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1 Introduction

LHC physics is about to enter a precision era that will span over the next two decades.
During this time, new opportunities to hunt for new physics will arise: direct searches of new
particles will be complemented by indirect searches, that target possible deviations from
the predictions of the Standard Model (SM). While the isolation of this kind of signatures
is not without challenges, indirect searches present some very attractive features. Most
notably, they do not rely on specific assumptions about the nature of the new physics
under scrutiny and, at the same time, their sensitivity in terms of new physics scales can
potentially extend beyond the energy reach of the collider.

The Standard Model Effective Field Theory (SMEFT) is the best established theory
framework to describe such effects. Its formulation employs the degrees of freedom and
gauge symmetries of the SM and it is structured as an infinite series of operators sorted by
canonical dimension. At the observables level, it reproduces a series expansion in (E/Λ),
being E the typical energy exchanged in a process and Λ the mass scale that characterizes
the beyond-SM (BSM) dynamics. The condition (E/Λ)� 1, indicating the near decoupling
of the new physics sector, is necessarily assumed.

The SMEFT has been developed extensively in the past ten years, laying the ground for
a systematic program for indirect searches [2–4]. The ultimate goal is to measure as many
EFT parameters as possible, in a manner that enables the extraction of unbiased informa-
tion about the underlying physics. The crucial aspect of this program is its transversality:
the SMEFT contains a large number of parameters, each typically entering the description
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of several processes. Combining measurements of different observables is then mandatory
in order to preserve the model-independence of the analysis. To date, this principle has
been applied within individual sectors as well as across Higgs, electroweak (EW) and top
quark measurements, see refs. [5–15] for recent examples. The incorporation of data from
flavor observables (including non-LHC experiments) would be very valuable in this context,
as most of the SMEFT parameter space is “flavorful”. First steps in this direction were
taken in [16–19].

The theory developments have been accompanied by the publication of a number of
computing tools that automate most stages of a SMEFT study [20]. These include the
definition of non-redundant operator bases and the translation between them [21–24], the
matching to concrete BSM models or to the low-energy EFT and the renormalization group
running [25–31], the extraction of the Feynman rules in Rξ gauges [32, 33] and in the back-
ground field gauge [34], Monte Carlo simulations [1, 35–37] and global analyses [13, 38–41].

The SMEFTsim package [1] was designed in order to enable the Monte Carlo simulation
of arbitrary processes in the effective theory, in the spirit of providing a unified, general-
purpose tool for SMEFT physics at the LHC. It provides complete tree level, unitary
gauge predictions at O(Λ−2), including all the dimension six operators in the so-called
Warsaw basis [42]. The field and parameter redefinitions that are required in order to
compute physical observables in the SMEFT are conveniently performed internally. The
package contains FeynRules [43, 44] source files and a set of models pre-exported to the UFO
format [45]. Although the latter are in principle compatible with most Monte Carlo gener-
ators, they have been optimized for the use in MadGraph5_aMC@NLO [46], that is illustrated
in section 8. Potential issues due, for instance, to the event generation entering regions
where the EFT validity or the unitarity of the S-matrix are violated are not addressed
within SMEFTsim itself, but can be generally treated with tools offered by the Monte Carlo
generators or with theoretical assessments a posteriori.

The UFO models differ in the flavor assumptions and in the choice of the input parame-
ters for the EW sector.1 The original release implemented three alternative flavor scenarios:
a general one, a U(3)5-symmetric case and a linear minimal flavor violation (MFV) option
where BSM CP-violating phases are forbidden. For each setup, it offered two EW input
sets: {αem,mZ , GF } or {mW ,mZ , GF }.

This work documents the release of SMEFTsim version 3.0, that introduces a number
of improvements summarized below. It is also meant as a pedagogical and self-contained
reference for its usage, where all the relevant theoretical aspects are reviewed in detail.

The present document is structured as follows: sections 1–4 review the theoretical
background while sections 5–8 describe technical aspects of the FeynRules and UFO imple-
mentations and provide recommendations for their use.

The notation is fixed in section 1.1. Section 2 focuses on the bosonic sector and it re-
views the field and parameter redefinitions required to ensure a canonical parameterization
of the kinetic terms and scalar potential. Section 3 is devoted to the flavor structure of

1The original release contained two fully equivalent implementations, that were called model sets A and
B. Both were provided for debugging and cross-validation. Set B is not supported anymore starting from
version 3.0, which is based on set A.
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the SMEFT and it defines the five scenarios implemented in SMEFTsim. Some significant
changes have been made compared to version 2, that are documented in detail, and two
new flavor options have been introduced (top, topU3l) that comply with the recommen-
dations for studies of top quark observables [36]. Section 4 provides a general discussion of
how the extraction of numerical values for the SM parameters is affected in the presence of
higher-dimensional operators, and illustrates the treatment of these effects in SMEFTsim.

Section 5 documents the implementation of Higgs interactions that are purely loop-
generated in the SM, namely hγγ, hZγ, hgg: as SMEFTsim only supports tree-level inter-
actions, these are treated as effective vertices in the large top mass limit, which is a good
approximation for Higgs production and decay processes. Compared to version 2, the de-
scription of Higgs-gluon vertices has been substantially improved, such that it can now
model one-loop SM interactions with up to 4 gluons. Section 6 focuses on SMEFT effects
in the propagators of unstable particles, that arise due to modifications of their pole masses
or decay widths. A new feature has been introduced in version 3.0, that enables the in-
clusion of such effects, linearized in the EFT parameters, in Monte Carlo simulations. To
our knowledge SMEFTsim is the first publicly available UFO model to implement such a tool.
Sections 7, 8 provide recommendations for the use of SMEFTsim in Mathematica and in
MadGraph5_aMC@NLO respectively, and in section 9 we conclude.

Additional useful material is provided in the appendices: analytic expressions of the
decay widths implemented in the propagator corrections (appendix A), a list of changes
made in version 3.0 (appendix B), tables to facilitate the conversion between flavor as-
sumptions (appendix C), between theory and code notation (appendix D) and between
SMEFTsim and dim6top or SMEFT@NLO (appendix E). Finally, appendix F documents the
validation of the UFO models, that followed the procedure recommended in [47].

1.1 Basics and notation

We consider the SMEFT Lagrangian truncated at the dimension-6 level:

LSMEFT = LSM + L6 . (1.1)

We neglect all lepton- and baryon-number violating terms, which includes the dimension-5
Weinberg operator that generates a Majorana mass term for neutrinos. For future conve-
nience, the SM Lagrangian is split into four terms:

LSM = Lgauge + Lfermions + LYukawa + LHiggs , (1.2)

where

Lgauge = −1
4BµνB

µν − 1
4W

i
µνW

iµν − 1
4G

a
µνG

aµν , (1.3)

Lfermions = q̄i /Dq + ūi /Du+ d̄i /Dd+ l̄i /Dl + ēi /De , (1.4)

LYukawa = −d̄YdH†q − ūYuH̃†q − ēYlH†l + h.c. , (1.5)

LHiggs = DµH
†DµH +m2(H†H)− λ(H†H)2 . (1.6)
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q, l represent the left-handed quark and lepton doublets respectively, and u, d, e the right-
handed quarks and leptons. H is the Higgs doublet and H̃ = iσ2H∗, where σi, i = {1, 2, 3}
are the Pauli matrices. Yd, Yu, Yl are the 3×3 Yukawa matrices of the down and up quarks
and of the charged leptons. Covariant derivatives are defined with a plus sign, i.e.2

Dµq =
[
∂µ + igsT

aGaµ + i
gW
2 σiW i

µ + iyqg1Bµ

]
q . (1.7)

T a ≡ λa/2, a = {1, . . . , 8} are the SU(3)c generators, with λa the Gell-Mann matrices.
yq = 1/6 denotes the hypercharge of the q field and gs, gW , g1 are the SU(3)c × SU(2)L ×
U(1)Y coupling constants. As a general rule, color indices are denoted by a, b, c, d, SU(2)L
indices by i, j, k and flavor indices by p, r, s, t. Summation over identical indices is always
understood, unless otherwise specified.

The Lagrangian L6 contains a complete and non-redundant basis of dimension-6 oper-
ators Qα constructed with the SM fields and invariant under the SU(3)c ×U(2)L ×U(1)Y
gauge symmetry. SMEFTsim implements the Warsaw basis [42], whose operators are col-
lected in 8 groups, following the classification of ref. [48]. Class 8 is further split into 4
subgroups:3

L6 = L(1)
6 + L(2)

6 + L(3)
6 + L(4)

6 + L(7)
6 + L(8)

6 +
[
L(5)

6 + L(6)
6 + h.c.

]
, (1.8)

L(8)
6 = L(8a)

6 + L(8b)
6 + L(8c)

6 +
[
L(8d)

6 + h.c.
]
. (1.9)

Each sub-Lagrangian has the form

L(n)
6 = 1

Λ2

∑
α

CαQα , (1.10)

with the sum running over the class-n operators {Qα} defined in table 1 and Cα denoting
the associated Wilson coefficients. Both Qα and Cα generally carry flavor indices, that are
implicitly contracted in eq. (1.10). In this basis, explicit CP violation is carried by the real
coefficients C

G̃
, C

W̃
, C

HG̃
, C

HW̃
, C

HB̃
, C

HW̃B
and by the imaginary parts of the Wilson

coefficients associated to non-Hermitian fermionic operators, namely those in L(5),(6),(8d)
6

and OHud. Baryon-number violating operators are omitted.
The operators definitions use the following notation:

X̃µν = 1
2ε

µνρσXρσ , H†i
←→
D µH = H†(iDµH)− (iDµH

†)H , (1.11)

σµν = i

2[γµ, γν ] , H†i
←→
D i

µH = H†σi(iDµH)− (iDµH
†)σiH . (1.12)

2The covariant derivative sign is handled automatically by FeynRules. The convention chosen here also
implies that gauge field strenghts have the form W i

µν = ∂µW
i
ν − ∂νW i

µ − gW εijkW j
µW

k
ν , etc.

3Note that L(7)
6 implicitly contains (QHud + h.c.), as this operator is not Hermitian.
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L(1)
6 – X3 L(6)

6 – ψ2XH L(8b)
6 – (R̄R)(R̄R)

QG fabcGaνµ G
bρ
ν G

cµ
ρ QeW (l̄pσµνer)σiHW i

µν Qee (ēpγµer)(ēsγµet)

Q
G̃

fabcG̃aνµ G
bρ
ν G

cµ
ρ QeB (l̄pσµνer)HBµν Quu (ūpγµur)(ūsγµut)

QW εijkW iν
µ W

jρ
ν W kµ

ρ QuG (q̄pσµνT aur)H̃ Gaµν Qdd (d̄pγµdr)(d̄sγµdt)

Q
W̃

εijkW̃ iν
µ W

jρ
ν W kµ

ρ QuW (q̄pσµνur)σiH̃ W i
µν Qeu (ēpγµer)(ūsγµut)

L(2)
6 – H6 QuB (q̄pσµνur)H̃ Bµν Qed (ēpγµer)(d̄sγµdt)

QH (H†H)3 QdG (q̄pσµνT adr)H Gaµν Q
(1)
ud (ūpγµur)(d̄sγµdt)

L(3)
6 – H4D2 QdW (q̄pσµνdr)σiHW i

µν Q
(8)
ud (ūpγµT aur)(d̄sγµT adt)

QH2 (H†H)2(H†H) QdB (q̄pσµνdr)H Bµν

QHD
(
DµH†H

) (
H†DµH

)
L(4)

6 – X2H2 L(7)
6 – ψ2H2D L(8c)

6 – (L̄L)(R̄R)

QHG H†H GaµνG
aµν Q

(1)
Hl (H†i←→D µH)(l̄pγµlr) Qle (l̄pγµlr)(ēsγµet)

Q
HG̃

H†H G̃aµνG
aµν Q

(3)
Hl (H†i←→D i

µH)(l̄pσiγµlr) Qlu (l̄pγµlr)(ūsγµut)

QHW H†HW i
µνW

Iµν QHe (H†i←→D µH)(ēpγµer) Qld (l̄pγµlr)(d̄sγµdt)

Q
HW̃

H†H W̃ i
µνW

iµν Q
(1)
Hq (H†i←→D µH)(q̄pγµqr) Qqe (q̄pγµqr)(ēsγµet)

QHB H†H BµνB
µν Q

(3)
Hq (H†i←→D i

µH)(q̄pσiγµqr) Q
(1)
qu (q̄pγµqr)(ūsγµut)

Q
HB̃

H†H B̃µνB
µν QHu (H†i←→D µH)(ūpγµur) Q

(8)
qu (q̄pγµT aqr)(ūsγµT aut)

QHWB H†σiHW i
µνB

µν QHd (H†i←→D µH)(d̄pγµdr) Q
(1)
qd (q̄pγµqr)(d̄sγµdt)

Q
HW̃B

H†σiH W̃ i
µνB

µν QHud + h.c. i(H̃†DµH)(ūpγµdr) Q
(8)
qd (q̄pγµT aqr)(d̄sγµT adt)

L(5)
6 – ψ2H3 L(8a)

6 – (L̄L)(L̄L) L(8d)
6 – (L̄R)(R̄L), (L̄R)(L̄R)

QeH (H†H)(l̄perH) Qll (l̄pγµlr)(l̄sγµlt) Qledq (l̄jper)(d̄sqtj)

QuH (H†H)(q̄purH̃) Q
(1)
qq (q̄pγµqr)(q̄sγµqt) Q

(1)
quqd (q̄jpur)εjk(q̄ksdt)

QdH (H†H)(q̄pdrH) Q
(3)
qq (q̄pγµσiqr)(q̄sγµσiqt) Q

(8)
quqd (q̄jpT aur)εjk(q̄ksT adt)

Q
(1)
lq (l̄pγµlr)(q̄sγµqt) Q

(1)
lequ (l̄jper)εjk(q̄ksut)

Q
(3)
lq (l̄pγµσilr)(q̄sγµσiqt) Q

(3)
lequ (l̄jpσµνer)εjk(q̄ksσµνut)

Table 1. L6 operators in the Warsaw basis [42], categorized into eight classes L(n)
6 as in [48]. Only

baryon number-conserving invariants are retained. The flavor indices p, r, s, t are suppressed in the
operators’ names.
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2 EWSB, field and parameter redefinitions

This section reviews the Lagrangian manipulations that are required in order to compute
physical processes in the SMEFT truncated at O(Λ−2).4The procedure described here
largely overlaps with what reported e.g. in [1, 32, 48–59].

2.1 Higgs sector

The operator QH introduces a perturbation of the Higgs potential:

V (H) = −m2H†H + λ(H†H)2 − CH
Λ2 (H†H)3 . (2.1)

The true minimum of the potential, that triggers the electroweak symmetry breaking, is

〈H†H〉 = v2
T

2 ≡
v2

2

[
1 + 3

4λ
v2

Λ2CH

]
+O(Λ−4)

= v2

2

[
1 + 3

4λC̄H
]

+O(Λ−4) ,
(2.2)

with
v2 = m2

2λ . (2.3)

We have introduced the “bar” notation for Wilson coefficients:

C̄α ≡
v2
T

Λ2 Cα . (2.4)

Note that because v = vT +O(Λ−2) and O(Λ−4) contributions are entirely neglected, the
two quantities v, vT are interchangeable whenever they multiply a Wilson coefficent.5

The Higgs field H is expanded around its vacuum expectation value (vev) as

H =

 −iG+

vT + h+ iG0
√

2

 , (2.5)

with G+, G0 the charged and neutral Goldstone bosons and h the physical Higgs boson.
In the broken phase, the kinetic terms of the scalar fields receive corrections from the
operators QH�, QHD. As the scope of SMEFTsim is limited to tree-level calculations, we
choose to work in unitary gauge and neglect EFT effects in the Goldstone sector, both
in the present discussion and in the code implementations. The Goldstone bosons case
and the generalization of the gauge fixing procedure in the SMEFT were addressed in
refs. [3, 32, 58–62].

4Within a Monte Carlo event generation, SMEFTsim generally enables the computation of higher order
corrections to a given observable, such as O(Λ−4) corrections stemming from the square of O(Λ−2) ampli-
tudes (see section 8). However, consistent results are only provided to O(Λ−2), as the SMEFT Lagrangian
implemented is truncated at this order.

5In fact, it would be more appropriate to define the C̄α notation with the parameter v̂ defined in
section 4.2, rather than with vT . However, as long as O(Λ−4) terms are neglected, all three v’s are formally
identical when multiplying a Wilson coefficient.
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Using integration by parts, the kinetic term of the physical Higgs boson takes the form

LHiggs + L6 = 1
2∂µh∂

µh [1− 2∆κH ] + . . . with ∆κH = C̄H� −
C̄HD

4 , (2.6)

and it is brought to the canonical normalization via the field redefinition

h→ [1 + ∆κH ] h . (2.7)

This replacement is formally operated on the entire LSMEFT. However, when applied to
L6, its net effect is of O(Λ−4). As we work at O(Λ−2), the replacement only needs to
be performed on LSM. This holds for all field and parameter redefinitions introduced in
the following, unless otherwise specified. For the same reason, all quantities in a Wilson
coefficient’s prefactor are understood to be defined in the SM limit.

The main consequence of (2.7) is that the Wilson coefficients CH�, CHD are recast
into an overall rescaling of all SM Higgs couplings. The resulting Higgs potential is

V (H) = h2 λv2
T

[
1 + 2∆κH −

3
2λ C̄H

]
+ h3 λvT

[
1 + 3∆κH −

5
2λ C̄H

]
+ h4 λ

4

[
1 + 4∆κH −

15
2λ C̄H

]
− 3

4
h5

vT
C̄H −

1
8
h6

v2
T

C̄H .

(2.8)

In the FeynRules implementation, the redefinitions of the physical Higgs field, eq. (2.7),
and of the vev, eq. (2.2), are embedded in the definition of the Higgs doublet.

2.2 Gauge sector

Upon EWSB, the operators QHG, QHW , QHB, QHWB induce corrections to the kinetic
terms of the gauge bosons. The first three lead to overall rescalings:

Lgauge+L6 =−1
4BµνB

µν
[
1−2C̄HB

]
− 1

4W
i
µνW

iµν
[
1−2C̄HW

]
− 1

4G
a
µνG

aµν
[
1−2C̄HG

]
+. . .
(2.9)

where the dots stand for all other interaction terms induced by L6. The canonical normal-
ization is easily restored at O(Λ−2), via the field redefinitions

Gaµ → Gaµ(1 + C̄HG) , W i
µ →W i

µ(1 + C̄HW ) , Bµ → Bµ(1 + C̄HB) . (2.10)

In order to leave the covariant derivatives unchanged, the coupling constants need to be
redefined at the same time. Neglecting O(Λ−4) corrections:

gs → gs(1− C̄HG) , gW → gW (1− C̄HW ) , g1 → g1(1− C̄HB) . (2.11)

The operator QHWB introduces a kinetic mixing between the B and W 3 fields of the form

− CHWB

2
v2
T

Λ2 W
3
µνB

µν . (2.12)

The rotation [48] (
W 3
µ

Bµ

)
→
(

1 −C̄HWB/2
−C̄HWB/2 1

)(
W 3
µ

Bµ

)
, (2.13)
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removes this residual mixing and leads to fully canonical and diagonal kinetic terms. Once
eqs. (2.10), (2.11), (2.13) have been applied, the electric-charge eigenstatesW± are obtained
via the usual rotation (

W 1
µ

W 2
µ

)
= 1√

2

(
1 1
i −i

)(
W+
µ

W−µ

)
, (2.14)

while the mass matrix of the neutral bosons is diagonalized by

(
W 3
µ

Bµ

)
= 1√

g2
1 +g2

W

(
gW g1
−g1 gW

)
1 1

2
g2
W−g2

1
g2
W +g2

1
C̄HWB

−1
2
g2
W−g2

1
g2
W +g2

1
C̄HWB 1


(
Zµ
Aµ

)
, (2.15)

The rightmost rotation is unitary up to O(Λ−4) corrections, and therefore does not rein-
troduce kinetic mixing at d = 6. Equivalently,(

W 3
µ

Bµ

)
=
(

cos θ sin θ
− sin θ cos θ

)(
Zµ
Aµ

)
, (2.16)

with a shifted weak mixing angle θ defined as

tan θ = g1
gW

+ 1
2 C̄HWB

(
1− g2

1
g2
W

)
. (2.17)

After all the coupling and field redefinitions have been applied, a generic covariant deriva-
tive has the form

Dµ = ∂µ+iQ g1gW√
g2

1 +g2
W

Aµ

[
1−C̄HWB

g1gW
g2
W +g2

1

]
(2.18)

+i
√
g2

1 +g2
W Zµ

[
T3−

g2
1

g2
1 +g2

W

Q+C̄HWB
g1gW
g2

1 +g2
W

(
T3−

g2
W

g2
1 +g2

W

Q

)]
+. . .

= ∂µ+iQgW sθAµ

[
1− 1

2
cθ
sθ
C̄HWB

]
+igW

cθ
Zµ
(
T3−Qs2

θ

)[
1+ 1

2
sθ
cθ
C̄HWB

]
(2.19)

+. . .

where T3 denotes the eigenvalue of the 3rd SU(2)L generator (T3 = ±1/2 for left-handed
fields and T3 = 0 for right-handed ones) and Q = T3 +y is the electric charge. We have also
introduced the shorthand notation sθ = sin θ, cθ = cos θ, with θ defined as in eq. (2.17).
The dots stand for potential gluon and W± terms, for which there are no residual L6
corrections.

Eq. (2.18) shows that the contributions from QHW , QHB, QHG are fully reabsorbed
in the definition of the fields and gauge couplings. As a consequence, these operators
have no physical impact in the pure gauge sector, and they only contribute to Higgs-gauge
interactions [63]. On the other hand, the operator QHWB introduces net modifications of
all γ and Z couplings. In the former case the correction is a universal rescaling of the
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electromagnetic constant, while in the latter case the corrections depend on the field’s
charges. In particular, in the Higgs case (T3 = −1/2, Q = 0) this implies a correction
∝ C̄HWB to the Z mass term. The physical interpretation of these contributions requires
defining a set of input observables and is deferred to section 4.

In SMEFTsim, the redefinitions described in this subsection are applied simultaneously
at the Lagrangian level in the FeynRules model. The coupling constants’ rescaling in
eq. (2.11) is implemented in the replacement list redefConst. The field redefinitions are
operated in the mass and charge eigenstate basis: the replacement list rotateGaugeB
implements the net mismatch between the series of rotations (2.10), (2.13), (2.15) and the
usual SM rotations, i.e.

Gaµ → (1 + C̄HG) Gaµ , (2.20)(
W+
µ

W−µ

)
→ (1 + C̄HW )

(
W+
µ

W−µ

)
, (2.21)(

Zµ
Aµ

)
→ RZA

(
Zµ
Aµ

)
, (2.22)

with

RZA =


1+c2

θ C̄HW +s2
θ C̄HB+ s2θ

2 C̄HWB
s2θ
2
(
C̄HW−C̄HB

)
− c2θ

2 C̄HWB+ ∆s2
θ

s2θ

s2θ
2
(
C̄HW−C̄HB

)
− c2θ

2 C̄HWB−
∆s2

θ

s2θ
1+c2

θ C̄HB+s2
θ C̄HW−

s2θ
2 C̄HWB

 ,

(2.23)
where

∆s2
θ = C̄HWB g1 gW

g2
W − g2

1
g2
W + g2

1
= s4θ

4 C̄HWB +O(Λ4) , (2.24)

is the correction to the mixing angle stemming from eq. (2.17).

3 Flavor assumptions

The SMEFT Lagrangian defined in section 1 is not invariant under flavor rotations of the
fermion fields, so the latter should always be defined in order to avoid ambiguities. In
SMEFTsim, the fields q, l, u, d, e are defined in the mass basis of the charged leptons and of
the up-type quarks, in which the Yukawa matrices in eq. (1.5) take the form

Yd ≡ Y
(d)
d V † , Yu ≡ Y (d)

u , Yl ≡ Y
(d)
l . (3.1)

The superscript (d) denotes diagonal matrices and V is the CKM matrix. This basis
choice is consistently employed in the definition of both LSM and L6, and for all the flavor
assumptions implemented in SMEFTsim. The only special case are the top and topU3l
models, where quark mixing is entirely neglected by setting V ≡ 1.
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Upon EWSB, the Lagrangian can be written in terms of the fermionic mass eigenstates.
By definition the relation between the SU(2)L and mass bases is trivial for all fermion fields,
except the left-handed quark doublet:6

qp =
(

uL,p
VprdL,r

)
, lp =

(
νL,p
eL,p

)
, up = uR,p , dp = dR,p , ep = eR,p . (3.2)

In unitary gauge, the relevant terms in the SM Lagrangian are therefore

LFermions = −gW√
2
W+
µ ūLγ

µ V dL −
gW√

2
W+
µ ν̄Lγ

µ eL + . . . (3.3)

LYukawa = −vT + h√
2

[
d̄R Y

(d)
d dL + ūR Y

(d)
u uL + ēR Y

(d)
l eL

]
+ h.c. . (3.4)

The CKM matrix is implemented in the Wolfenstein parameterization [64]:

V =


1− λ2

CKM/2 λCKM Aλ3
CKM (ρ− iη)

−λCKM 1− λ2
CKM/2 Aλ2

CKM

Aλ3
CKM (1− ρ− iη) −Aλ2

CKM 1

 . (3.5)

The numerical values employed for the parameters are listed in table 16.
SMEFTsim implements five alternative flavor scenarios: one with fully arbitrary indices,

and four based on the implementation of different global symmetries. Three of these
scenarios have been present since the first release, and two have been newly introduced in
version 3.0. The following sub-sections review in detail the properties of the L6 operators
within each setup and provide the corresponding parameter counting. A dictionary between
the different flavor assumptions is provided in appendix C.

3.1 general: general flavor structure

Without further assumptions on the flavor structure of the SMEFT, L6 contains the oper-
ators in table 1, summed over all possible flavor combinations:

L(5,6)
6 = 1

Λ2

∑
α

3∑
p,r=1

Cα,prQα,pr + h.c. , L(7)
6 = 1

Λ2

∑
α

3∑
p,r=1

Cα,prQα,pr , (3.6)

L(8a,8b,8c)
6 = 1

Λ2

∑
α

3∑
p,r,s,t=1

Cα,prstQα,prst , L(8d)
6 = 1

Λ2

∑
α

3∑
p,r,s,t=1

Cα,prstQα,prst + h.c. .

(3.7)

Not all flavor combinations included in this way are independent, due to intrinsic symmetry
properties of the effective operators. SMEFTsim does not remove redundant terms from the
sums in eqs. (3.6), (3.7). Instead, the symmetry relations are enforced in the definition of
the tensor Wilson coefficients Cα,pr(st): only a minimum number of independent parameters
is defined for each operator, as reported in appendix D, tables 18, 19, and all the entries of
Cα,pr(st) are functions of these parameters, consistent with the relations described below.

6For economy of notation, we use the same letters u, d, e for the right-handed fields and for the mass
eigenstates, both of them carrying flavor indices. To avoid ambiguities, the latter always carry L,R sub-
scripts, while the former don’t.
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Classes 5 and 6. The operators in L(5,6)
6 are not Hermitian. Therefore each Wilson

coefficient has 9 independent complex entries. In total, this gives 198 real parameters
(counting independently real and imaginary parts).

Class 7. All operators in L(7)
6 , except QHud, are Hermitian. In this case, the diagonal

entries of the Wilson coefficients are real, and the off-diagonal ones are related by

Cpr = C∗rp . (3.8)

In total, this class depends on 81 real parameters.

Class 8 a. All operators in L(8a)
6 are Hermitian. Moreover, each of the two currents that

compose them is itself Hermitian. Therefore the following relation holds:

Cprst = Crpts = C∗rpst = C∗prts . (3.9)

In the operators Qll, Q(1)
qq , Q

(3)
qq , the two currents contain the same fields, which leads to an

additional exchange symmetry
Cprst = Cstpr . (3.10)

Each of these three operators has then 15 real entries (Cpppp, Cpprr, Cprrp) and only 9 are
independent, and 66 complex entries, 18 independent. Operators Q(1)

lq ,Q(3)
lq have each 9

real entries, all independent, and 72 complex ones, only 36 independent.
In total, this class depends on 297 real parameters.

Class 8 b. All operators in L(8b)
6 are Hermitian and composed of two Hermitian currents,

so relation (3.9) holds for all Wilson coefficients in this class. Eq. (3.10) is valid in addition
for Cuu, Cdd, Cee.

The operator Qee is peculiar: because the e field is a singlet under both SU(2)L
and SU(3)c, this term is invariant under Fierz rearranging. This leads to the additional
constraint

Cprst = Cptsr . (3.11)

The coefficient Cee has then 15 real entries, 6 independent, and 66 complex entries, only
15 independent. The counting for the other operators is the same as for the invariants in
class 8a, so L(8b)

6 has a total of 450 real parameters.

Class 8 c. All operators in L(8c)
6 are Hermitian and composed of two Hermitian cur-

rents, but no other symmetry is present. Therefore only relation (3.9) holds for all Wilson
coefficients, leaving a total of 648 parameters.

Class 8 d. Finally, all operators in L8d
6 are non-Hermitian. No symmetry relation is

present and this class has 810 independent real parameters.
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3.2 U35: maximal U(3)5 symmetry

The number of independent parameters is considerably reduced if a flavor symmetry is
assumed. The maximal symmetry available for the SM fermion fields is the symmetry of
the kinetic terms [65]: U(3)5 = U(3)q×U(3)u×U(3)d×U(3)l×U(3)e. Each field is assigned
to a 3 representation of the associated group: denoting a generic U(3)ψ transformation by
Ωψ, the transformation rules are [48]

q 7→ Ωq q , u 7→ Ωu u , d 7→ Ωd d , l 7→ Ωl l , e 7→ Ωe e . (3.12)

Vector currents ψ̄pγµψr are trivially made invariant under U(3)5 by imposing a δpr con-
traction, that corresponds to the singlet composition of a 3̄ and 3 representations. This is
immediate to see applying the field transformations and using ΩψΩ†ψ = 1 = Ω†ψΩψ:

ψ̄γµψ 7→ ψ̄Ω†ψ γ
µ Ωψ ψ = ψ̄ γµψ, ψ = {q, u, d, l, e} . (3.13)

Chirality-flipping currents, with either scalar or tensor Lorentz structure, violate the flavor
symmetry. To permit the introduction of fermion masses, it is customary to promote the
Yukawa couplings to spurions of the flavor symmetry, by assigning them transformation
properties

Yd 7→ Ωd Yd Ω†q , Yu 7→ Ωu Yu Ω†q , Yl 7→ Ωe Yl Ω†l . (3.14)

In this way the structures

d̄ Yd q
i , ū Yu q

i , ē Yl l
i , (3.15)

are formally invariant. When the U(3)5 symmetry is imposed, the flavor structure of each
operator can be factored out of the Wilson coefficient, that becomes a scalar quantity:

L(5,6)
6 = 1

Λ2

∑
α

3∑
p,r=1

CαXα,prQα,pr+h.c. , L(7)
6 = 1

Λ2

∑
α

3∑
p,r=1

CαXα,prQα,pr , (3.16)

L(8a,8b,8c)
6 = 1

Λ2

∑
α

3∑
p,r,s,t=1

CαXα,prstQα,prst , L(8d)
6 = 1

Λ2

∑
α

3∑
p,r,s,t=1

CαXα,prstQα,prst+h.c. .

(3.17)

In the construction of the U(3)5 symmetric Lagrangian, we do not define a power counting
for insertions of the Yukawa couplings. Instead, we simply choose to retain the leading
invariant structures for each operator, corresponding to no Yukawa insertions in L(7,8a,8b,8c)

6 ,
one insertion in L(5,6)

6 and two insertions in CHud and L(8d)
6 .

Classes 5 and 6. All the operators in L(5,6)
6 require the insertion of a Yukawa coupling:

XeH = XeW = XeB = Y †l = Y
(d)
l ,

XuH = XuW = XuB = XuG = Y †u = Y (d)
u ,

XdH = XdW = XdB = XdG = Y †d = V Y
(d)
d ,

(3.18)
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where the last equality in each line holds in the up-quarks mass basis, eq. (3.1). Note
that no net mixing among down-type quarks is induced in the mass basis, as the V in the
spurion cancels against V † in the q̄ field, eq. (3.2). In fact, by construction all the operators
in L(5,6)

6 have the same flavor structure as the SM Yukawas.
Because the operators are non-Hermitian, the associated Cα are complex. These classes

therefore introduce 22 independent real parameters.

Class 7. All the currents appearing in the operators of class 7, except QHud, are invariant
under U(3) with Xα = 1. This implies that the flavor structure of this class is exactly the
same as in the SM kinetic terms. For instance, the charged quark current induced by the
operator Q(3)

Hq is aligned with the SM one (eq. (3.3)), that contains CKM mixing.7

In order to make QHud invariant, it is necessary to insert the spurion product

XHud = YuY
†
d = Y (d)

u V Y
(d)
d . (3.19)

The number of independent real parameters is 9, as 7 out of 8 operators are Hermitian.

Class 8 a. Containing only vector currents, all the operators in L(8a)
6 are U(3)5 invariant

with the trivial flavor contraction Xα = δprδst.
The operators Qll, Q(1)

qq , Q(3)
qq additionally admit the “crossed” contraction X ′α = δptδsr.

