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1 Introduction

Wormholes have long been of interest since the time of Einstein and Rosen [1]. Although
Einstein-Rosen bridges connect different asymptotic regions of spacetime, topological cen-
sorship [2, 3] forbids their traversability when only classical matter fields are present. The
same is of course true of their multi-boundary wormhole generalizations. However in some
cases, quantum matter fields can cause violations of the averaged null energy condition
(ANEC). In such cases the arguments of [2, 3] cannot be applied, so that such ANEC
violations might make the wormholes traversable. We remind the reader that the ANEC is
satisfied when the integral of stress tensor along any complete null geodesic is non-negative,∫

γ
Tabk

akb ≥ 0. (1.1)
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In recent years, there have been many approaches to constructing traversable worm-
holes from ANEC violations, see [4–11]. In particular, in the seminal paper by Gao, Jafferis
and Wall [4], the authors construct a traversable wormhole using a two-sided BTZ black
hole as the background, where the dual CFT state is the thermofield double (TFD) state.
With an appropriate sign of coupling, a double-trace deformation that directly couples the
two boundary CFTs can cause the violation of the ANEC. Adding the coupling shifts the
horizons so as to allow certain causal geodesics to travel from one asymptotic boundary to
the other. In [5], this construction was generalized to rotating BTZ black holes. It is also
interesting to recall that the transmission of such signals was interpreted in [9] from the
dual field theory perspective as being due to enacting a quantum teleportation protocol
between entangled quantum systems. This connection with quantum information has been
of great interest (see e.g. [12–17]) as a concrete realization of the ER=EPR idea [18].

In the current paper, we generalize this construction to any pair of asymptotic regions
in certain (non-rotating or rotating) multi-boundary black holes1 in AdS3. For a general
multi-boundary black hole, a finite-sized causal shadow separates the horizons of different
asymptotic regions, making the wormhole hard to traverse. In our construction, we focus
on the hot limit considered in [19], where the temperatures related to all horizons are
large. In that limit, for any two horizons, there exists a region where the causal shadow
between them is exponentially small. A double-trace deformation can then easily render
the wormhole traversable. As we will see, the hot limit will also give us convenience in
doing the calculations, which otherwise would be difficult to perform.

Our construction has several interesting features that differ from those of [4] and [5].
The first is that the pair of boundaries in our traversable wormhole construction is quite
general, and the associated horizons can have different temperatures and angular momenta.
Furthermore, our spacetimes have non-trivial angular dependence, and this can be seen in
features related to traversability. In particular, signals from a given asymptotic region will
be able to reach a second asymptotic region only when fired from appropriate regions of
the first boundary. Signals launched from other parts of the first boundary may instead
traverse to a third asymptotic region, or they may be become stuck behind an event horizon.
It is a general feature of our construction that some such event horizon will remain even
though our wormholes are traversable. Again, this is associated with the lack of rotational
symmetry in our spacetimes.

In section 2, we review the construction of multi-boundary wormholes in AdS3 and
their important properties that will be useful in later sections. The geometry of these
wormholes in the hot limit is also discussed, as well as the entanglement structure of the
dual CFT state. A general review of the Gao-Jafferis-Wall construction is then given in
section 3, where we emphasize a rather general form of the coupling between boundaries
that can induce traversability. Using these two ingredients, we proceed to construct the
multi-boundary traversable wormhole in section 4. We summarize our findings and discuss
their implications and connections with recent work in the literature in section 5. A number
of technical details and supporting calculations are left to the appendices.

1Note that, while there is some freedom in the use of such terms, our choice is to use “multi-boundary
black holes” when the context refers to the background spacetime, and use “multi-boundary wormholes”
when the context refers to traversable wormholes in particular.
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2 Multi-boundary black holes in AdS3

In this section, we will first review how to construct multi-boundary black holes by quo-
tienting empty AdS3 with isometries, following an algebraic approach [20–25].2 Then we
discuss fixed points of those isometries, (renormalized) geodesic distances in different con-
formal frames, and how they behave in the hot limit. Those results will be useful in our
construction of multi-boundary traversable wormholes. Finally, we briefly describe the
CFT states that are dual to these geometries.

2.1 Quotients of AdS3 space

In three-dimensional Einstein gravity, the Ricci tensor completely specifies the Riemann
tensor. The consequence of this is that all gravity solutions are locally isometric to AdS3,
which is the Lorentzian, maximally-symmetric spacetime with constant negative curvature
and isometry group SO(2, 2) ' SL(2,R)× SL(2,R). Besides pure AdS3, other solutions to
the equations of motion are locally AdS3 but differ globally from it and can be obtained
by quotienting AdS3 by a discrete subgroup Γ of SO(2, 2). Throughout the paper, we take
the AdS radius LAdS = 1. The spacetime AdS3 can be defined as the submanifold of

R2,2 =
{
p =

(
U +X −V + Y

V + Y U −X

)}
, ds2 = − det(dp) ≡ η̄abdx̄adx̄b, (2.1)

given by the hyperboloid det(p) = 1,3 where we defined the 4-vector x̄a = (U, V,X, Y ) and
metric η̄ab = diag (−1,−1, 1, 1). In global coordinates, this hyperboloid is parametrized by
the intrinsic coordinates (t, r, φ) defined by

X = r cosφ, Y = r sinφ, U =
√

1 + r2 cos t, V =
√

1 + r2 sin t (2.2)

which gives the induced metric

ds2 = −(1 + r2)dt2 + dr2

1 + r2 + r2dφ2 (2.3)

where t ∼ t+2π,4 and φ ∼ φ+2π. The connected part of the group SOc(2, 2) is SL(2,R)⊗
SL(2,R)/Z2. The group elements (gL, gR) ∈ SOc(2, 2) act on a point p according to

p→ gLpg
t
R. (2.4)

From this, we see that the Z2 symmetry correspond to the equivalence relation
(gL, gR) ∼ (−gL,−gR). A convenient basis of generators {J1, J2, J3} × {J̃1, J̃2, J̃3} of the
isometry group SL(2,R)× SL(2,R) is

J1 ≡ −
1
2 (JXU − JY V ) , J̃1 ≡ −

1
2 (JXU + JY V )

J2 ≡ −
1
2 (JY U + JXV ) , J̃2 ≡ −

1
2 (JY U − JXV )

J3 ≡ −
1
2 (JUV − JXY ) , J̃3 ≡

1
2 (JUV + JXY )

(2.5)

2For construction of these geometries using explicit forms of the Killing vectors, see [26].
3dp is the matrix defined by taking the differential of every element of the matrix p.
4Usually the universal cover of t is taken by unwrapping it, but as we will see, it is not necessary here

since the wormhole constructions will automatically remove closed timelike curves.
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φ = πφ = −π

t = π

t = −π
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e

Figure 1. The group manifold of SL(2,R), which is also the Penrose diagram of AdS3. The dotted
lines represent the action of the group elements of SL(2,R) on the identity element e placed at the
origin of AdS3 in global coordinates. The isometries of SL(2,R) are classified depending on which
region the element e is mapped to. Dashed lines represent null rays.

where the Killing vectors Jab = x̄a∂̄b − x̄b∂̄a obey the SO(2, 2) algebra

[Jab, Jcd] = η̄acJbd − η̄adJbc − η̄bcJad + η̄bdJac (2.6)

In matrix representation, the generators are expressed as

J1 = −1
2γ1, J2 = −1

2γ2, J3 = −1
2γ3 (2.7)

where5

γ1 =
(

1 0
0 −1

)
, γ2 =

(
0 1
1 0

)
, γ3 =

(
0 1
−1 0

)
(2.8)

and similarly for J̃i.6

To understand the action of the group elements (gL, gR), we will describe AdS3 as the
group manifold of SL(2,R), with the Penrose diagram shown in figure 1. The action of
group elements g ∈ SL(2,R) on the identity element e is shown there, according to which

5Our matrix representation of p is different from that defined in [24, 25], which causes the generators to
be slightly different.

6In matrix representation, J̃i takes the same matrix form as Ji = − 1
2γi but the infinitesimal transfor-

mations on p are different from those of Ji’s, since Ji : p→ − 1
2γip while J̃i : p→ − 1

2pγ
t
i .
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they are classified into conjugacy classes depending on where the point e→ gegt = ggt lies,

Hyperbolic Tr g > 2 ggt ∈ I
Hyperbolic Tr g < −2 ggt ∈ II
Elliptic |Tr g| < 2 ggt ∈ III, IV
Parabolic |Tr g| = 2 ggt ∈ light cones

We will focus on the action of subgroups Γ ⊆ SOc(2, 2) with Tr g > 2 hyperbolic elements,
whose fixed points are on the boundary of AdS3. This is because it ensures that AdS3/Γ is
free of conical singularities and closed timelike curves [20, 22]. Removing from the space-
time the past and future of those fixed points yields the restricted spacetime ÂdS3 where
the action of the quotient on the spacetime is free of pathologies and leads to a spacetime
ÂdS3/Γ. We will illustrate this process by reviewing the construction of ÂdS3/Γ in the case
of BTZ black holes [27, 28] and three-boundary black holes [20–22]. We also discuss gen-
eralizations to n-boundary black holes with and without non-trivial topologies [20, 22, 24].
A Cauchy slice of these geometries is a Riemannian manifold of genus g and boundary
number n. So, we can classify the black hole geometries by a 2-tuple (n, g). In the non-
rotating case, the number of parameters (or in other words, dimension of the moduli space)
needed to specify the (n, g) geometry is equal to 1 for (2, 0) and is 6g − 6 + 3n otherwise.
In the rotating case, this number is doubled.

Before reviewing the construction of these geometries, we will give general formulas
for calculating the geodesic distance. The group manifold representation allow us to easily
calculate the geodesic distances d(p, q) between two arbitrary points, p and q [23]. In
particular, if p and q are connected by a spacelike geodesic, then

d(p, q) = cosh−1
(

Tr
(
p−1q

)
2

)
. (2.9)

With a timelike geodesic connecting p and q, the geodesic distance is

d(p, q) = cos−1
(

Tr
(
p−1q

)
2

)
. (2.10)

When Tr
(
p−1q

)
< −2, there is no geodesic connecting p and q.

We now discuss various cases in detail.

BTZ black hole. In this case, the subgroup Γ is generated by a single element

γBTZ = (gL,BTZ, gR,BTZ) =
(
e`ξL,BTZ , e

˜̀ξR,BTZ
)

(2.11)

and a convenient choice for ξL,BTZ and ξR,BTZ is

ξL,BTZ = −J2, ξR,BTZ = −J̃2 (2.12)

with ` = 2π(r+ + r−) and ˜̀ = 2π(r+ − r−) being two positive real parameters. In matrix
representation, this gives

gL,BTZ =

cosh
(
`
2

)
sinh

(
`
2

)
sinh

(
`
2

)
cosh

(
`
2

) , gR,BTZ =

cosh
( ˜̀

2

)
sinh

( ˜̀
2

)
sinh

( ˜̀
2

)
cosh

( ˜̀
2

) . (2.13)
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H

/

/

Figure 2. A Cauchy slice of a BTZ black hole shown as a quotient of AdS3. The action of γ
identifies the two blue geodesics, and the region between them is the fundamental domain of the
quotient. The minimal geodesic H separating the two coincides with the event horizon of the black
hole. In the non-rotating case, this slice is at t = 0. But in the case of rotation, there is a relative
boost between the two identified geodesics.

The isometry γ has two fixed points at the boundary given by t = 0, φ = π/2 and
t = 0, φ = 3π/2. Removing the past and future regions of these fixed points gives
the restricted space ÂdS3. Any two geodesics that are related by the isometry γBTZ are
identified, and we can choose a region that is bounded by such a pair of geodesics as
the fundamental domain of ÂdS3/Γ, see figure 2. The minimal length between these two
geodesics is uniquely determined by r+ and r−, and is the intersection of the geodesic
connecting the fixed points with the fundamental domain. This defines the two-sided BTZ
black hole, where each side is covered by the usual BTZ coordinates

ds2 =−
(
r2
B−r2

+
)(
r2
B−r2

−
)

r2
B

dt2B+ r2
B(

r2
B−r2

+
)(
r2
B−r2

−
)dr2

B+r2
B

(
dφB−

r+r−
r2
B

dtB

)2

(2.14)

where the subscript B means that we are using BTZ coordinates. The thermodynamic
quantities related to the black hole are

M = r2
+ + r2

−
8GN

= `2 + ˜̀2

64π2GN
, J = r+r−

4GN
= `2 − ˜̀2

64π2GN

TH = 1
β

= r2
+ − r2

−
2πr+

= `˜̀
2π2(`+ ˜̀)

, ΩH = r−
r+

= `− ˜̀
`+ ˜̀.

