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1 Introduction

The BPS spectrum of quantum field theories with extended supersymmetry has long been

recognised to yield crucial and in fact useful information. Indeed, it is the key to the con-

struction of invariants which both allow extrapolations from weak to strong coupling and

relate abstractly defined theories to geometry. K3 theories provide a rich family of exam-

ples. They are superconformal field theories with N = (2, 2) worldsheet supersymmetry

at central charges (c, c) = (6, 6), with spacetime supersymmetry and integer eigenvalues

of the operators J0 and J0 — the zero modes of the two u(1) currents generating an

affine subalgebra of the left and right N = 2 superconformal algebras — and without

holomorphic BPS states at weight 1
2 . These requirements imply that every K3 theory has

N = (4, 4) worldsheet supersymmetry, and that its conformal field theoretic elliptic genus

E(τ, z) equals the complex elliptic genus of K3 surfaces [1]. The moduli space MK3 of K3

theories has dimension 80 and possesses at least one connected component whose structure

is well understood [2, 3] and which contains all Z2-orbifold conformal field theories that
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are obtained from toroidal CFTs [3]. This component is expected to parametrize all non

linear sigma models on K3 surfaces. These, in turn, provide a rich environment in which

to explore non perturbative effects.

More recently, the sporadic group Mathieu 24 (M24) has made an intriguing appearance

in the conformal field theoretic elliptic genus of K3 theories. First came a numerological

observation by [4] quickly followed by further evidence from the calculation of twining gen-

era [5–8], culminating in a proof that the numerology is truly a signature of M24 [9]. The

prospect of having this sporadic group acting on a non linear sigma model on K3 was swiftly

discarded in [10], prompting a finer inspection of the BPS spectrum of such theories, since

E(τ, z) counts 1
2 - and 1

4 -BPS states with signs, according to their bosonic or fermionic na-

ture. In particular, this index encodes a net number of massive 1
4 -BPS ground states, all of

the same statistics. It is an invariant throughoutMK3 and therefore one is at liberty to ex-

plore its properties from any vantage point in that moduli space. It is known that for generic

theories the net number is actually the total number of these 1
4 -BPS states [11, 12], while

non-generic theories, to which the Z2-orbifold CFTs belong, typically possess a number of

bosonic and fermionic 1
4 -BPS states whose contributions cancel out in E(τ, z). These states

are therefore not encoded in E(τ, z) and are not expected to be organised in non-trivial rep-

resentations of M24. Understanding the nature of these “excess” states in order to better

grasp the role of M24 in relation to the elliptic genus of K3 is the object of the present work.

Although generic theories do not have such excess states and would therefore appear

to be less complicated, no such theories are known explicitly. Hence they offer little scope

for elucidating the M24 action on the BPS states counted by E(τ, z) at present. In contrast,

Z2-orbifold CFTs provide an interesting laboratory, not the least because they all share the

same spectrum of generic BPS states; in other words, the fine details of their underlying

complex 2-tori are of no consequence for our analysis of this class of K3 theories. Moreover,

these theories enjoy a wealth of beautiful mathematical structures, which are only beginning

to show. Indeed, in this work we use a global SU(2) action on a subspace of generic BPS

states which we hope will provide a useful tool in the study of K3 theories beyond the

known examples, and certainly beyond Mathieu Moonshine.

A few years ago, and guided by our symmetry surfing programme [13–15], we showed,

in the framework of Z2-orbifold CFTs, that a maximal subgroup of M24 called the octad

group G acts naturally on a space of 1
4 -BPS states at level one1 whose dimension agrees

with the massive 1
4 -BPS contribution to the elliptic genus at level one [16]. Significantly,

the octad group is not a subgroup of M23 and is the overarching group of all geometric

symmetry groups Gi of different Z2-orbifold CFTs on K3 [15]. These geometric symmetries

are rooted in the construction of Kummer surfaces, obtained by minimally resolving the

16 singularities of the standard Z2-quotient of a complex 2-torus TΛ = C2/Λ with Λ a

rank 4 lattice. In the symmetry surfing programme, the ability to surf the Z2-orbifold

subvariety of MK3 relies crucially on the existence, in the rank 16 Kummer lattice, of a

“diagonal” direction invariant under the action of all geometric symmetry groups Gi. On

the Z2-orbifold CFT side, this is echoed by the existence of a “diagonal” exactly marginal

1In the Ramond sector, states at level n ∈ N have conformal dimensions (h, h) = ( 1
4

+ n, 1
4
).
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state T diag built on a twisted ground state |αdiag〉 whose orthogonal complement in the

16-dimensional space of twisted ground states is a 15-dimensional subspace A. We denote

by H⊥ the space of all massive ground states in the Fock space over A. H⊥ is graded

and we write H⊥ =
∞⊕
n=1

H⊥n where H⊥n is the space of level n states in H⊥, n ∈ N. At

level 1, it so happens that the net number of massive 1
4 -BPS states counted by the elliptic

genus corresponds to states solely built on twisted ground states in A. Moreover, all the

massive 1
4 -BPS states built on |αdiag〉 cancel in the counting against all massive 1

