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Abstract: A detailed analysis of the systematic uncertainties in the calculation of the
isovector momentum fraction, 〈x〉u−d, helicity moment, 〈x〉∆u−∆d, and the transversity
moment, 〈x〉δu−δd, of the nucleon is presented using high-statistics data on seven ensembles
of gauge configurations generated by the JLab/W&M/LANL/MIT collaborations using
2+1-flavors of dynamical Wilson-clover quarks. The much higher statistics have facilitated
better control over all systematics compared to previous lattice calculations. The least
understood systematic — excited-state contamination — is quantified by studying the
variation of the results as a function of different estimates of the mass gap of the first
excited state, obtained from two- and three-point correlation functions, and as a function
of the pion mass Mπ. The final results are obtained using a simultaneous fit in the lattice
spacing a, pion mass Mπ and the finite volume parameter MπL keeping leading order
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corrections. The data show no significant dependence on the lattice spacing and some
evidence for finite-volume corrections. Our final results, in the MS scheme at 2GeV, are
〈x〉u−d = 0.155(17)(20), 〈x〉∆u−∆d = 0.183(14)(20) and 〈x〉δu−δd = 0.220(18)(20), where
the first error is the overall analysis uncertainty assuming excited-state contributions have
been removed, and the second is an additional systematic uncertainty due to possible
residual excited-state contributions. These results are consistent with phenomenological
global fit values.
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1 Introduction

Steady progress in both experiment and theory is providing an increasingly detailed de-
scription of the hadron structure in terms of quarks and gluons. The distributions of quarks
and gluons within nucleons are being probed in experiments at the Relativistic Heavy Ion
Collider (RHIC) at BNL [1, 2], Jefferson Lab [3] and the Large Hadron Collider at CERN.
Experiments at the planned electron-ion collider [4] will significantly extend the range of
Bjorken x and the momentum transfer Q2, and further improve our understanding. From
these data, and using higher order calculations of electroweak and strong corrections, the
phenomenological analyses of experimental data (global fits) are providing parton distri-
bution functions (PDFs) [5, 6], transverse momentum dependent PDFs (TMDs) [7], and
generalized parton distributions (GPDs) [8]. These distributions are not measured directly
in experiments [9, 10], necessitating phenomenological analyses that have involved different
theoretical inputs.

Lattice QCD calculations are beginning to provide such input, and a review of the cross-
fertilization between the two efforts has been presented in refs. [11, 12]. With increasing
computing power and advances in algorithms, the precision of lattice QCD calculations
has increased significantly and there now exist many quantities for which there is good
agreement with experimental results, and for some, the lattice results are the most precise
as reviewed in the recent Flavor Lattice Averaging Group (FLAG) 2019 report [13].
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Overall, the calculations of the isovector momentum fraction, and the helicity and
transversity moments are now reaching precision comparable to that for nucleon charges,
which are the zeroth moments of the distributions and obtained from the matrix elements of
local quark bilinear operators [13, 14]. In this work, high-statistics lattice data allowed us to
make five significant improvements over results presented in ref. [16]. These improvements
are summarized in the concluding section 7.

Calculations for the three first moments, 〈x〉u−d, 〈x〉∆u−∆d and 〈x〉δu−δd, have been
done on seven ensembles generated using 2+1-flavors of Wilson-clover quarks by the
JLab/W&M/LANL/MIT collaborations [15]. The high-statistics data at three values of
lattice spacings a, two values of the pion mass, Mπ ≈ 170 and ≈ 270MeV, and on a range
of large volumes, characterized by MπL, allow us to carry out a simultaneous fit in these
three variables to address the associated systematic uncertainties. In the analysis of the
two- and three-point correlation functions from each ensemble, we present a careful inves-
tigation of the dependence of the results on the spectra of possible, a priori unresolved,
excited states included in the fits to remove excited-state contamination (ESC). Concretely,
the full analysis is carried out using three strategies to estimate the mass gap of the first
excited state from the two- and three-point correlation functions, and we use the spread
in the results to assign a second systematic uncertainty to account for possible remaining
contributions from excited-states.

Our final results, given in eq. (6.2), are 〈x〉u−d = 0.155(17)(20), 〈x〉∆u−∆d =
0.183(14)(20) and 〈x〉δu−δd = 0.220(18)(20) in the MS scheme at 2GeV. These estimates
are in good agreement with other lattice and phenomenological global fit results as dis-
cussed in section 6. The most extensive and precise results from global fits are for the
unpolarized moments of the nucleons, the momentum fraction 〈x〉q, while those for the he-
licity fraction, the polarized moment 〈x〉∆q, have a large spread and our lattice results are
consistent with the smaller error global fit values at the lower end. Lattice QCD results for
the transversity 〈x〉δq are a prediction due to lack of sufficient experimental data [11, 12].

The paper is organized as follows: in section 2, we briefly summarize the lattice pa-
rameters and methodology. The definitions of moments and operators investigated are
given in section 3. The two- and three-point functions calculated, and their connection to
the moments, are specified in section 4. The analysis of excited state contributions and
the extraction of the ground state matrix elements is presented in section 5. Results for
the moments after the chiral-continuum-finite-volume (CCFV) extrapolation are given in
section 6, and compared with other lattice calculations and global fit values. We end with
conclusions in section 7. The data and fits used to remove excited-state contamination are
shown in appendix A, results of excited-state fits in appendix B, and the calculation of the
renormalization factors, ZV D,AD,TD, for the three operators and values of the renormalized
moments in appendix C.

2 Lattice methodology

This work follows closely the methodology described in ref. [16], with two major differences.
The first improvement is the calculation here uses 2+1-flavors of Wilson-clover fermions

– 2 –



J
H
E
P
0
4
(
2
0
2
1
)
0
4
4

Ensemble a Mπ L3 × T MπL τ/a Nconf NHP NLP

ID (fm) (MeV)
a127m285 0.127(2) 285(3) 323 × 96 5.85 {8, 10, 12, 14} 2001 8, 004 256, 128
a094m270 0.094(1) 270(3) 323 × 64 4.11 {10, 12, 14, 16} 1464 4, 392 140, 544
a094m270L 0.094(1) 269(3) 483 × 128 6.16 {8, 10, 12, 14, 16, 18} 4501 18, 004 576, 128
a091m170 0.091(1) 169(2) 483 × 96 3.75 {8, 10, 12, 14, 16} 4015 16, 060 513, 920
a091m170L 0.091(1) 169(2) 643 × 128 5.08 {8, 10, 12, 14, 16} 1533 7, 665 245, 280
a073m270 0.0728(8) 272(3) 483 × 128 4.82 {11, 13, 15, 17, 19} 4477 17, 908 573, 056
a071m170 0.0707(8) 167(2) 723 × 192 4.26 {13, 15, 17, 19, 21} 2100 12, 600 201, 600

Table 1. Lattice parameters of the 2+1-flavor clover ensembles generated by the JLab/W&M/
LANL/MIT collaborations and analyzed in this study. We give the lattice spacing a, pion mass
Mπ, lattice size L3×T , the values of source-sink separation τ simulated, the number of configurations
analyzed, and the total number of high precision (HP) and low precision (LP) measurements made.
The values of τ in red are used in the fits to remove ESC.

in a clover-on-clover unitary formulation of lattice QCD, whereas the clover-on-HISQ for-
mulation was used in ref. [16]. The clover action includes one iteration of stout smearing
with weight ρ = 0.125 for the staples [17]. The tadpole corrected tree-level Sheikholeslami-
Wohlert coefficient cSW = 1/u0 [18], where u0 is the fourth root of the plaquette expec-
tation value, is very close to the nonperturbative value determined, a posteriori, using
the Schrödinger functional method [19], a consequence of the stout smearing. The up-
date of configurations was carried out using the rational hybrid Monte Carlo (RHMC)
algorithm [20] as described in ref. [21].

Parameters of the seven clover ensembles generated by the JLab/W&M/LANL/MIT
collaborations [15] and used in the analysis are summarized in table 1. The range of lattice
spacings covered is 0.071 ≤ a ≤ 0.127 fm and of lattice size is 3.7 ≤MπL ≤ 6.2. So far simu-
lations have been carried out at two pion masses,Mπ ≈ 270 and 170MeV. These seven data
points allow us to perform chiral-continuum-finite-volume fits to obtain physical results.

The second improvement is higher statistics data that has allowed a more robust
analysis of three strategies for evaluating ESC. Table 1 also gives the number of configura-
tions, the source-sink separations τ , high precision (HP) and low precision (LP) measure-
ments made to cost-effectively increase statistics using the bias-corrected truncated-solver
method [22, 23].

The parameters used to construct the Gaussian smeared sources [14, 16, 24, 25] are
given in table 2. To construct the smeared source, the gauge links were first smoothened
using twenty hits of the stout algorithm with ρ = 0.08 and only the spatial staples were in-
cluded [17]. The root-mean-square size of the Gaussian smearing,

√∫
dr r4S†S/

∫
dr r2S†S

with S(r) the value of the smeared source at radial distance r, was adjusted to be between
0.71–0.76 fm to reduce ESC. The quark propagators from these smeared sources were gen-
erated by inverting the Dirac operator (same as what was used to generate the lattices)
using the multigrid algorithm [26–28]. These propagators were then used to construct the
two- and three-point correlation functions.