(2.15)

By writing the point p in (2.1) in terms of the BTZ coordinates using the transformation

U =
√
r2
B − r2

−
r2

+ − r2
−

cosh (r+φB + r−tB) , X =
√
r2
B − r2

+
r2

+ − r2
−

cosh (r+tB + r−φB) ,

V =
√
r2
B − r2

+
r2

+ − r2
−

sinh (r+tB + r−φB) , Y =
√
r2
B − r2

−
r2

+ − r2
−

sinh (r+φB + r−tB)
(2.16)

– 6 –



J
H
E
P
0
4
(
2
0
2
1
)
0
8
3

one can show that the action of γBTZ on p is simply to map φB → φB + 2π. The length of
the bifurcation surface (horizon length) generated by γ can be found from (2.9) to be [23]

h = cosh−1
(Tr gL,BTZ

2

)
+ cosh−1

(Tr gR,BTZ
2

)
(2.17)

From (2.11), we see that this gives the expected horizon length of `+˜̀
2 = 2πr+.

Three-boundary black hole. The subgroup Γ in this case is generated by two elements
γi = (giL, giR), i = 1, 2. We choose the first one to be the same as the isometry used to
construct the BTZ black hole7

γ1 = (g1L, g1R) = (e`1ξ1L , e˜̀1ξ1R) (2.18)

where ξ1L = −J2 and ξ1R = −J̃2. The second element is given by

γ2 = (g2L, g2R) = (e`2ξ2L , e˜̀2ξ2R) (2.19)

where ξ2L = −(J2 coshα+ J3 sinhα) and ξ2R = −(J̃2 cosh α̃+ J̃3 sinh α̃). In matrix repre-
sentation, this is

g2L =

 cosh
(
`2
2

)
eα sinh

(
`2
2

)
e−α sinh

(
`2
2

)
cosh

(
`2
2

)  , g2R =

 cosh
( ˜̀2

2

)
eα̃ sinh

( ˜̀2
2

)
e−α̃ sinh

( ˜̀2
2

)
cosh

( ˜̀2
2

)  . (2.20)

These two isometries define the first and second asymptotic regions, with the event hori-
zons of these regions lying along the geodesics connecting the fixed points of γ1 and γ2,
respectively.

The isometries that define the third asymptotic region are not independent of the above
two. They are γ′3 = −γ1γ

−1
2 ⇒ (g′3L, g′3R) = (−g1Lg

−1
2L ,−g1Rg

−1
2R) and γ′′3 = −γ−1

1 γ2 ⇒
(g′′3L, g′′3R) = (−g−1

1L g2L,−g−1
1Rg2R),8 corresponding to the two parts of the third boundary

region as seen from the covering space. The resulting spacetime is a black hole with three
asymptotic boundaries, as shown in figure 3. The spacetime in each asymptotic region is
isometric to the exterior region of a BTZ black hole. Hence, each asymptotic region can
be covered by the same metric (2.14) for rB > r+. The lengths of the horizons generated
by these isometries can be found from (2.17) to be

h1 = `1 + ˜̀1
2 , h2 = `2 + ˜̀2

2 , and h3 = `3 + ˜̀3
2 , (2.21)

where we have defined

`3 ≡ 2 cosh−1
(Tr g3L

2

)
, and ˜̀3 ≡ 2 cosh−1

(Tr g3R
2

)
. (2.22)

7Note that, here, the choice of generators γi is not unique. Other choices could be used, as long as
they fall in certain conjugacy classes. Our choice here is convenient for calculation, but as we will see, it
defines a conformal frame in which the third boundary region becomes vanishingly small in the hot limit.
In appendix A, we give an example of another construction of the same geometry and discuss how it differs
from the one used here.

8Although γ′3 and γ′′3 are both isometries defining the third region, for simplicity of notation, later we
will refer to them collectively as γ3.
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The parameter α can in turn be expressed using `i, i = 1, 2, 3:

coshα =
cosh `3

2 + cosh `1
2 cosh `2

2
sinh `1

2 sinh `2
2

, (2.23)

and similarly for α̃. Each asymptotic region can be associated with independent thermo-
dynamic parameters (2.15). The angular velocity associated to a horizon generated by an
isometry γi can be given in terms of the isometry elements as [25]

Ωi =
cosh−1

(
Tr giL

2

)
− cosh−1

(
Tr giR

2

)
cosh−1

(
Tr giL

2

)
+ cosh−1

(
Tr giR

2

) , (2.24)

which gives

Ω1 = `1 − ˜̀1

`1 + ˜̀1
, Ω2 = `2 − ˜̀2

`2 + ˜̀2
, and Ω3 = `3 − ˜̀3

`3 + ˜̀3
(2.25)

for the three boundaries. From this and the fact that the horizon lengths hi are given by
2πr+,i, we can relate the geometric parameters `i and ˜̀

i for each boundary to the inner
and outer horizon lengths of the corresponding black hole. The resulting relation is

r±,i = `i ± ˜̀
i

4π (2.26)

for i = 1, 2, 3. We see that setting ˜̀
i = 0 corresponds to the extremal case,9 while setting

`i = ˜̀
i corresponds to the non-rotating case. The unique feature of (3, 0) geometry (and

any geometry (n, g) other than BTZ) is the existence of a region between the horizons H1,
H2, and H3 that does not intersect the causal past and future of any asymptotic region.
This region is called the causal shadow of the spacetime [29], and it will be important
in our discussion of traversability below. The causal shadow region is bounded by closed
geodesics, which allow us to calculate its area using the Gauss-Bonnet theorem, giving
ACS = 2(n−2+2g)π for general (n, g) spacetimes [19]. This shows that the causal shadow
region exists for all geometries except (2, 0).

General (n, g) black holes. More general black hole geometries can be constructed
following the same method as discussed above. For the case without rotations, general
(n, g) geometries could be constructed using a cut-and-paste procedure [20, 22], and this
could be easily generalized to cases with rotations, as we review below.

The simplest way to see this is to note that any (n, g) black hole can be constructed
from 2g + n− 2 copies of the (3, 0) geometry (so-called “pair-of-pants” geometry) through
a process of cutting, twisting, and gluing. Since the (3, 0) geometry is everywhere locally
AdS3, the geometry that results from a process of cutting, twisting, and gluing different
copies of it is also locally AdS3 and, therefore, is a solution of Einstein gravity. We will
illustrate this process in the case of n asymptotic regions and in case of genus g.

For instance, to construct the rotating (4, 0) geometry, we need two pairs of pants, each
having 6 parameters (i.e. the mass and angular momentum of each asymptotic region). We
consider the Cauchy slices where both pairs are of the form shown in figure 3. As shown

9Here we have implicitly chosen a direction of spinning. For the other choice, `i = 0 would correspond
to an extremal black hole.
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//
H2

H ′3

H ′′3

Figure 3. A Cauchy slice of the three-boundary black hole shown as a quotient of AdS3. The
action of γ1 identifies the two blue geodesics while γ2 identifies the two red geodesics. The event
horizons of the three boundaries H1, H2, and H3 = H ′3 ∪H ′′3 are also shown, where each of them
coincide with the geodesic connecting the fixed points of the isometries γ1, γ2, and γ3, respectively.
Note that γ3 has four fixed points instead of two, because it defines the third asymptotic region as
the union of two separate regions in the Cauchy slice. In the case of no rotation, this slice is that
of t = 0.

in figure 4a, if we cut only one asymptotic region in each of the pair of pants and glue the
horizons together, this forces the lengths and orientations of the glued horizons to be equal
(the `’s and ˜̀’s of the two glued regions) and introduces two new twist parameters. So, the
total number of parameters is 12, which is the correct dimension of the moduli space of the
rotating (4, 0) geometry. From the resulting Cauchy slice, we can time evolve and obtain
the whole required geometry. Similarly, to construct general rotating (n, 0) geometries, we
need n−2 pairs of pants. By cutting 2n−6 asymptotic regions and gluing them together, we
can construct a Cauchy slice of the rotating (n, 0) spacetime from which the whole geometry
can be obtained by time evolution. One can easily check that the number of parameters in
the resulting geometry is the correct dimension of the moduli space, which is 2 (3n− 6).

In the case of non-zero genus, we consider the simple case of rotating (1, 1) spacetime,
which was first constructed in [24]. Using a Cauchy slice of a single rotating (3, 0) geometry,
we can cut two asymptotic regions and then glue their horizons together. The remaining
asymptotic region is now the exterior of a rotating BTZ black hole with the topology of a
torus behind the horizon, as shown in figure 4b. One can easily check that this process gives
the correct number of dimensions of the moduli space, which is 6 in the case of rotating
(1, 1) spacetime.

2.2 Fixed points and the conformal boundary

We now discuss the action of isometries γ ∈ Γ on the conformal boundary of AdS3, following
the method discussed in [24]. Here we will be using the conformal frame

ds2
global = −dt2 + dφ2 (2.27)

which is naturally related to the global coordinates.

– 9 –
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(a) (b)

Figure 4. Construction of the (4, 0) and (1, 1) geometries using two and one pairs of pants,
respectively. The dashed lines represent horizons of asymptotic regions. Note that each pair of
pants is constructed from the process shown in figure 3, but here the shape of the Riemann surface
is shown explicitly.

Taking r → ∞ for a bulk point p (2.1) gives a boundary point p∂ . Up to a diverging
factor, it is

p∂ ∝
(

cosφ+ cos t sinφ− sin t
sinφ+ sin t − cosφ+ cos t

)
= 2

(
cos v2 cos u2 − cos v2 sin u

2
sin v

2 cos u2 − sin v
2 sin u

2

)
= 2~v~ut (2.28)

where
~v =

(
cos v2
sin v

2

)
, ~u =

(
cos u2
− sin u

2

)
(2.29)

and v = t + φ and u = t − φ are the null coordinates at the boundary. The isometries of
interest γ = (gL, gR) ∈ Γ are hyperbolic elements with their fixed points at the boundary
of AdS3. Being a fixed point amounts to

p∂ = gLp∂g
t
R ⇒ ~v~ut = gL~v(gR~u)t, (2.30)

where the equality holds up to an overall factor, since we are on the conformal boundary.
This means that we could find fixed points by finding eigenvectors of gL and gR. In

general, gL and gR each have two eigenvectors, and combinations of them give “corners”
of the “boundary diamond” of γ where the action of γ takes place. Next, we will illustrate
these notions for the BTZ black hole and the three-boundary black hole. Analysis of fixed
points for general (n, g) geometries could be performed in a similar manner.
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Figure 5. Boundary diamonds for the BTZ black hole, where φ ∼ φ + 2π. As we can see, there
are two diamonds, each containing one asymptotic boundary of the fundamental domain.

For the BTZ black hole, all elements of Γ are integer powers of γBTZ. Both gL,BTZ and
gR,BTZ have two eigenvectors

gL,BTZ~v± = e±`/2~v±, gR,BTZ~u± = e±
˜̀/2~u± (2.31)

where
~v± = 1√

2

(
±1
1

)
, ~u± = 1√

2

(
±1
1

)
. (2.32)

As shown in figure 5, there only two boundary diamonds for the BTZ black hole, with their
left and right corners at (t = 0, φ = π/2) and (t = 0, φ = 3π/2). Inside each diamond, there
are infinitely many copies of the fundamental domain, or in other words, the fundamental
domain and its images.

