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wave signal. To be detectable at LIGO, we show that some supercooling is needed, which

can arise either in Coleman-Weinberg-type symmetry breaking or in strongly-coupled mod-

els. We also investigate phase transitions that interestingly proceed by first breaking the

electroweak symmetry at large scales before tunneling to the Peccei-Quinn breaking vac-

uum. In this case, the associated gravitational wave signal is more likely to be probed at

the proposed Einstein Telescope.
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1 Introduction

The recent detection of gravitational waves (GWs) by LIGO [1] represents the beginning of

a new era in the exploration of the universe. In a few years LIGO-VIRGO has compiled a

sizable catalogue of detected binary merger events [2], and the prospects to further increase

the sensitivity and even to build more observatories look promising.

In the zoo of candidates for GW signals there is one that stands out from the point of

view of high-energy physics: the stochastic GW backgrounds originating from cosmological

first-order phase transitions in the early universe. First-order phase transitions develop by

the formation of bubbles that expand, collide and percolate. The bubble wall collisions

are violent events that occur everywhere in space at a given cosmological time, leading

to sizable stochastic signals that remain as a relic cosmological background analogous to

the cosmic microwave background, but in GWs. Since GWs are a form of radiation, after

their production the fraction of the energy density that they carry keeps constant in the

radiation dominated epoch, thereby giving a relic background that can be detected now, no

matter how early they were produced and how high the temperature of the universe was.

The temperature of the phase transition is encoded directly into the power spectrum of the

signal, mainly in the peak frequency that scales as fpeak ∝ T . A first-order phase transition

at T ∼TeV peaks in the frequency sensitivity band of LISA, while GW observatories with

higher frequency sensitivity bands can probe even higher energies [3].

The main motivation for this work is that the LIGO frequency band corresponds to

first-order phase transitions which could have happened when the early universe was at a
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temperature around 107–108 GeV. This roughly coincides with the lowest possible energy

scale where the Peccei-Quinn (PQ) symmetry U(1)PQ had to be broken in QCD axion

models which solve the strong CP problem of the SM [4, 5]. In other words, the axion

solution to the strong CP problem predicts a phase transition that can occur around this

scale. Then, LIGO-VIRGO has the chance to discover this PQ phase transition if it was

of first-order and “strong enough”.

The purpose of this work, then, is to browse through the simplest incarnations of the

PQ mechanism and see in which cases a detectable first-order phase transition is obtained.

We will focus on the minimal KSVZ [6, 7] and DFSZ [8, 9] models, as well as supersymmetric

and strongly coupled versions of them. As we will see, the most important requirement is

that the models manage to give a strong enough (and long enough) transition. We will show

that this is the case for certain regions of the parameter space of the DFSZ model, and is

more favorable, when the PQ breaking is driven by the Coleman-Weinberg mechanism [10].

Also, we will show that strongly-coupled models of PQ breaking lead to long periods of

supercooling which end with strong GW signals detectable at LIGO.

Furthermore, we investigate the occurrence of a two-step PQ phase transition in DFSZ

constructions, with an intermediate second-order electroweak phase transition at very high

scales, before ending in the PQ broken minimum with a first-order phase transition. Cru-

cially, we show that it is possible to obtain a significant amount of “cooling” in these cases,

albeit much milder than in the aforementioned supercooled scenarios.

We must remark that astrophysical bounds on the PQ scale Fa require Fa & 108 GeV,

that is slightly above the scales at which LIGO is most sensitive. Nevertheless, as we

will see, the temperature of the phase transition can be actually slightly smaller than Fa
(by up to a factor ∼ 10), which in the end allows LIGO to probe these scenarios. The

capability of LIGO to probe PQ phase transitions has also been pointed out and partially

discussed in [11, 12].

We will also include in our analysis the projected sensitivity for the Einstein Telescope

(ET) [13]. The enhanced sensitivity with respect to LIGO offers the opportunity to probe

a much larger area of the parameter space. Therefore ET holds a great promise to probe

axion physics.

The article is organized as follows. In section 2 we show the sensitivity of Advanced

LIGO and the proposed ET to the parameters α, β/H∗ and T∗ of the phase transition. In

section 3 we present the simplest models of PQ breaking, the KSVZ and DFSZ models,

analyze their type of phase transitions, and study their GW signals. Section 4 is for

conclusions.

2 Sensitivity of Advanced LIGO and ET to first-order phase transitions

In this section we show that if the spontaneous breaking of the PQ symmetry occurred

via a first-order cosmological phase transition, then this would have left a stochastic GW

signal potentially detectable by LIGO as well as future GW observatories. Indeed, in this

case the transition proceeds by bubble nucleation and the collisions between the bubbles

as well as the motion of the thermal plasma which surrounds them are sufficiently violent
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events to generate significant GWs. Let us start by reviewing some basic notions that

characterize first-order phase transitions and how they can source GW backgrounds.

First-order phase transitions occur when there are at least two minima in the scalar

potential (which generically depends on the temperature T ) and the universe, initially

trapped in the minimum with higher energy at high T , transits to the minimum with lower

energy either by thermal fluctuations or quantum tunneling. In both cases this proceeds

at a certain ‘nucleation’ temperature T = Tn through the formation of bubbles of a critical

radius R which then expand and percolate. The rate at which bubbles are produced per

unit volume is given by Γ = A e−SB where SB is the action of the critical bubble, or bounce,

and A is a prefactor that is usually of order 1/R4. In order for the phase transition to be

completed in an expanding universe, we must have Γ & H4 where H is the Hubble rate.

The nucleation temperature Tn is therefore determined by Γ ∼ H4 which leads to

SB(Tn) ∼ 4 ln

(
Tn

H(Tn)

)
≡ Sn , (2.1)

where we have taken the approximation A ∼ T 4. The calculation of SB depends on the

details of the potential and has to be performed case by case.

The parameters which characterize the first-order phase transition, and which are

relevant for the GW signal, are the following:

1. The temperature T∗ at the time when the phase transition completes. It can be

estimated from energy conservation by equating the latent heat ∆V (the difference

of the potential between the false and true vacuum) plus the energy density in the

thermal bath at the nucleation temperature to the energy density of a thermalized

plasma, ργ(T∗) = ργ(Tn)+∆V with ργ(T ) = π2g∗/30T 4. Assuming that the number

of relativistic degrees of freedom, g∗, does not change much between T∗ and Tn,

one gets

T∗ '
(

30

π2

∆V

g∗
+ T 4

n

)1/4

. (2.2)

2. The strength of the first-order phase transition α, characterized by the energy density

going into the bubbles over the thermal energy density of the surrounding plasma:

α =
∆V

ργ(Tn)
. (2.3)

3. The inverse of the duration of the phase transition β = [(dΓ/dt)/Γ]Tn [14, 15], which

can be approximately determined as

β

H∗
' T dSB

dT

∣∣∣∣
Tn

− 4 , (2.4)

where we have assumed fast reheating so that H∗ ≡ H(T∗) ' H(Tn), and the −4

arises from A ∝ T 4.
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4. The bubble wall velocity vw, which is determined by the interaction of the bubble

walls with the surrounding plasma. The latter exerts a friction force on the propa-

gation of the walls. In very strong phase transitions (α � 1) one expects that the

pressure difference across the bubble walls dominates over the friction of the plasma

and bubbles run away, thus vw → 1, except in certain cases [16, 17]. In weaker phase

transitions (α� 1), we will take the estimate that vw is expected to be close to the

speed of sound in the plasma [18].

The collisions of bubbles during the phase transition can source GWs of a sizable

amplitude. Production of GWs in a first-order phase transition has been much discussed

previously — see e.g. [14, 15, 19, 20] for recent reviews. The generated GW signal represents

a stochastic background and as such it is best characterized by its power spectrum. It is

customary to express it in terms of the fraction of the present energy density in GWs per

unit decade in frequency,

ΩGW(f) =
1

ρc

d ρGW

d ln f
. (2.5)

This signal can be separated into three distinct contributions,

ΩGW = Ωφ + Ωsw + Ωt , (2.6)

arising from the collision of the scalar wall profiles, the sound waves in the plasma and

from turbulence, respectively.

