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1 Introduction

The geometric interpretation of symmetries plays a key role in modern theoretical physics.
Perhaps the most prominent example of this is given by Lorentz symmetry, which was
obscured in the original form of Maxwell’s equations but is now at the heart of the uni-
fication of space and time in special and general relativity. In special relativity, Lorentz
symmetry corresponds to the coordinate transformations that are isometries of the (fixed)
Minkowski metric. In general relativity, the metric is dynamical and arbitrary coordinate
transformations are allowed, but Lorentz transformations are distinguished as the (local)
symmetries that are seen by a freely-falling observer.

However, the notion of general coordinate transformations and a dynamical metric with
curvature is not tied to Lorentz symmetry. Indeed, starting with the work of Cartan [1, 2]
it has been understood that the Galilean symmetries of non-relativistic physics can be
realised as local symmetries of a covariant notion of geometry, known as Newton-Cartan
geometry. (See [3–5] for the recent generalisation to torsional Newton-Cartan geometry.)
Likewise, the opposite ultra-relativistic limit (where the speed of light is taken to infinity)
is associated to what is known as Carroll geometry [6–8]. Such non-Riemannian notions
of geometry are of interest both as approximations of underlying relativistic theories and
as interesting theories in their own right.
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In the context of string theory, an important example of a non-relativistic limit is given
by the Gomis-Ooguri string [9, 10], which can be obtained from a relativistic string in flat
space using a limit that distinguishes two target space directions, with a compensating
divergent B-field added to cancel the rest mass divergence of the string. The resulting
action is

SGO = T

2

∫
d2σ δab∂−x

a∂+x
b + β∂−y + β̄∂+ȳ . (1.1)

This action is UV-finite and has a non-relativistic spectrum [9]. It describes the motion
of a string in (D − 2) flat target space directions xa with a Euclidean metric δab, together
with two directions y and ȳ that (at first sight) do not obviously couple to a target space
structure. Instead, they couple to the two fields β and β̄, which can be viewed as Lagrange
multipliers constraining the embedding coordinates y and ȳ to be chiral and anti-chiral
respectively on the worldsheet. This part of the action is exactly that of a βγ system (or
rather a chiral and anti-chiral pair of βγ systems) [11, 12].

While the conventional string action in flat background is invariant under the finite-
dimensional Poincaré isometries of the target spacetime, the non-relativistic action (1.1) is
invariant not only under a form of target space Galilean symmetries, but in fact under an
infinite-dimensional set of transformations [13–15]

δxa = ζa(y), δy = ζ(y), δβ = −∂ζ(y)
∂y

β − 2∂ζ
a(y)
∂y

∂+xa , (1.2)

and similarly for the ȳ directions. Here, ζa(y) and ζ(y) are arbitrary functions. Hence
the transformations of the coordinates are examples of the ‘supertranslational’ symmetries
familiar from the BMS asymptotic symmetry algebra of null infinity in asymptotically flat
spacetimes [16–18].

In this paper, we will interpret the symmetries (1.2) as target space isometries, with
the target space geometry provided by an enlarged geometry borrowed from the O(D,D)-
invariant double field theory (DFT) [19–25] description of string theory and supergravity.
This involves a ‘doubled’ geometry usually motivated by a desire to geometrise the O(D,D)
T-duality symmetry of strings.1

In its usual Riemannian parametrisation, DFT combines the D-dimensional non-
degenerate background metric gµν and the B-field Bµν into a 2D-dimensional generalised
metric HAB. However, the latter can also be defined abstractly as follows. We first in-
troduce the O(D,D)-invariant metric JAB, which with its inverse is used to lower and
raise the O(D,D) fundamental indices A,B = 1, . . . , 2D, and which takes an off-diagonal
block form,

JAB =
(

0 1
1 0

)
. (1.3)

With this, the O(D,D) tensor HAB is defined by the relations

HAB = HBA , HACHBDJCD = JAB . (1.4)
1The O(D,D) symmetry also implies the doubling of the target space local Lorentz symmetry, O(1, D−

1) → O(1, D − 1)L × O(1, D − 1)R, with one factor seen by left-movers and the other by right-movers,
see (2.47). Note that we will often have in mind a spacetime dimension D of 26 or 10.

– 2 –



J
H
E
P
0
4
(
2
0
2
1
)
0
7
2

Starting from the above, it is well known how a Riemannian metric gµν and the B-field
Bµν can be recovered [26, 27] — see (2.6). However, DFT works perfectly well given only
the abstract definition of the generalised metric above, and thus is capable of going beyond
the Riemannian paradigm. This was initially noted empirically by acting with O(D,D)
rotations on known solutions as in [28, 29]. By solving the conditions (1.4) in full generality,
a unified description of non-Riemannian parametrisations was then classified in [30]. This
was further studied in for instance [31–33].

As realised in [29], where the Gomis-Ooguri action (1.1) was obtained from a non-
Riemannian generalised metric via a doubled string worldsheet action, these parametrisa-
tions are relevant for the description of non-relativistic strings. Entirely independently of
this link, the latter field has seen much recent activity. Building on earlier works [34, 35]
(see also [36]), the flat space theory (1.1) has been generalised to arbitrary stringy Newton-
Cartan (SNC) backgrounds [14, 37], which distinguish two spacetime directions correspond-
ing to the y and ȳ above. The action (1.1) can be also obtained from a null reduction2 of a
relativistic string, and for general backgrounds this results in a non-relativistic string cou-
pling to torsional Newton-Cartan (TNC) backgrounds, which distinguishes a single time
direction, plus an additional winding direction [39, 40]. The string beta functions have
been computed for both the SNC [14, 41, 42] and TNC [43] non-relativistic strings. Fur-
thermore, their actions have been identified on a classical level [44], suggesting a duality
between SNC and TNC non-relativistic string theories.

The DFT perspective on these models has been further developed in [32, 45–47] and
has recently been comprehensively exploited in [48] to study the background field equa-
tions. This makes the relationship between TNC and SNC more apparent, extending the
identification of these non-relativistic string theories to the quantum level.3

In this work, we present a geometric derivation of the reparametrisation symmetry (1.2) and
generalise it, together with the flat space string action (1.1), to arbitrary non-Riemannian
backgrounds. We first review the ‘doubled geometry’ framework of O(D,D) generalised
geometry or double field theory with its non-Riemannian parametrisations in section 2.1.
The target spacetime local symmetries in DFT are O(D,D) compatible generalised dif-
feomorphisms and lead to doubled Killing equations, which we present in detail for non-
Riemannian geometries in section 2.2.

We will then show in section 2.3 that the infinite-dimensional symmetry (1.2) is in
fact the isometry of a generalised metric. For this, we shall derive all isometries of a
generic constant generalised metric by solving the relevant Killing equations. The solution
is presented in equation (2.33). Besides, we discuss the separate Killing equation for the
generalised dilaton in section 2.4.

We further consider the supersymmetric counterpart of these symmetries, relying on
the supersymmetric extensions of the O(D,D) formalism [21, 49–51], in particular the max-

2An alternative higher-dimensional geometric interpretation of βγ systems was recently studied in [38].
Here null reductions play an important role, suggesting there should be a direct link between this work and
the non-relativistic/non-Riemannian point of view.

3The necessity of and the relation between the various torsion constraints that were employed in the
direct computations of the TNC [43] and SNC [14, 41, 42] string beta functions still remain to be fully
understood. We will come back to these questions and the relation to our work in section 4.
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imally supersymmetric case of [51], by solving the appropriate generalised Killing spinor
equations in section 2.5. As the most general solution for the constant flat non-Riemannian
background, we derive supertranslational supersymmetries, or ‘supersupersymmetries’ for
short, see equation (2.56). Further — as can be expected from the usual results of su-
persymmetry, applied to the DFT case [52, 53] — we verify that the commutator of su-
persupersymmetries generates precisely the supertranslational Killing vector obtained in
previous subsections.

We then review the realisation of these non-Riemannian geometries as the target space-
time background for a string, and show how the infinite-dimensional isometry algebra leads
to an infinite set of Noether symmetries on the worldsheet. This is the focus of section 3.
We conclude with various comments in section 4.

In appendix A we describe our derivation of the most general Killing vector solution for
the flat non-Riemannian background. In appendix B we carry out the same analysis for an
example of a curved non-Riemannian background, namely that considered already in [28].

2 Non-Riemannian geometries and their isometries

In this section, after reviewing the appropriate notion of Lie derivatives in double field
theory (DFT) as well as the Riemannian and non-Riemannian parametrisations of the
DFT metric HAB and dilaton d, we solve the Killing equations for a generic flat non-
Riemannian background. This gives rise to an infinite-dimensional set of isometries, which
are algebraically similar to the supertranslations that arise in the BMS algebra of asymp-
totic symmetries of flat spacetime. We continue to introduce and solve the corresponding
Killing spinor equations on the same flat non-Riemannian background, which leads to a
supersymmetric analog of the supertranslations, or ‘supersupersymmetries’.

2.1 Riemannian and non-Riemannian geometries

The local symmetries compatible with the existence of the O(D,D)-invariant metric (1.3)
are generalised diffeomorphisms. They are generated by generalised vectors ΛA via the
generalised Lie derivative L̂, which acts on a generalised tensor density TA1···An , with
weight ω, as

L̂ΛTA1···An = ΛB∂BTA1···An + ω∂BΛBTA1···An +
n∑
j=1

2∂[AjΛB]TA1···Aj−1
B
Aj+1···An . (2.1)

This definition ensures that L̂ΛJAB = 0, and thus the fundamental O(D,D) structure is
preserved. We mention again that indices are raised and lowered using the metric JAB
and its inverse. The principal O(D,D) tensors that we will encounter are the generalised
metric, HAB, which is weightless, and the generalised dilaton, d, for which the exponential
e−2d has weight one and provides the integral measure in DFT.

In (2.1), we have partial derivatives ∂A with respect to a set of 2D-dimensional coor-
dinates xA. However, the actual coordinate dependence is constrained by the section con-
dition:

J AB∂A∂BO = 0 , J AB∂AO∂BO′ = 0 , (2.2)
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where O,O′ stands for any field or gauge parameter. This ensures that at most half
the coordinates are “physical”, and guarantees that the generalised Lie derivatives form a
closed algebra, [

L̂Λ1 , L̂Λ2

]
= L̂[Λ1,Λ2]C , (2.3)

with the following anti-symmetric bracket

[Λ1,Λ2]AC ≡
1
2
(
L̂Λ1ΛA2 − L̂Λ2ΛA1

)
= ΛB1 ∂BΛA2 − ΛB2 ∂BΛA1 + 1

2ΛB2 ∂AΛ1B −
1
2ΛB1 ∂AΛ2B .

(2.4)
Note that the generalised Lie derivative on vector fields itself is not anti-symmetric,

L̂Λ1ΛA2 = ΛB1 ∂BΛA2 − ΛB2 ∂BΛA1 + ΛB2 ∂AΛ1B , (2.5)

but the bracket (2.4) that arises from its action on other tensor fields is so.
The connection between this doubled formalism and the usual spacetime picture based

on GL(D) diffeomorphisms comes about as follows. In view of the form of the O(D,D)-
invariant metric (1.3), we can decompose the doubled coordinates as xA = (x̃µ, xν), where
µ, ν, . . . denote D-dimensional coordinate indices. Writing out the section condition in this
decomposition, ∂A∂A = ∂µ∂̃

µ + ∂̃µ∂µ = 0, the conventional solution is to take the field
to only depend on the xµ, i.e. ∂̃µ ≡ 0 acting on anything. Writing the generalised vector
ΛA = (λµ, ξν), the generalised Lie derivative then describes the usual Lie derivative, with
respect to the vectorial part, Λµ ≡ ξµ, plus gauge transformations of a two-form potential
B-field, corresponding to the one-form part, Λν ≡ λν .

Alongside this split of coordinates, we have to choose how we parametrise the gener-
alised metric HAB in terms of fields carrying D-dimensional indices, such that the defining
conditions (1.4) are satisfied. Usually, one is led to a D-dimensional (pseudo-)Riemannian
parametrisation which we briefly review below. However, this parametrisation is not the
most general one: the geometric data of DFT, i.e. HAB and d, can in fact also be described
through non-Riemannian variables. We shall illustrate this for the parametrisation corre-
sponding to ‘stringy’ Newton-Cartan geometry and then discuss the most general cases.