For the three-boundary black hole, we could find the fixed points and boundary dia-
monds in a similar manner. But in this case, we have infinitely many fixed points (and
diamonds) since the group Γ not only contains elements like γmi , i = 1, 2 but also more
general “words” like γm1 γn2 γk1 . . . etc. For γi, i = 1, 2 we have

giL.~v±,i = e±`i/2~v±,i, giR.~u±,i = e±
˜̀
i/2~u±,i (2.33)

with ~v±,1 and ~u±,1 the same as those of the BTZ black hole, and

~v±,2 = 1√
1 + e2α

(
±eα

1

)
, ~u±,2 = 1√

1 + e2α̃

(
±eα̃

1

)
. (2.34)

For the three-boundary black hole, the three asymptotic boundaries of the fundamental
domain are contained in the diamonds which we call “fundamental diamonds” generated by
γi, i = 1, 2, 3. Other diamonds will be dubbed “image diamonds”. In figure 6, we show the
fundamental diamonds of the three-boundary black hole. The corners of the fundamental
diamonds can be found from

p++,i = ~v+,i~u
t
+,i , p+−,i = ~v+,i~u

t
−,i , p−+,i = ~v−,i~u

t
+,i , p−−,i = ~v−,i~u

t
−,i . (2.35)

here again i = 1, 2, 3.
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Figure 6. The fundamental diamonds of (3, 0) geometry at the boundary of AdS3 in global
coordinates. The fixed points p++,i, p−−,i, p−+,i, and p+−,i correspond to the corners of the
diamonds. The diamonds of regions 1, 2, and 3 are bounded by black, red, and blue lines respectively.
In (a), the parameters are `i = ˜̀

i = 3 for the non-rotating case, and in (b) the parameters are
`i = 3˜̀

i = 3 for the rotating case.

For any point p∂ on the ith asymptotic region of the fundamental domain, there are
two types of image points under the group action:

1. Points that are in the same fundamental diamond as p∂ : these points are generated
by acting on p∂ with isometries that only involve integer powers of γi;

2. Points that are in the image diamonds: these points are generated by acting with
other kinds of isometries on p∂ .

Although it is hard to find the explicit locations of all of the image diamonds, they
must all lie between diamonds 1 and 2, and topological censorship guarantees that any pair
of diamonds must be spacelike separated. The boundary distance from the left corner of
diamond 1 (p++,1) to the right corner of diamond 2 (p++,2) is

dbdy(p++,1, p++,2) =
√
|(u++,1 − u++,2)(v++,1 − v++,2)|

=
√(

π

2 − 2 tan−1 e−α
)(

π

2 − 2 tan−1 e−α̃
)
.

(2.36)

When α and α̃ are small (i.e. `i and ˜̀
i are large), to leading order, the distance is

dbdy(p++,1, p++,2) = (αα̃)
1
2 +O

(
(αα̃)

3
2
)
. (2.37)

Given a choice of the boundary conformal frame, we can also define the regularized
geodesic distance through the bulk between boundary points. First, note that for any 2×2
matrix p with det p = 1 we have

p−1 = R⊥p
tRt⊥, where R⊥ =

(
0 −1
1 0

)
(2.38)
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Also, the elements of a matrix p of any bulk point scales linearly with r. So, in the limit
r →∞ we find

dbulk(p1, p2) = cosh−1

Tr
(
p−1

1 p2
)

2


= cosh−1

(
Tr
(
R⊥p

t
1R

t
⊥p2

)
2

)
= log

(
r2
)

+ log
(
Tr
(
R⊥p

t
∂1R

t
⊥p∂2

))
+O

(
r−2

)
= log

(
r2
)

+ log
(

4 Tr
(
R⊥
(
~v1~u

t
1

)t
Rt⊥

(
~v2~u

t
2

)))
+O

(
r−2

)
(2.39)

To find the renormalized boundary geodesic distance, we subtract log
(
r2) then take the

r →∞ limit, giving

dglobal
ren (p1∂ , p2∂) = log

(
4
(
~u1
⊥. ~u2

) (
~v1
⊥. ~v2

))
, (2.40)

where
~u⊥ = R⊥~u and ~v⊥ = R⊥~v. (2.41)

Similarly, the renormalized geodesic distance between a bulk point p and a boundary point
q∂ = 2 ~v~ut is given by

dglobal
ren (p, q∂) = log

(
Tr
(
p−1q∂

))
= log

(
2 Tr

(
p−1~v~ut

))
. (2.42)

An important question is finding the corresponding expressions to the renormalized geode-
sic distances (2.40)–(2.42) for the boundary of an asymptotic region that is in the BTZ
conformal frame ds2

BTZ = −dt2B + dφ2
B. This question is resolved in subsection 2.3.

2.3 Geodesic distances in the BTZ conformal frame

In this subsection, we calculate the renormalized geodesic distance from a bulk point p to
a boundary point q∂ that is in the BTZ conformal frame. We assume that q∂ is on the
boundary of the fundamental domain, so it is in one of those fundamental diamonds defined
in section 2.2. In that diamond, we choose the BTZ conformal frame, and the renormalized
distance we calculate here is compatible with that frame. We also assume that p and q∂
are spacelike separated so that we use (2.9) rather than (2.10) to calculate the distance.

First let us work out the conformal transformation between the AdS global conformal
frame and the BTZ frame. For simplicity, we first study a boundary diamond of the BTZ
black hole, as shown in figure 5. Then we convert our results to smaller diamonds using
isometries.

Recall that global AdS3 and the BTZ coordinates are related to the embedding coor-
dinates via (2.2) and (2.16). On the boundary where both radial coordinates go to infinity
one finds

Y/X = tanφ =
sinh −˜̀uB+`vB

4π

cosh ˜̀uB+`vB
4π

, V/U = tan t =
sinh ˜̀uB+`vB

4π

cosh −˜̀uB+`vB
4π

, (2.43)
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where uB = tB − φB, vB = tB + φB. Then, using null coordinates u = t− φ and v = t+ φ

on the global AdS3 boundary, the above equations simplify to

u = tan−1 sinh
˜̀uB
2π , v = tan−1 sinh `vB2π . (2.44)

These observations allow us to compute the conformal transformation between the two
conformal frames,

ds2
global = −dudv = Ω2(−duBdvB) = Ω2

uΩ2
v(−duBdvB) = Ω2

uΩ2
vds

2
BTZ (2.45)

where the conformal factor Ω2 factorizes into the “left-moving” and “right-moving” con-
formal factors

Ω2
u =

˜̀

2π cosh ˜̀uB
2π

=
˜̀

2π cosu, Ω2
v = `

2π cosh `vB
2π

= `

2π cos v. (2.46)

As we can see, when u = ±π
2 or v = ±π

2 either uB or vB will diverge and the confor-
mal factors vanish. This marks the boundary of the “boundary diamond” being considered.
Note also that the conformal factors reach their maximal value at the “center”of the dia-
mond where u = 0 and v = 0.

For any wormhole, each asymptotic region is isometric to the exterior of some BTZ
solution. So up to conformal transformations each boundary of any wormhole is identical
to the boundary diamonds just described. While this always yields another diamond, the
ranges ∆u and ∆v for general boundary diamonds can differ from π. But we can use the
appropriate conformal transformations to generalize the analysis above.

Indeed, for the construction described in section 2, the relevant conformal transforma-
tions are those induced by isometries of AdS3. Recall that the generators of AdS3 isometries
act on the boundary as

2J1 = − (JXU − JY V ) = sin v∂v ≡ ∂x, 2J̃1 = − (JXU + JY V ) = sin u∂u ≡ ∂y, (2.47)

where we have defined
x = log tan v2 , y = log tan u2 . (2.48)

These actions, written here as translations in x and y, change the size of the boundary
diamond. We analyze this in detail for v direction below, from which corresponding ex-
pressions for the u direction follow from the symmetry u↔ v.

We first note that translating x by x0 = log tan v0
2 changes the diamond boundaries

from v = ±π
2 to v = ±v0. Denoting the left-moving coordinate in the new diamond by v′

we have
tan v

′

2 = tan v2 tan v0
2 . (2.49)

Here we assume v0 <
π
2 and v′ = ±v0 = ±∆v

2 are the boundaries of the new diamond given
by the images of v = ±π

2 . This relation implies

dv′ = 1− cos v′ cos v0
sin v0

dv. (2.50)
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The left-moving conformal factor then becomes

Ω2
v =

(
`

2π cos v
)(1− cos v′ cos v0

sin v0

)
= `

2π
cos v′ − cos v0

sin v0
(2.51)

Inside a diamond, it is bounded by

Ω2
v ≤

`

2π tan v0
2 = `

2π tan ∆v
4 , (2.52)

where the equality holds at v′ = 0. When a diamond has a small size, this bound is
approximately

Ω2
v .

`v0
4π = `∆v

8π . (2.53)

Also inside a diamond, when the point is close to one edge of the diamond (i.e. when v′ is
close to vbdy = v0 or −v0), Ω2

v has the expansion

Ω2
v = `

2π (|v′ − vbdy|) +O((v′ − vbdy)2). (2.54)

Similar relations hold for the u direction. Diamonds that are not centred at v = 0, u = 0
can of course be translated to this standard position using the boundary isometries ∂v and
∂u so that corresponding bounds and expressions apply.

As discussed in section 2.2, if we regulate a boundary point q∂ by moving it to a
finite global AdS3 radial coordinate r, the geodesic distance between a bulk point p and a
boundary point q∂ is

dbulk(p, q) = cosh−1
(

Tr
(
p−1q

)
2

)
= log(r) + log

(
Tr
(
p−1q∂

))
+O

(
r−2

)
.

(2.55)

To renormalize the distance in the BTZ conformal frame associated with a given asymp-
totic region of our wormhole, we should take the limit r →∞ after subtracting log rB from
the above expression for a properly chosen radial coordinate rB associated to the boundary
diamond containing q∂ .

In Fefferman-Graham coordinates, when we transform between the global and BTZ
conformal frames, to leading order in z, we have zB = z/|Ω|. Also, to leading order, z ∼ 1/r
and zB ∼ 1/rB, so we have rB ∼ r|Ω| = r|ΩuΩv|. A properly defined renormalized geodesic
distance is thus given by

dBTZ
ren (p, q∂) = log

(
Tr
(
p−1q∂

))
− log |ΩuΩv| = dglobal

ren (p, q∂)− log |ΩuΩv|. (2.56)

2.4 The hot limit of multi-boundary wormholes

In order to construct multi-boundary traversable wormholes in section 4, we will need
to take a limit that produces the following features: 1) two horizons are separated only
by an exponentially thin causal shadow over a sufficiently large region of those horizons,
and 2) we can find a point q∂ on the boundary of the fundamental domain such that the
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conformal factors Ω2 = Ω2
uΩ2

v associated with its non-trivial images under the group Γ are
exponentially small. For reasons that will be clear below, we use the term “hot limit” to
describe this limit for any (n, g).

For multi-boundary wormholes with trivial topologies, we choose to take a limit where
all `i and ˜̀

i are large, with `i/˜̀
i fixed (i.e.Mi/Ji fixed).10 In the case without rotation, this

is exactly the “hot limit” considered in [19]. In the case with rotation, this is also a limit
where the temperatures in all asymptotic regions are large. It also implies that all horizon
lengths are large compared to the AdS scale (although the converse is not necessarily true).
We explain the two advertised features below, using the three-boundary wormhole as our
main example.