4 -BPS

states from the untwisted sector. This property helped us pinning down the octad group

action on the remaining massive 1
4 -BPS states at level 1, using Margolin’s construction of

a 45-dimensional representation of M24 as a guide [17], but the situation is not typical at

higher level. Yet the octad group continues to act on H⊥, as elegantly demonstrated by

Gaberdiel, Keller and Paul [18]. Moreover, they argue that G also acts on the space Hrest

consisting of some 1
4 -BPS states built on the twisted ground state |αdiag〉 and some 1

4 -BPS

states from the untwisted sector such that the graded dimension of Hrest ⊕ H⊥ agrees

precisely with the massive ground state contributions to E(τ, z). Since the action of G

arises from symmetry surfing, this beautifully supports the symmetry surfing programme.

Let us describe the 1
4 -BPS states in a given K3 theory in more detail. Here and in the

following, by this abbreviation we mean those BPS states which saturate the BPS bound for

half of the antiholomorphic N = 4 worldsheet supersymmetries and which are massive with

respect to the holomorphic N = 4 superconformal algebra. By Ĥn, n ∈ N \ {0}, we denote

the space of all 1
4 -BPS ground states at level n in the given K3 theory. The findings of [18]

imply that Ĥn
∼= H⊥n ⊕Hrest

n ⊕H+
n , where as above, the dimension of H⊥n ⊕Hrest

n agrees

with the massive ground state contributions at level n to E(τ, z). Accordingly, H+
n accounts

for “excess” states whose contributions to the conformal field theoretic elliptic genus cancel

out. While H⊥n is well under control by the results of [18], the spaces Hrest
n ⊕ H+

n have

not yet released all their secrets. In particular, for n > 1 neither Hrest
n nor H+

n has been

constructed explicitly so far in any K3 theory. In a very recent article [19], Keller and Zadeh

have deformed Z2-orbifold CFTs on K3 away from the orbifold point using second order

conformal perturbation methods. They have shown that under a deformation by T diag all

the 1
4 -BPS states in H⊥1 remain 1

4 -BPS, while those in H+
1 cease to satisfy the bound once

the initial theory is deformed away from the orbifold. Deforming away from the orbifold into

a different direction lifts the states in a different space H̃+
1
∼= H+

1 , whilst (H̃+
1 )⊥ ⊂ H+

1 ⊕H⊥1
remains at the BPS bound. This fits very well in the overall picture of the elliptic genus

providing information that remains unchanged regardless of the regime (perturbative or

not) one is interested in, and regardless of the point inMK3 one considers. It also fits nicely

with the symmetry surfing predictions: depending on the direction of deformation, different

symmetry groups remain unbroken. Hence different subspaces of Ĥ =
∞⊕
n=1

Ĥn remain

stable under different deformations, but each of them is isomorphic, as a representation

of the Virasoro- and u(1)-current zero modes L0, L0, J0, J0, to the massive ground state

contributions to the generic space of states H0 introduced in [12]. This in particular shows

that the inclusion H⊥n ⊕Hrest
n ↪→ Ĥ of representations is not uniquely determined in general.
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While the structure of H⊥ has been understood by the results of [16, 18], we now

proceed to uncover more structure on the spaces Hrest
n ⊕H+

n , with the hope of finding how

Z2-orbifold CFTs earmark excess BPS states. The results of [12] show that independently

of the deformation, if deforming to a generic theory, then the bosonic excess states in Ĥn are

precisely those states in Ĥn that transform in the vacuum representation of the antiholo-

morphic N = 4 superconformal algebra. Under deformation, the N = 4 representations

built on these states combine with representations with fermionic 1
4 -BPS ground states to

form long representations away from the BPS bound. By the above, these excess fermionic

ground states depend on the choice of deformation. To describe them for the deforma-

tion by T diag, we construct a “geometric” action of the group SU(2), henceforth denoted

SU(2)geom, under which the four free Dirac fermions of our theories and their superpartners

transform as doublets and whose action commutes with that of the N = 4 superconformal

algebra. All 1
4 -BPS states in the graded space Hrest ⊕ H+ =

∞⊕
n=1

Hrest
n ⊕ H+

n transform

under SU(2)geom. We argue that for deformations in the diagonal direction T diag, to be

lifted to a long representation, both the fermionic and bosonic excess 1
4 -BPS states in H+

must transform in isomorphic representations of SU(2)geom.

Before proceeding to the heart of our matter, we provide the context in which M24

emerged in K3 theories. This has the double aim of providing a quick overview for the

reader who is not familiar with the subject, and of introducing some of the definitions and

notations that will be used later in the paper.