The shape and size of each contribution can be estimated separately as reviewed in [14,

15, 19, 20]. In all cases the power spectrum has a maximum at a characteristic frequency

basically determined by the inverse duration β, and deviates from the maximum by two

different power laws. In this work we will simply assume the following expressions for the

GW spectra as functions of the parameters of the phase transition, quoted in [14, 15]:

• From bubble wall collisions,

h2Ωφ(f) = 1.66 · 10−5

(
H∗
β

)2 κ2
φ α

2

(1 + α)2

(
100

g∗(T∗)

) 1
3 v3

w

1 + 2.4 v2
w

(f/fφ)2.8

1 + 2.8 (f/fφ)3.8
,

(2.7)

with h the dimensionless Hubble parameter, κφ an efficiency parameter which can

suppress the contribution from bubble collisions when the effects of the thermal

plasma cannot be neglected, and the peak frequency today given by

fφ = 56.8 Hz×
(
β/H∗

10

)(
T∗

108 GeV

)(
1

1− 0.05vw + 0.55 v2
w

)(
g∗(T∗)

100

) 1
6

. (2.8)

• From sound waves in the plasma,

h2Ωsw(f) = 1.88·10−5

(
H∗
β

)
κ2

swα
2

(1+α)2

(
100

g∗(T∗)

) 1
3

vw
(f/fsw)3

[1+0.75(f/fsw)2]7/2
, (2.9)
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Figure 1. Sensitivity curves for stochastic GW searches for LIGO with O1 and O2 data (solid

black), for design LIGO (dashed) and for ET (dotted). The thick gray line is the indirect upper

bound from Planck CMB data. We also show two representative power spectra arising in the PQ

model of section 3.2.1, corresponding to the points ‘p2’ and ‘p3’ of figure 5. They have respectively

Fa = 108 GeV with α ≈ 3.5, and Fa = 109 GeV with α ∼ 106. We have set vw = 1 and show the

signals which arise from only bubble wall collisions with κφ = 1 (blue lines) and from only sound

waves in the plasma with κsw = 1 (red lines).

with the peak frequency today given by

fsw = 19 Hz× 1

vw

(
β/H∗

10

)(
T∗

107 GeV

)(
g∗(T∗)

100

) 1
6

. (2.10)

The efficiency parameter κsw ≤ 1 quantifies the fraction of the latent heat which

goes into bulk motion. Here we shall assume the expression obtained e.g. in [21, 22]

(see [14, 15] for a recent discussion), which holds for vw ∼ 1,

κsw =
α

0.73 + 0.083
√
α+ α

. (2.11)

• The contribution from turbulence Ωt is suppressed (while also being more uncertain),

and we will set it to zero for our estimates.

A convenient way to know whether a signal is detectable by a given GW observatory is

to compare the power spectrum to the so-called power-law integrated curves [23], which

express the sensitivity as the minimal Ω needed for detection as a function of f (see [24] for

an alternative method of presenting sensitivity curves). In this work we will be interested

in the frequency range which can be probed by ground-based interferometers. We show in

figure 1 the sensitivities of the current Advanced LIGO (with O1 and O2 data [25]), as well

as the projected sensitivities of the design Advanced LIGO and ET [13]. For illustration,

we also include in the figure some representative power spectra which arise in the PQ model
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Figure 2. Sensitivity lines for current LIGO (solid), LIGO at design sensitivity (dashed) and ET

(dotted). Blue or red colors refer respectively to whether the signal is mainly sourced by bubble

wall collisions (with κφ = 1) or by sound waves (with κsw given in (2.11)). The points to the left

of the curves represent detectable signals. Left panel: α = 3 and vw = 1. Right panel: α = 0.1 and

vw = 1/
√

3.

discussed in section 3.2.1. We also include the indirect limits resulting from CMB data [26].

The CMB bound is on the integral
∫
dfΩGW/f , so how this translates to a bound on the

spectral density depends on the shape of the assumed spectrum. This is why we show this

bound as a thick line in figure 1.

One can then easily obtain which part of the parameter space (α, β, T∗, vw) corresponds

to detectable signals by simply checking whether the power spectrum overlaps with the

instrument sensitivities. In figure 2, we show the resulting detectable regions (to the left

of the lines) in the T∗ − β/H∗-plane for the two representative values α = 0.1 and α = 3.

Notice the different shapes of the detectable regions for signals arising from sound waves

and bubble wall collisions. For frequencies above the peak in the spectrum, f � fsw, fφ,

the former decays much more rapidly, Ωsw ∝ f−4, than the latter, Ωφ ∝ f−1 (cf. figure 1).

At the same time, the signal from sound waves increases less rapidly for small β/H∗,

Ωsw ∝ (β/H∗)
−1, than that from bubble wall collisions, Ωφ ∝ (β/H∗)

−2. Together this

causes the lower line limiting the detectable region to have a different slope for the two cases.

Furthermore notice that, since the peak frequencies in the spectrum fsw, fφ ∝ T∗β/H∗,

the tips of the detectable regions move to the lower right in the T∗ − β/H∗-plane if the

sensitivity of an instrument increases. Clearly, for strong first-order phase transitions with

α & 3, LIGO at design sensitivity can detect signals that fall into the relevant range for

the PQ models, T∗ ∼ 107–108 GeV, and it can reach values of β/H∗ as large as 102 − 103.

Interestingly, even the current O1 and O2 runs of LIGO are capable of ruling out phase

transitions with β/H∗ . 10. As can be seen in figure 2, the improvement on these figures

by ET would be rather impressive.
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Figure 3. Sensitivity lines for current LIGO (solid) and LIGO at design sensitivity (dashed) in

the T∗ − α plane assuming fixed β/H∗ equal to 10 and 100 as indicated. Blue or red colors refer

respectively to whether the signal is assumed of bubble wall collisions type, (2.7) with κφ = 1 and

vw = 1, or of sound waves type, (2.9) with κsw set by (2.11) and vw = 1/
√

3. The points to the

right of the curves represent detectable signals.

On the other hand, for small α the possibility to detect a first-order phase transition

almost completely fades away at LIGO. This is illustrated in figure 3 where we show the

LIGO sensitivity in the T∗ − α-plane. By taking reasonable values of β/H∗ & O(10), one

clearly sees that in order to possibly detect a signal at LIGO the transition needs to be

strong, that is, with α & 1. The situation could be slightly improved with ET which could

reach down to α ∼ 0.1.

One must be aware that the collection of unresolvable black hole and binary neutron

star mergers creates an additional stochastic GW background [25], the so-called ‘popcorn’

background. Given the event rates of these mergers, the magnitude of the popcorn in the

LIGO frequency band is around h2Ω ∼ 10−9, which enters in the detectability range for

ET and marginally so for LIGO at design sensitivity. This signal represents a ‘foreground’

for the cosmic GW backgrounds, and it should be subtracted away in order to be able to

detect a possible background from cosmological phase transitions. This seems in principle

feasible since the power spectra from popcorn and phase transitions differ significantly [25].

It is interesting to note that PQ models predict actually two more stochastic sources

of GWs in addition to the possible one from the PQ phase transition. Indeed, since the

PQ symmetry is a global U(1) symmetry, it is granted that global cosmic strings will

form at the symmetry breaking scale Fa. Cosmic string networks radiate GWs, but this

is negligible for global strings. Also, at temperatures of order GeV, QCD effects further

break U(1)PQ and lead to domain walls, attached to the global strings. The string-wall

network then disappears around the QCD scale via rather violent processes where large

topological defects collapse and collide. This string-wall network anihilation is similar to

a cosmological phase transition and it may give a larger signal. For QCD axion models
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the peak frequency of this signal must be around f ∼ 10−10–10−7 Hz, which is in the

sensitivity range of Pulsar Timing Array observatories. Unfortunately, the recent numerical

simulations of these networks [27] suggest that the spectrum of this signal falls a bit short

to be detectable.