First, we study the minimal distance between two neighbouring horizons. For non-
rotating (3, 0) geometries, this has been computed in [19] by focusing on the half-plane of
the t = 0 slice. The minimal distance dij between horizons Hi and Hj depends on the
horizon lengths, and is given by

cosh dij = cosh (hi/2) cosh (hj/2) + cosh (hk/2)
sinh (hi/2) sinh (hj/2) . (2.57)

Applying (2.57) to horizons H1 and H2 in our construction, we have from (2.23) that

d12 = α = α̃. (2.58)

In appendix B, we generalize (2.57) to the case with rotations, where the minimal distance
between horizons H1 and H2 was shown to be given simply by

d12 = α+α̃
2 . (2.59)

Other minimal horizon distances can be found from this expression by simple permutations.
It can be easily shown that α and α̃ are exponentially small in the hot limit, and that dij is as
well. As a special case, when all `i = ` and ˜̀

i = ˜̀are large, we have α ∼ 2e−`/4, α̃ ∼ 2e−˜̀/4

and dij ∼ e−`/4 + e−
˜̀/4. Furthermore, in this limit, it was found [19] that the distance

between the horizons is exponentially small over a large subset Dφ of the angular domain,
for which the lateral extent along each horizon is large compared with the AdS scale. In
appendix B, we show that this feature also applies in the rotating case. In addition, we
show there that this is no longer the case when only one of `i or ˜̀

i are taken to be large.
The latter limit makes the horizons large but the horizon temperatures remain bounded.11

Similar results also hold in the case of a general n-boundary black hole. As discussed
in section 2.1, a general (n, 0) spacetime with n ≥ 3 can be constructed from n− 2 copies
of (3, 0) geometry. Here we compute the minimal distance dij between any two horizons
Hi and Hj that live in a single copy of (3, 0) geometry, though we comment on the more
general case below. For n > 3 the third horizon Hk in this copy will become part of the

10For wormholes with internal parameters (i.e. non-trivial topologies or with n > 3), the proper limit will
also involve taking certain internal parameters to be large, in addition to having `i and ˜̀

i large, with `i/˜̀
i

fixed. We will discuss this briefly in section 5.
11This has some interesting consequences for the extremal limit that we briefly discuss in section 5.
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H1H2

H3

Figure 7. A schematic diagram of the t = 0 slice of a three-boundary black hole in the hot limit.
For any pair of horizons (dashed lines), there is a large region which we call Dφ (highlighted in
green) where the horizons are exponentially close to each other. The causal shadow is the region
bounded by the three horizons.

causal shadow of the new (n, 0) geometry and its length hk will be one of the parameters of
the moduli space associated with the casual shadow region. Therefore, the same minimal
distance dij between horizons Hi and Hj as in the (3, 0) geometry will hold. Choosing
hk � hi + hj as in the hot limit above, dij will again be exponentially small. In the more
general case12 g 6= 0, or for two horizons in the (n, 0) geometry which are separated by an
intervening extremal surface13 and thus which lie in distinct copies of the (3, 0) geometry,
taking the hot limit for each copy of the (3, 0) geometry allows us to write the separation
between Hi and Hj as the union of a fixed finite number of exponentially small separations.
Thus we find the separation between Hi and Hj to be exponentially small in the hot limit
for all n, g.

The other important feature of the geometry in the hot limit is that we can find points
q∂ on the boundary for which the non-trivial image points qimage

∂ all have conformal factors
that are exponentially small. This property will be established below, but its important
consequence follows from equation (2.56) governing the renormalized distance between p

and qimage
∂ in BTZ frame. From this it follows that

dBTZ
ren (p,qimage

∂ ) = log
(
Tr
(
p−1qimage

∂

))
−log |ΩuΩv|= dglobal

ren (p,qimage
∂ )−log |ΩuΩv|. (2.60)

Here Ωu and Ωv are the conformal factors associated with qimage
∂ . So when we have a bulk

point p that is in the same asymptotic region as q∂ , in the BTZ frame, the exponentially
small conformal factors associated with the images require dBTZ

ren (p, qimage
∂ ) > dBTZ

ren (p, q∂)
with their difference being linear in `i and ˜̀

i.

12We have not yet discussed the case g > 0 in detail, but see section 5 for comments.
13In the case without time-symmetry, this means that the intervening extremal surface lies in the domain

of dependence of any partial (connected) Cauchy slice Σ for which ∂Σ = Hi ∪Hj .
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To show for appropriate q∂ that the conformal factor associated with non-trivial images
is exponentially small in the hot limit, recall from section 2.2 that the image points are
classified into two types. We will take q∂ to lie in the fundamental domain (for which the
boundary diamond is not small). We first treat image points that lie in other boundary
diamonds (i.e. image diamonds). Recall from section 2.3 that the associated conformal
factors satisfy

Ω2
u ≤

˜̀∆uimage

8π and Ω2
v ≤

`∆vimage

8π (2.61)

where ∆uimage and ∆vimage determine the size of the diamond to which q
(m)
∂ belongs.

Note that since dbdy(pimage
++ , pimage

−− ) =
√

∆uimage∆vimage, equation (2.61) implies that
ΩuΩv ≤

√
˜̀̀

8π dbdy(pimage
++ , pimage

−− ).
Let us take the (3, 0) geometry as our example. There all the image diamonds lie

between diamonds 1 and 2 and are spacelike separated from them. Then, using (2.37), we
have in the hot limit

dbdy(pimage
++ , pimage

−− ) < dbdy(p++,1, p++,2) ∼
√
αα̃. (2.62)

Therefore
Ω2 = Ω2

uΩ2
v .

˜̀̀
64π2αα̃. (2.63)

In the hot limit, Ω2 is exponentially small. As a special case, when `i = ` and ˜̀
i = ˜̀ we

have Ω2 . e−(`+˜̀)/4, and since dglobal
ren = O(1) we also have dBTZ

ren & `+ ˜̀.
The remaining case to consider occurs when qimage

∂ belongs to the same boundary
diamond as q∂ . Let us take q∂ to lie at some fixed boundary location independent of `i, ˜̀

i.
Then in the hot limit the analysis of section 2.3 requires qimage

∂ to be exponentially close
to one of the fixed points associated with the corners of the fundamental diamond. Recall
from (2.54) that when this is the case the conformal factors can be approximated as

Ω2
u '

˜̀
2π (|u− ubdy|) and/or Ω2

v '
`

2π (|v − vbdy|) , (2.64)

where ubdy, vbdy are the coordinates of the relevant corner.
We will show that these conformal factors will be exponentially small and that the

renormalized distance to qimage
∂ will be large. In the (3, 0) geometry we may derive an

explicit expression by recalling the action of the quotient construction on boundary dia-
monds. In particular, the quotient of any such diamond is a cylinder. We may thus discuss
a ‘fundamental domain’ within the boundary diamond which we take to be an open set
that covers the cylinder precisely once (or, at least, up to a set of measure zero associated
with the boundary of the fundamental domain). We will also choose this domain to be
centered at the origin u, v = 0 and to have a simple form.

The details of such a fundamental domain were computed in [30] for the case where
the bulk is a non-rotating BTZ black hole. On the t = 0 slice, a corresponding fundamental
domain in the bulk may be taken to lie between the codimension-1 surfaces

φ = π ± sin−1 (tanh (πr+)) . (2.65)
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As a result, the maximal boundary distance d∂ between the boundary limit of (2.65) and
the left/right corner of the diamond is

d∂ = cos−1 (tanh (πr+)) . (2.66)

In the case of rotation, one can show that this expression generalizes to14

d∂ =

√√√√(cos−1 tanh `2

)(
cos−1 tanh

˜̀
2

)
(2.67)

Note that this equation reduces to (2.66) when ` = ˜̀, using (2.17). In the hot limit we find
d∂ ∼ 2e−(`+˜̀)/4. Since every domain of outer communication (i.e., every region outside the
black hole) is isometric to the domain of outer communication for some BTZ black hole,
the corresponding expressions will also hold for our multi-boundary wormholes.

Without loss of generality, we assume that `1 ≥ `2, `3 and ˜̀1 ≥ ˜̀2, ˜̀3. So, from figure 3,
the largest d∂ will occur in for diamond 1, where it is given by (2.67) with ` and ˜̀ replaced
by `1 and ˜̀1, respectively. In particular, if ε is the distance between q(m)

∂ and the fixed point
of the fundamental diamond, then ε < d∂ . Furthermore, from (2.64), we have Ω2 ∼ ε2.
This provides a lower bound on dBTZ

ren (p, qimage
∂ ) that in the hot limit yields

dBTZ
ren (p, qimage

∂ ) ≥ − log Ω2 ∼ − log ε2 ≥ − log d2
∂ & `1 + ˜̀1 (2.68)

This verifies explicitly that the conformal factors associated with qimage
∂ are exponentially

small in the hot limit, whether qimage
∂ is in an image diamond or in the fundamental

diamond. As a consequence, dBTZ
ren (p, qimage

∂ ) & `+ ˜̀.

2.5 The CFT dual of (n, g) geometries

The bulk (n, g) spacetime is dual to a CFT state |Σn,g〉 ∈ H1 ⊗ · · · ⊗ Hn, where Hi is
the Hilbert space of a CFT state on a circle. In the energy eigenbasis, this state can be
expressed as15

|Σn,g〉 =
∑

i1,...,in

Ai1,...,in |i1〉1 . . . |in〉n (2.69)

where the coefficient Ai1,...,in is a function of the 2(6g − 6 + 3n) moduli of rotating (n, g)
geometry. A Cauchy slice of (n, g) spacetime is a Riemann surface Σn,g with n boundaries
and genus g. Suppose that the state of the CFTs at the n boundaries is |φ1 . . . φn〉 ∈
H1 ⊗ · · · ⊗ Hn. In the large temperature limit, the gravitational path integral over the
Euclidean Riemann surface with boundary conditions fixed by |φ1 . . . φn〉 is dominated by
the fully-connected bulk geometry, which by Wick rotation gives a Cauchy slice Σn,g that

14The idea is to realize that, since γBTZ defined in (2.11) maps the two boundaries of the fundamental
domain to each other, then γ1/2

BTZ will map the boundary centre of the fundamental domain to one of the
boundary corners of the fundamental domain. This centre point, in global coordinates, is (t = 0, φ = π).
Acting on this point with γ

1/2
BTZ gives the coordinates of the corner of the fundamental domain at the

boundary, from which we calculate d∂ .
15Note that, for simplicity of notation, we are ignoring rotation for a moment. However, these equations

can easily be generalized to the case of rotation.
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can give the full (n, g) spacetime by Lorentzian time-evolution — see [19, 30, 31] for details.
Varying the moduli changes the dominant bulk geometry in the gravitational path integral,
which induces first-order phase transitions that generalize the Hawking-Page transition [32]
in the (2, 0) spacetime. For example, for sufficiently large temperatures, the CFT state dual
to the BTZ black hole is a thermofield-double state and (2.69) becomes [33]

|Σ2,0〉 =
∑
i

e−βEi/2 |i〉1 |i〉2 . (2.70)

In general, determining the coefficients Ai1,...,in from the path integral over an arbitrary
Σn,g is difficult. However, the CFT dual of Σn,0 in the puncture limit where hi � 1 was
investigated in [30]. It was found that in this case (2.69) becomes [30]

|Σn,0〉 =
∑

i1,...,in

Ci1...ine
−β̃1Ei1/2 . . . e−β̃nEin/2 |i1〉1 . . . |in〉n , (2.71)

where Ci1···n depend on the n-point function of the CFTs and the moduli parameters,

β̃i = βi − log rd − 2 log 3, (2.72)

βi is the inverse temperature of the BTZ geometry in the exterior of the ith asymptotic
region, and rd is an undetermined constant that is independent from the moduli parameters
for (3, 0) geometry but in general depends on the internal moduli for n > 3 (see [30]).

In the hot limit, the entanglement structure of |Σn,0〉 was investigated in [19]. In
particular, it was found that the bipartite entanglement between any two CFTs at different
boundaries, up to exponentially small corrections, is that of the thermofield-double state
over a large region of AdS scale size.16 Thus, the CFT state dual to the local geometry in
this particular region (extending between the ith and jth asymptotic regions through the
causal shadow) is well approximated by |Σ2,0〉ij = |TFD〉ij . This result will be important
below in making hot multi-boundary wormholes traversable.

3 Traversability in BTZ black holes

In this section, we give a general review of the construction of traversable wormholes in
BTZ black holes via double trace deformations [4], including the case with rotation [5] and
nontrivial dependence on the transverse coordinate (following [6]).

In general, the perturbative construction of traversable wormholes is associated with
violations of the averaged null energy condition (ANEC) along generators of Killing horizon
in some classical background spacetime. We review the relation between such a violation
and its perturbative backreaction on the BTZ metric below. We will then review how a
double trace deformation can cause such a violation.