Riemannian geometry. The following parametrisation of the generalised metric corre-
sponds to a standard string theory background, in terms of a Riemannian (or Lorentzian)
metric gµν and a two-form Bµν [26, 27]:

HAB =
(

gµν −gµρBρν
Bµρg

ρν gµν −BµρgρσBσν

)
. (2.6)

In addition to HAB, the NS-NS sector is described by the generalised dilaton d, which is
related to the usual dilaton φ by

e−2d = e−2φ
√
|g| . (2.7)

As mentioned previously, and as is clear here, e−2d has unit weight, implying its transforma-
tion under generalised diffeomorphisms to read L̂Λd ≡ −1

2e
2dL̂Λ

(
e−2d) = ΛA∂Ad− 1

2∂AΛA.
These two fields provide the starting point for discussing O(D,D) generalised geometry or
doubled formulations of string theory and supergravity [19–25].
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Non-relativistic geometry (stringy Newton-Cartan). An illustrative example of a
non-Riemannian geometry comes from the ‘stringy’ non-relativistic limit of a Riemannian
geometry leading to stringy Newton-Cartan (SNC) geometry [14, 35, 37, 44]. This geome-
try can be constructed using an expansion of the Riemannian variables in the parametrisa-
tion (2.6) in powers of 1/c2. In this expansion, a time-like and a space-like direction aligned
with the string worldsheet are distinguished, and a divergent term in the B-field flux is
used to compensate the divergence in the Riemannian metric as c→∞. As a result, in the
limit, one ends up with a finite string action and a well-defined notion of SNC geometry.

In double field theory, the SNC limit can be carried out directly in terms of the
Riemannian parametrisation (2.6) of the generalised metric. Exactly this limit was analysed
in section 3.3 of [30]; here we make an explicit connection to the usual SNC variables. We
use M,N to label the “longitudinal” directions along the worldsheet, so that ηMN denotes
the two-dimensional flat metric (with which we will raise and lower longitudinal indices
below) and εMN is the two-dimensional alternating symbol. With that, we perform the
following expansion of the metric, inverse metric and B-field:

gµν = c2ηMNτµ
Mτν

N+H⊥µν+ηMNτµ
Mmν

N+ηMNτν
Mmµ

N+O(c−2) , (2.8)

gµν =H⊥µν+c−2
(
vµM−H⊥µρmρ

P ηMP

)(
vν N−H⊥νσmσ

QηNQ
)
ηMN+c−4Y µν+O(c−6) ,

Bµν =−c2εMN

(
τµ

M+c−2mµ
M
)(
τν

N+c−2mν
N
)

+B̄µν+O(c−2) .

Here, we have parametrised the expansion using the longitudinal vielbein τµ
M and the

degenerate “transverse” metric H⊥µν , along with their projective inverses vµM and H⊥µν ,
which satisfy

τµ
MvµN = δMN , τµ

MH⊥µν = 0 , vµMH
⊥
µν = 0 , H⊥µρH⊥ρν+vµMτνM = δµν . (2.9)

In addition, mµ
M is the stringy Newton-Cartan one-form, and B̄µν are the subleading

components of the B-field. Note that we need to expand the Riemannian metric as well as
its inverse, since they both appear in the generalised metric (2.6). However, the sublead-
ing components in the expansion of gµν can be fixed using the expansion of the identity
gµρg

ρν = δµ
ν . In particular, from this expansion we can extract the longitudinal part of

the quantity Y µν ,

Y µντµ
Mτν

N = −2mµ
(Mv|µ|N) +mρ

MHρσmσ
N . (2.10)

We now consider the non-relativistic c→∞ limit of the Riemannian parametrisation (2.6)
of the generalised metric using the expansion (2.8). All components are finite in this limit,
and after using (2.10) we can write them as

HAB =
(

H⊥µν −H⊥µρB̄ρν + εMNv
µMτν

N

εMNv
νMτµ

N + B̄µρH
⊥ρν H⊥µν − B̄µρH⊥ρσB̄σν + 2εMNv

ρMτ(µ
N B̄ν)ρ

)
. (2.11)

Using the relations (2.9), we now see that the upper left block Hµν = H⊥µν is non-
invertible. As such, we can no longer identify this block with the inverse Riemannian
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spacetime metric, as in the Riemannian parametrisation (2.6). Instead, equation (2.11)
parametrises the generalised metric HAB in terms of a stringy Newton-Cartan geometry,
which is defined by the inverse transverse metric H⊥µν and its longitudinal zero vectors
τµ
M . The latter can be used to define an additional degenerate metric τµν ≡ τµMτνNηMN

on the longitudinal directions. Note that the one-form mµ
M drops out of the generalised

metric completely, in agreement with the analysis of [30, 44]. The SNC parametrisation
can be gauge fixed to recover the TNC parametrisation [44] (the direct embedding of TNC
into DFT was formulated in [46, 47]).

We can then also consider the generalised dilaton, e−2d, which starting from (2.7) in
the Riemannian case is finite in the limit assuming an appropriate expansion of the usual
dilaton φ = φ̄+ ln c [14], leading to

e−2d = e−2φ̄
√

det ′H⊥ , det ′H⊥ ≡ εµ1...µDεν1...νD

(D − 2)! τMµ1 τ
N
µ2τ

P
ν1τ

Q
ν2εMN εPQH

⊥
µ3ν3 . . . H

⊥
µDνD

.

(2.12)
The generalised metric (2.11) and dilaton (2.12) can then be inserted into the action and
equations of motion of DFT4 as well as the doubled string actions. The equations of motion
of DFT can also be obtained [55, 56] as the beta functionals for the doubled sigma models
we consider below (which reproduce those of non-relativistic strings). In particular, this
means that they should be independent of the parametrisation of the generalised metric.
The subtlety that arises, as analysed for general non-Riemannian backgrounds in [32],
is that if one wishes to maintain the non-relativistic parametrisation of the generalised
metric (2.11), one must forbid certain variations (those which would make the block Hµν

again invertible). For SNC, this restriction would lead to one fewer equation of motion than
expected from DFT. A detailed analysis and the comparison to the non-relativistic beta-
functional equations [14, 41–43] has now been carried out in detail by Gallegos, Gürsoy,
Verma and Zinnato [48].

General non-Riemannian geometries. The general classification of non-Riemannian
geometries in DFT, carried out in [30], allows Hµν to have arbitrary rank. Let Hµν = Hµν ,
where Hµν is a symmetric (possibly) degenerate matrix, further introduce Kµν , likewise
symmetric and (possibly) degenerate, and let a basis for the kernels of H and K be given by{
Xi
µ, X̄

ı̄
ν

}
and

{
Y µ
j , Ȳ

ν
̄

}
respectively, such that with i, j = 1, 2, . . . , n and ı̄, ̄ = 1, 2, . . . , n̄

we have

HµνXi
ν = 0 , HµνX̄ ı̄

ν = 0 , KµνY
ν
j = 0 , Kµν Ȳ

ν
̄ = 0 . (2.13)

These obey the following completeness relation,

HµρKρν + Y µ
i X

i
ν + Ȳ µ

ı̄ X̄
ı̄
ν = δµν , (2.14)

4In the absence of other fields, the equations of motion of HAB and d are the vanishing of the generalised
Ricci tensor and generalised Ricci scalar [21]. Unlike in general relativity, these are two independent
equations, however they can be combined by defining a generalised Einstein tensor which obeys a generalised
Bianchi identity and unifies the field equations into a single familiar form, GAB = 8πGTAB [54].

– 7 –
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implying

Y µ
i X

j
µ = δi

j , Ȳ µ
ı̄ X̄

̄
µ = δı̄

̄ , HρµKµνH
νσ = Hρσ ,

Y µ
i X̄

̄
µ = 0 , Ȳ µ

ı̄ X
j
µ = 0 , KρµH

µνKνσ = Kρσ ,
(2.15)

and allow us to write the generalised metric as

HAB =
(

Hµν −HµρBρν + Y µ
i X

i
ν − Ȳ

µ
ı̄ X̄

ı̄
ν

BµρH
ρν +Xi

µY
ν
i − X̄ ı̄

µȲ
ν
ı̄ Kµν −BµρHρσBσν + 2Xi

(µBν)ρY
ρ
i − 2X̄ ı̄

(µBν)ρȲ
ρ
ı̄

)
,

(2.16)
such that the O(D,D) compatibility condition (1.4) is indeed satisfied. Here, as usual, the
B-field is skew-symmetric. The O(D,D) invariant trace is J ABHAB = 2(n− n̄). The gen-
eralised metric (2.16) parametrises an underlying coset [46] given by O(D,D)

O(t+n,s+n)×O(s+n̄,t+n̄) ,
where the signature (−,+, 0) of both Hµν and Kµν is commonly (t, s, n + n̄).5 This coset
has dimension D2 − (n − n̄)2, which matches the number of degrees of freedom in the
infinitesimal fluctuations (i.e. moduli) around the above (n, n̄) background [32].

The usual Riemannian case is included as n = n̄ = 0. Stringy non-relativistic geometry
has n = n̄ = 1. Comparing (2.16) with (2.11), one can immediately identify Kµν = H⊥µν ,
Hµν = H⊥µν , Bµν = B̄µν and τµM , vµM with the zero vectors. For instance, using light-
cone coordinates M = (+,−) we can write τµM = (Xµ, X̄µ), vµM = (Y µ, Ȳ µ) with εMN

and ηMN defined by ε+− = −1, η+− = 1, η++ = η−− = 0. Other examples studied in [30]
include a version of Carroll geometry with n = D − 1, n̄ = 0. However, note that the
(BRST) quantum consistency of the doubled string appears to impose n = n̄ [33].

The generalised dilaton, generalising (2.12), can be written as

e−2d = e−2φ
√
| det ′K| , (2.17)

where

det ′K ≡ εi1...inεı̄1...̄ınε
µ1...µDεj1...jnε̄1...̄n̄ε

ν1...νD

(n!n̄!)2(D − n− n̄)! Xi1
µ1 . . . X

in
µnX̄

ı̄1
µn+1 . . . X̄

ı̄n̄
µn+n̄

×Xj1
ν1 . . . X

jn
νnX̄

̄1
νn+1 . . . X̄

̄n̄
νn+n̄Kµn+n̄+1νn+n̄+1 . . .KµDνD .

(2.18)

At this point, we would like to emphasise that, from the point of view of the Rieman-
nian parametrisation, such non-Riemannian geometries are singular. However, in the
DFT formulation, we can describe them without any problems using the appropriate non-
Riemannian parametrisation of the generalised metric.

Local Lorentz symmetries: GL(n) × GL(n̄) and Milne-shift. The choice of non-
Riemannian parametrisation of the generalised metric (2.16) is not completely rigid. Two
parts of the underlying local Lorentz symmetries, O(t+ n, s+ n)×O(s+ n̄, t+ n̄), can be
seen directly as transformations of the D-dimensional variables appearing in the parametri-
sation of the generalised metric (2.16). These are GL(n)×GL(n̄) rotations and Milne-shift
transformations. Specifically, the GL(n) × GL(n̄) symmetry acts on the unbarred i, j, · · ·

5This sets the signature of the twofold spin groups in DFT to be quite general, not necessarily
Minkowskian, cf. (2.46).
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and barred ı̄, ̄, · · · indices. On the other hand, the Milne-shift symmetry generalises the
‘Galilean boost’ in the Newtonian gravity literature [15, 57] and acts with local parameters,
Vµi and V̄µı̄, as [30]

Y µ
i →Y µ

i +HµνVνi , Ȳ µ
ı̄ → Ȳ µ

ı̄ +Hµν V̄νı̄ , (2.19)
Kµν→Kµν−2Xi

(µKν)ρH
ρσVσi−2X̄ ı̄

(µKν)ρH
ρσV̄σı̄+(Xi

µVρi+X̄ ı̄
µV̄ρı̄)Hρσ(Xi

νVσi+X̄ ı̄
ν V̄σı̄) ,

Bµν→Bµν−2Xi
[µVν]i+2X̄ ı̄

[µV̄ν ]̄ı+2Xi
[µX̄

ı̄
ν]

(
Y ρ
i V̄ρı̄+Ȳ

ρ
ı̄ Vρi+VρiHρσV̄σı̄

)
,

while leaving Hµν , Xi
µ and X̄ ı̄

µ invariant. The generalised dilaton is also invariant: note
then that the determinant, det ′K, appearing in (2.17) is invariant under Milne-shift trans-
formations, but not under GL(n)×GL(n̄) transformations, hence (as the generalised dilaton
d does not transform) the scalar φ transforms under the latter. From the perspective of
double field theory, it is better to think of d as more fundamental than φ. Note that (2.19)
is a finite transformation, and the infinitesimal variation, which we henceforth denote by
δM, amounts to the terms linear in the local parameters. The exponentiation, eδM , trun-
cates at most at the quadratic order as above. These shift symmetries will play a minor
role below.