This is an independent structure that cannot be arbitrarily rearranged into Xα: applying
Fierz transformations in this case would introduce additional operators with SU(2)L triplet
and SU(3)c octet contractions, see section 3.4. Therefore these operators are split into two
invariants each, weighted by independent Wilson coefficients:

Λ2L(8a)
6 =

(
Cll δprδst + C ′ll δptδsr

)
Qll,prst +

(
C(1)
qq δprδst + C(1)′

qq δptδsr
)
Q

(1)
qq,prst + . . . (3.20)

where the dots stand for contributions from the other operators in L(8a)
6 .

As all operators are Hermitian, L(8a)
6 contains 8 real parameters.

Class 8 b. All operators in L(8b)
6 are invariant with Xα = δprδst.

The operators Quu, Qdd additionally admit independent crossed contractions X ′α =
δptδsr, and are treated analogously to Qll, Q(1),(3)

qq . This is not the case for Qee that, as
mentioned above, is invariant under Fierz rearrangements: in this particular case the two
flavor contractions are equivalent. In total, there are 9 real parameters in L(8b)

6 .

Class 8 c. All the operators in L(8c)
6 admit the invariant contraction is Xα = δprδst,

leading to 8 independent real parameters.

Class 8 d. Finally, operators in L(8d)
6 require one Yukawa coupling insertion for each

current. As they are not invariant under Fierz transformations, the operators Q(1),(8)
quqd

7Note that this implies that, even though all Wilson coefficients are real, SM-sourced CP violation, due
to the CKM phase in charged left-handed currents, is generally present in L(7)

6 .
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admit two independent contractions, mapped to one another by interchanging the two q̄
fields.8

Xledq = (Y †l )pr(Yd)st = (Y (d)
l )pr(Y (d)

d V †)st ,

X
(1)
quqd = X

(8)
quqd = (Y †u )pr(Y †d )st = (Y (d)

u )pr(V Y (d)
d )st ,

X
(1)′
quqd = X

(8)′
quqd = (Y †u )sr(Y †d )pt = (Y (d)

u )sr(V Y (d)
d )pt ,

X
(1)
lequ = X

(3)
lequ = (Y †l )pr(Y †u )st = (Y (d)

l )pr(Y (d)
u )st .

(3.21)

Because the operators are non-Hermitian, there are 14 real parameters in L(8d)
6 .

3.3 MFV: linear minimal flavor violation

The Minimal Flavor Violation ansatz [65, 67, 68] assumes that the only sources of flavor
and CP violation in LSMEFT are those already present in the SM, namely the Yukawa
couplings and the CKM phase.

The requirement on CP violation implies that the Wilson coefficients of CP-odd bosonic
operators scale with the Jarlskog invariant J [69, 70]:

{C
G̃
, C

W̃
, C

HW̃
, C

HB̃
, C

HW̃B
, C

HG̃
} ∝ J , (3.22)

J = Im
(
VprVstV

∗
ptV
∗
sr

)
' η A2 λ6

CKM

(
1− λ2

CKM

2

)
' 3× 10−5 . (3.23)

As the J suppression is stronger, for instance, than a loop factor, these coefficients can be
safely neglected within the scope of SMEFTsim. The corresponding operators are therefore
not implemented in the MFV version. An analogous argument applies to sources of explicit
CP violation in the fermion sector. In the Warsaw basis, these are the imaginary parts of
the Wilson coefficients in L6, that are not defined either in the SMEFTsim MFV models.

The requirement on flavor violation is realized imposing a U(3)5 symmetry on the
fermion fields and allowing for arbitrary U(3)5-invariant spurion insertions in the currents,
that generate flavor violating effects. Such insertions are organized in an expansion in
powers of the Yukawa couplings, that can be either resummed (obtaining a non-linear
MFV formulation [71]) or treated as a truncated series. SMEFTsim adopts the latter option
and retains contributions up to one power of Yl and up to 3 powers of Yu, Yd.

The relevant spurion structures at this order are

Su = YuY
†
u ∼ (1,8,1), Su 7→ Ωu S

u Ω†u , (3.24)
Sd = YdY

†
d ∼ (1,1,8), Sd 7→ Ωd S

d Ω†d , (3.25)
Squ = Y †uYu ∼ (8,1,1), Squ 7→ Ωq S

qu Ω†q , (3.26)
Sqd = Y †d Yd ∼ (8,1,1), Sqd 7→ Ωq S

qd Ω†q . (3.27)

The first column indicates the spurions’ representation under the U(3)q × U(3)u × U(3)d
group, while the second provides the corresponding transformation rules. All of them are

8The two X ′α structures (4 real parameters) for Q(1),(8)
quqd were not included in previous versions of

SMEFTsim. I thank the authors of ref. [66] for pointing this out.
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Hermitian and they satisfy

Y †uS
u = SquY †u , YuS

qu = SuYu , (3.28)
Y †d S

d = SqdY †d , YdS
qd = SdYd . (3.29)

In the mass basis of the up quarks (eq. (3.1)) the spurions take the form

Su ≡ (Y (d)
u )2 , Squ ≡ (Y (d)

u )2 = Su , (3.30)

Sd ≡ (Y (d)
d )2 , Sqd ≡ V (Y (d)

d )2V † . (3.31)

Additional relevant structures in this basis are

SquY †u = (Y (d)
u )3 , SquY †d = (Y (d)

u )2V Y
(d)
d , (3.32)

SqdY †u = V (Y (d)
d )2V †Y (d)

u , SqdY †d = V (Y (d)
d )3 . (3.33)

Classes 5 and 6. With the power counting chosen, L(5,6)
6 take the form

Λ2 L(5)
6 =

3∑
p,r=1

CeH (Y †l )prQeH,pr

+
[
C

(0)
uHY

†
u + (∆uCuH)SquY †u + (∆dCuH)SqdY †u

]
pr
QuH,pr

+
[
C

(0)
dHY

†
d + (∆uCdH)SquY †d + (∆dCdH)SqdY †d

]
pr
QdH,pr

+ h.c. ,

(3.34)

Λ2 L(6)
6 =

3∑
p,r=1

CeW (Y †l )prQeW,pr + CeB (Y †l )prQeB,pr

+
[
C

(0)
uGY

†
u + (∆uCuG)SquY †u + (∆dCuG)SqdY †u

]
pr
QuG,pr

+
[
C

(0)
uWY

†
u + (∆uCuW )SquY †u + (∆dCuW )SqdY †u

]
pr
QuW,pr

+
[
C

(0)
uBY

†
u + (∆uCuB)SquY †u + (∆dCuB)SqdY †u

]
pr
QuB,pr

+
[
C

(0)
dGY

†
d + (∆uCdG)SquY †d + (∆dCdG)SqdY †d

]
pr
QdG,pr

+
[
C

(0)
dWY

†
d + (∆uCdW )SquY †d + (∆dCdW )SqdY †d

]
pr
QdW,pr

+
[
C

(0)
dBY

†
d + (∆uCdB)SquY †d + (∆dCdB)SqdY †d

]
pr
QdB,pr

+ h.c. ,

(3.35)

where the parameters C(0)
α , (∆uCα), (∆dCα) are real, scalar quantities. The structures

Y †uS
u, Y †d Sd are also allowed for operators QuX , QdX respectively, but they are not inde-

pendent due to eqs. (3.28), (3.29). These two classes contain a total of 27 real parameters.
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Class 7. For the operators in class 7 we have

Λ2 L(7)
6 =

3∑
p,r=1

C
(1)
Hl δprQ

(1)
Hl,pr + C

(3)
Hl δprQ

(3)
Hl,pr + CHe δprQHe,pr

+
[
C

(1)(0)
Hq 1 + (∆uC

(1)
Hq)S

qu + (∆dC
(1)
Hq)S

qd
]
pr
Q

(1)
Hq,pr

+
[
C

(3)(0)
Hq 1 + (∆uC

(3)
Hq)S

qu + (∆dC
(3)
Hq)S

qd
]
pr
Q

(3)
Hq,pr

+
[
C

(0)
Hu1 + (∆CHu)Su

]
pr
QHu,pr

+
[
C

(0)
Hd1 + (∆CHd)Sd

]
pr
QHd,pr

+
[ [
C0
HudYuY

†
d

]
pr
QHud,pr + h.c.

]
.

(3.36)

The total number of independent parameters in this class is 14.

Class 8 a. The operators of class 8a are composed of the same currents as those of class 7.
MFV corrections have therefore an analogous structure. With the power counting chosen,
the independent contractions are

Λ2L(8a)
6 =

3∑
p,r,s,t=1

[
Cll δprδst + C ′ll δptδsr

]
Qll,prst

+
[
C(1)(0)
qq δprδst + (∆uC(1)

qq )Squpr δst + (∆dC(1)
qq )Sqdpr δst+

C(1)′(0)
qq δptδsr + (∆uC(1)′

qq )Squpt δsr + (∆dC(1)′
qq )Sqdpt δsr

]
Q

(1)
qq,prst

+
[
C(3)(0)
qq δprδst + (∆uC(3)

qq )Squpr δst + (∆dC(3)
qq )Sqdpr δst+

C(3)′(0)
qq δptδsr + (∆uC(3)′

qq )Squpt δsr + (∆dC(3)′
qq )Sqdpt δsr

]
Q

(3)
qq,prst

+
[
C

(1)(0)
lq δprδst + (∆uC

(1)
lq ) δprSqust + (∆dC

(1)
lq ) δprSqdst

]
Q

(1)
lq,prst

+
[
C

(3)(0)
lq δprδst + (∆uC

(3)
lq ) δprSqust + (∆dC

(3)
lq ) δprSqdst

]
Q

(3)
lq,prst .

In the case of operators Qll, Q(1),(3)
qq two possible flavor contractions are allowed, as discussed

in section 3.2. In Q
(1,3)
qq spurion insertions in the (st), (sr) currents are redundant by

symmetry. Class 8c contains 20 independent parameters.
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Class 8 b. The MFV Lagrangian in class 8b has the form

Λ2L(8b)
6 =

3∑
p,r,s,t=1

Cee δprδstQee,prst

+
[
C(0)
uu δprδst + (∆Cuu)Suprδst + C ′(0)

uu δptδsr + (∆C ′uu)Suptδsr
]
Quu,prst

+
[
C

(0)
dd δprδst + (∆Cdd)Sdprδst + C

′(0)
dd δptδsr + (∆C ′dd)Sdptδsr

]
Qdd,prst

+
[
C(0)
eu δst + (∆Ceu)Sust

]
δpr Ceu,prst

+
[
C

(0)
ed δst + (∆Ced)Sdst

]
δpr Ced,prst

+
[
C

(1)(0)
ud δprδst + (∆uC

(1)
ud )Suprδst + (∆dC

(1)
ud ) δprSdst

]
C

(1)
ud,prst

+
[
C

(8)(0)
ud δprδst + (∆uC

(8)
ud )Suprδst + (∆dC

(8)
ud ) δprSdst

]
C

(8)
ud,prst .

(3.37)
As in the U(3)5 symmetric case, Quu, Qdd admit two independent flavor contractions, and
spurion insertions in only one of their currents is required, by symmetry. Class 8b therefore
contains a total of 19 independent parameters.

Class 8 c. For class 8c we have a total of 28 independent parameters:

Λ2L(8c)
6 =

3∑
p,r,s,t=1

Cle δprδstQle,prst

+
[
C

(0)
lu δst + (∆Clu)Sust

]
δprQlu,prst

+
[
C

(0)
ld δst + (∆Cld)Sdst

]
δprQld,prst

+
[
C(0)
qe δpr + (∆uCqe)Squpr + (∆dCqe)Sqdpr

]
δstQqe,prst

+
[
C(1)(0)
qu δprδst + (∆u

1C
(1)
qu )Squpr δst + (∆d

1C
(1)
qu )Sqdpr δst + (∆2C

(1)
qu ) δprSust+

C(1)′(0)
qu (Y †u )pt(Yu)sr

]
Q

(1)
qu,prst

+
[
C(8)(0)
qu δprδst + (∆u

1C
(8)
qu )Squpr δst + (∆d

1C
(8)
qu )Sqdpr δst + (∆2C

(8)
qu ) δprSust+

C(8)′(0)
qu (Y †u )pt(Yu)sr

]
Q

(8)
qu,prst

+
[
C

(1)(0)
qd δprδst + (∆u

1C
(1)
qd )Squpr δst + (∆d

1C
(1)
qd )Sqdpr δst + (∆2C

(1)
qd ) δprSdst+

C
(1)′(0)
qd (Y †d )pt(Yd)sr

]
Q

(1)
qd,prst

+
[
C

(8)(0)
qd δprδst + (∆u

1C
(8)
qd )Squpr δst + (∆d

1C
(8)
qd )Sqdpr δst + (∆2C

(8)
qd ) δprSdst+

C
(8)′(0)
qd (Y †d )pt(Yd)sr

]
Q

(8)
qd,prst .

Note that the operators O(1),(8)
qu , Q

(1)(8)
qd admit a contraction [pt][sr] with a Yukawa insertion

in each current.
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Class 8 d. Finally, the operators of class 8d have the structure

Λ2L(8d)
6 =

3∑
p,r,s,t=1

[
C

(0)
ledq Yd,st+(∆uCledq)(YdSqu)st+(∆dCledq)(YdSqd)st

]
(Y †l )prQledq,prst

+
[
C

(1)
quqdY

†
u,prY

†
d,st+C

(1)′
quqdY

†
u,srY

†
d,pt

]
Q

(1)
quqd,prst

+
[
C

(8)
quqdY

†
u,prY

†
d,st+C

(8)′
quqdY

†
u,srY

†
d,pt

]
Q

(8)
quqd,prst

+
[
C

(1)(0)
lequ Y †u,st+(∆uC

(1)
lequ)(SquY †u )st+(∆dC

(1)
lequ)(SqdY †u )st

]
(Y †l )prQ(1)

lequ,prst

+
[
C

(3)(0)
lequ Y †u,st+(∆uC

(3)
lequ)(SquY †u )st+(∆dC

(3)
lequ)(SqdY †u )st

]
(Y †l )prQ(3)

lequ,prst

+h.c. ,
(3.38)

The total number of parameters is 13.

3.4 top, topU3l: U(2)3 symmetry in the quark sector

Two new sets of models have been introduced in version 3.0, that implement a flavor
structure consistent with the recommendations of ref. [36] for the SMEFT interpretation
of top quark measurements. The formalism builds upon [72–74] and is defined by the
following assumptions:

• quarks of the first two generations and quarks of the 3rd are described by independent
fields. We denote them respectively by (qp, up, dp) with p = {1, 2} and by (Q, t, b).

• a symmetry U(2)3 = U(2)q × U(2)u × U(2)d is imposed on the Lagrangian, under
which only the light quarks transform:

q 7→ Ωqq , u 7→ Ωuu , d 7→ Ωdd , Q 7→ Q , t 7→ t , b 7→ b . (3.39)

• mixing effects in the quark sector are neglected and VCKM ≡ 1 is assumed.
This choice greatly simplifies the structure of the Lagrangian, as mixing between the
light and heavy quarks can only be introduced through extra U(2) spurions [66, 72].

With this notation, the SM Lagrangian is

Lfermions = iq̄ /Dq + iū /Du+ id̄ /Dd+ iQ̄ /DQ+ it̄ /Dt+ ib̄ /Db + leptons ,
LYukawa = −d̄ YdH†q − ū Yu H̃†q − yb b̄ H†Q− yt t̄ H̃†Q + leptons ,

(3.40)

with the Yukawas of the light quarks Yu ≡ diag(yu, yc), Yd ≡ diag(yd, ys) promoted to
spurions of U(2)

Yu 7→ Ωu Yu Ω†q , Yd 7→ Ωd Yd Ω†q , (3.41)

while yt, yb do not transform under any symmetry. As a consequence, only (L̄R), (R̄L)
currents with light quarks need to be weighted by Yukawa insertions.

It is convenient to construct a U(2)3 invariant basis mapping the fermionic operators
of table 1 to the notation with 6 quark fields. We choose the set given in table 2, where,
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analogously to the U(3)5 case, we retain the least Yukawa-suppressed U(2)3-invariant con-
tractions for each operator in the Warsaw basis.

In the lepton sector we consider two alternative ansätze:

(a) a U(1)3
l+e = U(1)e ×U(1)µ ×U(1)τ symmetry under which the fields transform as

l1 7→ eiαe l1 , l2 7→ eiαµ l2 , l3 7→ eiατ l3 , (3.42)
e1 7→ eiαee1 , e2 7→ eiαµe2 , e3 7→ eiατ e3 . (3.43)

This matches the “baseline” scenario in ref. [36] and corresponds to simple flavor-
diagonality. It is implemented in the top models.

(b) a U(3)2 = U(3)l ×U(3)e symmetry under which

l 7→ Ωll , e 7→ Ωee , Yl 7→ Ωe Yl Ω†l . (3.44)

In the lepton sector, this setup matches exactly the structure of the U35 and MFV
models. It is more restrictive compared to U(1)3

l+e and contains fewer free parameters.
It is implemented in the topU3l models.

In the U(1)3
l+e symmetric case, no transformation rule needs to be assigned to Yl, as left- and

right-handed leptons transform under the same symmetry. This implies that (L̄R), (R̄L)
lepton currents are weighted by Yl in the topU3l models but not in the top ones.

Classes 5 and 6. The basis of quark operators for L(5)
6 and L(6)

6 in table 2 is easily
constructed splitting the quark currents for the first 2 and the 3rd generations. Insertions
of Y †u , Y

†
d in light quark currents, that are required for U(2)3 invariance, are embedded in

the operator definitions. L(5,6)
6 contain in total 32 real parameters (16 complex) coming

from quark invariants.
When U(1)3

l+e is imposed (top models) on the lepton fields, QeH,pr, QeW,pr, QeB,pr
admit 3 independent contractions each, one per generation. When the more restrictive
U(3)2 is imposed (topU3l models), each operator is associated to only one complex Wilson
coefficient.

The total number of real independent parameters in L(5,6)
6 is therefore 50 in the top

case and 38 in the topU3l case. The Lagrangian is

Λ2L(5)
6 = CuHQuH + CtHQtH + CdHQdH + CbHQbH

+


∑3
p=1 (CeH)ppQeH,pp U(1)3

l+e [top]∑3
p,r=1CeH (Y †l )prQeH,pr U(3)2 [topU3l]

(3.45)

+ h.c. ,

Λ2L(6)
6 = CuWQuW + CuBQuB + CuGQuG + CtWQtW + CtBQtB + CtGQtG

+ CdWQdW + CdBQdB + CdGQdG + CbWQbW + CbBQbB + CbGQbG (3.46)

+


∑3
p,r=1 (CeW )ppQeW,pp + (CeB)ppQeB,pp U(1)3

l+e [top]∑3
p,r=1CeW (Y †l )prQeW,pr + CeB (Y †l )prQeB,pr U(3)2 [topU3l]

+ h.c. .
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L(5)
6 − ψ2H3

QuH (H†H)(q̄ Y †u uH̃) QdH (H†H)(q̄ Y †d dH) QeH (H†H)(l̄perH)

QtH (H†H)(Q̄H̃t) QbH (H†H)(Q̄Hb)

L(6)
6 − ψ2XH

QeW (l̄pσµνer)σiHW i
µν QuW (q̄ Y †u σµνu)σiH̃W i

µν QuB (q̄ Y †u σµνu)H̃Bµν QuG (q̄ Y †u σµνT au)H̃Gaµν

QeB (l̄pσµνer)HBµν QtW (Q̄σµνt)σiH̃W i
µν QtB (Q̄σµνt)H̃Bµν QtG (Q̄σµνT at)H̃Gaµν

QdW (q̄ Y †d σµνd)σiHW i
µν QdB (q̄ Y †d σµνd)HBµν QdG (q̄ Y †d σµνT ad)HGaµν

QbW (Q̄σµνb)σiHW i
µν QbB (Q̄σµνb)HBµν QbG (Q̄σµνT ab)HGaµν

L(7)
6 − ψ2H2D

Q
(1)
Hl (H†i←→D µH)(l̄pγµlr) Q

(3)
Hl (H†i←→D i

µH)(l̄pσiγµlr) QHe (H†i←→D µH)(ēpγµer)

Q
(1)
Hq (H†i←→D µH)(q̄γµq) Q

(3)
Hq (H†i←→D i

µH)(q̄σiγµq) QHu (H†i←→D µH)(ūγµu) QHd (H†i←→D µH)(d̄γµd)

Q
(1)
HQ (H†i←→D µH)(Q̄γµQ) Q

(3)
HQ (H†i←→D i

µH)(Q̄σiγµQ) QHt (H†i←→D µH)(t̄γµt) QHb (H†i←→D µH)(b̄γµb)

QHud i(H̃†DµH)(ū YuY †d γµd) QHtb i(H̃†DµH)(t̄γµb)

L(8a)
6 − (L̄L)(L̄L)

Q
(1)
lq (l̄pγµlr)(q̄γµq) Q

(3)
lq (l̄pσiγµlr)(q̄σiγµq) Qll (l̄pγµlr)(l̄sγµlt)

Q
(1)
lQ (l̄pγµlr)(Q̄γµQ) Q

(3)
lQ (l̄pσiγµlr)(Q̄σiγµQ) Q

(1)
QQ (Q̄γµQ)(Q̄γµQ) Q

(8)
QQ (Q̄T aγµQ)(Q̄T aγµQ)

Q
(1,1)
qq (q̄γµq)(q̄γµq) Q

(1,8)
qq (q̄T aγµq)(q̄T aγµq) Q

(3,1)
qq (q̄σiγµq)(q̄σiγµq) Q

(3,8)
qq (q̄σiT aγµq)(q̄σiT aγµq)

Q
(1,1)
Qq (Q̄γµQ)(q̄γµq) Q

(1,8)
Qq (Q̄T aγµQ)(q̄T aγµq) Q

(3,1)
Qq (Q̄σiγµQ)(q̄σiγµq) Q

(3,8)
Qq (Q̄σiT aγµQ)(q̄σiT aγµq)

L(8b)
6 − (R̄R)(R̄R)

Qeu (ēpγµer)(ūγµu) Qed (ēpγµer)(d̄γµd) Qee (ēpγµer)(ēsγµet)

Qet (ēpγµer)(t̄γµt) Qeb (ēpγµer)(b̄γµb) Qtt (t̄γµt)(t̄γµt) Qbb (b̄γµb)(b̄γµb)

Q
(1)
uu (ūγµu)(ūγµu) Q

(8)
uu (ūT aγµu)(ūT aγµu) Q

(1)
tu (t̄γµt)(ūγµu) Q

(8)
tu (t̄T aγµt)(ūT aγµu)

Q
(1)
dd (d̄γµd)(d̄γµd) Q

(8)
dd (d̄T aγµd)(d̄T aγµd) Q

(1)
bd (b̄γµb)(d̄γµd) Q

(8)
bd (b̄T aγµb)(d̄T aγµd)

Q
(1)
ud (ūγµu)(d̄γµd) Q

(8)
ud (ūT aγµu)(d̄T aγµd) Q

(1)
td (t̄γµt)(d̄γµd) Q

(8)
td (t̄T aγµt)(d̄T aγµd)

Q
(1)
ub (ūγµu)(b̄γµb) Q

(8)
ub (ūT aγµu)(b̄T aγµb) Q

(1)
tb (t̄γµt)(b̄γµb) Q

(8)
tb (t̄T aγµt)(b̄T aγµb)

Q
(1)
utbd (YuY †d )pr(ūpγµt)(b̄γµdr) Q

(8)
utbd (YuY †d )pr(ūpT aγµt)(b̄T aγµdr)

L(8c)
6 − (L̄L)(R̄R)

Qlu (l̄pγµlr)(ūγµu) Qld (l̄pγµlr)(d̄γµd) Qqe (q̄γµq)(ēpγµer) Qle (l̄pγµlr)(ēsγµet)

Qlt (l̄pγµlr)(t̄γµt) Qlb (l̄pγµlr)(b̄γµb) QQe (Q̄γµQ)(ēpγµer)

Q
(1)
qu (q̄γµq)(ūγµu) Q

(1)
Qu (Q̄γµQ)(ūγµu) Q

(1)
qt (q̄γµq)(t̄γµt) Q

(1)
Qt (Q̄γµQ)(t̄γµt)

Q
(8)
qu (q̄T aγµq)(ūT aγµu) Q

(8)
Qu (Q̄T aγµQ)(ūT aγµu) Q

(8)
qt (q̄T aγµq)(t̄T aγµt) Q

(8)
Qt (Q̄T aγµQ)(t̄T aγµt)

Q
(1)
qd (q̄γµq)(d̄γµd) Q

(1)
Qd (Q̄γµQ)(d̄γµd) Q

(1)
qb (q̄γµq)(b̄γµb) Q

(1)
Qb (Q̄γµQ)(b̄γµb)

Q
(8)
qd (q̄T aγµq)(d̄T aγµd) Q

(8)
Qd (Q̄T aγµQ)(d̄T aγµd) Q

(8)
qb (q̄T aγµq)(b̄T aγµb) Q

(8)
Qb (Q̄T aγµQ)(b̄T aγµb)

Q
(1)
qQtu (Y †u )pr(q̄pγµQ)(t̄γµur) Q

(8)
qQtu (Y †u )pr(q̄pT aγµQ)(t̄T aγµur) Q

(1)
qQbd (Y †d )pr(q̄pγµQ)(b̄γµdr) Q

(8)
qQbd (Y †d )pr(q̄pT aγµQ)(b̄T aγµdr)

L(8d)
6 − (L̄R)(R̄L), (L̄R)(L̄R)

Qledq (l̄jper)(d̄ Yd qj) QlebQ (l̄jper)(b̄Qj) Q
(1)
leQt (l̄jper)εjk(Q̄k t) Q

(3)
leQt (l̄jpσµνer)εjk(Q̄kσµνt)

Q
(1)
lequ (l̄jper)εjk(q̄k Y †u u) Q

(3)
lequ (l̄jpσµνer)εjk(q̄k Y †u σµνu) Q

(1)
QtQb (Q̄j t)εjk(Q̄k b) Q

(8)
QtQb (Q̄j T at)εjk(Q̄k T ab)

Q
(1)
quqd (q̄j Y †u u)εjk(q̄k Y †d d) Q

(8)
quqd (q̄j Y †u T au)εjk(q̄k Y †d T ad) Q

(1)′
quqd (Y †u )sr(Y †d )pt(q̄jp ur)εjk(q̄ks dt) Q

(8)′
quqd (Y †u )sr(Y †d )pt(q̄jp T aur)εjk(q̄ks T adt)

Q
(1)
Qtqd (Q̄j t)εjk(q̄k Y †d d) Q

(8)
Qtqd (Q̄j T at)εjk(q̄k Y †d T ad) Q

(1)
quQb (q̄j Y †u u)εjk(Q̄k b) Q

(8)
quQb (q̄j Y †u T au)εjk(Q̄k T ab)

Q
(1)
Quqb (Y †u )pr (Q̄j ur)εjk(q̄kp b) Q

(8)
Quqb (Y †u )pr (Q̄j T aur)εjk(q̄kp T ab) Q

(1)
qtQd (Y †d )pr (q̄jp t)εjk(Q̄k dr) Q

(8)
qtQd (Y †d )pr (q̄jp T at)εjk(Q̄k T adr)

Table 2. Basis of fermionic operators for the top and topU3l flavor assumptions. Here (q, u, d),
Yu, Yd denote quarks of the first 2 generations and their 2 × 2 Yukawa matrices. Quark fields
of the 3rd generation are (Q, t, b). Flavor indices p, r, s, t run over {1, 2} for light quarks and
{1, 2, 3} for leptons. Whenever flavor indices are not specified, they are implicitly contracted within
each current.
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Class 7. Class 7 depends on 12 real parameters from quark operators, plus 9 (3) real
parameters from lepton operators in the top (topU3l) case. QHud is defined with a YuY †d
insertion to preserve U(2)3, while QHtb is independent of the Yukawas.

Λ2L(7)
6 =C

(1)
HqQ

(1)
Hq+C(3)

HqQ
(3)
Hq+CHuQHu+CHdQHd+[CHudQHud+h.c.]

+C(1)
HQQ

(1)
HQ+C(3)

HQQ
(3)
HQ+CHtQHt+CHbQHb+[CHtbQHtb+h.c.] (3.47)

+


∑3
p=1 (C(1)

Hl )ppQ
(1)
Hl,pp+(C(3)

Hl )ppQ
(3)
Hl,pp+(CHe)ppQHe,pp , U(1)3

l+e [top]
∑3
p,r=1C

(1)
Hl δprQ

(1)
Hl,pr+C(3)

Hl δprQ
(3)
Hl,pr+CHe δprQHe,pr , U(3)2 [topU3l]

Class 8 a. Class 8a contains 2 operators with 4 quarks. Mapping them to the formalism
with 6 quark fields, each of them admits 5 independent U(2)3 invariant contractions, that
can be written

Q(1)
qq =

2∑
p,r,s,t=1

δprδst (q̄pγµqr)(q̄sγµqt) , Q
(1)
Qq =

2∑
p,r=1

δpr (q̄pγµqr)(Q̄γµQ) , (3.48)

Q(1)′
qq =

2∑
p,r,s,t=1

δptδsr (q̄pγµqr)(q̄sγµqt) , Q
(1)′
Qq =

2∑
p,t=1

δpt (q̄pγµQ)(Q̄γµqt) , (3.49)

Q
(1)
QQ = (Q̄γµQ)(Q̄γµQ) , (3.50)

and analogously for Q(3)
qq . In practice, for analyses involving top quark processes it is

convenient to trade “crossed” flavor contractions, as well as Q(3)
QQ, for operators with a

color octet structure. This is motivated by top processes being largely dominated by
QCD interactions in the SM. The rotation is done using Fierz rearrangements and the
completeness relations for SU(2) and SU(3)

σijkσ
i
mn = 2δjnδmk − δjkδmn , (3.51)

TAabT
A
cd = 1

2δadδcb −
1
6δabδcd . (3.52)

Consistent with the recommendations in ref. [36], SMEFTsim implements the invariants in
table 2, that are related to those in eqs. (3.48)–(3.50) and their Q(3)

qq counterparts as:

Q
(1)
QQ = Q

(1)
QQ , Q

(3)
QQ = −1

3Q
(1)
QQ + 4Q(8)

QQ , (3.53)

Q(1)
qq = Q(1,1)

qq , Q(1)′
qq = 1

6
(
Q(1,1)
qq +Q(3,1)

qq

)
+Q(1,8)

qq +Q(3,8)
qq , (3.54)

Q(3)
qq = Q(3,1)

qq , Q(3)′
qq = 1

2Q
(1,1)
qq − 1

6Q
(3,1)
qq + 3Q(1,8)

qq −Q(3,8)
qq , (3.55)

Q
(1)
Qq = Q

(1,1)
Qq , Q

(1)′
Qq = 1

6
(
Q

(1,1)
Qq +Q

(3,1)
Qq

)
+Q

(1,8)
Qq +Q

(3,8)
Qq , (3.56)

Q
(3)
Qq = Q

(3,1)
Qq , Q

(3)′
Qq = 1

2Q
(1,1)
Qq −

1
6Q

(3,1)
Qq + 3Q(1,8)

Qq −Q
(3,8)
Qq . (3.57)
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Eqs. (3.53)–(3.57) can be written compactly as ~QWarsaw = R ~Qtop, with ~QWarsaw, ~Qtop the
two “operator vectors” and R a rotation matrix. The relation among the Wilson coefficients
is then derived equating the Lagrangian written in the two bases:

L = ~CWarsaw · ~QWarsaw = ( ~CWarsaw)T R ~Qtop

= ~Ctop · ~Qtop ,
(3.58)

with ~CWarsaw, ~Ctop the coefficients vectors. The solution is

~Ctop = RT ~CWarsaw , ~CWarsaw = (RT )−1 ~Ctop . (3.59)

Explicitly:

C
(1)
QQ = C

(1)
QQ −

1
3C

(3)
QQ , C

(8)
QQ = 4C(3)

QQ , (3.60)

C(1,1)
qq = C(1)

qq + 1
6C

(1)′
qq + 1

2C
(3)′
qq , C(3,1)

qq = C(3)
qq + 1

6C
(1)′
qq −

1
6C

(3)′
qq , (3.61)

C(1,8)
qq = C(1)′

qq + 3C(3)′
qq , C(3,8)

qq = C(1)′
qq − C(3)′

qq , (3.62)

C
(1,1)
Qq = C

(1)
Qq + 1

6C
(1)′
Qq + 1

2C
(3)′
Qq , C

(3,1)
Qq = C

(3)
Qq + 1

6C
(1)′
Qq −

1
6C

(3)′
Qq , (3.63)

C
(1,8)
Qq = C

(1)′
Qq + 3C(3)′

Qq , C
(3,8)
Qq = C

(1)′
Qq − C

(3)′
Qq , (3.64)

and the inverse

C
(1)
QQ = C

(1)
QQ + 1

12C
(8)
QQ , C

(3)
QQ = 1

4C
(8)
QQ , (3.65)

C(1)
qq = C(1,1)

qq − 1
6C

(1,8)
qq , C(1)′

qq = 1
4C

(1,8)
qq + 3

4C
(3,8)
qq , (3.66)

C(3)
qq = C(3,1)

qq − 1
6C

(3,8)
qq , C(3)′

qq = 1
4C

(1,8)
qq − 1

4C
(3,8)
qq , (3.67)

C
(1)
Qq = C

(1,1)
Qq −

1
6C

(1,8)
Qq , C

(1)′
Qq = 1

4C
(1,8)
Qq + 3

4C
(3,8)
Qq , (3.68)

C
(3)
Qq = C

(3,1)
Qq −

1
6C

(3,8)
Qq , C

(3)′
Qq = 1

4C
(1,8)
Qq −

1
4C

(3,8)
Qq . (3.69)

The operator Qll admits 2 independent contractions in the U(3)2 symmetric case
(eq. (3.20)) and 9 in the U(1)3

l+e case. We choose them as the (Cll)prst entries with indices
prst in the set

Pll = {1111, 2222, 3333, 1122, 1133, 2233, 1221, 1331, 2332} . (3.70)

Operators Q(1),(3)
lq , Q

(1),(3)
lQ admit 3 (1) contractions each in the top (topU3l) case.
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The Lagrangian is therefore

Λ2L(8a)
6 = C(1,1)

qq Q(1,1)
qq + C(1,8)

qq Q(1,8)
qq + C(3,1)

qq Q(3,1)
qq + C(3,8)

qq Q(3,8)
qq + C

(1)
QQQ

(1)
QQ

+ C
(1,1)
Qq Q

(1,1)
Qq + C

(1,8)
Qq Q

(1,8)
Qq + C

(3,1)
Qq Q

(3,1)
Qq + C

(3,8)
Qq Q

(3,8)
Qq + C

(8)
QQQ

(8)
QQ

+



∑3
p=1(C(1)

lq )ppQ(1)
lq,pp + (C(3)

lq )ppQ(3)
lq,pp + (C(1)

lQ )ppQ(1)
lQ,pp + (C(3)

lQ )ppQ(3)
lQ,pp

+∑prst∈Pll (Cll)prstQll,prst , U(1)3
l+e [top]

∑3
p,r=1C

(1)
lq δprQ

(1)
lq,pr + C

(3)
lq δprQ

(3)
lq,pr + C

(1)
lQ δprQ

(1)
lQ,pr + C

(3)
lQ δprQ

(3)
lQ,pr

+∑3
p,r,s,t=1 (Cll δprδst + C ′ll δptδsr)Qll,prst , U(3)2 [topU3l]

(3.71)

Note that the allowed flavor contractions in the U(1)3
l+r and U(3)2 cases are the same, but

the different symmetry properties generally lead to different relative normalizations. For
instance, considering the (1111) and (1122) entries, one has

Λ2L(8a)
6 ⊃

(Cll)1111Q1111 + (Cll)1122Q1122 + . . . U(1)3
l+e [top]

(Cll + C ′ll) Q1111 + 2CllQ1122 + . . . U(3)2 [topU3l]
(3.72)

where the relative 2 between the Cll contributions to Q1122 and Q1111 is due to U(3)2

requiring to sum over both the 1122 and 2211 contractions, that are equivalent for this
particular operator. In total, L(8a)

6 contains 31 independent real parameters in the top
case and 16 in the topU3l case.