16This is the same region denoted by Dφ in section 2.4 where the distance dij between the two horizons
Hi and Hj is exponentially small.
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3.1 Metric perturbation

The metric of a rotating BTZ black hole in the co-rotating coordinates is obtained by
substituting for the co-rotating transverse coordinate x = φ− r−

r+
t into (2.14) to find17

ds2 = −
(
r2 − r2

+
) (
r2 − r2

−
)

r2 dt2 + r2(
r2 − r2

+
) (
r2 − r2

−
)dr2 + r2(N (r)dt+ dx)2 (3.1)

where
N (r) = r−

r+

r2 − r2
+

r2 . (3.2)

We can pass to Kruskal coordinates by defining the right- and left-moving null coordinates.
In the right exterior region, they are defined as

U = eκu, V = −e−κv, (3.3)

where κ = (r2
+ − r2

−)/r+ is the surface gravity, u, v = t ± r∗ are the outgoing/ingoing
coordinates, and the tortoise coordinate r∗ is

r∗ = 1
2κ log

√
r2 − r2

− −
√
r2

+ − r2
−√

r2 − r2
− +

√
r2

+ − r2
−

. (3.4)

This gives the metric

ds2 = 1
(1+UV )2

{
−4dUdV +4r−(UdV −V dU)dx+

[
r2

+(1−UV )2+4UV r2
−

]
dx2

}
. (3.5)

Note that the asymptotic boundary in Kruskal coordinates is located at UV = −1.
To linear order, the geodesic equation implies that a null ray starting from the left

boundary in the far past (where V = 0 and U = −∞) satisfies

V (U) = − (2gUV (V = 0))−1
∫ U

−∞
dUhkk = 1

4

∫ U

−∞
dUhkk, (3.6)

where hkk is the norm of ka = (∂/∂U)a after first-order backreaction from the quantum
stress tensor. To get hkk from the stress tensor, we use the linearized Einstein equations:

8πGN 〈Tkk〉 = − 1
2r2

+

[ (
r2
− − r2

+

)
hkk + 2r−∂xhkk + ∂2

xhkk

+
(
r2
− − r2

+

)
∂U (Uhkk)− 2∂U∂xhkx + ∂2

Uhxx

]
,

(3.7)

where Tkk = Tabk
akb. To find the shift ∆V at U = +∞, one merely needs to integrate this

equation over all U . This yields

8πGN
∫ +∞

−∞
〈Tkk〉 dU = − 1

2r2
+

[(
r2
− − r2

+

)
+ 2r−∂x + ∂2

x

] ∫ +∞

−∞
hkkdU, (3.8)

where asymptotic AdS boundary conditions have been used.
17In sections 3 and 4, for simplicity, of notation we use coordinates without subscripts for the BTZ

coordinates. Such coordinates should not be confused with the global AdS3 coordinates of section 2.
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In [4, 5], the authors consider boundary couplings that are independent of the trans-
verse coordinate for simplicity. In that case, hkk is independent of x, and equation (3.8)
can be simplified to take the form

8πGN
∫
〈Tkk〉 dU = r2

+ − r2
−

2r2
+

∫
hkkdU, (3.9)

and the shift of V coordinate at U = +∞ is

∆V (+∞) = 1
4

∫ +∞

−∞
dUhkk = 4πGNr2

+
r2

+ − r2
−

∫
〈Tkk〉 dU. (3.10)

More generally, we could consider a boundary coupling that has nontrivial dependence
on the transverse coordinate. Then we could solve (3.8) using a Green’s function H [6](∫

dUhkk
)

(x) = 8πGN
∫

dx′H
(
x− x′

) ∫
dU 〈Tkk〉

(
x′
)

(3.11)

with

H
(
x− x′

)
=


r+e
−(r+−r−)(x′−x)

1−e−2π(r+−r−) + r+e
(r−+r+)(x′−x)

e2π(r−+r+)−1
x′ ≥ x

r+e
(r−+r+)(2π−x+x′)

e2π(r−+r+)−1
+ r+e

−(r+−r−)(2π−x+x′)

1−e−2π(r+−r−) x′ ≤ x
(3.12)

in position space where x, x′ ∈ [0, 2π). In Fourier space, H takes the form

H
(
x− x′

)
=
∑
q

eiq(x−x
′)Hq, Hq = 1

2π
2r2

+
r2

+ − r2
− − 2iqr− + q2 . (3.13)

If we are working with planar BTZ black holes, H takes the following form,

H
(
x− x′

)
=
{
r+e

−(r−+r+)(x′−x) x′ ≥ x
r+e

−(r+−r−)(x−x′) x′ ≤ x,
(3.14)

where x and x′ can take value on the whole real axis, and in Fourier space one should just
adapt the sum in the compact case to an integral.

Note that, in particular, the zero-mode Green’s function diverges in the extremal
limit. This means that our perturbation theory breaks down in that limit, although this
still suggests that the wormhole will be open for quite a long time, as will be shown below.

In contrast, the non-zero modes of Hq remains finite at extremality. So in the extremal
limit, it suffices to study only the zero mode. Recalling that the BTZ temperature is given
by TH = r2

+−r
2
−

2πr+ , we have

πTH
r+

∫
hkkdUdx = 8πGN

∫
〈Tkk〉 dUdx, (3.15)

so that (3.6) gives the average shift ∆V (U) ≡ V (U)− V (−∞) as

TH∆Vaverage (U) = 2GNr+

∫ U

−∞

∫ 2π

0
〈Tkk〉 dUdx. (3.16)
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But in any case, we could use (3.6) and (3.11) to calculate the shift ∆V (U). In
particular, the shift at U = +∞ is given by

∆V (+∞) = 1
4

∫ ∞
−∞

dUhkk = 2πGN
∫

dx′H
(
x− x′

) ∫ ∞
−∞

dU 〈Tkk〉
(
x′
)
. (3.17)

By choosing the boundary conformal frame to be ds2
∂BTZ = −dt2 + dφ2 = −dt2 +(

dx+ r−
r+
dt
)2
, we can relate the boundary time with the V coordinate via

t = − r+
r2

+ − r2
−

log (±V ) . (3.18)

Here the sign is + for the left boundary and is − for the right boundary. The shortest
transit time t∗ from left to right boundary is realized by the geodesic that leaves the left
boundary at V = −|∆V |/2 and arrives at the right boundary at |∆V |/2 so that

t∗ = − 2r+
r2

+ − r2
−

log
( |∆V |

2

)
. (3.19)

We can also calculate the shift of the boundary angular coordinate between one end of the
null geodesic and the other. Since on the horizon of the unperturbed geometry we simply
follow a particular generator where x is constant, on the boundary the change in φ is

φ∗ = − 2r−
r2

+ − r2
−

log
( |∆V |

2

)
. (3.20)

3.2 Violation of ANEC from a double trace deformation

In AdS/CFT, the eternal BTZ black hole is dual to the thermofield double (TFD) state

|Ψ〉 = 1√
Z (β,ΩH)

∑
n

e−β(En−ΩHJn)/2 |En, Jn〉L |En, Jn〉R . (3.21)

Traversability is achieved by coupling the two boundaries using a double-trace deformation

δS =
∫
dtdx h(t, x)OR (t, x)OL (−t, x) = −

∫
dt δH, (3.22)

where OL/R is a scalar operator living in the left/right CFT, and we choose its scaling

dimension to be ∆ = d
2 −

√(
d
2

)2
+m2 in order to have a relevant deformation [4]. The

boundary operator OL/R is dual to a bulk scalar field ΦL/R with mass m. To make the
wormhole traversable, h(t, x) needs to be of some definite sign for a period of time, which
we denote as [t0, tf ].

We now show how such a boundary coupling leads to a violation of the ANEC. The
starting point is to evaluate the bulk two-point function along the horizon V = 0:

G
(
U,U ′

)
≡
〈
ΦR(U, x)ΦR

(
U ′, x

)〉
. (3.23)

In a perturbative expansion in powers of the boundary coupling, the one-loop contribution
to the two-point function is [4]

Gh = 2 sin(π∆)
∫ t

t0
dt1dx1 h (t1, x1)K

(
r′, t′, x′;−t1 + iβ/2, x1

)
Kret (r, t, x; t1, x1) +

(
t↔ t′

)
(3.24)
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where K is the bulk-to-boundary propagator, and Kret is the retarded bulk-to-boundary
propagator. Since the BTZ black hole is just quotiented AdS3, the propagators take the
same form as those in AdS3 but with a sum over images. The bulk-to-boundary propagator
in the right exterior region in rotating BTZ metric is [4, 5]

K (z, t,x; t1,x1) =
(
r2

+−r2
−
)∆

2

2∆+1π

∞∑
n=−∞

[
−
√
z−1cosh(κδt−r−δxn)+

√
z cosh(r+δxn)

]−∆

(3.25)
where

z = r2 − r2
−

r2
+ − r2

−
, δt = t− t1, δxn = x− x1 + 2πn. (3.26)

We may convert this to Kruskal coordinates in the right exterior region using the relations

t = 1
2κ log

(
−U
V

)
, z =

(1− UV
1 + UV

)2
. (3.27)

Evaluated along V = 0, K becomes

K(U, 0, x;U1, x1) =
(
r2

+ − r2
−
)∆

2

2∆+1π

∞∑
n=−∞

[
− U
U1
e−r−δxn + cosh (r+δxn)

]−∆
. (3.28)

The other ingredient in Gh is the retarded bulk-to-boundary propagator

Kret (z, t,x; t1,x1) = |K (z, t,x; t1,x1)|θ(δt)θ
(√

z−1cosh(κδt−r−δx)−
√
z cosh(r+δx)

)
.

(3.29)

Now we are ready to write down Gh(U,U ′):

Gh(U,U ′) =C0

∞∑
n=−∞

∫ 2π

0
dxn

∫ U

U0

dU1
κU1

h

( log(U1)
κ

,xn

)
(3.30)

[(
e−r−δxnU1U

′+cosh(r+δxn)
)(

e−r−δxn
U

U1
−cosh(r+δxn)

)]−∆
θ̃+
(
U↔U ′

)
where C0 = r∆

+κ
∆ sin(π∆)

2(2∆π)2 , θ̃ = θ
(
e−r−δxU − U1 cosh (r+δx)

)
, and we have used the fact

that on the right boundary t = log(U)
κ .

For planar BTZ black holes we would discard the image sum and extend the range of
the x1 integral to the whole real axis [4]. But one should not forget the constraint imposed
by the θ-function in the retarded propagator, which requires

e−r−δxU − U1 cosh (r+δx) ≥ 0. (3.31)

With the Green’s function at hand, the bulk stress tensor associated with the scalar field is

〈Tµν〉 = lim
x→x′

(
∂µ∂νG

(
x,x′

)
− 1

2gµνg
ρσ∂ρ∂σG

(
x,x′

)
− 1

2gµνm
2G
(
x,x′

))
. (3.32)
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When evaluated along the horizon at V = 0, the gUU component of the unperturbed metric
vanishes, so to leading order we have

〈Tkk〉 = lim
U ′→U

∂U∂U ′Gh
(
U,U ′

)
. (3.33)

Finally one can compute the opening of the traversable wormhole by inserting (3.30)
and (3.33) into (3.17). As shown in [4], the result is generally non-zero. So for the right sign
of the coupling function h it will give a time-advance that makes the wormhole traversable.

4 Traversability of multi-boundary wormholes in AdS3

As shown in [19], for non-rotating multi-boundary wormholes in the hot limit, the boundary
state locally resembles the thermofield double state in region Dφ discussed in section 2.4.
This could be easily generalized to rotating wormholes by adding an angular potential. In
regions that we call Dx (since x is a more well-defined coordinate on the horizon in the
rotating case), the horizons are exponentially close to each other, and corresponding local
state is exponentially close to a piece of the TFD

|Ψ〉 = 1√
Z (βTFD,ΩTFD)

∑
n

e−βTFD(En−ΩTFDJn)/2 |En, Jn〉L |En, Jn〉R . (4.1)

Since our state is only locally TFD, the parameters βTFD and ΩTFD can take any value
depending on the conformal frame. They thus should not be confused with the actual
black hole inverse temperature and angular velocity. In the hot limit, one expects that
such wormholes can be made traversable by the approach described in section 3. We will
show this below focussing on the three-boundary wormhole, and in particular on the process
of traversing from boundary 1 to boundary 2.

