides the vector field `a in terms of the coordinate
basis (∂au, ∂ar , ∂az , ∂az̄ ), and taking into account the falloff conditions (5.26), we obtain the
evolution equations

d
duw

(0)(u, z, z̄) = 0, (5.41)

d
duw

(1)(u, z, z̄) = rLm[N (0)] +O(r−1), (5.42)

where w = w(0)(u, z, z̄) + w(1)(u, z, z̄)r−1 + O(r−2) and N = N (0)(u, z, z̄) + O(r−1). We
may now always choose initial conditions on an u = uo = const. initial null hypersurface
such that w(0) = 0. The easiest way to impose such initial conditions is to choose a specific
foliation of ρ = const. surfaces, where the three-dimensional ρ = const. null surfaces Nρ
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intersect a fixed u = uo = const. initial null hypersurface, from where the construction of
Nρ starts, at constant values of r. In other words,

ρ(uo, r, z, z̄) = Ω−1(uo, r, z, z̄) = r. (5.43)

This equation (5.43) implies ka∇aρ|uo = 1 such that the pull-back of `a ∝ ∇aρ to the
u = uo hypersurface is simply −dr. Since ma lies tangential to the u = uo surface (maka =
−ma∇au = 0), we also have

0 = ma`a
∣∣
u=uo = −ma∇ar

∣∣
u=uo = −w

∣∣
u=uo , (5.44)

which implies the desired initial condition w|uo = 0. If we insert these initial conditions
back into (5.41), we obtain a double null foliation, i.e. a local foliation into ρ = const. and
u = const. null hypersurfaces, such that

w = ma∇ar =
∫ u

uo
du′Lm[N (0)](r, u′, z, z̄) +O(r−2). (5.45)

Let us now return to the expansion of N . The leading order coefficient N (0)(u, z, z̄) of
the 1/r expansion of the metric component N = N (0)(u, z, z̄)+O(r−1) can be set to zero via
an affine transformation of the outgoing null generators that sends the radial r coordinate
into r −

∫ u
uo

du′N (0)(u′, z, z̄). We may therefore assume, without loss of generality, that

N = N (1)(u, z, z̄)
r

+O(r−2), (5.46a)

w = ma∇ar = O(r−2). (5.46b)

Falloff conditions for the inverse conformal factor. Recall that the inverse con-
formal factor defines the radial coordinate ρ = Ω−1. The ρ = const. surfaces are null,
with null normal `a : `a∇aρ = 0. From (5.11), we know that ρ admits the expansion
ρ = ρ(0)(u, z, z̄)r + ρ(1)(u, z, z̄) + O(r−1) and `a = ∂au + N∂ar + ζ̄ma + ζm̄a. Given the
various falloff conditions and the initial condition (5.43), we obtain

ρ(u, r, z, z̄) = r +O(r−1). (5.47)

Falloff conditions for α and β. The Lie bracket [k,m]a = kb∇bma − mb∇bka =
−(α+ β)ka − 1

2ϑ(k)m
a − σ(k)m̄

a implies the radial evolution equations

d
drw + 1

2ϑ(k)w + σ(k)w̄ = −(α+ β). (5.48)

Since w = O(r−1) and ϑ(k) = 2/r + O(r−2), see (5.32), and σ(k) = O(r−2) as inferred
from (5.28), we find

α+ β = O(r−3). (5.49)

Going back to the radial evolution equations (5.20h) for ᾱ and taking into account the
falloff conditions (5.32), (5.39d), (5.49) and (5.28), we obtain

α = α(0)(u, z, z̄)
r2 +O(r−3), β = −α

(0)(u, z, z̄)
r2 +O(r−3). (5.50)
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Falloff conditions for non-affinity κ. The 1/r expansion of the non-affinity κ can be
inferred from the radial evolution equation (5.20g). Solving this equation to leading order
in 1/r and taking the falloff conditions (5.28), (5.30) (5.39c), and (5.49) into account,
we find

κ = +Re(Ψ(0)
2 )

r2 +O(r−3), (5.51)

and ϕ = O(r−2). Given the leading order of the 1/r expansion of κ, we solve the radial
evolution equation for the metric coefficient N = N (1)r−1 +O(r−2) such that

N = −Re(Ψ(0)
2 )

r
+O(r−2), (5.52)

where

Ψ2 = Ψ(0)
2 (u, z, z̄)

r
+O(r−2). (5.53)

Falloff conditions for σ(k) and σ(`). Next, we consider the 1/r expansion of the
transversal and tangential shear σ(k) and σ(`). Given the falloff condition (5.28), the
transversal goes like 1/r2 such that we may write

σ(k) = σ(u, z, z̄)
r2 +O(r−3). (5.54)

The evolution of the transversal shear σ(k) along the null generators `a of the null surfaces
Nρ is determined by the evolution equation (5.21d). If the falloff conditions are satisfied,
we can solve this equation perturbatively in r−1. We obtain

σ(`) = − σ̇(u, z, z̄)
r

+O(r−2), (5.55)

where σ̇(u, z, z̄) := d
duσ(u, z, z̄).