Let τ, z ∈ C, with τ in the upper complex halfplane.2 The genus one partition function

ZN=(4,4) of an N = (4, 4) superconformal field theory at central charge c = c = 6 is a

modular covariant function

ZN=(4,4) =
1

2

{
ZNS + ZR + ZÑS + ZR̃

}
(1.1)

with

ZS = ZS(τ, z; τ , z) := TrHS (yJ0 qL0− 1
4 y J0 q L0− 1

4 ), S ∈ {NS,R},

Z S̃ = Z S̃(τ, z; τ , z) := TrHS ((−1)J0−J0 yJ0 qL0− 1
4 y J0 q L0− 1

4 ) (1.2)

where the traces are taken over the subspaces HNS and HR of H, the (Z2 × Z2)-graded

complex vector space of all states in the superconformal field theory. The gradings split

H into the Neveu-Schwarz and Ramond sectors,3 each containing (worldsheet) bosons and

fermions, that is

H = HNS
b ⊕HNS

f︸ ︷︷ ︸
HNS

⊕ HR
b ⊕HR

f︸ ︷︷ ︸
HR

. (1.3)

2By τ , z ∈ C we denote the complex conjugates of τ, z ∈ C, which we occasionally include as arguments

of a non-holomorphic function of τ, z. This is convenient whenever such a function allows a power series

expansion in q := exp(2πiτ), q := exp(−2πiτ), y := exp(2πiz), y := exp(−2πiz), where q, q, y, y may also be

viewed as independent formal variables.
3Referring to both left and right movers, as in a K3 theory, there exist no NSR or RNS states, by

definition. Note that our description of K3 theories involves the internal CFT only.
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Here, as representations of the N = (4, 4) superconformal algebras, the spaces HNS and HR

are isomorphically mapped to each other under spectral flow. The operators J0 and J0 are

the zero modes of the u(1) currents which, together with the currents J±(z) and J
±

(z), form

two copies of the affine su(2) subalgebra of the (small) N = (4, 4) superconformal algebra.

The partition function (1.1) may be expressed in terms of sesquilinear combinations of

N = 4 unitary irreducible characters at central charges c = 6 and c = 6. These characters

are generating functions for short and long representations and were coined ‘massless’

and ‘massive’ respectively in [21] to signify that the corresponding representations have

non-zero or zero Witten index respectively. We recall the expressions for these characters

in appendix A.3, where we label the two massless characters in the Ramond sector as

χR
0 (τ, z) and χR

1
2

(τ, z) while the Ramond massive characters are of the form qh χ̃R(τ, z)

with χ̃R := χR
1
2

+ 2χR
0 and where the conformal weight h ∈ R of the highest weight state

is bounded below by h > 1
4 . The Ramond massless characters, on the other hand, have

highest weight states whose conformal dimension saturates the bound h = 1
4 . For K3

theories, the partition function is of the form

ZN=(4,4)(τ, z; τ , z) =
1

2

∑
S∈{NS,R,ÑS,R̃}

∑
a,b

nab χ
S
a (τ, z)χSb (τ, z), nab ∈ N ∀a, b, (1.4)

with a, b running over massless and massive N = 4 characters and with the term containing

the vacuum of the theory having n00 = 1. The conformal field theoretic elliptic genus

E(τ, z) of a K3 theory is defined as the specialisation of ZR̃ where the antiholomorphic R̃

characters are projected to their Witten index value by setting z = 0. We thus have

E(τ, z) := TrHR ((−1)J0−J0 yJ0 qL0− 1
4 q L0− 1

4 ) =
∑
a,b

nab χ
R̃
a (τ, z)χR̃

b (τ, 0). (1.5)

As a consequence of the theory enjoying N = (2, 2) worldsheet supersymmetry, E is a

holomorphic function of τ and z, and it counts (with opposite signs) the RR fermionic and

bosonic states whose antiholomorphic signature is the Witten index of the massless repre-

sentation they belong to. The first explicit calculation of this topological invariant was car-

ried out within the framework of Gepner models and Z2-orbifold CFTs in [1, (3.8)], where a

spectral-flowed version of the conformal field theoretic elliptic genus (1.5) was used, namely

Φ(τ, z) := q1/4y E(τ, z+ τ+1
2 ). This was in order to make a direct parallel with the work of

Witten [22]. The elliptic genus presented in [1, (5.10)-(5.12)] is the z = 0 specialisation of

Φ(τ, z) = 8

{
ϑ2(τ, z)2

ϑ4(τ, 0)2
− ϑ1(τ, z)2

ϑ3(τ, 0)2
− ϑ4(τ, z)2

ϑ2(τ, 0)2

}
. (1.6)

With the help of (A.16a)–(A.16c) and (A.17), Φ(τ, z) may be expressed as an infinite sum

of irreducible N = 4 Neveu-Schwarz characters in the following way,

Φ(τ, z) = 20χNS
1
2

(τ, z)− 2χNS
0 (τ, z) +A(τ) χ̃NS(τ, z), (1.7)

where

A(τ) := 2− 8q
1
8 η(τ)

4∑
i=2

hi(τ)
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and the functions hi(τ) are the ν = 0 specialisations of the functions hi(τ, ν) given in (A.8)

and (A.9). A(τ) has Fourier expansion

A(τ) =
∞∑
n=1

Anq
n = 2 · (45q + 231q2 + +770q3 + 2277q4 + · · · ), (1.8)

and 1
2(A(τ) − 2)q−

1
8 = h(2)(τ), the weakly holomorphic mock modular form on SL(2,Z)

presented in [23, (7.16)].

