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1 Introduction

Quantum Chromodynamics (QCD) is the very well established theory of strong interac-
tions with rich structure and many phases [1]. Here we want to focus on a jet-quenching
phenomenon predicted in [2, 3], and observed experimentally at RHIC [4] and LHC [5].
The jet quenching is a suppression of propagation of jets in quark-gluon plasma (QGP) due
to jet-plasma interactions. This process has many phases, recently discussed in refs. [6, 7],
see also [8]. The jet-quenching phenomenon is approached from many directions: the ki-
netic theory [9–19], Monte Carlo methods [20–25], the AdS/CFT [26]. Furthermore, it is a
multi-scale problem which, however, allows for factorisation in time. In particular, accord-
ing to refs. [6, 7], in the first phase the jet propagates according to the vacuum-like parton
shower with ordering in an angle, while in the next stage the coherence is broken and jet
propagates through plasma experiencing elastic scatterings and branching — in this stage
there are many soft radiations and wide-angle emissions. In the last stage, when jet leaves
medium, again the vacuum-like emissions dictate its time evolution. In this paper, we focus
on the second phase of the jet propagation through QGP In particular, we investigate what
is the contribution of momentum transfer during branching to the broadening pattern of
the jet. To address this problem, we solve the equation proposed in [27, 28] which is a
generalised version of the equation solved by three of us in ref. [29].1 In this approach,
QGP is modelled by static centres and the jet interacts with it weakly, jet propagating
through plasma branches according to BDMPS-Z mechanism [9–18] and gets broader due
to elastic scattering with plasma.

In ref. [29] it has been observed that accounting for the broadening term beyond the
diffusive approximation leads to the non-Gaussian broadening for jet observables. It turns

1For other approach which addresses the transverse-momentum dependence but neglects the large-x
parton’s spectrum see the relaxing harmonic approximation of ref. [30].
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out that the non-Gaussianity leads to much stronger broadening of the cross section for
decorrelations than the Gaussian approximation.

In the current study, we propose detail study of impact of momentum exchange dur-
ing branching and its contribution to the broadening. Experimentally, the broadening
is rather small and its observation at the LHC energies is hindered by the vacuum ef-
fects [31, 32]. There are also possible effects which could give negative contribution to the
broadening [33–35]. Furthermore, a more realistic model of the medium accounting for
its expansion [34, 36, 37] will probably reduce the amount of the broadening. While at
present we do not account for a more realistic scenario, i.e. the expansion of the medium
we mimic it by scaling the q̂ parameter. We observe that reducing its value leads to the
smaller broadening.

The paper is organised as follows: in section 2 we discuss the version of the transverse-
momentum-dependent BDIM (Blaizot, Dominguez, Iancu, Mehtar-Tani) equation [28]
where the momentum transfer in the kernel is taken into account and we present its solu-
tion with the use of Monte Carlo methods. In section 3 we compare the BDIM equation
to some of its approximations, i.e. the case where transverse momentum in the branching
kernel is neglected, the case when the broadening term is represented by the diffusive ap-
proximation, and the Gaussian approximation where the transverse momentum and the
longitudinal momentum are factorised. We conclude our work in section 4. In appendix A
we present one of the Monte Carlo algorithms for solving the full BDIM equation,2 while
in appendix B we describe a numerical method used to solve the diffusive approximation
of the BDIM equation.

2 Momentum-transfer-dependent BDIM equation and its solution

The evolution equation for the gluon transverse-momentum-dependent distribution
D(x,k, t) in the dense medium reads [28]

∂

∂t
D(x,k, t) =αs

∫ 1

0
dz

∫
d2q

(2π)2

[
2K(Q, z, x

z
p+

0 )D
(
x

z
,q, t

)
−K(q, z, xp+

0 )D(x,k, t)
]

+
∫

d2l
(2π)2 C(l)D(x,k− l, t). (2.1)

The kernel K(Q, z, xp+
0 ) which accounts for the momentum-dependent medium induced

branching is given by

K(Q, z, p+
0 ) = 2

p+
0

Pgg(z)
z(1− z) sin

[
Q2

2k2
br

]
exp

[
− Q2

2k2
br

]
(2.2)

with
ω = xp+

0 , k2
br =

√
ω0q̂0, Q = k− z q, ω0 = z(1− z)p+

0 (2.3)

2The other one is an extension of the algorithm employed in the Monte Carlo program MINCAS, described
in ref. [29], and will be presented elsewhere.
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and

q̂0 = q̂f(z), f(z) = 1− z(1− z), Pgg(z) = Nc
[1− z(1− z)]2

z(1− z) . (2.4)

where p+
0 ≡ E is energy of jet entering the medium, x— is longitudinal momentum fraction

of mini jet, k = (kx, ky) — is transverse-momentum vector of mini jet, q̂ — the quenching
parameter, αs — the QCD coupling constant and Nc — the number of colours.