Class 8 b. A basis rotation analogous to the one performed in L(8a)
6 is applied to Quu, Qud

in L(8b)
6 . No modification is needed for Q(1),(8)

ud as in this case the color octet contraction
is already manifest. The set of 5 independent U(2)3-invariant contractions in the Warsaw
basis is in this case

Quu =
2∑

p,r,s,t=1
δprδst (ūpγµur)(ūsγµut) , Qtu =

2∑
p,r=1

δpr (ūpγµur)(t̄γµt) , (3.73)

Q′uu =
2∑

p,r,s,t=1
δptδsr (ūpγµur)(ūsγµut) , Q′tu =

2∑
p,t=1

δpt (ūpγµt)(t̄γµut) , (3.74)

Qtt = (t̄γµt)(t̄γµt) , (3.75)

and analogously for the Qdd counterparts. Using Fierz transformations and eqs. (3.51),
(3.52):

Qtt = Qtt , Qbb = Qbb , (3.76)

Quu = Q(1)
uu , Q′uu = 1

3Q
(1)
uu + 2Q(8)

uu , (3.77)

Qdd = Q
(1)
dd , Q′dd = 1

3Q
(1)
dd + 2Q(8)

dd , (3.78)

Qtu = Q
(1)
tu , Q′tu = 1

3Q
(1)
tu + 2Q(8)

tu , (3.79)

Qbd = Q
(1)
bd , Q′bd = 1

3Q
(1)
bd + 2Q(8)

bd , (3.80)
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where the operators on the right-hand side of the equations are defined in table 2. The
relations among Wilson coefficients are

Ctt = Ctt , Cbb = Cbb , (3.81)

C(1)
uu = Cuu + 1

3C
′
uu , C(8)

uu = 2C ′uu , (3.82)

C
(1)
dd = Cdd + 1

3C
′
dd , C

(8)
dd = 2C ′dd , (3.83)

C
(1)
tu = Ctu + 1

3C
′
tu , C

(8)
tu = 2C ′tu , (3.84)

C
(1)
bd = Cbd + 1

3C
′
bd , C

(8)
bd = 2C ′bd , (3.85)

and the inverse

Ctt = Ctt , Cbb = Cbb , (3.86)

Cuu = C(1)
uu −

1
6C

(8)
uu , C ′uu = 1

2C
(8)
uu , (3.87)

Cdd = C
(1)
dd −

1
6C

(8)
dd , C ′dd = 1

2C
(8)
dd , (3.88)

Ctu = C
(1)
tu −

1
6C

(8)
tu , C ′tu = 1

2C
(8)
tu , (3.89)

Cbd = C
(1)
bd −

1
6C

(1)
bd , C ′bd = 1

2C
(8)
bd . (3.90)

The operator Qee admits 6 independent contractions in the top case, with indices that we
choose in the set

Pee = {1111, 2222, 3333, 1122, 1133, 2233} . (3.91)

In the U(3)2 case, there is instead only 1 available contraction. Each of the operators
Q

(1),(3)
lu , Q

(1),(3)
ld is mapped into 6 (2) independent invariants in the top (topU3l) case. The

Lagrangian for class 8a has the form

Λ2L(8b)
6 =C(1)

uuQ
(1)
uu+C(8)

uuQ
(8)
uu+CttQtt+C(1)

tu Q
(1)
tu +C(8)

tu Q
(8)
tu

+C(1)
dd Q

(1)
dd +C(8)

dd Q
(8)
dd +CbbQbb+C(1)

bd Q
(1)
bd +C(8)

bd Q
(8)
bd

+C(1)
ud Q

(1)
ud +C(8)

ud Q
(8)
ud +C(1)

td Q
(1)
td +C(8)

td Q
(8)
td +C(1)

ub Q
(1)
ub +C(8)

ub Q
(8)
ub +C(1)

tb Q
(1)
tb +C(8)

tb Q
(8)
tb

+
[
C

(1)
utbdQ

(1)
utbd+C(8)

utbdQ
(8)
utbd+h.c.

]

+



∑3
p=1(Ceu)ppQeu,pp+(Ced)ppQed,pp+(Cet)ppQet,pp+(Ceb)ppQeb,pp

+∑prst∈Pee (Cee)prstQee,prst , U(1)3
l+e [top]

∑3
p,r=1Ceu δprQeu,pr+Ced δprQed,pr+Cet δprQet,pr+Ceb δprQeb,pr

+∑3
p,r,s,t=1Cee δprδstQee,prst , U(3)2 [topU3l]

(3.92)

and it depends on 40 (27) real independent parameters in the top (topU3l) case.

Class 8 c. No basis rotation is required in L(8c)
6 , and the quark currents are mapped

directly. In the lepton sector, Qle admits 1 independent contraction in the U(3)2 case
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(neglecting the subleading contribution ∝ Y 2
l ) and 12 in the U(1)3

l+e case. We choose those
with indices prst in the set

Ple = P hle ∪ Pnhle , (3.93)
P hle = {1111, 2222, 3333, 1122, 1133, 2233, 2211, 3311, 3322} , Pnhle = {1221, 1331, 2332} ,

where the contractions in P hle are Hermitian and those in Pnhle are not. The operators
Q

(1),(8)
qQtu , Q

(1),(8)
qQbd are not Hermitian and therefore the associated Wilson coefficients are

complex.
The Lagrangian reads

Λ2L(8c)
6 =C(1)

qu Q
(1)
qu +C(1)

qt Q
(1)
qt +C(1)

QuQ
(1)
Qu+C(1)

QtQ
(1)
Qt

+C(8)
qu Q

(8)
qu +C(8)

qt Q
(8)
qt +C(8)

QuQ
(8)
Qu+C(8)

QtQ
(8)
Qt

+C(1)
qd Q

(1)
qd +C(1)

qb Q
(1)
qb +C(1)

QdQ
(1)
Qd+C(1)

QbQ
(1)
Qb

+C(8)
qd Q

(8)
qd +C(8)

qb Q
(8)
qb +C(8)

QdQ
(8)
Qd+C(8)

QbQ
(8)
Qb

+
[
C

(1)
qQtuQ

(1)
qQtu+C(8)

qQtuQ
(8)
qQtu+C(1)

qQbdQ
(1)
qQbd+C(8)

qQbdQ
(8)
qQbd+h.c.

]

+



∑3
p=1(Clu)ppQlu,pp+(Cld)ppQld,pp+(Clt)ppQlt,pp+(Clb)ppQlb,pp

+(Cqe)ppQqe,pp+(CQe)ppQQe,pp+∑prst∈Ph
le

(Cle)prstQle,prst U(1)3
l+e [top]

+
[∑

prst∈Pnh
le

(Cle)prstQle,prst+h.c.
]
,

∑3
p,r=1Clu δprQlu,pr+Cld δprQld,pr+Clt δprQlt,pr+Clb δprQlb,pr

+Cqe δprQqe,pr+CQe δprQQe,pr+∑3
p,r,s,t=1Cle δprδstQle,prst , U(3)2 [topU3l]

(3.94)

and it depends on 54 (31) independent real parameters in the top (topU3l) case.

Class 8 d. Finally, the operators in L(8d)
6 are also mapped directly to the notation with

6 quark fields. U(2)3 invariance requires an insertion of a light Yukawa couplings for each
(q̄u) or (q̄d) current and an insertion of Yl for each (l̄e) current, as indicated in table 2.

This class includes a total of 64 (40) real parameters in the top (topU3l) case:

Λ2L(8d)
6 =C

(1)
quqdQ

(1)
quqd+C(8)

quqdQ
(8)
quqd+C(1)′

quqdQ
(1)′
quqd+C(8)′

quqdQ
(8)′
quqd+C(1)

QtQbQ
(1)
Qtqb+C

(8)
QtQbQ

(8)
Qtqb

+C(1)
QtqdQ

(1)
Qtqb+C

(1)
quQbQ

(1)
quQb+C

(1)
QuqbQ

(1)
Quqb+C

(1)
qtQdQ

(1)
qtQd

+C(8)
QtqdQ

(8)
Qtqb+C

(8)
quQbQ

(8)
quQb+C

(8)
QuqbQ

(8)
Quqb+C

(8)
qtQdQ

(8)
qtQd

+



∑3
p=1(C(1)

lequ)ppQ(1)
lequ,pp+(C(1)

leQt)ppQ
(1)
leQt,pp+(C(3)

lequ)ppQ(3)
lequ,pp

+(C(3)
leQt)ppQ

(3)
leQt,pp+(Cledq)ppQledq,pp+(ClebQ)ppQlebQ,pp , U(1)3

l+e [top]
∑3
p,r=1C

(1)
lequ (Y †l )prQ(1)

lequ,pr+C(1)
leQt (Y

†
l )prQ(1)

leQt,pr+C(3)
lequ (Y †l )prQ(3)

lequ,pr

+C(3)
leQt (Y

†
l )prQ(3)

leQt,pr+Cledq (Y †l )prQledq,pr+ClebQ (Y †l )prQlebQ,pr , U(3)2 [topU3l]

+h.c.

(3.95)

3.5 Comparison with the literature

We conclude this section with a comparison of the parameterizations presented in this
section with other recent results in the literature. As a quantitative reference, table 3
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general U35 MFV top topU3l

all ��CP all ��CP all ��CP all ��CP all ��CP

L(1)
6 4 2 4 2 2 - 4 2 4 2
L(2,3)

6 3 - 3 - 3 - 3 - 3 -
L(4)

6 8 4 8 4 4 - 8 4 8 4

L(5)
6 54 27 6 3 7 - 14 7 10 5
L(6)

6 144 72 16 8 20 - 36 18 28 14
L(7)

6 81 30 9 1 14 - 21 2 15 2
L(8a)

6 297 126 8 - 10 - 31 - 16 -
L(8b)

6 450 195 9 - 19 - 40 2 27 2
L(8c)

6 648 288 8 - 28 - 54 4 31 4
L(8d)

6 810 405 14 7 13 - 64 32 40 20
tot 2499 1149 85 25 120 - 275 71 182 53

Table 3. Number of independent real parameters in each class of dimension 6 operators, for the 5
flavor structures implemented in SMEFTsim.

summarizes the number of independent real parameters for each class of L6 operators and
flavor setup.

Compared to previous versions of SMEFTsim [1], the following changes were made:

• the dependence on the CKM matrix in currents involving left-handed down quarks
was neglected in the effective operators defined in the general and MFV versions. It
has been restored in version 3.0.

• four parameters corresponding to the real and imaginary parts of C(1)′
quqd , C

(8)′
quqd were

missing in the U35 and MFV models, and have now been included.

• the MFV models have been modified: all Yukawas are now retained in the spurions,
instead of only yt, yb. Moreover, the Lagrangian is now organized according to a
power counting in the quark Yukawas, that led to some flavor-violating terms (eg.
∆uCHud,∆u

1C
(1)
quqd . . . ) being dropped, and others (eg. ∆dCuH , C

(1)′
qu . . . ) being added.

• versions top and topU3l are new in version 3.0.

The U35 and MFV models can be compared, for instance, to the U(3)5 spurion analyses
presented in refs. [66, 75]. Ref. [75] contains an exhaustive classification of all the flavor
spurions associated with SM fermion currents in the presence of a U(3)5 symmetry. In their
notation, Su, Sd correspond to ∆U ,∆D respectively, while both Squ, Sqd are mapped to ∆Q.
The structure YuY †d corresponds to ∆UD and, since we only retain linear insertions of Yl,
∆L = ∆E = 0 in SMEFTsim. Any other spurion leads to baryon and/or lepton number non-
conservation, and therefore does not have an equivalent in the Lagrangian considered here.
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Ref. [66] presented a detailed classification of all the U(3)5 and U(2)5 invariant struc-
tures in the Warsaw basis. In the U(3)5 case, their results can be directly compared with
the parameterizations of the U35 and MFV models in SMEFTsim, while the U(2)3 case can be
compared (in the quark sector) to the top and topU3l models. We find complete agree-
ment in the characterization of the structures, and the operator countings are consistent
once a few differences in the organization of the invariants are taken into account:

• the U(3)5 and U(2)5 Lagrangians in ref. [66] are organized according to a power
counting in the Yukawas, while for the U35, top and topU3l models in SMEFTsim we
simply choose to retain the leading invariant for each operator in the Warsaw basis.

• in the MFV models we retain terms up to order (Y 1
l , (Yd+Yu)3). This choice is different

from the power counting in ref. [66], that truncates at (Y 1
l , Y

1
d Y

2
u ).

• the Lagrangian of the MFV models includes spurions ∝ Y 2
d , that were neglected in

ref. [66].

• in the U(2) case, different symmetries were chosen for the lepton sector: U(2)3 in
ref. [66] vs U(1)3

l+e and U(3)2 in the top and topU3l models.

The structure of the top and topU3l versions builds upon those of refs. [7, 9, 36]. The
main difference compared to these works is that in SMEFTsim the parameterization has been
systematically extended to all operators of the Warsaw basis, including at the same time
CP violating terms, interactions that do not involve the top quark, and spurion insertions
of the light quark Yukawas.

4 Input parameters

Once the kinetic terms have been canonically normalized and the flavor structure has been
fixed, the Lagrangian parameters can be assigned numerical values, with a procedure that
is sometimes referred to as “fixing an input parameter scheme” or “finite renormalization”.
This section revisits this procedure in the SM and in the SMEFT, using a general formalism
that accounts for terms up to arbitrary EFT order. They can be applied to both tree
level and loop calculations but, in the latter case, this procedure needs to be combined
with the usual renormalization to reabsorb UV divergences. In sections 4.2, 4.3 these
formulas are applied to the Warsaw basis case, to recover the known tree-level results,
see e.g. [1, 2, 48, 52, 63, 76, 77]. Aspects specific to the NLO case have been discussed
in [51, 53, 54, 56, 78, 79].

The Lagrangian parameters are fixed imposing a set of defining conditions that re-
late them to (pseudo-)observables: for a Lagrangian with N independent parameters
g = {gi . . . gN}, M ≥ N independent input observables O = {O1 . . .OM} need to be
selected. Computing each On in the theory at a chosen perturbative order, one obtains
relations

On = F (0)
n (g) , n = 1 . . .M , (4.1)
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where F (0)
n denotes a function of the parameters g. If M = N and (4.1) is an invertible

system of equations, the solution

gi = K
(0)
i (O) , i = 1 . . . N , (4.2)

fixes gi as a function K
(0)
i of O. The numerical values of the parameters g are then

univocally determined by measurements of O.
In the SM case, one has 19 independent parameters, that we can classify as

αs, θ̄, QCD
g1, gW , v, λ, EW+Higgs
ye, yµ, yτ , yu, yc, yt, yd, ys, yb, Yukawas
θ12, θ13, θ23, δ , CKM

(4.3)

where we have introduced the CP-violating θ angle of QCD (θ̄) and the CKM angles and
CP phase (θ12, θ13, θ23 and δ respectively). The procedure outlined above is most often
employed to determine the value of θ̄ and of the EW+Higgs and Yukawa parameters. On
the other hand, the determination of the CKM parameters and of αs usually relies on
a large number of observables: in these cases, the system (4.1) is not invertible and the
parameters’ values are extracted via a global fit.

When transitioning from the SM to the SMEFT, a large number of additional parame-
ters enters the Lagrangian, namely the cutoff Λ and the Wilson coefficients Cα. Fixing their
numerical values in terms of measured observables is obviously still an open challenge (and
indeed the ultimate goal of the present work), so these quantities are necessarily left free
in the Lagrangian. Nevertheless, they play a role in the finite renormalization procedure,
because the observables O employed to fix the SM quantities generically receive contribu-
tions from higher dimensional operators. Working order by order in the EFT expansion,
the relations in (4.1) are modified into9

On = F (0)
n (g) + 1

Λ2F
(2)
n (g, C) + 1

Λ4F
(4)
n (g, C) + . . . (4.4)

where C here generically represents the set of relevant Wilson coefficients, that can be
associated to operators of any dimension. In cases where the system of eq. (4.1) can be
inverted, (4.4) can also be solved expanding around the SM solution. The result has the
general form:

gi = K
(0)
i (O) + 1

Λ2K
(2)
i (O, C) + 1

Λ4K
(4)
i (O, C) + . . . (4.5)

where K(0)
i (O) is the SM solution and the following K terms are SMEFT corrections

that depend on the Wilson coefficients. The leading term in the solution (4.5) is defined
imposing that the SM relation holds:

On ≡ F (0)
n (K(0)(O)) . (4.6)

9Terms suppressed by odd powers of Λ are omitted here, as they typically contribute to B and/or L
violating observables, that are not relevant for the extraction of SM parameters. Nevertheless, the results
derived in this section directly generalize to the case where these contributions are retained.
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The explicit form of the remaining K terms is found inserting eq. (4.5) into (4.4), ex-
panding in Λ and requiring that SMEFT corrections cancel order by order in the resulting
expression. Iteratively, one finds

K
(2)
i = −(J−1)in F (2)

n , (4.7)

K
(4)
i = −(J−1)in

[
F (4)
n + ∂F

(2)
n

∂gk
K

(2)
k + 1

2
∂2F

(0)
n

∂gk∂gj
K

(2)
k K

(2)
j

]
, (4.8)

...

K
(d)
i = −(J−1)in

F (d)
n +

∑
m<d

m+d1+...dD=d

1
D!

∂DF
(m)
n

∂gi1 · · · ∂giD
K

(d1)
i1
· · ·K(dD)

iD

 , (4.9)

where (J−1)in = ∂gi/∂F
(0)
n is the inverse of the Jacobian matrix

Jni = ∂F
(0)
n

∂gi
, (4.10)

and in eq. (4.9) the sum runs over all possible terms with m < d and such that m +
d1 + · · ·+ dD = d. All functions and derivatives appearing explicitly in eqs. (4.7)–(4.9) are
evaluated at the SM solution for the parameters g ≡ K(0)(O) and the indices n, k, j, i1 . . . iD
are implicitly contracted internally and summed over.

A generic predicted observable P inherits a dependence on the corrections F (d≥2)
n to

the input quantities. Analogous to O, P will have the generic form

P = P (0)(g) + 1
Λ2P

(2)(g, C) + 1
Λ4P

(4)(g, C) + . . . (4.11)

where P (0) is the SM expression and P (d≥2) encode direct EFT contributions to P, in-
duced by effective operators entering the relevant Feynman diagrams. Calculating P in the
SMEFT starting from input quantities O means inserting the expressions of g in eq. (4.5)
into eq. (4.11). This operation introduces “indirect” EFT contributions, that are a direct
consequence of the F (d≥2)

n terms in eq. (4.4). The dependence on the latter quantities can
be made explicit:

P = P (0) + 1
Λ2

[
P (2) −AnF (2)

n

]
+ 1

Λ4

[
P (4) −AnF (4)

n −A(2)
n F (2)

n +BmnF
(2)
m F (2)

n

]
+ . . .

(4.12)
where them,n indices are summed over and, as above, all functions are implicitly evaluated
at g ≡ K(0)(O). The coefficients A,B are found via chain differentiation:

An = ∂P (0)

∂F
(0)
n

= ∂P (0)

∂gi
(J−1)in , (4.13)

A(2)
n = ∂P (2)

∂F
(0)
n

− ∂P (0)

∂F
(0)
m

∂F
(2)
m

∂F
(0)
n

= ∂P (2)

∂gi
(J−1)in −Am

∂F
(2)
m

∂gk
(J−1)kn , (4.14)

Bmn = 1
2

∂2P (0)

∂F
(0)
m ∂F

(0)
n

− 1
2
∂P (0)

∂F
(0)
p

∂2F
(0)
p

∂F
(0)
m ∂F

(0)
n

=

= 1
2
∂2P (0)

∂gi∂gj
(J−1)im(J−1)jn −

1
2Ap

∂2F
(0)
p

∂gi∂gj
(J−1)im(J−1)jn . (4.15)
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Here An and the first term in A(2)
n account for linear K(2) corrections to g in the P (0) and

P (2) function respectively. The first term in Bmn contains double K(2) insertions10 in P (0),
while the second terms of A(2)

n and Bmn both stem from K(4) contributions in P (0).
The net effect of the finite renormalization procedure is that all the EFT corrections

to input measurements are recast into corrections to predicted quantities: if P is an input
observable P ≡ Oq, all EFT corrections in eq. (4.12) cancel order by order in the EFT. This
happens by construction and follows trivially from the defining conditions imposed. It can
be checked explicitly: in this case P (d) = F

(d)
q and assuming that O is a set of independent

quantities, also ∂F (0)
q /∂F

(0)
n = δqn and ∂2F

(0)
q /∂F

(0)
m ∂F

(0)
n = 0. This immediately leads to

P (2) −AnF (2)
n = 0 , Bmn = 0 , (4.16)
A(2)
n = 0 , P (4) −AnF (4)

n = 0 . (4.17)

Eq. (4.12) provides a dictionary between different input parameter schemes: comparing
sets O and O′, the difference in the predicted P is

P(O)− P(O′) = 1
Λ2

[
−AnF (2)

n +A′nF
(2)′
n

]
+ 1

Λ4

[
−AnF (4)

n +A′nF
(4)′
n +

−A(2)
n F (2)

n +A(2)′
n F (2)′

n +BmnF
(2)
m F (2)

n −B′mnF (2)′
m F (2)′

n

]
+ . . . (4.18)

which is easily evaluated via eqs. (4.13)–(4.15). This result is consistent with those in the
appendix of ref. [63] and in ref. [80].

4.1 Implementation in SMEFTsim

SMEFTsim implements the finite renormalization procedure via replacements of the form11

gi → ĝi + δgi , (4.19)

where ĝi satisfies the SM relation ĝi = K
(0)
i (O) and δgi encodes all the dependence on

the Wilson coefficients. In the FeynRules models, these replacements are operated at the
Lagrangian level via the lists redefConst (applied simultaneously to the redefinitions in
eq. (2.11)) and redefVev, and the hats are subsequently dropped in the notation. In this
way, all the SM parameters appearing explicitly in the final LSMEFT are hatted quantities,
i.e. they are conveniently defined in the exact same way as in the SM and their numerical
value is directly defined by the input observables chosen.

The shifts δg appear explicitly in the interaction terms, and they are responsible for
propagating input shifts corrections to the computed processes. By construction, the de-

10Here “double insertions” refers to any contribution quadratic in the L6 coefficients. This includes
contributions from the square of a diagram with one EFT insertion, as well as from the interference between
SM and EFT diagrams with two EFT vertices, or EFT diagrams with a single interaction ∝ C2. The latter
generally stem from field or parameter redefinitions in the Lagrangian.

11Ref. [63] used the notation ḡi → ĝi + δgi from ref. [52]. This is completely equivalent to the one used
here, dropping the bars.
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pendence on δg themselves is universal, while their expressions in terms of Wilson coeffi-
cients are fixed by the input scheme choice:

δgi = 1
Λ2K

(2)
i (O) = − 1

Λ2 (J−1)inF (2)
n . (4.20)

As noted in section 2, because we work at order Λ−2, the replacements of eq. (4.19) only
need to be performed on LSM and only linear terms in δg need to be retained. Moreover,
one can replace vT → v̂ in the C̄α notation, eq. (2.4).

This procedure is implemented for parameters listed in the Higgs, EW and Yukawa
sectors in (4.3), as described below. Eq. (4.4) makes manifest that the extraction of SM
parameters from global fits can become problematic when generalized to the SMEFT.
Whenever this set of equations is not invertible, it is not possible to find a simple form
for gi that expands around the SM solution. A consistent treatment of EFT corrections to
such input observables would require to extract simultaneously gi and Cα, which can be
very unpractical or even unfeasible, in the presence of blind directions.

In the case of the CKM parameters, this issue has been overcome in ref. [81], where
an optimal set of 4 input measurements was proposed, that allows for a treatment of the
CKM angles and phase analogous to that of EW parameters. Its implementation is left for
future versions of SMEFTsim.

The case of αs poses a bigger challenge. The strong coupling constant can be deter-
mined from a particularly vast range of processes [82], and its extraction is often correlated
to that of other physical quantities, such as parton distribution functions (PDFs). A proof-
of-concept analysis of SMEFT effects on the PDFs determination was presented in ref. [83],
that explored the consequences of including four-fermion operators in a fit to deep-inelastic
scattering data. Further studies are needed in order to define an optimal strategy for the
treatment of SMEFT contributions in this context. For the time being, input shift correc-
tions associated to the determination of αs are omitted in SMEFTsim.

4.2 Higgs and EW sectors

The electroweak sector of the SM contains 4 independent quantities, that can be chosen as
g = {g1, gW , v, λ}. The 4 (pseudo-)observables needed to fix their values are usually taken
in the set

{αem, GF , mZ , mW , mh} .

While mh always needs to be retained in order to fix λ , the choice of the 3 remaining inputs
is free, and several combinations have been adopted in the literature. SMEFTsim implements
the two alternative schemes {αem,mZ , GF } and {mW ,mZ , GF }, providing independent UFO
models for both.

The fine structure constant αem(0) is taken to be measured in Thomson scattering,12

the Fermi constant GF measured in muon decays µ− → e−νµν̄e, and mW ,mZ ,mh are
12As we work at tree level, only direct SMEFT corrections to Thomson scattering (i.e. to the determination

of αem(0)) are included here. The determination of αem(mZ) at one loop in the SMEFT is another major
open problem, as potential EFT contributions in the running have not been estimated to date. The main
challenge in this task is posed by non-perturbative effects, particularly those arising as αem runs through
the hadronic resonances region.
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∆κH = C̄H�−
C̄HD

4

∆m2
Z = C̄HD

2 + 2g1gW
g2

1 +g2
W

C̄HWB

∆αem = − 2g1gW
g2

1 +g2
W

C̄HWB

∆m2
h = 2∆κH−

3
2λC̄H

general ∆GF = (C̄(3)
Hl )11+(C̄(3)

Hl )22−(C̄ll)1221

U35, MFV,
topU3l

∆GF = 2C̄(3)
Hl −C̄ ′ll

top ∆GF = C̄
(3)
Hl,11+C̄(3)

Hl,22−
C̄ll,1221

2

Table 4. Expressions of input parameter shifts and the kinetic correction ∆κH (defined in (2.6))
in terms of Wilson coefficients. The left column is common to all flavor versions, while ∆GF varies
as indicated in the right column. We use the notation C̄α = Cα(v̂2/Λ2).

defined as the bosons’ pole masses, see ref. [1] and references therein for further details.
With these definitions, at tree level:13

αem = 1
4π

g2
W g

2
1

g2
W + g2

1
[1 + ∆αem] , GF = 1√

2v2
T

[1 + ∆GF ] , (4.21)

m2
W = v2

T

4 g2
W , m2

Z = v2
T

4 (g2
W + g2

1)
[
1 + ∆m2

Z

]
, (4.22)

m2
h = 2v2

Tλ
[
1 + ∆m2

h

]
. (4.23)

The ∆ quantities are dimensionless and defined in table 4: ∆GF is inferred computing the
muon decay width at tree level in the SMEFT, while the remaining shifts can be read from
the relevant Lagrangian terms. In particular, the contributions in C̄HWB to ∆αem, ∆m2

Z

follow directly from eq. (2.18) and ∆m2
h follows from eq. (2.8).

The relations (4.21)–(4.23) can be directly mapped to the notation of eq. (4.4): for
instance

F
(0)
GF

= 1√
2v2
T

,
1

Λ2F
(2)
GF

= F
(0)
GF

∆GF , (4.24)

and analogously for the other observables.

4.2.1 {αem,mZ , GF} scheme

Solving 3 of the 4 eqs. in (4.21), (4.22), plus eq. (4.23), gives expressions for the SM param-
eters of the form of (4.5). Let us choose the input quantities O(α) = {αem,m

2
Z , GF ,m

2
h}.

It is convenient to define the vector of SM parameters as g = {g2
1, g

2
W , v

2
T , λ}. The SM

solutions ĝi ≡ K(0)
i (O) are then

ĝ2
1 = 4παem

c2
θ̂

, ĝ2
W = 4παem

s2
θ̂

, v̂2 = 1√
2GF

, λ̂ = m2
hGF√

2
, (4.25)

13The normalization of ∆GF has been modified compared to previous SMEFTsim versions in order to
homogenize the notation with the remaining shifts.
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having defined the weak angle θ̂ as

s2
θ̂

= sin2 θ̂ ≡ ĝ2
1

ĝ2
1 + ĝ2

W

= 1
2

1−

√√√√1− 2
√

2παem
GFm2

Z

 . (4.26)

The Jacobian J = ∂O(α)/∂g defined in eq. (4.10) takes the form

J = 1
4


c4
θ̂
/π s4

θ̂
/π

v̂2 v̂2 ĝ2
W /c

2
θ̂

−2
√

2/v̂4

8λ̂ 8v̂2

 . (4.27)

Taking the inverse and plugging it in eq. (4.7), one obtains explicit expressions for the
parameter shifts defined as in (4.20):

g2
1 = ĝ2

1

[
1 + 2δg1

ĝ1

]
,

δg1
ĝ1

=
s2
θ̂

2c2θ̂

(
∆m2

Z + ∆GF
)
−

c2
θ̂

2c2θ̂
∆αem , (4.28)

g2
W = ĝ2

W

[
1 + 2δgW

ĝW

]
,

δgW
ĝW

= −
c2
θ̂

2c2θ̂

(
∆m2

Z + ∆GF
)

+
s2
θ̂

2c2θ̂
∆αem , (4.29)

v2
T = v̂2

[
1 + 2δv

v̂

]
,

δv

v̂
= ∆GF

2 , (4.30)

λ = λ̂

[
1 + δλ

λ̂

]
,

δλ

λ̂
= −∆GF −∆m2

h . (4.31)

It can be convenient, as a shorthand notation, to define a shift for sin2 θ. In the input
schemes considered here, this is always a predicted quantity, that can be expressed as

δs2
θ = 2c2

θ̂
s2
θ̂

(
δg1
ĝ1
− δgW

ĝW

)
+ ∆s2

θ , (4.32)

with ∆s2
θ defined in eq. (2.24).