A list of the first 8 coefficients An, n ∈ {1, . . . , 8}, counting 1
4 -BPS ground states, was

given in [24], but the significance of these coefficients has only been realised since 2010,4

after the observation in [4] that they coincide with dimensions of representations of the

sporadic group M24. The existence of an infinite-dimensional M24 module underlying A(τ)

was proven in [9]. Yet the role of M24 in the context of strings compactified on K3 surfaces

remains a mystery, and this phenomenon has been named Mathieu Moonshine.

We have structured the remainder of this work as follows.

In section 2, we recall the ingredients from Z2-orbifold CFTs relevant to our analysis.

Moreover, we present an explicit construction of excess BPS states pertaining to H+
n , n ∈

{1, 2}, including their decomposition into SU(2)geom multiplets. The information at level

n = 1 was already provided in our work [16], but the full significance of SU(2)geom was not

recognised then. The information at level n = 2 is new and requires a careful and detailed

analysis of the data encoded in the partition function of Z2-orbifold CFTs on K3. The

states in Hrest
2 are listed in appendix B.

Section 3 takes stock of the group theoretic information gleaned in the previous sec-

tion, gives our rationale behind our construction of the SU(2)geom× SU(2)geom action, and

provides analytic expressions for untwisted and twisted partition functions that encode the

SU(2)geom action.

A discussion and outlook is given in section 4.

Appendix A gathers helpful Jacobi theta function identities, as well as expressions for

the N = 4 characters at central charge c = 6 involving Appell functions, whose definitions

are also presented. This appendix also offers explanations for the analytic expressions

appearing in section 3.

2 Z2-orbifold CFTs

Since the elliptic genus E is an invariant on the moduli space MK3 of K3 theories, it en-

codes properties that all K3 theories share. In particular, apart from states in massless

representations with respect to the holomorphic and the antiholomorphic N = 4 super-

conformal algebra, which will not be our concern here, E counts a net number of 1
4 -BPS

states at each integer conformal weight strictly above threshold. By the results of [9], the

corresponding contributions to E agree with the graded character of a space

HBPS =
∞⊕
n=1

(Hn ⊗HN=4
n ), (2.1)

4Moonshine, a clear, unaged whiskey, became legal in the US in 2010. We do not know whether this

had any significance for the discovery of Mathieu Moonshine.
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where HN=4
n is an irreducible massive N = 4 representation at conformal weight n for each

n ∈ N \ {0}, and Hn is a finite dimensional representation of M24 and J0. HBPS is the

subspace of massive states in the generic space of states H0 introduced in [12]. Each Hn is

an invariant of K3 theories, although the dimensions of the Ĥn in the space

ĤBPS =

∞⊕
n=1

(Ĥn ⊗HN=4
n ) (2.2)

of all massive 1
4 -BPS states may vary from one K3 theory to another. In generic K3 theories,

we have Ĥn
∼= Hn for all n [11, 12], while in non-generic theories dim Ĥn ≥ dimHn for all

n. When one deforms away from a non-generic theory, excess states, whose contributions

to the elliptic genus cancel, are lifted into non-BPS representations off threshold. Although

the results of [11, 12] imply that HBPS has a geometric description in terms of the chiral de

Rham cohomology of K3, this space remains difficult to access. For any deformation of a

non-generic theory, it is therefore valuable to gain insight on the subspace of excess states

in ĤBPS whose contributions to E cancel, and to identify the driver of such cancellations

in non-generic yet accessible K3 theories.

2.1 Free fermions and bosons as building blocks

Our prototype of non-generic K3 theories is the class of Z2-orbifold superconformal field

theories, which we denote by

C = T /Z2 with T a toroidal SCFT at central charges c = c = 6. (2.3)

The construction of C is induced by the standard Kummer construction which minimally

resolves the singularities of the Z2-quotient of a complex 2-torus TΛ := C2/Λ, with Λ ⊂ C2 a

rank 4 lattice over Z. Unlike generic K3 theories, these provide a framework to test the sym-

metry surfing idea explicitly and garner further clues for the construction of the putative

VOA(s) associated with the M24 Moonshine module. To this effect, we restrict our attention

to the symmetry groups Gi induced by geometric symmetries — including those stemming

from shifts by half lattice vectors — of the underlying toroidal conformal field theories T .