Falloff conditions for ϑ(k) and ϑ(`). The 1/r expansion of ϑ(k) can be inferred directly
from the radial Raychaudhuri equation (5.20a). For given asymptotic shear (5.54), the first
three terms in the 1/r expansion are given by

ϑ(k) = 2
r

+ 2U
r2 + 2(σσ̄ + U2)

r3 +O(r−4), (5.56)

where U ≡ U(u, z, z̄) characterises the next to leading term of ϑ(k) = 2/r + O(r−2).
Consider then the first two terms of the tangential expansion

ϑ(`) =
ϑ

(1)
(`) (u, z, z̄)

r
+
ϑ

(2)
(`) (u, z, z̄)

r2 +O(r−3). (5.57)

The transversal expansion satisfies the evolution equation (5.21b) along the null generators
of Nρ. We solve this evolution equation order by order in 1/r, from which we obtain the
coefficients of the 1/r expansion of ϑ(`). To leading order, we obtain

2U̇(u, z, z̄) + ϑ
(1)
(`) (u, z, z̄) = 0, (5.58)
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where U̇ = d
duU . We will see below that U̇ has a geometric interpretation: it is simply the

Ricci scalar of the u = const. cross sections of the ρ = const. null hypersurfaces.
To compute the next to leading order of ϑ(`) from the evolution equation (5.21b), let

us first note that the radial r has a derivative along `a. We have, in fact,

L`[r−1] = −r−2`a∇ar = −r−2(N + ζ̄w + ζw̄) = Re(Ψ(0)
2 )

r3 +O(r−4), (5.59)

which is a consequence of (5.24) and (5.52). Taking into account the falloff conditions, and
the leading order equations (5.58), we obtain the next to leading order for L`[ϑ(k)], namely,

L`[ϑ(k)] = 2U̇
r2 + 2

r3

(
Re(Ψ(0)

2 ) + d
du |σ|

2 + 2UU̇
)

+O(r−4) (5.60)

If we insert equation (5.60) back into the tangential evolution equation (5.21b), we obtain

ϑ
(2)
(`) = −4Re(Ψ(0)

2 ) + 2Ψ(0)
2 − 2σ ˙̄σ − 2UU̇ − 2r3(Lm[ᾱ]− i γᾱ

)
+O(r−1)

= −2Ψ̄(0)
2 − 2σ ˙̄σ − 2UU̇ − 2D̄ᾱ(0) +O(r−1), (5.61)

where D is the U(1) covariant derivative on the two-dimensional cross sections Cρ,u. If we
perform a U(1) transformation ma → eiϕma for a gauge parameter ϕ, the corresponding
U(1) component of the spin connection transforms as γ → eiϕγ − Lm[λ]. If, in addition,
there is a spin coefficient X, with spin weight s, that transforms as X → ei sλX under such
a U(1) transformation and admits the 1/r expansion X = X(0) +O(r−1), the leading order
of the U(1) covariant derivative will be defined by D̄X(0) := limr→∞ r(LmX + i sγX) and
DX(0) := limr→∞ r(Lm̄X + i sγ̄X).

We thus see from (5.61) that the next to leading order ϑ(2)
(`) of the tangential expansion

ϑ(`) depends on the asymptotic shear σ(u, z, z̄), on the next to leading order of ϑ(k) =
2/r(1 + U/r + O(r−2)) and on the leading order α(0)(u, z, z̄) of the spin coefficient ᾱ =
kA`

a∇akA, see (5.54). The spin coefficient α can be eliminated from this equation. The
dependence can be inferred from the constraint equation for Ψ1, i.e. (5.22a). Taking into
account the various falloff conditions, in particular (5.39d), (5.56) and (5.54), we obtain

ᾱ(0) = DU − D̄σ̄. (5.62)

This in turn allows us tow write the next to leading order of the tangential expansion in
terms of Ψ(0)

2 , and in terms of the asymptotic shear and the next to leading term of the
outgoing expansion,

ϑ
(2)
(`) (u, z, z̄) = −2

(
Ψ̄(0)

2 + σ ˙̄σ − D̄D̄σ̄ + UU̇ + D̄DU
)
. (5.63)

The tangential Raychaudhuri equation (5.21a) determines the time evolution of the
various coefficients of the 1/r expansion (5.57). Inserting (5.58) and (5.60) back into (5.57)
and (5.21a), we obtain the evolution equations

d2

du2 U(u, z, z̄) = 0, (5.64a)

d
duϑ

(2)
(`) (u, z, z̄) + 2U̇2(z, z̄) = −2|σ̇(u, z, z̄)|, (5.64b)
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Finally, let us explain how U̇ , which is constant in u, is related to the Ricci curvature of
the two-dimensional u = const. cross sections of Nρ. In equation (5.61), we introduced the
two-dimensional U(1) covariant derivative D. The 1/r expansion of the curvature of the
abelian connection Γ = γm̄+ γ̄m can be inferred from the constraint equation (5.22c) and
the various falloff conditions. A short calculation gives [D, D̄]X(0) = 2sU̇X(0), such that

R[qoab] = 4U̇ +O(r−1) (5.65)

is the Ricci scalar of the conformally rescaled metric qoab : qab = r2qoab + O(r), where
qab = ϕ∗Cρ,ugab is the pull-back of the physical metric gab to the two-dimensional ρ = const.
and u = const. spherical cross sections.

6 Bondi energy and radiative phase space

6.1 Radiative phase space from radial renormalisation

Our first task in this section is to explain how to recover the radiative phase space on I+ via
an asymptotic ρ→∞ limit of the quasi-local radiative phase space that we introduced in
section 3.4. For each null hypersurface Nρ of the foliation {Nρ}ρ>0, we introduce the quasi-
local symplectic potential (3.45). Using the definition of the one-form `AD`

A, see (3.47),
we find

ΘNρ = − 1
8πG

∫
Nρ

(
ε ∧ dκ − kad`adε+ 1

2ϑ(`)k ∧ dε

)
+ i

8πG

∫
Nρ

(
σ(`)k ∧ m̄ ∧ dm̄− c.c.