– 3 –
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Ensemble ml cSW Smearing RMS
ID Parameters smearing

{σ,NKG} radius
a127m285 −0.2850 1.2493 {5, 50} 5.79(1)
a094m270 −0.2390 1.2054 {7, 91} 7.72(3)
a094m270L −0.2390 1.2054 {7, 91} 7.76(4)
a091m170 −0.2416 1.2054 {7, 91} 7.64(3)
a091m170L −0.2416 1.2054 {7, 91} 7.76(4)
a073m270 −0.2070 1.1701 {9, 150} 9.84(1)
a071m170 −0.2091 1.1701 {10, 185} 10.71(2)

Table 2. The parameters used in the calculation of the clover propagators. The hopping parameter
for the light quarks, κl, in the clover action is given by 2κl = 1/(ml+4). cSW is the Sheikholeslami-
Wohlert improvement coefficient in the clover action. The parameters used to construct Gaussian
smeared sources [29], {σ,NKG} in the Chroma convention [30], are given in the fourth column
where NKG is the number of applications of the Klein-Gordon operator and σ controls the width
of the smearing. The resulting root-mean-square radius of the smearing in lattice units, defined as√∫

dr r4S†S/
∫
dr r2S†S with S(r) the value of the smeared source at radial distance r, is given in

the last column.

3 Moments and matrix elements

The first moments of spin independent (or unpolarized), q = q↑+q↓, helicity (or polarized),
∆q = q↑ − q↓, and transversity, δq = q> + q⊥ distributions, are defined as

〈x〉q =
∫ 1

0
x [q(x) + q(x)] dx , (3.1)

〈x〉∆q =
∫ 1

0
x [∆q(x) + ∆q(x)] dx , (3.2)

〈x〉δq =
∫ 1

0
x [δq(x) + δq(x)] dx , (3.3)

where q↑(↓) corresponds to quarks with helicity aligned (anti-aligned) with that of a longi-
tudinally polarized target, and q>(⊥) corresponds to quarks with spin aligned (anti-aligned)
with that of a transversely polarized target.

These moments, at leading twist, are extracted from the forward matrix elements of
one-derivative vector, axial-vector and tensor operators within ground state nucleons at
rest. The complete set of the relevant twist two operators are

OµνV a = qγ{µ
←→
Dν}τaq ,

OµνAa = qγ{µ
←→
Dν}γ5τaq ,

OµνρTa = qσ[µ{ν]←→Dρ}τaq , (3.4)

where q = {u, d} is the isodoublet of light quarks and σµν = (γµγν − γνγµ)/2. The
derivative ←→Dν ≡ 1

2(−→Dν −
←−
Dν) consists of four terms defined in ref. [16]. Lorentz indices

within { } in eq. (3.4) are symmetrized and within [ ] are antisymmetrized. It is also
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implicit that, where relevant, the traceless part of the above operators is taken. Their
renormalization is carried out nonperturbatively in the regularization independent RI′-
MOM scheme as discussed in appendix C. A more detailed discussion of these twist-2
operators and their renormalization can be found in refs. [31] and [32].

In our setup to calculate the isovector moments, we work with τa = τ3 and fix the spin
of the nucleon state to be in the “3” direction. With these choices, the explicit operators
calculated are

O44
V 3 = q

(
γ4←→D4 − 1

3γ ·
←→D
)
τ3q , (3.5)

O34
A3 = qγ{3

←→
D4}γ5τ3q , (3.6)

O124
T 3 = qσ[1{2]←→D4}τ3q . (3.7)

The forward matrix elements (ME) of these operators within the ground state of the
nucleon with mass MN are related to the moments as follows:

〈0|O44
V 3 |0〉 = −MN 〈x〉u−d , (3.8)

〈0|O34
A3 |0〉 = − iMN

2 〈x〉∆u−∆d , (3.9)

〈0|O124
T 3 |0〉 = − iMN

2 〈x〉δu−δd . (3.10)

The moments are, by construction, dimensionless.

4 Correlation functions and moments

To construct the two- and three-point correlation functions needed to calculate the matrix
elements, the interpolating operator N used to create/annihilate the nucleon state is

N = εabc
[
qaT1 (x)Cγ5 (1± γ4)

2 qb2(x)
]
qc1(x) , (4.1)

where {a, b, c} are color indices, q1, q2 ∈ {u, d} and C = γ4γ2 is the charge conjugation
matrix in our convention. The nonrelativistic projection (1± γ4)/2 is inserted to improve
the signal, with the plus and minus signs applied to the forward and backward propagation
in Euclidean time, respectively [31]. At zero momentum, this operator couples only to the
spin-1

2 states. The zero momentum two-point and three-point nucleon correlation functions
are defined as

C2pt
αβ (τ) =

∑
x

〈0|Nα(τ,x)N β(0,0)|0〉 (4.2)

C3pt
O,αβ(τ, t) =

∑
x′,x

〈0|Nα(τ,x)O(t,x′)N β(0,0)|0〉 (4.3)

where α, β are spin indices. The source is placed at time slice 0, the sink is at τ and the
one-derivative operators, defined in section 3, are inserted at time slice t. Data have been
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Ensemble aM
{4}
N aM

{4Nπ}
N a∆M{2}1 a∆M{4}1 a∆M{4

Nπ}
1 a∆M{2

free}
1 a∆M{2

free}
1 a∆M{2

free}
1

ID 〈x〉u−d 〈x〉∆u−∆d 〈x〉δu−δd

a127m285 0.6181(19) 0.6167(14) 0.413(46) 0.376(52) 0.326(20) 0.359(35) 0.706(58) 0.64(11)

a094m270 0.4709(35) 0.4706(25) 0.349(91) 0.273(63) 0.2643(95) 0.521(64) 0.647(66) 0.510(66)

a094m270L 0.4668(12) 0.4656(9) 0.357(19) 0.303(42) 0.249(27) 0.344(26) 0.400(53) 0.466(29)

a091m170 0.4163(23) 0.4119(19) 0.346(22) 0.293(45) 0.195(19) 0.311(48) 0.441(64) 0.424(61)

a091m170L 0.4143(25) 0.4093(28) 0.307(25) 0.252(36) 0.157(11) 0.297(43) 0.388(52) 0.34(11)

a073m270 0.3719(11) 0.3716(8) 0.321(18) 0.229(41) 0.217(24) 0.311(16) 0.457(14) 0.431(16)

a071m170 0.3286(19) 0.3257(16) 0.275(21) 0.216(36) 0.151(12) 0.352(56) 0.545(23) 0.498(32)

Table 3. Results for the nucleon mass aM{4}N and aM{4
Nπ}

N obtained from the two four-state fits to
the two-point functions. The next six columns give the values of the mass gap, a∆M1 ≡ a(M1−M0),
of the first excited state obtained from different fits studied in this work. The notation used is {2}
({4}) is a two-state (four-state) fit to the two-point functions, {4Nπ} is a four-state fit to the two-
point functions with a prior with a narrow width for a∆M1 corresponding to the non-interacting
Nπ state. In the three {2free} cases, the a∆M1 are determined from fits to the three-point functions
used to extract the three moments as explained in the text.

accumulated for the values of τ specified in table 1, and for each τ for all intermediate
times 0 < t < τ .

To isolate the various contributions, projected 2- and 3-point functions are con-
structed as

C2pt = Tr
(
P2ptC2pt) (4.4)

C3pt
O = Tr

(
P3ptC3pt

O
)
. (4.5)

The projector P2pt = 1
2 (1 + γ4) in the nucleon correlator gives the positive parity contri-

bution for the nucleon propagating in the forward direction. For the connected 3-point
functions, P3pt = 1

2(1 + γ4)(1 + iγ5γ3) is used. With these spin projections, the three
moments are obtained using eqs. (3.8), (3.9) and (3.10).

To display the data, we construct the ratios

RO(τ ; t) = C3pt
O (τ ; t)/C2pt(τ) (4.6)

that give the ground state matrix element in the limits t → ∞ and (τ − t) → ∞. These
ratios are shown in figures 5–10 in appendix A. We re-emphasize that this ratio is not used
to extract the ground state matrix element 〈0|O|0〉 used in the analysis, which is instead
obtained from fits to C3pt

O (τ ; t) with input of spectral quantities from C2pt(τ). These fits
are carried out within a single-elimination jackknife process, which is used to get both the
central values and the errors.

5 Controlling excited state contamination

A major challenge to precision results is removing the contribution of excited states in the
three-point functions. These occur because the lattice nucleon interpolating operator N ,
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defined in eq. (4.1), couples to the nucleon, all its excitations and multiparticle states with
the same quantum numbers. Previous lattice calculations have shown that these ESC can
be large [16, 33–35]. The strategy to remove these artifacts in this work is the same as
described in ref. [16]: reduce ESC by using smeared sources in the generation of quark
propagators and then fit the data at multiple source-sink separations τ using the spectral
decomposition of the correlation functions (eqs. (5.1) and (5.2)) keeping as many excited
states as possible without overparameterizing the fits. In this work, we examine three
strategies, {4, 3∗}, {4Nπ, 3∗} and {4, 2free}, that use different estimates of the excited state
masses in the fits as described below.

The spectral decomposition of the zero-momentum two-point function, C2pt, truncated
at four states, is given by

C2pt(τ) =
3∑
i=0
|Ai|2e−Miτ . (5.1)

We fit the data over the largest time range, {τmin− τmax}, allowed by statistics, i.e., by the
stability of the covariance matrix, to extract the Mi and Ai, the masses and the amplitudes
for the creation/annihilation of the four states by the interpolating operator N . We perform
two types of four-state fits. In the fit denoted {4}, we use the empirical Bayesian technique
described in the ref. [21] to stabilize the three excited-state parameters. In the second fit,
denoted {4Nπ}, we use a normally distributed prior for M1, centered at the lower of the
non-interacting energy of N(−1)π(1) or the N(0)π(0)π(0) state, and a width of 0.04–0.05
in lattice units.1 The masses of these two states are roughly equal for the seven ensembles
and lower than the M1 obtained from the {4} fit. The lower energy N(−1)π(1) state has
been shown to contribute in the axial channel [36], whereas for the vector channel the
N(0)π(0)π(0) state is expected to be the relevant one based on vector meson dominance.
Since the two states have roughly the same mass, which is all that matters in the fits, we do
not distinguish between them and use the common label {4Nπ}. We also emphasize that
even though we use a Bayesian procedure for stabilizing the fits, the errors are calculated
using the jackknife method and are thus the usual frequentist standard errors.