3 Peccei-Quinn phase transition and its GW signal

Having seen the current and future reach of GW interferometers, we now move to the

particle physics motivation of this work: the QCD axion solution to the strong CP problem.

We start by providing a lightning description of axion physics to set notations, then we

investigate the occurrence of a first-order phase transition in the simplest PQ constructions.

Axion models are characterized by having a global U(1)PQ symmetry with a U(1)PQ−
SU(3)c − SU(3)c anomaly. The U(1)PQ is assumed to be spontaneously broken by the

vacuum expectation value (VEV) of a scalar Φ at some scale Fa. The axion a(x) then is

the Nambu-Goldstone boson that arises from this breaking, Φ = eia(x)/FaFa/
√

2+ · · · . Due

to the U(1)PQ − SU(3)c − SU(3)c anomaly, the axion couples to gluons as

αs
8π

a

Fa
GµνG̃µν , (3.1)

which leads to a potential for the axion through QCD instantons. This gives 〈a〉 = 0,

solving the strong CP problem, and an axion mass

m2
a '

mumd

(mu +md)2

m2
πF

2
π

F 2
a

. (3.2)

We can categorize PQ models into two different types, depending on the origin of (3.1).

Those referred to as KSVZ models [6, 7] contain extra quarks which are responsible for the

anomaly and which generate the term (3.1). On the other hand, those referred to as DFSZ

models [8, 9] contain extra scalars which, after being integrated out, generate the coupling

mqe
ia/Fa q̄q , (3.3)

where q refers to SM quarks. By a chiral rotation of q, the axion can be moved from (3.3)

to (3.1). Below we discuss the minimal versions of these types of models, their phase

transitions and potential GW signals.

3.1 KSVZ axion models

The minimal model of this type consists of a scalar Φ and an extra quark Q′L, Q′R with

PQ charges qΦ, 0 and −1, respectively. The interactions, dictated by the PQ symmetry,

are given by

λφ(|Φ|2 − f2/2)2 + yQ′ΦnQ̄′LQ
′
R , (3.4)

where we have set qΦ = 1/n. Unfortunately, in this model in which Φ only interacts with

itself and an extra fermion, the phase transition is second order, and no significant GWs are

expected to be produced from the phase transition. We could couple Φ to the SM Higgs,
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e.g., |H|2(κ|Φ|2 − µ2). However, in order to achieve a viable electroweak (EW) symmetry

breaking, we need to tune κ〈Φ〉2 ≈ µ2. This constraint has not allowed us to find a region

of the parameter space where the PQ phase transition is strongly first-order (see also [12]).

We will see later that supersymmetric versions of the KSVZ model can however have

a strong first-order phase transition.

3.2 DFSZ axion models

This type of models instead consist of the PQ scalar Φ and one extra scalar SU(2)L doublet

beyond the one in the SM. We denote the two doublets as H1 and H2. Their hypercharges

are Y = 1 and Y = −1 and we choose their PQ charges as 0 and −1, respectively, while

the PQ charge of Φ is qΦ. The model should also contain at least one SM quark charged

under PQ. A minimal option is that only uR is charged under PQ, with PQ charge 1. The

interactions are then fixed by the U(1)PQ symmetry to be

ydH1Q̄LdR + yuH2Q̄LuR + h.c. , (3.5)

for the quarks in the first family, while the rest of the SM fermions couple only to H1. The

scalar potential is given by

V = λφ(|Φ|2 − f2/2)2 + |H1|2(κ1|Φ|2 − µ2
1) + |H2|2(κ2|Φ|2 + µ2

2)− (κ3ΦnH1H2 + h.c.)

+ λ1|H1|4 + λ2|H2|4 + λ3|H1H2|2 + λ4|H1|2|H2|2 , (3.6)

where n = 1/qΦ, H1H2 = εabH
a
1H

b
2, and all couplings are real (κ3 can be made real by a field

redefinition). We will for definiteness fix all couplings to be positive in this section. For the

real parts of the U(1)EM-neutral components, Φ = φ/
√

2, H1 = h1/
√

2 and H2 = h2/
√

2,

we then have

V =
λφ
4

(φ2 − f2)2 +
1

2
h2

1

(κ1

2
φ2 − µ2

1

)
+

1

2
h2

2

(κ2

2
φ2 + µ2

2

)
− κ3

2
n
2

φnh1h2

+
λ1

4
h4

1 +
λ2

4
h4

2 +
λ12

4
h2

1h
2
2 , (3.7)

where λ12 = λ3 + λ4. The mass matrix of h1,2 at the PQ-breaking minimum φ = f is

given by

M2
H =

(
κ1
2 f

2 − µ2
1 − κ3

2n/2
fn

− κ3
2n/2

fn κ2
2 f

2 + µ2
2

)
. (3.8)

In order to obtain the observed electroweak scale, the determinant of the mass matrix has

to be tuned such that1

Det M2
H ∼ −m2

W f
2 � f4 . (3.9)

This is the hierarchy problem which we do not address here but which will be considered be-

low. The SM Higgs is given by the linear combination H = cosθH1+sinθ H̃2 (H̃2 = iσ2H
∗
2 )

which diagonalizes M2
H and whose mass squared is of order m2

W . Notice that the mix-

ing angle θ enters into the expressions for the SM fermion masses: md = yd cosθv/
√

2 and

mu = yu sinθv/
√

2. By integrating out the heavy Higgs doublet, one gets the coupling (3.3).

1At the one-loop level, this relation will of course be modified.
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The original DFSZ proposal [8, 9] has n = 2 (qΦ = 1/2) and all three SM up-type

quarks are charged under PQ. This choice leads to a cosmological problem [28] after

the QCD phase transition, since the domain wall number parameter NDW is larger than

one (in particular NDW = 6 in the original DFSZ proposal). This can be evaded by the

introduction of a further small source of explicit breaking of the PQ symmetry [29]. Here

instead we make a different choice and focus on n = 1 (qΦ = 1). In this case, if only

the first-family uR is charged under the PQ symmetry, we have NDW = 1 and we avoid

the domain wall problem. Other choices for the PQ charges and for n will, however, not

substantially change our results on phase transitions in these models.

From now on, since mW � f , we drop the EW scale in our computations. Thus, the

tuning (3.9) reduces to

f2

(
κ1 − 2

µ2
1

f2

)(
κ2 + 2

µ2
2

f2

)
' 2κ2

3 . (3.10)

In our study of the DFSZ model, we use (3.10) to fix the parameter κ3. The potential (3.7)

is then characterized by nine parameters: the scale f , the mass parameters µ2
1, µ

2
2, the self-

couplings λ1, λ2 and λφ, the quartic couplings κ1, κ2, λ12. Furthermore, the potential (3.7)

is a function of the three scalar fields h1, h2 and φ. Nevertheless, we will focus on cases

where h2 either vanishes or can be assumed to quickly track its minimum during the phase

transition. We will therefore not study its dynamics during the phase transition and only

consider its loop effects on the potential for h1 and φ.

It is thus only in the two-dimensional field space of h1 and φ that we will look for a

first-order phase transition. In this field space, the potential with signs as chosen in (3.7)

can have two minima away from the origin O, which we denote with A and B, located

along the φ and h1 direction respectively (see figure 4):

A: φ = f, h1 = h2 = 0 , B: h2
1 = µ2

1/λ1, φ = h2 = 0 . (3.11)

Our universe will correspond to the PQ-broken minimum A. Therefore, in order to

avoid any danger of having an energetically more favorable vacuum at B, we require

V (A) < V (B). This implies the following lower bound on λφ:

λφ >
1

λ1

(
µ1

f

)4

. (3.12)

This lower bound is only valid at tree level and can be modified by loop corrections. The

point B can either be a local minimum or a saddle point of the potential. It is a local

minimum (the mass of φ is positive at B) if the following upper bound on λφ is satisfied:

λφ <
κ1

2λ1

(
µ1

f

)2

. (3.13)
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Figure 4. Field trajectory I and II of the phase transition.