)
≡
∫
Nρ
θNρ . (6.1)

To evaluate ΘNρ for our falloff and gauge fixing conditions in the asymptotic ρ → ∞
limit to future null infinity, we need to know the falloff conditions for a linearised solution
δ[·] of the bulk plus boundary field equations (as summarised in table 1). The ρ → ∞
limit removes the ρ-coordinate, i.e. the inverse conformal factor, from the quasi-local phase
space, and we may treat, therefore, the foliation as a fiducial background structure, such
that the surfaces Nρ are locked into the abstract manifold M̃. In other words, δ[ρ] = 0.
Going back to the 1/r-expansion of the radial ρ coordinate as a function of (u, r, z, z̄),
see (5.47), and solving the equation δ[ρ] = 0 order by order in r, we obtain

δ[r] = O(r−1). (6.2)

From `a = N(`)∇aΩ and N(`) = O(Ω−2), and δΩ = δρ−1 = 0, we infer the falloff conditions

δ`a = λ`a, λ = O(r0). (6.3)

In a neighbourhood of null infinity, the (u, z, z̄) coordinates complete the radial r coordinate
into a four-dimensional coordinate system (u, r, z, z̄). To guarantee that these coordinates
are regular for r →∞, we impose the boundary conditions

δ[u] = O(r0), (6.4)
δ[z] = O(r0). (6.5)
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Since ka = −∇au, and δ[u] = O(r0) we may now also infer the falloff conditions for the com-
ponents of the one-form δ[ka]. Going back to (5.24) and (5.25), we obtain, schematically,

δ[ka] = O(r−2)`a +O(r0)ka +O(r−1)ma +O(r−1)m̄a. (6.6)

To recover the symplectic structure on the radiative phase space in terms of the asymptotic
shear, we express the 1/r expansion of δ[ma] in terms of δ[σ(k)] = δσ/r2 +O(r−3) and the
variation of δ[ϑ(k)] = 2δ[U ]/r2 + O(r−3). For every value of ρ, the null surface Nρ is
equipped with a universal ruling, which determines the direction of the null generators, i.e.
the equivalence class [`a]. This ruling is a universal background structure that we consider
to be fixed on the covariant phase space, hence δ`a = λ̃`a. The falloff conditions for λ̃ can
be inferred directly from ka`

a = −1 and (6.6), which implies λ̃ = O(r0). The existence of
such a fixed ruling of Nρ also implies that the variation of the complex-valued one-form
ma will admit the expansion

δ[ma] = f `a + gma + h m̄a. (6.7)

Where f = O(r−1) and g = O(r0), h = O(r0), which is a consequence of (6.2), (6.4), (6.5)
and the falloff conditions for the metric coefficients ζ, µ, ν that define the one-form ma =
−ζ∂au+ (µµ̄− νν̄)−1[µ∂az − ν∂az̄], see (5.24), (5.25). We consider thus the ansatz,

f = f (0)

r
+O(r−2), (6.8)

g = g(0) + g(1)

r
+O(r−2), (6.9)

h = h(0) + h(1)

r
+O(r−2). (6.10)

To evaluate the symplectic potential (6.1) at future null infinity, we now want to express the
subleading terms of this expansion in terms of variations of the asymptotic shear δσ(k) =
δσ/r2 +O(r−3) and the variation of the asymptotic expansion δϑ(k) = 2δ[U ]/r2 +O(r−3).
Consider then the radial and tangential evolution equations for the pull-back of ma to the
null hypersurface,

ϕ∗Nρ
[
Lkm

]
a

= 1
2ϑ(k)ϕ

∗
Nρma + σ(k)ϕ

∗
Nρm̄a + (α− β)ϕ∗Nρka, (6.11)

ϕ∗Nρ
[
L`m

]
a

= 1
2
(
ϑ(`) + 2 iφ

)
ϕ∗Nρma + σ(`)ϕ

∗
Nρm̄a, (6.12)

which follow directly from (5.15). Taking into account that 0 = δ[ka∇ar] = δ[ka]∇ar +
d
drδ[r] = δ[ka]∇ar +O(r−2), and 0 = δ[ka∇au] = δ[ka]∇au+ d

drδ[u] = δ[ka]∇au+O(r−2),
we obtain from `a = −∂ar + N∇au + wm̄a + w̄ma and the falloff conditions for N and
w that

δ[ka] = δ

[ d
dr

]a
= O(r−2)ka +O(r−2)`a + f̄ma + f m̄a, (6.13)

δ[`a] = O(r0)`a. (6.14)
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Since δρ = 0, the pull-back to Nρ commutes with the variation, and we obtain from
δ
[
ϕ∗Nρ [L`m]

]
= ϕ∗Nρ [L`δm]− ϕ∗Nρ [Lδ`m] that

d
du f (0) = 0, f (0) = f (0)(z, z̄), (6.15)

d
dug(0) = 0, g(0) = g(0)(z, z̄), (6.16)

d
duh(0) = 0, h(0) = h(0)(z, z̄). (6.17)

The next to leading order perturbations g(1) and h(1) can be obtained from the variation
of the radial evolution equation, i.e. δ

[
ϕ∗Nρ [Lkm]

]
= ϕ∗Nρ [Lkδm]− ϕ∗Nρ [Lδkm]. Taking into

account the various falloff conditions, we obtain

g(1) = −δU + h(0)σ̄ − h̄(0)
σ − i γ(0) f̄ (0)

, (6.18)

h(1) = −δσ + (g(0) − ḡ(0))σ + i γ(0)f (0), (6.19)

where γ(0) is the 1/r leading term of the expansion γ = γ(0)/r + O(r−2). The next to
leading order of h and g is thus sourced by the variation of the radial shear and expansion,

δ[ϑ(k)] = 2δ[U ]
r2 +O(r−3), (6.20)

δ[σ(k)] = δ[σ]
r2 +O(r−3). (6.21)

We have seen in section 3.4 that those bulk diffeomorphism, whose pullback to the null
surface Nρ map every light ray onto itself are unphysical gauge directions on the covariant
phase space. We remove this gauge freedom by imposing the following boundary conditions
on the field variation of the retarded u time coordinate,26

δ[u] = s(z, z̄) +O(r−1). (6.22)