We will first set the stage by describing and justifying the planar BTZ coordinates to
be used below. In these coordinates, our calculations will be very similar to those of [4].
We will then show that, in the hot limit, the image sum in the Green’s function is well
approximated by the leading term. This greatly simplifies our calculation. Finally, we
calculate the wormhole opening with a double-trace deformation, which we require to be
larger than the local thickness of the causal shadow.

4.1 Planar BTZ coordinates and the boundary coupling

Any BTZ black hole is locally isometric to AdS3, and thus also to planar BTZ. As a
result, in any contractible region Dx, we may use planar BTZ coordinates to describe the
spacetime. Here, we use the following planar coordinates to describe both sides of the
wormhole:

ds2 = −(r̃2 − r̃2
+)dt̃2 + dr̃2

r̃2 − r̃2
+

+ r̃2dx̃2. (4.2)

We think of x̃ as ranging over the entire real axis, though we are most interest in some
domain that corresponds to Dx. The choice of r̃+ is arbitrary. The corresponding Kruskal
metric is

ds2 = 1
(1 + Ũ Ṽ )2

(
−4dŨdṼ + r̃2

+(1− Ũ Ṽ )2dx̃2
)
. (4.3)
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Although there is a causal shadow between the two horizons in the hot limit, it is
exponentially small in ` and ˜̀ over large stretches of the horizons. So if we put the
origin of the Kruskal coordinates at the bifurcation surface of horizon 1 or 2 (or any place
between them) in the region where this separation is small, we make only an exponentially
small error if we then identify the above coordinates with natural BTZ coordinates in
either exterior. This justifies using the metric (4.3) for Dx. We will come back to this in
section 4.3.

Note that, in the planar BTZ metric, the horizon size parameters can be scaled ar-
bitrarily so long as long as we change the definition of coordinates accordingly. To be
more concrete, there are two kinds of coordinate transformations that we can make (they
are expressed in the ordinary angular coordinate φ for now and we will come back to the
co-rotating x later):

1. “Adjusting the temperature” (rescaling r+ and r− by the same amount):

r̃ = λr, t̃ = t

λ
, φ̃ = φ

λ
. (4.4)

with the new horizon parameters r̃± = λr±;

2. “Changing the angular velocity” (changing the relative size of r+ and r−):

(t̃, φ̃) = (t cosh γ + φ sinh γ, t sinh γ + φ cosh γ)
r̃2 = r2 + r̃2

+ − r2
−.

(4.5)

with the new horizon parameters r̃+ = r+ cosh γ + r− sinh γ and r̃− = r+ sinh γ +
r− cosh γ. As a special case, we could set r̃− = 0 by choosing γ = − tanh−1 r−

r+
. In

this case we have

(t̃, φ̃) = (r+t− r−φ, r+φ− r−t) /
√
r2

+ − r2
−

r̃2 = r2 − r2
−.

(4.6)

with r̃2
+ = r2

+ − r2
−.

Note that we are not changing the actual temperature and angular momentum associ-
ated with any particular global BTZ horizon (which are uniquely determined by the bulk
geometry). The point is that the above description is valid only in a contractible domain
where the full global structure is not apparent. In that domain we have described the
system to good approximation as a planar BTZ black hole, for which the temperature and
angular velocity depend on the choice of the boundary conformal frame and are not fixed
by the bulk metric.

For simplicity, we would like to choose r̃− = 0 and r̃+ be some fixed O(1) number
when the r+,i’s become large. To clarify our notation, from here on, we use tildes to mark
quantities associated with the bulk planar BTZ coordinates (for which r̃− = 0), and we use
symbols without tildes to refer to quantities associated with the BTZ conformal frame in
some asymptotic region — perhaps with additional labels to denote the asymptotic region
of interest.
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Combining (4.4) and (4.6), the coordinate transformations we will use on boundaries
1 and 2 are

(t̃, φ̃) = (r+,iti − r−,iφi, r+,iφi − r−,iti) /r̃+

r̃2

r̃2
+,i

=
r2
i − r2

−,i
r2

+,i − r2
−,i
,

(4.7)

where i = 1, 2 indicate different asymptotic regions. The above should be understood as
two different coordinate transformations, one for each value of i. As a result, the two
boundaries will naturally define distinct notions of ‘time advance’ ∆V1 6= ∆V2 (and also
for similar quantities).

It will sometimes also be useful to consider the inverse transformation:

(ti, φi) = r̃+
r2

+,i − r2
−,i

(
r+,it̃+ r−,iφ̃, r−,it̃+ r+,iφ̃

)
. (4.8)

In terms of the co-rotating coordinates, the transformations and inverse transformations
for (t, x) and (t̃, x̃) are

t̃ = κiti − r−xi
r̃+

, x̃ = r+,i
r̃+

xi = φ̃ (4.9)

ti = r̃+
κi

(
t̃+ r−

r+
x̃

)
, xi = r̃+

r+i
x̃. (4.10)

In particular, it will be convenient to take points on the horizons with x = 0, xi = 0 to lie
deep inside the domain Dx where the separation between horizons is exponentially small.
The associated Kruskal null coordinates are related by

Ũ = e−r−,ixiUi, Ṽ = er−,ixiVi, (4.11)

so that at x̃ = 0 (where xi = 0) we have Ũ = Ui, Ṽ = Vi. One may interpret this as saying
that we have chosen all three sets of coordinates to be associated with the same reference
frame at x̃ = 0.

From the planar coordinates we use, it is tempting to conclude that our setup can
be directly reduced to that of [4], reviewed in section 3. But, here, the subtlety is that
the boundary coupling is not naturally defined in the conformal frame related to our bulk
metric. To perform calculations, we need to first look at the conformal transformations
and how they act on boundary operators. To this end, we recall that the boundary metric
in the ith asymptotic region is

ds2
i = −dt2i + dφ2

i = r̃2
+

r2
+,i − r2

−,i

(
−dt̃2 + dφ̃2

)
. (4.12)

A general bi-local double-trace deformation coupling boundaries 1 and 2 will take
the form18

δS =
∫
dt1dt2dx1dx2 f(t1, t2, x1, x2)O1(t1, x1)O2(t2, x2). (4.13)

18In contrast with section 3 (e.g. in (3.22)) we will take the boundary times to increase toward the future
on all boundaries.
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Local couplings, analogous to those used in [4] are obtained by taking f proportional to a
delta-function. But as opposed to the TFD case studied in [4], there is no preferred natural
way to identify points on boundary 1 with points on boundary 2. We must therefore choose
some diffeomorphism η from boundary 1 to boundary 2 and write

f(t1, t2, x1, x2) = h(t1, x1) δ(2)(x2 − η(x1)), (4.14)

where xi = (ti, xi), i = 1, 2. Integrating out the delta function then expresses the coupling
in terms of a single set of boundary coordinates. For computational convenience, we will
choose the functions h and η such that the double-trace deformation takes a simple form
when expressed in the conformal frame associated with the tilded bulk coordinates. In
particular, we take

δS =
∫
dt̃dx̃ h̃(t̃, x̃)

(
r2

+,1 − r2
−,1

r̃2
+

)∆−1
2
(
r2

+,2 − r2
−,2

r̃2
+

)∆−1
2

Õ1(t̃, x̃)Õ2(t̃, x̃) (4.15)

where Õ1/2 is the quantity O1/2 conformally transformed to the above frame. Note that the
expression (4.15) includes conformal factors from (4.12) to account for the transformations
of boundary operators with conformal dimension ∆ as well as for the Jacobian associated
with the change of integration variables.

We can also choose a simple explicit form of h̃(t̃, x̃) that turns on at some time t̃0 and
turns off at some later time t̃f . For example, for every t̃ in between we could either choose
a constant (and in particular x̃-independent) coupling,

h̃(t̃, x̃) = hλ2−2∆ (4.16)

or a Gaussian in x̃ to make it localize near some angular position x̃0; i.e., for t̃i < t̃ < t̃f ,
we may take

h̃(t̃, x̃) = hλ2−2∆ exp
(
−
r̃2

+(x̃1 − x̃0)2

σ2

)
, (4.17)

where λ is some fixed quantity with dimension of temperature and h is a small and di-
mensionless parameter. Note that [4, 5] both set λ equal to the temperature of their BTZ
background. But there is no unique temperature associated with a general multi-boundary
black hole, as the temperatures of the three horizons can differ. This is not a problem.
We are free to choose λ in any way we like, including to choose it independent of the
background, so long as long as it has the correct dimensions.

4.2 Image sum in the hot limit

We now show that the image sum in Gh can be well approximated by keeping only the
leading term. Since Gh is built from two bulk-to-boundary propagators, it will be useful
to study them first.

The extrapolate dictionary tells us that the bulk-to-boundary propagator in the global
AdS3 conformal frame can be obtained from the bulk two-point function via

K(p, q∂) = lim
r′→∞

r′∆G(p, q) = lim
r′→∞

r′∆G(r, t, x; r′, t′, x′). (4.18)
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Here p and q are two points in the AdS3 bulk. The coordinates of q are those marked with
primes, and the unprimed coordinates are those of p.

In AdS3, the two-point function for a free scalar field is given by

G (p, q) = GAdS3(Z) = 1
4π
(
Z2 − 1

)−1/2
(
Z +

(
Z2 − 1

)1/2
)1−∆

, (4.19)

where Z = 1+ σ(p,q)
2 and σ(p, q) is the (squared) distance between p and q in the four dimen-

sional embedding space (sometimes called “chordal distance” [34]), and with all fractional
powers of positive real numbers defined by using the positive real branch. The chordal
distance is related to the geodesic distance d(p, q) in AdS space by

σ(p, q) = 4 sinh2
(
d (p, q)

2

)
. (4.20)

When Z is large, the two-point function has the expansion

GAdS3 (p, q) = Z−∆

4π

(
21−∆ + 1 + ∆

21+∆ Z−2 +O
(
Z−3

))
. (4.21)

In AdS3, the (unrenormalized) distance between a bulk point p and a boundary point q∂ has
the divergent part log r′, so GAdS3 (x, x′) decays as (r′)−∆. But this decay is precisely can-
celled by the (r′)∆ in the extrapolate dictionary (4.18). As a result, the bulk-to-boundary
propagator can also be obtained from the bulk-to-bulk propagator by inserting into (4.19)
an appropriately-renormalized (and thus finite) distance between p and q∂ . According to
the analysis of section 2.2, in the conformal frame associated with the global coordinates,
this renormalized distance is defined by subtracting log r′ from the unrenormalized distance.

In a general conformal frame the extrapolate dictionary becomes

K = lim
r̄′→∞

r̄′∆G(r, t, x; r′, t′, x′) (4.22)

where r̄′ = r′|Ω| and Ω2 is the conformal factor such that the boundary metric ds2
Ω satisfies

ds2 = −dt2 + dφ2 = Ω2ds2
Ω. Equivalently, we could obtain the correct bulk-to-boundary

propagator by inserting into (4.19) an appropriately renormalized bulk-to-boundary dis-
tance associated with our conformal frame.

Since the three-boundary wormholes of section 2 are quotients of AdS3, their bulk-
to-boundary propagators are given by sums of AdS3 propagators over imagine points. In
particular, for points p and q∂ , we need to include AdS3 propagators for the point pairs
(p, gLq∂gtR), where gL and gR are any “words” formed from the left and right generators of
the quotient group Γ used to construct the wormhole.

We would like to locate the image points gLq∂gtR and find how they contribute to
the bulk-to-boundary propagator in the hot limit. Recall from section 2.2 that there are
two types of image points: 1) points inside the same boundary diamond as q∂ and 2)
points in other diamonds (i.e. outside the boundary diamond that q∂ is in). As shown
in section 2.4, when q∂ is taken to lie at a fixed location in the largest diamond non-
trivial image points in the same diamond must be exponentially close to one of the
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• •H1 H2

∆VCS

Figure 8. The Penrose diagram of a black hole spacetime with causal shadow. In particular,
this could represent the causal structure of a section that contains two asymptotic regions in the
three-boundary wormhole geometry. In the figure, we mark the two bifurcation surfaces H1 and
H2, and ∆VCS caused by the causal shadow. In the hot limit that we consider in the text, ∆VCS
is exponentially small in ` and ˜̀ in region Dx.

fixed points at the left or right corners of the diamond. For those in other diamonds
it suffices to note that such non-trivial image diamonds are exponentially small in the
hot limit.