We then find two possibilities for a strong first-order phase transition in the DFSZ con-

struction (shown in figure 4):

I. O→ A, along the φ direction. The barrier can be either induced by thermal correc-

tions, mainly thanks to the cubic term Tφ3, or by one-loop corrections of Coleman-

Weinberg type (see (A.1)). The latter is more promising for a strong first-order phase

transition, but it requires the mass parameters to be very small compared to Fa.

II. O → B → A, first along the h1 direction and later along some φ − h1 trajectory.

If (3.13) is satisfied, a tree-level zero-temperature barrier separates the minima A

and B which can lead to a first-order phase transition in the second step. In this case

the universe goes through an intermediate phase with a large EW symmetry break-

ing scale.

We explore the two possibilities above in the following subsections section 3.2.1 and

section 3.2.2, respectively.

3.2.1 Thermal and Coleman-Weinberg driven first-order phase transition

Let us consider the phase transition in the direction of φ (trajectory I in figure 4). To

ensure that h1 stays zero during the phase transition, we roughly need Tn & µ1 for signs

as chosen in (3.7) (otherwise one first rolls/tunnels towards the h1-direction, leading to a

trajectory like II in figure 4). This limits the smallest Tn that is achievable. The smaller

Tn, however, the stronger is the GW signal as we will see below. Another option is to flip

the signs of both κ1 and µ2
1 in (3.7). One can show that if µ2

1 is chosen sufficiently large,

a tachyonic direction in h1 and h2 only develops for φ very close to its minimum. Both

fields can therefore be consistently set to zero and their dynamics ignored during the phase

transition.2 We will further assume that all couplings to h1 are sufficiently small and it is

2One may worry that negative κ1 can lead to a runway direction in the potential. In order to avoid

this, one needs to impose that |κ1| < 2
√
λφλ1. A natural value for |κ1| can be estimated from the two-loop

contribution involving κ2 and the gauge couplings. Using this estimate, we find that this condition can be

expected to be fulfilled.
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sufficiently heavy that we can also ignore its loop-corrections to φ and h2. We are then

left with φ and h2, where the latter affects the dynamics of the phase transition only via

loop corrections. The resulting potential for φ at loop-level and for finite temperatures is

discussed in appendix A.

A first-order phase transition can occur due to a thermal barrier generated by the

cubic term ∼ Tφ3, mostly arising from loops of h2. Nevertheless, when the daisy masses

are included (see appendix A), this cubic term is diminished and the barrier is usually

small (see e.g. [30] and [31] for a recent discussion). The resulting values of α are then

small and those of β/H∗ large, leading only to a weak GW signal. This can be seen for

example for the point marked by p1 in figure 5, calculated with κ2 = 2, λφ ∼ 10−2 and√
λφf ∼ 106 GeV. As can be seen in the plot, the phase transition for this case has

β/H∗ ∼ 100, while α ∼ 0.2. Note that the barrier in this case already has a contribution

from the Coleman-Weinberg corrections which we discuss below. A purely thermal barrier

would have even larger β/H∗ and smaller α.

A second more promising possibility for a strong first-order phase transition arises in

the limit in which the mass parameters are small, µ2
2, λφf

2 � f2. In this case, the T = 0

potential for φ becomes almost scale invariant and can be written as

V =
1

4
λφ(φ)φ4 . (3.14)

Due to one-loop corrections, λφ(φ) depends logarithmically on φ and the potential is thus of

Coleman-Weinberg type [10] (when the logs are large, this potential must be RG-improved).

If λφ(φ) is negative for small φ and turns positive for large φ, a minimum develops close

to where the coupling crosses zero. More precisely, the minimum is determined by

λφ(〈φ〉) = −1

4
βλφ(〈φ〉) , (3.15)

where βλφ = dλφ/d lnφ. Notice that now Fa ≡ 〈φ〉 6= f . Considering only the couplings

λφ and κ2, we have

βλφ =
κ2

2

8π2
+

5λ2
φ

4π2
, βκ2 =

κ2
2

4π2
+
κ2λφ
2π2

. (3.16)

From (3.15), we can fix one parameter, say λφ, and therefore we are left with only one free

coupling, κ2. Using (3.15), we obtain at the minimum

Vmin = − 1

16
βλφ(〈φ〉)〈φ〉4 ' − κ2

2

128π2
F 4
a . (3.17)

The phase transition of Coleman-Weinberg models with a potential given by (3.14) was

first studied in [32].3 Let us sketch here how this proceeds. When non-zero temperature

effects are included, the potential at small φ is always dominated by thermal corrections

which lead to

VT = DφT
2φ2 + · · · , (3.18)

3See [33] for an earlier study of GWs in the LIGO frequency band which originate from the phase

transition of a Coleman-Weinberg model.
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where Dφ is given in (A.7). Therefore at any non-vanishing temperature, the curvature of

the potential is always positive near φ = 0 and this point is a (local) minimum. In fact, at

very high temperatures, the thermal corrections are so large that the minimum (3.15) at

φ = Fa is lifted, and the point φ = 0 is the only minimum of the potential. This implies

that at a certain temperature Tc, the two minima are degenerate, and it becomes favorable

to tunnel from φ = 0 to φ = Fa. Notice that the barrier is generated thanks to λφ being

negative for φ ≤ 〈φ〉.
As was discussed in [32], O(3)-symmetric bubbles dominate tunneling in this case and

in the limit of small temperatures T their action is well approximated by

SB =
S3

T
' 18.9

√
2Dφ

−λφ(T )
' 7.7

√
κ2(T ) + 2λφ(T )

−λφ(T )
. (3.19)

From this, we see that SB can slowly evolve from large values to small values, since −λφ(T )

grows as T decreases. This can eventually allow the criterion in (2.1) to be satisfied and

thus the phase transition to happen at some temperature Tn � Fa. While trapped in the

false vacuum, the universe inflates with H2 = ∆V/(3M2
P ) and supercools. We can calculate

Tn using (2.1) where now

Sn ' 4 ln

(
TnMP√

∆V

)
' 4 ln

(
8
√

2π

κ2

TnMP

F 2
a

)
. (3.20)

From (3.16), we see that the smaller κ2, the slower does −λφ(T ) grow with decreasing T

and therefore the more supercooling we have. Notice that there is a lower bound for Tn,

since Sn also decreases with Tn and at some point becomes too small and SB can never

reach its value.

Due to this (long) period of inflation, where the temperature drops exponentially,

the thermal plasma is diluted, and we have α � 1. Furthermore, from (2.4) and (3.19),

we obtain
β

H∗
'

βλφ(Tn)

−λφ(Tn)
Sn − 4 . (3.21)

We can now see under which conditions a slow transition can be achieved. In principle,

since βλφ in (3.21) is one-loop suppressed, one would expect that β/H∗ ∼ 1 can be easily

achieved. However, also −λφ(Tn) is one-loop suppressed near the minimum as follows

from (3.15). In order to make it larger than that, one needs Tn � Fa. To be more

explicit, let us consider the one-loop coupling λφ(φ) ∼ −βλφ lnFa/φ. We then roughly

obtain from (3.21)
β

H∗
∼ 4

lnFa/Tn
ln

(
TnMP

F 2
a

)
− 4 , (3.22)

which reaches values of order one at Tn � Fa.

Having α� 1 and the possibility of β = O(1), this scenario then can lead to a maximal

signal in GWs, which we expect to be mainly sourced by the collision of runaway bubble

walls themselves since supercooling exponentially dilutes the thermal plasma around them.

From (2.2) together with (3.17), we can relate T∗ to Fa:

T∗ ' 0.1
√
κ2 Fa . (3.23)
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Figure 5. Predicted values of T∗ and β/H∗ for the DSFZ axion model (3.7) for Fa = 108, 109 and

1010 GeV (see section 3.2.1 for more details). The present and expected future experimental GW

reaches are depicted as red and blue areas, using the same color code as in figure 2.