With this input scheme choice, mW is also a predicted quantity and its expression can
be derived from eq. (4.12). From eq. (4.22), we have that P (2)

m2
W

= 0, so

m2
W = P

(0)
m2
W
− 1

Λ2

∂P
(0)
m2
W

∂gi
(J−1)inF (2)

n

= v̂2ĝ2
W

4

[
1−

c2
θ̂

c2θ̂
∆m2

Z +
s2
θ̂

c2θ̂
(∆αem −∆GF )

]

= v̂2ĝ2
W

4

[
1 + 2δv

v̂
+ 2δgW

ĝW

]
= m̂2

W

[
1 + 2δmW

m̂W

]
,

(4.33)

where we defined the shift
δmW

m̂W
= δv

v̂
+ δgW

ĝW
= (4.34)

= −
s2θ̂
4c2θ̂

[
1
2
cθ̂
sθ̂
C̄HD + 2C̄HWB +

sθ̂
cθ̂

(
(C̄(3)

Hl )11 + (C̄(3)
Hl )22 − (C̄ll)1221

)]
.
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The second line was evaluated with generic flavor indices for ∆GF , and it can be easily
mapped to other flavor structures with the dictionary in appendix C. Finally, it is worth
noting that electromagnetic interactions do not receive any corrections in this scheme:

δe

ê
= c2

θ̂

δg1
ĝ1

+ s2
θ̂

δgW
ĝW

+ 1
2∆αem = 0 , (4.35)

consistent with αem being an input quantity.

4.2.2 {mW ,mZ , GF} scheme

Choosing the input observables O(mW ) = {m2
W ,m

2
Z , GF ,m

2
h}, the SM expressions ĝi ≡

K
(0)
i (O) for the relevant parameters are

ĝ2
1 = 4

√
2GFm2

Zs
2
θ̂
, ĝ2

W = 4
√

2GFm2
W , v̂2 = 1√

2GF
, λ̂ = m2

hGF√
2

, (4.36)

with the weak angle defined by

s2
θ̂
≡ ĝ2

1
ĝ2

1 + ĝ2
W

= 1− m2
W

m2
Z

. (4.37)

The Jacobian J = ∂O(mW )/∂g takes the form

J = 1
4


v̂2 ĝ2

W

v̂2 v̂2 ĝ2
W /c

2
θ̂

−2
√

2/v̂4

8λ̂ 8v̂2

 , (4.38)

and from eq. (4.7) one has

g2
1 = ĝ2

1

[
1 + 2δg1

ĝ1

]
,

δg1
ĝ1

= −1
2

[
∆GF + ∆m2

Z

s2
θ̂

]
, (4.39)

g2
W = ĝ2

W

[
1 + 2δgW

ĝW

]
,

δgW
ĝW

= −∆GF
2 , (4.40)

v2
T = v̂2

[
1 + 2δv

v̂

]
,

δv

v̂
= ∆GF

2 , (4.41)

λ = λ̂

[
1− δλ

λ̂

]
,

δλ

λ̂
= −∆GF −∆m2

h . (4.42)

With this input scheme choice, αem is now a predicted quantity. From eq. (4.12):

αem = P (0)
αem + 1

Λ2

[
∂P

(0)
αem

∂gi
(J−1)inF (2)

n + P (2)
αem

]

= 1
4π

ĝ2
1 ĝ

2
W

ĝ2
1 + ĝ2

W

[
1−∆GF −

c2
θ̂

s2
θ̂

∆m2
Z + ∆αem

]

= 1
4π

ĝ2
1 ĝ

2
W

ĝ2
1 + ĝ2

W

[
1 + 2c2

θ̂

δg1
ĝ1

+ 2s2
θ̂

δgW
ĝW

+ ∆αem

]
= ê2

4π

[
1 + 2δe

ê

]
.

(4.43)
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∆Ml ∆Mu ∆Md

general
1
2 C̄
†
eH

1
2 C̄
†
uH

1
2 C̄
†
dHV

U35
1
2 C̄
∗
eHY

(d)
l

1
2 C̄
∗
uHY

(d)
u

1
2 C̄
∗
dHY

(d)
d

MFV
1
2 C̄eHY

(d)
l

1
2Y

(d)
u

[
C̄

(0)
uH + (∆uC̄uH)Squ + (∆dC̄uH)Sqd

] 1
2Y

(d)
d V †

[
C̄

(0)
dH + (∆uC̄dH)Squ + (∆dC̄dH)Sqd

]
V

top
1
2(C̄eH)∗pp

1
2 C̄
∗
uHY

(d)
u (u, c) 1

2 C̄
∗
dHY

(d)
d (d, s)

1
2 C̄
∗
tH (t) 1

2 C̄
∗
bH (b)

topU3l
1
2 C̄
∗
eHY

(d)
l

1
2 C̄
∗
uHY

(d)
u (u, c) 1

2 C̄
∗
dHY

(d)
d (d, s)

1
2 C̄
∗
tH (t) 1

2 C̄
∗
bH (b)

Table 5. SMEFT corrections to the fermion mass matrices for each flavor assumption, see section 3
for all definitions. All Wilson coefficients are scalar quantities, except in the general case, where
they are 3 × 3 matrices. In the MFV case all parameters are real. In the top and topU3l cases
∆Mu,d, Yu,d are 2× 2 matrices for the first two generations, and the mass term for the t, b quarks
are independent. We use the notation C̄α = Cα(v̂2/Λ2) and the results are given in the mass basis
of the up-quarks and charged leptons.

It can be instructive to write the final form of the Higgs potential, once the input shifts
are applied onto eq. (2.8). For both input schemes considered here, the result is

V (H) + L6 = h2 λ̂ v̂2 + h3 λ̂ v̂

[
1− ∆GF

2 + ∆κH −
1
λ̂
C̄H

]
+ h4 λ̂

4

[
1−∆GF + 2∆κH −

6
λ̂
C̄H

]
− 3

4
h5

v̂
C̄H −

1
8
h6

v̂2 C̄H .

(4.44)

4.3 Yukawa sector

To fix the SM Yukawa couplings, we take fermion masses as input quantities. From the
propagators’ poles, at tree level, we have

Mψ = vT√
2

[
Y

(d)
ψ −∆Mψ

]
, (4.45)

with Y (d)
ψ diagonal. In the top, topU3l cases the index ψ runs over ψ = {l, u, d, t, b} so that

Ml, Yl,∆Ml are 3 × 3 tensors, Mu,d, Yu,d,∆Mu,d are 2 × 2 and Mt,b, Yt,b,∆Mt,b are scalar
quantities. In the other flavor setups ψ = {l, u, d} and all quantities are 3 × 3 matrices.
The SMEFT corrections ∆Mψ are given in table 5 for each flavor assumption. The SM
solutions are

Ŷ
(d)
ψ =

√
2
v̂
Mψ , (4.46)

and the shifts δYψ have the form

Y
(d)
ψ → Ŷ

(d)
ψ + δY

(d)
ψ , δY

(d)
ψ = −∆GF

2 Ŷ
(d)
ψ + ∆Mψ , (4.47)

where ∆GF enters via eq. (4.41) and ∆Mψ is non-diagonal and non-Hermitian in general.
The expressions (4.46), (4.47) can be easily generalized to setups whereMψ is not diagonal,
by applying the appropriate flavor rotations to both sides of the equations.
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The net effect of the finite renormalization procedure is that ∆Mψ corrections to the
fermion mass terms are recast into corrections to the hψ̄ψ couplings. In unitary gauge, the
Lagrangian resulting from the replacements (2.7), (4.47) is

LYukawa+L(5)
6 =− d̄R,p dL,r√

2

[
v̂ Ŷ

(d)
d +hŶ (d)

d

(
1−∆GF

2 +∆κH
)
−
(

2h+ 3h2

v̂
+ h3

v̂2

)
∆Md

]
pr

− ūR,puL,r√
2

[
v̂ Ŷ (d)

u +hŶ (d)
u

(
1−∆GF

2 +∆κH
)
−
(

2h+ 3h2

v̂
+ h3

v̂2

)
∆Mu

]
pr

− ēR,p eL,r√
2

[
v̂ Ŷ

(d)
l +hŶ (d)

l

(
1−∆GF

2 +∆κH
)
−
(

2h+ 3h2

v̂
+ h3

v̂2

)
∆Ml

]
pr

+h.c. (4.48)

In the top, topU3l models analogous terms with t, b quarks are also present.
In the FeynRules implementation, the common shifts δv, δλ, δYψ are automatically

replaced with the corresponding expressions in terms of Wilson coefficients. On the other
hand, the dependence on the EW shifts δg1, δgW is left explicit in the Lagrangian, as it
is identical for all EW input schemes. Once an inputs set is selected, these shifts can be
traded for Wilson coefficients expressions: in Mathematica this is done via the replacement
lists alphaShifts or MwShifts. In the UFO models all shifts are replaced with the Wilson
coefficient expressions.

5 SM loop-generated Higgs interactions

Because SMEFTsim is designed as a tree-level model, it cannot reproduce processes that only
occur at 1-loop. In fact, estimating SMEFT corrections to observables that are genuinely
loop-generated both in the SM and at d = 6 level is beyond the scope of SMEFTsim.
Nevertheless, there are cases where a 1-loop SM processes receives tree L6 corrections.
This notably happens in a few relevant Higgs production and decay channels.

In order to enable an estimate of interference terms between L6 and SM diagrams for
the processes gg → h, h → γγ, h → Zγ, SMEFTsim implements effective SM interactions
obtained in the large mt limit. This formally corresponds to matching the SM onto an EFT
(we will refer to this as “top-EFT”) where the top quark has been integrated out. The
advantage of this approach is that the top loops are effectively reduced to point vertices
that can be inserted in tree diagrams. The obvious caveat is that the top-EFT is only valid
in a limited kinematic region, as discussed below.

SMEFTsim 3.0 contains hγγ, hZγ, hgg, hggg and hgggg interactions with contributions
up to O(m−2

t ), i.e. d = 7 in the top-EFT. The implemented Lagrangian is:

LSMhloop = gHγγOγγ + gHZγOZγ + g
(1)
HggO

(1)
gg + 1

m2
t

5∑
i=2

g
(i)
HggO

(i)
gg , (5.1)

where

Oγγ = AµνA
µν h

v
, Ozγ = ZµνA

µν h

v
, O(1)

gg = GaµνG
aµν h

v
, (5.2)

O(2)
gg = DσG

a
µνD

σGaµν
h

v
, O(3)

gg = fabcG
aν
µ G

bσ
ν G

cµ
σ

h

v
, (5.3)

O(4)
gg = DµGaµνDσG

aσν h

v
, O(5)

gg = GaµνDνD
σGaσµ

h

v
. (5.4)
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The corresponding g coefficients are fixed via a 1-loop matching procedure of the SM onto
the top-EFT. For the hγγ and hZγ interactions we use the results from refs. [84–87], that
include loops of both top quarks and W bosons:

gHγγ = e2

8π2

[
Iw

(
m2
h

4m2
W

)
+ 4

3If
(
m2
h

4m2
t

, 0
)]

, (5.5)

gHZγ = e2

4π2

[
tθI

Z
w

(
m2
h

4m2
W

,
m2
Z

4m2
W

)
+
(1

2 −
4
3s

2
θ

)
If

(
m2
h

4m2
t

,
m2
Z

4m2
t

)]
. (5.6)

The loop functions If , Iw, IZw are evaluated in the limit where the Higgs boson is on-shell
and higher order corrections are simply obtained via Taylor-expansion, retaining terms up
to O(m−2

t m−6
W ):

If (a, b) =
∫ 1

0

∫ 1−x

0

1− 4xy
1− 4(a− b)xy − 4by(1− y)dydx (5.7)

= 1
3 + 7a

90 + 11b
90 +O(a2, b2) , (5.8)

Iw(a) =
∫ 1

0

∫ 1−x

0

−4 + 6xy + 4axy
1− 4axy dydx (5.9)

= −7
4 −

11a
30 −

19a2

105 −
58a3

525 +O(a4) , (5.10)

IZw (a, b) = 1
t2θ

∫ 1

0

∫ 1−x

0

(5− t2θ + 2a(1− t2θ))xy + t2θ − 3
1− 4(a− b)xy − 4by(1− y) dydx (5.11)

= 1 + 5− t2θ
12 a− b+ t2θ − 9

9 ab+ 2(5− t2θ)
45 a2 + 56b2

45 + 5− t2θ
35 a3 − 12b3

7 +

− 2(7− t2θ)
15 a2b+ 17(13− t2θ)

105 ab2 +O(a3, b3) . (5.12)

For the Higgs-gluon interactions, the matching has been performed in refs. [88–90] up to
dimension 7 in the top expansion:14

g
(1)
Hgg = g2

s

48π2 +O(g4
s) , (5.13)

g
(2)
Hgg = − 7g2

s

2880π2 +O(g4
s) , (5.14)

g
(3)
Hgg = g3

s

240π2 +O(g5
s) , (5.15)

g
(4)
Hgg = g2

s

1440π2 +O(g4
s) , (5.16)

g
(5)
Hgg = g2

s

80π2 +O(g4
s) . (5.17)

14There is a sign difference in the definition of O3 compared to refs. [88, 89]. The sign of C3 is also
affected by the sign in the covariant derivative definition, that was taken with the opposite convention in
ref. [90].
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Note that the d = 7 operators produce interactions with one Higgs and up to 6 gluon
legs. While the full gauge-invariant Lagrangian is implemented in the FeynRules models,
only vertices with up to 4 gluon legs (hgg, hggg, hgggg) were exported to the UFOs. The
Feynman rules of the hggggg and hgggggg vertices are extremely complex both in the
color and Lorentz structures, to the point that their inclusion makes the Monte Carlo
event generation computationally challenging. They are available upon request.

5.1 Validity of the approximations used

The Higgs interactions described in this section are implemented to the specific purpose of
enabling the simulation of Higgs production and decay processes. In general, these vertices
should not be inserted into other arbitrary processes. In MadGraph5_aMC@NLO, the insertions
can be controlled at the diagram generation level via the interaction order SMHLOOP = 1
that is assigned to all the g couplings in the Lagrangian (5.1), see also section 8.2.

The following limitations should also be kept in mind:

• The implementation relies on the top-EFT formalism, that is only valid when the
momentum q flowing through the effective vertex is q < mt. This condition is always
fulfilled for gg → h with no extra jets, for which the top-EFT reproduces the 1-
loop SM cross-section within an accuracy of a few permille. With more complex
final states, a validity threshold is present and it can translate differently in terms of
measured observables, depending on the process.
Figure 1 shows the relative deviation of the top-EFT predictions from the 1-loop SM
results for dσ/dpT (h) in pp → hj and pp → hjj, as obtained at parton level with
MadGraph5_aMC@NLO, in a 4-flavor scheme and neglecting all electroweak contribu-
tions. The SM prediction was obtained generating 100000 events for each pp → hj

channel and for qq → hqq, and 50000 events for the remaining pp → hjj channels,
with the loop_sm UFO. The associated PDF and scale uncertainties were estimated
with the MadGraph5_aMC@NLO functionalities [91], and their combination in quadra-
ture is shown for reference as a grey band. The top-EFT predictions were obtained
reweighting the events with SMEFTsim. The lines in color compare three different
implementations of the top-EFT: including all operators up to d = 7 (red), including
only the d = 5 operator O(1)

gg (blue) and including only the ggh vertex as in the previ-
ous SMEFTsim versions (orange), see the next subsection. The statistical uncertainty
associated to each line is shown as a colored band surrounding the solid curves. Be-
cause the statistical errors associated to the reweighted histogram and to the original
one are fully correlated, in most cases, the uncertainty on their ratio cancels and it
is not visible on the plot. Uncertainties due to the reweighting procedure itself have
been neglected, in the absence of a prescription for their estimation.
For both pp → hj and pp → hjj, the total cross section is dominated by gg- and
qg-initiated channel, for which the mt → ∞ approximation breaks down roughly at
pT (h) ' 250GeV [89, 90, 92–95]. Within the top-EFT validity regime, the d = 7
implementation reproduces the SM 1-loop result within an accuracy of few %, see
also ref. [90]. The large mt approximation fails most significantly in qq-initiated
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Figure 1. Top-EFT predictions for dσ/dpT (h) in pp→ hj (left) and pp→ hjj (right), normalized
to the SM 1-loop results, see text for the calculation details. In both figures, the first panel shows
the combined result, while the lower ones give the breakdown into the contributing channels. Note
that here q generically denotes a light quark or antiquark. The statistical uncertainties are plotted
in color, and they are not visible in most cases. For reference, the gray bands show the systematic
uncertainty on the SM event generation and the vertical dashed line marks pT = mt, where the
top-EFT is expected to break down. SMEFTsim v2 curves for pp → hjj, gg → hgg, gg → hqq,
qg → hqg lie above the plotted range.

processes that, nevertheless, give a negligible contribution to the total cross section.
This behavior is due to the quarks’ PDFs preferring significantly larger x compared
to the gluon one, which leads to large ŝ contributions being suppressed for gg and qg
initial states, but not for qq [94].

• The operators O(i)
Hgg form a complete basis up to O(m−2

t ) for Higgs interactions with
up to 4 gluons [88, 96]. This means that, within the regime of validity of the top-
EFT, SMEFTsim can reproduce 1-loop SM Higgs production in gluon fusion with up
to 2 jets.
Processes gg → h + nj with n ≥ 3 cannot be fully reproduced with SMEFTsim,
even with the inclusion of hggggg, hgggggg vertices, because a complete matching to
O(m−2

t ) onto these vertices would require d = 9 top-EFT operators.

• In addition to the validity of the large mt approximation, the implementation of
hγγ, hZγ assumes an on-shell Higgs in the parameterization of the loop function.

5.2 Comparison to previous versions of SMEFTsim

Previous SMEFTsim versions only implemented the hgg, hγγ and hZγ vertices, while inter-
actions with higher numbers of gluons were omitted. In version 3.0, all the vertices induced
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by the operator O(1)
Hgg and vertices with up to 5 legs (4 gluons) from O(2,3,4,5)

Hgg are included.
Moreover, the hgg interaction was previously parameterized in the on-shell Higgs limit,

analogously to hγγ, hZγ, via a coupling [86, 87, 97]

gHgg = g2
s

16π2 If

(
m2
h

4m2
t

, 0
)
,

and the loop functions If , Iw, IZw were expanded up to O(m−6
t m−6

W ), which is formally
equivalent to a matching up to d = 11 in the top-EFT for an on-shell Higgs boson. In
version 3.0 this is replaced by a consistent matching up to O(m−2

t m−6
W ) that does not rely

on the on-shell assumption. The two parameterizations are completely equivalent up to
O(m−4

t ) corrections for on-shell Higgs production with no extra jets: the Feynman rule of
the ggh interaction is

h

Gν(p2)

Gµ(p1)

=4i
v

[pν1p
µ
2 − η

µνp1 · p2]
[
g

(1)
Hgg −

p1 · p2
m2
t

g
(2)
Hgg + p2

1 + p2
2

4m2
t

g
(5)
Hgg

]
+

− 2i
v

pµ1p
ν
1 p

2
2 + pµ2p

ν
2 p

2
1 − ηµνp2

1 p
2
2 − p

µ
1p

ν
2 p1 · p2

m2
t

g
(4)
Hgg , (5.18)

with the momenta p1, p2 taken to be incoming. In the limit p2
1,2 = 0, p2

h = (p1 +p2)2 = m2
h

h

Gν(p2)

Gµ(p1)

on-shell−→ 4i
v

[
pν1p

µ
2 − η

µνm
2
h

2

] [
g

(1)
Hgg −

m2
h

2m2
t

g
(2)
Hgg

]
+ i

v

m2
h

m2
t

pµ1p
ν
2 g

(4)
Hgg .

(5.19)
The last term vanishes for external gluons and, using eqs. (5.13), (5.14),

g
(1)
Hgg −

m2
h

2m2
t

g
(2)
Hgg = g2

s

16π2

[
1
3 + 7

90
m2
h

4m2
t

]
. (5.20)

The terms in brackets reproduce the expansion of the top loop If (eq. (5.8)) up to O(m−2
t ).

6 Propagator corrections

Mass terms and decay widths of the SM particles generally receive corrections from L6
operators. In order to compute amplitudes consistently at O(Λ−2), these corrections need
to be included in the propagators.

In unitary gauge the propagator of a generic unstable vector V , scalar S or fermion ψ
has the form

PµνV = i

q2 −m2
V + imV ΓV

(
−ηµν + qµqν

m2
V

)
, (6.1)

PS = i

q2 −m2
S + imSΓS

, (6.2)

Pψ =
i(/q +mψ)

q2 −m2
ψ + imψΓψ

. (6.3)
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In the SMEFT we can write, for each particle,

m = mSM + δm, Γ = ΓSM + δΓ , (6.4)

where the shifts δm, δΓ collect all the contributions from d ≥ 6 operators. The correspond-
ing propagator expressions be expanded to linear order in the shifts [98]

PµνV = Pµν,SMV + ∆PµνV , PS = P SM
S + ∆PS , Pψ = P SM

ψ + ∆Pψ , (6.5)

where the expressions for P SM are given by eqs. (6.1)–(6.3) replacing m→ mSM, Γ→ ΓSM.
The corrections read

∆PµνV = −Pµν,SMV

imSM
V

DV (q2)

[
δΓV + 2i

(
1− iΓSM

V

2mSM
V

)
δmV

]
− 2i qµqν

DV (q2)
δmV

(mSM
V )3 , (6.6)

∆PS = −P SM
S

imSM
S

DS(q2)

[
δΓS + 2i

(
1− iΓSM

S

2mSM
S

)
δmS

]
, (6.7)

∆Pψ = −P SM
ψ

imSM
ψ

Dψ(q2)

[
δΓψ + 2i

(
1−

iΓSM
ψ

2mSM
ψ

)
δmψ

]
+ iδmψ

Dψ(q2) , (6.8)

with the shorthand notation

D(q2) = q2 − (mSM)2 + imSM ΓSM . (6.9)

Note that, since ∆P ∝ D(q2)−1, propagator corrections are expected to be relevant in
the on-shell kinematic region and suppressed when the particle is largely off-shell. The
dominant contributions are therefore approximated by the on-shell expressions:15

∆PµνV |q2=m2 = PµνV |q2=m2

[
−δΓV

ΓSM
V

−
(

1 + 2imSM
V

ΓSM
V

)
δmV

mSM
V

]
, (6.10)

∆PS |q2=m2 = PS |q2=m2

[
− δΓS

ΓSM
S

−
(

1 + 2imSM
S

ΓSM
S

)
δmS

mSM
S

]
, (6.11)

∆Pψ|q2=m2 = Pψ|q2=m2

[
− δΓψ

ΓSM
ψ

−
(

1 +
2imSM

ψ

ΓSM
S

)
δmψ

mSM
ψ

]
+ δmψ

mSM
ψ ΓSM

ψ

, (6.12)

with

PµνV |q2=m2 = −ηµν

mV ΓV
, PS |q2=m2 = 1

mSΓS
, Pψ|q2=m2 = /q +mψ

mψΓψ
. (6.13)

6.1 Implementation in SMEFTsim

SMEFTsim 3.0 implements propagator corrections for the Z,W, h bosons and for the top
quark. The user has two alternative options for including them in SMEFT predictions:

(a) using the linearized propagator expressions of eqs. (6.5)–(6.8). In this case the pole
of the propagator remains located at mSM, and the dependence on the Wilson coeffi-
cients, stemming both from δm and δΓ, is linear at the amplitude level. This option
is selected fixing linearPropCorrections = 1 (or any value 6= 0) in the param_card.

15Longitudinal contributions for vector bosons were neglected here.
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(b) using the propagator expressions in eqs. (6.1)–(6.3), with shifted masses. In this case
the pole of the propagator is located at m = mSM + δm while width corrections are
entirely dropped.16 The dependence on the Wilson coefficients is generally non-linear,
as contributions ∝ 1/Cα are induced in the amplitude. This is the default option and
it’s selected with linearPropCorrections = 0.

While option (a) is recommended for consistency of the EFT expansion, we caution the user
that the linearization can be problematic, particularly in the presence of mass corrections.
Formally, expanding around the complex pole of the propagator is not a gauge-invariant
operation [99–101]. Numerically, significantly large discrepancies between methods (a) and
(b) can occur, as illustrated in figure 2 (left) for the case of the W boson. Using linearized
propagators leads to sizeable numerical distortions already for δmW /m

SM
W & few %, as the

dashed curves show. For comparison, the linear approximation works very well for width
corrections up to O(10%), see figure 2 (right). This is partially due to the W boson being
narrow in the SM. Adopting a {mW ,mZ , GF } input scheme is convenient in this respect,
because mass correction effects are entirely avoided. For a more general discussion of the
theoretical advantages of this scheme choice, see e.g. refs. [1, 2, 51, 53, 63, 78, 98, 102].

Option (a) is implemented in SMEFTsim following the method outlined in ref. [103],
contribution 12:17 four dummy fields Z ′,W ′, h′, t′ (Z1,W1,H1,t1) are introduced, with
propagators ∆PµνZ , ∆PµνW , ∆Ph, ∆Pt. The numerical values assigned to mSM, ΓSM ap-
pearing in these expressions are those of the nominal mass and widths of the dummy fields.
The latter, in turn, are internal parameters and defined as equal to the SM masses and
widths of the corresponding dynamical particles. The δm, δΓ parameters are also defined
as internal parameters, function of the relevant SM couplings and Wilson coefficients.

The dummy states have the same SM interactions as Z,W, h, t and do not enter d = 6
operators: SMEFTsim contains copies of all SM vertices, with one or more of the standard
fields replaced by its dummy counterpart. Vertices with n dummy legs are proportional to n
powers of a flag parameter propCorr and have interaction order NPprop = n. The numerical
value of propCorr is set to 0(1) if linearPropCorrections = 0 (a non-zero value).

In this way, for instance, linearized Z-propagator corrections to pp → µ+µ− can be
estimated computing the pp → Z → µ+µ− and pp → Z ′ → µ+µ− amplitudes, and using
the interaction order NPprop to isolate the pure SM/interference/quadratic contributions
as detailed in section 8.3.

Note that linearized propagator corrections are available only in the UFO models, as
the propagators are modified directly in the propagators.py file and not in FeynRules.18

Mass and width corrections implemented. All the mass and width shifts imple-
mented in SMEFTsim are computed to O(Λ−2), i.e. linearly in the Wilson coefficients. Be-

16The implementation of EFT-corrected decay widths has been avoided to prevent potential conflicts
with the treatment of widths in Monte Carlo generators.

17I thank O. Mattelaer for pointing me to this reference.
18The expressions in propagators.py differ by an overall i factor from those in (6.6), (6.7), because an i

is conventionally added by ALOHA upon parsing the UFO model [104].
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Figure 2. Illustrative comparison of full and linearizedW propagators varying δmW (left) and δΓW
(right). The upper panels show the absolute value of the form factor of the transverse propagator
|PW (q2)| as a function of

√
q2. Red lines are obtained modifying mW ,ΓW in the full propagator,

eq. (6.1), while black lines are obtained linearizing out δmW , δΓW corrections as in eqs. (6.5), (6.6).
The lower panels show the ratio between the two curves. The thin vertical line marks

√
q2 =

mSM
W = 80.387 GeV. The light blue curve in the upper plots marks for reference the SM behavior

(δΓW = 0 = δmW ). Solid, dashed and dotted lines correspond to three different sizes of δmW and
δΓW , with the same coding in upper and lower panels. In the right panel, the black, red and light
blue solid lines are indistinguishable.

cause mZ , mh and mt are taken as input parameters,

δmZ ≡ 0, δmh ≡ 0, δmt ≡ 0 . (6.14)

The δmW correction is non-vanishing only in the {αem,mZ , GF } scheme, and the expression
was given in eq. (4.34). Decay width corrections for the Z,W bosons and for the top quark
are defined as

δΓZ = ΓSM,best
Z

[
δΓZ
ΓSM
Z

]
tree
, δΓW = ΓSM,best

W

[
δΓW
ΓSM
W

]
tree
, δΓt = ΓSM,best

t

[
δΓt
ΓSM
t

]
tree
, (6.15)

with

ΓSM,best
Z = 2.4952 GeV, ΓSM,best

W = 2.085 GeV, ΓSM,best
t = 1.33 GeV, (6.16)

the loop-improved SM predictions [82, 105]. These are free parameters in the models,
that can be modified by the user. The quantities

[
δΓ/ΓSM

]
tree

are calculated at tree level
(both numerator and denominator) using the width computation tools in FeynRules [106].
They include all 2-body decays and are extracted in the limit VCKM = 1, with all fermion
masses set to zero, except those of the b and t quarks. Analytic expressions are given in
appendix A.
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f BrSM,best
h→f f BrSM,best

h→f f BrSM,best
h→f

γγ 2.27× 10−3 Zγ 1.541× 10−3 gg 0.0818
b̄b 0.5809 c̄c 0.02884 τ+τ− 0.06256
llν̄ν 0.0256 ūud̄d 0.1097 l−ν̄d̄u+ h.c. 0.1062

Table 6. Numerical values of the Higgs boson branching ratios employed in the definition of δΓh,
eq. (6.17). The values for 2-body decays are taken from ref. [107], with mh = 125.09 GeV. The
values in the last line are estimated computing the partial widths with Prophecy4f 2.0 [108] and
normalizing their sum to BrSM,best

h→4f = 0.24161 [107]. They include only charged current contribu-
tions and are summed over all allowed flavor combinations.

The correction to the total Higgs width is computed using individual K-factors for
each decay channel, as in ref. [57]:19

δΓh = ΓSM,best
h

∑
f

BrSM,best
h→f

[
δΓh→f
ΓSM
h→f

]
tree

, ΓSM,best
h = 4.07 MeV , (6.17)

with f running over the set {γγ, Zγ, gg, bb̄, cc̄, τ+τ−} plus the allowed 4-fermion channels.
In the SMEFTsim implementation, only 4-fermion decays proceeding via charged currents
(h → WW ∗ → 4f) are retained, in order to simplify the analytic expressions. Channels
mediated by neutral bosons (h → ZZ∗, Zγ∗, γ∗γ∗, g∗g∗ → 4f) give subdominant correc-
tions, that are estimated in a 3− 5% change to the dependence on C̄HW , C̄HB, C̄HD and a
change . 1% for the other Wilson coefficients [57].

ΓSM,best
h is a free parameter in the models and can be modified by the user. The

best-fit branching ratios, instead, are embedded numerically in the δΓh expressions and
cannot be changed. The values employed are reported in table 6. The relative deviations[
δΓh→f/ΓSM

h→f

]
tree

for 2-body decays are computed with the FeynRules tools, retaining
the full dependence on all the relevant fermion masses and Yukawa couplings. If a given
Yukawa coupling yf is set to zero in the param_card, all contributions to δΓh originating
from the h→ ff̄ decay channel are dropped. For the h→ 4f channels we take the analytic
results of ref. [57], that neglect all fermion masses and quark mixings. Note that the results
in ref. [57] were given for the U(3)5 flavor symmetric case, and they have been generalized
to the other flavor assumptions in SMEFTsim. Full analytic results for SMEFT corrections
are reported in appendix A.

7 Usage in Mathematica

The FeynRules files in SMEFTsim can be imported in Mathematica [109] and used to
print out analytic expressions for the Feynman rules and Lagrangian terms. A template
Mathematica notebook is available at the GitHub repository, with examples of usage of the

19This normalization choice is due to radiative corrections affecting the various channels in significantly
different ways. For comparison, in the case of Z,W decays, using individual K-factors leads to variations
. 2% in the Wilson coefficient dependence compared to an overall rescaling. The top case is trivial, as there
is only one relevant decay channel t → bW+. In the Higgs case, due to the heterogeneity of the relevant
decay processes, the discrepancy between the two normalizations is of order 20–50%.
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code in different setups. The functionalities are the standard FeynRules ones. However,
since SMEFTsim is an unusually complex model, some recommendations are in order.

Before importing the model, the user must specify a flavor setup and EW input scheme
choice. For instance, after loading FeynRules:� �
SetDirectory ["PATH/TO/SMEFTSIM/DIR /"];

Flavor = U35;
Scheme = MwScheme;
LoadModel [" SMEFTsim_main.fr"];� �
Allowed options for Flavor are general, U35, MFV, top, topU3l. Allowed options for
Scheme are alphaScheme, MwScheme. The loading time varies between flavor assumptions
and can take up to a few seconds.20

The FeynRules code is split over different files that contain the required operators,
parameters and Lagrangian definitions. The implementation is such that only the objects
matching the selected flavor structure and EW input scheme are defined upon loading. In
all models, the following Lagrangians are defined (definitions were given in section 1):

• LGauge = Lgauge. Contains the SM terms plus the linearized SMEFT corrections due
to field redefinitions and input parameter shifts.

• LGaugeP. Same as LGauge, but with at least one W or Z boson replaced with the
corresponding dummy field W1, Z1.

• LHiggs = LHiggs. Contains the SM terms plus the linearized SMEFT corrections due
to field redefinitions and input parameter shifts.

• LHiggsP. Same as LHiggs, but with at least one W , Z or Higgs boson replaced with
the corresponding dummy field W1, Z1, H1.

• LFermions = Lfermions. Contains the SM terms plus the linearized SMEFT correc-
tions due to field redefinitions and input parameter shifts.

• LFermionsP. Same as LFermions, but with at least one top quark or W,Z boson
replaced with the corresponding dummy field t1, W1, Z1.

• LYukawa = LYukawa. Contains the SM terms plus the linearized SMEFT corrections
due to field redefinitions and input parameter shifts.