We have now everything at hand to recover the radiative symplectic potential on future
null infinity. We have seen in (6.15), (6.16), (6.17) that the leading coefficients f (0), g(0),
h(0) that determine δ[ϕ∗Nρma] are constant along the null generators of J +. Therefore,
they cannot represent radiative modes, which characterise local degrees of freedom of the
gravitational field at I+. To infer the radiative symplectic structure on I+ from the ρ→∞
limit of the quasi-local symplectic potential, we set those variations to zero, otherwise we
would be left with an IR divergent integral along the null generators (the range of the
u-coordinate is the entire real line). For the same reason, we set δ[U ] = 0 such that
δ[ϑ(k)] = O(r−3). In fact, we have seen in (5.64a) that U(u, z, z̄) is linear in the affine
parameter: the derivative U̇ > 0 is constant along the null generators and determines
the Ricci curvature (5.65) of the u = const. cross sections of I+. If we restrict ourselves
to cross sections, where the two-dimensional metric qoab is simply the metric of the round
two-sphere, we immediately have δ[U ] = 0.

26Notice that the radial coordinate r and the retarded time u depend via the gauge and falloff condi-
tions (5.3), (5.6), (5.11) implicitly on the gravitational variables, hence δ[r] 6= 0 and δ[u] = 0.
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If we then remove such IR divergent terms, i.e. after imposing that the u independent
terms g(0), h(0) and δ[U̇ ] vanish, the (ma, m̄a)-components of a tangent vector δrad to the
radiative phase space will satisfy the falloff conditions

δrad[ϕ∗Nρm]a = O(r−2) [ϕ∗Nρm]a −
(
δrad[σ]
r

+O(r−2)
)

[ϕ∗Nρm̄]a. (6.23)

To obtain the radiative phase space, we insert both (6.2) and (6.22) together with (6.23)
back into the pre-symplectic potential (6.1), and evaluate the integral as ρ = r+O(r−1)→
∞, such that

ΩI+
(
δrad

1 , δrad
2
)

:= lim
ρ→∞

ΩNρ
(
δrad

1 , δrad
2
)

= 1
4πG

∫
I+
k ∧ d2Ω

(
δrad

[1 σ̇ δrad
2] σ̄ + c.c.

)
. (6.24)

where the family of bounded null surfaces {Nρ}ρ>0 is chosen such that limρ→∞Nρ = I+

and ΩNρ = dΘNρ is the pre-symplectic two-form that we introduced in section 3.4. In
addition, d2Ω is the fiducial area element on two-dimensional cross sections of I+, which
can be inferred from the 1/r expansion of the physical area two-form ε = − im ∧ m̄,

− iϕ∗Nρ
(
m ∧ m̄

)
= d2Ω (r2 − 2Ur +O(r0)), (6.25)

and ka is a one-form such that ka∂au = −1. Given the symplectic two-form (6.24), it is also
useful to introduce the corresponding symplectic current. Choosing the same polarisation
as in (6.1), we obtain

θI+(δrad) = 1
8πGk ∧ d

2Ω
(
σ̇δσ̄ + c.c.). (6.26)

6.2 Bondi energy and Helmholtz free energy of gravitational edge modes

It is now possible to identify the Hamiltonian on a partial Cauchy hypersurface Mu that
intersects future null infinity at constant values of u (the boundary ∂Mu = Cu will be
a u = const. cross section of I+). We call this Hamiltonian Hξ[Cu] and it will generate
time translations along the vector field ξa ∈ TM, which is null and lies tangential to the
generators of the null foliation,

ξa
∣∣
N ∈ [`a]. (6.27)

Following what we said in equation (2.15) above, we define the generator as a functional
Hξ on the space of physical histories, which is larger than phase space,27 such that

δ
[
Hξ[C]

]
= −ΩM (Lξ, δ) +

∫
∂M

ξyθN (δ), (6.28)

where θN is the symplectic current, i.e. the integrand of (6.1), and δ[·] ∈ THphys denotes
a linearised solution of the bulk plus boundary field equations, see table 1. The relative
minus sign between (6.28) and (2.15) results from a change of orientation on C = ∂M ,
which is equipped with the induced orientation from M rather than N .

27The space of physical histories is larger than phase space, because (i) it contains configurations that
would be gauge equivalent on phase space (ii) includes the boundary data on I+, which is otherwise fixed
by the boundary and gauge fixing conditions, i.e. δσ(u, z, z̄) = 0.
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The entire calculation of (6.28) is valid only on-shell, which is to say provided the
bulk plus boundary field equations are satisfied. As in section 4 above, the first term is a
total boundary term. Using the definition of the SL(2,C) gauge covariant Lie derivative,
see (4.2a)–(4.2d), we obtain, in fact

ΩM (Lξ, δ) = i
8πG

[ ∫
M

(
∇(ξyΣAB) ∧ δ[AAB]− δ[ΣAB] ∧ ξyFAB

)
−
∮
∂M

(
ξyDηAδ`A +D(ξyηA)δ`A − δηAξyD`A

)]
+ c.c.

= i
8πG

[ ∫
M

(
(ξyΣAB) ∧ δ[FAB]− δ[ΣAB] ∧ ξyFAB

)
+
∮
∂M

(
ξyΣAB ∧ δ[AAB]− ξyDηAδ`A −D(ξyηA)δ`A + δηAξyD`A

)]
+ c.c.