This predicts T∗ to be slightly below Fa, making LIGO and ET (see figure 2) quite suited

to test the interesting region Fa ∼ 108–1010 GeV.

We have calculated the properties of the phase transition by numerically solving the

bounce equation for the potential (3.7) plus its thermal and Coleman-Weinberg corrections

as discussed in appendix A. We have performed this calculation for both O(3)- and O(4)-

symmetric bubbles and have confirmed that the former indeed dominate. The resulting

values of T∗ and β/H∗ for Fa = 108, 109 and 1010 GeV are shown in figure 5. We have chosen

the two relevant mass parameters, µ2 and
√
λφf (where λφ is the tree-level coupling), equal

for concreteness and hierarchically smaller than Fa in order to be in the Coleman-Weinberg

regime. Furthermore, we have fixed λφ as discussed above and scanned over different values

of κ2 ≤ 2. This gives rise to the solid lines in figure 5 which for each Fa from top to bottom

correspond to µ2 =
√
λφf = (10−2,10−3,10−4) Fa, respectively. By decreasing κ2, one

moves along these lines towards smaller T∗ (as is expected from (3.23)). As follows from

the discussion above, as long as Tn � µ2,
√
λφf , we have that Tn and β/H∗ decrease if one

lowers κ2. This regime corresponds to the parts of the lines in figure 5 with positive slope.

Eventually, however, one reaches Tn ∼ µ2,
√
λφf . Since we have chosen the mass of φ to

be tachyonic (cf. (3.7)), this mass compensates the thermal barrier (cf. (3.18)) at lower

temperatures and the phase transition thus always happens at Tn ∼
√
λφf if one lowers

κ2 further. Since this removal of the barrier happens rapidly at around Tn ∼
√
λφf , β/H∗

then begins to grow again for decreasing κ2. This regime corresponds to the parts of the

lines in figure 5 with negative slope. We thus find that for every given hierarchy between
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Fa and µ2,
√
λφf , there is a minimal β/H∗ that can be reached. Furthermore, the dash-

dotted lines in figure 5 show results of an analytical approximation following (3.19), (3.21)

and (3.23) for the case µ2 =
√
λφf = 0. As expected, this case allows to reach much lower

values of β/H∗. Note also that the solid lines only delimit points with α ≥ 3, while some

representative points with α < 3 are shown in red. The values of α always increase on the

parts of the lines with positive slope, while they eventually decrease again on the parts

with negative slope. The restriction to α ≥ 3 was made since the amplitudes of the GWs

becomes independent of this parameter in the limit of large α (see (2.7) and (2.9)).

In figure 5, the current and expected reaches of the GW observatories are then shown

for α = 3. Since the amplitudes of the GWs increase by about 40% when going from α = 3

to very large α, the true reaches in the very supercooled regime are slightly higher than

what is shown. Solid lines delimit sensitivity regions for current LIGO, dashed ones for

LIGO at design sensitivity and dotted ones for ET. We expect that in the very supercooled

regime of the DFSZ axion model, GWs are dominantly produced by bubble collisions. The

sensitivity regions for this case are shown in blue (setting vw = 1 and κφ = 1). For

less supercooling (as expected in particular for the points with small α), sound waves can

instead be the main source of GWs. We plot the sensitivity regions for this case in red

(setting vw = 1 and κsw = 1). We see from figure 5 that part of the parameter space

could be already detected at LIGO, while other parts will have to wait for ET. The power

spectra for the points marked as ‘p2’ and ‘p3’ in figure 5 are shown in figure 1.

3.2.2 Cooled two-step phase transition

We now focus on the case of a two-step first-order PQ phase transition, along the trajec-

tory II in figure 4. Let us first understand under what circumstances the two-step phase

transition can occur and be strong enough to source a detectable GW signal. From figure 3,

it is clear that LIGO can probe only transitions with α > 1. In the case of a standard

two-step transition, where the minimum B develops at a temperature Th1 which is higher

than the temperature Tφ at which the PQ minimum appears, these values of α are difficult

to obtain. Indeed in this situation the universe cannot cool much if the transition is to be

completed, since the barrier between the two minima is already present at tree level. This

is in contrast with the previously discussed Coleman-Weinberg driven scenario.

However, in the DFSZ scenario a new possibility arises: namely, that Tφ > Th1 , but

that below Tφ the universe is stuck for a while at the origin, due to a loop-induced barrier

which opposes rolling/tunneling along the φ direction. In this case, a two-step transition

can occur, as below Th1 the universe tracks the local minimum in the h1 direction (second

order/crossover phase transition). If Th1 is sufficiently small, large values of α are obtained

whenever the transition can complete. For this reason, here we focus on this cosmological

history.

We already know of one way to realize this: that is, to make use of the Coleman-

Weinberg induced barrier in the φ direction. Alternatively, a barrier induced by φ3T terms

arising from thermal loops may also suppress tunneling, although it requires large values

of κ2. In both cases, the crucial ingredient which is peculiar to the DFSZ scenario is the

presence of extra bosonic fields coupled to φ, beyond the content of the doublet H1. For
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concreteness, here we focus on the case in which tunneling along φ is suppressed because

of the barrier induced by Coleman-Weinberg corrections due to h2 loops. We then discuss

the values of λφ and κ1 which allow for this scenario to occur, while we keep the rest of

the parameters fixed as follows. Since Th1 ∼ µ1/
√
Dh1 (where Dh1 is defined in (A.8)), we

take µ1 . 0.1f to ensure that Th1 � f . Also we take µ2 = 0.1f and κ2 ∼ 1. Furthermore,

λ1 is related to the SM Higgs quartic coupling,4 which at the energies we consider is of

order 0.01. For this reason we take λ1 & 0.01.

A local minimum in the h1 direction occurs if the upper bound (3.13) on λφ is respected.

For λφ . 10−3, this is easily satisfied and the potential in the φ direction is dominated

by Coleman-Weinberg corrections due to h2. This also ensures that the tree-level lower

bound on λφ is relaxed, as the minimum A is always the global minimum of the potential.

Interestingly, completion of the transition from B to A is facilitated in this case, since the

minima are always significantly non-degenerate.

We then proceed to a numerical investigation of the parameter space for this type of

two-step transition. As mentioned above, even though the potential is a function of three

fields, we can focus on the dynamics of φ and h1 only. The rest of the fields of the DFSZ

model will only affect the potential of φ and h1 at the loop level. These are all components

of the doublets H2 and H1, the imaginary part of Φ, the EW gauge bosons and the top

quark. We fix µ1 = 0.09f, µ2 = 0.1f, λ1 = 0.05, λ2 = 0.01, λ12 = 10−3 and the gauge

couplings as well as the top Yukawa coupling to 0.6, as appropriate for f ∼ 108–1010 GeV.

Finally, in order to consider interesting frequencies of the GW signal, we fix f = 108 GeV.

For f & 109 GeV, the transition necessarily requires very small values of β/H∗ to be

detectable by LIGO and/or ET.

We vary λφ and κ1 while requiring that tunneling along the φ direction does not occur

until at least Th1 . We find that this condition is respected for any value of κ1, as long

as λφ . 0.002. For values of κ1 close to the lower bound κc = 2µ2
1/f

2 ' 0.02, the local

minimum B appears at Th1 ' 2 · 107 GeV, while Tφ ∼ 5 · 107 GeV.

We show the evolution of the latent heat parameter α for temperatures below Th1 in

figure 6 for representative choices of parameters λφ and κ1. It is clear that α & 1 can be

obtained with these choices of parameters if there is just a mild cooling of ∼ 20 %, i.e.,

if Tn . 0.8Th1 . Alternatively, one can consider smaller values of µ1, µ2 and λφ, according

to (3.13). In this way Th1 can be made smaller, therefore ensuring that values of α above

one are obtained even when the universe immediately tunnels below Th1 .