• LYukawaP. Same as LYukawa, but with at least one top quark or Higgs boson replaced
with the corresponding dummy field t1, H1.

• LSM = LSM. The SM Lagrangian without any SMEFT correction.
20All the timings indicated in this section refer to a four-core laptop, with FeynRules calculations paral-

lelized.
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• LSMlinear. The SM lagrangian plus the linearized SMEFT corrections due to field
redefinitions and input parameters shifts.

• LSMloop = LSMhloop as defined in eq. (5.1).

• LSMloopP. Same as LSMloop, but with at least one Higgs or Z boson replaced with
the corresponding dummy field H1, Z1.

• LSMincl = LSMlinear + LSMloop

• L6cl[n] = L(n)
6 with n = 1. . . 8.

For class 4, the definition is split into L6cl4, L6cl4cpv containing only the CP-even
and -odd terms respectively.
For class 8, sub-Lagrangians L6cl8a . . . L6cl8d are defined in addition.

• L6no4f = ∑7
n=1 L

(n)
6

• L6 = ∑8
n=1 L

(n)
6

• LSMEFT = LSMincl + L6

The last 3 Lagrangians contain extremely long expressions. It is strongly recommended to
use them with care and avoid calling these variables unless strictly necessary.

The parameters notation in the code is provided in appendix D. In addition, the
following parameters lists are defined in all models:

• WC6. The list of all Wilson coefficients.
In the general model the list WC6indices is defined in addition. In this case WC6
contains e.g. cHuIm11, cHuIm33, while WC6indices contains cHu[ff1_,ff2_] with
blank flavor indices.

• shifts. The list of all shift parameters, such as dGf, dMZ2, dgw, dg1 etc. The
complete list is given in table 17.

• d6pars. List of all SMEFT quantities, including Wilson coefficients with and without
free indices, and shifts.

Two handy functions are also defined:

• LinearWC[x_]. Expands the expression x to linear order in the SMEFT parameters
(Wilson coefficients and shifts).

• SMlimit[x_]. Returns the SM limit of the expression x, setting to zero all the
d6pars.

• relativeVariation[x_]. Returns x / SMlimit[x].

• SimplifyWC[x_]. Returns the expression x in a form that collects the contributions
from each SMEFT parameter (both Wilson coefficients and shifts).
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By default, all the Feynman rules are printed out in an input scheme-independent form.
The expressions in terms of Wilson coefficients are recovered via a replacement rule that
should be applied with ReplaceRepeated, as in:

In[ ]:= dgw //. MwShifts // WCsimplify

Out[ ]= -
c
Hl

3
v
2

Λ
2

+
c
ll

Prime
v
2

2 Λ
2

if the model was imported with Scheme = MwScheme, or

In[ ]:= dgw //. alphaShifts // WCsimplify

Out[ ]=
c
ll

Prime
cθ
2
v2

2 Λ2 1 - 2 sθ
2

+
cHD cθ

2
v2

4 Λ2 -1 + 2 sθ
2

+
c
Hl

3
cθ
2
v2

Λ2 -1 + 2 sθ
2

+
cHWB cθ sθ v

2

Λ2 -1 + 2 sθ
2

if the model was imported with Scheme = alphaScheme. For consistency, only the appro-
priate replacement list is defined in each case. All Feynman rules are printed in unitary
gauge. It is possible to switch to Feynman gauge by changing the flag FeynmanGauge to
True at any time. However, we caution the user that the SMEFT contributions to the
Goldstone and ghost Lagrangians are not fully implemented. In particular, gauge fixing
terms have been omitted and the Goldstone kinetic terms are not canonically normalized.

The operators’ names start with O and their definitions carry free flavor indices (eg.
OHu[ff1_,ff2_]). In this way they can be shared by multiple setups (the general, U35
and MFV models all use a set of definitions, and the top, topU3l models share a separate
one). The distinction between flavor assumption is coded through the flavor contractions
in the Lagrangian definition, contained in SMEFTsim_d6_lagrangian.fr. Therefore it is
recommended to isolate each operator through its Wilson coefficient. For instance, the
Feynman rules of the operator QHu with a U(3)5 flavor symmetry can be printed out via:

In[ ]:= Select[L6cl7, ! FreeQ[#, cHu] &] // FeynmanRules // Simplify // TableForm

Starting Feynman rule calculation.

Expanding the Lagrangian...

Collecting the different structures that enter the vertex.

3 possible non-zero vertices have been found -> starting the computation: 3 / 3.

3 vertices obtained.

Out[ ]//TableForm=

uq
-

1
uq 2
H 3
H 4
Z 5

ⅈ cHu e δm1,m2
δf1,f2

γμ5.P+s1,s2

cθ Λ2 sθ

uq
-

1
uq 2
H 3
Z 4

ⅈ cHu e v δm1,m2
δf1,f2

γμ4.P+s1,s2

cθ Λ2 sθ

uq
-

1
uq 2
Z 3

ⅈ cHu e v2 δm1,m2
δf1,f2

γμ3.P+s1,s2

2 cθ Λ2 sθ
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Alternatively, one can reproduce the flavor contraction structure explicitly. In this case:

In[ ]:= Block{ff},
cHu

LambdaSMEFT2
OHu[ff, ff] // FeynmanRules // Simplify // TableForm

Starting Feynman rule calculation.

Expanding the Lagrangian...

Collecting the different structures that enter the vertex.

3 possible non-zero vertices have been found -> starting the computation: 3 / 3.

3 vertices obtained.

Out[ ]//TableForm=

uq
-

1
uq 2
H 3
H 4
Z 5

ⅈ cHu e δm1,m2
δf1,f2

γμ5.P+s1,s2

cθ Λ2 sθ

uq
-

1
uq 2
H 3
Z 4

ⅈ cHu e v δm1,m2
δf1,f2

γμ4.P+s1,s2

cθ Λ2 sθ

uq
-

1
uq 2
Z 3

ⅈ cHu e v2 δm1,m2
δf1,f2

γμ3.P+s1,s2

2 cθ Λ2 sθ

or print the result for one flavor entry only:

In[ ]:=

cHu

LambdaSMEFT2
OHu[1, 1] // FeynmanRules // Simplify // TableForm

Starting Feynman rule calculation.

Expanding the Lagrangian...

Collecting the different structures that enter the vertex.

3 possible non-zero vertices have been found -> starting the computation: 3 / 3.

3 vertices obtained.

Out[ ]//TableForm=

u
-

1
u 2
H 3
H 4
Z 5

ⅈ cHu e δm1,m2
γμ5.P+s1,s2

cθ Λ2 sθ

u
-

1
u 2
H 3
Z 4

ⅈ cHu e v δm1,m2
γμ4.P+s1,s2

cθ Λ2 sθ

u
-

1
u 2
Z 3

ⅈ cHu e v2 δm1,m2
γμ3.P+s1,s2

2 cθ Λ2 sθ

The Feynman rules of the SM Higgs loop Lagrangian are quite complex, especially in
the Higgs-gluon operators’ case. Their evaluation with the FeynmanRules command can
be extremely slow and take up to a few hours for the most complex vertices. In order
to facilitate their access, the file SMEFTsim_SMHloop_FRs.nb is provided, that contains
pre-exported expressions. They can be accessed from another notebook via
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� �
SetDirectory ["PATH/TO/SMEFTSIM/DIR"];
NotebookEvaluate [" SMEFTsim_SMHloop_FRs.nb"];� �

Without producing any output, this will define the objects lhloop5S, lhloop5PS. The
former is a list of all Feynman rules from LSMhloop, for vertices with up to 5 legs. The
latter is the same, but with at least one Higgs boson replaced by the dummy field H1. For
instance, the first entry is the hγγ vertex:

In[ ]:= lhloop5S[[1]]

Out[ ]= {{A, 1}, {A, 2}, {H, 3}},
4 ⅈ gHγγ p1

μ2 p2

μ1

v
-
4 ⅈ gHγγ ημ1,μ2 p1.p2

v


and

In[ ]:= lhloop5PS[[1]]

Out[ ]= {{A, 1}, {A, 2}, {H1, 3}},
4 ⅈ gHγγ Δprop. p1

μ2 p2

μ1

v
-
4 ⅈ gHγγ Δprop. ημ1,μ2 p1.p2

v


is explicitly proportional to the propCorr parameter (shown here as ∆prop.), see
section 6.1, 8.3.

Finally, it is not recommended to export the UFO models independently, unless only a
small subset of operators is included. The UFOs provided in the GitHub repository have
been exported in a specific, optimized way and the python files have been manipulated
a posteriori in order to introduce the modified form of the propagators and to define the
Higgs decay width such that the fermionic decay contributions to δΓh is removed whenever
the corresponding Yukawa coupling is set to zero. The notebook with the original export
procedure is available upon request.

8 Usage in MadGraph5_aMC@NLO

This section provides recommendations for the use of SMEFTsim in MadGraph5_aMC@NLO.
It is in no way meant as a manual for the functionalities of MadGraph5_aMC@NLO itself, for
which we defer the reader to the appropriate references, see e.g. [46, 110, 111].

The SMEFTsim package provides 10 pre-exported UFO models, one for each flavor setup
and input parameter scheme. Each of them contains the full LSMEFT defined in section 1
and 3 and LSMhloop defined in section 5. The manipulations and redefinitions described in
section 2 and 4 have been consistently applied. The vertices contained in the models are
derived in unitary gauge and the ghost fields have been removed: SMEFTsim is designed
for LO event generation and does not support the NLO syntax. A list of the SMEFT
parameters defined in the codes is provided in appendix D, with a mapping to the notation
used in this notes. All the UFO models have been validated following the recommendations
in ref. [47], as detailed in appendix F.
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Although the selection of an appropriate model is of course up to the taste of the
user, each flavor setup is meant to optimize the parameterization of a certain class of
effects in the SMEFT. For instance, the top and topU3l models are designed to single
out the couplings of the top and bottom quarks [36], and they only differ in that the
top case provides more freedom to distinguish the lepton flavors. The U35 models allow
one to work with a minimal number of parameters and are recommended for flavor-blind
processes or whenever the flavor structure can be assumed to be strictly SM-like. At the
other side of the spectrum, the general models provide maximal freedom and can be used
to study flavor-violating processes or to realize arbitrary flavor structures beyond those
implemented. An operator by operator comparison of the different flavor structures is
provided in appendix C.

As discussed in section 6, the use of the {mW ,mZ , GF } input scheme is particularly
recommended for processes involving W bosons, as it avoids the problematic introduction
of SMEFT corrections to the W pole mass. The {αem,mZ , GF } and {mW ,mZ , GF } input
scheme implementations are expected to give results that differ most significantly in the de-
pendence on the Wilson coefficients CHWB, CHD, C

(3)
Hl , C

′
ll (or (C(3)

Hl )11, (C(3)
Hl )22, (Cll)1221

in models with explicit flavor indices) and in the presence/absence of corrections to either
mW or αem, as described in section 4.2. Further numerical differences affecting both EFT
and SM predictions can be present, due to the different definition of the SM parameters in
the two cases. These are generally subleading.

8.1 Parameter cards and restrictions

The model parameters are grouped in blocks, that are explicitly shown in the param-
eter cards. Besides the usual ones (SMINPUTS, MASS, DECAY, YUKAWA, CKMBLOCK), the
parameter card of each SMEFTsim UFO model contains the blocks:

SMEFTCUTOFF — the parameter Λ. By default this is 1 TeV.

SMEFT — the CP-conserving Wilson coefficients, with default value 0.

SMEFTCPV — the CP-violating Wilson coefficients, with default value 0.

This block is absent in the MFV models.

SMEFTFV — the (∆Cα) parameters of the MFV setup, with default value 0.

This block is only present in MFV models.

SWITCHES — the parameter linearPropCorrections, that can be used to switch ON/OFF
the linearization of SMEFT corrections in the propagators. The default value is 0
(OFF).

The SMINPUTS block contains GF , αs and either αem ormW depending on the input scheme.
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The use of restriction cards allows one to reduce the number of diagrams generated for
a given process. Two restriction cards are provided by default with each UFO:

• restrict_massless.dat. The masses and Yukawa couplings of all fermions, except
the top and bottom quarks, are set to 0. The CKM matrix is set to the identity. The
Wilson coefficients are set to arbitrary numerical values.

• restrict_SMlimit_massless.dat. As in restrict_massless.dat, but with all
Wilson coefficients set to 0.

The restrictions should be applied at the stage where the model is imported, e.g.:� �
import model SMEFTsim_U35_MwScheme_UFO -massless� �
In this way, all the parameters that are set to either 0 or 1 in the restriction are fixed to
their value and cannot be edited further. Sets of parameters that are assigned an identical
value in the restriction are fixed to be identical: while their numerical value can still be
edited, they cannot be disentangled from one another. Diagrams that are proportional to
a vanishing parameter will not be generated.

The use of one of the massless restrictions is recommended for LHC studies, because
it simplifies significantly the calculations. There are of course several possible strategies
for the use of these restrictions in MadGraph5_aMC@NLO: for instance, one can create a
modified version of restrict_SMlimit_massless.dat turning on one Wilson coefficient
with some arbitrary value 6= 0. Importing the model with this modified restriction allows
one to generate events with the chosen coefficient only, while all the other operators are
forbidden. Alternatively, if the model is imported with restrict_massless.dat, all the
Wilson coefficients are retained: all the allowed SMEFT diagrams will be generated and all
the parameters can be freely edited at the event generation stage. Note that, to achieve this,
all the Wilson coefficients in restrict_massless.dat are assigned different non-vanishing
and non-unitary values,21 that will need to be changed prior to the event generation.
To simplify this operation, a “restricted” parameter card param_card_massless.dat is
provided in the UFO, where all the Wilson coefficients are set to 0. This card can be
directly copied in the PROC/Cards/ directory of the exported process and modified at will.

8.2 Interaction orders

A standard feature of UFOmodels is that every coupling parameter is assigned an interaction
order, i.e. a “flag” that provides control on the number of coupling insertions in generated
Feynman diagrams. Each parameter carries an arbitrary number of interaction orders.

21In previous versions of SMEFTsim, the Wilson coefficients in the restriction cards were all set to the
special value 9.999999e-01, that in principle allows one to set the parameters to 1 without fixing their
value. However, this syntax is not fully supported by MadGraph5_aMC@NLO, and is occasionally source of
unexpected numerical behavior in UFO models with a very large number of parameters, such as SMEFTsim
general or MFV.
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Order Parameters assigned

QED = 1 e, gW , g1, Yψ

QED = 2 GF , λ̂, αem

QED = -1 v̂, Λ

QCD = 1 gs

QCD = 2 αs

SMHLOOP = 1 gHγγ , gHZγ , g
(1)
Hgg . . . g

(5)
Hgg

NP = 1 all Wilson coefficients and shifts, except propCorr

NPcpv = 1 (?) all CP-violating Wilson coefficients

NPfv = 1 (?) all (∆C) parameters in MFV models

NPc[a] = 1 (?) all the CP components and flavor indices of the Wilson coefficient Cα
NPprop = 1 (?) propCorr

Table 7. Interaction orders defined in the SMEFTsim UFO models. Those marked with a (?) are
new in version 3.0. The string [a] stands for a generic root name of a Wilson coefficient, as listed
in appendix D.

8.2.1 Definitions

In the SMEFTsim UFO models the interaction orders are assigned as reported in table 7.
The orders QED and QCD are assigned as customary in the standard SM UFO implemen-

tations, with the exceptions of the SMEFT cutoff Λ, that has been assigned QED=-1 such
that the combination (v̂/Λ) is order-less, and of the Wilson coefficient CH , that has been
assigned QED=1. This prevents the CH correction to the h3 interaction, that is proportional
to v̂3CH/Λ2 (see eq. (4.44)), from having overall order QED = -1.

The interaction order SMHLOOP labels the SM loop-generated Higgs interactions intro-
duced in section 5. Since by definition they are proportional to the SM gauge couplings,
the g(k)

Hgg parameters additionally carry QCD=2 and the gHγγ , gHZγ parameters carry QED=2.
The interaction order NP (New Physics) is assigned to all the Wilson coefficients and

shifts indistinctly. In addition, starting from version 3.0, individual interaction orders
have been introduced for each effective operators. The same order NPc[a] is assigned
to all the associated CP-conserving and violating parameters, irrespective of the flavor
indices carried. For instance, in the top models, the parameters Re(CeH)pp, Im(CeH)pp for
p = {1, 2, 3} all have order NPceH=1. In the U35, MFV, top and topU3l models, distinct
interaction orders are assigned to independent flavor contractions. For instance Cll and C ′ll
have orders NPcll and NPcll1 respectively. In the top models, the parameters (Cll)pprr
have order NPcll, while the (Cll)prrp contractions have order NPcll1, etc. In most cases
the label [a] coincides with the name root of the associated Wilson coefficient, that can be
read off from the tables in appendix D. If in doubt, the user can resort to the .fr source
files or check explicitly the couplings.py file to identify the exact orders assigned to a
given parameter or coupling.
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All the CP-violating parameters, that belong to the SMEFTCPV block, have an order
NPcpv=1. Analogously, all the (∆Cα) quantities in the MFV models, that belong to the
SMEFTFV block, have an order NPfv=1.

Finally, the order NPprop labels the interactions of the dummy fields W ′, Z ′, h′, t′ car-
rying linearized propagator corrections, see section 6.1. It is carried by a dummy internal
parameter propCorr that only takes values 0/1, when the linearPropCorrections switch
is set to 0/a nonzero value. Its application is discussed in the next subsection. By de-
fault, the interaction order NPprop is “switched off”, as it is assigned an upper limit of 0
interactions, that can be lifted as shown below. No upper limit is set for the other orders.

The interaction orders SMHLOOP, NP, NPprop, NPcpv, NPfv have been assigned hi-
erarchy 99. MadGraph5_aMC@NLO will therefore generally avoid insertions of the associated
vertices, unless these orders are specified.

8.2.2 Recommended use

Interaction orders are specified at the stage of process generation in MadGraph5_aMC@NLO,
e.g.:� �
generate p p > mu+ mu- SMHLOOP =0 NPprop =0 NP=1 NP ^2==1� �
where = is equivalent to <=, while == selects uniquely the order specified. The syntax XX=n
acts at the amplitude level, i.e. it specifies the total number of couplings with order XX
to be inserted in each Feynman diagram. The syntax XXˆ2 acts instead at the squared
amplitude level. This functionality works very nicely for EFT studies, as it allows one to
disentangle contributions at different orders in the expansion.

Although a priori SMEFTsim can be used for computations to any allowed order in Λ, it
implements the SMEFT Lagrangian consistently expanded only up to O(Λ−2). This means
that any SMEFTsim prediction beyond this order is necessarily incomplete in the Effective
Theory. It is worth noting that this statement does not concern only higher dimensional
operators in LSMEFT, but also affects the dependence on some of the Wilson coefficients
in L6. For instance, it was stressed at multiple stages in sections 2 and 4 that terms of
order Λ−4 or higher were neglected in the field and parameter redefinitions performed, as
well as in the treatment of input parameters. The impact of these L6 contributions has
been discussed in ref. [112] for the case of O(Λ−4) corrections to 1 → 2 decays, using the
geoSMEFT formalism [62].

Complete results truncated at O(Λ−2) can be obtained with the syntax NP<=1 NPˆ2<=1,
that retains only SM plus SM-L6 interference contributions. Contributions of order Λ−4

stemming from the square of an O(Λ−2) amplitude, although incomplete, are also com-
monly included in the SMEFT calculations: they are selected with NP=1 NPˆ2==2 or just
NP==1. For the reasons above, it is generally recommended to use the specification NP<=1
(or NP=1) for any process, to limit the number of EFT insertions to one per Feynman
diagram. A generic observable computed in this way will have the form

σ = σSM +
∑
α

σαC̄a +
∑
α,β

σαβC̄αC̄β , (8.1)
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σSM σα σβ σαα σββ σαβ

NP=0 X

NP<=1 X X X X X X

NP==1 X X X

NP<=1 NPˆ2<=1 X X X

NP<=1 NPˆ2==1 X X

NP<=1 NPc[a]ˆ2<=1 X X X

NP<=1 NPc[a]ˆ2<=1 NPc[b]ˆ2<=1 X X X X

NP<=1 NPc[a]==1 X X

NP<=1 NPc[a]ˆ2==1 X X

NP<=1 NPc[a]ˆ2==2 X

NP<=1 NPˆ2==1 NPc[a]ˆ2==1 X

NP<=1 NPˆ2==2 NPc[a]ˆ2==1 X

Table 8. Examples of interaction-order syntax that select different EFT contributions to a generic
observable with the dependence given in eq. (8.1), for the case of 2 Wilson coefficients Cα, Cβ .

where σSM, σα, σαβ intuitively denote the SM, interference and quadratic contributions
respectively. σSM and σαα are always positive quantities, while σα, σαβ with α 6= β can
take negative values. Table 8 shows examples of how the interaction order syntax can be
used to disentangle these contributions, for a simple case with two Wilson coefficients. The
expressions directly generalize if three or more parameters are present.

Finally, as discussed in section 5, the loop-generated SM Higgs couplings implemented
in SMEFTsim are defined in the mt →∞ limit, and their use should be limited to (on-shell)
Higgs production and decay processes. Outside of this regime, it is strongly recommended
to use SMHLOOP=0.

8.3 Propagator corrections and decay widths

As discussed in section 6, SMEFT corrections are generally present in the propagators of
unstable particles, due to d = 6 operators modifying their masses and/or decay widths. Sec-
tion 6.1 outlined two alternative methods for estimating these contributions in a given pro-
cess. In the following we illustrate how they can be implemented in MadGraph5_aMC@NLO.

8.3.1 Method (a): linearized corrections

SMEFTsim 3.0 offers the possibility to linearize propagator corrections as in section 6 for the
Z, W, h bosons and for the top quark. The implementation relies on the introduction of
dummy fields Z ′, W ′, h′, t′ whose couplings carry interaction order NPprop, which allows
one to single them out. For instance, the syntax� �
generate p p > e+ e- SMHLOOP =0 NP==1 NPprop =0� �

– 54 –



J
H
E
P
0
4
(
2
0
2
1
)
0
7
3

selects all diagrams with one effective operator in a vertex (including 4-point q̄qe+e− in-
teractions) but none in propagators, while� �
generate p p > e+ e- SMHLOOP =0 NP=0 NPprop <=2 NPprop ^2==2
generate p p > e+ e- SMHLOOP =0 NP=0 NPprop ==2� �
extract the pure SM-L6 interference (∝ δΓZ) and the quadratic (∝ (δΓZ)2) contributions
respectively from corrections to the Z propagator,22 and exclude EFT insertions in vertices.
Due to the absence of additional interaction orders, there is unfortunately no equivalent
to table 8 in this case: propagator corrections from different operators and EFT orders
cannot be disentangled at this level.

Important: in order to avoid unwanted insertions of the dummy fields in standard
process generations, the functionality described here has to be activated in 2 steps: (i) in
the file coupling_order.py, the expansion_order option for the order NPprop has to
be set to a number ≥ 2 (recommended: 99). The default is 0, which forbids dummy
interactions completely. (ii) The parameter linearPropCorrections in the param_card
has to be set to a non-zero value. If this is not the case, dummy vertices will be included
in the diagrams, but they will be idle, as they are proportional to propCorr = 0/1 for
linearPropCorrections = 0/non-zero.

8.3.2 Method (b): full corrections

As an alternative to linearization, propagator corrections can be estimated following more
canonical procedures. This generally means computing processes with the propagator forms
in eqs. (6.1)–(6.3), with mass and decay parameters that depend explicitly on the Wilson
coefficients, to either linear or quadratic order. The resulting process will thus exhibit a
non-polynomial dependence on the SMEFT parameters.

The most relevant caveat here is that the implementation of the Wilson coefficient
dependence is necessarily different for masses and widths. In the former case, it is possible
to define mass parameters as internal and assign them an analytic expression, e.g. MW =
MWsm + dMW, with dMW defined as in (4.33). In SMEFTsim the dMW term is only included when
linearPropCorrections = 0, and switched off otherwise. Note also that the expression
of a generic δm is extracted at the Lagrangian level and is purely of O(Λ−2).

On the other hand, due to how Monte Carlo generators and their interface to parton
shower or decay modules are structured, decay widths cannot be defined as internal pa-
rameters in UFO models. Therefore the only way their SMEFT expressions can be inserted
in the calculation is by letting MadGraph5_aMC@NLO compute them, by setting the relevant
widths to Auto in the param_card [106]. The on-the-fly calculation will include all allowed
2-body decays as well as higher multiplicity decays estimated to be numerically relevant,
and it will rely on the pre-computed decay results collected in the file decays.py, which

22Remember that NPprop counts the number of dummy vertices, so, in this case, the order specified is
twice the number of dummy propagators.
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include O(Λ−4) terms.23 Note that, with this procedure, the decay widths will need to be
re-evaluated every time the value of a relevant Wilson coefficient is modified.

With both mass and width corrections evaluated as above, the denominator of a generic
propagator has the form

q2 − (mSM + δm)2 + i(mSM + δm)(ΓSM + δ(1)Γ + δ(2)Γ) , (8.2)

where δm and δ(1)Γ are of O(Λ−2) and δ(2)Γ is of O(Λ−4). Eq. (8.2) contains therefore
terms up to O(Λ−6). An observable computed for a process with k internal lines corrected
in this way, will contain terms up to O(Λ−12 k) at the denominator.

In principle this functional dependence can be reconstructed fitting the appropriate
rational function to a sufficient number of benchmark points. However, it is recommended
to reduce the proliferation of higher-order terms in the propagators, by evaluating mass and
width corrections separately and by treating propagator corrections to different internal
states individually, whenever possible. This is achieved avoiding to switch on at the same
time the linearPropCorrections flag (that turns on δmW ) and the Auto computation of
a decay width, or of two decay widths simultaneously.

8.4 Example: Higgs production and decay including W,Z propagator
corrections

As a practical example for the use of SMEFTsim in MadGraph5_aMC@NLO, we compute
SMEFT corrections to Higgs production and decay processes that are mediated by W,Z

exchange, as an illustration of the propagator corrections feature.

8.4.1 STXS for q̄q → hq̄q

We consider two bins of the stage 1.1 Simplified Template Cross Section (STXS) parame-
terization [113–116], for the EW q̄q → hq̄q production channel at low Higgs pT .

They are defined by the cuts [115]:

VBF-like 350 GeV < mjj pT (h) < 200 GeV, |yh| < 2.5
VH-like 60 GeV < mjj < 120 GeV pT (h) < 200 GeV, |yh| < 2.5.

with yh the rapidity of the Higgs boson. In each bin, the Higgs production cross section in
the SMEFT can be parameterized as:

σSMEFT = σSM +
∑
α

σαC̄α +O(Λ−4) . (8.3)

Table 9 reports the values of σα/σSM for the relevant fermionic operators, computed at
parton level using SMEFTsim in the U35 flavor-symmetric, {mW ,mZ , GF } input scheme
version. The following procedure was followed:

1. 50000 events are generated for each bin in MadGraph5_aMC@NLO, for
√
s = 13 TeV.

The syntax used is
23Since only 1 → 2 decays are included, these results consistently stem from the square of O(Λ−2)

amplitudes. Dummy fields are not included in the pre-computed decay widths.
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� �
import model SMEFTsim_U35_MwScheme_UFO -vbf
generate q q > h q q QCD=0 NP=0 SMHLOOP =0 NPprop =0� �

where the -vbf flag indicates that the model is imported with a custom restriction
card restrict_vbf.dat, that in this case sets to zero the masses and Yukawa cou-
plings of all fermions except the bottom and top quarks, as well as all the Wilson
coefficients that are known not to contribute to the process. The remaining ones are
set to a random non-zero value in this card. The STXS defining cuts in pT (h) and yh
cuts are implemented at the level of the run_card.dat in MadGraph5_aMC@NLO, while
the invariant mass cuts are applied when analyzing the events a posteriori. This gives
the tree-level SM cross sections

σV BFSM = 1.56 pb , σV HSM = 0.67 pb . (8.4)

2. The events are reweighted using the reweight module in MadGraph5_aMC@NLO [117].
Individual weights are computed for each Wilson coefficient, splitting contributions
from operator insertions in the vertices (labeled as “direct”) and from insertions in
the W,Z propagators (labeled as “propagator”). This is done setting each coefficient
to 1 and the SMEFT cutoff scale LambdaSMEFT to 1TeV. For instance, for the C ′ll
parameter, the reweight_card.dat for the direct contributions is� �
change process q q > h q q QCD =0 NP=1 NP ^2==1 NPprop =0 SMHLOOP =0
launch --rwgt_name =SMEFTsim -cll1 - direct
set cll1 1
set cHl1 0
set cHl3 0
set cHe 0
set cHq1 0
set cHq3 0
set cHu 0
set cHd 0
done� �
For estimating the pure propagator contributions the first two lines are replaced with� �
change process q q > h q q QCD =0 NP=0 NPprop =2 NPprop ^2==2 SMHLOOP =0
launch --rwgt_name =SMEFTsim -cll1 - propagator� �
Analyzing the reweighted events gives

(
σα

v̂2

Λ2

)
for each Cα. The numbers in table 9

are finally obtained dividing by σSM and normalizing to C̄α.

The results show that propagator corrections are negligible in the VBF regime, where
the relative SMEFT corrections to the cross section is

σSMEFT

σSM
= 1− 3 · 10−4 δΓZ

ΓSM
Z

− 7 · 10−4 δΓW
ΓSM
W

+ direct . (8.5)
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q̄q → hq̄q VBF-like q̄q → hq̄q VH-like h→ e+e−µ+µ−

direct propagators direct propagators direct propagators

C̄He 5.32 · 10−5 0.0526 −1.724 0.153

C̄
(1)
Hl 5.32 · 10−5 0.0526 2.144 0.153

C̄
(3)
Hl −6 1.351 · 10−3 −6 1.258 −3.856 1.147

C̄
(1)
Hq 0.109 −1.363 · 10−4 −0.197 −0.135 −0.39

C̄
(3)
Hq −5.345 −1.423 · 10−3 25.66 −1.329 −1.353

C̄Hu −0.323 −7.092 · 10−5 1.926 −0.070 −0.203

C̄Hd 0.103 5.24 · 10−5 −0.608 0.0518 0.150

C̄ ′ll 3 −1. · 10−3 3 −0.936 3 −0.839

Table 9. Values of σa/σSM for the relevant fermionic Wilson coefficients C̄α contributing to q̄q →
hq̄q and h→ e+e−µ+µ−. For the first two columns σ is the cross section in the VBF-like and VH-
like STXS bins defined in the text, while in the third the numbers refer to the partial decay width.
The results are given for {mW ,mZ , GF } inputs with a U(3)5 flavor symmetry, and neglecting all
fermion masses. The “direct” contributions stem from operator insertions in vertices, including
parameter shifts, while the “propagator” ones stem from the corrections to the W,Z decay width in
internal propagators. The lines highlighted in color are those for which the latter are most relevant.

This is expected, as the intermediate bosons in t-channel are mostly off-shell in this process.
In the VH bin, on the other hand, one vector boson can be on-shell, which enhances the
propagator effects. In this case, the relative SMEFT correction is

σSMEFT

σSM
= 1− 0.29 δΓZ

ΓSM
Z

− 0.65 δΓW
ΓSM
W

+ direct , (8.6)

where the numerical prefactors reflect the proportions of W and Z bosons produced. In
fact, the largest numerical effects in table 9 are observed in the operators entering δΓW .

8.4.2 h→ e+e−µ+µ−

An analysis of the Z-mediated Higgs decay h → e+e−µ+µ− was performed following a
procedure analogous to the one described for q̄q → hq̄q. In the decay case, one Z boson is
always on-shell, leading to significant contributions from the intermediate Z propagator.
The relative SMEFT correction to the decay width is found to be

ΓSMEFT

ΓSM
= 1− 0.84 δΓZ

ΓSM
Z

+ direct . (8.7)

The breakdown into fermionic Wilson coefficients is given in table 9 and it agrees with the
analytic results of ref. [57].
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9 Summary

The SMEFTsim package contains models in FeynRules and in the UFO format, that imple-
ment the complete Warsaw basis of dimension six operators, under different flavor assump-
tions and with different choices of the input quantities for the EW sector. Its main scope is
the Monte Carlo simulation of LHC processes in the SMEFT, but it can also be employed
for simple analytic calculations, exploiting the FeynRules interface in Mathematica.

This work reviewed the theoretical elements that are implemented in SMEFTsim and
presented the improvements in version 3.0. The most significant changes compared to
previous releases are the addition of two new flavor structures for top quark physics, the
implementation of a brand new tool for the inclusion of SMEFT corrections in the prop-
agator of unstable particles and the general improvement of the code, particularly of the
parameterization of Higgs-gluon interactions in the SM.

As in previous versions, SMEFTsim 3.0 supports the WCxf exchange format [22]. The
corresponding interface will be updated shortly after the code release. Finally, support for
the translation of the UFO models to python3 will be provided in the near future.
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A Analytic expressions of decay width corrections

This appendix reports analytic expressions for the decay widths of the W,Z, h, t particles
in the SMEFT, that are implemented in the tool documented in section 6.1.