(6.29)

Since δ[·] is a linearised solution of the bulk plus boundary field equations, the three-
dimensional bulk integral vanishes,∫

M

(
ξyΣAB ∧ δFAB − δΣAB ∧ ξyFAB

)
= −

∫
M

(
ξAA′eB

A′ ∧ δFAB − eAA′ ∧ δeBA
′ ∧ ξyFAB

)
= −

∫
M

(
ξAA′eB

A′ ∧ δFAB + ξAA′ ∧ δeBA
′ ∧ FAB

)
= −

∫
M
ξAA′δ[eBA

′ ∧ FAB] = 0,

(6.30)

where ξAA′ = ξyeAA′ and ΣAB = −1
2eAC′ ∧ eB

C′ and the field equations in the bulk, i.e.
eBA′ ∧ FBA = 0,∇eAA′ = 0 are satisfied. If we then also take into account the boundary
field equations (3.18a), (3.18b), we can further simplify the various contributions to (6.28).
Going back to (3.18a) and (3.18b), we find

ξyDηAδ`A = −ξy
((

ω + 1
2κ
)
∧ ηA

)
δ`A − ξyNA ∧ m̄δ`A

= −ξy
((

ω + 1
2κ ∧ ηA

)
δ`A + ξaka`yNA ∧ m̄δ`A

= −ξy
(
ω + 1

2κ ∧ ηA
)
δ`A + ξakam̄ ∧ δ`AD`A. (6.31)

If we insert (6.31) back into (6.29), two terms appear: the first term is linear in the variation
of the two-dimensional area two-form ε = − im∧m̄ on N , and the other term only contains
variations of the one-form `AD`

A that determines shear and expansion of N , see (3.47).
More precisely,

ΩM (Lξ, δ) = − i
8πG

∮
∂M

(
ξyηAδ[AAB]`B + ξakam̄ ∧ δ[`A]D`A + ξyηADδ`A

− ξy
(
ω + 1

2κ
)
ηAδ`

A − ξy
(
ω + 1

2κ
)
δ[ηA]`A

)
+ c.c.

= 1
8πG

∮
∂M

(ξyκ) δ[ε]− i
8πG

∮
∂M

ξaka
(
m̄ ∧ δ(`AD`A)− c.c.

)
. (6.32)
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We assume δ[ξa] = 0, and insert the radiative symplectic potential (3.45) back into the
definition of the generator (6.28). This leads us to

δ
[
Hξ[∂M ]

]
= −ΩM (Lξ, δ) +

∮
∂M

ξyθN (δ)

= − 1
8πG

∮
∂M

δ
[
ε ξyκ

]
+ i

8πG

∮
∂M

δ
[
ξakam̄ ∧ `AD`A − c.c.

]
= − 1

8πG

∮
∂M

δ
[
ε ξyκ

]
− 1

8πG

∮
∂M

δ
[
ε ξaka ϑ(`)

]
, (6.33)

which is a total derivative on the space of physical histories.
To extract the Bondi mass from the time-dependent Hamiltonian (6.33), we impose the

various gauge fixing and falloff conditions for the double null foliation that we defined in
the last section and evaluate the integral in the limit ρ→∞. In addition, and to guarantee
that Hξ vanishes in Minkowski space, we impose the following falloff conditions,

ξa =
(

1 + U

r
+O(r−2)

)
`a, (6.34)

hence ξa is a field-dependent vector field.28 The falloff conditions for the tangential expan-
sion (5.57), (5.58), for the area element (6.25), and for the vector field ξa imply now the
following 1/r expansion of the variation

1
8πG

∮
∂M

δ
[
ξaka ε ϑ(`)

]
= − 1

8πGδ
∮
∂M

d2Ω
[
− 2rU̇ + ϑ

(2)
(`) + 2UU̇ +O(r−1)

]
. (6.35)

The first term, which is linear in r, is a potential source of an IR divergence, but this term
is harmless, since its variation vanishes for the gauge fixing and falloff conditions that we
have chosen above. Since, in fact, δρ = 0, which is to say that wee keep the {Nρ}ρ>0
foliation fixed, and ρ = r +O(r−1), see (5.47) and (6.2), we obtain

lim
ρ→∞

δ

[ ∮
∂Mρ,u

d2Ω r U̇

]
= lim

ρ→∞

(
ρ δ

[ ∮
∂Mρ,u

d2Ω U̇

])
. (6.36)

On the other hand, U̇ is proportional to the two-dimensional Ricci scalar (5.65). The result-
ing integral (4π)−1 ∫

∂Mρ,u
d2ΩR is the Euler characteristic χ[∂Mρ,u] of the two-dimensional

boundary ∂Mρ,u, which has the topology of a two sphere. Since χ[S2] = 2, the variation
vanishes,

lim
ρ→∞

δ

[ ∮
∂Mρ,u

d2Ω r U̇

]
= π lim

ρ→∞

(
ρ δ
[
χ[∂Mρ,u]

])
= 0. (6.37)

It is now possible to insert (6.35) and (6.37) back into (6.33). Taking the asymptotic
ρ→∞ limit, we obtain

lim
ρ→∞

δ
[
Hξ[Cρ,u]

]
= − 1

8πGδ
[ ∮
Cu
ε κ

]
+ δ

[
MB(u)

]
, (6.38)

28Notice that ξa depends on U and r and `a, hence δ[ξa] 6= 0 or more precisely δ[ξa] = O(r−2)`a

provided (6.2) and (6.22) are satisfied. For a vector field that depends itself on the configuration variables,
equation (6.28) gets replaced by δ[Hξ] − Hδ[ξ] = −Ω(Lξ, δ) +

∮
∂M

ξyθN (δ). If, however, δξa = O(r−2)`a

this subtlety can be ignored since the integrand δ[ξa]kaϑ(`)ε will vanish as r →∞.
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where MB(u) is the O(r0) contribution to (6.35), i.e. the integral of ϑ(2)
(`) + 2UU̇ over the

u = const. cross section of I+. Going back to equation (5.61), we have

MB(u) = − 1
4πG

∮
Cu
d2Ω

(
Ψ̄(0)