Tunneling from B to A is numerically investigated by means of the multi-field tunneling

package AnyBubble [34]. We find, as expected, that O(3) bubbles only provide a closed

window for tunneling to occur: namely, the tunneling action S3/T initially decreases as the

difference in vacuum energy of the two minima slightly increases (because the PQ minimum

becomes deeper), then reaches a minimum value after which it grows again rapidly (because

∆VT remains constant (and then S3 ≈ constant), while the temperature keeps decreasing

(and then S3/T becomes larger)). For values of λφ and κ1 close to the line determined by

4Below the heavy Higgs doublet mass, the SM quartic is given by λSM = λ1 cos4 θ + λ2 sin4 θ +

λ12 cos2 θ sin2 θ. In addition, integrating out the heavy singlet φ gives an extra contribution ∆λSM =

−κ2
SM/(2M

2
φ) where κSM and Mφ are respectively the coupling of φ to the SM Higgs and its mass.
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Figure 6. Latent heat parameter α as a function of temperature for representative choice of

parameters with Th1
' 2.2 · 107 GeV. In order to produce this plot, we have fixed µ1 = 0.09f ,

λ1 = 0.05, κ2 = 1.5, µ2 = 0.1f and f = 108 GeV. We also fixed κ1 = 3µ2
1/f

2, since the dependence

of α on this parameter is very mild. The solid, dashed upper and dashed lower lines are obtained

respectively for λφ = 10−3, 10−4, 2 · 10−4. Very similar curves can be obtained for smaller values

of µ1 and λφ, starting at smaller values of Th1
, thus larger values of α.

the upper bound (3.13), we find that tunneling occurs very rapidly below Th1 , with α ' 0.2

and β/H∗ � 102, as expected since in this region the tree-level barrier is small. However,

as we move away from this limit, we find points in parameter space where Tn ' 1.5 · 107

and α & 1. For these points, we also find β/H∗ . 100, since the transition occurs only

after some cooling. These values are enough to make the associated GW signal detectable

at ET independently of the main source of GWs and even at design LIGO, if sound waves

are the dominant source of GWs. While we leave a detailed numerical scan of the values

of β/H∗ in the parameter space of the model for future work, we expect that small regions

with β/H∗ . 10 should arise as we move further away from the upper bound (3.13), close

to the region in which the universe remains stuck in B forever.5 This would open up the

possibility to detect the signal at LIGO, independently of the specific source of GWs.

In this latter respect, our two-step PQ phase transition may be characterized by a

further peculiarity. Indeed, for α & 1 it is not clear whether bubbles can achieve a runaway

regime, nor whether the main source of GWs is the collisions of the walls or the sound waves

in the thermal plasma, or in fact an admixture of both. Since our transition involves the

EW gauge bosons, one should consider the implications of transition radiation [17] as these

particles change mass across the bubble walls. However, in our case the EW symmetry is

initially broken at B, with gauge bosons receiving masses mW ∼ µ1 in the second-order

transition from the origin to B. In the first-order transition from B to A the gauge bosons

become light, which is the opposite of the case discussed in [17]. Therefore, in our case

it should be possible for bubbles to run away even if they are surrounded by a thermal

5Here we have not considered tunneling due to O(4) bubbles. We also expect that there is a small region

of parameter space where O(4) tunneling can occur at low temperatures, with larger values of α, when O(3)

tunneling is inefficient.
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plasma, which would lead to vw ' 1 and a GW signal sourced by both sound waves and

bubble collisions. Having an early phase of broken EW symmetry, with very massive gauge

bosons at high energies, may also lead to interesting possibilities for baryogenesis at high

scales. We leave the interesting questions above for future work.

3.3 Supersymmetric versions

A possibility to have the EW scale naturally smaller than Fa without fine-tuning (and also

Fa � MP ) is to supersymmetrize the above models. For the KSVZ models this implies

that the interactions of Φ with the quarks Q′L,R must arise from the superpotential term

(for n = 1)

W = yQ′ΦQ̄′LQ
′
R , (3.24)

while for DFSZ models

W = κΦH1H2 . (3.25)

Notice that in this latter case, when Φ gets a VEV, (3.25) generates a supersymmetric

mass for the Higgs doublets. Since this mass must be of order the EW scale, this requires

κ ∼ TeV/Fa, making this term irrelevant in the scalar potential.

The above superpotentials, however, leave the VEV of Φ undetermined. The latter

can be generated once we add soft supersymmetry breaking (SSB) terms, which are also

required to get realistic models for the EW scale. The relevant potential for φ is then

simply given by6

V =
1

2
m2
φ(φ)φ2 , (3.26)

where m2
φ(φ) is the SSB mass of φ and its dependence on φ arises from loop effects. The

potential (3.26) can lead to a nonzero minimum for φ, similar to the Coleman-Weinberg

model, by demanding that m2
φ is positive at large φ but “runs” towards negative values as

φ decreases. The VEV of φ then occurs at around m2
φ(〈φ〉) ∼ 0, or, more precisely, at

m2
φ(〈φ〉) = −1

2
βm2

φ
(〈φ〉) , (3.27)

where βm2
φ

= dm2
φ/d lnφ arises at the quantum level and it is then one-loop suppressed.

For example, from the interaction (3.24), we have

βm2
φ

=
3y2
Q′

8π2

(
m2
Q̃′
L

+m2
Q̃′
R

+m2
φ + |AyQ′ |2

)
, (3.28)

where m
Q̃′
L,R

and AyQ′ are respectively the SSB mass of the scalar component of Q′L,R and

the trilinear SSB term. It is easy to choose the SSB parameters such that the minimum of

the potential (3.27) occurs at the desired value 〈φ〉 = Fa.

Let us consider the phase transition of this model. At high temperatures the potential

is given by

V (T ) =

(
DφT

2 +
1

2
m2
φ(φ)

)
φ2 + · · · (3.29)

6For the KSVZ model we must assume that the SSB masses of Q′
L,R are positive such that colored

scalars do not get VEVs.
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where Dφ is defined in (A.6).7 The critical temperature is at

Tc '
√
−m2

φ,min/2Dφ ∼ TeV , (3.30)

where m2
φ,min corresponds to the minimal value of m2(φ). As long as this minimal value is

negative and occurs at φ > 0, as we will assume from now on, the potential at Tc will have

a thermal barrier, and a first-order phase transition will be possible. We can estimate the

bounce action of a thermal O(3)-symmetric bubble as [35]

SB =
S3

T
∼ 4πmin

φtun

|φtun|3

T
√
|V (φtun)|

∼ 4πmin
φtun

φ2
tun

T
√
|m2

φ(φtun)|
, (3.31)

where the minimization is over the tunneling point φtun. The latter in this case corresponds

to the smallest possible φtun, determined by V (φtun) ≈ V (0):

m2
φ(φtun) ≈ −2DφT

2 . (3.32)

Since we have assumed that |m2
φ(φ)| decreases with φ after it has reached |m2

φ,min|, φtun

also decreases as T drops. Therefore SB decreases till it reaches Sn where bubbles form

and complete the phase transition. We can estimate the resulting value of α as

α ∼ V (〈φ〉)
T 4
c

∼ F 2
a

TeV2
� 1 , (3.33)

and the value of β/H∗ as

β

H∗
'

4m2
φ(φtun)

βm2
φ
(φtun)

Sn � 1 . (3.34)

From (2.2), we have

T∗ ' 107 GeV

(
100

g∗

)1/4
√(

Fa
1012 GeV

)( mφ

TeV

)
, (3.35)

which lies close to the LIGO and ET range for interesting values of Fa. Nevertheless, the

predicted values of β/H∗ from (3.34) are quite large, & 100, which makes it impossible to

be seen at LIGO, since bubble collisions would be the main source of GWs in this case,

and only ET could be able to detect this type of phase transition — see figure 2.

3.4 Strongly-coupled PQ models

After discussing the possibility of a first-order phase transition in the KSVZ and DFSZ

models, let us now move to a different class of realizations of the PQ mechanism. We

consider the case in which the PQ symmetry arises as an accidental global symmetry of

a new strong sector that, similarly to the U(1)A in QCD, is broken at the scale where

condensates are formed. This scale can be chosen to be of order Fa.