As was detailed in [14–16], this is meaningful after the choice of a geometric interpretation

for the theory T on some torus TΛ. The symmetry surfing programme also requires a choice

of generators for the lattice Λ ⊂ C2 ∼= R4. All in all, these choices induce an identification
1
2Λ/Λ ∼= F4

2, such that every geometric symmetry group Gi acts on the twisted ground states

T~a, ~a ∈ F4
2, as permutation group by means of affine linear maps on the space of labels F4

2.

The underlying toroidal CFT T possesses two holomorphic free Dirac fermions χa+(z)

and their complex conjugates χa−(z) with standard OPEs,

χa+(z)χb−(w) ∼ 1

z − w
δab, a, b ∈ {1, 2}. (2.4)

Their bosonic superpartners ja±(z) are built out of a set of four real holomorphic U(1)-

currents jI(z), I ∈ {1, 2, 3, 4}, whose zero modes generate infinitesimal translations on the

torus TΛ. Here, jI(z) is the Noether current for the translation along the Ith coordinate

– 7 –
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axis in the standard coordinate system that TΛ inherits from C2 ∼= R4 around each point.

One has

j1
±(z) =

1√
2

(j1(z)± ij2(z)), j2
±(z) =

1√
2

(j3(z)± ij4(z)), (2.5)

with

ja+(z) jb−(w) ∼ 1

(z − w)2
δab, a, b ∈ {1, 2}. (2.6)

Under the action of the Z2-orbifold group, the fields χa±(z) and ja±(z) flip sign, while the

N = 4 SCA is invariant under this orbifold action, as follows from the following free field

representation:

J3 =
1

2
{:χ1

+χ
1
−: + :χ2

+χ
2
−:} =

1

2
J, J± = ± :χ1

±χ
2
±:

G± =
√

2 {:χ1
± j

1
∓: + :χ2

± j
2
∓:}, G ′± =

√
2 {:χ1

∓ j
2
∓:− :χ2

∓ j
1
∓:}, (2.7)

T =

2∑
a=1

:ja+j
a
−: +

1

2

2∑
a=1

{:∂χa+χa−: + :∂χa−χ
a
+:}.

The currents J± and J3 generate the su(2) affine subalgebra of the N = 4 superconformal

algebra, under which the Dirac fermions χa± have charges ±1
2 , while their bosonic super-

partners are uncharged, as is immediate from the form of the Cartan subalgebra current J3

in (2.7). In contrast, the symmetry groups Gi also act linearly as subgroups of SU(2) on χa±
and ja±. More precisely, χa+ and ja+ transform as doublets 2 under this SU(2), which will

be referred to as ‘geometric’ SU(2)geom while χa− and ja− transform as complex conjugate

doublets 2. In other words, if χa+ and ja+ transform with

M =

(
α β

−β α

)
, α, β ∈ C, |α|2 + |β|2 = 1, (2.8)

then χa− and ja− transform with M . The action of SU(2)geom commutes with the N = 4

action, as can be inferred from the SU(2)geom invariance of the fields in (2.7).

In the antiholomorphic sector of the theory, the two Dirac fermions χa+(z) and their

superpartners ja+(z) transform as doublets under a right-moving group SU(2)geom whose ac-

tion commutes with that of the antiholomorphic N = 4 superconformal algebra, while they

are singlets under SU(2)geom. Their complex conjugates χa−(z) and ja−(z) also transform

as doublets under SU(2)geom and as singlets under SU(2)geom.

2.2 The Neveu-Schwarz partition function

With an eye to prepare the ground for future work on the VOA(s) expected to underlie

the Mathieu Moonshine module, we choose to work in the Neveu-Schwarz sector. The

Z2-orbifold partition function in this sector is given by contributions from the two complex

NS fermions and their bosonic superpartners (2.6), both untwisted and twisted by the Z2

action as in [1],

ZNS = ZNS
untwisted + ZNS

twisted. (2.9)
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The dependence on the moduli of the underlying toroidal theory becomes apparent in

ZNS
untwisted, which depends on Γ(Λ, B) ⊂ R4 ⊕R4, the signature (4, 4) Narain lattice associ-

ated with the lattice Λ and the B-field of the underlying toroidal theory. Indeed, we have5

ZNS
untwisted(z, z) =

1

2

1

|η|8

∣∣∣∣ ϑ3(z)

η

∣∣∣∣4{1 +
∑

(pL;pR)∈Γ(Λ,B)
(pL;pR) 6=(0,0)

q
1
2
p2L q

1
2
p2R

}
+ 8

∣∣∣∣ ϑ4(z)

ϑ2

∣∣∣∣4 (2.10)

and

ZNS
twisted(z, z) = 8

∣∣∣∣ ϑ2(z)

ϑ4

∣∣∣∣4 + 8

∣∣∣∣ ϑ1(z)

ϑ3

∣∣∣∣4. (2.11)

Different tori TΛ lead to different Narain lattices, but the 1
4 -BPS states emerging from

non-zero momentum or winding are non-generic in the class of Z2-orbifold CFTs (see, for

example, [12, (3.7)-(3.8)] for the precise argument). The remaining spectrum of states is

generic to Z2-orbifold CFTs on K3, however, and is the object of our present analysis.