Only linear terms in the Wilson coefficients are retained. CKM mixing and all fermion
masses except mb and mt are neglected, unless otherwise specified. Results are reported
in the flavor-general setup, and they can be mapped to the symmetric scenarios using
the tables in appendix C. We use an input-scheme independent notation. Scheme-specific
results can be obtained replacing the generic shifts δgW , δg1, δm

2
W with the expressions

reported in section 4.2.1 or 4.2.2. The quantities ∆GF ,∆m2
Z ,∆κH are defined in table 4.

Finally, we use the C̄ notation defined in eq. (2.4) and the hat notation defined in section 4.

A.1 Z boson

The Z boson couplings to a fermion pair ψψ̄ are

gψL = Tψ3 −Qψs
2
θ̂
, gψR = −Qψs2

θ̂
, (A.1)
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where Tψ3 = ±1/2 is the isospin eigenvalue and Qψ is the electric charge of the fermion ψ.
We also define:

∆L
ν,pp = (C̄(1)

Hl )pp − (C̄(3)
Hl )pp , (A.2)

∆L
e,pp = (C̄(1)

Hl )pp + (C̄(3)
Hl )pp , ∆R

e,pp = (C̄He)pp , (A.3)

∆L
u,pp = (C̄(1)

Hq)pp − (C̄(3)
Hq)pp , ∆R

u,pp = (C̄Hu)pp , (A.4)

∆L
d,pp = (C̄(1)

Hq)pp + (C̄(3)
Hq)pp , ∆R

d,pp = (C̄Hd)pp . (A.5)

At tree level in the SM, the partial decay width of the Z boson into a ψ̄pψp pair, with
ψ = {ν, l−, u, d} and flavor p, is

ΓSM
Z→ψ̄pψp = GFm

3
Z

3
√

2π
Nψ
C

[
g2
ψL + g2

ψR

]
, (A.6)

where Nψ
c is the number of colors of the fermion species ψ.

The relative SMEFT correction to a partial width can be inferred differentiating in
the gψL, gψR couplings and inserting the expressions of their SMEFT shifts:

δgψL = gψL δgZ −Qψ δs2
θ −

∆L
ψ,pp

2 , (A.7)

δgψR = gψR δgZ −Qψ δs2
θ −

∆R
ψ,pp

2 , (A.8)

with

δgZ = δgW
ĝW

+ δs2
θ

2c2
θ̂

+
sθ̂
2cθ̂

C̄HWB . (A.9)

Using the expression of δs2
θ provided in eq. (4.32), one obtains

δΓZ→ψ̄pψp
ΓSM
Z→ψ̄pψp

= 2c2
θ̂

[
1 + 2s2

θ̂
Qψ

gψL + gψR
g2
ψL + g2

ψR

]
δgW
ĝW

+ 2s2
θ̂

[
1− 2c2

θ̂
Qψ

gψL + gψR
g2
ψL + g2

ψR

]
δg1
ĝ1

+ s2θ̂

[
1− c2θ̂Qψ

gψL + gψR
g2
ψL + g2

ψR

]
C̄HWB −

gψL∆L
ψ,pp + gψR∆R

ψ,pp

g2
ψL + g2

ψR

. (A.10)

Flavor violating decays are absent at O(Λ−2). As mb 6= 0 is retained, the Z → b̄b result
contains additional terms. The partial width expression in the SM is

ΓSM
Z→b̄b = GFm

3
Z√

2π

[
g2
dL + g2

dR

]√
1− 4x2

b

[
1− x2

b

(
1− 6 gdL gdR

g2
dL + g2

dR

)]
, (A.11)
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with xb = mb/mZ . The relative SMEFT correction is

δΓZ→b̄b
ΓSM
Z→b̄b

= δΓZ→b̄b
ΓSM
Z→b̄b

∣∣∣∣
mb=0

+ 3x2
b

(g2
dL + g2

dR)(1− x2
b) + 6x2

b gdL gdR

g2
dL − g2

dR

g2
dL + g2

dR

×

×
[
−1

3s
2
2θ̂(gdL − gdR)

(
δgW
ĝW
− δg1

ĝ1
−
c2θ̂
s2θ̂

C̄HWB

)
+ gdL∆R

d,33 − gdR∆L
d,33

]

− 6
√

2xb(g2
dL − g2

dR)
(g2
dL + g2

dR)(1− x2
b) + 6x2

b gdL gdR

[
cθ̂(C̄dW )33 + sθ̂(C̄dB)33

]
, (A.12)

where the first term stands for the contributions in eq. (A.10). The relative SMEFT
correction to the total decay width is finally obtained as

δΓZ
ΓSM
Z

=
∑
f

[
δΓZ→f
ΓSM
Z→f

]
BrSM

Z→f , (A.13)

with f running over all the allowed fermion pairs and BrSM
Z→f ,ΓSM

Z computed directly from
the tree level expressions.

A.2 W boson

At tree level in the SM, the partial decay width of the W+ boson into a fermion pair
f+ = {e+

p νp, d̄pup} with flavor p is

ΓSM
W+→f+ = GFm

3
W

6
√

2π
Nf
C , (A.14)

with Nf
C = {1, 3} the number of colors. Only decays into same-generation fermions are

considered here, as CKM mixing is neglected. The relative SMEFT correction for each
channel is

δΓW+→l+p νp

ΓSM
W+→l+p νp

= 2δgW
ĝW

+ δmW

m̂W
+ 2(C̄(3)

Hl )pp , (A.15)

δΓW+→upd̄p
ΓSM
W+→upd̄p

= 2δgW
ĝW

+ δmW

m̂W
+ 2(C̄(3)

Hq)pp . (A.16)

The total W+ decay width in the SM is

ΓW =
3∑
p=1

ΓW+→l+p νp +
2∑
p=1

ΓW+→upd̄p . (A.17)

Since in this case the branching ratios are simple rational numbers, the relative SMEFT
correction simplifies into

δΓW
ΓSM
W

= 1
9

3∑
p=1

δΓW+→l+p νp

ΓSM
W+→l+p νp

+ 1
3

2∑
p=1

δΓW+→d̄pup
ΓSM
W+→d̄pup

(A.18)

= 2δgW
ĝW

+ δmW

m̂W
+ 2

9

3∑
p=1

(C̄(3)
Hl )pp + 2

3

2∑
p=1

(C̄(3)
Hq)pp . (A.19)
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A.3 Higgs boson

The SM partial widths for two-body Higgs decays are:

ΓSM
h→ψ̄pψp =

mh y
2
ψp

16π Nψ
C

[
1− 4xψp

]3/2
, (A.20)

ΓSM
h→γγ = m3

h

4πv̂2 g
2
Hγγ , (A.21)

ΓSM
h→Zγ = m3

h

8πv̂2 g
2
HZγ

[
1− x2

Z

]3
, (A.22)

ΓSM
h→gg = m3

h

2πv̂2

[
2g(1)
Hgg −

1
x2
t

g
(2)
Hgg

]2
, (A.23)

where xψp = mψp/mh for a generic fermion ψp, xZ = mZ/mh, xt = mt/mh and yψp ≡
(Yψ)pp is the relevant Yukawa coupling. The relative SMEFT corrections are

δΓh→ψ̄pψp
ΓSM
h→ψ̄pψp

= 1−∆GF + 2∆κH − 2(C̄ψH)pp
yfp

, (A.24)

δΓh→γγ
ΓSM
h→γγ

= 2
g2
Hγγ

[
c2
θ̂
C̄HB + s2

θ̂
C̄HW − sθ̂cθ̂C̄HWB

]
, (A.25)

δΓh→Zγ
ΓSM
h→Zγ

= 2
g2
HZγ

[
s2θ̂(C̄HW − C̄HB)− c2θ̂C̄HWB

]
, (A.26)

δΓh→gg
ΓSM
h→gg

= 4C̄HG
2g(1)
Hgg − g

(2)
Hgg/x

2
t

, (A.27)

with the hγγ, hZγ, hgg couplings defined in section 5. The SMEFTsim implementation
retains the masses of the tau lepton, charm and bottom quarks in eq. (A.24). Four-
body decays were included neglecting neutral current contributions, CKM mixing and all
fermion masses. The analytic expressions were taken from ref. [57] and generalized to all
flavor setups.

For each individual decay channel, the partial decay width in the SM is

ΓSM
h→f+f− = N

f+
C N

f−
C

m8
WG

3
F

mh

(
4.65× 10−4

)
, (A.28)

with f+ = {l+p νp, d̄pup}, f− = {ν̄pl−p , ūpdp} and N
f+
C , N

f−−
C the appropriate color multi-

plicities. The numerical factor comes from the phase space integration, that is performed
taking m̂W = 80.387 GeV.

Summing over all allowed flavor combinations, the relative SMEFT corrections are:

δΓh→l+νν̄l−
ΓSM
h→l+νν̄l−

= F1 +
(4

3 − 0.588
) 3∑
p=1

(C̄(3)
Hl )pp , (A.29)

δΓh→ūdd̄u
ΓSM
h→ūdd̄u

= F1 + (2− 0.882)
2∑
p=1

(C̄(3)
Hq)pp , (A.30)

δΓh→l+νūd+h.c.
ΓSM
h→l+νūd+h.c.

= F1 +
(2

3 − 0.294
) 3∑
p=1

(C̄(3)
Hl )pp + (1− 0.441)

2∑
p=1

(C̄(3)
Hq)pp , (A.31)
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with

F1 = −∆GF + 2∆κH + 4 δgW
ĝW
− 0.463 δΓW

ΓSM
W

− 9.643 δmW

mW
− 1.487 C̄HW . (A.32)

The SMEFT correction to the total Higgs width is finally estimated as

δΓh
ΓSM
f

=
∑
f

BrSM,best
h→f

[
δΓh→f
ΓSM
h→f

]
, (A.33)

with f = {b̄b, c̄c, τ+τ−, γγ, Zγ, gg, l+νν̄l−, ūdd̄u, l+νūd + h.c.} and the branching ratio
values in table 6.

A.4 Top quark

To a very good approximation, the top quark decays exclusively to Wb. The SM width is

ΓSM
t = ΓSM

t→W+b = GFm
3
t

8
√

2π

[
(1− x2

b)2 + (1 + x2
b)x2

W − 2x4
W

]√
λ(1, x2

b , x
2
W ) , (A.34)

with xb = mb/mt, xW = m̂W /mt and λ(a, b, c) = a2 +b2 +c2−2ab−2ac−2bc. The relative
SMEFT correction is:

δΓt
ΓSM
t

= δΓt→W+b

ΓSM
t→W+b

= 2δgW
ĝW

+2(C̄(3)
Hq)33+ 6xW

(1−x2
b)2+(1+x2

b)x2
W−2x4

W

[
xWxb(Re C̄Hud)33+

−
√

2(Re C̄uW )33
(
1−x2

W−x2
b

)
+
√

2(Re C̄dW )33xb
(
1+x2

W−x2
b

)]
+

+2
[

(1−x2
b)2−3(1+x2

b)x2
W +2x4

W

λ(1,x2
b ,x

2
W ) − 2(1−x2

b)2+(1+xb)2x2
W

(1−x2
b)2+(1+x2

b)x2
W−2x4

W

]
δmW

m̂W
. (A.35)

Decaying the W in final state does not lead to any additional contribution to δΓt/ΓSM
t .

This happens because theW is always on-shell, so its decay essentially factorizes out: using
the narrow width approximation, one trivially has

Γt =
∑
f

Γt→W+b · BrW+→f = Γt→W+b . (A.36)

Note that this conclusion only holds at the SM–L6 interference level, while at O(Λ−4)
additional SMEFT corrections arise through contact vertices (t̄b)(ν̄l), (t̄b)(d̄u).
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B What’s new in version 3.0

Here we briefly summarize the most significant updates and features introduced in
SMEFTsim 3.0, compared to previous versions:

• The flavor assumptions top and topU3l described in section 3.4 have been added.

• The flavor structure of all models has been generally improved. See section 3.5 for
details.

• The treatment of propagator corrections described in section 6 has been implemented,
enabling the estimate of linearized EFT corrections to the W,Z,H, t widths and to
the W mass.

• The treatment of SM loop-generated Higgs interactions has been improved, particu-
larly in the Higgs-gluon case. See section 5 for the general treatment and section 5.2
for a detailed comparison with previous implementations.

• All interaction vertices with up to 6 legs are now included in all UFO models. In the
previous version, only 4-point functions were retained.

• The numerical values of the SM parameters have been updated, see table 16. The
default value has been set to 0 for all Wilson coefficients.

• All complex Wilson coefficients are expressed in terms of their real and imaginary
parts, rather than absolute values and phases.

• Individual interaction orders have been defined for each operator. Additionally, in-
teraction orders NPcpv, NPprop, NPfv have been added, to provide more control on
each class of EFT contributions. See section 8.2 for further details.

• In the UFOmodels, the SMEFT parameters have been organized in parameters blocks:
SMEFTcutoff contains only Λ and SMEFT (SMEFTcpv) contain CP conserving (violat-
ing) Wilson coefficients. In the MFV models the flavor-violating ∆Cα parameters are
contained in the additional SMEFTFV block. See section 8.1.

• The normalization of ∆GF (dGf) has been modified. This is explicit in the FeynRules
Lagrangian but does not have any consequence for the UFO models.

C Conversion tables between flavor assumptions

This appendix collects the results of section 3 and compares the flavor structure of the
fermionic operators across the five setups considered. Tables 10–15 provide a dictionary
between the different models: in order to translate between two flavor assumptions it is
sufficient to exchange the corresponding expressions within each table block. All structures
are given explicitly in terms of diagonal Yukawa matrices and of the CKM matrix V . In
the top and topU3l cases, Yu and Yd are 2× 2 matrices and V = 1 is assumed.
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general (CeH)pr
U35, MFV, topU3l CeH (Y (d)

l )pr
top (CeH)pp δpr

general (CuH)pr
U35 CuH (Y (d)

u )pr
MFV

[
C

(0)
uH Y

(d)
u + (∆uCuH) (Y (d)

u )3 + (∆dCuH)V (Y (d)
d )2V †Y

(d)
u

]
pr

top, topU3l CuH (Y (d)
u )pr p, r = {1, 2} , CtH p = r = 3

general (V †CdH)pr
U35 CdH (Y (d)

d )pr
MFV

[
C

(0)
dH Y

(d)
d + (∆uCdH)V †(Y (d)

u )2V Y
(d)
d + (∆dCdH) (Y (d)

d )3
]
pr

top, topU3l CdH (Y (d)
d )pr p, r = {1, 2} , CbH p = r = 3

general (CeW )pr Same as (CeH)pr .

general (CeB)pr Same as (CeH)pr .

general (CuW )pr Same as (CuH)pr .

general (CuB)pr Same as (CuH)pr .

general (CuG)pr Same as (CuH)pr .

general (V †CdW )pr Same as (V †CdH)pr .

general (V †CdB)pr Same as (V †CdH)pr .

general (V †CdG)pr Same as (V †CdH)pr .

Table 10. Conversion table among the 5 flavor assumptions considered for the operators in
L(5)

6 , L(6)
6 .

– 65 –



J
H
E
P
0
4
(
2
0
2
1
)
0
7
3

general (C(1)
Hl )pr

U35, MFV, topU3l C
(1)
Hl δpr

top (C(1)
Hl )pp δpr

general (C(3)
Hl )pr Same as (C(1

Hl)pr .

general (CHe)pr Same as (C(1
Hl)pr .

general (C(1)
Hq)pr

U35 C
(1)
Hq δpr

MFV
[
C

(1)(0)
Hq 1 + (∆uC

(1)
Hq) (Y (d)

u )2 + (∆dC
(1)
Hq)V (Y (d)

d )2V †
]
pr

top, topU3l C
(1)
Hq δpr p, r = {1, 2} , C

(1)
HQ p = r = 3

general (C(3)
Hq)pr Same as (C(1

Hq)pr .

general (CHu)pr
U35 CHu δpr

MFV
[
C

(0)
Hu 1 + (∆CHu) (Y (d)

u )2
]
pr

top, topU3l CHu δpr p, r = {1, 2} , CHt p = r = 3

general (CHd)pr Same as (CHu)pr
with Y (d)

u → Y
(d)
d , CHt → CHb .

general (CHud)pr
U35 CHud

[
Y

(d)
u V Y

(d)
d

]
pr

MFV C
(0)
Hud

[
Y

(d)
u V Y

(d)
d

]
pr

top, topU3l CHud
[
Y

(d)
u Y

(d)
d

]
pr

p, r = {1, 2} , CHtb p = r = 3

Table 11. Conversion table among the 5 flavor assumptions considered, for the operators in L(7)
6 .
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general (Cll)prst

U35, MFV, topU3l Cll δprδst + C ′ll δptδsr

top 1
2(Cll)prst (δprδst + δptδsr), prst ∈ Pll

general (C(1)
qq )prst

U35 C
(1)
qq δprδst + C

(1)′
qq δptδsr

MFV C
(1)(0)
qq δprδst + (∆uC

(1)
qq )

[
(Y (d)
u )2

]
pr
δst + (∆dC

(1)
qq )

[
V (Y (d)

d )2V †
]
pr
δst

+C(1)′(0)
qq δptδsr + (∆uC

(1)′
qq )

[
(Y (d)
u )2

]
pt
δsr + (∆dC

(1)′
qq )

[
V (Y (d)

d )2V †
]
pt
δsr

top, topU3l
(
C

(1,1)
qq − 1

6C
(1,8)
qq

)
δprδst + 1

4

(
C

(1,8)
qq + 3C(3,8)

qq

)
δptδsr p, r, s, t = {1, 2} ,(

1
2C

(1,1)
Qq −

1
12C

(1,8)
Qq

)
δpr p, r = {1, 2} , s = t = 3 ,

1
8

(
C

(1,8)
Qq + 3C(3,8)

Qq

)
δpt p, t = {1, 2} , s = r = 3 ,

C
(1)
QQ + 1

12C
(8)
QQ p = r = s = t = 3

general (C(3)
qq )prst

U35 C
(3)
qq δprδst + C

(3)′
qq δptδsr

MFV C
(3)(0)
qq δprδst + (∆uC

(3)
qq )

[
(Y (d)
u )2

]
pr
δst + (∆dC

(3)
qq )

[
V (Y (d)

d )2V †
]
pr
δst

+C(3)′(0)
qq δptδsr + (∆uC

(3)′
qq )

[
(Y (d)
u )2

]
pt
δsr + (∆dC

(3)′
qq )

[
V (Y (d)

d )2V †
]
pt
δsr

top, topU3l
(
C

(3,1)
qq − 1

6C
(3,8)
qq

)
δprδst + 1

4

(
C

(1,8)
qq − C(3,8)

qq

)
δptδsr p, r, s, t = {1, 2} ,(

1
2C

(3,1)
Qq −

1
12C

(3,8)
Qq

)
δpr p, r = {1, 2} , s = t = 3 ,

1
8

(
C

(1,8)
Qq − C

(3,8)
Qq

)
δpt p, t = {1, 2} , s = r = 3 ,

1
4C

(8)
QQ p = r = s = t = 3

general (C(1)
lq )prst

U35 C
(1)
lq δprδst

MFV C
(1)(0)
lq δprδst + (∆uC

(1)
lq )δpr

[
(Y (d)
u )2

]
st

+ (∆dC
(1)
lq )δpr

[
V (Y (d)

d )2V †
]
st

top (C(1)
lq )pp δprδst s, t = {1, 2} , (C(1)

lQ )pp δpr s = t = 3

topU3l C
(1)
lq δprδst s, t = {1, 2} , C

(1)
lQ δpr s = t = 3

general (C(3)
lq )prst Same as (C(1)

lq )prst .

Table 12. Conversion table among the 5 flavor assumptions considered, for the operators in L(8a)
6 .

The set Pll is defined in eq. (3.70).
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general (Cee)prst
U35, MFV, topU3l 1

2Cee (δprδst+δptδsr)

top 1
4(Cee)prst (δprδst+3δptδsr), prst∈Pee

general (Cuu)prst
U35 Cuu δprδst+C ′uu δptδsr
MFV C

(0)
uu δprδst+(∆Cuu)

[
(Y (d)
u )2

]
pr
δst+C(0)′

uu δptδsr+(∆C ′uu)
[
(Y (d)
u )2

]
pt
δsr

top
(
C

(1)
uu − 1

6C
(8)
uu

)
δprδst+ 1

2C
(8)
uu δptδsr p,r,s, t= {1,2} ,(

1
2C

(1)
tu − 1

12C
(8)
tu

)
δpr p,r= {1,2} , s= t= 3 ,

1
4C

(8)
tu δpt p,t= {1,2} , s= r= 3 ,

Ctt p= r= s= t= 3

general (Cdd)prst Same as (Cuu)prst with Y (d)
u →Y

(d)
d ,

C
(1),(8)
tu →C

(1),(8)
bd , Ctt→Cbb .

general (Ceu)prst
U35 Ceu δprδst

MFV C
(0)
eu δprδst+(∆Ceu)δpr

[
(Y (d)
u )2

]
st

top (Ceu)pp δprδst s, t= {1,2} , (Cet)pp δpr s= t= 3 ,

topU3l Ceu δprδst s, t= {1,2} , Cet δpr s= t= 3

general (Ced)prst Same as (Ceu)prst
with Y (d)

u →Y
(d)
d ,Cet→Ceb .

general (C(1)
ud )prst

U35 C
(1)
ud δprδst

MFV C
(1)(0)
ud δprδst+(∆uC

(1)
ud )

[
(Y (d)
u )2

]
pr
δst+(∆dC

(1)
ud )δpr

[
(Y (d)
d )2

]
st

top, topU3l C
(1)
ud δprδst p,r,s, t= {1,2} , C

(1)
tb p= r= s= t= 3 ,

C
(1)
ub δpr p,r= {1,2} , s= t= 3 , C

(1)
td δst s, t= {1,2} , p= r= 3

C
(1)
utbd

[
Y

(d)
u Y

(d)
d

]
pt
p,t= {1,2} , s= r= 3 ,

C
(1)?
utbd

[
Y

(d)
d Y

(d)
u

]
sr

s,r= {1,2} , p= t= 3 ,

general (C(8)
ud )prst Same as (C(1)

ud )prst .

Table 13. Conversion table among the 5 flavor assumptions considered, for the operators in L(8b)
6 .

The set Pee is defined in eq. (3.91).
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general (Cle)prst
U35, MFV, topU3l Cle δprδst

top (Cle)prst prst ∈ Ple

general (Clu)prst
U35 Clu δprδst

MFV C
(0)
lu δprδst + (∆Clu)δpr

[
(Y (d)
u )2

]
st

top (Clu)pp δprδst s, t = {1, 2} , (Clt)pp δpr s = t = 3 ,

topU3l Clu δprδst s, t = {1, 2} , Clt δpr s = t = 3

general (Cld)prst Same as (Clu)prst
with Y (d)

u → Y
(d)
d , Clt → Clb .

general (Cqe)prst
U35 Cqe δprδst

MFV C
(0)
qe δprδst + (∆uCqe)

[
(Y (d)
u )2

]
pr
δst + (∆dCqe)

[
V (Y (d)

d )2V †
]
pr
δst

top (Cqe)pp δprδst p, r = {1, 2} , (CQe)pp δst p = r = 3 ,

topU3l Cqe δprδst p, r = {1, 2} , CQe δst p = r = 3

general (C(1)
qu )prst

U35 C
(1)
qu δprδst

MFV C
(1)(0)
qu δprδst + (∆u

1C
(1)
qu )

[
(Y (d)
u )2

]
pr
δst + (∆d

1C
(1)
qu )

[
V (Y (d)

d )2V †
]
pr
δst

+(∆2C
(1)
qu ) δpr

[
(Y (d)
u )2

]
st

+ C
(1)′(0)
qu (Y (d)

u )pt(Y (d)
u )sr

top, topU3l C
(1)
qu δprδst p, r, s, t = {1, 2} , C

(1)
Qt p = r = s = t = 3 ,

C
(1)
qt δpr p, r = {1, 2} , s = t = 3 , C

(1)
Qu δst s, t = {1, 2} , p = r = 3

C
(1)
qQtu

[
Y

(d)
u

]
pt

p, t = {1, 2} , s = r = 3 C
(1)?
qQtu

[
Y

(d)
u

]
sr

s, r = {1, 2} , p = t = 3

general (C(8)
qu )prst Same as (C(1)

qu )prst .

general (C(1)
qd )prst

U35 C
(1)
qd δprδst

MFV C
(1)(0)
qd δprδst + (∆u

1C
(1)
qd )

[
(Y (d)
u )2

]
pr
δst + (∆d

1C
(1)
qd )

[
V (Y (d)

d )2V †
]
pr
δst

+(∆2C
(1)
qd ) δpr

[
(Y (d)
d )2

]
st

+ C
(1)′(0)
qd

[
V Y

(d)
d

]
pt

[
Y

(d)
d V †

]
sr

top, topU3l C
(1)
qd δprδst p, r, s, t = {1, 2} , C

(1)
Qb p = r = s = t = 3 ,

C
(1)
qb δpr p, r = {1, 2} , s = t = 3 , C

(1)
Qd δst s, t = {1, 2} , p = r = 3

general (C(8)
qd )prst Same as (C(1)

qd )prst .

Table 14. Conversion table among the 5 flavor assumptions considered, for the operators in L(8c)
6 .

The set Ple is defined in eq. (3.93).
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general (Cledq)prst

U35 Cledq
[
Y

(d)
l

]
pr

[
Y

(d)
d V †

]
st

MFV C
(0)
ledq

[
Y

(d)
l

]
pr

[
Y

(d)
d V †

]
st

+ (∆uCledq)
[
Y

(d)
l

]
pr

[
Y

(d)
d V †(Y (d)

u )2
]
st

+(∆dCledq)
[
Y

(d)
l

]
pr

[
(Y (d)
d )3V †

]
st

top (Cledq)pp δpr
[
Y

(d)
d

]
st

s, t = {1, 2} , (ClebQ)pp δpr s = t = 3

topU3l Cledq
[
Y

(d)
l

]
pr

[
Y

(d)
d

]
st

s, t = {1, 2} , ClebQ
[
Y

(d)
l

]
pr

s = t = 3

general (C(1)
lequ)prst

U35 C
(1)
lequ

[
Y

(d)
l

]
pr

[
Y

(d)
u

]
st

MFV C
(1)(0)
lequ

[
Y

(d)
l

]
pr

[
Y

(d)
u

]
st

+ (∆uC
(1)
lequ)

[
Y

(d)
l

]
pr

[
(Y (d)
u )3

]
st

+(∆dC
(1)
lequ)

[
Y

(d)
l

]
pr

[
V (Y (d)

d )2V †Y
(d)
u

]
st

top (C(1)
lequ)pp δpr

[
Y

(d)
u

]
st

s, t = {1, 2} , (C(1)
leQt)pp δpr s = t = 3

topU3l C
(1)
lequ

[
Y

(d)
l

]
pr

[
Y

(d)
u

]
st

s, t = {1, 2} , C
(1)
leQt

[
Y

(d)
l

]
pr

s = t = 3

general (C(3)
lequ)prst Same as (C(1)

lequ)prst .

general (C(1)
quqd)prst

U35, MFV C
(1)
quqd

[
Y

(d)
u

]
pr

[
V Y

(d)
d

]
st

+ C
(1)′
quqd

[
Y

(d)
u

]
sr

[
V Y

(d)
d

]
pt

top, topU3l C
(1)
quqd

[
Y

(d)
u

]
pr

[
Y

(d)
d

]
st

+ C
(1)′
quqd

[
Y

(d)
u

]
sr

[
Y

(d)
d

]
pt

p, r, s, t = {1, 2} ,

C
(1)
QtQb p = r = s = t = 3 ,

C
(1)
quQb

[
Y

(d)
u

]
pr

p, r = {1, 2} , s = t = 3 ,

C
(1)
Qtqd

[
Y

(d)
d

]
st

s, t = {1, 2} , p = r = 3 ,

C
(1)
Quqb

[
Y

(d)
u

]
sr

s, r = {1, 2} , p = t = 3 ,

C
(1)
qtQd

[
Y

(d)
d

]
pt

p, t = {1, 2} , s = r = 3

general (C(8)
quqd)prst Same as (C(1)

quqd)prst .

Table 15. Conversion table among the 5 flavor assumptions considered, for the operators in L(8d)
6 .
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D Parameter definitions in the code implementation

This appendix provides tables to facilitate the interpretation of the FeynRules and UFO
implementations in terms of the theory discussion in the main text.

Table 16 lists the external parameters that are defined in all SMEFTsim models, spec-
ifying the corresponding code name and default numerical value. Table 17 shows the
nomenclature used for the Wilson coefficients of the bosonic operators and for the shift
quantities defined in section 4.1. Tables 18–23 do the same for the Wilson coefficients of
fermionic operators, for each flavor assumption. As a common rationale, primes are re-
placed by 1 in the code name and real and imaginary parts are specified by with Re, Im
suffixes. If needed, flavor indices are fully specified and appended at the very end of the
code names. In the MFV models, the coefficients ∆q

n(Cα) are denoted Delta[n][q]c[a].
Although the correspondence between parameters names is most often direct, some

notational changes were necessary, particularly in the top and topU3l implementations.
Most notably the lowercase q has been replaced with j in all the parameters’ and operators’
names, as the q/Q distinction between light and heavy quark fields is problematic for non-
case-sensitive interfaces. Analogously, the coefficient CHb is denoted as cHbq to avoid
conflict with cHB, while CbB is denoted as cbBB, distinct from cbb. The internal parameter
CtH is denoted as ctHH to avoid conflict with the cosine of the weak angle cth.
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Common parameters defined in SMEFTsim

parameter UFO default value parameter UFO default value

GF Gf 1.1663787×10−5 GeV−2 [82, 118] αs(mZ) aS 0.1179 [82]

αem(mZ)(?) aEW 1/127.95 [82, 118] mW (??) MW 80.387 GeV [119]

md MD 4.67×10−3 GeV [82] yd v̂/
√

2 ymdo 4.67×10−3 GeV [82]

ms MS 0.093 GeV [82] ys v̂/
√

2 yms 0.093 GeV [82]

mb MB 4.18 GeV [82] yb v̂/
√

2 ymb 4.18 GeV [82]

mu MU 2.16×10−3 GeV [82] yu v̂/
√

2 ymup 2.16×10−3 GeV [82]

mc MC 1.27 GeV [82] yc v̂/
√

2 ymc 1.27 GeV [82]

mt MT 172.76 GeV [82] yt v̂/
√

2 ymt 172.76 GeV [82]

me Me 5.11×10−4 GeV [82] ye v̂/
√

2 yme 5.11×10−4 GeV [82]

mµ MMU 0.10566 GeV [82] yµ v̂/
√

2 ymm 0.10566 GeV [82]

mτ MTA 1.777 GeV [82] yτ v̂/
√

2 ymtau 1.777 GeV [82]

mZ MZ 91.1876 GeV [82, 118, 120] mh MH 125.09 GeV [82]

ΓSM,best
Z WZ 2.4952 GeV [82] ΓSM,best

h WH 4.07×10−3 GeV [113]

ΓSM,best
W WW 2.085 GeV [82] ΓSM,best

t WT 1.33 GeV [105]

λCKM CKMlambda 0.22650 [82] A CKMA 0.790 [82]

ρ CKMrho 0.141 [82] η CKMeta 0.357 [82]

Λ LambdaSMEFT 1 TeV

(∗) only in models with {αem,mZ ,GF } inputs. (??) only in models with {mW ,mZ ,GF } inputs.

Table 16. Common external parameters defined in all models, with the corresponding name in the
code and default numerical value. The latter have been updated compared to previous SMEFTsim
versions, according to the references indicated.