The elastic collision kernel C(l) is given by

C(l) = w(l)− δ(l)
∫
d2l′w(l′) , (2.5)

where the function w(l) models the momentum distribution of medium quasi-particles. We
consider two scenarios:

1. The out-of-equilibrium distribution [28]:

w(l) = 16π2α2
sNcn

l4 , (2.6)

with l = (lx, ly) being transverse-momentum vector and n— the density of scatterers.

2. The situation where the medium equilibrates and the transverse-momentum distribu-
tion assumes the form obtained from the Hard Thermal Loops (HTL) calculation [38].
In this case the medium is characterised by a mass scale given by the Debye mass mD:

w(l) = g2m2
DT

l2(l2 +m2
D)

, (2.7)

m2
D = g2T 2

(
Nc

3 + Nf

6

)
, g2 = 4παs.

The equation (2.1) has been solved using the Monte Carlo program MINCAS by extend-
ing the algorithm presented in [29] (to be described elsewhere) and, independently, using
another Monte Carlo algorithm described in the appendix A. The two solutions have been
checked to be in a good numerical agreement. Here we present the results from MINCAS
obtained using the following input parameters:

xmin = 10−4, ε = 10−6,

qmin = 0.1GeV, mD = 0.993GeV, σk0 = 0GeV,
Nc = 3, αs = 0.3,
E = 100GeV, n = 0.243GeV3, q̂ = 1GeV2/fm.

In figure 1 we show the kT distributions as well as 〈kT 〉 as a function of x for the
evolution time values t = 0, 0.1, 1, 2, 4 fm. The detailed discussion of the solution is pre-
sented in the next section where we also discuss comparisons to the approximations of the
BDIM equation.
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Figure 1. The kT and 〈kT 〉 vs. log10 x distributions for the evolution time values t = 0, 0.1, 1, 2, 4 fm,
for the full emission kernel K(Q, z, p+) (denoted as K(Q, z)) and the collision term of eq. (2.6).

3 Comparison of BDIM equation to its approximations

In this section we will discuss various approximations of the BDIM equation.

• The first approximation that we consider is the case when the momentum transfer
during branching is neglected. In this case, as demonstrated in ref. [27], the branching
kernel simplifies to a purely collinear one and the transverse momentum dependence
comes basically from the elastic scattering. The equation reads

∂

∂t
D(x,k, t) = 1

t∗

∫ 1

0
dzK(z)

[ 1
z2

√
z

x
D

(
x

z
,
k
z
, t

)
θ(z − x)− z√

x
D(x,k, t)

]
+
∫

d2q
(2π)2 C(q)D(x,k− q, t),

(3.1)

where

K(z) = (1− z + z2)5/2

[z(1− z)]3/2 ,
1
t∗

= αsNc

π

√
q̂

p+
0
. (3.2)

• One can further simplify the BDIM equation by expanding the elastic collision term
and using the diffusive approximation [27] to obtain

∂

∂t
D(x,k, t) = 1

t∗

∫ 1

0
dzK(z)

[ 1
z2

√
z

x
D

(
x

z
,
k
z
, t

)
θ(z − x)− z√

x
D(x,k, t)

]
+ 1

4 q̂∇
2
k

[
D(x,k, t)

]
.

(3.3)

In the above equation, as compared to ref. [27], we have neglected the mild logarithmic
dependence of q̂ in the diffusion term on kT .