Constant flat non-Riemannian geometry. The simplest (1, 1) non-relativistic geom-
etry [29] we can consider is that obtained as in [9, 10] by taking the SNC c2 →∞ limit in
flat D-dimensional spacetime. An (n, n̄) extended version of this geometry is given by the
following generalised metric:

HAB =



ηab 0 0 0 0 0
0 0 0 0 δij 0
0 0 0 0 0 −δ ı̄ ̄
0 0 0 ηcd 0 0
0 δk

l 0 0 0 0
0 0 −δk̄ l̄ 0 0 0


, (2.20)

where ηab is the flat (Minkowski) metric of signature (t, s) and we have chosen our coordi-
nates to align with the zero vector directions, thus

xµ = (xa, xi, x̄ı̄) , a = 1, . . . , D − n− n̄ , i = 1, . . . , n , ı̄ = 1, . . . , n̄ . (2.21)

The ‘natural’ choice for the parameterising fields reads, up to GL(n)×GL(n̄) and Milne-
shifts,

Hµν =

η
ab 0 0
0 0 0
0 0 0

 , Kµν =

ηab 0 0
0 0 0
0 0 0

 , Bµν = 0 , (2.22)

Xj
µ = δjµ , X̄ ̄

µ = δ̄µ , Y µ
j = δµj , Ȳ µ

̄ = δµ̄ . (2.23)
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The above generalised metric (2.20) is the natural candidate for “flat”6 non-Riemannian
space. We will next show how this geometry admits an infinite-dimensional family of
isometries.

2.2 Generalised metric Killing equation

The Killing equation for the generalised metric follows from requiring that its generalised
Lie derivative with respect to some particular generalised vector Λ vanishes:

L̂ΛHAB = ΛC∂CHAB + 2∂[AΛC]HCB + 2∂[BΛC]HAC = 0 . (2.24)

For ΛM = (λµ, ξν) and the section condition solution ∂̃µ ≡ 0, the equation (2.24) consists
of three parts:

L̂ΛHµν = LξHµν , L̂ΛHµν = LξHµν + 2∂[µλρ]Hρν ,
L̂ΛHµν = LξHµν + 2∂[µλρ]Hρν + 2∂[νλρ]Hµρ ,

(2.25)

where Lξ denotes the usual D-dimensional Lie derivative. Setting these all equal to zero for
the generic (n, n̄) parametrisation (2.16), one finds the Killing equations can be written as

0 = LξHµν ,

0 = (LξBµρ + 2∂[µλρ])Hρν + Lξ(Xi
µY

ν
i − X̄ ı̄

µȲ
ν
ı̄ ) ,

0 = LξKµν + (LξBµρ + 2∂[µλρ])(Xi
νY

ρ
i − X̄

ı̄
ν Ȳ

ρ
ı̄ ) + (LξBνρ + 2∂[νλρ])(Xi

µY
ρ
i − X̄

ı̄
µȲ

ρ
ı̄ ) .
(2.26)

As the generalised metric is constrained by the relations (2.13), (2.14) and (2.15) obeyed
by the fields appearing in the parametrisation, not all of the equations in (2.26) are in-
dependent. By taking projections with

{
KµρH

ρν , X i
µY

ν
i , X̄

ı̄
µȲ

ν
ı̄

}
, we can obtain the fol-

lowing minimal set of Killing equations which are equivalent to (2.26) (and collectively
GL(n)×GL(n̄), Milne-shift invariant):

HµνLξXi
ν = 0 = HµνLξX̄ ı̄

ν , Ȳ µ
ı̄ LξXi

µ = 0 = Y µ
i LξX̄

ı̄
µ , (2.27)

HµρHνσLξKρσ = 0 , HµρHνσ(LξBρσ + 2∂[ρλσ]) = 0 , Y µ
i Ȳ

ν
ı̄ (LξBµν + 2∂[µλν]) = 0 ,

(2.28)
Y ρ
i H

µσ(LξBρσ + 2∂[ρλσ]) +HµρKρσLξY σ
i = 0 , (2.29)

Ȳ ρ
ı̄ H

µσ(LξBρσ + 2∂[ρλσ])−HµρKρσLξȲ σ
ı̄ = 0 . (2.30)

In the Riemannian case (n, n̄) = (0, 0), whereKµν = gµν is an invertible metric, these imply
the usual conditions that Lξgµν = 0 and LξBµν+2∂[µλν] = 0. In the non-Riemannian case,
such expressions would not be Milne-shift invariant and thus should not be satisfied identi-
cally. Instead, certain of their contractions with Hµν , Y µ

i , Ȳ
µ
ı̄ are constrained as specified

6The doubled formulation does not admit a well-defined notion of a Riemann tensor [58–60]: the only
unambiguous curvature tensors are those appearing in the equations of motion, which vanish if we restrict
to the simplest matter-free bosonic DFT. We call the geometry (2.20) flat since it is constant, hence all cur-
vatures vanish, and it reduces to the (formally doubled description of) Minkowski spacetime for n = n̄ = 0.
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above. (This can be thought of as projecting into different combinations of Riemannian
and non-Riemannian chiral or anti-chiral directions. Note the projections in the Y µ

i Y
ν
j

and Ȳ µ
ı̄ Ȳ

ν
̄ directions of the B-field equation are completely unconstrained.) Similarly, the

projection of the variation LξXi
µ must vanish except in the Y µ

j directions, and so on.
If we define ξi ≡ ξµXi

µ and ξ̄ ı̄ ≡ ξµX̄ ı̄
µ we can write (2.27) as

Hµν∂νξ
i = Hµνξρ(∂νXi

ρ − ∂ρXi
ν) , Hµν∂ν ξ̄

ı̄ = Hµνξρ(∂νX̄ ı̄
ρ − ∂ρX̄ ı̄

ν) ,
Ȳ µ
ı̄ ∂µξ

i = Ȳ µ
ı̄ ξ

ν(∂µXi
ν − ∂νXi

µ) , Y µ
i ∂µξ̄

ı̄ = Y µ
i ξ

ν(∂µX̄ ı̄
ν − ∂νX̄ ı̄

µ) .
(2.31)

The exterior derivatives of the one-forms Xi
µ and X̄ ı̄

µ appearing on the right hand sides
here can be interpreted as intrinsic “torsions” or parts of connections of the undoubled
non-Riemannian geometry [32]. When they are vanishing, one could interpret the above
equations as stating that ξi and ξ̄ ı̄ depend only on the directions specified by Y µ

i and
Ȳ µ
ı̄ , respectively. This will clearly be the situation in the flat non-Riemannian geometry

specified by the generalised metric (2.20). It would be interesting to understand the con-
sequences of these conditions for general curved backgrounds as well as their relation to
the torsion conditions that are connected to SNC [14, 37, 41] and TNC [43] string theory,
see also [48]. For now, we restrict to the flat solution (2.20) and turn to the full solution
to the Killing equations in this particular case.

2.3 Most general solution for flat non-Riemannian geometry: supertransla-
tions

We present the solution to the Killing equations for the constant generalised metric (2.20).
For this, it is natural to parametrise (ξµ, λν) as

ξµ =
(
ξa , ξi , ξ̄ ı̄

)
, λν =

(
λb , λj , λ̄̄

)
, (2.32)

and we solve for these variables that are a priori functions of xc, xk, x̄k̄. The most general
solution is derived in appendix A, and takes the form:

ξa = wabx
b + ζa(xk) + ζ̄a(x̄k̄) , λa = ∂aϕ(xc, xk, x̄k̄) + ζa(xk)− ζ̄a(x̄k̄) ,

ξi = ζi(xk) , λi = ∂iϕ(xc, xk, x̄k̄) + ρi(xk) ,

ξ̄ ı̄ = ζ̄ ı̄(x̄k̄) , λ̄ı̄ = ∂̄ı̄ϕ(xc, xk, x̄k̄) + ρ̄ı̄(x̄k̄) ,

(2.33)

where, as the arguments indicate:

(i) ϕ(xc, xk, x̄k̄) is an arbitrary function of xc, xk, x̄k̄;

(ii) ζa(xk), ζi(xk), and ρi(xk) are arbitrary functions of xk but independent of xc and x̄k̄,
so we refer to ζi(xk) and ρi(xk) as ‘chiral’ reparametrisations, and in analogy with
BMS we refer to ζa(xk) as ‘supertranslations’;

(iii) ζ̄a(x̄k̄), ζ̄ ı̄(x̄k̄), and ρ̄ı̄(x̄k̄) are arbitrary functions of x̄k̄, hence we refer to ζ̄ ı̄(x̄k̄),
ρ̄ı̄(x̄k̄) as ‘anti-chiral’ reparametrisations and ζ̄a(x̄k̄) as supertranslations;

(iv) wab = ηacw
c
b = −wba is a skew-symmetric constant parameter of so(t, s); and
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(v) finally, the scalar parameter, ϕ, amounts to the kernel of the generalised Lie deriva-
tive: contributing to λµ as an exact form ∂µϕ, it vanishes trivially in the generalised
Lie derivative.

For consistency, when (n, n̄) = (0, 0) we recover the usual Poincaré symmetry. In the
cases of (D, 0) or (0, D), corresponding to the two fully O(D,D)-symmetric vacua in DFT
characterised byHAB = ±JAB, the generalised metric Killing equations are trivially solved.
Furthermore, when n = 1 or n̄ = 1, ρi or ρ̄ı̄ can be absorbed into ϕ, and there are no (anti-
)chiral reparametrisations in the dual (tilde) directions. Thus, we put ρi ≡ 0 for n = 1 and
ρ̄ı̄ = 0 for n̄ = 1.

Commutation relation. We write the C-bracket (2.4) as

ΛM3 = [Λ1,Λ2]MC , (2.34)

and note, with ∂̃µ ≡ 0,

ξµ3 = ξν1∂νξ
µ
2 − ξ

ν
2∂νξ

µ
1 ,

λ3µ = ξν1∂νλ2µ − ξν2∂νλ1µ + 1
2ξ

ν
2∂µλ1ν + 1

2λ2ν∂µξ
ν
1 −

1
2ξ

ν
1∂µλ2ν −

1
2λ1ν∂µξ

ν
2 .

(2.35)

The commutator relations between the most general Killing vectors (2.33) give:

ζa3 = ζi1∂iζ
a
2 − wa1bζb2 − ζi2∂iζa1 + wa2bζ

b
1 , ζ̄a3 = ζ̄ ı̄1∂̄ı̄ζ̄

a
2 − wa1bζ̄b2 − ζ̄ ı̄2∂̄ı̄ζ̄a1 + wa2bζ̄

b
1 ,

ζi3 = ζj1∂jζ
i
2 − ζ

j
2∂jζ

i
1 , ζ̄ ı̄3 = ζ̄ ̄1∂̄̄ζ̄

ı̄
2 − ζ̄

̄
2∂̄̄ζ̄

ı̄
1 ,

wa3b = wa2cw
c
1b − wa1cwc2b , (2.36)

and

ρ3i = ζj1∂jρ2i −
1
2ρ1j∂iζ

j
2 −

1
2ζ

j
1∂iρ2j − ζa1∂iζ2a − (1↔ 2) ,

ρ̄3ı̄ = ζ̄ ̄1∂̄̄ρ̄2ı̄ −
1
2 ρ̄1̄∂̄ı̄ζ̄

̄
2 −

1
2 ζ̄

̄
1∂̄ı̄ρ̄2̄ + ζ̄a1 ∂̄ı̄ζ̄2a − (1↔ 2) ,

ϕ3 = 1
2w

a
1bx

b
(
∂aϕ2 − ζ2a + ζ̄2a

)
+ 1

2
(
ζa1 + ζ̄a1

)
∂aϕ2 + 1

2ζ
i
1∂iϕ2 + 1

2 ζ̄
ı̄
1∂̄ı̄ϕ2 − (1↔ 2) .

(2.37)

The corresponding Lie algebra is spelled out below in (3.35).

Non-invariance of parametrisation and local Lorentz. Although the generalised
metric itself — which we stress we wish to view as the fundamental geometric quantity —
is preserved by the Killing vectors, the adopted parametrisation is only invariant under the
ordinary Lie derivative with respect to ξµ up to existing gauge transformations, i.e. the
one-form gauge symmetry of the B-field, GL(n) × GL(n̄) rotations acting on the i and ı̄
indices, and the Milne-shift local symmetry (2.19).

We illustrate this explicitly for the constant generalised metric (2.20). Given the
parametrisation of the spacetime fields as in (2.22) and (2.23), one finds directly from (2.33)
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that while LξHµν = 0, we have

LξKµν = δMKµν , LξBµν + 2∂[µλν] = δMBµν ,

LξXi
µ = aijX

j
µ , LξY µ

i = −aj iY µ
j + δMY

i
µ ,

LξX̄ ı̄
µ = āı̄ ̄X̄

̄
µ , LξȲ µ

ı̄ = −ā̄ ı̄Ȳ µ
̄ + δMȲ

ı̄
µ ,

(2.38)

where
aij ≡ ∂jζi , āı̄ ̄ ≡ ∂̄̄ζ̄ ı̄ , (2.39)

give infinitesimal GL(n) × GL(n̄) rotations, and δM denotes an infinitesimal Milne-shift
with

Vai = −∂iζa , V̄aı̄ = −∂̄ı̄ζ̄a , Vij = ∂iρj , Vı̄̄ = −∂̄ı̄ρ̄̄ . (2.40)

Observe that this accounts for the persistent appearance of the one-form parameter, λµ,
even though there is no B-field apparently present.