7We are neglecting cubic and quartic corrections which can be induced at the one-loop level by thermal

corrections and supersymmetry breaking terms. These terms will not change our conclusions.
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GWs can arise in this case from the deconfined-to-confined phase transition which

proceeds in the following way. At high temperatures (T � Fa) the strong sector is expected

to be in a deconfined phase, where the constituents are not confined into hadrons. As the

temperature drops below Tc ∼ Fa, the confined phase becomes energetically favorable, and

the model can go through a phase transition. For a gauge theory with a large number

of colors N , this phase transition is expected to be of first order, and indeed this can be

proven to be the case for holographic models [36, 37, 42]. To address this phase transition

quantitatively, we will follow the strongly coupled models studied in refs. [38–40] which

have a weakly-coupled five-dimensional version via holography (see [41] for the GW signal

arising from such a phase transition at the TeV scale). This helps to reduce the number

of parameters, although the conclusions can be extended to models without holographic

versions [39].

The requirements for the strongly-coupled PQ model are the following. We assume

that the strong sector has a global U(1)PQ⊗SU(3)c symmetry with an U(1)PQ−SU(3)c−
SU(3)c anomaly (this means that its constituents must be colored under SU(3)c). We also

assume that the confinement scale Λc of the new strongly-coupled sector is determined by

a potential for the dilaton µ given by

Veff(µ) =
N2

16π2
λ(µ)µ4 , (3.36)

where the dependence of the quartic coupling λ(µ) on µ is dictated by the explicit breaking

of scale invariance (several examples are given in [39]). We identify the mass gap Λc with the

dilaton VEV, 〈µ〉 = Λc. We further assume that confinement also leads to the spontaneous

breaking of U(1)PQ. The axion is then the corresponding (composite meson) Nambu-

Goldstone boson.8 The U(1)PQ − SU(3)c − SU(3)c anomaly guarantees the coupling (3.1),

with an axion decay constant

Fa =

√
N

4π
Λc , (3.37)

where N � 1 plays the role of the number of “colors” of the strong sector.

The free-energy of the unconfined phase is given by Fdec ' −π2N2T 4/8, while in the

confined phase Fconf = Veff(〈µ〉). Thus, the critical temperature at which the confined

phase is energetically favorable follows as [39]

Tc ' 0.3× 1010 GeV

(
(Λcmdil)

1/2

1010 GeV

)
, (3.38)

where mdil is the dilaton mass. The rate of the phase transition from the unconfined to

the confined phase is in most of the cases dominated by vacuum tunneling whose bounce

action is roughly given by [39]

SB ∼
24N2

|λ(µtun)|
, (3.39)

where µtun ' TΛc/Tc. We are interested in phase transitions with large values of α and

small values of β/H∗, as this maximizes the GW strength. As in the case studied in

8Holographic versions of these models can be found in [43–47].
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Fa=1010GeV

Fa=109GeV

Fa=108GeV
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Figure 7. Predicted values of T∗ and β/H∗ (black lines) for strongly-coupled PQ models (see sec-

tion 3.4 for details) for Fa = 108, 109 and 1010 GeV. The present and expected future experimental

GW reaches are depicted as red and blue areas, using the same color code as in figure 2.

section 3.2.1, this arises when there is a period of supercooling, which in this case happens

when the universe stays for a while in the unconfined phase before the phase transition

takes place. In order to achieve that, |λ(T )| must slowly increase as T decreases, so that

SB slowly approaches Sn. In this case we have α & 1 while

β

H∗
' βλ(Tn)

λ(Tn)
Sn − 4 , (3.40)

where βλ = dλ/d lnµ. From this, we see that long periods of supercooling, where SB
evolves slowly towards Sn, can give rise to small values of β/H∗. This can be appreciated

in figure 7, where we consider λ(µ) = b0(ln(Λc/µ)− 1/4) and vary b0, or equivalently, Tn.

Starting at Tn = 0.02 Λc and going to smaller values, we move from the right to the left

along the black solid lines of figure 7 (taking N = 3 and choosing different values of Fa).
9

The value of T∗ is the reheating temperature after the phase transition is completed which

is found to be T∗ ' 1.8
√
N/g

1/4
∗ Tc [39]. Using this and (3.37), we obtain the relation

T∗ ' 2Fa

(
100

g∗

)1/4(mdil

Λc

)1/2

. (3.41)

9The model works for moderately large values of N , since N must be large enough in order for the

holographic model to be perturbative, but not too large, otherwise the bounce action (3.39) becomes too

large and the universe gets trapped forever in the unconfined phase. See [39] for details.
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Even though this scenario realizes supercooling, which strongly dilutes the thermal

plasma around the bubbles and leads to vw ' 1, it is possible that sound waves and

turbulence are still the main source of GWs. This is important because in this case detection

could be easier, as can be appreciated in figure 2. The reason for this is that the deconfined-

to-confined phase transition involves gauge bosons (dark gluons) which receive a mass

across the bubble walls. As pointed out in [17], these can be radiated off as particles cross

the bubble walls. This so-called transition radiation generates friction on the motion of the

bubble walls and can halt their acceleration. More concretely, transition radiation leads to

an upper bound on the γ factor of the bubble walls, given by [39]

γc ∼
(

Λc
Tn

)3

. (3.42)

If bubbles collide significantly after reaching γc, then most of the energy available in the

phase transition goes to the thermal plasma, since the bubbles are not in the runaway

regime even if vw is very close to one. However, bubbles can also collide before they have

time to reach γc. In this case, bubble collisions are the dominant source of GWs. Let us then

estimate the amount of supercooling required to be in this latter regime. Following [39],

the maximal γ factor achieved before collision is

γmax ∼
(
H∗
β

)
MP

Λc

Tn
Λc

. (3.43)

Matching the equation above to (3.42) we obtain

Tn,γc=γmax ∼ Λc

(
β

H∗

)1/4( Λc
MP

)1/4

∼ Fa
(
β

H∗

)1/4( Fa
MP

)1/4

. (3.44)

Thus we see that for Fa ∼ 108–1010 GeV, sound waves and turbulent motion in the plasma

are expected to be the dominant source of GWs when Tn & 10−2–10−3 Fa. For longer

supercooling, bubble collisions are the main source instead.

In figure 7, we show the predictions of T∗ vs. β/H for the strongly-coupled PQ models

as well as the present and expected future sensitivities from GW searches. Solid lines are

for current LIGO, dashed ones for LIGO at design sensitivity and dotted ones for ET.

The corresponding regions in blue can be probed if the GW signal is mainly generated

from bubble collisions, while those in red can be tested if GW production is dominated

by sound waves. We have assumed the GW spectra from these sources as summarized in

section 2. As we have discussed, sound waves can be the main source of GWs even in

the supercooled regime. In this case, however, the amplitude of the resulting GWs may

be suppressed compared to the one given in (2.9) [20, 48, 49]. We therefore note that the

sensitivity regions for sound-wave production of GWs shown in figure 7 are only an upper

bound. They may turn out to be somewhat smaller once sound-wave production of GWs

in this regime is better understood. In the very supercooled regime where Tn . Tn,γc=γmax ,

on the other hand, bubble collisions are the dominant source of GWs which we expect to

be well described by (2.7). The corresponding sensitivity regions in figure 7 are therefore

more robust. We see from figure 7 that the phase transition of the strongly-coupled PQ
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models can be detected by LIGO (at current and design sensitivity) if there is enough

supercooling. The smaller Fa is, the more likely is the detection of the GWs.

Finally, let us conclude this subsection by noting that in principle an alternative option

for a long period of supercooling is to have λ(T ) evolving too slow (for a holographic

example see [50])) such that the condition Γ ' H4 is not met and the universe gets trapped

in the unconfined phase. As discussed in [38, 39], the universe could still exit supercooling

at the QCD scale, where a new contribution to the dilaton potential arises. In order for this

to happen, we need the strong sector to have constituents which are charged under SU(3)c.