Restricting the graded trace that usually yields the Neveu-Schwarz partition function

to the states with vanishing winding and momentum and the twisted sector thus yields

ZNS,generic(z, z) =
1

2

1

|η|8

∣∣∣∣ ϑ3(z)

η

∣∣∣∣4 + 8

∣∣∣∣ ϑ4(z)

ϑ2

∣∣∣∣4 + ZNS
twisted(z, z). (2.12)

The BPS states we are interested in are Neveu-Schwarz states which under the antiholo-

morphic N = 4 superconformal algebra transform like elements of the chiral ring. In other

words, we need to project to ker
(
2L0 − J0

)
. These states are thus encoded in the confor-

mal field theoretic elliptic genus of K3 spectral-flowed from the R̃ sector to the NS sector,

that is, in

ENS(τ, z) := TrHNS

(
(−1)J0 yJ0 qL0− 1

4 q L0−J0
2

)
= −q

1
4 y E

(
τ, z +

τ + 1

2

)
. (2.13)

It may also be obtained from the generic Neveu-Schwarz partition function by inserting

z = − τ+1
2 , namely

ZNS,generic

(
z, z = −τ + 1

2

)
= 8

ϑ4(z)2

ϑ2
2

q−
1
4︸ ︷︷ ︸

untwisted

+ 8

{
ϑ2(z)2

ϑ2
4

(−q−
1
4 ) +

ϑ1(z)2

ϑ2
3

q−
1
4

}
︸ ︷︷ ︸

twisted

= ENS(τ, z) q−
1
4 . (2.14)

Note that our conventions ensure that the vacuum contributes to ENS(τ, z) with a positive

sign, which we find natural, since it is bosonic.6

We now rewrite ENS(τ, z) in terms of N = 4 characters and Appell functions. To do so,

we use the following notations introduced in [18, (B.2)–(B.4)]: by U`= 1
2
(z) we denote the

5The dependence on τ will often be understood but not explicitly referred to for easy reading of formulas.
6There is a global sign difference between equation (2.14) and [18, (2.5)], or equivalently, (1.6); we view

this as a different choice of conventions, due to the fact that in [1, 18], the elliptic genus is expressed in the

NSR̃ sector, while we work in the NSNS sector.
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generating function for BPS states that transform as the vacuum under the antiholomorphic

N = 4 superconformal algebra. To be invariant under the Z2-orbifold action, there must

be an even number of modes acting on the vacuum:

U`= 1
2
(z) :=

1

2
q−

1
4

{ ∞∏
n=1

(1+qn−
1
2 y)2(1+qn−

1
2 y−1)2

(1−qn)4
+
∞∏
n=1

(1−qn−
1
2 y)2(1−qn−

1
2 y−1)2

(1+qn)4

}
=

1

2

{
ϑ3(z)2

η6
+4

ϑ4(z)2

ϑ2
2

}
= χNS

0 (z)+

∞∑
n=1

fn q
n χ̃NS(z). (2.15)

Similarly, U`=0(z) is the generating function for untwisted BPS states that transform as

massless matter ground states under the antiholomorphic N = 4 superconformal algebra.

These states are created from the vacuum by the action of a single mode of weight 1
2 of an

antiholomorphic Dirac fermion. Hence for such BPS states to be invariant under the Z2

action, there must be an odd number of holomorphic modes acting on the ground state:

U`=0(z) := q−
1
4

{ ∞∏
n=1

(1 + qn−
1
2 y)2(1 + qn−

1
2 y−1)2

(1− qn)4
−
∞∏
n=1

(1− qn−
1
2 y)2(1− qn−

1
2 y−1)2

(1 + qn)4

}
=

ϑ3(z)2

η6
− 4

ϑ4(z)2

ϑ2
2

= 4χNS
1
2

(z) +

∞∑
n=1

ginv
n qn χ̃NS(z). (2.16)

In analogy with our notation (1.8), we introduce

f(τ) :=

∞∑
n=1

fn q
n and ginv(τ) :=

∞∑
n=1

ginv
n qn,

and using (A.16c) and (A.17) we obtain the following analytic expressions for these func-

tions,

f(τ) = 2h2(τ) η(τ) q
1
8 +

q
1
8

2η(τ)3
− 1,

ginv(τ) = −4h2(τ) η(τ) q
1
8 +

q
1
8

η(τ)3
.