• Eq. (3.3) was also solved approximately in ref. [39]. To arrive at the solution, the
branching term was neglected and the Gaussian ansatz was used. The solution reads

D(x,k, t) = D(x, t) 4π
〈k2
⊥〉

exp
[
− k2

〈k2
⊥〉

]
, (3.4)
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Figure 2. The kT distributions for the evolution time values t = 0, 0.1, 1, 2, 4 fm, for different
kernels: the Gaussian approximation, K(z) and K(Q, z, p+) (denoted as K(Q, z)), and different
collision terms: no collision term, the collision term as in eq. (2.6) and as in eq. (2.7).

where
〈k2
⊥〉 = min

{
1
2 q̂t(1 + x2), k

2
br(x)
4ᾱ , (xE)2

}
, k2

br(x) =
√
xEq̂. (3.5)

In the above, it is assumed that k2
⊥ < ω2 = (xE)2, and the parameters are: ᾱs = 0.3,

q̂ = 1GeV2/fm, E = 100GeV.

Similarly to eq. (2.1), eq. (3.1) has been solved using the Monte Carlo programs,
basically re-obtaining the result from ref. [29], while eq. (3.3) has been solved with the help
of the numerical method described in appendix B. For eq. (2.1) and eq. (3.1) we have used
both the functions w(l) from eqs. (2.6) and (2.7) to describe the collision term when using
both the full kernel and the simplified one. In the case of the full kernel, we have also
performed calculations without the collision term. For all the presented results, we have
used the parameters given in the previous section.

In figure 2 we show the kT distributions of the six cases studied for evolution time
values t = 0, 0.1, 1, 2, 4 fm. We directly notice that the Gaussian approximation fails to
describe any of the other results. The nearest distribution is the one with the full kernel
and no collision term, which approaches a Gaussian shape, but with a much wider width.
The other distributions (with the collision term) show fast broadening of the initial Dirac-
δ-like distribution, exhibiting the non-Gaussian shape. The broadening is faster with w(l)
given by eq. (2.6) than with the one given by eq. (2.7), i.e the broadening is faster with
out-of-equilibrium momentum distributions of the medium quasi-particles.

In figure 3 we present the dependence of the mean value of kT on log10 x. For all cases,
〈kT 〉 grows with time and with x. It is still true for the Gaussian approximation, even
if the distribution for the different evolution time join each other under certain values of
x. We can clearly see in these figures a different behaviour around x = 1 between the
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Figure 3. The 〈kT 〉 vs. log10 x distributions for the evolution time values t = 0, 0.1, 1, 2, 4 fm,
for different kernels: the Gaussian approximation, K(z) and K(Q, z, p+) (denoted as K(Q, z)), and
different collision terms: no collision term, the collision term as in eq. (2.6) and in eq. (2.7), respec-
tively.

distributions corresponding to the z-only dependent kernel and the ones corresponding to
the full kernel which show a drop. This drop results from the fact that the evolution starts
at x = 1 with kT = 0 and already a single soft emission with the Q-dependent kernel K
gives to the emitter a significant kT -kick, which is not the case for the z-only dependent
emission kernel. This effect is more pronounced for the shortest evolution time t = 0.1 fm,
because in this case the (x, kT )-distribution is strongly peaked at x = 1 and kT = 0, while
for the longer evolution times this peak is smeared out, so the contribution from x = 1
and kT = 0 to 〈kT 〉 is much smaller. Except for the drop near x = 1 for short evolution
times with the full emission kernel, the 〈kT 〉 distributions increase with x. The Gaussian
approximation gives the lowest 〈kT 〉 values, while they are the highest for the evolution
with the full emission kernel — and these, in particular, are higher than in the case with
the z-only dependent emission kernel. This results from the fact that in the former case
the kT -broadening is produced not only in the collisions with the medium (due to the C(l)
term in eq. (2.1)), but also in the emission process (due to the Q-dependence of the kernel
K in eq. (2.1)).

In figure 4 we present distributions integrated over the transverse momenta for four
values of the evolution time: t = 0.1, 1, 2, 4 fm. We see that all the transverse-momentum-
dependent distributions, as a consequence of momentum conservation, collapse to the
same x-dependent distributions. This further confirms that the study of the transverse-
momentum dependence allows for more detailed study of the dynamics of the branching
process. It also constitutes an important numerical cross-check that all our algorithms for
the transverse-momentum-dependent evolution satisfy the condition:

D(x, t) =
∫
d2k D(x,k, t) . (3.6)
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Figure 4. The integrated x distributions (multiplied by the factors 10n, n = 0, . . . , 5) for the
evolution time values t = 0.1, 1, 2, 4 fm, for different kernels: the Gaussian approximation, K(z) and
K(Q, z), and different collision terms: no collision term, the collision term as in eq. (2.6) and as in
eq. (2.7). The reference distribution used for the ratio plots is the one for the full kernel K(Q, z)
and the collision term of eq. (2.6).