In the fits to the two-point functions, the {4} and {4Nπ} strategies cannot be dis-
tinguished on the basis of the χ2/dof. In fact, the full range of M1 values between the
two estimates, from {4} and {4Nπ}, are viable on the basis of χ2/dof alone. The same
is true of the values for M2, indicating a large flat region in parameter space. Because
of this large region of possible values for the excited-state masses, Mi, we carry out the
full analysis with three strategies that use different estimates of Mi and investigate the
sensitivity of the results on them. The ground-state nucleon mass obtained from the {4}
and {4Nπ} fits is denoted by the common symbol MN ≡M0 and the successive mass gaps
by ∆Mi ≡Mi −Mi−1. These are given in table 3, and in tables 7, 8 and 9 in appendix B.

1When priors are used, the augmented χ2 is defined as the standard correlated χ2 plus the square of the
deviation of the parameter from the prior mean normalized by the prior width. This quantity is minimized
in the fits. In the following we quote this augmented χ2 divided by the degrees of freedom calculated without
reference to the prior, and call it χ2/dof for brevity. In cases where the prior is used only to stabilize the
fit, ie, with large width, the latter is a small correction to the standard χ2.
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The analysis of the three-point functions, C3pt
O , with insertion of zero-momentum op-

erators defined in eqs. (3.5), (3.6) and (3.7), is performed retaining up to three states |i〉
in the spectral decomposition:

C3pt
O (τ ; t) =

2∑
i,j=0
|Ai||Aj |〈i|O|j〉e−Mit−Mj(τ−t) . (5.2)

To get the forward matrix element, we fix the momentum at the sink to zero. To remove the
ESC and extract the desired ground-state matrix element, 〈0|O|0〉, we make a simultaneous
fit in t and τ . The full set of values of τ investigated are given in table 1. In choosing
the set of points, {t, τ}, to include in the final fit, we attempt to balance statistical and
systematic errors. First, we neglect tskip points next to the source and sink in the fits as
these have the largest ESC. Next, noting that the data at smaller τ have exponentially
smaller errors but larger ESC, we pick the largest three values of τ for all seven ensembles.
Since errors in the data grow with τ , we partially compensate for the larger weight given
to smaller τ data by choosing tskip to be the same for all τ , i.e., by including increasingly
more t points with larger τ , the weight of the larger τ data points is increased. Most of
our analysis uses a 3∗-fit, which is a three-state fit with the term involving 〈2|O|2〉 set to
zero, as it is essentially undetermined and its inclusion results in an overparameterization
based on the Akaike information criteria [37].

The key challenge to 3-state fits using eq. (5.2) to control ESC is determining the
relevant Mi to use because fits to the two-point function show a large flat region in the
space of the Mi with roughly the same χ2/dof. Theoretically, there are many candidate
intermediate states, and their contribution to the three-point functions with the insertion
of operator O is not known a priori. Assuming the lattice theory has a discrete spectra in
a finite box, the key parameter is the mass gap ∆M1 of the first excited state that provides
the dominant contribution. Theoretically, the lightest possible state with positive parity
contributing to the forward matrix elements is either N(p = 1)π(p = −1) or N(0)π(0)π(0)
depending on the value of Mπ and the lowest momenta, which is larger than 200MeV on
all seven ensembles. For our ensembles, the non-interacting energies for these two states
are roughly equal. We subsume both possibilities by the common label Nπ. Thus in the
strategy {4Nπ, 3∗}, ∆M1 is approximately the lowest possible value, and corresponds to
the case that one (or both) of these states gives the dominant ESC.

To investigate the sensitivity of 〈0|O|0〉 to possible values of Mi, we carry out the
full analysis with the following three strategies using the mnemonic {m,n} to denote an
m-state fit to the two-point function and an n-state fit to the three-point function:

• {4, 3∗}: the spectrum is taken from a {4} state fit to the two-point function using
eq. (5.1) and then a {3∗} fit is made to the three-point function using eq. (5.2). Both
fits are made within a single jackknife loop. This is the standard strategy, which as-
sumes that the same set of states are dominant in the two- and three-point functions.

• {4Nπ, 3∗}: the excited state spectrum is taken from a four-state fit to the two-point
function but with a narrow prior for the first excited state mass taken to be the
energy of a non-interacting N(p = 1)π(p = −1) state (or N(0)π(0)π(0), which has
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roughly the same energy). This spectrum is then used in a {3∗} fit to the three-
point function. This variant of the {4, 3∗} strategy assumes that the lowest of the
theoretically allowed tower of Nπ (or Nππ) states contributes.

• {4, 2free}: the only parameters taken from the {4} state fit are the ground state
amplitude A0 and mass M0, whose determination is robust — the variation in M0
between {4, 3∗} and {4Nπ, 3∗} is . 1% as shown in table 3. In the two-state fit
to the three-point function, the mass of the first excited state, M1, is left as a free
parameter, ie, the most important determinant of ESC, M1, is obtained from the fit
to the three-point function. The relative limitation of the {4, 2free} strategy is that,
with the current data, we can only make two-state fits to the three-point functions,
ie, include only one excited state.

The data for the ratios RO(τ ; t) are plotted in figures 5–10 in appendix A for the three
operators, the three strategies, and all seven ensembles. We note the following features:

• The fractional statistical errors are less than 2% for all three operators and on all
seven ensembles. The only exceptions are the τ = 16 (τ = 21) data on the a094m270
and a091m170L (a071m170) ensembles.

• The errors grow, on average, by a factor between 1.3–1.5 for every two units increase in
τ/a. This is smaller than the asymptotic factor, e(MN−3Mπ/2)τ , expected for nucleon
correlation functions. There is also a small increase in this factor between 〈x〉u−d →
〈x〉∆u−∆d → 〈x〉δu−δd.

• The data for all three operators is symmetric about t = τ/2 as predicted by the spec-
tral decomposition. Only on three ensembles, a094m270, a091m170L and a071m170,
the symmetry about t = τ/2 is not manifest in the largest τ data. As stated above,
these data have the largest errors, moreover the deviations are within errors.

• In all cases (operators and ensembles), the convergence of the data towards the τ →∞
value is monotonic and from above. Thus, ESC causes all three moments to be
overestimated.

With the data satisfying the expected conditions, we make the three fits, {4, 3∗}, {4Nπ, 3∗}
and {4, 2free}, to the largest three values of τ in all cases. We have also checked that the
results from fits keeping the largest four values of τ overlap with these within 1σ. The
result of the fit and the τ =∞ value (blue band) are shown in each panel in figures 5–10.
The three panels in each row of the figures have the same data but show fits with the three
strategies that are being compared. The ensemble ID, the value of the unrenormalized
moment obtained using eqs. (3.8), or (3.9), or (3.10), the χ2/dof of the fit, and the values
of τ for which the data are shown are also given in the figure labels. The scale for the
y-axis is chosen to be the same for all the plots to facilitate comparison.

The values of ∆M1 entering/determined by the various fits are given in table 3. They
display the following qualitative features:

• The values a∆M{4}1 ≈ 0.6aM{4}N . This suggests that the lowest excited state in the
{4} fit to the two-point function is close to the N(1440).
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• a∆M{4
Nπ}

1 is significantly smaller than a∆M{4}1 as mentioned above.

• On five ensembles, a∆M{2
free}

1 from fits to the momentum-fraction data are consis-
tent with a∆M{2}1 . ( table 3 gives both a∆M{2}1 and a∆M{4}1 to show the variation
between a two- and four-state fit.) To check whether this rough agreement is a possi-
bility for the remaining two ensembles, a094m270 and a071m170, we made fits with
a range of priors but did not find a flat direction with respect to a∆M{2

free}
1 . Thus,

the large values of a∆M{2
free}

1 from these two ensembles are unexplained, however,
as noted previously, the statistical errors in these two ensembles are the largest.

• The a∆M{2
free}

1 for helicity and transversity moments are roughly the same and much
larger than even a∆M{2}1 .

The results for the unrenormalized moments obtained using eqs. (3.8), or (3.9),
or (3.10) are given in table 6 along with the values of tskip used. The parameters and the
χ2/dof of the fits for the various strategies are given in tables 7, 8, and 9 in appendix B.
In these tables, we include results with {4, 2} and {4Nπ, 2} strategies in addition to the
{4, 3∗}, {4Nπ, 3∗} and {4, 2free} to show that the variation on including the second excited
state is small, ie, ∆M1 is the dominant parameter in controlling ESC.

We draw the following conclusions from the results presented in tables 3– 9 and the
fits shown in figures 5–10:

• The statistics on the a091m170L and a071m170 ensembles need to be increased
further as they control the chiral extrapolation in the CCFV fits.

• The χ2/dof of most fits are reasonable.

• The {4, 2free} fits have reasonable χ2/dof but do not indicate a preference for the
small ∆MNπ

1 given in table 3. Their ∆M1 lie closer to or higher than ∆M{2}1 .

• The ∆M1 from a two-state fit is expected to be larger since it is an effective com-
bination of the mass gaps of the full tower of excited states. This is illustrated by
the difference between ∆M{2}1 and ∆M{4}1 . Thus we take the values ∆M{4

Nπ}
1 and

a∆M{2
free}

1 to bracket possible values of ∆M1 in each case.