2 + σ ˙̄σ + D̄ᾱ(0)
)
, (6.39)

which is the Bondi mass. The mass loss formula follows from the next to leading order of
the tangential Raychaudhuri equation, i.e. (5.64b), such that

d
duMB(u) = − 1

4πG

∮
Cu
d2Ω |σ̇|2 =

∮
Cu
ξyθI+

( d
du

)
≤ 0. (6.40)

Bondi energy as free energy. On a black hole spacetime, the ADM mass at infinity,
the ADM angular momentum and the area of the horizon all have a thermodynamical
interpretation. The functional variation (6.38) and the mass loss formula (6.40) suggest a
similar understanding as well:

Hξ[Cu ⊂ I+]︸ ︷︷ ︸
internalenergy

+ 1
8πG

∮
Cu
ε κ︸ ︷︷ ︸

−S×T

= MB(u).︸ ︷︷ ︸
freeenergy

(6.41)

In other words, our suggestion is to identify Bondi’s radiative energy with the
Helmholtz free energy of the system. The free energy of what system? To answer this
question, it seems crucial to understand how observables and phase space itself depends
on the chosen boundary conditions. Different boundary conditions represent altogether
different physical processes, i.e. different physical systems with different phase spaces and
different Hamiltonians. In our case, this physical difference is realised mathematically by
the difference between the space of physical histories Hphys, i.e. the solution space of the
field equations for arbitrary boundary conditions, and the covariant phase space, which is
the space of solutions to the field equations for specific boundary and falloff conditions.
The space of physical histories is therefore larger than phase space, and depending on how
restrictive the boundary conditions are, the size of the resulting phase space will be dif-
ferent. A simple example was given in section 2, where we considered a time-dependent
Hamiltonian H[~p, ~q, ω(t)], whose time-dependence enters through a time-dependent back-
ground field ω(t). A generic tangent vector δ[·] ∈ THphys on the space of physical histories
will generate infinitesimal changes of these parameters, hence δ[ω] 6= 0. However, any ac-
tual physical trajectory — a point on phase space — is realised only for a particular choice
of the background field ω(t). Since ω(t) can be tuned continuously, the space of histories
foliates into a whole family of phase spaces

⊔
ω Pω = Hphys, and for every ω(t) there is a

different phase space.29 Each of these phase spaces is equipped with a symplectic two-form
Ω, which is obtained by the pull-back of the pre-symplectic two-form Ωbulk ∈ Ω2(T ∗Hphys)
to Pω modulo gauge.

29The background fields represent knobs and controls that allow us to manipulate the experiment. Such
manipulations may happen directly by changing the controls of the experimental setup, or retroactively by
post-selecting a subset of observations from an ensemble of similar observations with different boundary
conditions.
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Thus, we need to identify the phase space, and hence the system, for which the
functional Hξ[Cu ⊂ I+] : Hphys → R, (6.28), (6.41), is the Hamiltonian. Consider
the problem at the linearised level. A tangent vector δ[·] ∈ THphys that lies tangen-
tial to this yet unspecified phase space Pedge ⊂ Hphys will satisfy Hamilton’s equations,
δ[Hξ] = −(ϕ∗PΩMu)(Lξ, δ), whereMu is a partial Cauchy surface that intersects I+ at some
u = const. cross section Cu. On the other hand, a generic such vector field δ[·] ∈ THphys
will satisfy (6.28). Both equations can be true, only if the symplectic current vanishes, i.e.
limρ→∞

∮
Cρ,u ξyθNρ(δ) = 0. For a generic configuration on Hphys, this implies that the vari-

ation of the asymptotic shear will vanish. Hence δσ(u, z, z̄) = 0. If we insist to have a phase
space for which Hξ[Cu] is the Hamiltonian, we should add this condition to our boundary
and falloff conditions on I+. Clearly, this is a very restrictive condition. Since the asymp-
totic shear characterises all the outgoing radiation, the boundary condition δσ(u, z, z̄) = 0
removes all radiative modes from the phase space that we would otherwise associate to
the partial Cauchy hypersurface Mu.30 The phase space Pedge contains, therefore, no lo-
cal degrees of freedom from within the partial Cauchy hypersurface. Yet there should be
still infinitely many boundary modes left that characterise e.g. large diffeomorphsims and
boosts, see e.g. (4.7) and (4.30).31 In fact, this is precisely what is suggested by general rel-
ativity in dimensions smaller than four. Consider, for example, three-dimensional gravity
in the Chern-Simons or BF formulation. On a closed manifold M, the resulting gravita-
tional phase space is the moduli space of flat connections, which is finite-dimensional. On
the other hand, if we break the manifoldM into two partsM =M+∪M−, new degrees of
freedom are excited along the boundary ∂M+ = B. The splitting of the manifold into two
parts destroys diffeomorphism invariance and directions on field space that would have oth-
erwise been considered unphysical represent now physical boundary modes (gravitational
edge modes). The dynamics of these boundary modes along the two-dimensional boundary
depends on the boundary conditions chosen. Different boundary conditions correspond to
different boundary field theories with different phase spaces and different notions of energy.
Perhaps the most important such example is the Wess-Zumino-Witten model, which pro-
vides a possible boundary field theory for gravitational edge modes in three-dimensional
gravity, but there are many other boundary field theories as well, both at the level of the
discrete spin network representation and in the continuum, see e.g. [20, 36, 44–47]. By
removing the radiative modes from the partial Cauchy surface Mu and encoding them into
auxiliary background fields on I+, we are in a very similar situation as well. The resulting
phase on a partial Cauchy surface Mu will be stripped off its radiative data, and can only
consist of gravitational edge modes alone.

If we accept such a reasoning, which is supported by recent results from various ap-
proaches [48–51], equation (6.41) suggests to identify Bondi’s radiative energy with the
free energy of gravitational edge modes. Accordingly, the mass loss formula (6.40) turns
into the gravitational equivalent of the statement that the free energy decreases towards

30Unless there are singularities or different asymptotic regions that could capture some of the radiative
degrees of freedom.