(2.17)

Here, the function h2 is a specialisation of a level one Appell function (see appendix A.2).

By (2.14), the contributions to ENS(τ, z) from the untwisted sector thus may be written

as

8
ϑ4(z)2

ϑ2
2

= 2U`= 1
2
(z)−U`=0(z)

(2.15), (2.16)
= 2χNS

0 (z)− 4χNS
1
2

(z) + (2f − ginv) χ̃NS(z). (2.18)

Proceeding in a similar fashion in the twisted sector, we use the function T`=0(z)

introduced in [18, (B.7)–(B.8)] which gives the contributions to ENS(τ, z) from one twisted
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sector:

T`=0(z) :=
1

2
q−

1
4

{
(y + 2 + y−1) q

1
2

∞∏
n=1

(1 + qny)2(1 + qny−1)2

(1− qn−
1
2 )4

+ (y − 2 + y−1) q
1
2

∞∏
n=1

(1− qny)2(1− qny−1)2

(1 + qn−
1
2 )4

}
=

1

2

{
ϑ2(z)2

ϑ2
4

− ϑ1(z)2

ϑ2
3

}
= χNS

1
2

(z) +
∞∑
n=1

gtw
n qn χ̃NS(z). (2.19)

We introduce the function

gtw(τ) :=
∞∑
n=1

gtw
n qn

(A.24)
= −1

2
(h3(τ) + h4(τ)) η(τ) q

1
8 , (2.20)

whose Fourier modes, alongside those of f(τ) and ginv(τ), provide crucial data for our

analysis. By (2.14) the contributions to ENS(τ, z) from the twisted sector thus read

8

{
− ϑ2(z)2

ϑ2
4

+
ϑ1(z)2

ϑ2
3

}
(2.19)

= −16T`=0(z)
(2.19)

= −16χNS
1
2

(z)− 16gtw(τ)χ̃NS(z), (2.21)

where the factor 16 accounts for the number of linearly independent ground states in the

twisted sector of the theory. Indeed, the twisted ground states are localised at the 16

singular points of the quotient TΛ/Z2. Altogether, (2.18) and (2.21) yield a decomposition

of the conformal field theoretic elliptic genus according to

ENS(τ, z) = 2χNS
0 (τ, z)− 20χNS

1
2

(τ, z) +
(
2f(τ)− ginv(τ)− 16gtw(τ)

)
χ̃NS(τ, z) (2.22)

and thus, by comparison with (1.7),

A(τ) = −2f(τ) + ginv(τ) + 16gtw(τ) =
∞∑
n=1

Anq
n. (2.23)

With the decomposition (2.22) of the NS-elliptic genus ENS in hand, we will from now on

continue to work in the Neveu-Schwarz sector, focussing on massive primary states that

contribute to ENS. Note that in this sector, the level n accounted for by An agrees with

the conformal weight.

2.3 Decomposition of the space ĤBPS of massive 1
4
-BPS states

As already mentioned in the introduction to this section, in non-generic K3 theories, the

space of massive 1
4 -BPS states ĤBPS is larger at every level than the space HBPS of generic

massive 1
4 -BPS states, as the conformal field theoretic elliptic genus counts BPS states with

signs. Ultimately, we wish to know to what extent one can identify the very states in the

class of Z2-orbifold CFTs, whose contributions cancel in the net count of E under selected
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deformations. The better we understand them, in particular the type of group action they

may enjoy, the more we can hope to uncover the VOA structure(s) on the generic space

of states that does contribute to the net count. Our guiding principle in this quest is

symmetry surfing [14, 15], a programme we have developed over a period of years and that

has passed a number of non-trivial tests, either through explicit calculations within Z2-

orbifold CFTs [16] or through a process of deformations away from the Z2-orbifold point

in two very interesting papers [18, 19].

In [16], symmetry surfing identifies a special one-dimensional subspace of the 16-

dimensional space of twisted ground states in Z2-orbifold conformal field theories on K3.

Indeed in such theories, corresponding to the 16 fixed points of the standard Z2 action on

TΛ, there are 16 pairwise orthogonal twisted ground states |αβ〉, labelled by β ∈ F4
2. By

construction, the “diagonal” state

|αdiag〉 :=
∑
β∈F4

2

|αβ〉 (2.24)

is invariant under all symmetries induced by geometric symmetries of the torus TΛ, in-

cluding shifts by elements of 1
2Λ. It is thus invariant under the full overarching affine

group

G := Aff(F4
2) = Z4

2 o GL(F4
2)

[20]∼= Z4
2 oA8

which contains all the groups Gi of finite symplectic automorphisms on Kummer surfaces.