Based on the above arguments, we will choose the {4, 3∗} results obtained after performing
the CCFV fits for the final central value. We will also assign half the spread between
the {4Nπ, 3∗} and {4, 2free} values as a second uncertainty to account for possible unre-
solved ESC.

To get the renormalized values of the moments, the renormalization factors, ZV D, ZAD,
and ZTD, are calculated on the lattice in the RI′−MOM scheme and then converted to the
MS scheme at 2GeV. Two methods to control discretization errors in the calculation of
the Z’s are described in appendix C. The final values of ZV D, ZAD, and ZTD used in the
analysis are given in table 10. The values of the three renormalized moments from the seven
ensembles and with the three strategies are summarized in table 11 for renormalization
method A and in table 12 for method B in appendix C. These data are used to perform
the CCFV fits discussed next.
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Figure 1. Data for the momentum fraction 〈x〉u−d from the seven ensembles renormalized using
method A in the MS scheme at µ = 2GeV. The top row shows data obtained using the {4Nπ, 3∗}
fits strategy, middle from {4, 3∗} and bottom from {4, 2free}. The pink band shows the result of the
CCFV fit plotted versus a (left panel), versusM2

π (middle panel) and versusMπL (right panel) with
the other two variables set to their physical values in each case. The desired value at the physical
point is shown by the symbol red star. Note that, since we do not shift the data to account for the
corrections due to the other two variables in each panel, the data and the result of the simultaneous
fit (pink band with central value given by the black line) are not expected to coincide. By presenting
unshifted data, we allow the reader to see the size of the corrections due to extrapolation in the
other two variables, ie, roughly the difference between the data point and the central value given
by the fit. The χ2/dof show that the fits are reasonable.
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Figure 2. Data for the helicity moment 〈x〉∆u−∆d from the seven ensembles renormalized using
method A in the MS scheme at µ = 2GeV. The rest is the same as in figure 1.
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Figure 3. Data for the transversity moment 〈x〉δu−δd from the seven ensembles renormalized using
method A in the MS scheme at µ = 2GeV. The rest is the same as in figure 1.

6 Chiral, continuum and infinite volume extrapolation

To obtain the final, physical results at Mπ = 135MeV, MπL → ∞ and a = 0, we make a
simultaneous CCFV fit keeping only the leading correction term in each variable:

〈x〉(Mπ; a;L) = c1 + c2a+ c3M
2
π + c4

M2
π e
−MπL

√
MπL

. (6.1)

Note that, since the operators are not O(a) improved in our clover-on-clover formulation,
we take the discretization errors to start with a term linear in a. The fits to the data
renormalized using method A for the three strategies are shown in figures 1, 2 and 3 and
the results are summarized in table 4.

The dependence on a is found to be small. The significant variation is with M2
π , and

this is the main discriminant between the three strategies. The smaller the ∆M1, the
larger is the extrapolation in the ESC fits (difference between the data at the largest τ and
the τ = ∞ extrapolated value). Since the difference in the ∆M1 is Mπ dependent, it, in
turn, leads to a larger slope versus M2

π in the CCFV fits. The overall consequence for all
three moments is that estimates increase by about 0.02 at each step, {4Nπ, 3∗} → {4, 3∗} →
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Renorm 〈x〉u−d 〈x〉∆u−∆d 〈x〉δu−δd
strategy Method CC CCFV CC CCFV CC CCFV
{4Nπ, 3∗} A 0.161(13) 0.146(15) 0.192(15) 0.176(18) 0.207(19) 0.202(22)
{4Nπ, 3∗} B 0.161(12) 0.147(15) 0.191(15) 0.174(17) 0.210(19) 0.204(22)
{4Nπ, 3∗} Final 0.161(13) 0.147(15) 0.192(15) 0.175(18) 0.209(19) 0.203(22)
{4, 3∗} A 0.165(15) 0.155(17) 0.197(11) 0.184(14) 0.219(15) 0.219(18)
{4, 3∗} B 0.164(15) 0.154(16) 0.195(11) 0.182(14) 0.222(15) 0.221(18)
{4, 3∗} Final 0.165(15) 0.155(17) 0.196(11) 0.183(14) 0.221(15) 0.220(18)
{4, 2free} A 0.195(13) 0.177(14) 0.2266(90) 0.211(11) 0.248(12) 0.238(14)
{4, 2free} B 0.194(13) 0.177(14) 0.2228(93) 0.206(11) 0.248(12) 0.237(14)
{4, 2free} Final 0.195(13) 0.177(14) 0.2247(93) 0.209(11) 0.248(12) 0.238(14)

Table 4. The final results of the chiral-continuum-finite-volume fits for the three moments and the
three strategies used to remove excited state contamination. Results are given for the two methods
of renormalization (A and B) discussed in appendix C. The final value for each strategy is taken to
be the average of the two estimates along with the larger of the two errors.

{4, 2free}. Based on the observation that the {4, 2free} fits do not prefer the small ∆M{4
Nπ}

1 ,
but are closer to ∆M{2}1 (momentum fraction) or larger (helicity and transversity), we take
the {4, 3∗} results as our best estimates. However, to account for possible bias due to not
having resolved which excited state gives the dominant contribution, we add a second,
systematic, error of 0.02 to the final results based on the observed differences in estimates
between the three strategies.

The results from the two renormalization methods, summarized in table 4, overlap —
the differences (. 1%) are a fraction of the errors from the rest of the analysis. Also, note
that these differences are much smaller than the differences between the Z’s from the two
methods given in table 10. This pattern is expected provided the differences in the Z’s are
largely due to discretization errors that are removed on taking the continuum limit.

Lastly, a comparison between the chiral-continuum (CC) and CCFV fit results sum-
marized in table 4 indicate up to 10% decrease due to the finite volume correction term,
however, this is comparable to the size of the final errors. Also, this effect is clear only
between the a094m270 and a094m270L data as shown in tables 11 and 12. Consequently,
most of the variation versus MπL in the CCFV fit occurs for MπL < 4. The result of a CC
fit to five larger volume ensembles (excluding a094m270 and a091m170) lie in between the
CC and CCFV data shown in tables 11 and 12, ie, well within the quoted 1σ error. With
these caveats, for present, we choose to present final results from the full data set using
CCFV fits.
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Figure 4. A comparison of results from lattice QCD calculations with dynamical fermions and
global fits (below the black line) summarized in table 5. The left panel compares results for the
momentum fraction, the middle for the helicity moment, and the right for the transversity moment.
Our NME 20 result is also shown as the blue band to facilitate comparison.

With the above choices, our final results are

〈x〉u−d = 0.155(17)(20) ,
〈x〉∆u−∆d = 0.183(14)(20) ,
〈x〉δu−δd = 0.220(18)(20) . (6.2)

We update the comparison of lattice QCD calculations on ensembles with dynamical
fermions presented in ref. [16] in the top half of table 5 and in figure 4. Our new results,
eq. (6.2), are consistent with the PNDME 20 values published in ref. [16]. This is a
valuable check of the PNDME 20 calculation that uses the nonunitary clover-on-HISQ
lattice formulation. A large part of the difference is due to the weak evidence for a
finite-volume effect in the current calculation: the PNDME 20 results were obtained using
just CC fits. On the other hand, the range of lattice spacings and pion masses simulated
is somewhat smaller than in the PNDME 20 calculation.

Our result for the momentum fraction is in very good agreement with estimates from
phenomenological global fits reviewed in ref. [11], summarized in the bottom half of table 5,
and shown in figure 4. The helicity moment is consistent with the smaller error global fit
values, and our transversity moment is a prediction.

7 Conclusions

We have presented results for the isovector quark momentum fraction, 〈x〉MS
u−d, helicity

moment, 〈x〉MS
∆u−∆d, and transversity moment, 〈x〉MS

δu−δd on seven ensembles with 2+1-flavor
Wilson-clover fermions. The high statistics data were essential for achieving the following
five improvements.
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Collaboration Ref. 〈x〉u−d 〈x〉∆u−∆d 〈x〉δu−δd Remarks
NME 20 0.155(17)(20) 0.183(14)(20) 0.220(18)(20) Nf = 2 + 1

(this work) clover-on-clover
PNDME 20 [16] 0.173(14)(07) 0.213(15)(22) 0.208(19)(24) Nf = 2 + 1 + 1

clover-on-HISQ
ETMC 20 [38] 0.171(18) Nf = 2 + 1 + 1 Twisted Mass

N-DIS, N-FV
ETMC 19 [39] 0.178(16) 0.193(18) 0.204(23) Nf = 2 + 1 + 1 Twisted Mass

N-DIS, N-FV
Mainz 19 [32] 0.180(25)stat 0.221(25)stat 0.212(32)stat Nf = 2 + 1 Clover

(+14,−6)sys (+10,−0)sys (+20,−10)sys

χQCD 18 [40] 0.151(28)(29) Nf = 2 + 1
Overlap on Domain Wall

RQCD 18 [41] 0.195(07)(15) 0.271(14)(16) 0.266(08)(04) Nf = 2 Clover

ETMC 17 [42] 0.194(9)(11) Nf = 2 Twisted Mass
N-DIS, N-FV

ETMC 15 [43] 0.208(24) 0.229(30) 0.306(29) Nf = 2 Twisted Mass
N-DIS, N-FV

RQCD 14 [34] 0.217(9) Nf = 2 Clover
N-DIS, N-CE, N-FV

LHPC 14 [44] 0.140(21) Nf = 2 + 1 Clover
N-DIS (a ∼ 0.12 fm)