2.4 Dilatonic Killing equation

The minimal version of (bosonic) DFT contains in addition to the generalised metric the
generalised dilaton, d, defined such that e−2d is a scalar density of weight one under gen-
eralised diffeomorphisms. The generalised Killing equation for the generalised dilaton is
thus, with ∂̃µ ≡ 0,

L̂Λd = −1
2e

2dL̂Λ
(
e−2d

)
= −1

2e
2d∂µ

(
ξµe−2d

)
= ξµ∂µd−

1
2∂µξ

µ = 0 . (2.41)

This implies for constant d that the Killing vector is divergenceless

∂µξ
µ = ∂aξ

a + ∂iξ
i + ∂̄ı̄ξ̄

ı̄ = ∂iζ
i + ∂̄ı̄ζ̄

ı̄ = 0 . (2.42)

Since ζi(xk) and ζ̄ ı̄(x̄k̄) are distinct functions of unbarred xk and barred x̄k̄, for some
constant c we should have

∂iζ
i = c , ∂̄ı̄ζ̄

ı̄ = −c , (2.43)

and thus, they decompose as

ζi(xk) = ζi0 + c

n
xi + 1

(n− 2)!ε
ijk1···kn−2∂jζk1···kn−2(xk) ,

ζ̄ ı̄(x̄k̄) = ζ̄ ı̄0 −
c

n̄
x̄ı̄ + 1

(n̄− 2)! ε̄
ı̄̄k̄1···k̄n̄−2 ∂̄̄ζk̄1···k̄n−2

(x̄k̄) ,
(2.44)

exhibiting a constant shift, scaling symmetry and a volume-preserving diffeomorphism.
Note that when n = 1 or n̄ = 1 the final terms are absent. We may also note that in the
commutators (2.36) we get

∂iζ
i
3 = 0 , ∂̄ı̄ζ̄

ı̄
3 = 0 , (2.45)

hence the scaling constant c in (2.43) becomes trivial after commutations. Although in
general we have to take these extra conditions into account, in certain situations — such
as at the classical level on the string worldsheet, which we study below — the dilaton does
not appear and we will be able to make use of the full set of the isometries of (2.33).

– 13 –



J
H
E
P
0
4
(
2
0
2
1
)
0
7
2

2.5 DFT Killing spinor equation and supersupersymmetry

In this subsection, we discuss the supersymmetry transformations preserving the con-
stant non-Riemannian background (2.20). The starting point is to consider the coset
parametrised by the generalised metric, which featured the doubled Lorentz group, O(t+
n, s + n) × O(s + n̄, t + n̄),7 where t, s, n, n̄ are fixed numbers, and for which we define
spinors of each factor in the usual manner. The minimal spinor depends on the values of t
and s. The value of (t−s) mod 8 determines what reality conditions can be imposed, while
for t+ s even, we can have Weyl spinors of the (t+ s+ 2n)- and (t+ s+ 2n̄)-dimensional
spin groups.

We will apply results from the known formulations of type II supersymmetric double
field theory, in particular [51] which, having the Minkowskian spin group Spin(1, 9) ×
Spin(9, 1), of course covers the Riemannian type II backgrounds of (t, s, n, n̄) = (1, D −
1, 0, 0) with D = 10, and is also immediately applicable to (t, s, n, n̄) = (0, D − 2, 1, 1)
and thus to non-relativistic strings. Furthermore, by relaxing the Majorana condition
therein and adopting not the Dirac but charge conjugation of spinors, the constructed
supersymmetric double field theory is readily generalised to an arbitrary signature of the
spin group with n = n̄. The invariant metrics of the doubled Lorentz group are then

ηpq =

ηab 0 0
0 −δij 0
0 0 +δij

 , ηab = diag(− − · · · − −︸ ︷︷ ︸
t

+ + · · · + +︸ ︷︷ ︸
s

) ,

η̄p̄q̄ =

η̄āb̄ 0 0
0 +δı̄̄ 0
0 0 −δı̄̄

 , η̄āb̄ = diag(+ + · · · + +︸ ︷︷ ︸
t

− − · · · − −︸ ︷︷ ︸
s

) .

(2.46)

Note that the flat indices p and p̄ have ranges p = 1, 2, . . . , t+s+2n and p̄ = 1, 2, . . . , t+s+
2n̄. Furthermore, we have introduced new indices a, ā = 1, . . . , s+t to run over the common
(s+ t)-dimensional part (Riemannian), and decompose p = (a, i, n+ j) and p̄ = (ā, ı̄, n̄+ ̄).

The bosonic degrees of freedom can then be recast in terms of a pair of DFT-vielbeins
VAp and V̄Ap̄, which square to the orthogonal projectors whose existence is implied by the
defining property of the generalised metric (1.4). Namely:

PAB = 1
2(JAB +HAB) = VApVBqη

pq , P̄AB = 1
2(JAB −HAB) = V̄Ap̄V̄Bq̄η̄

p̄q̄ . (2.47)

Note this means thatHAB = VApVBqη
pq−V̄Ap̄V̄Bq̄η̄p̄q̄ and JAB = VApVBqη

pq+V̄Ap̄V̄Bq̄η̄p̄q̄ are
simultaneously diagonalised by (VAp, V̄Ap̄) with the expected signatures, (η,−η̄) and (η, η̄)
respectively. From identities of arbitrary variations like δVAp = VA

qVB[qδV
B
p] + P̄A

BδVBp
and δV̄Ap̄ = V̄A

q̄V̄B[q̄δV̄
B
p̄] + PA

BδV̄Bp̄ [52], the generalised metric Killing equation (2.24)
implies that the generalised Lie derivatives of the vielbeins vanish only up to certain in-

7Note the signature convention implicit here, which sets the ‘total’ temporal and spatial dimensions, as
for O(D,D), to be the same as D = t+ s+ n+ n̄. It treats the doubled vielbeins VAp and V̄Ap̄ in a ‘fair’
manner and removes minus signs in many formulas, especially in the full order (i.e. quartic) supersymmetric
completion [51].
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finitesimal local Lorentz rotations:

L̂ΛVAp + (VB[pL̂ΛV
B
q])VAq = +1

2V
B
pL̂ΛHAB ≡ 0 ,

L̂ΛV̄Ap̄ + (V̄B[p̄L̂ΛV̄
B
q̄])V̄Aq̄ = −1

2 V̄
B
pL̂ΛHAB ≡ 0 .

(2.48)

An explicit parametrisation of these vielbeins is [30]:

VAp = 1√
2

(
hµp

kµp +Bµνh
ν
p

)
, V̄Ap̄ = 1√

2

(
h̄µp̄

k̄µp̄ +Bµν h̄
ν
p̄

)
, (2.49)

where in order to reproduce the generic (n, n̄) generalised metric (2.16) we let

hµp ≡ (hµa, Y µ
i , Y

µ
i ) , h̄µp̄ ≡

(
h̄µā, Ȳ

µ
ı̄ , Ȳ

µ
ı̄

)
,

kµ
p ≡

(
kµ

a, X i
µ, X

i
µ

)
, k̄µ

p̄ ≡
(
k̄µ

ā, X̄ ı̄
µ, X̄

ı̄
µ

)
.

(2.50)

Here we have Hµν = hµah
ν
bη
ab = −h̄µāh̄ν b̄η̄āb̄ and Kµν = kµ

akν
bηab = −k̄µāk̄ν b̄η̄āb̄ with

ηab, η̄āb̄ given in (2.46). Note also kµahµb = δab and k̄µāh̄µb̄ = δāb̄, while kµahνa +Xi
µY

ν
i +

X̄ ı̄
µȲ

ν
ı̄ = k̄µ

āh̄ν ā +Xi
µY

ν
i + X̄ ı̄

µȲ
ν
ı̄ = δµ

ν .
The fermions in type II supersymmetric double field theory consist of pairs of gravitinos

and dilatinos,
{
ψαp̄ , ψ

′ᾱ
p , ρ

α, ρ′ᾱ
}
, which are all Weyl spinors with appropriate chiralities.8

As the indices indicate, they are spinors for only one of the doubled spin group and singlets
for the other. Furthermore, the gravitinos carry an ‘opposite’ vector index. In a constant
background (with vanishing fermions) the supersymmetry transformations of the fermions
are [51]:

δεψ
α
p̄ = V̄ A

p̄∂Aε
α , δερ

α = −(γp)αβV A
p∂Aε

β ,

δεψ
′ᾱ
p = V A

p∂Aε
′ᾱ , δερ

′ᾱ = −(γ̄p̄)ᾱβ̄V̄
A
p̄∂Aε

′β̄ .
(2.51)

The two sets of gamma matrices, γp = (γa, γi, γn+j), γ̄p̄ = (γ̄ā, γ̄ ı̄, γ̄n̄+̄) realise the Clifford
algebras of Spin(t + n, s + n) and Spin(s + n̄, t + n̄) respectively, so {γp, γq} = 2ηpq and
{γ̄p̄, γ̄ q̄} = 2η̄p̄q̄ with the flat metrics given in (2.46). With the choice of the section, ∂̃µ ≡ 0,
we get V A

p∂A = 1√
2h

µ
p∂µ and V̄ A

p̄∂A = 1√
2 h̄

µ
p̄∂µ.

Now, specifically for the constant flat (n, n̄) generalised metric (2.20) with the coordi-
nates, xµ = (xa, xi, x̄ı̄) (2.21) and Bµν = 0, we can take

hµa = δµa , h̄µā = δµā , Y µ
i = δµi , Ȳ µ

ı̄ = δµı̄

kµ
a = δaµ , k̄µ

ā = δāµ , X i
µ = δiµ , X̄ ı̄

µ = δ ı̄µ ,
(2.52)

and identify the flat indices a ≡ ā via a compensating O(t, s) Lorentz rotation.9 Setting
the variations (2.51) to zero we find from the variations of the gravitini the conditions that

∂aε = ∂̄ı̄ε = 0 , ∂aε
′ = ∂iε

′ = 0 . (2.53)
8Since Spin(t+n, s+n) and Spin(s+n̄, t+n̄) are independent, the comparison between the corresponding

chiralities is meaningless. It is the paired vielbeins, VAp, VAp̄, that distinguish type IIA and IIB [51] (see
footnote 9).

9Depending on the determinant of this transformation, or the sign of det(kµah̄µā) = ±1, we may
distinguish two distinct classes of backgrounds, as the compensating Lorentz rotation is generically Pin
rather than Spin. This generalises the usual distinction of type IIA and IIB of the Riemannian case to the
non-Riemannian case.
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Then, from the variation of the dilatini we have the requirement

γi+∂iε = 0 , γ̄ ı̄+∂̄ı̄ε
′ = 0 , (2.54)

where we set γi+ = γi + γn+i and γ̄ ı̄+ = γ̄ ı̄ + γ̄n̄+ı̄ which satisfy

γi+γ
j
+ + γj+γ

i
+ = 0 ,

(
γi+∂i

)2 = 0 , γ̄ ı̄+γ̄
̄
+ + γ̄ ̄+γ̄

ı̄
+ = 0 ,

(
γ̄ ı̄+∂̄ı̄

)2
= 0 .
(2.55)

Thus, in the poly-form representation of spinors, γi+ and γi+∂i correspond to the coordi-
nate basis of one-forms dxi and the exterior derivative d = dxi∂i (similarly γ̄ ı̄+ → dx̄ı̄).
Then from the Poincaré lemma, the supersymmetric condition of (2.54) implies that the
supersymmetric parameters are ‘closed’ forms, and locally ‘exact’ except the lowest zero-
form which should be simply constant. In conclusion, the most general (at least locally10)
solution to the Killing spinor equations (2.51) is

ε = (γj + γn+j)∂jχ(xk) + ε , ε′ = (γ̄ ̄ + γ̄n̄+̄)∂̄̄χ̄(x̄k̄) + ε′ , (2.56)

where χ(xk) and χ̄(x̄k̄) are spinors with the opposite chiralities to ε and ε′ respectively,
and arbitrarily (or supertranslationally) depend on xk and x̄k̄. Furthermore, ε and ε′ are
constant spinors which survive in the Riemannian (0, 0) case.