An interesting question is what is the domain of applicability of the diffusive approx-
imation that was used in order to reduce eq. (3.1) to eq. (3.3). The approximation is
advocated as a systematic expansion around kT that should be valid for rather low values
of kT . However, from the explicit solution in figure 5 we see that the solution of the eq. (3.3)
is reasonably reproduced in the diffusive approximation if we allow q̂ to be very large. This
actually is in agreement with the interpretation of q̂ as the average transverse momentum.
Therefore, we conclude that one can describe large transverse momentum using just the
diffusion approximation, but one should allow this new effective q̂ to be large and different
from the one in the complete equation. We also see that the diffusive approximation with
the standard q̂ preserves the general pattern of eq. (3.1), but is much narrower than the
solution of the equation before the expansion. This feature is better visible in the plot of
the 〈kT 〉 as a function of x which we show for different values of q̂ as well as for differ-
ent values of t. From these results we conclude that, while the diffusive approximation is
qualitatively fine, it is rather crude quantitatively.

To complete the analysis of the kT spectrum we study on figure 6 its dependence on
q̂ for the three cases of q̂ = 0.5, 1, 2 GeV2/fm. We see that, in general, it is not a trivial
dependence, in a sense that increasing q̂ will just broaden the distribution. This is the
case only for the Gaussian approximation and w(l) = 0. The interpretation of this is the
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Figure 5. The kT and 〈kT 〉 vs. log10 x distributions for the diffusive approximation: for four values
of the evolution time t = 0, 0.03, 0.05, 0.08 fm and q̂ = 1500GeV2/fm (left), and for different values
of q̂ compared with the MINCAS results for q̂ = 1GeV2/fm and t = 1 fm with the z-only dependent
kernel K(z) and the collision term of eq. (2.6) (right). In the diffusive approximation σk0 = 1GeV
was used; note also that the evolution times for q̂ = 1500GeV2/fm are equal to t = 0, 1, 2, 3 fm
(τ ≡ t/t∗ = 0.0675 when t = 1 fm) in the case of q̂ = 1GeV2/fm.
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Figure 6. The kT distributions for q̂ = 0.5, 1, 2 GeV2/fm and t = 4 fm.
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following. In these two cases q̂ enters to some extent trivially: in the former case as a
factor modifying 〈k2

br〉, while in the latter in the branching term only. In the remaining
cases, q̂ which controls the broadening enters the branching kernel and is hidden in both
the branching term and the elastic scattering term. Interplay of these two effects results
in the structure visible in these cases.

4 Conclusions and outlook

We have solved and studied the BDIM equation as well as its various approximations, i.e.
the no-momentum-transfer approximation, the diffusive approximation and the Gaussian
approximation. We conclude that the momentum transfer during branching gives addi-
tional broadening that is non-negligible. Furthermore, the diffusive approximation of the
elastic scattering kernel is a rather crude approximation to the BDIM equation. In the
future it will be interesting to investigate the case of the expanding medium as well as
to account for coupled evolution of quarks and gluons. Furthermore it will be interesting
to see the signature of the rescattering during branching in some final state. One of the
possibilities is to study decorelations of jets following [40].
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A Monte-Carlo algorithm

With the help of the Sudakov form-factor

∆(p+
0 , t) = exp

(
−t
[∫
|q|>q↓

d2q
(2π)2

(
w(q) + αs

∫ 1−ε

0
dz2zK(q, z, p+

0 )
)])

, (A.1)

where the notation |q| > q↓ should indicate that the integration runs over all q except
those where |q| < q↓, it can be shown that the following integral equation is equivalent to
the integro-differential equation eq. (2.1):

D(x,k, t) =D(x,k, t0) ∆(xp+
0 , t)

∆(xp+
0 , t0)

+
∫ t

t0
dt′

∆(xp+
0 , t)

∆(xp+
0 , t
′)

∫
|q|>q↓

d2q
(2π)2

∫ 1−ε

0
dz

∫
d2Q
(2π)2

∫ 1

0
dy(2π)2

[
w(Q)δ(2)(k−(Q+q))δ(x−y)+αs2zK(Q,z,yp+

0 )δ(2)(k−(Q+zq))δ(x−zy)
]