Since all (AdS-)Cauchy slices of the wormhole spacetime lift to surfaces that run
through the left and right corners of each boundary diamond, and since any bulk point p
can be taken to lie on a spacelike (AdS-)Cauchy surface, p will have spacelike separation
from points close enough to these corners. This will in particular be true of the non-trivial
images of q∂ in the hot limit. This means that we use (2.9) rather than (2.10) to calculate
the geodesic length between p and those image points.

In section 2.3, we calculated the geodesic distance between spacelike separated bulk and
boundary points in the BTZ frame. Applying that result to our image points, we found
in section 2.4 that the geodesic distance is at least linearly large in (`i + ˜̀

i) in the hot
limit. From (4.19) and (4.20) we then see that the contributions to the bulk-to-boundary
propagator from the image points are exponentially suppressed, and thus that they can be
ignored in the hot limit.

4.3 Traversing the causal shadow

We now show in the hot limit that the |∆V | induced by a fixed boundary coupling becomes
larger than the gap |∆VCS | between horizons associated with the existence of the causal
shadow region (see figure 8). Thus ∆Vtotal ≡ |∆V |−|∆VCS | becomes positive and therefore
the wormhole is traversable.
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From the above two subsections, the one-loop contribution to the Green’s function is

G̃h(Ũ , Ũ ′) = C̃0

∫
dx̃1

∫ Ũ

Ũ0

dŨ1

r̃+Ũ1
h̃

(
log Ũ1
r̃+

, x̃1

)[(
Ũ1Ũ

′+cosh(r̃+δx̃)
)( Ũ

Ũ1
−cosh(r̃+δx̃)

)]−∆

+(Ũ↔ Ũ ′), (4.23)

where Ũ0 = er̃+ t̃0 , δx̃ = x̃− x̃1 and

C̃0 = r̃2∆
+ sin(π∆)
2(2∆π)2

(
r2
+,1−r2

−,1

r̃2
+

)∆−1
2
(
r2
+,2−r2

−,2

r̃2
+

)∆−1
2 = r̃2

+(r2
+,1−r2

−,1)
∆−1

2 (r2
+,2−r2

−,2)
∆−1

2 sin(π∆)
2(2∆π)2 .

(4.24)
The limits of the x̃ integral above are set by the theta function θ

(
Ũ
Ũ1
− cosh (r̃+δx̃)

)
.

We can use the above result to calculate the stress tensor:

〈T̃kk〉 = lim
Ũ ′→Ũ

∂Ũ ′∂Ũ G̃h(Ũ , Ũ ′). (4.25)

If the background were exactly planar BTZ, then the shift of Ṽ coordinate at Ũ = +∞
would be

∆Ṽ (x̃) = 2πGN
∫ +∞

−∞
dx̃′H̃

(
x̃− x̃′

) (∫ ∞
−∞

dŨ〈T̃kk〉
)

(x̃′), (4.26)

where H̃(x̃− x̃′) is the Green’s function (3.14) for non-compact x̃ and x̃′ when r̃− = 0,

H
(
x̃− x̃′

)
= r̃+e

−r̃+|x̃′−x̃|. (4.27)

From our arguments above, using this result with (4.7) also gives the correct result in
our three-boundary wormhole up to two sorts of corrections. The first are due to errors
in (4.7) associated with the finite-but-small thickness of the causal shadow, and the second
comes from neglecting the sum over non-trivial images of q∂ . But both sorts of corrections
are exponentially small in the hot limit as discussed above. Thus to good approximation
in the coordinates related to the ith boundary we find the shift ∆Vi to be

∆Vi(xi) = e−r−,ixi∆Ṽ (x̃). (4.28)

To put this all together, recall that we are most interested in the region near x̃ = 0
where the separation between the bifurcation surfaces is exponentially small. There Vi ≈ Ṽ ,
and the three coordinate systems are all associated with the same frame of reference. In
particular, both bifurcation surfaces will have U1 + V1 ≈ constant and also U2 + V2 ≈
constant. Thus the exponentially small separation is also associated with exponentially
small sized ∆ṼCS ≈ ∆V1,CS ≈ ∆V2,CS of the causal shadow in this region.

On the other hand, near xi = 0 the time advance ∆Vi is not exponentially suppressed
at large `i and ˜̀

i. Instead, it has at most a polynomial suppression. Thus at large `i, ˜̀
i we

find ∆Vi � ∆Vi,CS near x̃ = 0 and the wormhole becomes traversable in this region.
As a consistency check, we now show that the physical quantity ∆Vi does not depend

on the fictitious parameter r̃+ that we have been using to simplify the calculations. Our
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starting point is (4.23). We write G̃h ≡ F+F ′ where F is the term explicitly shown in (4.23)

F (Ũ , Ũ ′) = C̃0

∫
dx̃1

∫ Ũ

Ũ0

dŨ1

r̃+Ũ1
h̃

(
log Ũ1
r̃+

, x̃1

)[(
Ũ1Ũ

′+cosh(r̃+δx̃)
)( Ũ

Ũ1
−cosh(r̃+δx̃)

)]−∆

(4.29)

and F ′ is the term with Ũ and Ũ ′ exchanged. Using this symmetry we may write 〈T̃kk〉 in
the form

〈T̃kk〉 = 2 lim
Ũ ′→Ũ

∂Ũ ′∂ŨF (Ũ , Ũ ′). (4.30)

Next, we change the integration variables to make the dependence on r̃+ clear. First
we define a new integration variable y ≡ cosh(r̃+δx̃) = cosh[r̃+(x̃− x̃1)] to write F as

F (Ũ , Ũ ′) = 2C̃0
r̃2

+

∫ Ũ

Ũ0

dŨ1

Ũ1

∫ Ũ/Ũ1

1

dy√
y2−1

h̃

(
log Ũ1
r̃+

, x̃1

)[(
Ũ1Ũ

′+y
)( Ũ

Ũ1
−y
)]−∆

, (4.31)

where the limits of the y integral are determined by the theta function θ
(
Ũ
Ũ1
− cosh (r̃+δx̃)

)
,

and the argument x̃1 in the function h̃ should be implicitly treated as a function of y.
As we can see, all the r̃+ dependence in the prefactor 2C̃0

r̃2
+

cancels out. Recall also the
relations (4.9)

r̃+x̃ = r+,ixi, r̃+t̃ = κiti − r−,ixi, (4.32)

so that on the horizon V = 0 we have

Ũ = er̃+ t̃ = eκiti−r−,ixi . (4.33)

Similar relations hold for Ũ , Ũ ′ and Ũ0 in the integration limits, and they can be expressed
in terms of purely boundary quantities. Furthermore, we should avoid introducing any r̃+
dependence in h̃ by hand. This means that, when choosing the form of h̃, the argument t̃1
and x̃1 in h̃ should both come with a factor of r̃+, since the combination r̃+t̃1 and r̃+x̃1 can
be converted by (4.32) to something that only involves parameters and coordinates related
to some boundary. In terms of the new variable y, this means that we must have the
combination (r̃+x̃− cosh−1 y) independent of r̃+. Therefore, F is also independent of r̃+.

The physical observable ∆Vi on one boundary is

∆Vi(xi) = e−r−,ixi 2πGN
∫ +∞

−∞
dx̃′r̃+e

−r̃+|x̃′−x̃|
(∫ ∞
−∞

dŨ
〈
T̃kk

〉) (
x̃′
)
. (4.34)

No dependence on r̃+ is introduced in passing from F to
∫

dŨ〈T̃kk〉 and, from our previous
argument,

∫
dŨ〈T̃kk〉 as a function of x̃′ should only depend on the combination r̃+x̃

′. As
we can see, all other parts involving tilded coordinates in (4.34) all come with a factor of
r̃+, so the physical quantity ∆Vi will not have any r̃+ dependence.
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Figure 9. For the case of constant coupling, the averaged null energy
∫
T̃kkdŨ (left) and the

horizon shift ∆V1 at x1 = 0 (right). In both panels, we choose h = 1, λ = 1, GN = 1, r+,2 = 100 ,
r−,2 = 20 and r+,1 = 100.

4.4 Numerical results

We now present some numerical results in order to illustrate our construction. Here we
will take the boundary coupling to be turned on at t̃0 = 0 and never shut off. We will
consider two types of boundary coupling: 1) for every t̃ > 0 the coupling is constant, as
in (4.16) and 2) for every t̃ > 0 we take the coupling to be a Gaussian centered at some
point, as in (4.17).

We also take h = 1 and λ = 1 in the boundary coupling, and GN = 1 for simplicity.
Furthermore, without loss of generality, we only consider a subspace of the wormhole
parameter space defined by r+,2 = 100 , r−,2 = 20 and r+,1 = 100. We then study the
dependence of various quantities on the remaining parameters r−,1 (or equivalently the ratio
between angular momentum and mass J1/M1 on boundary 1) and the scaling dimension ∆.

The quantities studied below are the averaged null energy
∫
T̃kkdŨ and the shift of the

horizon ∆V1 as measured on boundary 1. Note that here
∫
T̃kkdŨ is not a physical quantity

since we could choose any kind of “tilded coordinates”, but we show it here because its
negativity is important for traversability. For convenience we choose r̃+ = 1.

Results for the case of constant coupling are shown in figure 9. There we show
∫
T̃kkdŨ

and ∆V1 at x1 = 0 (or equivalently x̃ = 0) for different ∆ and J1/M1. As we can see, both
quantities are negative and diverge near extremality.

For Gaussian coupling, we choose σ = 0.2 and x̃0 = 0. In figure 10 we show
∫
T̃kkdŨ at

x1 = 0 (or equivalently x̃ = 0) and its angular dependence for some choices of parameters,
while results about ∆V1 are shown in figure 11.

5 Discussion

The above work extends the Gao-Jafferis-Wall traversability protocol [4] to multi-boundary
wormholes. The main physical difficulty in achieving traversability in this case is the ex-
istence of the causal shadow region between the horizons, and the main technical com-
plication in the analysis involves calculating the image sum in the Green’s function. Our
main result is that, in the hot limit, both of these difficulties can be circumvented and
traverseability can be demonstrated for appropriate couplings. As shown in section 2, this
is because for any pair of horizons there is a region whose extent along the horizons is
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Figure 10. For the case of Gaussian coupling, the averaged null energy
∫
T̃kkdŨ at x1 = 0 (left)

and its profile for general x1 (right). In both panels, we choose h = 1, λ = 1, GN = 1 r+,2 = 100 ,
r−,2 = 20 and r+,1 = 100, σ = 0.2 and x0 = 0. In the right panel we also choose ∆ = 0.6.
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Figure 11. For the case of Gaussian coupling, the shift of horizon ∆V1 at x1 = 0 (left) and its
profile for general x1 (right). In both panels, we choose h = 1, λ = 1, GN = 1 r+,2 = 100 , r−,2 = 20
and r+,1 = 100, σ = 0.2 and x̃0 = 0. In the right panel we also choose ∆ = 0.6.

large in comparison with the AdS length where the horizons are exponentially close to
each other. The analysis in such regions thus reduces to that of [4]. In particular, in this
limit the distance between the global AdS3 images of appropriate bulk points bceomes
large, which exponentially suppresses all but one of the corresponding contributions to
the Green’s function relative to the largest such contribution. This greatly simplifies the
calculation of the Green’s function required to calculate the average null energy along the
horizon. In a dual field theory description, the essential point is that the CFT state in this
region is approximately given by the TFD state [19].