In the particular case of (n, n̄) = (1, 1) with D = 10, the derivatives in (2.56) are
redundant. The indices i and ı̄ cover only a single value, and so if we write11

γp ≡ (γa, γ0, γ1) , γ̄p̄ ≡ (γ̄a, γ̄0̄, γ̄1̄) , (2.57)

then the general solution can be written

ε = (γ0 + γ1)χ(y) + ε , ε′ = (γ̄0̄ + γ̄1̄)χ′(ȳ) + ε′ . (2.58)

where y = x1 and ȳ = x̄1 denote the coordinates corresponding to the n = 1 and n̄ = 1
directions respectively.

The commutator of two SUSY transformations generates — among other local sym-
metries [51] — a DFT diffeomorphism with parameter

ΛA = iε̄′2V̄
A
p̄γ̄
p̄ε′1 + iε̄2V

A
pγ
pε1 , (2.59)

where ε̄ = εTC and ε̄′ = ε′T C̄ are charge conjugations.12 This is then easily computed
for (2.58). For the different spinor bilinears that appear, let us set

ca ≡ i√
2
ε̄2γ

aε1 , c̄a ≡ i√
2
ε̄′2γ̄

aε′1 , cy ≡ i√
2
ε̄2(γ0 + γ1)ε1 , c̄ȳ ≡ i√

2
ε̄′2(γ̄0̄ + γ̄1̄)ε′1 ,

(2.60)
10Global solutions with nontrival cohomology would be of interest but are beyond the scope of the

present work.
11Given the form of the flat metrics in (2.46), here we have −(γ0)2 = (γ1)2 = 1, γ0γ1 = −γ1γ0, while

(γ̄0̄)2 = −(γ̄1̄)2 = 1, γ̄0̄γ̄1̄ = −γ̄1̄γ̄0̄. Let us also note that with the assumed identification of a ≡ ā, we set
γa ≡ δabγb and γ̄a ≡ δabγ̄b. (This introduces a minus sign in certain expressions owing to the fact that the
barred flat metric has components η̄āb̄ = −δāb̄ = −δab .)

12The charge conjugation matrices are all symmetric, C = CT , C̄ = C̄T , and satisfy (γp)T = CγpC−1,
(γ̄p̄)T = C̄γ̄p̄C̄−1, hence γpε = ε̄γp, γ̄p̄ε′ = ε̄′γ̄p̄. For further details, see appendix of [61].
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ζa(y) ≡ i√
2

[
ε̄2γ

a(γ0 + γ1)χ1(y)− χ̄2(y)γa(γ0 + γ1)ε1
]
,

ζ̄a(ȳ) ≡ i√
2

[
ε̄′2γ̄

a(γ̄0̄ + γ̄1̄)χ′1(ȳ)− χ̄′2(ȳ)γ̄a(γ̄0̄ + γ̄1̄)ε′1
]
.

(2.61)

Then on inserting (2.58) into (2.59), writing as before ΛA = (λµ, ξν), one finds firstly that

ξa = εa + ε̄a + ζa(y) + ζ̄a(ȳ) , λa = εa − ε̄a + ζa(y)− ζ̄a(ȳ) , (2.62)

which is exactly in agreement with the form of (2.33) (on absorbing the constant parts εa,
ε̄a into ζa, ζ̄a). We further have

ξy = cy , ξȳ = c̄ȳ , (2.63)

which are constant shifts in the y and ȳ directions rather than shifts by arbitrary functions
of y and ȳ, however this is to be expected as we have made use of the Killing spinor
equations for not only the gravitinos but also the dilatinos, and we already know that
including the dilaton as in section 2.4 restricts the solutions as in (2.44) (here only the
constant shift part is generated). Finally, we have

λy = −i√
2
ε̄2(γ0 − γ1)ε1 (2.64)

+
√

2i
(
ε̄2(1− γ0γ1)χ1(y) + χ̄2(y)(1 + γ0γ1)ε1 + 2χ̄2(y)(γ0 + γ1)χ1(y)

)
,

λȳ = i√
2
ε̄′2(γ̄0̄ − γ̄1̄)ε′1 (2.65)

+
√

2i
(
ε̄′2(1 + γ̄0̄γ̄1̄)χ′1(ȳ) + χ̄′2(ȳ)(1− γ̄0̄γ̄1̄)ε′1 + 2χ̄′2(ȳ)(γ̄0̄ + γ̄1̄)χ′1(ȳ)

)
,

which again agrees with (2.33).

3 Sigma models and worldsheet Noether charges

We now turn our attention to the description of strings whose target spacetime is described
by a generalised metric corresponding to a non-Riemannian geometry. This has already
been considered in general in [30, 33] for the bosonic string, and in more specific super-
symmetric cases in [45, 47]. Here we review the general bosonic case in order to extract
expressions for the conserved worldsheet Noether charges induced by the doubled target
spacetime Killing isometries. We also make some remarks regarding general features of
these models, and argue that they generalise the worldsheet action of stringy Newton-
Cartan (SNC) non-relativistic strings to arbitrary non-Riemannian backgrounds.

3.1 Sigma model in general background

The doubled O(D,D)-symmetric sigma model string action that we use is [23, 28, 62]

SDWS = −T2

∫
d2σ

1
2
√
−hhαβHABDαx

ADβx
B + εαβJABDαx

AABβ . (3.1)
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Here, hαβ is the worldsheet metric, and εαβ is the worldsheet alternating symbol with
ε01 = 1 (a useful relation is εαγεβδhγδ = (deth)hαβ). This is an action for a set
xA = (x̃µ, xν) of 2D worldsheet scalars that we treat as doubled target space coordinates.
Due to the section condition (2.2), the background generalised metric is independent of
half the doubled coordinates xA. These “unphysical” coordinates therefore appear in the
action (3.1) solely through their worldsheet derivatives, and in fact come with a shift sym-
metry. As was argued in [63]13 we can gauge this symmetry, which in the worldsheet
action [23, 28, 62] allows us to eliminate half of the doubled coordinates from the action.
To this end, we introduce a worldsheet one-form AA, which we take to satisfy a gaug-
ing constraint AA ∂A = 0. This is present in the action (3.1) through the combination
DxA = dxA−AA (note DxA ≡ dσαDαx

A), and AA is required to transform such that DxA

is invariant under the shift symmetry of the unphysical coordinates. To realise isometries
of the spacetime as Noether symmetries of the worldsheet, AA is also required to transform
under generalised diffeomorphisms, along with xA [28]:

δΛx
A = ΛA , δΛAA = DxB∂AΛB . (3.2)

As a result, we have δΛ(dxA) = dxB∂BΛA, δΛ(DxA) = DxB(∂BΛA − ∂AΛB), and hence
the transformation of the action (3.1) is, with δΛHAB = ΛC∂CHAB (as HAB is regarded
on the worldsheet merely as a set of functions depending on the worldsheet coordinates),

δΛSDWS = −T2

∫
d2σ

1
2
√
−hhαβ(L̂ΛHAB)Dαx

ADβx
B + ∂α(εαβΛA∂βxA) . (3.3)

In particular, if Λ is a generalised Killing vector, we get a symmetry of the action up to
total derivatives, and Noether’s theorem implies the following current is on-shell conserved:

J αΛ = T

2 ΛA
(
εαβDβxA −

√
−hhαβHABDβx

B
)
. (3.4)

Coupled to the (parametrisation independent) generalised metric, the above sigma
model (3.1) can describe a number of different target space geometries. To interpret these
in D-dimensional terms, we solve the section condition as ∂̃µ ≡ 0 acting on fields, which
implies AA = (Ãµ, 0), δΛ(dxµ) = dxν∂νξµ, δΛ(Dx̃µ) = −∂µξνDx̃ν − 2∂[µλν]dxν , and spon-
taneously breaks the formal O(D,D) invariance of the action. Integrating out the non-zero
components Ãµ then has the effect of “undoubling” the string action. Let us describe this
explicitly for Riemannian and non-Riemannian cases.

Riemannian geometry. Suppose the generalised metric is described by the (0, 0)
parametrisation (2.6), describing a Riemannian metric and a B-field. In this case, the
worldsheet gauge field AAα appears quadratically in the action and can be completely inte-
grated out, leading to the constraint,

Dαx̃µ = − 1√
−h

hαβε
βγgµν∂γx

ν +Bµν∂αx
ν , (3.5)

13In [63], the section condition (2.2) was interpreted as gauging the doubled coordinates by imposing an
equivalence relation: xA ∼ xA + ∆A where ∆A∂A = 0.
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and (after eliminating a total derivative14) the usual (Riemannian) string action:

SDWS
eliminate x̃
−−−−−−−→ S = T

2

∫
d2σ −

√
−hhαβgµν∂αxµ∂βxν + εαβBµν∂αx

µ∂βx
ν . (3.6)

Stringy Newton-Cartan. If we consider the generalised metric (2.11) describing stringy
Newton-Cartan, then the block Hµν is non-invertible. As a result, one cannot integrate out
all components of AA from the sigma model action. Instead, we can use the completeness
relation (2.9) to write Ãµ as a sum of a piece orthogonal to vµM and a piece proportional
to vµM . We can integrate out the former. (The calculation is essentially identical to the
more general case below, for which we will present more details.) The result is the Polyakov
action for SNC [37, 44]:

SDWS
eliminate x̃
−−−−−−−→ SSNC = T

2

∫
d2σ −

√
−hhαβH⊥µν∂αxµ∂βxν + εαβB̄µν∂αx

µ∂βx
ν

+ βα
M(−√−hhαβεMN − εαβηMN

)
τµ
N∂βx

µ ,

(3.7)

where the surviving components of AAα appear in the combination

βα
M ≡ vµM (Dαx̃µ − B̄µν∂αxν) , (3.8)

which we can treat as an independent worldsheet field. We can rewrite this after split-
ting the longitudinal coordinates as M = (+,−) with ε+− = −1, η+− = 1, η++ = η−− = 0.
Then

SSNC = T

2

∫
d2σ −

√
−hhαβH⊥µν∂αxµ∂βxν + εαβB̄µν∂αx

µ∂βx
ν

+ βα
−(−
√
−hhαβ − εαβ)τµ+∂βx

µ − βα+(−
√
−hhαβ + εαβ)τµ−∂βxµ ,

(3.9)

which exhibits a split into chiral and anti-chiral directions. At this point, we may note
that there is a freedom to perform field redefinitions of the β fields, along the lines of those
discussed in [44].

Another route to stringy non-relativistic geometries involves T-dualising along a null
isometry direction, leading to strings in torsional Newton-Cartan geometry [39, 40]. Al-
though this would naively be singular using the usual Buscher prescription, such T-duality
transformations act on the generalised metric simply as a permutation of its components,
and lead in the case of a transformation along a null isometry direction to a generalised
metric for which Hµν is degenerate. A dictionary between SNC and TNC parametrisations
was worked out in [44], and the generalised metric parametrisations described in detail
in [46, 47].

Non-Riemannian geometries. For the doubled sigma model (3.1) corresponding to
a string in a general (n, n̄) non-Riemannian geometry, we wish to integrate out the dual
coordinates using the equation of motion for Ãµ. To this end, it is convenient to first define
the combination

Pαµ ≡ ∂αx̃µ − Ãαµ −Bµν∂αxν . (3.10)
14Possibly through a gauge fixing [33].
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This turns out to be (on-shell) directly related to the momentum current of the undoubled
sigma model, hence the notation Pαµ. For an (n, n̄) parametrisation, we expand this using
the completeness relation (2.14) and thus define Pαµ = Παµ +Xi

µβαi − X̄ ı̄
µβ̄αı̄ with

Παµ ≡ KµρH
ρνPαν , βαi ≡ Y µ

i Pαµ , β̄αı̄ ≡ −Ȳ µ
ı̄ Pαµ , (3.11)

where the minus sign in the final definition is for convenience. The doubled sigma model
action becomes:

SDWS = T

2

∫
d2σ −

√
−hhαβKµν∂αx

µ∂βx
ν +εαβBµν∂αx

µ∂βx
ν (3.12)

+βαiX
i
µ

(
−
√
−hhαβ∂βxµ−εαβ∂βxµ

)
+ β̄αı̄X̄

ı̄
µ

(
−
√
−hhαβ∂βxµ+εαβ∂βx

µ
)

− 1
2
√
−hhαβHµν

(
Παµ+ 1√

−h
hαγε

γδKµρ∂δx
ρ
)(

Πβν + 1√
−h

hβγ′ε
γ′δ′Kνσ∂δ′x

σ
)
.