RBC/ [45] 0.124–0.237 0.146–0.279 Nf = 2 + 1 Domain Wall
UKQCD 10 N-DIS, N-CE, N-ES
LHPC 10 [46] 0.1758(20) 0.1972(55) Nf = 2 + 1

Domain Wall-on-Asqtad
N-DIS, N-CE, N-NR, N-ES

CT18 [47] 0.156(7)
JAM17† [11, 48] 0.241(26)

NNPDF3.1 [49] 0.152(3)
ABMP2016 [50] 0.167(4)

CJ15 [51] 0.152(2)
HERAPDF2.0 [52] 0.188(3)

CT14 [53] 0.158(4)
MMHT2014 [54] 0.151(4)
NNPDFpol1.1 [55] 0.195(14)

DSSV08 [56, 57] 0.203(9)

Table 5. Our lattice QCD results are compared with other lattice calculations with Nf flavors
of dynamical fermions in rows 2–13, and with results from phenomenological global fits in the re-
mainder of the table. In both cases, the results are arranged in reverse chronological order. All
results are in the MS scheme at scale 2GeV. For a discussion and comparison of lattice and global
fit results up to 2020, see ref. [12] and also the comparison in [47] for 〈x〉u−d. The JAM17† es-
timate for 〈x〉∆u−∆d is obtained from [11], where, as part of the review, an analysis was carried
out using the data in [48]. The following abbreviations are used in the remarks column for various
sources of systematic uncertainties in lattice calculations — DIS: discretization effects, CE: chiral
extrapolation, FV: finite volume effects, NR: nonperturbative renormalization, ES: excited state
contaminations. A prefix “N-” means that the systematic uncertainty was neither adequately con-
trolled nor estimated.
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• Clear demonstration that, as predicted by the spectral decomposition, the data for the
three point functions is symmetric about τ/2 for each τ and converges monotonically
in τ . This is shown in figures 5–10.

• A complete analysis with three estimates of excited state masses taken from the two-
point function ({4, 3∗}), including the lowest energy Nπ state allowed theoretically
({4Nπ, 3∗}), and that determined from the three-point function ({4, 2free}). All fits
to remove the ESC were made using the full covariance matrix. The spread in results
is used to assign a systematic uncertainty to account for possible residual excited-
state bias.

• Finite volume corrections have been estimated for the first time and there is evidence
that these could be as large as 10% on ensembles with MπL . 4.

• The analysis has been done with two methods for removing discretization errors in
the calculations of renormalization constants. The discussion in appendix C and
the results in table 4 show that they give the same renormalized moments in the
continuum limit.

• This clover-on-clover analysis removes the unquantified systematic due to using the
non-unitary clover-on-HISQ formulation in the calculation presented in PNDME
20 [16]. While this systematic is expected to be smaller than the ∼ 10% errors
in the current calculation, nevertheless, removing it is part of our overall goal of
controlling all systematics.

To obtain the final result in the continuum limit, we fit the seven points using the
ansatz in eq. (6.1) that includes the leading order terms in Mπ, the lattice spacing a and
the finite volume parameter MπL. Having two pairs of points, {a094m270, a094m270L}
and {a091m170, a091m170L}, that differ only in the lattice volume, allowed us to quantify
finite volume corrections in all three moments as shown in figures 1, 2 and 3. A comparison
of the results with and without the finite-volume correction (CCFV versus CC) are shown
in table 4. Based on this analysis, we present final results from the CCFV fits that are about
5% smaller than the CC-fit values for the momentum fraction and the helicity moment.
These results are an improvement over the PNDME 20 [16] values, which used the non-
unitary clover-on-HISQ lattice formulation and were obtained using just CC fits.

In appendix C, we describe two methods for removing the p2
µ dependent artifacts in

the renormalization constants. The results for the moments from these two methods are
summarized in table 4. The data show that after the continuum extrapolation (CCFV or
CC fits), the two estimates overlap even though the renormalization constants themselves
differ by ≈ 5% as shown in table 10. The better agreement after the continuum extrap-
olation suggests that the main difference between Z’s from the two methods are indeed
discretization artifacts.

The data at three values of the lattice spacing shown in figures 1, 2 and 3 do not exhibit
any significant dependence on the lattice spacing a. The main variation is with M2

π , and
its magnitude depends on the mass gap of the first excited state used in the analysis of the
ESC. Since the mass gaps obtained from fits to the three-point functions ({4, 2free} strategy)
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do not prefer values corresponding to the lowest possible excitations (Nπ states used in the
{4Nπ, 3∗} strategy) but are closer to two-state fits to the two-point function (see table 3),
we quote final results from the {4, 3∗} strategy. We add a systematic error of 0.02, based on
the observed spread (see table 4), to account for possible unresolved excited-state effects.

Our final results, taken from table 4, are given in eq. (6.2). These are compared
with other lattice calculations and phenomenological global fit estimates in table 5 and
figure 4. They are in good agreement with other recent lattice results from the PNDME [16],
ETMC [38, 39], Mainz [32] and χQCD [40] collaborations. Our estimate for the momentum
fraction is in good agreement with most global fit estimates but has much larger error.
The three estimates for the helicity moment from global fits have a large spread, and our
estimate is consistent with the smaller error estimates. Lattice estimates for the transversity
moment are a prediction. Work is under progress to reduce the errors by simulating at
additional values of {a,Mπ} and by increasing the statistics.
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A Plots of the ratio C3pt
O (τ ; t)/C2pt(τ )

This appendix contains plots of the unrenormalized isovector moments, 〈x〉u−d, 〈x〉∆u−∆d,
and 〈x〉δu−δd, for the seven ensembles in figures 5–10. The data shown are the ratio
C3pt
O (τ ; t)/C2pt(τ) multiplied by the appropriate factor given in eqs. (3.8)– (3.10) to get

the three 〈x〉. The three panels in each row show fits with the three strategies: {4Nπ, 3∗}
(left), {4, 3∗} (middle) and {4, 2free} (right). The fits to C3pt

O (τ ; t) using eq. (5.2) are made
keeping data at the largest three values of τ in all cases as discussed in section 5. The
results of these fit are shown for various τ by lines with the same color as the data. In
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Figure 5. Data and fits to remove excited-state contamination in the extraction of the momentum
fraction 〈x〉u−d for a127m285 (top row), a094m270 (middle row), and a094m270L (bottom row)
ensembles. The data for the ratio C3pt

O (τ ; t)/C2pt(τ) is scaled using eq. (3.8) to give 〈x〉u−d, and
the fit parameters are listed in tables 7. In each row, the three panels show fits to the data with the
largest three values of τ using the three strategies: {4Nπ, 3∗} (left), {4, 3∗} (middle) and {4, 2free}
(right). For each τ , the line in the same color as the data points is the result of the fit used (see
section 5) to obtain the ground state matrix element. The result for the unrenormalized ground-
state value of the moment is shown by the blue band and summarized in table 6 along with the
values of tskip used in the fit. The y-interval is selected to be the same for all the panels to facilitate
comparison.

all cases, to extract the ground state matrix element (blue band), the fits to C2pt(τ) and
C3pt
O (τ ; t) are done within a single jackknife loop.

The data show a monotonic convergence in τ towards the τ → ∞ estimate. Also,
the data are symmetric about t − τ/2 for all values of τ , except for the largest τ on the
a094m270, a091m170L and a071m170 ensembles, which are statistics limited. Lastly, the
largest extrapolation, ie, the difference between the data at t = τ/2 with the largest τ and
the τ =∞ value, is for the {4Nπ, 3∗} strategy since it has the smallest mass gap as shown
in table 3. This is most evident on the Mπ ≈ 170MeV ensembles. The smallest is for the
{4, 2free} strategy which has the largest mass gap.
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Figure 6. Continuation of the data and fits to remove excited-state contamination in the extraction
of the momentum fraction 〈x〉u−d for a091m170 (top row), a091m170L (second row), a073m270
(third row), and a071m170 (bottom row). The data for the ratio C3pt

O (τ ; t)/C2pt(τ) is scaled using
eq. (3.8) to give 〈x〉u−d, and the fit parameters are listed in table 7. The rest is the same as in
figure 5.
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Figure 7. Data and fits to remove excited-state contamination in the extraction of the helicity
moment 〈x〉∆u−∆d for a127m285 (top row), a094m270 (middle row), and a094m270L (bottom row)
ensembles. The data for the ratio C3pt

O (τ ; t)/C2pt(τ) is scaled using eq. (3.9) to give 〈x〉∆u−∆d, and
the fit parameters are listed in table 8. The rest is the same as in figure 5.
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Figure 8. Continuation of the data and fits to remove excited-state contamination in the extraction
of the helicity moment 〈x〉∆u−∆d for a091m170 (top row), a091m170L (second row), a073m270
(third row), and a071m170 (bottom row). The data for the ratio C3pt

O (τ ; t)/C2pt(τ) is scaled using
eq. (3.9) to give 〈x〉∆u−∆d, and the fit parameters are listed in table 8. The rest is the same as in
figure 5.
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Figure 9. Data and fits to remove excited-state contamination in the extraction of the transversity
moment 〈x〉δu−δd for a127m285 (top row), a094m270 (middle row), and a094m270L (bottom row)
ensembles. The data for the ratio C3pt

O (τ ; t)/C2pt(τ) is scaled using eq. (3.10) to give 〈x〉δu−δd, and
the fit parameters are listed in table 9. The rest is the same as in figure 5.
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Figure 10. Continuation of the data and fits to remove excited-state contamination in the ex-
traction of the transversity moment 〈x〉δu−δd for a091m170 (top row), a091m170L (second row),
a073m270 (third row), and a071m170 (bottom row). The data for the ratio C3pt

O (τ ; t)/C2pt(τ) is
scaled using eq. (3.10) to give 〈x〉δu−δd, and the fit parameters are listed in table 9. The rest is the
same as in figure 5.
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B Results of excited-state fits

This appendix provides the results of the fits used to remove the excited-state contami-
nation. In table 6, we give the cuts on the data used in the fits (values of τ and tskip),
and the results for the unrenormalized moments. Tables 7, 8, and 9 give the values of
the fit parameters defined in eq. (5.2) for the different strategies used for removing the
excited-state contamination.