31The corresponding smearing functions will have the following falloff in a neighbourhood of I+, λ =
O(r−2) and ξa = ξm̄a + x̄ma, ξ = O(r).
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thermal equilibrium, and thermal equilibrium is reached once σ̇ = 0. In analogy to the first
law of black hole thermodynamics, we may then also identify the entropy density s with
the area density of the two-dimensional u = const. cross sections of I+, i.e. s = ε/(4G).
Clearly, the entropy diverges as ρ → ∞, but the product ε κ remains finite, because the
non-affinity κ : `b∇b`a = κ`a admits the 1/r expansion κ = Re(Ψ(0)

2 )/r2 + O(r−3). In
equilibrium, σ̇ = 0 and the Bondi mass is simply the integral MB = − 1

4πG
∮
C d

2Ω Ψ̄(0)
2

such that S × T = MB/2 ≥ 0, with the asymptotic equivalent of temperature given by
T = − 1

2πRe(Ψ(0)
2 )/r2 +O(r−3), which vanishes as r →∞.

7 Summary and discussion

We have developed, step by step, a representation of the radiative gravitational phase space
at generic null boundaries in terms of an adapted Newman-Penrose tetrad. The starting
point (section 3) was the introduction of the appropriate counter terms on the null boundary
such that the action is stationary provided the boundary conditions and equations of motion
are satisfied. The boundary conditions are such that an equivalence class } = [κa, `a,ma]/∼
is kept fixed at the boundary, where `a is a representative of the null vectors (vertical vector
fields) that generate the null boundary, κa is an abelian connection such that κ = `aκa
is the non-affinity of `a, i.e. `b∇b`a = κ`a, and the co-dyad ma is a complex-valued one-
form intrinsic to the null boundary such that qab = 2m(amb) is the induced signature
(0++) metric on the boundary. Two configurations (κa, `a,ma) and (κ̃a, ˜̀a, m̃a) define
the same equivalence class } = [κa, `a,ma]/∼ if they are related by a combination of (i)
vertical diffeomorphisms (3.12) along the vector fields ξa ∝ `a, (ii) shifts (3.14) of κa, (iii)
dilations (3.13) of (κa, `a), and (iv) complexified conformal transformations of (`a,ma),
see (3.15). The resulting equivalence class [κa, `a,ma]/∼ characterises two local degrees of
freedom on the null surface, which are the two radiative modes of the gravitational field
at the full non-perturbative level. Section 3 provides the resulting radiative phase space
at the quasi-local level. Besides the two radiative modes, there are additional edge degrees
of freedom. Such edge modes appear, because the null surface N has itself a boundary
(two consecutive cross sections Co and C1, ∂N = Co ∪ C∞). In section 4, we studied such
edge modes from the perspective of the gravitational degrees of freedom in the bulk, i.e.
on a partial Cauchy surface that is attached to the null boundary. We introduced the pre-
symplectic two-form ΩM on such a partial Cauchy surface and identified the Hamiltonian
generators for tangential diffeomorphisms (generalised angular moments), see (4.7), and
dilations of the null normal (4.30). The corresponding Hamiltonian that generates shifts
along the null generators was introduced in section 6.

The second half of the paper was about the asymptotic r → ∞ limit that sends the
finite boundary N to future null infinity I+. We admit that our presentation was a bit
involved, but we believe that this was crucial to obtain the limit to I+ from a quasi-
local perspective. First of all, we introduced a Newman-Penrose (NP) tetrad adapted
to a double null foliation. We then considered the 1/r expansion of perturbations of
such an adapted null frame around a given solution of Einstein’s equations. In a certain
way, our gauge choices were dual to those that would be used normally in the Newman-
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Penrose formalism. In our case, the two NP null directions are both surface forming, hence
`[a∇b`c] = k[a∇bkc] = 0. In the more standard NP gauge, only the outgoing radial null
direction ka (what is called la in the NP formalism) is surface forming, whereas `a (i.e. na

in the NP formalism) is not. Such a gauge choice would be inconvenient for us. To send
N to I+, we found it necessary to work with a double null foliation, where the infalling
(collapsing) null surfaces {Nρ}ρ>0 approach future null infinity as ρ → ∞. Accordingly,
we have to relax some other gauge fixing conditions that are otherwise frequently imposed
in the NP formalism: in the NP formalism, the parallel transport propagates the null
frame along the outgoing null direction (ka in our case). Such a gauge condition would
be incompatible with the integrabilty conditions of the co-vectors `a and ka. Therefore,
we had to impose a weaker condition, namely (5.14), which can always be reached thanks
to the gauge freedom ma → eiϕma. Our discussion completes earlier results [52–59] on
the subject by clarifying the falloff conditions on the covariant phase space in terms of an
adapted Newman-Penrose null tetrad on a generic double null foliation of spacetime.

Taking into account the falloff conditions and removing otherwise IR divergent terms,
we obtained the well-known symplectic structure of the radiative modes at future null infin-
ity from the radial renormalisation of the quasi-local symplectic potential, see (6.24), (3.45).
Finally, we computed the time-dependent Hamiltonian, which generates translations along
the null generators `a. At finite distance, the Hamiltonian is simply the difference of the
non-affinity κ and the expansion ϑ(`), which are integrated over a two-dimensional cross
section of the boundary. This integral diverges in the limit ρ→∞, but this divergence is
mild. In fact, what we obtain from the covariant phase space approach, is not directly the
Hamiltonian, but rather its variation, see (6.33). The potentially IR divergent contribution
to the Hamiltonian is proportional to the Euler characteristic of the cross section. This is a
topological invariant, whose variation vanishes on the covariant phase space. The variation
of the Hamiltonian δ[Hξ] is finite (6.38) and returns the Bondi mass plus a term, which
is given by the integral of the non-affinity κ over the two-sphere at infinity. The Hamil-
tonian Hξ is explicitly time-dependent and integrable on a reduced phase space, where
all the radiative modes that would otherwise exist on Mu have been translated into fixed
background fields at null infinity. The experience from gravity in dimensions d < (3 + 1)
suggests that the resulting reduced phase space is the phase space of gravitational edge
modes alone.