Bosonic SMEFT parameters in SMEFTsim

L(1)
6 CG cG C

G̃
cGtil CW cW C

W̃
cWtil

L(2,3)
6 CH cH CH� cHbox CHD cHDD

L(4)
6

CHG cHG CHW cHW CHB cHB CHWB cHWB

C
HG̃

cHGtil C
HW̃

cHWtil C
HB̃

cHBtil C
HW̃B

cHWBtil

Shift parameters in SMEFTsim

∆m2
Z dMZ2 ∆m2

h dMH2 ∆GF dGf ∆κH dkH

δΓZ dWZ δΓW dWW δΓh dWH δΓt dWT

δg1/ĝ1 dg1 δgW /ĝW dgw δmW dMW

Table 17. Upper block: Wilson coefficients for the 15 bosonic operators. They are common to
all flavor versions except MFV, where the CP violating C

G̃
, C

W̃
, C

HG̃
, C

HW̃
, C

HB̃
, C

HW̃B
are not

defined. Lower block: shift parameters defined in SMEFTsim, see section 4.1 for details. δmW is
defined only in models with the {αem,mZ , GF } input scheme.
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Fermionic SMEFT parameters in SMEFTsim general

class parameter UFO [pr(st)] parameter UFO [pr(st)]

L(5)
6

Re(CeH)pr ceHRe[pr] [2f-NH-R] Im(CeH)pr ceHIm[pr] [2f-NH-I]

Re(CuH)pr cdHRe[pr] [2f-NH-R] Im(CuH)pr cdHIm[pr] [2f-NH-I]

Re(CdH)pr cdHRe[pr] [2f-NH-R] Im(CdH)pr cdHIm[pr] [2f-NH-I]

L(6)
6

Re(CeW )pr ceWRe[pr] [2f-NH-R] Im(CeW )pr ceWIm[pr] [2f-NH-I]

Re(CeB)pr ceBRe[pr] [2f-NH-R] Im(CeB)pr ceBIm[pr] [2f-NH-I]

Re(CuG)pr cuGRe[pr] [2f-NH-R] Im(CuG)pr cuGIm[pr] [2f-NH-I]

Re(CuW )pr cuWRe[pr] [2f-NH-R] Im(CuW )pr cuWIm[pr] [2f-NH-I]

Re(CuB)pr cuBRe[pr] [2f-NH-R] Im(CuB)pr cuBIm[pr] [2f-NH-I]

Re(CdG)pr cdGRe[pr] [2f-NH-R] Im(CdG)pr cdGIm[pr] [2f-NH-I]

Re(CdW )pr cdWRe[pr] [2f-NH-R] Im(CdW )pr cdWIm[pr] [2f-NH-I]

Re(CdB)pr cdBRe[pr] [2f-NH-R] Im(CdB)pr cdBIm[pr] [2f-NH-I]

L(7)
6

Re(C(1)
Hl )pr cHl1Re[pr] [2f-H-R] Im(C(1)

Hl )pr cHl1Im[pr] [2f-H-I]

Re(C(3)
Hl )pr cHl3Re[pr] [2f-H-R] Im(C(3)

Hl )pr cHl3Im[pr] [2f-H-I]

Re(CHe)pr cHeRe[pr] [2f-H-R] Im(CHe)pr cHeIm[pr] [2f-H-I]

Re(C(1)
Hq)pr cHq1Re[pr] [2f-H-R] Im(C(1)

Hq)pr cHq1Im[pr] [2f-H-I]

Re(C(3)
Hq)pr cHq3Re[pr] [2f-H-R] Im(C(3)

Hq)pr cHq3Im[pr] [2f-H-I]

Re(CHu)pr cHuRe[pr] [2f-H-R] Im(CHu)pr cHuIm[pr] [2f-H-I]

Re(CHd)pr cHdRe[pr] [2f-H-R] Im(CHd)pr cHdIm[pr] [2f-H-I]

Re(CHud)pr cHudRe[pr] [2f-NH-R] Im(CHud)pr cHudIm[pr] [2f-NH-I]

L(8a)
6

Re(Cll)prst cllRe[prst] [4f-H-S-R] Im(Cll)prst cllIm[prst] [4f-H-S-I]

Re(C(1)
qq )prst cqq1Re[prst] [4f-H-S-R] Im(C(1)

qq )prst cqq1Im[prst] [4f-H-S-I]

Re(C(3)
qq )prst cqq3Re[prst] [4f-H-S-R] Im(C(3)

qq )prst cqq3Im[prst] [4f-H-S-I]

Re(C(1)
lq )prst clq1Re[prst] [4f-H-R] Im(C(1)

lq )prst clq1Im[prst] [4f-H-I]

Re(C(3)
lq )prst clq3Re[prst] [4f-H-R] Im(C(3)

lq )prst clq3Im[prst] [4f-H-I]

L(8b)
6

Re(Cee)prst ceeRe[prst] [4f-ee-R] Im(Cee)prst ceeIm[prst] [4f-ee-I]

Re(Cuu)prst cuuRe[prst] [4f-H-S-R] Im(Cuu)prst cuuIm[prst] [4f-H-S-I]

Re(Cdd)prst cddRe[prst] [4f-H-S-R] Im(Cdd)prst cddIm[prst] [4f-H-S-I]

Re(Ceu)prst ceuRe[prst] [4f-H-R] Im(Ceu)prst ceuIm[prst] [4f-H-I]

Re(Ced)prst cedRe[prst] [4f-H-R] Im(Ced)prst cedIm[prst] [4f-H-I]

Re(C(1)
ud )prst cud1Re[prst] [4f-H-R] Im(C(1)

ud )prst cud1Im[prst] [4f-H-I]

Re(C(8)
ud )prst cud8Re[prst] [4f-H-R] Im(C(8)

ud )prst cud8Im[prst] [4f-H-I]

L(8c)
6

Re(Cle)prst cleRe[prst] [4f-H-R] Im(Cle)prst cleIm[prst] [4f-H-I]

Re(Clu)prst cluRe[prst] [4f-H-R] Im(Clu)prst cluIm[prst] [4f-H-I]

Re(Cld)prst cldRe[prst] [4f-H-R] Im(Cld)prst cldIm[prst] [4f-H-I]

Re(Cqe)prst cqeRe[prst] [4f-H-R] Im(Cqe)prst cqeIm[prst] [4f-H-I]

Re(C(1)
qu )prst cqu1Re[prst] [4f-H-R] Im(C(1)

qu )prst cqu1Im[prst] [4f-H-I]

Re(C(8)
qu )prst cqu8Re[prst] [4f-H-R] Im(C(8)

qu )prst cqu8Im[prst] [4f-H-I]

Re(C(1)
qd )prst cqd1Re[prst] [4f-H-R] Im(C(1)

qd )prst cqd1Im[prst] [4f-H-I]

Re(C(8)
qd )prst cqd8Re[prst] [4f-H-R] Im(C(8)

qd )prst cqd8Im[prst] [4f-H-I]

L(8d)
6

Re(Cledq)prst cledqRe[prst] [4f-NH-R] Im(Cledq)prst cledqIm[prst] [4f-NH-I]

Re(C(1)
quqd)prst cquqd1Re[prst] [4f-NH-R] Im(C(1)

quqd)prst cquqd1Im[prst] [4f-NH-I]

Re(C(8)
quqd)prst cquqd8Re[prst] [4f-NH-R] Im(C(8)

quqd)prst cquqd8Im[prst] [4f-NH-I]

Re(C(1)
lequ)prst clequ1Re[prst] [4f-NH-R] Im(C(1)

lequ)prst clequ1Im[prst] [4f-NH-I]

Re(C(3)
lequ)prst clequ3Re[prst] [4f-NH-R] Im(C(3)

lequ)prst clequ3Im[prst] [4f-NH-I]

Table 18. The 2484 independent parameters in L(5,6,7,8)
6 defined in the general flavor model, see

section 3.1. The indices strings [pr], [prst] take values in the sets indicated, that are defined in
table 19.
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[2f-NH-R] 11, 22, 33, 12, 13, 23, 21, 31, 32

[2f-NH-I] 11, 22, 33, 12, 13, 23, 21, 31, 32

[2f-H-R] 11, 22, 33, 12, 13, 23

[2f-H-I] 12, 13, 23

[4f-ee-R] 1111, 1122, 1133, 2222, 2233, 3333,
1112, 1113, 1123, 1212, 1213, 1222, 1232, 1233, 1313, 1322, 1323, 1333,
2223, 2323, 3323

[4f-ee-I] 1112, 1113, 1123, 1212, 1213, 1222, 1232, 1233, 1313, 1322, 1323, 1333,
2223, 2323, 3323

[4f-H-S-R] 1111, 1122, 1133, 2222, 2233, 3333, 1221, 1331, 2332,
1112, 1113, 1123, 1212, 1213, 1222, 1232, 1233, 1313, 1322, 1323, 1333,
2223, 2323, 3323, 1231, 1223, 1332

[4f-H-S-I] 1112, 1113, 1123, 1212, 1213, 1222, 1232, 1233, 1313, 1322, 1323, 1333,
2223, 2323, 3323, 1231, 1223, 1332

[4f-H-R] 1111, 1122, 1133, 2222, 2233, 3333, 1221, 1331, 2332, 2211, 3311, 3322,
1112, 1113, 1123, 1212, 1213, 1222, 1232, 1233, 1313, 1322, 1323, 1333,
2223, 2323, 3323, 1231, 1223, 1332, 1211, 1311, 1312, 1321, 2212, 2213,
2311, 2312, 2313, 2321, 2322, 2331, 2333, 3312, 3313

[4f-H-I] 1112, 1113, 1123, 1212, 1213, 1222, 1232, 1233, 1313, 1322, 1323, 1333,
2223, 2323, 3323, 1231, 1223, 1332, 1211, 1311, 1312, 1321, 2212, 2213,
2311, 2312, 2313, 2321, 2322, 2331, 2333, 3312, 3313, 2211, 3311, 3322

Table 19. Sets of indices implemented for each category of fermionic operator in the general
model.
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Fermionic SMEFT parameters in SMEFTsim U35

L(5)
6

ReCeH ceHRe ReCuH cuHRe ReCdH cdHRe

ImCeH ceHIm ImCuH cuHIm ImCdH cdHIm

L(6)
6

ReCeW ceWRe ReCeB ceBRe ReCuG cuGRe ReCuW cuWRe

ImCeW ceWIm ImCeB ceBIm ImCuG cuGIm ImCuW cuWIm

ReCuB cuBRe ReCdG cdGRe ReCdW cdWRe ReCdB cdBRe

ImCuB cuBIm ImCdG cdGIm ImCdW cdWIm ImCdB cdBIm

L(7)
6

C
(1)
Hl cHl1 C

(1)
Hq cHq1 CHu cHu CHe cHe

C
(3)
Hl cHl3 C

(3)
Hq cHq3 CHd cHd

ReCHud cHudRe ImCHud cHudIm

L(8a)
6

Cll cll C
(1)
qq cqq1 C

(3)
qq cqq3 C

(1)
lq clq1

C ′ll cll1 C
(1)′
qq cqq11 C

(3)′
qq cqq31 C

(3)
lq clq3

L(8b)
6

Cuu cuu Cdd cdd Ceu ceu C
(1)
ud cud1

C ′uu cuu1 C ′dd cdd1 Ced ced C
(8)
ud cud8

Cee cee

L(8c)
6

Cle cle Clu clu C
(1)
qu cqu1 C

(1)
qd cqd1

Cqe cqe Cld cld C
(8)
qu cqu8 C

(8)
qd cqd8

L(8d)
6

ReC(1)
quqd cquqd1Re ReC(8)

quqd cquqd8Re ImC
(1)
quqd cquqd1Im ImC

(8)
quqd cquqd8Im

ReC(1)′
quqd cquqd11Re ReC(8)′

quqd cquqd81Re ImC
(1)′
quqd cquqd11Im ImC

(8)′
quqd cquqd81Im

ReC(1)
lequ clequ1Re ReC(3)

lequ clequ3Re ImC
(1)
lequ clequ1Im ImC

(3)
lequ clequ3Im

ReCledq cledqRe ImCledq cledqIm

Table 20. The 70 independent parameters in L(5,6,7,8)
6 defined in the U35 model, see section 3.2.
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Fermionic SMEFT parameters in SMEFTsim MFV

L(5)
6

CeH ceH C
(0)
uH cuH0 C

(0)
dH cdH0

(∆uCuH) DeltaucuH (∆dCuH) DeltadcuH (∆uCdH) DeltaucdH (∆dCdH) DeltadcdH

L(6)
6

CeW ceW CeB ceB C
(0)
uG cuG0 C

(0)
uW cuW0

C
(0)
uB cuB0 C

(0)
dG cdG0 C

(0)
dW cdW0 C

(0)
dB cdB0

(∆uCuG) DeltaucuG (∆dCuG) DeltadcuG (∆uCdG) DeltaucdG (∆dCdG) DeltadcdG

(∆uCuW ) DeltaucuW (∆dCuW ) DeltadcuW (∆uCdW ) DeltaucdW (∆dCdW ) DeltadcdW

(∆uCuB) DeltaucuB (∆dCuB) DeltadcuB (∆uCdB) DeltaucdB (∆dCdB) DeltadcdB

L(7)
6

C
(1)
Hl cHl1 C

(1)(0)
Hq cHq10 C

(0)
Hu cHu0 CHe cHe

C
(3)
Hl cHl3 C

(3)(0)
Hq cHq30 C

(0)
Hd cHd0 C

(0)
Hud cHud0

(∆uC
(1)
Hq) DeltaucHq1 (∆dC

(1)
Hq) DeltadcHq1 (∆uC

(3)
Hq) DeltaucHq3 (∆dC

(3)
Hq) DeltadcHq3

(∆CHu) DeltacHu (∆CHd) DeltacHd

L(8a)
6

Cll cll C
(1)(0)
qq cqq10 C

(3)(0)
qq cqq30 C

(1)(0)
lq clq10

C ′ll cll1 C
(1)′(0)
qq cqq110 C

(3)′(0)
qq cqq310 C

(3)(0)
lq clq30

(∆uC
(1)
qq ) Deltaucqq1 (∆dC

(1)
qq ) Deltadcqq1 (∆uC

(3)
qq ) Deltaucqq3 (∆dC

(3)
qq ) Deltadcqq3

(∆uC
(1)′
qq ) Deltaucqq11 (∆dC

(1)′
qq ) Deltadcqq11 (∆uC

(3)′
qq ) Deltaucqq31 (∆dC

(3)′
qq ) Deltadcqq31

(∆uC
(1)
lq ) Deltauclq1 (∆dC

(1)
lq ) Deltadclq1 (∆uC

(3)
lq ) Deltauclq3 (∆dC

(3)
lq ) Deltadclq3

L(8b)
6

C
(0)
uu cuu0 C

(0)
dd cdd0 C

(0)
eu ceu0 C

(1)(0)
ud cud10

C
′(0)
uu cuu10 C

′(0)
dd cdd10 C

(0)
ed ced0 C

(8)(0)
ud cud80

Cee cee (∆Ceu) Deltaceu (∆Ced) Deltaced

(∆uCuu) Deltaucuu (∆dCdd) Deltadcdd (∆uC ′uu) Deltaucuu1 (∆dC ′dd) Deltadcdd1

(∆uC
(1)
ud ) Deltaucud1 (∆dC

(1)
ud ) Deltadcud1 (∆uC

(8)
ud ) Deltaucud8 (∆dC

(8)
ud ) Deltadcud8

L(8c)
6

Cle cle C
(0)
lu clu0 C

(0)
ld cld0 C

(0)
qe cqe0

C
(1)(0)
qu cqu10 C

(1)(0)
qd cqd10 C

(8)(0)
qu cqu80 C

(8)(0)
qd cqd80

C
(1)′(0)
qu cqu110 C

(1)′(0)
qd cqd110 C

(8)′(0)
qu cqu810 C

(8)′(0)
qd cqd810

(∆u
1C

(1)
qu ) Delta1ucqu1 (∆d

1C
(1)
qu ) Delta1dcqu1 (∆2C

(1)
qu ) Delta2cqu1 (∆Clu) Deltaclu

(∆u
1C

(8)
qu ) Delta1ucqu8 (∆d

1C
(8)
qu ) Delta1dcqu8 (∆2C

(8)
qu ) Delta2cqu8 (∆Cld) Deltacld

(∆u
1C

(1)
qd ) Delta1ucqd1 (∆d

1C
(1)
qd ) Delta1dcqd1 (∆2C

(1)
qd ) Delta2cqd1 (∆uCqe) Deltaucqe

(∆u
1C

(8)
qd ) Delta1ucqd8 (∆d

1C
(8)
qd ) Delta1dcqd8 (∆2C

(8)
qd ) Delta2cqd8 (∆dCqe) Deltadcqe

L(8d)
6

C
(1)(0)
lequ clequ10 C

(3)(0)
lequ clequ30 C

(0)
ledq cledq0

C
(1)
quqd cquqd1 C

(8)
quqd cquqd8 C

(1)′
quqd cquqd11 C

(8)′
quqd cquqd81

(∆uCledq) Deltaucledq (∆dCledq) Deltadcledq

(∆uC
(1)
lequ) Deltauclequ1 (∆dC

(1)
lequ) Deltadclequ1 (∆uC

(3)
lequ) Deltauclequ3 (∆dC

(3)
lequ) Deltadclequ3

Table 21. The 121 independent parameters in L(5,6,7,8)
6 defined in the MFV model, see section 3.3.

– 76 –



J
H
E
P
0
4
(
2
0
2
1
)
0
7
3

Fermionic SMEFT parameters in SMEFTsim top

L(5)
6

Re(CeH)pp ceHRe[pp] Im(CeH)pp ceHIm[pp]

ReCuH cuHRe ImCuH cuHIm ReCtH ctHRe ImCtH ctHIm
ReCdH cdHRe ImCdH cdHIm ReCbH cbHRe ImCbH cbHIm

L(6)
6

Re(CeW )pp ceWRe[pp] Im(CeW )pp ceWIm[pp] Re(CeB)pp ceBRe[pp] Im(CeB)pp ceBIm[pp]

ReCuG cuGRe ImCuG cuGIm ReCtG ctGRe ImCtG ctGIm
ReCdG cdGRe ImCdG cdGIm ReCbG cbGRe ImCbG cbGIm
ReCuW cuWRe ImCuW cuWIm ReCtW ctWRe ImCtW ctWIm
ReCdW cdWRe ImCdW cdWIm ReCbW cbWRe ImCbW cbWIm
ReCuB cuBRe ImCuB cuBIm ReCtB ctBRe ImCtB ctBIm
ReCdB cdBRe ImCdB cdBIm ReCbB cbBRe ImCbB cbBIm

L(7)
6

(C(1)
Hl )pp cHl1[pp] (C(3)

Hl )pp cHl3[pp] (CHe)pp cHe[pp]

C
(1)
Hq cHj1 C

(1)
HQ cHQ1 CHu cHu CHt cHt

C
(3)
Hq cHj3 C

(3)
HQ cHQ3 CHd cHd CHb cHbq

ReCHud cHudRe ImCHud cHudIm ReCHtb cHtbRe ImCHtb cHtbIm

L(8a)
6

(Cll)prst cll[prst] prst = {1111, 2222, 3333, 1122, 1133, 2233, 1221, 1331, 2332}

(C(1)
lq )pp clj1[pp] (C(1)

lQ )pp cQl1[pp] (C(3)
lq )pp clj3[pp] (C(3)

lQ )pp cQl3[pp]

C
(1,1)
qq cjj11 C

(1,8)
qq cjj18 C

(1,1)
Qq cQj11 C

(1,8)
Qq cQj18

C
(3,1)
qq cjj31 C

(3,8)
qq cjj38 C

(3,1)
Qq cQj31 C

(3,8)
Qq cQj38

C
(1)
QQ cQQ1 C

(8)
QQ cQQ8

L(8b)
6

(Cee)prst cee[prst] prst = {1111, 2222, 3333, 1122, 1133, 2233}
(Ceu)pp ceu[pp] (Cet)pp cte[pp] (Ced)pp ced[pp] (Ceb)pp cbe[pp]

C
(1)
uu cuu1 C

(8)
uu cuu8 C

(1)
dd cdd1 C

(8)
dd cdd8

C
(1)
tu ctu1 C

(8)
tu ctu8 C

(1)
bd cbd1 C

(8)
bd cbd8

Ctt ctt Cbb cbb

C
(1)
ud cud1 C

(1)
td ctd1 C

(1)
ub cbu1 C

(1)
tb ctb1

C
(8)
ud cud8 C

(8)
td ctd8 C

(8)
ub cbu8 C

(8)
tb ctb8

Re(C(1)
utbd) cutbd1Re Im(C(1)

utbd) cutbd1Im Re(C(8)
utbd) cutbd8Re Im(C(8)

utbd) cutbd8Im

L(8c)
6

(Cle)prst cle[prst] prst = {1111,2222,3333,1122,1133,2233,2211,3311,3322,1221,1331,2332}
(Clu)pp clu[pp] (Clt)pp ctl[pp] (Cld)pp cld[pp] (Clb)pp cbl[pp]

(Cqe)pp cje[pp] (CQe)pp cQe[pp]

C
(1)
qu cju1 C

(1)
Qu cQu1 C

(1)
qt ctj1 C

(1)
Qt cQt1

C
(8)
qu cju8 C

(8)
Qu cQu8 C

(8)
qt ctj8 C

(8)
Qt cQt8

Re(C(1)
qQtu) cjQtu1Re Im(C(1)

qQtu) cjQtu1Im Re(C(8)
qQtu) cjQtu8Re Im(C(8)

qQtu) cjQtu8Im

C
(1)
qd cjd1 C

(1)
Qd cQd1 C

(1)
qb cbj1 C

(1)
Qb cQb1

C
(8)
qd cjd8 C

(8)
Qd cQd8 C

(8)
qb cbj8 C

(8)
Qb cQb8

Re(C(1)
qQbd) cjQbd1Re Im(C(1)

qQbd) cjQbd1Im Re(C(8)
qQbd) cjQbd8Re Im(C(8)

qQbd) cjQbd8Im

L(8d)
6

Re(Cledq)pp cledjRe[pp] Im(Cledq)pp cledqIm[pp] Re(ClebQ)pp clebQRe[pp] Im(ClebQ)pp clebQIm[pp]

Re(C(1)
lequ)pp cleju1Re[pp] Im(C(1)

lequ)pp cleju1Im[pp] Re(C(1)
leQt)pp cleQt1Re[pp] Im(C(1)

leQt)pp cleQt1Im[pp]

Re(C(3)
lequ)pp cleju3Re[pp] Im(C(3)

lequ)pp cleju3Im[pp] Re(C(3)
leQt)pp cleQt3Re[pp] Im(C(3)

leQt)pp cleQt3Im[pp]

ReC(1)
quqd cjujd1Re ImC

(1)
quqd cjujd1Im ReC(1)

QtQb cQtQb1Re ImC
(1)
QtQb cQtQb1Im

ReC(8)
quqd cjujd8Re ImC

(8)
quqd cjujd8Im ReC(8)

QtQb cQtQb8Re ImC
(8)
QtQb cQtQb8Im

ReC(1)′
quqd cjujd11Re ImC

(1)′
quqd cjujd11Im ReC(8)′

quqd cjujd81Re ImC
(8)′
quqd cjujd81Im

ReC(1)
Qtqd cQtjd1Re ImC

(1)
Qtqd cQtjd1Im ReC(1)

quQb cjuQb1Re ImC
(1)
quQb cjuQb1Im

ReC(8)
Qtqd cQtjd8Re ImC

(8)
Qtqd cQtjd8Im ReC(8)

quQb cjuQb8Re ImC
(8)
quQb cjuQb8Im

ReC(1)
qtQd cjtQd1Re ImC

(1)
qtQd cjtQd1Im ReC(1)

Quqb cQujb1Re ImC
(1)
Quqb cQujb1Im

ReC(8)
qtQd cjtQd8Re ImC

(8)
qtQd cjtQd8Im ReC(8)

Quqb cQujb8Re ImC
(8)
Quqb cQujb8Im

Table 22. The 260 independent parameters in L(5,6,7,8)
6 defined in the top model, see section 3.4.

Lepton flavor indices [pp] always run over {11, 22, 33}. Indices [prst] take the values indicated
in line.

– 77 –



J
H
E
P
0
4
(
2
0
2
1
)
0
7
3

Fermionic SMEFT parameters in SMEFTsim topU3l

L(5)
6

ReCeH ceHRe ImCeH ceHIm
ReCuH cuHRe ImCuH cuHIm ReCtH ctHRe ImCtH ctHIm
ReCdH cdHRe ImCdH cdHIm ReCbH cbHRe ImCbH cbHIm

L(6)
6

ReCeW ceWRe ImCeW ceWIm ReCeB ceBRe ImCeB ceBIm
ReCuG cuGRe ImCuG cuGIm ReCtG ctGRe ImCtG ctGIm
ReCdG cdGRe ImCdG cdGIm ReCbG cbGRe ImCbG cbGIm
ReCuW cuWRe ImCuW cuWIm ReCtW ctWRe ImCtW ctWIm
ReCdW cdWRe ImCdW cdWIm ReCbW cbWRe ImCbW cbWIm
ReCuB cuBRe ImCuB cuBIm ReCtB ctBRe ImCtB ctBIm
ReCdB cdBRe ImCdB cdBIm ReCbB cbBRe ImCbB cbBIm

L(7)
6

C
(1)
Hl cHl1 C

(3)
Hl cHl3 CHe cHe

C
(1)
Hq cHj1 C

(1)
HQ cHQ1 CHu cHu CHt cHt

C
(3)
Hq cHj3 C

(3)
HQ cHQ3 CHd cHd CHb cHbq

ReCHud cHudRe ImCHud cHudIm ReCHtb cHtbRe ImCHtb cHtbIm

L(8a)
6

Cll cll C ′ll cll1 C
(1)
QQ cQQ1 C

(8)
QQ cQQ8

C
(1)
lq clj1 C

(1)
lQ cQl1 C

(3)
lq clj3 C

(3)
lQ cQl3

C
(1,1)
qq cjj11 C

(1,8)
qq cjj18 C

(1,1)
Qq cQj11 C

(1,8)
Qq cQj18

C
(3,1)
qq cjj31 C

(3,8)
qq cjj38 C

(3,1)
Qq cQj31 C

(3,8)
Qq cQj38

L(8b)
6

Ceu ceu Cet cte Ced ced Ceb cbe

C
(1)
uu cuu1 C

(8)
uu cuu8 C

(1)
dd cdd1 C

(8)
dd cdd8

C
(1)
tu ctu1 C

(8)
tu ctu8 C

(1)
bd cbd1 C

(8)
bd cbd8

Ctt ctt Cbb cbb Cee cee

C
(1)
ud cud1 C

(1)
td ctd1 C

(1)
ub cbu1 C

(1)
tb ctb1

C
(8)
ud cud8 C

(8)
td ctd8 C

(8)
ub cbu8 C

(8)
tb ctb8

Re(C(1)
qQbd) cjQbd1Re Im(C(1)

qQbd) cjQbd1Im Re(C(8)
qQbd) cjQbd8Re Im(C(8)

qQbd) cjQbd8Im

L(8c)
6

Cle cle Cqe cje CQe cQe

Clu clu Clt ctl Cld cld Clb cbl

C
(1)
qu cju1 C

(1)
Qu cQu1 C

(1)
qt ctj1 C

(1)
Qt cQt1

C
(8)
qu cju8 C

(8)
Qu cQu8 C

(8)
qt ctj8 C

(8)
Qt cQt8

Re(C(1)
qQtu) cjQtu1Re Im(C(1)

qQtu) cjQtu1Im Re(C(8)
qQtu) cjQtu8Re Im(C(8)

qQtu) cjQtu8Im

C
(1)
qd cjd1 C

(1)
Qd cQd1 C

(1)
qb cbj1 C

(1)
Qb cQb1

C
(8)
qd cjd8 C

(8)
Qd cQd8 C

(8)
qb cbj8 C

(8)
Qb cQb8

Re(C(1)
qQbd) cjQbd1Re Im(C(1)

qQbd) cjQbd1Im Re(C(8)
qQbd) cjQbd8Re Im(C(8)

qQbd) cjQbd8Im

L(8d)
6

ReCledq cledjRe ImCledq cledqIm ReClebQ clebQRe ImClebQ clebQIm

ReC(1)
lequ cleju1Re ImC

(1)
lequ cleju1Im ReC(1)

leQt cleQt1Re ImC
(1)
leQt cleQt1Im

ReC(3)
lequ cleju3Re ImC

(3)
lequ cleju3Im ReC(3)

leQt cleQt3Re ImC
(3)
leQt cleQt3Im

ReC(1)
quqd cjujd1Re ImC

(1)
quqd cjujd1Im ReC(1)

QtQb cQtQb1Re ImC
(1)
QtQb cQtQb1Im

ReC(8)
quqd cjujd8Re ImC

(8)
quqd cjujd8Im ReC(8)

QtQb cQtQb8Re ImC
(8)
QtQb cQtQb8Im

ReC(1)′
quqd cjujd11Re ImC

(1)′
quqd cjujd11Im ReC(8)′

quqd cjujd81Re ImC
(8)′
quqd cjujd81Im

ReC(1)
Qtqd cQtjd1Re ImC

(1)
Qtqd cQtjd1Im ReC(1)

quQb cjuQb1Re ImC
(1)
quQb cjuQb1Im

ReC(8)
Qtqd cQtjd8Re ImC

(8)
Qtqd cQtjd8Im ReC(8)

quQb cjuQb8Re ImC
(8)
quQb cjuQb8Im

ReC(1)
qtQd cjtQd1Re ImC

(1)
qtQd cjtQd1Im ReC(1)

Quqb cQujb1Re ImC
(1)
Quqb cQujb1Im

ReC(8)
qtQd cjtQd8Re ImC

(8)
qtQd cjtQd8Im ReC(8)

Quqb cQujb8Re ImC
(8)
Quqb cQujb8Im

Table 23. The 167 independent parameters in L(5,6,7,8)
6 defined in the topU3lmodel, see section 3.4.
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E Comparison to other SMEFT UFO models

In this section we compare SMEFTsim with other UFO models dedicated to SMEFT studies,
and provide a mapping of the common parameters. For the time being, the comparison
is restricted to dim6top [36, 121] and SMEFT@NLO [37, 122], that are both based on the
Warsaw basis.

For each model we summarize the main features and provide conversion tables with the
parameters defined in SMEFTsim. To our knowledge, SMEFTsim is currently the only publicly
available UFO model that implements linearized SMEFT corrections to propagators.

E.1 dim6top

dim6top [36, 121] contains LO UFO models dedicated to EFT studies in the top sector. Here
we refer specifically to dim6top_LO_UFO and dim6top_LO_UFO_each_coupling_order in
the version published in May 2020.

Flavor structure. dim6top is based on the recommendations provided in ref. [36], and it
assumes a U(2)3 flavor symmetry in the quark sector and a (U(1)l+e)3 in the lepton
sector. U(2)3 breaking terms are also available and they are implemented explicitly,
i.e. without promoting the quark Yukawas to spurions of the flavor symmetry. Con-
tractions inducing both flavor-conserving and violating neutral currents are included.

All fermion masses and Yukawa couplings are neglected, except those of the top and
bottom quarks of the tau lepton. The CKM is taken to be the unit matrix.

Operators implemented. dim6top contains only operators that modify the interactions
of the top quark, and CP violating terms are included. Most operator definitions
are identical to those in SMEFTsim top, topU3l. In a few cases, the invariants imple-
mented differ by a Fierz rotation, as detailed in ref. [36].

Input parameters. Both input schemes {αem,mZ ,GF } and {mW ,mZ ,GF } are supported
in dim6top. Since purely bosonic and leptonic operators are omitted, this only affects
the numerical values assigned to the SM parameters and not the dependence on the
Wilson coefficients.

SM loop-generated Higgs couplings. Not implemented.

dim6top matches very closely the top and topU3l versions of SMEFTsim and it can also
be mapped to the general one. A correspondence with other flavor versions of SMEFTsim
can only be established partially, due to incompatibilities in the assumed flavor structure.

The mapping between Wilson coefficients defined in dim6top and in the top, topU3l
versions of SMEFTsim is provided in tables 24, 25. The mapping to the general version of
SMEFTsim is provided in tables 26, 27. In both cases, the first table contains parameters
with a one-to-one correspondence, while the second contains parameters that require a basis
rotation. For example, the point cQlM1=1, cQl31=3 in dim6top corresponds to cQl111=4,
cQl311=3 (or clq1Re1133=4, clq3Re1133=3) in SMEFTsim.
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Overall minus signs in the mapping are due to the fact that dim6top and SMEFTsim
use opposite sign conventions for the definition of covariant derivatives. Although the
operator definitions are identical, the relative sign between the L6 contribution and the
corresponding SM coupling is flipped in a few cases. The physics results are identical in
both models once this is accounted for. The presence of explicit Yukawa couplings in the
tables is due to the different treatment of flavor symmetry breaking terms.

Wilson coefficients inducing flavor-changing neutral currents can be mapped to param-
eters in SMEFTsim general, and the corresponding tables are available upon request.

E.2 SMEFT@NLO

SMEFT@NLO [37, 122] is equipped for NLO QCD calculations in MadGraph5_aMC@NLO. Here
we compare specifically to SMEFTatNLO v1.0 published in September 2020.

Flavor structure. SMEFT@NLO assumes a flavor symmetry U(2)q × U(3)d × U(2)u in the
quark sector and U(1)3 in the lepton sector, which is the same as in SMEFTsim top
and in dim6top, except for the treatment of down quarks.

All fermion masses and Yukawa couplings are neglected, except those of the top
quark.

Operators implemented. SMEFT@NLO contains all the operators in classes (1)-(7) and
those in class (8) that contain a top quark. Terms that violate the flavor symmetry
have been consistently dropped. CP violating terms are omitted.

Input parameters. SMEFT@NLO implements the {mW ,mZ , GF } input scheme.

SM loop-generated Higgs couplings. Higgs couplings in the mt → ∞ limit are not
implemented, but Higgs-gluon interactions can be fully reproduced at 1-loop in QCD.

Given its flavor structure, SMEFT@NLO can be directly mapped to SMEFTsim in the top,
topU3l and general versions. The mapping of Wilson coefficients between SMEFT@NLO
and the top, topU3l versions of SMEFTsim is provided in tables 28, 29. The mapping to
the general version is provided in tables 30, 31. In both cases, the first table contains
the mapping of parameters with a one-to-one correspondence, while the second contains
parameters that require a basis rotation.