{4Nπ, 3∗} {4, 3∗} {4, 2free}
moment τ fit tskip 〈x〉 tskip 〈x〉 tskip 〈x〉

a127m285
〈x〉u−d {10, 12, 14} 2 0.181(4) 1 0.190(6) 2 0.186(7)
〈x〉∆u−∆d {10, 12, 14} 3 0.234(5) 2 0.233(3) 2 0.243(2)
〈x〉δu−δd {10, 12, 14} 3 0.238(7) 2 0.234(5) 3 0.249(5)

a094m270
〈x〉u−d {12, 14, 16} 2 0.190(7) 2 0.190(8) 2 0.203(5)
〈x〉∆u−∆d {12, 14, 16} 2 0.222(9) 2 0.222(9) 2 0.240(5)
〈x〉δu−δd {12, 14, 16} 2 0.222(10) 2 0.223(11) 2 0.243(6)

a094m270L
〈x〉u−d {14, 16, 18} 3 0.173(4) 3 0.179(5) 3 0.182(3)
〈x〉∆u−∆d {14, 16, 18} 3 0.208(3) 3 0.211(4) 4 0.217(4)
〈x〉δu−δd {14, 16, 18} 3 0.217(4) 3 0.219(4) 3 0.228(2)

a091m170
〈x〉u−d {12, 14, 16} 3 0.148(14) 3 0.167(9) 3 0.169(12)
〈x〉∆u−∆d {12, 14, 16} 3 0.195(13) 3 0.204(7) 3 0.216(7)
〈x〉δu−δd {12, 14, 16} 3 0.183(18) 3 0.200(11) 3 0.217(9)

a091m170L
〈x〉u−d {12, 14, 16} 2 0.146(18) 3 0.156(11) 3 0.167(12)
〈x〉∆u−∆d {12, 14, 16} 3 0.178(21) 3 0.191(9) 3 0.209(9)
〈x〉δu−δd {12, 14, 16} 3 0.221(35) 3 0.206(10) 4 0.211(23)

a073m270
〈x〉u−d {15, 17, 19} 3 0.168(4) 3 0.170(6) 3 0.180(3)
〈x〉∆u−∆d {15, 17, 19} 3 0.210(4) 3 0.210(3) 3 0.222(2)
〈x〉δu−δd {15, 17, 19} 3 0.211(5) 3 0.211(4) 3 0.227(2)

a071m170
〈x〉u−d {17, 19, 21} 2 0.152(9) 2 0.164(8) 3 0.178(7)
〈x〉∆u−∆d {17, 19, 21} 2 0.198(10) 2 0.196(6) 2 0.216(3)
〈x〉δu−δd {17, 19, 21} 2 0.203(15) 2 0.205(9) 2 0.225(5)

Table 6. Unrenormalized moments on the seven ensembles from the three fit strategies, {4Nπ, 3∗},
{4, 3∗} and {4, 2free}, used to analyze the ESC in the three-point functions. For each fit strategy,
we give the cuts on the data: the common values of τ used in the fits, and the number of time slices
tskip omitted next to the source and the sink.
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〈x〉u−d

Ensemble fit-type a∆M1 a∆M2 〈0|O|0〉 〈1|O|1〉|A1|2
〈0|O|0〉|A0|2

〈1|O|0〉|A1|
〈0|O|0〉|A0|

〈2|O|0〉|A2|
〈0|O|0〉|A0|

〈2|O|1〉|A2||A1|
〈0|O|0〉|A0|2 χ2/dof

a127m285 {4, 2} 0.376(52) 0.1166(54) 0.24(62) 0.629(63) 1.74

a127m285 {4Nπ, 2} 0.326(20) 0.1114(28) −0.46(31) 0.708(46) 1.72

a127m285 {4, 3∗} 0.376(52) 0.776(59) 0.1176(41) 0.29(60) 0.584(31) 0.048(45) 1.17(78) 1.69

a127m285 {4Nπ, 3∗} 0.326(20) 0.688(61) 0.1118(28) −0.59(42) 0.696(68) −0.12(12) 2.6(1.2) 1.73

a127m285 {4, 2free} 0.359(35) 0.1148(41) −0.01(59) 0.651(52) 1.81

a094m270 {4, 2} 0.273(63) 0.0796(88) −0.19(52) 0.77(18) 1.22

a094m270 {4Nπ, 2} 0.2643(95) 0.0784(27) −0.24(37) 0.80(10) 1.25

a094m270 {4, 3∗} 0.273(63) 0.567(83) 0.0855(53) 0.44(49) 0.473(98) 0.28(13) 1.02(89) 1.23

a094m270 {4Nπ, 3∗} 0.2643(95) 0.56(15) 0.0850(33) 0.40(38) 0.47(13) 0.29(12) 1.00(88) 1.23

a094m270 {4, 2free} 0.485(42) 0.0951(22) 6.8(3.6) 0.586(20) 1.06

a094m270L {4, 2} 0.303(42) 0.0822(35) 0.74(95) 0.680(47) 1.08

a094m270L {4Nπ, 2} 0.249(27) 0.0767(36) −0.18(45) 0.775(75) 1.57

a094m270L {4, 3∗} 0.303(42) 0.561(83) 0.0834(23) 1.29(99) 0.588(53) 0.23(13) −1.2(3.4) 0.95

a094m270L {4Nπ, 3∗} 0.249(27) 0.440(61) 0.0806(21) 0.55(36) 0.534(61) 0.316(93) −0.001213(3) 0.93

a094m270L {4, 2free} 0.344(26) 0.0849(16) 2.4(1.6) 0.654(16) 1.02

a091m170 {4, 2} 0.293(45) 0.0682(57) 0.89(95) 0.94(14) 0.98

a091m170 {4Nπ, 2} 0.195(19) 0.0473(71) −0.92(67) 1.78(43) 1.34

a091m170 {4, 3∗} 0.293(45) 0.578(81) 0.0696(39) 1.4(1.2) 0.81(15) 0.28(41) −1.2(4.9) 1.04

a091m170 {4Nπ, 3∗} 0.195(19) 0.413(66) 0.0609(59) 0.7(1.7) 0.76(43) 0.59(69) 0.05(4) 1.02

a091m170 {4, 2free} 0.320(51) 0.0702(50) 1.5(1.7) 0.89(11) 1.02

a091m170L {4, 2} 0.252(36) 0.0630(65) 0.73(69) 1.03(20) 1.15

a091m170L {4Nπ, 2} 0.157(11) 0.0337(72) −1.44(99) 2.77(86) 1.63

a091m170L {4, 3∗} 0.252(36) 0.530(38) 0.0647(49) 1.00(66) 0.90(17) 0.16(28) −0.02(1) 1.23

a091m170L {4Nπ, 3∗} 0.157(11) 0.386(73) 0.0596(75) 1.13(59) 0.54(37) 0.89(18) −0.06(1) 1.27

a091m170L {4, 2free} 0.297(43) 0.0694(51) 2.1(1.7) 0.87(11) 1.25

va073m270 {4, 2} 0.229(41) 0.0612(45) 0.17(77) 0.76(11) 0.98

a073m270 {4Nπ, 2} 0.217(24) 0.0598(31) −0.05(47) 0.792(82) 1.02

a073m270 {4, 3∗} 0.229(41) 0.386(79) 0.0633(25) 0.97(71) 0.563(64) 0.35(11) −0.9(1.2) 1.03

a073m270 {4Nπ, 3∗} 0.217(24) 0.363(79) 0.0626(16) 0.83(44) 0.545(75) 0.383(86) −0.75(87) 1.03

a073m270 {4, 2free} 0.311(16) 0.0670(10) 3.3(1.3) 0.695(15) 1.56

a071m170 {4, 2} 0.216(36) 0.0495(48) 0.8(1.2) 0.95(17) 1.39

a071m170 {4Nπ, 2} 0.151(12) 0.0402(37) −0.11(62) 1.26(22) 0.98

a071m170 {4, 3∗} 0.216(36) 0.443(40) 0.0537(27) 2.5(1.3) 0.520(92) 0.69(13) −2.4(3.2) 1.10

a071m170 {4Nπ, 3∗} 0.151(12) 0.398(31) 0.0495(31) 1.50(55) 0.44(15) 0.91(13) −0.9(1.3) 1.11

a071m170 {4, 2free} 0.352(56) 0.0586(23) 19(19) 0.771(34) 1.21

Table 7. Comparison of results of the fits to remove the excited-state contamination for the mo-
mentum fraction 〈x〉u−d using the five strategies, {4, 2}, {4Nπ, 2}, {4, 3∗}, {4Nπ, 3∗} and {4, 2free}.
The fit parameters, defined in eq. (5.2), are given for all seven ensembles along with the χ2/dof of
the fit.
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〈x〉∆u−∆d