The article was about classical gravity, but the main motivation for this research has
to do with quantum gravity. The quantum version of our approach will provide boundary
transition amplitudes that are conditioned on the asymptotic shear as a classical back-
ground field and are evaluated between quantum states at two consecutive cross sections
of future null infinity, with the generator of asymptotic symmetries providing the time-
dependent Hamiltonian. In [60], we have given a proposal for how to construct such
amplitudes from a three-dimensional field theory on the null cone.32 In two and three

32Although the programme is centred around boundary field theories, it would be misleading to call such
an approach holographic: it is not that we try to translate the two radiative modes of the gravitational
field in the bulk into the degrees of freedom of some dual field theory on the light cone. On dimensional
grounds, this may very well be impossible: the radiative portion of the gravitational phase space in the
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spacetime dimensions, the problem simplifies dramatically. There are no radiative modes
to begin with, and the only physical degrees of freedom are the gravitational edge modes
alone. Quasi-local realisations of the boundary dynamics for such gravitational edge modes
have been explored recently from within loop quantum gravity and related approaches, see
for instance [20, 36, 44–47].

The idea to treat the asymptotic shear as an auxiliary (classical) background field is
reminiscent of developments in various other approaches. For example, there is a recent
interest in describing quantum systems in relation to reference frames that are themselves
quantum. It is then necessary to explain how to jump from one such quantum reference
system into another thereby creating quantum entanglement among the remaining con-
stituents of the system [61–66]. In our case, the asymptotic shear σ(u, z, z̄) for a given
Bondi frame (u, z, z̄) provides the classical frame of reference, the quantum variables are
the gravitational edge modes, namely generators of horizontal diffeomorphisms (4.7) or
boosts (4.30). In addition, we would also like to stress that there seem to be recent de-
velopments from within the AdS/CFT community that supports our viewpoint as well,
see [67–69].
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bulk has 2×2×∞3 dimensions (two polarisations of the graviton per point), the phase space of a boundary
field theory has 2×N ×∞2 dimensions.
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A NP formalism and double null foliation

NP Formalism Double Null Foliation

nu
ll
te
tr
ad

la = oAōA
′

ka = i kAk̄A′ = ∂ar , ka = −∇au

na = ιAῑA
′

`a = i `A ¯̀A′ = ∂au +N∂ar + ζ̄ma + ζma, N = −Re(Ψ(0)
2 )

r +O(r−2), ζ = O(r−1)

ma = oAῑA
′

ma = i `Ak̄A′ = w∂ar + µ∂az̄ + ν̄∂az , w = O(r−2), µ = µ(0)(z,z̄)
r +O(r−2),

m̄a = ιAōA
′

m̄a = i kA ¯̀A′ = w̄∂ar + µ̄∂az + ν∂az̄ , ν = O(r−2)

sp
in

co
effi

ci
en
ts

π = ιA∇00′ιA ¯̀A′∇k ¯̀
A′ = −β̄ = ᾱ+O(r−3)

λ = ιA∇10′ιA ¯̀A′∇m̄ ¯̀
A′ = σ̄(`) = − σ̇(u,z,z̄)

r +O(r−2)

µ = ιA∇01′ιA ¯̀A′∇m ¯̀
A′ = 1

2ϑ(`) = − U̇(z,z̄)
r +O(r−2)

ν = ιA∇11′ιA ¯̀A′∇` ¯̀A′ = 0

ε = ιA∇00′oA ¯̀A′∇kk̄A′ = 0

α = ιA∇10′oA ¯̀A′∇m̄k̄A′ = − i
2
(
γ̄ + i ᾱ

)
= O(r−1), γ = − i µ

(0)

µ̄(0) ∂z̄µ̄
(0) +O(r−2)

β = ιA∇01′oA ¯̀A′∇mk̄A′ = − i
2
(
γ + iα

)
γ = ιA∇11′oA ¯̀A′∇`k̄A′ = − 1

2
(
κ− iφ

)
= O(r−1), κ = Re(Ψ(0)

2 (u,z,z̄))
r2 +O(r−3)

κ = oA∇00′oA k̄A
′∇kk̄A′ = 0

ρ = oA∇10′oA k̄A
′∇m̄k̄A′ = − 1

2ϑ(k) = − 1
r −

U
r2 − σσ̄+U2

r3 +O(r4), Ü = 0

σ = oA∇01′oA k̄A
′∇mk̄A′ = −σ(k) = −σ(u,z,z̄)

r2 +O(r−3)

τ = oA∇11′oA k̄A
′∇`k̄A′ = α = α(0)

r2 +O(r−3), ᾱ(0) = DU − D̄σ̄

Ψs Ψ̄s = Ψ̄A′
1...A

′
sA

′
s+1...A

′
5
¯̀A′

1 . . . ¯̀A′
s k̄A

′
s+1 . . . k̄A

′
5 = O(rs−5)

Table 2. Dictionary between the Newman-Penrose (NP) formalism and the conventions used in
this paper. Our metric signature is (−+++). Spacetime vectors V a correspond to anti-hermitian
(1/2, 1/2) spinors V AA′ = −V̄ A′A. The role of primed and unprimed indices are switched by parity.
What we call e.g. Ψ2 corresponds, therefore, to Ψ̄2 in the NP formalism. Notice that both ka and
`a are surface orthogonal.
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