D(y,q, t′) , (A.2)

in the simultaneous limits of ε→ 0 and q↓ → 0.
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The individual terms in eq. (A.2) can be associated with probabilities:

• The probability that the fragmentation function at time t gets a contribution from the
fragmentation function at time t′ without additional splitting or scattering between
t′ and t (but at t′ and t some particle interaction occurs):

∆(xp+
0 , t)

∆(xp+
0 , t
′)
. (A.3)

• The probability density that the fragmentation function at the momentum fraction x
and the transverse momentum k gets a contribution from the fragmentation function
at the earlier time t′ at the momentum fraction y and the transverse momentum q via
a splitting with momentum fraction z and transverse momentum Q, where x = zy

and k = Q + zq:
zK(Q, z, yp+

0 )∫
d2Q

∫ 1−ε
0 dzzK(Q, z, yp+

0 )
. (A.4)

Thus, the probability for a splitting with a certain z value (independent of the value
of Q) is given as

zK(z)∫ 1−ε
0 dz′z′K(z′)

, (A.5)

where K(z) is

K(z) =
∫
d2QK(Q, z, yp+

0 )

√
yp+

0

2π
√
q̂

= f(z)5/2

(z(1− z))3/2 . (A.6)

• The probability density that the fragmentation function at the transverse momentum
k gets a contribution from the fragmentation function at the earlier time t′ at the
transverse momentum q via a scattering with the transverse momentum Q, where
k = Q + q:

w(Q)∫
|Q′|>q↓

d2Q′w(Q′) . (A.7)

Thus, it is possible to obtain solutions for eq. (2.1) via a Monte-Carlo algorithm, where a
distribution D(x, k, t) that obeys eq. (A.2) can be obtained by selecting independently of
one another a large number Nev of sets (x, k), which follow D(x, k, t).

In each of the Nev cases, the x and k values are obtained in the following way:

• Some initial values x0, k0 are set together with the time t0 of the start of the evolution.

• For every set (xi, ki, ti), i ∈ N, a new set (xi+1, ki+1, ti+1) is selected, where ti+1 > ti.

• The previous step is repeated until for some time tj j ∈ N, it is found that tj ≥ t.
Then the algorithm gives x = xj−1, kj = kj−1 and stops.
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The selection of a set (xi+1, ki+1, ti+1) from a set (xi, ki, ti) is done in the follow-
ing way:

1. Select time ti+1 of next splitting/scattering by first choosing a random number R ∈
[0, 1] from a uniform distribution and then solving the equation

R = ∆(xp+
0 , ti+1)

∆(xp+
0 , ti)

. (A.8)

The result of this calculation is

ti+1 = t∗

 ti
t∗
− ln(R)∫ 1−ε

0 dzzK(z) 1√
xi

+ t∗
∫
|q|>q↓

d2q
(2π)2w(q)

 . (A.9)

2. Determine whether a splitting or scattering occurs.

This is done, by first selecting a random number R ∈ [0, 1] from a uniform distribu-
tion. If

R >

∫ 1−ε
0 dzzK(z) 1√

xi∫ 1−ε
0 dzzK(z) 1√

xi
+ t∗

∫
|q|>q↓

d2q
(2π)2w(q)

(A.10)

a scattering occurs, otherwise a splitting.

3. If a splitting occurs, determine xi+1 and ki+1 as follows:

(a) Select z from K(z) by choosing a random number R ∈ [0, 1] from a uniform
distribution and then solve the equation

R =
∫ z

0 dz
′z′K(z′)∫ 1−ε

0 dz′′z′′K(z′′)
. (A.11)

This equation is solved approximately by first tabulating values of
∫ z

0 dz
′z′K(z′)

for a set of z values that is sufficiently dense for the desired accuracy and then
searching from this table the z value, which is the closest to the one that solves
eq. (A.11).

(b) Select Q from K(Q, z) by choosing random number R ∈ [0, 1] from a uniform
distribution and solving for a := Q2

2k2
br

the equation

R =
∫ a

0 da
′ sin(a′)e−a′∫ π

0 da
′′ sin(a′′)e−a′′ = 1− (cos(a) + sin(a))e−a

1 + e−π
. (A.12)

After selection of a, the value of Q =
√

2k2
bra is calculated. While the values

of a can assume any positive value, we here constrain the values to the region
a ∈ [0, π] in order to avoid the region where sin(a)e−a becomes negative. Indeed
the splitting function in the form of eq. (2.2) was deduced in ref. [27] in the
harmonic approximation, which needs corrections at large momentum scales.