Ensemble fit-type a∆M1 a∆M2 〈0|O|0〉 〈1|O|1〉|A1|2
〈0|O|0〉|A0|2

〈1|O|0〉|A1|
〈0|O|0〉|A0|

〈2|O|0〉|A2|
〈0|O|0〉|A0|

〈2|O|1〉|A2||A1|
〈0|O|0〉|A0|2 χ2/dof

a127m285 {4, 2} 0.376(52) 0.1404(38) −0.19(35) 0.404(30) 1.10

a127m285 {4Nπ, 2} 0.326(20) 0.1363(24) −0.25(25) 0.431(30) 1.30

a127m285 {4, 3∗} 0.376(52) 0.776(59) 0.1443(24) 0.40(41) 0.252(51) 0.529(94) −0.6(1.7) 1.07

a127m285 {4Nπ, 3∗} 0.326(20) 0.688(61) 0.1445(33) 0.59(49) 0.162(96) 0.62(30) −0.04(2.14) 0.83

a127m285 {4, 2free} 0.706(58) 0.1503(14) 15(12) 0.532(28) 1.20

a094m270 {4, 2} 0.273(63) 0.0960(80) −0.01(41) 0.56(12) 1.30

a094m270 {4Nπ, 2} 0.2643(95) 0.0949(27) −0.05(31) 0.574(74) 1.33

a094m270 {4, 3∗} 0.273(63) 0.567(83) 0.1048(40) 0.80(43) 0.20(11) 0.69(11) −0.29(80) 1.09

a094m270 {4Nπ, 3∗} 0.2643(95) 0.56(15) 0.1048(52) 0.80(48) 0.19(18) 0.703(96) −0.30(85) 1.09

a094m270 {4, 2free} 0.689(50) 0.1136(18) 39(22) 0.692(28) 0.94

a094m270L {4, 2} 0.303(42) 0.0971(30) 0.19(59) 0.543(25) 1.26

a094m270L {4Nπ, 2} 0.249(27) 0.0940(26) 0.18(39) 0.499(39) 1.30

a094m270L {4, 3∗} 0.303(42) 0.561(83) 0.0986(19) 1.14(65) 0.418(63) 0.497(96) −3.1(3.5) 0.86

a094m270L {4Nπ, 3∗} 0.249(27) 0.440(61) 0.0970(17) 0.83(41) 0.324(68) 0.540(87) −1.4(1.3) 0.85

a094m270L {4, 2free} 0.400(53) 0.1015(18) 4.4(4.5) 0.559(35) 1.11

a091m170 {4, 2} 0.293(45) 0.0794(57) −0.12(56) 0.83(12) 1.36

a091m170 {4Nπ, 2} 0.195(19) 0.0646(59) −0.73(43) 1.14(21) 1.39

a091m170 {4, 3∗} 0.293(45) 0.578(81) 0.0848(32) 0.69(78) 0.52(11) 0.48(27) 1.3(3.2) 1.02

a091m170 {4Nπ, 3∗} 0.195(19) 0.413(66) 0.0802(53) 0.58(71) 0.36(23) 0.65(27) 0.3(1.5) 1.03

a091m170 {4, 2free} 0.441(64) 0.0899(28) 6.6(6.4) 0.72(3) 1.09

a091m170L {4, 2} 0.252(36) 0.0721(69) −0.25(48) 1.00(19) 0.81

a091m170L {4Nπ, 2} 0.157(11) 0.0453(67) −1.54(68) 2.11(49) 0.89

a091m170L {4, 3∗} 0.252(36) 0.530(38) 0.0789(40) 0.72(92) 0.60(13) 0.52(39) −0.04(4.2) 0.36

a091m170L {4Nπ, 3∗} 0.157(11) 0.386(73) 0.0728(87) 0.71(87) 0.42(36) 0.80(36) −0.02(1.6) 0.35

a091m170L {4, 2free} 0.388(52) 0.0865(33) 4.6(3.7) 0.76(3) 0.43

a073m270 {4, 2} 0.229(41) 0.0747(33) −0.13(42) 0.542(50) 1.56

a073m270 {4Nπ, 2} 0.217(24) 0.0737(23) −0.23(31) 0.555(47) 1.63

a073m270 {4, 3∗} 0.229(41) 0.386(79) 0.0780(13) 0.57(30) 0.30(14) 0.630(96) 0.61(97) 1.12

a073m270 {4Nπ, 3∗} 0.217(24) 0.363(79) 0.0780(17) 0.59(33) 0.25(14) 0.660(84) 0.39(87) 1.12

a073m270 {4, 2free} 0.457(14) 0.0827(5) 24.0(7.1) 0.758(13) 1.28

a071m170 {4, 2} 0.216(36) 0.0591(45) 0.1(1.0) 0.81(12) 1.45

a071m170 {4Nπ, 2} 0.151(12) 0.0466(41) −0.89(61) 1.29(21) 1.57

a071m170 {4, 3∗} 0.216(36) 0.443(40) 0.0645(23) 2.4(1.1) 0.31(12) 1.04(12) −2.2(2.9) 1.22

a071m170 {4Nπ, 3∗} 0.151(12) 0.398(31) 0.0645(35) 1.80(50) 0.07(13) 1.23(11) −1.2(1.2) 1.27

a071m170 {4, 2free} 0.545(23) 0.0711(10) 376(187) 1.046(28) 1.33

Table 8. Comparison of results of the fits to remove the excited-state contamination for the helicity
moment 〈x〉∆u−∆d. The rest is the same as in table 7.
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〈x〉δu−δd

Ensemble fit-type a∆M1 a∆M2 〈0|O|0〉 〈1|O|1〉|A1|2
〈0|O|0〉|A0|2

〈1|O|0〉|A1|
〈0|O|0〉|A0|

〈2|O|0〉|A2|
〈0|O|0〉|A0|

〈2|O|1〉|A2||A1|
〈0|O|0〉|A0|2 χ2/dof

a127m285 {4, 2} 0.376(52) 0.1406(55) 0.10(57) 0.61(5) 1.28

a127m285 {4Nπ, 2} 0.326(20) 0.1344(33) −0.22(32) 0.66(5) 1.59

a127m285 {4, 3∗} 0.376(52) 0.776(59) 0.1448(36) 0.51(57) 0.45(6) 0.36(14) 2.5(2.2) 0.82

a127m285 {4Nπ, 3∗} 0.326(20) 0.688(61) 0.1466(44) 0.30(89) 0.30(15) 0.42(55) 5.4(4.5) 0.57

a127m285 {4, 2free} 0.64(11) 0.1539(32) 17(21) 0.68(10) 0.81

a094m270 {4, 2} 0.273(63) 0.096(10) −0.19(53) 0.74(17) 1.63

a094m270 {4Nπ, 2} 0.2643(95) 0.0944(32) −0.24(42) 0.76(10) 1.66

a094m270 {4, 3∗} 0.273(63) 0.567(83) 0.1056(53) 0.54(51) 0.34(13) 0.66(15) 1.1(1.2) 1.08

a094m270 {4Nπ, 3∗} 0.2643(95) 0.56(15) 0.1054(58) 0.54(51) 0.32(20) 0.67(14) 1.1(1.2) 1.08

a094m270 {4, 2free} 0.633(45) 0.1166(20) 29(15) 0.80(3) 0.86

a094m270L {4, 2} 0.303(42) 0.0997(35) −0.30(54) 0.644(31) 0.80

a094m270L {4Nπ, 2} 0.249(27) 0.0943(36) −0.69(33) 0.700(55) 1.06

a094m270L {4, 3∗} 0.303(42) 0.561(83) 0.1024(20) 0.39(59) 0.460(77) 0.53(13) 3.3(3.3) 0.62

a094m270L {4Nπ, 3∗} 0.249(27) 0.440(61) 0.1009(20) 0.31(42) 0.348(85) 0.59(11) 1.4(1.6) 0.64

a094m270L {4free, 2} 0.466(29) 0.1066(12) 12.3(7.0) 0.746(25) 0.82

a091m170 {4, 2} 0.293(45) 0.0780(72) −0.59(93) 1.05(17) 1.17

a091m170 {4Nπ, 2} 0.195(19) 0.0517(88) −1.29(78) 2.07(54) 1.89

a091m170 {4, 3∗} 0.293(45) 0.578(81) 0.0834(47) −0.20(1.07) 0.80(16) −0.06(39) 10(6) 0.87

a091m170 {4Nπ, 3∗} 0.195(19) 0.413(66) 0.0754(77) −0.83(1.2) 0.76(36) 0.14(47) 4.8(2.8) 0.87

a091m170 {4, 2free} 0.424(61) 0.0904(39) 8.4(7.0) 0.89(4) 0.95

a091m170L {4, 2} 0.252(36) 0.0766(70) 0.19(62) 0.97(17) 1.27

a091m170L {4Nπ, 2} 0.157(11) 0.0430(80) −1.65(86) 2.5(7) 1.48

a091m170L {4, 3∗} 0.252(36) 0.530(38) 0.0855(43) 1.64(87) 0.43(17) 1.00(36) 0.3(3) 1.25

a091m170L {4Nπ, 3∗} 0.157(11) 0.386(73) 0.0907(148) 1.91(90) −0.11(43) 1.29(33) −0.85(2) 1.22

a091m170L {4, 2free} 0.339(114) 0.0872(96) 2.8(5.3) 0.82(8) 1.30

a073m270 {4, 2} 0.229(41) 0.0736(49) −0.65(46) 0.774(92) 1.01

a073m270 {4Nπ, 2} 0.217(24) 0.0738(29) −0.43(38) 0.695(68) 0.73

a073m270 {4, 3∗} 0.229(41) 0.386(79) 0.0786(17) 0.38(36) 0.41(14) 0.66(12) 1.3(1.4) 0.79

a073m270 {4Nπ, 3∗} 0.217(24) 0.363(79) 0.0785(18) 0.40(37) 0.36(15) 0.70(10) 1.0(1.2) 0.80

a073m270 {4, 2free} 0.431(16) 0.0843(7) 17.7(5.6) 0.868(14) 1.11

a071m170 {4, 2} 0.216(36) 0.0607(54) −1.50(98) 0.97(16) 1.23

a071m170 {4Nπ, 2} 0.151(12) 0.0460(51) −2.15(72) 1.60(31) 1.28

a071m170 {4, 3∗} 0.216(36) 0.443(40) 0.0673(32) 0.2(1.1) 0.44(13) 0.94(14) 1.4(3.4) 1.10

a071m170 {4Nπ, 3∗} 0.151(12) 0.398(31) 0.0661(49) 0.62(59) 0.24(17) 1.12(15) 0.4(1.5) 1.15

a071m170 {4, 2free} 0.498(32) 0.0738(15) 98(81) 1.110(36) 1.19

Table 9. Comparison of results of the fits to remove the excited-state contamination for the
transversity moment 〈x〉δu−δd. The rest is the same as in table 7.
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C Renormalization of the operators