Although we presented explicit calculations only for the three-boundary wormhole
geometry, our work can be generalized to general n-boundary genus g wormholes (i.e. to
(n, g) geometries). The one subtlety in doing so is that, in addition to taking a hot limit
for the horizons, one must also take similar limits of certain internal moduli in order to
make the causal shadow become thin. See figure 12 for the case n = 2, g = 1, but similar
issues arise even for g = 0 when n > 3. Indeed, one can view this as a result of the
fact that a general (n, g) geometry can be made by sewing together copies of (3, 0) “pair
of pants” geometries, but that in doing so some of the minimal circles that would have
defined horizons in some given (3, 0) geometry become cycles inside the causal shadow
of the final (n, g) geometry. Thus, the desired hot limit involves not only taking limits
of the parameters that define the final (n, g) horizons, but also requires us to take limits
of the parameters associated with the would-be (3, 0) horizons that are now inside the
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Figure 12. A Cauchy slice of the (2, 1) geometry showing the horizons (dashed lines) and the two
extremal surfaces (dotted lines) in the causal shadow region. In the hot limit, the length of both
types of surfaces have to be taken to be large so that, by the Gauss-Bonnet theorem, there will be
a large region where they are arbitrarily close to each other.

causal shadow. That this is possible in general was shown in [19] for the static case, but
those arguments can be generalized to allow rotation just as in section 2 above. Thus the
traversability analysis reduces to exactly the same one we used for the case without genus,
and once again the CFT dual to the bulk region where the horizons are exponentially close
together is well-approximated by the TFD state.

In the extremal limit, we showed in appendix B that the minimal distance dij between
the horizons diverges logarithmically. However, from (4.23) and (4.26), we see that the
time advance ∆V induced by the double trace deformation diverges polynomially, which
is also illustrated in figures 9 and 11. For this reason, we expect that the wormhole is still
traversable in the extremal limit even though, as discussed in section 3, the perturbative
analysis that allowed us to calculate ∆V will no longer be valid.19

Recall that, in the ER=EPR proposal [18], entanglement between two (non-interact-
ing) quantum systems is geometrically realized by a non-traversable wormhole (i.e. Einstein-
Rosen bridge) connecting them. When the two systems are allowed to dynamically interact
with each other via a quantum interaction like the double trace deformation, a quantum
teleportation protocol becomes possible and quantum information can be teleported be-
tween them through the wormhole that now becomes traversable. As pointed out in [4], this
is distinct from the standard quantum teleportation protocol where only classical interac-
tions are allowed between the two entangled systems (though see [12] for connections with
standard quantum teleportation). On the one hand, this provided a concrete mechanism for
recovery of quantum information via the Hayden-Preskill protocol [36] from the Hawking
radiation of old black holes [9]. One the other hand, it inspired a number of experimental
proposals (e.g. [14, 17]) for quantum teleportation via quantum interactions between two
entangled systems.20 Looked at from this perspective, and although our construction holds
in the limit where the mulitpartite entanglement is ignored, our work is a first step toward
a generalization of the quantum teleportation protocol to quantum systems with multipar-
tite entanglement. Since the CFT state dual to a general (n, g) geometry is not known for
general values of the moduli parameters, one can focus on the hot limit where locally the
entanglement is mainly bipartite and is approximately a TFD state. It would be interesting

19For further discussion on traversable wormholes in the extremal limit, see [35].
20The proposal [14] was experimentally realized in [37] using an ion trap quantum computer.
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to realize such a quantum state in the lab and perform the quantum teleportation protocol
on it. As discussed in this work, the main new features in this case are the causal shadow
region as well as the non-trivial angular dependence. It would be interesting to understand
how these features are realized in an experimental set-up of quantum teleportation in the
case of quantum circuits with multipartite entanglement. We expect that, in this case, the
traversability protocol will occur on a mixed TFD state and that the “size” of the causal
shadow region will provide an upper bound on the fidelity of the teleported state. See
also [38] for a 3-mouth traversable wormhole where multipartite entanglement may play
a larger role.

As discussed in [9], the experience of an observer passing through a two-sided travers-
able wormhole is that of a smooth free fall through a low-curvature spacetime. For an
observer entering a multi-boundary wormhole, the experience will be similarly pleasant
only for particular angular domains. Entering the wormhole from other directions will
require the observer to become trapped inside the black hole and to reach the singularity.
One should thus be sure of the accuracy of one’s trajectory when entering such a wormhole.

There are several directions for future investigations. First, it would be interesting
to extend this work to higher dimensions, where gravity is more interesting than in three
dimensions. In addition, as discussed above, this work can be interpreted as a quantum
teleportation circuit with multipartite entanglement as a resource. Therefore, one can
extend the analysis of [14, 17] to this case and characterize how multipartite entanglement
affects the properties and conditions of teleportation.
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A An alternative construction of the three-boundary black hole

We constructed a three-boundary black hole in section 2.1 by choosing some AdS3 isome-
tries and taking a quotient by the group Γ that they generate. Although the representation
of the generators used there is convenient for calculation, it makes the third asymptotic
region (whose horizon is generated by γ−1

1 γ2 and γ1γ
−1
2 ) appear to be on a different footing

than the other two. In particular, as described in the standard AdS3 conformal frame
the coordinate size of this third region vanishes in the hot limit. To show that this is an
artifact of our choice of generators, we give an alternative representation below where the
coordinate size of the third boundary is non-vanishing in the hot limit. For simplicity, we
focus on the non-rotating case which is generated by a diagonal subgroup of isometries
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where γL = γR ≡ γ. Dropping this diagonal restriction will give a generalized to the
rotating case.

We begin with the most general form of a SL(2,R) generator:

ξ = x1J1 + x2J2 + x3J3. (A.1)

This generator is hyperbolic when x2
1 +x2

2−x2
3 > 0, which is equivalent to the requirement

Tr eξ > 2. The length of horizon generated by γ = eξ is

` = 2 cosh−1 Tr γ
2 =

√
x2

1 + x2
2 − x2

3. (A.2)

It is thus natural to parametrize our generator as

ξ = `(coshα sin βJ1 + coshα cosβJ2 − sinhαJ3) ≡ `(~a · ~J) (A.3)

where the generator is written as an inner product taken with signature (+ + −), where
~a = (coshα sin β, coshα cosβ, sinhα), and ~J = (J1, J2, J3).

To make a three-boundary wormhole, we choose two such generators

ξ1 = `1(coshα1 sin β1J1 + coshα1 cosβ1J2 − sinhα1J3) = `1(~a1 · ~J) (A.4)

ξ2 = `2(coshα2 sin β2J1 + coshα2 cosβ2J2 − sinhα2J3) = `2(~a2 · ~J), (A.5)

so that the corresponding group elements are γ1 = eξ1 and γ2 = eξ2 . Then the group
element related to the third asymptotic region is γ3 = −γ−1

1 γ2. As a result, the horizon
length of the third region are related to our parameters by

cosh `32 = − cosh `12 cosh `22 + sinh `12 sinh `22 (~a1 · ~a2). (A.6)

Note that our geometry depends only on the three parameters {`1, `2,~a1·~a2}, or equivalently
{`1, `2, `3}. This gives the expected three-dimensional moduli space for a non-rotating
3-boundary wormhole.

Our previous representation corresponds to the choice ~a1 = (0,−1, 0) and
~a2 = (0,− coshα,− sinhα). These choices reproduce our previous results. In particular,
our previous representation does not involve J1.

However, this choice is far from unique. The only real restriction on the form of the
generators is that the geometry not become the one-boundary torus wormhole described
in [24]. To make a (3, 0) wormhole, the bulk geodesic connecting the fixed points of γ1
must not cross that connecting the fixed points of γ2, while they cross each other in the
(1, 1) wormhole construction.

To be definite, let us choose generators with

α1 = −α2 = α, β1 = −β2 = β = π

4 . (A.7)

This ansatz still allows the freedom to vary the horizon lengths by tuning `1, `2, α. Then,
as we did in section 2.2, we could calculate the eigenvectors of the γi’s and analyze the
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H1H2

H3

Figure 13. The three-boundary wormhole in the hot limit under our alternative construction with
α1 = −α2 = α, β1 = −β2 = β = π

4 , where H1, H2 and H3 are the three horizons. The fixed points
of distinct generators become close to each other in this limit, but each asymptotic region remains
a finite size.

fixed points on the boundary in the hot limit, and those fixed points are also endpoints of
the horizons. For the non-rotating case, all the fixed points are on the t = 0 slice, and here
we take φ ∈ [0, 2π). As shown in figure 13, in the hot limit the endpoints of H1 approach
φ = 3π/2 and φ = π, while the endpoints of H2 approach φ = 3π/2 and φ = 0, and
ethe ndpoints of H3 approach φ = 0 and φ = π. Recalling that H3 is generally described
by a pair of geodesics in the AdS3 covering space, we see that one of these geodesics still
shrinks to zero coordinate size along the boundary in this limit, though the other part of
H3 remains of finite size.

B Minimal distance between horizons in the hot limit

We now generalize (2.57) to the case of the rotating (3, 0) geometry. We focus on the dis-
tance d12 between H1 and H2 since it is the simplest in our representation of the geometry.
Due to the symmetry of the construction, the point on H1 that is closest to H2 sits at
the origin of global coordinates. Furthermore, if the point on H2 that is closest to H1 has
coordinates (tm, rm, φm), then tm = 0 by left-right symmetry (see figure 6b) and we can set
the angular coordinate such that φm = 0. Recall that any geodesic in AdS3 can be viewed
as the intersection of a plane in the embedding space (2.1) that passes through the origin
with the hyperboloid of AdS3. The idea here is to find the two vectors that span the plane
defining H2, then use them to find rm. Using the geodesic distance equation (2.9), we can
then find d12.

Suppose that the left and right corners of the diamond of H2 have coordinates
(−t0,−φ0) and (t0, φ0), respectively, at the boundary. Using (2.35) and (2.34), it is straight-
forward to show that

t0 = tan−1 e−α − tan−1 e−α̃ (B.1)

φ0 = tan−1 e−α + tan−1 e−α̃. (B.2)
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Then, in embedding space, the vectors ~vi = (Xi, Yi, Ui, Vi) that point from the origin to
the points (−t0,−φ0) and (t0, φ0) at the boundary can be found using (2.2) to be

~vL = (cosφ0,− sinφ0, cos t0,− sin t0) and ~vR = (cosφ0, sinφ0, cos t0, sin t0) (B.3)

The vector connecting the origin with (0, rm, 0) is parallel to ~vL +~vR. From this, it is easy
to show that

rm√
1 + r2

m

= cosφ0
cos t0

(B.4)

The matrix representation of (0, rm, 0) is

pm =
(√

1 + r2
m + rm 0
0

√
1 + r2

m − rm,

)
(B.5)

So, using (2.9), the minimal distance between H1 and H2 is the geodesic distance between
pm and the origin and is given by

d12 = cosh−1
(Tr pm

2

)
= cosh−1

(√
1 + r2

m

)
. (B.6)

Combining this with (B.4) gives

d12 = tanh−1
(cosφ0

cos t0

)
. (B.7)

After some algebra, this can be simplified to

d12 = α+ α̃

2 . (B.8)

which implies that α, α̃ ≥ 0. As a consistency check, note that in the non-rotating case
where `i = ˜̀

i, we have
α = α̃⇒ d12 = α, (B.9)

which is precisely (2.58) as quoted in section 2.4. Other minimal geodesic distances (i.e.
d23 and d13) can be obtained from (B.8) by simple permutations. This completes our
generalization of the minimal geodesic distance equation to the rotating case. That the
angular domain Dφ over which d12 is exponentially small is also large compared with the
AdS length scale in the rotating case follows from the same analysis as in [19] through an
appropriate choice of the Cauchy slice on which the distance is calculated.

B.1 The large horizon limit near extremality

This is the limit where

`i →∞ and ˜̀
i → 0 ⇔ hi →∞ and TH,i → 0. (B.10)

From (B.8), it is easy to see that the above requires

α→ 0 and α̃→∞ ⇒ dij →∞. (B.11)
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This shows that the minimal geodesic distance between the horizons in the extremal limit
will diverge. In particular, one can show that the divergence is logarithmic
dij ∼ log (2/πTH) +O

(
T 2
H

)
. Note however that the hot limit studied in the current paper

instead yields

`i →∞ and ˜̀
i →∞ ⇔ hi →∞ and TH,i →∞, (B.12)

implying that

α→ 0 and α̃→ 0 ⇒ dij → 0. (B.13)

Thus our hot limit implies large horizons, but near extremality large horizons do not imply
a hot limit. It also shows that the exponentially small local causal shadow region exists
only in the hot limit where α and α̃ are both small.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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