This is indeed the case for the axion models discussed here, since, as we have mentioned,

the strong sector must have an SU(3)c symmetry in order for the axion to couple to GG̃.

Nevertheless, exit due to QCD effects is not possible here since Fa is much larger than the

scale where QCD becomes strong, and to exit supercooling at such low temperatures, SB
would need to be of order one.

4 Conclusions

We have shown that LIGO has the possibility to detect GWs arising from a phase transition

which occurs in the early universe at temperatures around 108 GeV. As shown in figure 3,

however, detection requires the phase transition to be strong enough with values of the

latent heat parameter α > 1. For these types of phase transitions LIGO will be able to

detect GWs for values of the inverse transition time β/H∗ up to ∼ 103. On the other hand,

the proposed ET observatory will be able to access phase transitions with slightly smaller

values of α but much larger β/H∗. In particular, as shown in figure 2, ET will access phase

transitions with α & 0.1, and β/H∗ . 106.

The breaking of the PQ symmetry, required in QCD axion models, is a particularly

well motivated example of such a phase transition. Indeed, the PQ phase transition would

have to occur at temperatures T ∼ 108–1012 GeV, if the initial axion misalignment is not

tuned to small values. The main message of this work is that LIGO, at current and design

sensitivity, will be able to probe some of the simplest realizations of the PQ mechanism.

In particular, we have shown that DFSZ realizations have the right ingredients to

generate a GW signal, which is in the reach of LIGO. This occurs when the PQ symmetry

breaking is of Coleman-Weinberg type, that is when the mass parameters of the model are

small and the minimum is generated by quantum effects. Our key results are presented

in figure 5, which shows that PQ scales up to Fa . 1011 GeV can be probed by LIGO

and even more by ET. We note though that for this case some tuning may be required to

obtain the needed small mass parameters.

Furthermore, we have discussed an alternative type of phase transition in the DFSZ

model, which is due to a zero-temperature tree-level barrier. This would proceed via an

intermediate step where the EW symmetry is broken at high scales, before tunneling from

this phase to the PQ broken phase. We have shown that this case can exhibit α & 1, while

the typical values of β/H∗ make its GW signal suited for detection at ET. A more detailed

investigation of the parameter space which allows for a detectable two-step PQ transition
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is left for future work, as are also the phenomenological implications of the associated

high-scale breaking of the EW symmetry.

For KSVZ realizations, we have shown that the simplest model does not lead to a

strong first-order phase transition. However, supersymmetric KSVZ and DFSZ models can

exhibit a first-order phase transition, with naturally small mass scales. We have found

that the PQ symmetry breaking can be driven by supersymmetry-breaking effects, giving

a first-order phase transition with α� 1 and β/H∗ & 100.

We have continued our exploration of PQ phase transitions by considering models

where the symmetry is broken by strong dynamics. In this case supercooling arises rather

generically, without the need to tune mass parameters. The transition from the unconfined

to the confined phase in these realizations can be strong enough to give a GW signal de-

tectable at LIGO. Our key results for this type of phase transition are presented in figure 7.

Interestingly, other proposed observatories, like DECIGO [51] and BBO [52], would be

able to probe the small frequency tails of the broad GW spectra generated by the strongest

first-order phase transitions which we have discussed in this work. Looking further into

the future, GW detectors with sensitivity at higher frequencies than LIGO and ET, such

as [53], will open the possibility to discover phase transitions from QCD axion models with

Fa up to 1011 GeV and weaker than the ones that we considered here.

Overall, as laboratory experiments progress in their search for the QCD axion at low

energies, we have shown that LIGO can already join this effort by hearing the axion ‘birth’

at the very high PQ scale.

Note added. While preparing this manuscript we became aware of the work of [54] which

also considers models with a PQ phase transition detectable at LIGO.
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A The scalar potential

In this appendix we provide formulae to calculate the loop-corrected potential for scalar

fields at finite temperature (see e.g. [30] for a review and [31] for a recent discussion).

Let us consider a set of scalar fields {φi}, with tree-level zero-temperature potential

given by V0({φi}). These scalar fields may or may not be coupled to extra fermionic and/or

bosonic degrees of freedom. We keep the discussion general and number all the fields (the

non-scalars coupled to the scalars as well as the scalars themselves) with an index a. The

number of degrees of freedom associated with each field is ga. Of particular importance

for phase transitions is the dependence of the field masses on the values of the scalar fields

{φi}, which is usually of the form m2
a ∼ c+bφ2

i , with c and b constants. For the scalar fields,
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the masses m2
a are to be taken in the mass eigenstate basis, i.e. they are the eigenvalues of

the i× i-dimensional mass matrix obtained from the tree-level scalar potential.

The tree-level zero-temperature potential receives the following corrections:

1. Coleman-Weinberg: at zero temperature, the one-loop correction to V0({φi}) using

dimensional regularization and the MS renormalization scheme is given by:

VCW ({φi}) =
∑
a

(−1)F ga
m4
a ({φi})
64π2

[
ln

(
m2
a ({φi})

Λ2

)
− ca

]
. (A.1)

Here F = 1 for fermions and F = 0 for bosons. Similarly, ca = 3/2 for scalars and

fermions and ca = 5/2 for vectors.

2. Thermal: at finite temperature T , the one-loop thermal correction to V0({φi}) is

given by:

VT ({φi}, T ) =
∑
a

(−1)F ga
T 4

2π2
JB/F

[
m2
a({φi})
T 2

]
. (A.2)

Here the functions JB/F are defined as

JB/F (y2) =

∫ ∞
0

dx x2 ln
[
1∓ e−

√
x2+y2

]
. (A.3)

For certain purposes, it is enough to consider the following expansion of these func-

tions in m2
a/T

2:

JB(m2/T 2) = −π
4

45
+
π2

12

(m
T

)2
− π

6

(
m2

T 2

)3/2

− 1

32

(m
T

)4
ln

(
m2

abT 2

)
+ . . . , (A.4)

JF (m2/T 2) =
7π4

360
− π2

24

(m
T

)2
− 1

32

(m
T

)4
ln

(
m2

afT 2

)
+ . . . , (A.5)

where ln(ab) = 5.4076 and ln(af ) = 2.6351.

Eqs. (A.4) and (A.5) deliver an important message for phase transitions driven by

thermal corrections: since m2
a ∼ c + bφ2, the leading thermal corrections due to bosons

take the form

VT = DφT
2 φ2 + Eφ Tφ

3 + · · · . (A.6)

Both fermions and bosons can contribute to Dφ. On the other hand, only bosons can

contribute to Eφ and induce a cubic term in φ. This latter term is important, since it

can induce a barrier separating two minima in field space. A further more subtle point is

related to the infrared singularity in the high temperature limit of VT [55–57], as defined

in (A.2). The standard strategy to avoid this problem is to replace the bosonic squared

masses m2
i with the dressed squared masses m2

i (φj)+2DφiT
2 (before diagonalization of the

scalar mass matrix), where Dφi = 2[∂2
φi
VT /T

2]φi,T=0. This replacement is done everywhere

in VT as well as in VCW. These so-called daisy corrections generically weaken the strength

of a phase transition, since at high temperatures T 2 & m2
a, they screen the field dependence

of the leading order cubic terms in the bosonic thermal potential.
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For reference, let us conclude this section by providing the expressions for the daisy

masses of the real, U(1)EM-neutral components of Φ, H1 and H2 which we have used in

our work (we do not list the daisy masses of the imaginary and charged components, while

those of the EW gauge bosons can be found in [30]):

Dφ =
κ1 + κ2

12
+
λφ
6
, (A.7)

Dh1 =
1

96

(
9g2 + 3g′2 +

12λ2
t

cos2 θ
+ 24λ1 + 4κ1 + 8λ12

)
, (A.8)

Dh2 =
1

96

(
9g2 + 3g′2 + 24λ2 + 4κ2 + 8λ12

)
. (A.9)
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