In this appendix, we describe two methods of calculating the renormalization factors,
ZV D,AD,TD, for the three one-derivative operators specified in eqs. (3.5), (3.6) and (3.7).
On the lattice, these Z’s are first determined nonperturbatively in the RI′−MOM
scheme [58, 59] as a function of the lattice scale p2 = pµpµ, and then converted to MS
scheme using 3-loop perturbative factors calculated in the continuum in ref. [60]. For data
at each p, we perform horizontal matching by choosing the MS scale µ = |p|. These num-
bers are then run in the continuum MS scheme from scale µ to 2GeV using three-loop
anomalous dimensions [60]. The two methods differ in how the dependence of ZMS(2GeV)
on p2a2, a lattice artifact, is removed. For details of the three operators and their decom-
position into irreducible representations, and for alternate methods for the subtraction of
discretization effects using perturbation theory, we refer the reader to refs. [31, 32, 59, 61].

The data for the renormalization factors ZV D,AD,TD in the MS scheme at µ = 2GeV
are shown in figure 11 for the seven ensembles as a function of p2 — the scale of the
RI′−MOM scheme on the lattice. For all three operators, the data do not show a window
in p2 where the results are independent of p2. We analyze the variation with p2 as being
due to a combination of the breaking of full rotational invariance on the lattice and other
p2 dependent artifacts. Many methods have been proposed to control it, see for example
refs. [32, 38, 62]. We use the following two:

• In method A, we take an average over the data points in an interval of 2 GeV2

about p̂2 = Λ/a, where the scale Λ = 3GeV is chosen to be large enough to avoid
nonperturbative effects and at which perturbation theory is expected to be reasonably
well behaved. Also, this choice satisfies both p̂a→ 0 and Λ/p̂→ 0 in the continuum
limit as desired. The shaded bands in figures 11 show the window over which the
data are averaged (also specified in column three of table 10) and the error (half
the height of the band). This method was used in our previous work, PNDME 20,
presented in ref. [16].

• In method B, we make a fit to the data using the ansatz Z(p) = Z0 + a
∑
µ pµpµ +

b(∑µ pµpµ)2 to remove the p2 dependent artifacts. The fit is made with p2 starting
at the lower edge of the band used in method A, which is given in column three of
table 10, and by which a roughly linear in p2 behavior is manifest. The results are
shown next to the y-axis in figure 11 using the star symbol.

These estimates of ZV D, ZAD and ZTD are summarized in table 10. Using these to
renormalize the bare moments given in table 6, the results for the two methods are given
in tables 11 and 12. Since the discretization errors are expected to be different in the
two methods, therefore, we do not average the values of the renormalization constants but
perform the full analysis, including the CCFV fits, for the two methods and compare the
results after the continuum extrapolation. These final results after CCFV fits to the data
in tables 11 and 12 are summarized in table 4 and found to be consistent.
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Figure 11. Nonperturbative renormalization factors for 〈x〉u−d, (ZV D), 〈x〉∆u−∆d, (ZAD), and
〈x〉δu−δd, (ZTD) in the MS scheme at µ = 2 GeV for the seven ensembles. In all cases, the extent
along the x-axis of shaded bands marks the region in p2 that is averaged in Method A and the
height is twice the error in the estimate. The points next to the y-axis with the star symbol give a
second estimate (Method B) obtained from a fit with ansatz Z(p) = Z0 +ap2 + bp4 to data starting
at the left edge of the band.
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Ensemble Nconf fit range Method A Method B
[GeV2] ZV D ZAD ZTD ZV D ZAD ZTD

a127m285 100 3.7–5.7 0.990(16) 1.012(17) 1.026(16) 0.941(14) 0.962(18) 0.981(17)
a094m270 100 5.3–7.3 1.036(15) 1.061(15) 1.085(15) 0.999(17) 1.030(18) 1.062(18)
a094m270L 100 5.3–7.3 1.025(14) 1.040(14) 1.071(16) 0.991(14) 1.000(15) 1.043(20)
a091m170 101 5.5–7.5 1.016(12) 1.029(14) 1.062(14) 0.977(13) 0.987(16) 1.032(16)
a091m170L 108 5.5–7.5 1.039(14) 1.058(15) 1.088(18) 0.999(16) 1.021(17) 1.056(22)
a073m270 100 7.1–9.1 1.073(17) 1.084(15) 1.120(19) 1.051(20) 1.056(17) 1.104(19)
a071m170 112 7.4–9.4 1.054(10) 1.077(11) 1.114(12) 0.996(11) 1.023(14) 1.072(15)

Table 10. Results for the renormalization factors, ZV D,AD,TD, in the MS scheme at 2GeV. These
are calculated in the RI’-MOM scheme as a function of scale p = √pµpµ on the lattice, matched
to the MS scheme at the same scale µ = p, and then run in the continuum MS scheme from µ to
2GeV. Results are given for two methods used to remove the p2 dependent artifacts as described in
the text. In method A (columns 4–6), the Z’s are obtained by averaging the data shown in figure 11
over the range of p2 specified in the in the third column. Results using method B (columns 7–9) are
obtained using fits to the data starting at the lower value of p2 given in column 3 with the ansatz
Z(p) = Z0 + ap2 + bp4.

moment strategy a127m285 a094m270 a094m270L a091m170 a091m170L a073m270 a071m170
〈x〉u−d {4Nπ, 3∗} 0.179(5) 0.197(8) 0.177(5) 0.150(15) 0.151(18) 0.181(5) 0.160(10)
〈x〉u−d {4, 3∗} 0.188(7) 0.197(9) 0.183(5) 0.170(9) 0.162(12) 0.183(7) 0.172(8)
〈x〉u−d {4, 2free} 0.184(7) 0.211(6) 0.187(4) 0.171(12) 0.174(13) 0.193(4) 0.188(8)
〈x〉∆u−∆d {4Nπ, 3∗} 0.237(7) 0.235(10) 0.217(5) 0.200(13) 0.188(22) 0.228(6) 0.213(11)
〈x〉∆u−∆d {4, 3∗} 0.236(5) 0.235(10) 0.220(5) 0.210(8) 0.202(10) 0.227(5) 0.211(7)
〈x〉∆u−∆d {4, 2free} 0.246(5) 0.255(6) 0.226(5) 0.222(8) 0.221(9) 0.241(4) 0.233(4)
〈x〉δu−δd {4Nπ, 3∗} 0.244(8) 0.241(11) 0.232(6) 0.194(20) 0.241(39) 0.237(7) 0.226(17)
〈x〉δu−δd {4, 3∗} 0.240(7) 0.242(13) 0.235(5) 0.213(12) 0.225(11) 0.237(6) 0.228(10)
〈x〉δu−δd {4, 2free} 0.256(7) 0.263(8) 0.245(5) 0.231(10) 0.229(25) 0.254(5) 0.250(6)

Table 11. Renormalized moments for all three fit-strategies with Z factors obtained using
Method A defined in this appendix C.

moment strategy a127m285 a094m270 a094m270L a091m170 a091m170L a073m270 a071m170
〈x〉u−d {4Nπ, 3∗} 0.171(5) 0.190(8) 0.171(5) 0.144(14) 0.146(18) 0.177(6) 0.152(9)
〈x〉u−d {4, 3∗} 0.179(6) 0.190(9) 0.177(5) 0.163(9) 0.156(11) 0.179(7) 0.163(8)
〈x〉u−d {4, 2free} 0.175(7) 0.204(6) 0.180(4) 0.165(12) 0.167(13) 0.189(5) 0.178(7)
〈x〉∆u−∆d {4Nπ, 3∗} 0.225(7) 0.228(10) 0.208(5) 0.192(13) 0.182(21) 0.222(6) 0.203(11)
〈x〉∆u−∆d {4, 3∗} 0.225(5) 0.229(10) 0.211(5) 0.201(8) 0.195(10) 0.221(5) 0.201(7)
〈x〉∆u−∆d {4, 2free} 0.234(5) 0.247(7) 0.217(5) 0.213(8) 0.213(9) 0.235(4) 0.221(4)
〈x〉δu−δd {4Nπ, 3∗} 0.233(8) 0.236(11) 0.226(6) 0.189(19) 0.234(38) 0.233(7) 0.218(16)
〈x〉δu−δd {4, 3∗} 0.230(7) 0.237(13) 0.229(6) 0.207(11) 0.218(11) 0.233(6) 0.219(10)
〈x〉δu−δd {4, 2free} 0.244(7) 0.258(8) 0.238(5) 0.224(10) 0.222(25) 0.250(5) 0.241(6)

Table 12. Renormalized moments for all three fit-strategies with Z factors obtained using
Method B defined in this appendix C.
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