From the final line, we have the equation of motion for Παµ,

HµνDαx̃ν = − 1√
−h

hαγε
γδHµνKνρ∂δx

ρ +HµνBνρ∂αx
ρ , (3.13)

which determines D − n − n̄ of the combinations Dαx̃µ = ∂αx̃µ − Ãαµ in terms of the
physical coordinates xµ. The remaining n+ n̄ dual coordinates appear via the “Lagrange
multipliers” βαi and β̄αı̄, which give as their equations of motion the chirality/anti-chirality
constraints [30]:

Xi
µ

(√
−hhαβ∂βxµ + εαβ∂βx

µ
)

= 0 , X̄ ı̄
µ

(√
−hhαβ∂βxµ − εαβ∂βxµ

)
= 0 , (3.14)

for the directions picked out by the zero vectors Xi
µ and X̄ ı̄

µ of the degenerate matrix Hµν .
If we eliminate Παµ from the action (3.12) via the equation of motion (3.13) we arrive at

the analogue of the SNC action for an (n, n̄) geometry, SDWS
eliminate Π
−−−−−−−→ S(n,n̄), which is

obviously given by (3.12) with the final line set to zero on imposing (3.13), that is: [30]

S(n,n̄) = T

2

∫
d2σ −

√
−hhαβKµν∂αx

µ∂βx
ν + εαβBµν∂αx

µ∂βx
ν (3.15)

+ βαiX
i
µ

(
−
√
−hhαβ∂βxµ − εαβ∂βxµ

)
+ β̄αı̄X̄

ı̄
µ

(
−
√
−hhαβ∂βxµ + εαβ∂βx

µ
)
.

Generalised dilaton coupling. For completeness, we may also comment on the cou-
pling to the generalised dilaton, which is via the natural Fradkin-Tseytlin term,

SFT = 1
4π

∫
d2σ
√
−hR[h]d . (3.16)

When we integrate out the components Παµ in the path integral, we generate the usual
1-loop dilaton shift, d→ d− 1

4 log det′(Hµν), where we take a determinant after projecting
to the D−n− n̄ non-degenerate directions of Hµν . This cancels with the primed determi-
nant in (2.17) and leaves the usual Fradkin-Tseytlin term involving the scalar φ appearing
in (2.17).

For the discussion of isometries which will we come to below, if we focus purely on the
classical worldsheet, we only see the coupling to the generalised metric and hence only the
Killing equations for the generalised metric (2.24) are required, and then the full set of the
infinite-dimensional symmetries (2.33) will appear.
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Milne-shift invariance for the undoubled string action (3.15). Recall that the
choice of spacetime parametrisation is not determined uniquely, but can be changed via
the Milne-shift transformations (2.19). The Gaussian integral of Παµ is not a Milne-shift
invariant procedure: the on-shell relation (3.13) is not Milne-shift invariant, neither is the
last line of the action (3.12). However, it is on-shell invariant up to the chirality/anti-
chirality relations (3.14) which are the equations of motion of βαi and β̄αı̄. This means
that starting with the reduced action (3.15) the variation of the Kµν and Bµν couplings
therein vanishes on using these equations of motion, i.e. after imposing all the equations
of motion of Ãαµ the Milne-shift invariance is restored on-shell. Alternatively, since the
variation of Kµν and Bµν produces terms proportional to the equations of motions of βαi
and β̄αı̄, this variation can be cancelled off-shell if in addition to the Milne variations of
Kµν and Bµν (2.19), we let the Lagrange multipliers transform as

βαi → βαi + 1
2

(
∂αx

µ − 1√
−h

hαβε
βγ∂γx

µ
)

×
[
2(KH)µρVρi + 2Vρ[iY

ρ
j]X

j
µ − VρiHρσ(VσjXj

µ + V̄σ̄X̄
̄
µ)
]
,

β̄αı̄ → β̄αı̄ + 1
2

(
∂αx

µ + 1√
−h

hαβε
βγ∂γx

µ
)

×
[
2(KH)µρV̄ρı̄ + 2V̄ρ[̄ıȲ

ρ
̄] X̄

̄
µ − V̄ρı̄Hρσ(VσjXj

µ + V̄σ̄X̄
̄
µ)
]
.

(3.17)

This is not merely the transformation induced by the use of the parametrisation in the
definition of βαi and β̄αı̄ in terms, but can be viewed as a ‘compensating’ transformation
rule for the Lagrange multipliers.15 Like other Milne transformations of the component
fields (2.19), the linear terms in the parameters, Vµi, V̄νı̄, correspond to the infinitesimal
Milne-shift, δM, and the above is the finite transformation generated by the exponenti-
ation, eδM , which terminates at the quadratic order. To summarise, while the doubled
sigma model of the generalised metric (3.1) is trivially invariant under the Milne transfor-
mations, the reduced undoubled action (3.15) which is free of the dual coordinates, x̃µ, is
so provided (3.17) is taken.

3.2 Sigma model in flat non-Riemannian geometry

Let us now specialise to the flat (n, n̄) background with coordinates xµ = (xa, xi, x̄ı̄) and
the generalised metric (2.20). In this case, after integrating out the dual coordinates x̃a,
the sigma model reads:

SFlat (n,n̄) = T

2

∫
d2σ −

√
−hhαβηab∂αxa∂βxb

+ βαi
(
−
√
−hhαβ − εαβ

)
∂βx

i + β̄αı̄
(
−
√
−hhαβ + εαβ

)
∂βx̄

ı̄ .
(3.18)

15Ãαµ must transform within (3.10), (3.11) in order to produce (3.17).
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In conformal gauge,
√
−hh00 = −1 = −

√
−hh11,

√
−hh01 = 0, ε01 = 1, we can define16

βi ≡ β0i + β1i, β̄ı̄ ≡ β̄0ı̄ − β̄1ı̄ and with ∂± = ∂0 ± ∂1 the action becomes17

SFlat (n,n̄) = T

2

∫
d2σ ηab∂−x

a∂+x
b + βi∂−x

i + β̄ı̄∂+x̄
ı̄ , (3.19)

and so exactly generalises the Gomis-Ooguri action (1.1), and therefore admits n + n̄

copies of the infinite-dimensional symmetry (1.2) described in the Introduction. Now we
demonstrate that this is induced by the supertranslational isometries of the generalised
metric (2.20) that we derived in the previous section.

To show this, we first discuss the transformation properties of the Lagrange multi-
plier fields, β, β̄. Recalling their definitions (3.10), (3.11), we directly obtain from the
transformations (3.2) that

δΛPαµ = −∂µξνPαν − (LξBµν + 2∂[µλν])∂αxν ,
δΛβαi = LξY µ

i Pαµ − Y
µ
i (LξBµν + 2∂[µλν])∂αxν ,

δΛβ̄αı̄ = −LξȲ µ
ı̄ Pαµ + Ȳ µ

ı̄ (LξBµν + 2∂[µλν])∂αxν ,
(3.20)

where we see the induced transformations (via the ordinary Lie deriva-
tive Lξ) of the background fields, Y µ

i , Ȳ
µ
ı̄ , Bµν , though a priori

δΛY
µ
i = ξλ∂λY

µ
i , δΛȲ

µ
ı̄ = ξλ∂λȲ

µ
ı̄ , δΛBµν = ξλ∂λBµν . In a Riemannian setting, the

Lie derivatives would vanish when (λµ, ξν) correspond to an isometry. However, as
discussed in section 2, the transformations of Y µ

i , Ȳ
µ
ı̄ and Bµν will only vanish up to

Milne-shift and GL(n)×GL(n̄) rotations, reflecting the local Lorentz ambiguities inherent
in the (n, n̄) parametrisation. Hence we have the non-trivial transformations of βαi and
β̄αı̄ as in (3.20).

For the supertranslational Killing vectors (2.33), with the on-shell value of the dual
coordinates from (3.13), Dαx̃a ≡ − 1√

−hhαγε
γβ∂βxa, the general expressions (3.20) give

δΛβαi = −∂iζa
(
∂αxa −

1√
−h

hαγε
γβ∂βxa

)
− ∂iζjβαj − 2∂[iρj]∂αx

j ,

δΛβ̄αı̄ = −∂̄ı̄ζ̄a
(
∂αxa + 1√

−h
hαγε

γβ∂βxa

)
− ∂̄ı̄ζ̄ ̄β̄ᾱ + 2∂̄[̄ıρ̄̄]∂αx̄

̄ .

(3.21)

One can then check that the (undoubled) action (3.18) is invariant under the transfor-
mations (3.21) along with the supertranslational Killing vector shifts δΛx

µ = ξµ of the
coordinates (2.33), up to a total derivative

δΛSFlat (n,n̄) = −T
∫
d2σεαβ∂α

(
ρj∂βx

j + ρ̄̄∂βx̄
̄ + (ζa − ζ̄a)∂βxa

)
(3.22)

= −T
∫
d2σεαβ∂α(λµ∂βxµ) . (3.23)

16The other combinations, β0i − β1i, β̄0ı̄ + β̄1ı̄, are decoupled and can be gauged away through BRST
quantisation [33].

17Without the compensating transformations (3.17), the effect of a Milne-shift is to generate a term of
the form −T2

∫
d2σ∂−x

i∂+x̄
ı̄Ciı̄. For n = n̄ = 1 this corresponds to a “chemical potential” for winding

strings discussed in e.g. [29], taken to be constant in [9].
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In particular, when n = n̄ = 1, writing the coordinates as xµ = (xa, y, ȳ) and using the
conformal gauge components, β ≡ β0 + β̄1 and β̄ ≡ β̄0 − β̄1, the expressions (3.21) become

δΛβ = −∂ζ(y)
∂y

β − 2∂ζ
a(y)
∂y

∂+xa , δΛβ̄ = −∂ζ̄(ȳ)
∂ȳ

β̄ − 2∂ζ̄
a(ȳ)
∂ȳ

∂−xa . (3.24)

Indeed, this is exactly the transformation (1.2) we discussed in the Introduction, in full
agreement with [13, 14].

3.3 String charges and algebra

Noether charges. We evaluate the Noether current (3.4) in the (n, n̄) parametrisation.
Let ΛA = (λµ, ξν). Using the equations of motion (3.13) and (3.14) we have explicitly

J αΛ = Tεαβλµ∂βx
µ + Tξµ

(
−
√
−hhαβKµν∂βx

ν + εαβBµν∂βx
ν
)

+ Tξµ
[1

2X
i
µ(−
√
−hhαβ + εαβ)ββi + 1

2X̄
ı̄
µ(−
√
−hhαβ − εαβ)β̄βı̄

]
.

(3.25)

For the flat space Killing vector solution (2.33), this Noether current (3.25) becomes

1
T
J αΛ = εαβ

(
∂βϕ+ ρi(xk)∂βxi + ρ̄ı̄(x̄k̄)∂βx̄ı̄

)
− ωabxb

√
−hhαβ∂βxa

+ ζa(xk)
(
−
√
−hhαβ + εαβ

)
∂βx

a + ζ̄a(x̄k̄)
(
−
√
−hhαβ − εαβ

)
∂βx

a

+ 1
2ζ

i(xk)(−
√
−hhαβ + εαβ)ββi + 1

2 ζ̄
ı̄(x̄k̄)

(
−
√
−hhαβ − εαβ

)
β̄βı̄ .

(3.26)

Note that through the projections with −
√
−hhαβ ± εαβ , the Noether currents associated

to ζa, ζi and ζ̄a, ζ̄ ı̄ are chiral and anti-chiral, respectively, on the worldsheet.
We define a conserved charge, QΛ ≡

∮
dσJ 0

Λ . In conformal gauge, this reads

QΛ =
∮ [

ωabp
[axb] + ζa(xk)(pa + Tx′a) + ζ̄a(x̄k̄)(pa − Tx′a) + ζi(xk)pi + ζ̄ ı̄(x̄k̄)p̄ı̄

+ T
(
ϕ′ + ρi(xk)x′i + ρ̄ı̄(x̄k̄)x̄′̄ı

) ]
,

(3.27)

where we substituted for the momenta conjugate to xa, xi and x̄ı̄,

pa ≡ T ẋa ≡ Tηabẋb , pi ≡
T

2 βi , p̄ı̄ ≡
T

2 β̄ı̄ . (3.28)

Henceforth we set T = 1 for convenience.