As for dim6top, the sign convention used in SMEFT@NLO is the opposite compared to
SMEFTsim, which leads to some minus signs in the conversion.
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SMEFTsim top vs dim6top
class SMEFTsim ↔ dim6top SMEFTsim ↔ dim6top SMEFTsim ↔ dim6top

L(5)
6 ctHRe ctp ctHIm ctpI

L(6)
6

ctGRe - ctG ctGIm - ctGI

cbWRe - cbW cbWIm - cbWI

L(7)
6

cHt cpt cHbq cpb

cHtbRe cptb cHtbIm cptbI

L(8a)
6

cQQ1 1
2 cQQ1 cQj11 cQq11 cQj31 cQq13

cQQ8 1
2 cQQ8 cQj18 cQq81 cQj38 cQq83

L(8b)
6

ctt ctt1 ctu1 ctu1 ctu8 ctu8

ctd1 ctd1 ctb8 ctb8 ctd8 ctd8

ctb1 ctb1 cte[pp] cte[p]

L(8c)
6

cQu1 cQu1 ctj1 ctq1 cQt1 cQt1

cQu8 cQu8 ctj8 ctq8 cQt8 cQt8

cQd1 cQd1 cQb1 cQb1 cQb8 cQb8

cQd8 cQd8 cQe[pp] cQe[p] ctl[pp] ctl[p]

L(8d)
6

clebQRe[pp] cblS[p] cleQt1Re[pp] ctlS[p] cleQt3Re[pp] ctlT[p]

clebQIm[pp] cblSI[p] cleQt1Im[pp] ctlSI[p] cleQt3Im[pp] ctlTI[p]

cQtQb1Re cQtQb1 cQtQb8Re cQtQb8

cQtQb1Im cQtQb1I cQtQb8Im cQtQb8I

SMEFTsim topU3l vs dim6top

L(8b)
6 cte cte[p]

L(8c)
6 cQe cQe[p] ctl ctl[p]

L(8d)
6

clebQRe yl[p] cblS[p] cleQt1Re yl[p] ctlS[p] cleQt3Re yl[p] ctlT[p]

clebQIm] yl[p] cblSI[p] cleQt1Im yl[p] ctlSI[p] cleQt3Im yl[p] ctlTI[p]

Table 24. Upper panel: conversion table between the SMEFT parameters defined in the top
version of SMEFTsim and in dim6top: parameters with a one-to-one translation. Lower panel:
conversion table between the topU3l version of SMEFTsim and dim6top. Only leptonic coefficients
are reported, as the other parameters behave identically to the top case. Lepton flavor indices p
take values p = {1,2,3}, light quark indices r take values r = {1, 2}.
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SMEFTsim top vs dim6top
class SMEFTsim→ dim6top dim6top→ SMEFTsim

L(6)
6

- ctWRe ctW - ctW ctWRe

- ctWIm ctWI - ctWI ctWIm

-ctWRe cθ + ctBRe sθ ctZ ctZ/sθ - ctW/tθ ctBRe

-ctWIm cθ + ctBIm sθ ctZI ctZI/sθ - ctWI/tθ ctBIm

L(7)
6

cHQ3 cpQ3 cpQ3 + cpQM cHQ1

cHQ1 - cHQ3 cpQM cpQ3 cHQ3

L(8a)
6

cQl1[pp] - cQl3[pp] cQlM[p] cQl3[p] + cQlM[p] cQl1[pp]

cQl3[pp] cQl3[p] cQl3[p] cQl3[pp]

L(8b)
6

1
3 cutbd1Re + 4

9 cutbd8Re yu[r] yd[s] cbtud1 1
3 cbtud1 + 4

9 cbtud8 1
yu[r] yd[s] cutbd1Re

1
3 cutbd1Im + 4

9 cutbd8Im yu[r] yd[s] cbtud1I 1
3 cbtud1I + 4

9 cbtud8I 1
yu[r] yd[s] cutbd1Im

2 cutbd1Re - 1
3 cutbd8Re yu[r] yd[s] cbtud8 2 cbtud1 - 1

3 cbtud8 1
yu[r] yd[s] cutbd8Re

2 cutbd1Im - 1
3 cutbd8Im yu[r] yd[s] cbtud8I 2 cbtud1I - 1

3 cbtud8I 1
yu[r] yd[s] cutbd8Im

L(8c)
6

- 2
3 cjQtu1Re - 8

9 cjQtu8Re yu[r] ctQqu1 - 1
6 ctQqu1 - 2

9 ctQqu8 1
yu[r] cjQtu1Re

- 2
3 cjQtu1Im - 8

9 cjQtu8Im yu[r] ctQqu1I - 1
6 ctQqu1I - 2

9 ctQqu8I 1
yu[r] cjQtu1Im

- 4 cjQtu1Re + 2
3 cjQtu8Re yu[r] ctQqu8 - ctQqu1 + 1

6 ctQqu8 1
yu[r] cjQtu8Re

- 4 cjQtu1Im + 2
3 cjQtu8Im yu[r] ctQqu8I - ctQqu1I + 1

6 ctQqu8I 1
yu[r] cjQtu8Im

- 2
3 cjQbd1Re - 8

9 cjQbd8Re yd[r] cbQqd1 - 1
6 cbQqd1 - 2

9 cbQqd8 1
yd[r] cjQbd1Re

- 2
3 cjQbd1Im - 8

9 cjQbd8Im yd[r] cbQqd1I - 1
6 cbQqd1I - 2

9 cbQqd8I 1
yd[r] cjQbd1Im

- 4 cjQbd1Re + 2
3 cjQbd8Re yd[r] cbQqd8 - cbQqd1 + 1

6 cbQqd8 1
yd[r] cjQbd8Re

- 4 cjQbd1Im + 2
3 cjQbd8Im yd[r] cbQqd8I - cbQqd1I + 1

6 cbQqd8I 1
yd[r] cjQbd8Im

L(8d)
6

cQtjd1Re - 1
6 cjtQd1Re - 2

9 cjtQd8Re yd[r] cQtqd1 cQtqd1 - 4 cQtqd1T 1
yd[r] cQtjd1Re

cQtjd1Im - 1
6 cjtQd1Im - 2

9 cjtQd8Im yd[r] cQtqd1I cQtqd1I - 4 cQtqd1TI 1
yd[r] cQtjd1Im

cQtjd8Re - cjtQd1Re + 1
6 cjtQd8Re yd[r] cQtqd8 cQtqd8 - 4 cQtqd8T 1

yd[r] cQtjd8Re

cQtjd8Im - cjtQd1Im + 1
6 cjtQd8Im yd[r] cQtqd8I cQtqd8I - 4 cQtqd8TI 1

yd[r] cQtjd8Im

- 1
24 cjtQd1Re - 1

18 cjtQd8Re yd[r] cQtqd1T - 8
3 cQtqd1T - 32

9 cQtqd8T 1
yd[r] cjtQd1Re

- 1
24 cjtQd1Im - 1

18 cjtQd8Im yd[r] cQtqd1TI - 8
3 cQtqd1TI - 32

9 cQtqd8TI 1
yd[r] cjtQd1Im

- 1
4 cjtQd1Re + 1

24 cjtQd8Re yd[r] cQtqd8T - 16 cQtqd1T + 8
3 cQtqd8T 1

yd[r] cjtQd8Re

- 1
4 cjtQd1Im + 1

24 cjtQd8Im yd[r] cQtqd8TI - 16 cQtqd1TI + 8
3 cQtqd8TI 1

yd[r] cjtQd8Im

cjuQb1Re - 1
6 cQujb1Re - 2

9 cQujb8Re yu[r] cQbqu1 cQbqu1 - 4 cQbqu1T 1
yu[r] cjuQb1Re

cjuQb1Im - 1
6 cQujb1Im - 2

9 cQujb8Im yu[r] cQbqu8 cQbqu1I - 4 cQbqu1TI 1
yu[r] cjuQb1Im

cjuQb8Re - cQujb1Re + 1
6 cQujb8Re yu[r] cQbqu1I cQbqu8 - 4 cQbqu8T 1

yu[r] cjuQb8Re

cjuQb8Im - cQujb1Im + 1
6 cQujb8Im yu[r] cQbqu8I cQbqu8I - 4 cQbqu8TI 1

yu[r] cjuQb8Im

- 1
24 cQujb1Re - 1

18 cQujb8Re yu[r] cQbqu1T - 8
3 cQbqu1T - 32

9 cQbqu8T 1
yu[r] cQujb1Re

- 1
24 cQujb1Im - 1

18 cQujb8Im yu[r] cQbqu1TI - 8
3 cQbqu1TI - 32

9 cQbqu8TI 1
yu[r] cQujb1Im

- 1
4 cQujb1Re + 1

24 cQujb8Re yu[r] cQbqu8T - 16 cQbqu1T + 8
3 cQbqu8T 1

yu[r] cQujb8Re

- 1
4 cQujb1Im + 1

24 cQujb8Im yu[r] cQbqu8TI - 16 cQbqu1TI + 8
3 cQbqu8TI 1

yu[r] cQujb8Im

SMEFTsim topU3l vs dim6top

L(8a)
6

cQl1 - cQl3 cQlM[p] cQl3[p] + cQlM[p] cQl1

cQl3 cQl3[p] cQl3[p] cQl3

Table 25. Upper panel: conversion table between the SMEFT parameters defined in the top version
of SMEFTsim and in dim6top: parameters that require a basis rotation. Lower panel: conversion
table between the topU3l version of SMEFTsim and dim6top. Only leptonic coefficients are reported
here, as the other parameters behave identically to the top case. Lepton flavor indices take values p
= {1,2,3}. In the notation yd[r], yu[r] etc, the flavor index is that of the associated righthanded
light field (d for yd and u for yu).
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SMEFTsim general vs dim6top
class SMEFTsim ↔ dim6top SMEFTsim ↔ dim6top SMEFTsim ↔ dim6top

L(5)
6 cuHRe33 ctp cuHIm33 ctpI

L(6)
6

cuGRe33 - ctG cuGIm33 - ctGI

cdWRe33 - cbW cdWIm33 - cbWI

L(7)
6

cHuRe33 cpt cHdRe33 cpb

cHudRe33 cptb cHudIm33 cptbI

L(8b)
6

ceu[pp]33 cte[p] cuuRe3333 ctt1 cud1Re33[rr] ctd1

cud1Re3333 ctb1 cud8Re3333 ctb8 cud8Re33[rr] ctd8

L(8c)
6

cqu1Re33[rr] cQu1 cqu1Re[rr]33 ctq1 cqu1Re3333 cQt1

cqu8Re33[rr] cQu8 cqu8Re[rr]33 ctq8 cqu8Re3333 cQt8

cqd1Re33[rr] cQd1 cqd1Re3333 cQb1 cqd8Re3333 cQb8

cqd8Re33[rr] cQd8 cqeRe33[pp] cQe[p] cluRe[pp]33 ctl[p]

L(8d)
6

cledqRe[pp]33 cblS[p] clequ1Re[pp]33 ctlS[p] clequ3Re[pp]33 ctlT[p]

cledqIm[pp]33 cblSI[p] clequ1Im[pp]33 ctlSI[p] clequ3Im[pp]33 ctlTI[p]

cquqd1Re3333 cQtQb1 cquqd1Im3333 cQtQb1I

cquqd8Re3333 cQtQb8 cquqd8Im3333 cQtQb8I

Table 26. Conversion table between the SMEFT parameters defined in the general version of
SMEFTsim and in dim6top: parameters with one-to-one conversion. Lepton flavor indices p take
values in {1,2,3}. Quark flavor indices r take values in {1,2}.
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SMEFTsim general vs dim6top
class SMEFTsim → dim6top dim6top → SMEFTsim

L(6)
6

- cuWRe33 ctW - ctW cuWRe33

- cuWIm33 ctWI - ctWI cuWIm33

- cuWRe33 cθ + cuBRe33 sθ ctZ ctZ/sθ - ctW/tθ cuBRe33

- cuWIm33 cθ + cuBIm33 sθ ctZI ctZI/sθ - ctWI/tθ cuBIm33

L(7)
6

cHq3Re33 cpQ3 cpQ3 + cpQM cHq1Re33

cHq1Re33 - cHq3Re33 cpQM cpQ3 cHq3Re33

L(8a)
6

clq1Re[pp]33 - clq3Re[pp]33 cQlM[p] cQl3[p] + cQlM[p] clq1Re[pp]33

clq3[pp]33 cQl3[p] cQl3[p] clq3Re[pp]33

2 cqq1Re3333 - 2
3 cqq3Re3333 cQQ1 1

2 cQQ1 + 1
24 cQQ8 cqq1Re3333

8 cqq3Re3333 cQQ8 1
8 cQQ8 cqq3Re3333

1
3 cqq1Re[r]33[r] + 2 cqq1Re[rr]33 + cqq3Re[r]33[r] cQq11 1

2 cQq11 - 1
12 cQq81 cqq1Re[rr]33

1
3 (cqq1Re[r]33[r] - cqq3Re[r]33[r]) + 2 cqq3Re[rr]33 cQq13 1

8 cQq81 + 3
8 cQq83 cqq1Re[r]33[r]

2 cqq1Re[r]33[r] + 6 cqq3Re[r]33[r] cQq81 1
2 cQq13 - 1

12 cQq83 cqq3Re[rr]33

2 (cqq1Re[r]33[r] - cqq3Re[r]33[r]) cQq83 1
8 (cQq81 - cQq83) cqq3Re[r]33[r]

2
3 cuuRe[r]33[r] + 2 cuuRe[rr]33 ctu1 1

2 ctu1 - 1
12 ctu8 cuuRe[rr]33

4 cuuRe[r]33[r] ctu8 1
4 ctu8 cuuRe[r]33[r]

1
3 cud1Re[r]33[r] + 4

9 cud8Re[r]33[r] cbtud1 1
3 cbtud1 + 4

9 cbtud8 cud1Re[r]33[r]
1
3 cud1Im[r]33[r] + 4

9 cud8Im[r]33[r] cbtud1I 1
3 cbtud1I + 4

9 cbtud8I cud1Im[r]33[r]

2 cud1Re[r]33[r] - 1
3 cud8Re[r]33[r] cbtud8 2 cbtud1 - 1

3 cbtud8 cud8Re[r]33[r]

2 cud1Im[r]33[r] - 1
3 cud8Im[r]33[r] cbtud8I 2 cbtud1I - 1

3 cbtud8I cud8Im[r]33[r]

L(8c)
6

- 2
3 cqu1Re[r]33[r] - 8

9 cqu8Re[r]33[r] ctQqu1 - 1
6 ctQqu1 - 2

9 ctQqu8 cqu1Re[r]33[r]

- 2
3 cqu1Im[r]33[r] - 8

9 cqu8Im[r]33[r] ctQqu1I - 1
6 ctQqu1I - 2

9 ctQqu8I cqu1Im[r]33[r]

- 4 cqu1Re[r]33[r] + 2
3 cqu8Re[r]33[r] ctQqu8 - ctQqu1 + 1

6 ctQqu8 cqu8Re[r]33[r]

- 4 cqu1Im[r]33[r] + 2
3 cqu8Im[r]33[r] ctQqu8I - ctQqu1I + 1

6 ctQqu8I cqu8Im[r]33[r]

- 2
3 cqd1Re[r]33[r] - 8

9 cqd8Re[r]33[r] cbQqd1 - 1
6 cbQqd1 - 2

9 cbQqd8 cqd1Re[r]33[r]

- 2
3 cqd1Im[r]33[r] - 8

9 cqd8Im[r]33[r] cbQqd1I - 1
6 cbQqd1I - 2

9 cbQqd8I cqd1Im[r]33[r]

- 4 cqd1Re[r]33[r] + 2
3 cqd8Re[r]33[r] cbQqd8 - cbQqd1 + 1

6 cbQqd8 cqd8Re[r]33[r]

- 4 cqd1Im[r]33[r] + 2
3 cqd8Im[r]33[r] cbQqd8I - cbQqd1I + 1

6 cbQqd8I cqd8Im[r]33[r]

L(8d)
6

cquqd1Re33[rr] - 1
6 cquqd1Re[r]33[r] - 2

9 cquqd8Re[r]33[r] cQtqd1 cQtqd1 - 4 cQtqd1T cquqd1Re33[rr]

cquqd1Im33[rr] - 1
6 cquqd1Im[r]33[r] - 2

9 cquqd8Im[r]33[r] cQtqd1I cQtqd1I - 4 cQtqd1TI cquqd1Im33[rr]

cquqd8Re33[rr] - cquqd1Re[r]33[r] + 1
6 cquqd8Re[r]33[r] cQtqd8 cQtqd8 - 4 cQtqd8T cquqd8Re33[rr]

cquqd8Im33[rr] - cquqd1Im[r]33[r] + 1
6 cquqd8Im[r]33[r] cQtqd8I cQtqd8I - 4 cQtqd8TI cquqd8Im33[rr]

- 1
24 cquqd1Re[r]33[r] - 1

18 cquqd8Re[r]33[r] cQtqd1T - 8
3 cQtqd1T - 32

9 cQtqd8T cquqd1Re[r]33[r]

- 1
24 cquqd1Im[r]33[r] - 1

18 cquqd8Im[r]33[r] cQtqd1TI - 8
3 cQtqd1TI - 32

9 cQtqd8TI cquqd1Im[r]33[r]

- 1
4 cquqd1Re[r]33[r] + 1

24 cquqd8Re[r]33[r] cQtqd8T - 16 cQtqd1T + 8
3 cQtqd8T cquqd8Re[r]33[r]

- 1
4 cquqd1Im[r]33[r] + 1

24 cquqd8Im[r]33[r] cQtqd8TI - 16 cQtqd1TI + 8
3 cQtqd8TI cquqd8Im[r]33[r]

cquqd1Re[rr]33 - 1
6 cquqd1Re3[rr]3 - 2

9 cquqd8Re3[rr]3 cQbqu1 cQbqu1 - 4 cQbqu1T cquqd1Re[rr]33

cquqd1Im[rr]33 - 1
6 cquqd1Im3[rr]3 - 2

9 cquqd8Im3[rr]3 cQbqu8 cQbqu1I - 4 cQbqu1TI cquqd1Im[rr]33

cquqd8Re[rr]33 - cquqd1Re3[rr]3 + 1
6 cquqd8Re3[rr]3 cQbqu1I cQbqu8 - 4 cQbqu8T cquqd8Re[rr]33

cquqd8Im[rr]33 - cquqd1Im3[rr]3 + 1
6 cquqd8Im3[rr]3 cQbqu8I cQbqu8I - 4 cQbqu8TI cquqd8Im[rr]33

- 1
24 cquqd1Re3[rr]3 - 1

18 cquqd8Re3[rr]3 cQbqu1T - 8
3 cQbqu1T - 32

9 cQbqu8T cquqd1Re3[rr]3

- 1
24 cquqd1Im3[rr]3 - 1

18 cquqd8Im3[rr]3 cQbqu1TI - 8
3 cQbqu1TI - 32

9 cQbqu8TI cquqd1Im3[rr]3

- 1
4 cquqd1Re3[rr]3 + 1

24 cquqd8Re3[rr]3 cQbqu8T - 16 cQbqu1T + 8
3 cQbqu8T cquqd8Re3[rr]3

- 1
4 cquqd1Im3[rr]3 + 1

24 cquqd8Im3[rr]3 cQbqu8TI - 16 cQbqu1TI + 8
3 cQbqu8TI cquqd8Im3[rr]3

Table 27. Conversion table between the SMEFT parameters defined in the general version of
SMEFTsim and in dim6top: parameters that require a basis rotation. Lepton flavor indices p take
values in {1,2,3}. Quark flavor indices r take values in {1,2}.
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SMEFTsim top vs SMEFT@NLO

class SMEFTsim ↔ SMEFT@NLO SMEFTsim ↔ SMEFT@NLO SMEFTsim ↔ SMEFT@NLO

L(1)
6 cG - gs cG cW - cWWW

L(2,3)
6 cH cp cHbox cdp cHDD cpDC

L(4)
6

cHG cpG cHW cpW cHB cpBB

cHWB cpWB

L(5)
6 ctHRe ctp

L(6)
6 ctGRe - gs ctG

L(7)
6

cHl1[pp] cpl[p] cHl3[pp] c3pl[p] cHd = cHbq cpd

cHe11 cpe cHe22 cpmu cHe33 cpta

cHu cpu cHt cpt

L(8a)
6

cQj11 cQq11 cQj18 cQq81 cQj31 cQq13

cQj38 cQq83 cQQ1 1
2 cQQ1 cQQ8 1

2 cQQ8

cll[pppp] cll[pppp] cll[pprr] 2 cll[pprr] cll[prrp] 2 cll[prrp]

L(8b)
6

cte[pp] cte[p] ctu1 ctu1 ctu8 ctu8

ctt ctt1 ctd1 = ctb1 ctd1 ctd8 = ctb8 ctd8

L(8c)
6

ctl[pp] ctl[p] cQe[pp] cQe[p]

cQt1 cQt1 cQt8 cQt8

cQu1 cQu1 cQd1 = cQb1 cQd1 ctj1 ctq1

cQu8 cQu8 cQd8 = cQb8 cQd8 ctj8 ctq8

L(8d)
6 cleQt1Re33 ctlS3 cleQt3Re33 ctlT3 clebQRe33 cblS3

SMEFTsim topU3l vs SMEFT@NLO

class SMEFTsim ↔ SMEFT@NLO SMEFTsim ↔ SMEFT@NLO SMEFTsim ↔ SMEFT@NLO

L(7)
6 cHe cpe = cpmu = cpta cHl1 cpl[p] cHl3 c3pl[p]

L(8a)
6

cll cll[pppp] =
cll[pprr]

cll1 cll[pppp] =
cll[prrp]

L(8b)
6 cte cte[p]

L(8c)
6 cQe cQe[p] ctl ctl[p]

L(8d)
6 cleQt1Re33 yl[3] ctlS3 cleQt3Re33 yl[3] ctlT3 clebQRe33 yl[3] cblS3

Table 28. Upper panel: conversion table between the SMEFT parameters defined in the top
version of SMEFTsim and in SMEFT@NLO v1.0, for parameters that have a one-to-one translation.
Lower panel: conversion table between the topU3l version of SMEFTsim and SMEFT@NLO. Only
leptonic coefficients are reported, as the other parameters behave identically to the top case. The
= sign indicates that all parameters need to be fixed to the same value. Lepton flavor indices p take
values p,r = {1,2,3}.
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SMEFTsim top vs SMEFT@NLO

class SMEFTsim→ SMEFT@NLO SMEFT@NLO→ SMEFTsim

L(6)
6

- ctWRe ctW - ctW ctWRe

-ctWRe cθ + ctBRe sθ ctZ ctZ/sθ - ctW/tθ ctBRe

L(7)
6

cHQ3 cpQ3 cpQ3 + cpQM cHQ1

cHQ1 - cHQ3 cpQM cpQ3 cHQ3

cHj3 cpq3i cpq3i + cpqMi cHj1

cHj1 - cHj3 cpqMi cpq3i cHj3

L(8a)
6

cQl1[pp] - cQl3[pp] cQlM[p] cQl3[p] + cQlM[p] cQl1[pp]

cQl3[pp] cQl3[p] cQl3[p] cQl3[pp]

SMEFTsim topU3l vs SMEFT@NLO

L(8a)
6

cQl1 - cQl3 cQlM[p] cQl3[p] + cQlM[p] cQl1

cQl3 cQl3[p] cQl3[p] cQl3

Table 29. Upper panel: conversion table between the SMEFT parameters defined in the top
version of SMEFTsim and in SMEFT@NLO v1.0: parameters that require a basis rotation. Lower
panel: conversion table between the topU3l version of SMEFTsim and SMEFT@NLO. Only leptonic
coefficients are reported here, as the other parameters behave identically to the top case. Lepton
flavor indices take values p = {1,2,3}.

– 86 –



J
H
E
P
0
4
(
2
0
2
1
)
0
7
3

SMEFTsim general vs SMEFT@NLO

class SMEFTsim ↔ SMEFT@NLO SMEFTsim ↔ SMEFT@NLO SMEFTsim ↔ SMEFT@NLO

L(1)
6 cG - gs cG cW - cWWW

L(2,3)
6 cH cp cHbox cdp cHDD cpDC

L(4)
6

cHG cpG cHW cpW cHB cpBB

cHWB cpWB

L(5)
6 cuHRe33 ctp

L(6)
6 cuGRe33 - gs ctG

L(7)
6

cHl1Re[pp] cpl[p] cHl3Re[pp] c3pl[p] cHdRe[rr]=cHdRe33 cpd

cHeRe11 cpe cHe2Re2 cpmu cHeRe33 cpta

cHuRe[rr] cpu cHuRe33 cpt

L(8a)
6 cllRe[prst] cll[prst]

L(8b)
6

ceuRe[pp]33 cte[p] cuuRe3333 ctt1 cud1Re33[rr]=cud1Re3333 ctd1

cud8Re33[rr]=cud8Re3333 ctd8

L(8c)
6

cluRe[pp]33 ctl[p] cqeRe33[pp] cQe[p]

cqu1Re3333 cQt1 cqu8Re3333 cQt8

cqu1Re[rr]33 ctq1 cqu1Re33[rr] cQu1 cqd1Re33[rr]=cqd1Re3333 cQd1

cqu8Re[rr]33 ctq8 cqu8Re33[rr] cQu8 cqd8Re33[rr]=cqd8Re3333 cQd8

L(8d)
6 clequ1Re3333 ctlS3 clequ3Re3333 ctlT3 cledqRe3333 cblS3

Table 30. Conversion table between the SMEFT parameters defined in the general version of
SMEFTsim and in SMEFT@NLO v1.0: set of parameters with one-to-one conversion. Lepton flavor
indices p take values in {1,2,3}. Quark indices r take values in {1,2}.
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SMEFTsim general vs SMEFT@NLO

class SMEFTsim → SMEFT@NLO SMEFT@NLO→ SMEFTsim

L(6)
6

- cuWRe33 ctW - ctW cuWRe33

- cuWRe33 cθ + cuBRe33 sθ ctZ ctZ/sθ - ctW/tθ cuBRe33

L(7)
6

cHq3Re33 cpQ3 cpQ3 + cpQM cHq1Re33

cHq1Re33 - cHq3Re33 cpQM cpQ3 cHq3Re33

cHq3Re[rr] cpq3i cpq3i + cpqMi cHq1Re[rr]

cHq1Re[rr] - cHq3Re[rr] cpqMi cpq3i cHq3Re[rr]

L(8a)
6

clq1Re[pp]33 - clq3Re[pp]33 cQlM[p] cQl3[p] + cQlM[p] clq1Re[pp]33

clq3[pp]33 cQl3[p] cQl3[p] clq3Re[pp]33

2 cqq1Re3333 - 2
3 cqq3Re3333 cQQ1 1

2 cQQ1 + 1
24 cQQ8 cqq1Re3333

8 cqq3Re3333 cQQ8 1
8 cQQ8 cqq3Re3333

1
3 cqq1Re[r]33[r] + 2 cqq1Re[rr]33 + cqq3Re[r]33[r] cQq11 1

2 cQq11 - 1
12 cQq81 cqq1Re[rr]33

1
3 (cqq1Re[r]33[r] - cqq3Re[r]33[r]) + 2 cqq3Re[rr]33 cQq13 1

8 cQq81 + 3
8 cQq83 cqq1Re[r]33[r]

2 cqq1Re[r]33[r] + 6 cqq3Re[r]33[r] cQq81 1
2 cQq13 - 1

12 cQq83 cqq3Re[rr]33

2 (cqq1Re[r]33[r] - cqq3Re[r]33[r]) cQq83 1
8 (cQq81 - cQq83) cqq3Re[r]33[r]

L(8b)
6

2
3 cuuRe[r]33[r] + 2 cuuRe[rr]33 ctu1 1

2 ctu1 - 1
12 ctu8 cuuRe[rr]33

4 cuuRe[r]33[r] ctu8 1
4 ctu8 cuuRe[r]33[r]

Table 31. Conversion table between the SMEFT parameters defined in the general version of
SMEFTsim and in SMEFT@NLO v1.0: parameters that require a basis rotation. Lepton flavor indices
p take values in {1,2,3}. Quark flavor indices r take values in {1,2}.
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Figure 3. Diagram of the pairwise comparisons performed to validate the UFO models. The arrow
indicates the direction in which the SMEFT parameters are mapped.

F Validation of the UFO models

The 10 UFO models contained in the SMEFTsim package have been validated following the
recommendations of ref. [47]: the procedure relies on pairwise comparisons between models,
based on the values returned for a set of squared amplitudes. Each comparison is performed
with the dedicated MadGraph5_aMC@NLO plugin [123]: given a list of 2→ n processes and of
points in parameter space, the SM squared amplitude |ASM|2, the pure SM-L6 interference
2 ReASMA

∗
6 and the quadratic L6 contribution |A6|2 are calculated at one random phase-

space point for each process and parameter point. The validation is considered successful
if the squared amplitudes evaluated with each model pair agree within a permille. Larger
discrepancies are ignored if they do not show a consistent pattern across different processes
and the squared amplitude is < 10−16 for both models.

Figure 3 illustrates diagrammatically the set of comparisons performed: the top,
topU3l and general versions of SMEFTsim have been compared to dim6top (version of May
2020) and SMEFT@NLO (both versions of August 2019 and September 2020, only for models
with {mW ,mZ , GF } scheme). An internal validation was also carried out, comparing mod-
els with different flavor assumptions and same input scheme, and vice versa. The arrows in
the figure indicate that, in the comparison, the parameters of the first model were mapped
onto those of the latter: the flow generally goes towards more restrictive flavor assumptions.

The validation was performed on the processes listed in table 32, that were chosen
so as to probe most effective operators independently. All Wilson coefficients have been
included in the comparison, with the exception of those inducing flavor-changing neutral
currents.

All fermion masses and Yukawa couplings were retained for internal validation, while
only those implemented in dim6top or SMEFT@NLO were included when comparing to these
models. CKM mixing has been neglected in all cases.

Linearized propagator corrections have been validated with an analogous procedure,
using the processes listed in table 33 and carrying out internal comparisons across models
with same inputs and different flavor assumption. Loop-induced SM Higgs couplings have
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g g > t t g g > u u g g > g g w+ w- > w+ w- a w+ > z w+ z z > w+ w-
w+ w- > a a z z > z z h h > w+ w- h h > z z h h > h h h w- > t b
h w+ > u d h w- > mu- vm h z > b b h z > s s h z > t t h z > u u
h a > b b h a > t t h a > d d h a > c c h z > mu+ mu- h z > vt vt
h a > e+ e- b b > t t b b > b b b b > u u b b > d d b b > a a
t t > t t t t > c c t t > s s t t > d d b t > d u u u > u u
u u > c c s s > s s d d > s s d d > c c u d > u d u d > c s
e+ e- > mu+ mu- ve ve > vm vm vt vt > vt vt e+ ta- > e+ ta- mu+ mu- > ta+ ta- e+ e- > e+ e-
e+ ve > e+ ve e+ vm > e+ vm e+ ve > mu+ vm b t > e- ve u d > mu+ vm c s > ta+ vt
d d > e+ e- c c > mu+ mu- b b > mu+ mu- t t > ta+ ta- b b > ve ve s s > vt vt
t t > vm vm u u > ve ve w+ w- > h d d w+ w- > h c c w+ w- > h t t w+ w- > h b b
w+ w- > a a a h w+ > a u d h w- > a e- ve h w+ > a t b h h > h u u h h > h ta+ ta-
h h > h s s h h > h t t h h > h b b h h > z ve ve h h > z c c h h > z t t
h h > z e+ e- h h > z d d h h > z b b h h > w+ e- ve h h > w- u d h h > w+ t b
h h > w+ w- a g g > g g g h h > h h h h h > h z z

Table 32. Set of processes that have been used to validate the UFO models.

w+ w- > w+ w- z z > w+ w- w+ w- > a a h h > w+ w- h h > z z h h > h h
h w+ > u d h w- > mu- vm h z > s s h z > t t h z > mu+ mu- h z > vt vt
b b > t t b b > b b t t > t t b t > d u u u > u u s s > s s
d d > c c u d > c s e+ e- > mu+ mu- ve ve > vm vm e+ ta- > e+ ta- e+ e- > e+ e-
e+ ve > e+ ve e+ vm > e+ vm e+ ve > mu+ vm b t > e- ve c s > ta+ vt c c > mu+ mu-
b b > mu+ mu- b b > ve ve s s > vt vt u u > ve ve t g > b w+ w+ w- > h d d
w+ w- > h c c w+ w- > h b b w+ w- > a a a h w+ > a u d h w- > a e- ve h w+ > a t b
h h > h ta+ ta- h h > h b b h h > z c c h h > z t t h h > z b b h h > w+ e- ve
h h > w- u d h h > w+ w- a

Table 33. Set of processes that have been used to validate linearized propagator corrections
implemented in the UFO models.

g g > t t g g > u u g g > g g a w+ > z w+ z z > w+ w- w+ w- > a a
h a > b b h a > d d h a > c c h a > e+ e- b b > a a t t > z a
w+ w- > h d d w+ w- > h t t w+ w- > h b b w+ w- > a a a h h > z c c h h > z e+ e-
h h > z d d h h > z b b g g > g g g h h > h h h

Table 34. Set of processes that have been used to validate loop-induced SM Higgs couplings
implemented in the UFO models.

been validated comparing the SM squared amplitudes at one phase-space point for each of
the processes in table 34 with all models.

The output files generated by the MadGraph5_aMC@NLO plugin are available at the
github repository. No significant residual differences are present between models. Only
one exception was observed: potentially large discrepancies are present between SMEFTsim
(both top and general) and dim6top, for the Wilson coefficients cQbqu1T, cQbqu8T,
cQtqd1T, cQtqd8T and the associated imaginary parts. These differences have been al-
ready noted in the past and are currently not fully understood.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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