(c) Select the azimuthal angle φ ∈ [0, 2π] from a uniform distribution.
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(d) Obtain xi+1 as xi+1 = xiz.

(e) Obtain ki+1 as ki+1 = Q + zki via

ki+1,x = Q cosφ+ zki,x , (A.13)
ki+1,y = Q sinφ+ zki,y , (A.14)

where the subscripts x and y denote the respective Cartesian coordinates of the
momenta ki and ki+1.

4. If a scattering occurs, determine ki+1 as follows:

(a) Select Q by choosing from a uniform distribution a random value R ∈ [0, 1] and
then solving for Q the equation

R =
∫Q
q↓
d2Q′w(Q′)∫∞

q↓
d2Q′′w(Q′′) . (A.15)

For the scattering kernel of the form given in eq. (2.6), this equation has the
following solution:

Q = q↓√
1−R

. (A.16)

(b) Obtain ki+1 as ki+1 = Q + ki.

B Deterministic method

Eq. (3.3) can be rewritten in the polar coordinates as:

∂

∂t
D(x, k, φ, t) = 1

t∗

∫ 1

0
dzK(z)

[ 1
z2

√
z

x
D

(
x

z
,
k

z
, φ, t

)
θ(z − x)− z√

x
D(x, k, φ, t)

]
+ q̂

1
4

[(
∂

∂k

)2
+ 1
k

∂

∂k
+ 1
k2

∂

∂φ

]
D(x, k, φ, t).

(B.1)

The initial condition for the D(x, k, φ, t) is given by

D(x, k, φ, 0) =


1

2πσ2 exp
(
− k2

2σ2

)
for x = 1,

0 for 0 ≤ x < 1,
(B.2)

where σ = 1GeV. The equation is symmetric with respect to the polar angle φ, so the
corresponding Laplacian simplifies.

In order to get the integrated distribution one needs to calculate the integral:

D(t, x) =
∫
dφ dk kD(t, x, k, φ) (B.3)

The equation can be solved directly for the φ-integrated distribution, since the φ-depen-
dence is trivial.
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The terms on r.h.s. of the eq. (B.1) are evaluated by central differences (the Laplacian
of k with one-sided approximations at the boundaries of the computational domain) and
by the box-rule (the integral term):

∂Di,j(t)
∂t

= q̂

4

(
1

2kj∆k
(
Di,j+1(t)−Di,j−1(t)

)
+ 1

(∆k)2

(
Di,j+1(t)− 2Di,j(t) +Di,j−1(t)

))

+ 1
t∗

Nx−1∑
l=i

∆xK(xl)
[

1
x2
l

√
xl
xi
D(i/l,j/l)(t)−

xl√
xi
Di,j(t)

]
.

(B.4)
A numerical grid is equidistant and 2-dimensional (we drop the φ-dependence due to

the symmetry of the problem):

xi = i∆x, kj = j∆k, i∈ [0,Nx−1], j ∈ [0,Nk−1], ∆x= 1
Nx

, ∆k= kmax
Nk

. (B.5)

We solve eq. (B.4) to obtain the functions Di,j(tn) = D(xi, kj , tn) at given points xi,
kj and a time level tn. The initial condition is given by eq. (B.2). The number of grid
points for x and k is increased up to Nx = 10240 and Nk = 1000 with x ∈ [0, 1] and
k ∈ [0, 50] (kmax = 50) for the case of q̂ = 1500GeV2/fm, for other q̂ we used coarse grid
with Nx = 1024 and Nk = 200.

We use a fourth-order Runge-Kutta method to obtain the numerical solution of the
eq. (B.4) in time (the Cash-Karp method with the adaptive time stepping [41] is employed).
The time step is being changed according to the following formula:

∆t =

0.9∆t
(

TOL
E

)0.2
for E < TOL,

0.9∆t
(

TOL
E

)0.25
for E ≥ TOL,

(B.6)

where TOL = 10−6 is a tolerance and E is the maximal error in the last step of the em-
bedded Runge-Kutta method. In order to minimise the computational time, the numerical
code was parallelized and implemented in NVIDIA CUDA (double precision was used in
computations).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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