Algebra. From the charge (3.27), we can extract the generators of the isometry algebra:
for the usual Lorentz rotations,

Mab =
∫

dσ paxb − pbxa , (3.29)
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and for the supertranslations,18

P
~l
a =

∫
dσ (x1)l1(x2)l2 · · ·(xn)ln(pa+x′bηba) , P̄

~̄l
a =

∫
dσ (x̄1)l̄1(x̄2)l̄2 · · ·(x̄n̄)l̄n̄(pa−x′bηba) ,

P
~l
i =

∫
dσ (x1)l1(x2)l2 · · ·(xn)lnpi , P̄

~̄l
ı̄ =

∫
dσ (x̄1)l̄1(x̄2)l̄2 · · ·(x̄n̄)l̄n̄ p̄ı̄ , (3.30)

Ri~l =
∫

dσ (x1)l1(x2)l2 · · ·(xn)lnx′i , R̄ı̄~̄l
=
∫

dσ (x̄1)l̄1(x̄2)l̄2 · · ·(x̄n̄)l̄n̄ x̄′̄ı ,

where we set n-dimensional and n̄-dimensional vector notations,

~l = (l1, l2, · · · , ln) , ~̄l = (l̄1, l̄2, · · · , l̄n̄) , (3.31)

and let the components, li’s, l̄ı̄’s, be non-negative integers. If any of them is negative, the
corresponding generator vanishes. To write the commutators it is convenient to introduce
unit vectors, ı̂, ˆ̄ı, ̂, ˆ̄, k̂, ˆ̄k, such that for example,

~l − ı̂ = (l1, · · · , li − 1, · · · , ln) , ~̄m− ˆ̄k = (m̄1, · · · , m̄k̄ − 1, · · · , m̄n̄) . (3.32)

Using this notation, the nontrivial commutation relations are:

1
i

[
Mab , Mcd

]
= ηcbMad−ηcaMbd+ηdbMca−ηdaMcb , (3.33)

1
i

[
Mab , P

~l
c

]
= ηcbP

~l
a−ηcaP

~l
b ,

1
i

[
Mab , P̄

~̄l
c

]
= ηcbP̄

~̄l
a−ηcaP̄

~̄l
b ,

1
i

[
P
~l
a , P

~m
b

]
=

n∑
k=1

ηab(mk−lk)Rk~l+~m−k̂ ,
1
i

[
P̄
~̄l
a , P̄

~̄m
b

]
=

n̄∑
k̄=1

ηab(l̄k̄−m̄k̄)R̄
k̄
~̄l+ ~̄m−ˆ̄k

,

1
i

[
P
~l
a , P

~m
i

]
= liP

~l+~m−ı̂
a ,

1
i

[
P̄
~̄l
a , P̄

~̄m
ı̄

]
= l̄ı̄P̄

~̄l+ ~̄m−ˆ̄ı
a ,

1
i

[
P
~l
i , P

~m
j

]
=−miP

~l+~m−ı̂
j +ljP

~l+~m−̂
i ,

1
i

[
P̄
~̄l
ı̄ , P̄

~̄m
̄

]
=−m̄ı̄P̄

~̄l+ ~̄m−ˆ̄ı
̄ + l̄̄P̄

~̄l+ ~̄m−ˆ̄
ı̄ ,

(3.34)

1
i

[
P
~l
i , R

j
~m

]
=−miR

j
~l+~m−ı̂

+
n∑
k=1

δ j
i mkR

k
~l+~m−k̂ ,

1
i

[
P̄
~̄l
ı̄ , R̄

̄
~̄m

]
=−m̄ı̄R̄

̄
~̄l+ ~̄m−ˆ̄ı

+
n̄∑
k̄=1

δ ̄
ı̄ m̄k̄R̄

k̄
~̄l+ ~̄m−ˆ̄k

.

(3.35)

All other commutators are trivial. In particular, the chiral (unbarred) and the anti-chiral
(barred) supertranslational generators commute: suppressing indices,[

P , P̄
]

= 0 ,
[
P , R̄

]
= 0 ,

[
R , P̄

]
= 0 ,

[
R , R̄

]
= 0 . (3.36)

It is worthwhile to note
n∑
k=1

lkR
k
~l−k̂ = 0 ,

n̄∑
k̄=1

l̄k̄R̄
k̄
~̄l−ˆ̄k

= 0 , (3.37)

18Imposing (2.43), both P~li and P̄
~̄l
ı̄ may be subject to further constraints which can be easily implemented.
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since these correspond to the integrals of total derivatives. We then have identities like
n∑
k=1

mkR
k
~l+~m−k̂ =

n∑
k=1

1
2(mk − lk)Rk~l+~m−k̂ , (3.38)

and can verify the consistency between (2.37) and (3.35). Furthermore, with ~0 =
(0, 0, · · · , 0), we note P~0a and P̄~0a coincide,19

P
~0
a = P̄

~0
a =

∫
dσ pa , (3.39)

and commute with all other supertranslational generators,[
P
~0
a , P

]
= 0 ,

[
P
~0
a , P̄

]
= 0 ,

[
P
~0
a , R

]
= 0 ,

[
P
~0
a , R̄

]
= 0 . (3.40)

Thus, they form the usual quadratic Casimir operators for ‘mass squared’:20〈
P
~0
aP

~0
b η

ab
〉

=
〈
P̄
~0
a P̄

~0
b η

ab
〉
≡ −m2 . (3.41)

Namely, only the Riemannian directions are involved.
Some comments are in order.
– The presence of the infinitely many conserved Noether charges means the integrability
of the ‘free’ string action on the flat non-Riemannian background (3.18). Chiral
or anti-chiral strings satisfy xi(τ, σ) = xi(0, τ + σ) or x̄ı̄(τ, σ) = x̄ı̄(0, τ − σ), which
imply they are fixed in space and preserve their whole shapes.

– If n = 1 or n̄ = 1, Ri~l or R̄
ı̄
~̄l
vanishes trivially and we recover the algebra of [13]. In the

above, we have neglected any possible winding numbers. Restoring these will result
in additional extensions, and it would be interesting to compare the result with [13]
and [14].

– Instead of the string (3.1), if the generalised metric is coupled to a point particle [64],
it is straightforward to derive the worldline Noether charge for the non-Riemannian
isometries,

QΛ(x, p) =
[
wabx

b + ζa(xk) + ζ̄a(x̄k̄)
]
pa + ζi(xk)pi + ζ̄ ı̄(x̄k̄)p̄ı̄ . (3.42)

Compared with the string case of (3.27), this expression lacks the information of the
dual (tilde) directions, realising only the (untilde) commutation relations (2.36) while
missing the tilde part (2.37). This is of course consistent with the intuition that the
doubled geometry is intrinsically stringy rather than point particle-like.

4 Discussion

The generalised metric of double field theory (DFT) provides a unified description of Rie-
mannian and non-Riemannian geometries, and in this paper we showed how this descrip-
tion can be applied to the notion of Killing symmetries. In particular, we showed that flat
non-Riemannian spacetime admits an infinite-dimensional algebra of supertranslational
isometries. We also showed how these symmetries extend to the supersymmetric the-
ory, which gives rise to Killing spinors corresponding to arbitrary chiral and anti-chiral
reparametrisations.

19Similarly Ri~0 and R̄ı̄~0 vanish trivially. Otherwise they would have formed an (n+ n̄)-dimensional ideal.
20In (3.41), the minus sign in front of m2 can be neglected if ηab is not mostly plus Minkowskian.
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Curved geometries. The double geometry approach advocated in the above can also
be used to study the properties of general curved non-Riemannian backgrounds. The
infinite-dimensional isometries that we found for flat backgrounds will not persist for a
general background, but the appropriate DFT realisation of the Killing equations in equa-
tions (2.24) and (2.41) still applies. As a first example, in appendix B we consider the case
of the non-Riemannian geometry originally obtained in [28] (which is related by simulta-
neous time- and space-like T-duality to the fundamental string supergravity solution). In
that case, the Killing equations do not lead to an infinite-dimensional isometry group, but
instead give the global isometries O(8)× ISO(1, 1).

Non-relativistic strings. For the non-Riemannian parametrisation corresponding to
torsional Newton-Cartan (TNC) or stringy Newton-Cartan (SNC) strings, the bosonic
infinite-dimensional symmetries have previously been obtained from the string worldsheet
action [13, 14]. In this work, we show that they can in fact be attributed to isometries of the
non-relativistic background geometry. We have not taken winding modes into account in
the worldsheet realisation of these symmetries, which may add extensions to their algebra.
It would be interesting to fix these extensions and their associated transformations in par-
ticular in the context of non-relativistic strings, since they were previously argued [14, 37]
to correspond to a particular torsion (or foliation) constraint for SNC geometry. This con-
straint is relevant when comparing known SNC string beta functions [41, 42] to the recent
computation of the DFT effective equations of motion in terms of the non-Riemannian
parametrisations [32, 48]. Likewise, building on our computation in appendix B, it would
be interesting to study the breaking of the infinite-dimensional isometries in general curved
non-relativistic string backgrounds in more detail. Finally, a doubled perspective is likely to
be useful also for the non-relativistic open strings that were recently considered in [65, 66].

Boundary charges. For studying the properties of more general non-Riemannian back-
grounds, another potentially useful tool is the DFT construction of boundary charges [67–
69]. Analogously to (for example) the ADM charge in standard general relativity, this
construction associates a conserved boundary charge to a global generalised Killing vector
field. For this, it is useful to rewrite the generalised Killing equations (2.24) and (2.41) in
terms of the (torsionless) covariant derivative of DFT as [68]21

L̂ΛHAB = 8P̄(A
CPB)

D∇[CΛD] = 0 , L̂Λd = −1
2∇AΛA = 0 . (4.1)

For a given Killing vector fulfilling these two conditions, the contractions with the DFT
Einstein curvature, or (on-shell) equivalently with the DFT energy-momentum tensor, are
conserved [54],

∇A(GABΛB) = 0 = ∇A(TABΛB) ⇐⇒ ∂A(e−2dGABΛB) = 0 = ∂A(e−2dTABΛB) .
(4.2)

21The vielbein Killing equations (2.48) can be re-expressed in terms of covariant derivatives too [54], see
eq. (3.3) therein.
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These target space conserved currents are comparable with the worldsheet Noether cur-
rent (3.4). The generalised boundary charge associated to a doubled Killing vector ΛA is
obtained by integrating [67, 68]

QAB = e−2d
[
4(P̄C[APB]D − PC[AP̄B]D)∇CΛD − 2N [AΛB]

]
, (4.3)

where the DFT boundary vector [70] is NA = −∂BHAB + 4HAB∂Bd. In practice, one
wants to integrate this over a codimension-2 hypersurface within the physical spacetime.
Solving the section condition by letting ∂̃µ ≡ 0, we only need the components Qµν . In
terms of the differential “toolkit” for the undoubled non-Riemannian geometry that was
introduced in [32], we can easily find the corresponding expression in the general (n, n̄)
case, with ΛM = (λµ, ξν),

Qµν = e−2d
[
−2D̂[µξν] − (λρ −Bρσξσ)Ĥµνρ + (∂ρHρ[µ − 4Hρ[µ∂ρd)ξν]

]
, (4.4)

where D̂µ is a covariant derivative and Ĥµνρ is a Milne-shift invariant H-flux. (All upper-
indexed, see section 4.3 of [32] for their precise definitions.) It would be interesting to see
what the resulting charges are for curved non-Riemannian geometries.

Relation to asymptotic symmetries. The infinite-dimensional Killing isometries that
we obtained are strongly reminiscent of the BMS algebra associated to the reparametri-
sation symmetries of null infinity in asymptotically flat spacetimes [16–18]. This is where
we borrowed the term ‘supertranslations’. We emphasise that the supertranslational sym-
metries we have studied do not appear only asymptotically, but are the genuine isometries
of the whole non-Riemannian spacetime we considered. Though we have considered the
non-Riemannian geometries without any reference to an embedding in a higher-dimensional
space, utilising the DFT Kaluza-Klein ansatz, one can obtain, e.g. the Carrollian parametri-
sation as a null hypersurface in a higher-dimensional Riemannian DFT geometry [30]. Like-
wise, it would be worthwhile to explore the appropriate notion of boundary conditions and
associated asymptotic symmetries, building on the existing toolkit for computing boundary
charges that was discussed above.

Supersymmetry and M-theory. We have used the known supersymmetric formula-
tion of DFT to obtain the generalised Killing spinor equations for the non-Riemannian
parametrisation with n = n̄ = 1 and D = 10 that is related to non-relativistic strings.
DFT also provides us with a maximally supersymmetric effective low-energy action [51],
and it would be interesting to work out the supersymmetric action for a general non-
Riemannian parametrisation including the Ramond-Ramond sector. On the worldsheet
side, a good starting point would be the spacetime or worldsheet supersymmetric doubled
sigma models considered in this context in [45, 47]. Finally, the extension of the analysis
of generalised isometries to M-theoretic non-Riemannian backgrounds can be considered
following [46].

Other directions. In the conventional flat Minkowskian spacetime, ‘particles’ are iden-
tified as the irreducible representations of the Poincaré group. It would be of interest to
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generalise Wigner’s classification to the non-Riemannian geometries considered above. In
particular, the notion of particle mass is valid as long as there is a Minkowskian subspace,
see (3.41).

An especially intriguing application of the non-Riemannian geometries may be, as an
alternative to string compactifications, to assume the internal space to be non-Riemannian
while keeping the external four-dimensional spacetime Riemannian as usual [30, 31, 33].
Our result then appears to indicate that, when the internal non-Riemannian space is flat,
there will be supertranslational symmetries in effective field theories around the total back-
ground. These are local and hence should be taken as gauge symmetries. That is to say,
physical states in this background (at the quantum level) should be supertranslational
singlets. Specifically, in view of our Killing vector solution (2.33), they should have no de-
pendence on the internal non-Riemannian space. This could imply that non-Riemannian
isometries provide a natural scheme for the dimensional reduction(s) from the critical ten
(or 26) to the phenomenological four dimensions.
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A Solving the flat non-Riemannian Killing equations

Here we derive the most general Killing vector solution (2.33) for the generalised met-
ric (2.20). With HAB constant, it is convenient to return to the generalised Killing equa-
tions in the form (2.25), which become explicitly:

∂ρξ
µHρν + ∂ρξ

νHµρ = 0 , (A.1)
∂µξ

ρHρν + ∂µλρHρν − ∂ρλµHρν − ∂ρξνHµρ = 0 , (A.2)
∂µξ

ρHρν + ∂µλρHρν − ∂ρλµHρν + ∂νξ
ρHµρ + ∂νλρHµρ − ∂ρλνHµρ = 0 . (A.3)

The generalised Killing equations (A.1) to (A.3) now further decompose into 3× 3 = 9 sets
of equations in view of (2.21), depending on the free Greek indices, µ, ν, being of a, i, or

22https://workshops.aei.mpg.de/geometryduality/.
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ı̄ type. For the constant (n, n̄) background, the first set of the Killing equations (A.1) we
are going to solve becomes

ηc(µ∂cξ
ν) = 0 . (A.4)

When {µ, ν} = {a, b}, we recover the Poincaré symmetry: from

∂aξb + ∂bξa = 0 , (A.5)

we have as usual,

∂c∂aξb = −∂c∂bξa = ∂b∂aξc = −∂a∂cξb = 0

=⇒ ξa(xc, xk, x̄k̄) = wab(xk, x̄k̄)xb + va(xk, x̄k̄) ,
(A.6)

where wab = −wba is skew-symmetric, and the a, b, c, d indices are freely raised or lowered
by ηab or ηcd. On the other hand, if {µ, ν} = {a, i} or {a, ı̄}, we have23

∂cξ
i = 0 , ∂cξ̄

ı̄ = 0 =⇒ ξi = ζi(xk, x̄k̄) , ξ̄ ı̄ = ζ̄ ı̄(xk, x̄k̄) . (A.7)

Other cases of {µ, ν} being {i, j}, {i, ̄}, or {ı̄, ̄} are trivial implying no constraint. That
is to say, the most general solutions to the first equation (A.1) with constant Hµν = Hµν

are given by the superrotations and supertranslations (A.6), (A.7),

LξHµν = 0 ⇐⇒ ξµ(xc, xk, x̄k̄) =
[
wab(xk, x̄k̄)xb + va(xk, x̄k̄) , ζi(xk, x̄k̄) , ζ̄ ı̄(xk, x̄k̄)

]
.

(A.8)
After acquiring this, we turn to the second set of the Killing equations (A.2) which reads

∂µζ
iδi

ν − ∂µζ̄ ı̄δı̄ν + (∂µλc − ∂cλµ)ηcν − ∂iξνδµi + ∂̄ı̄ξ
νδµ

ı̄ = 0 . (A.9)

If (µ, ν) = (a, b), we have ∂[aλb] = 0 and hence with an arbitrary function ϕ̃(xc, xk, x̄k̄),

λa = ∂aϕ̃(xc, xk, x̄k̄) . (A.10)

The cases of (µ, ν) = (a, i), (a, ı̄), (i, j), or (̄ı, ̄) are trivial. If (µ, ν) = (i, ı̄) or (̄ı, i) we note
the ‘chiral’ property,

∂iζ̄
ı̄(xk, x̄k̄) = 0 , ∂̄ı̄ζ

i(xk, x̄k̄) = 0 =⇒ ξ̄ ı̄ = ζ̄i(x̄k̄) , ξi = ζi(xk) . (A.11)

If (µ, ν) = (i, a), (A.9) gives

∂aλi(xc, xk, x̄k̄) = ∂i
[
∂aϕ̃(xc, xk, x̄k̄)− va(xk, x̄k̄)− wab(xk, x̄k̄)xb

]
, (A.12)

of which the integrability condition of ∂[a∂b]λi = 0 implies ∂iwab = 0. Consequently, the
last term in (A.12) drops out to give

∂aλi(xc, xk, x̄k̄) = ∂a∂i
[
ϕ̃(xc, xk, x̄k̄)− xcvc(xk, x̄k̄)

]
, (A.13)

23In our notation, {µ, ν} is unordered while (µ, ν) is ordered: for example {µ, ν} = {a, i} means
µ = a, ν = i or µ = i, ν = a, while (µ, ν) = (a, i) denotes µ = a, ν = i.
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and thus,
λi(xc, xk, x̄k̄) = ∂i

[
ϕ̃(xc, xk, x̄k̄)− xcvc(xk, x̄k̄)

]
+ αi(xk, x̄k̄) , (A.14)

where αi(xk, x̄k̄) is an arbitrary function of xk and x̄k̄. Similarly for (µ, ν) = (̄ı, a), we get
∂̄ı̄wab = 0 and

λ̄ı̄(xc, xk, x̄k̄) = ∂̄ı̄
[
ϕ̃(xc, xk, x̄k̄) + xcvc(xk, x̄k̄)

]
+ ᾱı̄(xk, x̄k̄) . (A.15)

In particular, the skew-symmetric parameter, wab, must be strictly constant. That is to
say, there is no ‘superrotation’ (of the Riemannian space) left after imposing the second
equation (A.2).

The last set of the Killing equations (A.3) now reduces to

∂(µξ
cην)c + δi(µ∂ν)λi − δ ı̄(µ∂ν)λ̄ı̄ − ∂iλ(µδ

i
ν) + ∂̄ı̄λ(µδ

ı̄
ν) = 0 . (A.16)

For {µ, ν} = {a, b}, we only recover (A.5) and nothing new. Likewise, the cases of {µ, ν} =
{a, i} or {a, ı̄} are automatically fulfilled by (A.6), (A.14), and (A.15). The cases of {µ, ν} =
{i, j} and {ı̄, ̄} are trivial. The remaining final case of {µ, ν} = {i, ı̄} gives

∂iλ̄ı̄ − ∂̄ı̄λi = 2xc∂i∂̄ı̄vc(xk, x̄k̄) + ∂iᾱı̄(xk, x̄k̄)− ∂̄ı̄αi(xk, x̄k̄) = 0 . (A.17)

This implies

∂i∂̄ı̄vc(xk, x̄k̄) = 0 , ∂̄ı̄αi(xk, x̄k̄)− ∂iᾱı̄(xk, x̄k̄) = 0 , (A.18)

which are generically solved by

va(xk, x̄k̄) = ζa(xk) + ζ̄a(x̄k̄) ,
αi(xk, x̄k̄) = ∂iσ(xk, x̄k̄) + ρi(xk) ,
ᾱı̄(xk, x̄k̄) = ∂̄ı̄σ(xk, x̄k̄) + ρ̄ı̄(x̄k̄) .

(A.19)

Here ζa(xk), ρi(xk) are ‘chiral’ and ζ̄a(x̄k̄), ρ̄ı̄(x̄k̄) are ‘anti-chiral’, while σ(xk, x̄k̄) is a scalar
depending on both xk and x̄k̄ but not on xa. As for the final step, we perform a field
redefinition,

ϕ̃(xc, xk, x̄k̄) −→ ϕ(xc, xk, x̄k̄) := ϕ̃(xc, xk, x̄k̄)− xaζa(xk) + xaζ̄a(x̄k̄) + σ(xk, x̄k̄) ,
(A.20)

which removes σ by absorption and simplifies our general solution. This completes our
derivation of (2.33).

B Solving for a curved non-Riemannian geometry

The first known non-Riemannian geometry of DFT is given by the following generalised
metric [28]

HMN =


0 0 σ3 0
0 δab 0 0
σ3 0 fσ1 0
0 0 0 δcd

 , f = 1 + Q

r6 , r2 =
8∑

a=1
(xa)2 , (B.1)
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while the generalised dilaton, d, is constant. This can be obtained by starting with the
usual fundamental string supergravity solution [71], with metric ds2 = f−1(−dt2 + dz2) +
δabdx

adxb, B-field Btz = f−1, and dilaton e−2φ = f , and formally T-dualising on both t

and z.
The corresponding Killing equations then consist of

∂ρξ
µHρν + ∂ρξ

νHµρ = 0 , (B.2)
∂µξ

ρHρν + ∂µλρHρν − ∂ρλµHρν − ∂ρξνHµρ = 0 , (B.3)
ξρ∂ρHµν + ∂µξ

ρHρν + ∂µλρHρν − ∂ρλµHρν + ∂νξ
ρHµρ + ∂νλρHµρ − ∂ρλνHµρ = 0 , (B.4)

and for the dilaton, d,
∂µξ

µ = 0 . (B.5)

Compared to the flat cases of (A.1), (A.2), (A.3), and (2.42), the only difference is the
transport term, ξρ∂ρHµν , in (B.4), which is nontrivial due to the harmonic function po-
sitioned in Hµν of (B.1). Each of (B.2), (B.3), and (B.4) decomposes into 3× 3 = 9 sets
of equations, depending on the Greek indices, µ, ν, being +, −, or a = 1, 2, · · · , 8. We
naturally put

ξµ =
(
ξ+ , ξ− , ξa

)
, λν = (λ+ , λ− , λb) , (B.6)

and solve for these variables a priori as functions of x+, x−, xc. Luckily, since (B.2)
and (B.3) are identical to (A.1) and (A.2), all the previous analyses spanning from (A.4)
to (A.15) for the flat cases are readily applicable: the most general solution to (B.2), (B.3)
are given by

ξ+ = ζ+(x+) , ξ− = ζ−(x−) , ξa = wabx
b + va(x+, x−) , (B.7)

and

λ+ = ∂+
[
ϕ̃(xc, x+, x−)− xcvc(x+, x−)

]
+ α+(x+, x−) ,

λ− = ∂−
[
ϕ̃(xc, x+, x−) + xcvc(x+, x−)

]
+ α−(x+, x−) ,

λa = ∂aϕ̃(xc, x+, x−) .
(B.8)

We only need to take care of (B.4) and (B.5) henceforth. With (B.7) and (B.8), the Killing
equation (B.4) is nontrivial only for the case of {µ, ν} = {+,−}, to give

ξc∂cf + f∂+ζ
+ + f∂−ζ

− − 4xc∂+∂−vc + 2∂−α+ − 2∂+α− = 0 , (B.9)

which, from ∂cf = −6Qxcr−8, further reduces to

4∂[−α+](x+, x−) + f(r)
[
∂+ζ

+(x+) + ∂−ζ
−(x−)

]
− 4xc∂+∂−vc(x+, x−)− 6Qr−8xcvc(x+, x−) = 0 .

(B.10)

There are four terms here which have distinct dependence on the eight-dimensional coor-
dinates, xc, when Q 6= 0. Therefore, each of them should vanish separately, or

∂[−α+](x+, x−) = 0 , ∂+ζ
+(x+) + ∂−ζ

−(x−) = 0 , va(x+, x−) = 0 .
(B.11)
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For example, one may take a partial derivative, ∂a, of (B.10), and obtain

∂+∂−va(x+, x−)

+ 3
2Qr

−8
[
xa∂+ζ

+(x+) + xa∂−ζ
−(x−) + va(x+, x−)− 8r−2xax

cvc(x+, x−)
]

= 0 .

(B.12)

Considering the large r limit, we get ∂+∂−va(x+, x−) = 0, and hence

xa∂+ζ
+(x+) + xa∂−ζ

−(x−) + va(x+, x−)− 8r−2xax
cvc(x+, x−) = 0 . (B.13)

Again taking a partial derivative, ∂b, of this and considering large r limit, we note ∂+ζ
+ +

∂−ζ
− = 0 and subsequently,

r2va(x+, x−)− 8xaxcvc(x+, x−) = 0 . (B.14)

Finally, hitting this with ∂b∂
a, we get vb = 0. The first relation in (B.11) is solved by

α± = ∂±σ(x+, x−). In conclusion, for Q 6= 0, with the field redefinition, ϕ ≡ ϕ̃ + σ

like (A.20), the most general solution to the full set of the Killing equations is

ξa = wabx
b , ξ+ = ωx+ + c+ , ξ− = −ωx− + c− , λµ = ∂µϕ , (B.15)

which corresponds to the direct product of so(8) and the two-dimensional Poincaré sym-
metry of the light-cone.
In contrast to the flat case (2.33), there is no supertranslation. Furthermore, the Killing
equations for the DFT metric implies the dilatonic Killing equation: the general solution
to the former is now already divergenceless, ∂µξµ = 0, while in the flat case the dilatonic
Killing equation imposes a separate constraint, see (2.42). The lack of infinite-dimensional
isometries may well imply that the corresponding interacting string action (3.15) on this
background is not integrable.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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