Conveniently, in [16] we found that at massive level one, the orthogonal complement of

the Fock space built on |αdiag〉 echoes the construction of a 45-dimensional representation

of the group M24 by Margolin [17]. Inspired by his construction, we thus define H⊥ ⊂ ĤBPS

as the Fock space built on the 15-dimensional orthogonal complement of |αdiag〉 in the space

of twisted ground states. This prompts the following ansatz,7 introduced similarly in [18],

ĤBPS = H⊥ ⊕Hrest ⊕H+ (2.25)

with H⊥ =
∞⊕
n=1

(H⊥n ⊗HN=4
n ), Hrest =

∞⊕
n=1

(Hrest
n ⊗HN=4

n ), H+ =
∞⊕
n=1

(H+
n ⊗HN=4

n ), where

as representations of J0 and the octad group G,

Hn
∼= H⊥n ⊕Hrest

n for all n ∈ N, n > 0, (2.26)

and where Hn was defined in (2.1). Ultimately, (2.26) should extend to an isomorphism

of representations of J0 and M24. As was pointed out in [18], the ansatz (2.25) can be

interpreted as identifying the massive contributions to the generic space of states as the

subspace H⊥ ⊕Hrest of ĤBPS which remains at the BPS bound under deformations of our

CFT by the exactly marginal deformation Tdiag built on |αdiag〉.
Table 1 summarises data for the first four conformal weights above threshold in terms

of the Fourier coefficients of the generating functions f(τ), ginv(τ) and gtw(τ) for massive
1
4 -BPS ground states contributing to the partition functions U`= 1

2
, U`=0 and T`=0 respec-

tively. By construction, we have dimHn = An and dimH⊥n = 15gtw
n and hence, by (2.23),

7All direct sums are understood as orthogonal direct sums.
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level n 1 2 3 4

An 90 462 1540 4554 net number of states in ENS

fn 3 1 18 15 untwisted sector (U`= 1
2
)

ginvn 0 16 8 72 untwisted sector (U`=0)

gtwn 6 28 98 282 one twisted sector (T`=0)

An = 16gtwn +ginvn −2fn 96-6 448+16-2 1568+8-36 4512+72-30 dim Hn (HBPS)

gtwn +ginvn −2fn 0 42 70 324 dim Hrest
n (Hrest)

15gtwn 90 420 1470 4230 dim H⊥
n (H⊥)

Ân = 16gtwn +ginvn +2fn 96+6 448+16+2 1568+8+36 4512+72+30 dim Ĥn (ĤBPS)

gtwn +ginvn +2fn 12 46 142 384 dim Ĥrest
n

Table 1. Data on the number of 1
4 -BPS states emerging from different sectors of Z2-orbifolds CFTs

on K3.

dimHrest
n = gtw

n + ginv
n − 2fn for all n ∈ N, n > 0. In other words, the excess states in H+

n ,

which are lifted from the BPS bound under a deformation by Tdiag, belong to the twisted

sector generated by |αdiag〉 and the untwisted sector. While the results of [11, 12] imply

that the holomorphic untwisted states accounted for by 2fn all belong to H+
n , it is not pos-

sible at this stage to identify whether the remaining states in H+
n come from the diagonal

twisted sector, the untwisted sector, or both. We will return to this point in section 3.

2.4 1
4
-BPS states at level one and two

To investigate the elusive properties of H+
n in general, we begin by studying the spaces

Ĥn = H⊥n ⊕ Hrest
n ⊕ H+

n at levels n = 1 and n = 2 more closely. We also introduce a

consistent action of SU(2)geom × SU(2)geom on Hrest
n ⊕ H+

n at these levels. The rationale

behind our construction will be explained in section 3 — based on the data collected

at levels n = 1 and n = 2. Here and in the following, we denote the modes of the

four free fermions and of their superpartners as (χk±)` and (ak±)m with ` and m either

integers or half-integers in accordance with the boundary conditions imposed by the Z2-

orbifold construction. Following a wide-spread tradition, ` and m account for the negative

contributions to the energy.

Level 1. At conformal weight n = 1, since A1 = 90 = 15gtw
1 and ginv

1 = 0, our ansatz is

compatible with the claim that the contributions to ENS from the six-dimensional (2f1 = 6)

space of untwisted massive 1
4 -BPS states cancels those from the six-dimensional (gtw

1 = 6)

space of massive 1
4 -BPS states in the diagonal twisted sector. This was already discussed

in [16], where the geometric action of the group SU(2)geom was mentioned. We reproduce

our results here in the Neveu-Schwarz sector, not the least because some interesting lessons

can be drawn from this case.

To work in the Neveu-Schwarz sector of the Z2-orbifold CFTs, we spectral flow from the

Ramond sector and choose chiral-chiral ground states, i.e. states in the kernel of (2L0−J0)

and (2L0 − J0).

– 13 –
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In the subspace of the untwisted sector accounted for by the partition function U`= 1
2
(z)

(see (2.15)), this amounts to building states from the bosonic highest weight states Ω with

conformal weights (h, h) = (0, 0) and qΩ = (χ1
+)− 1

2
(χ2

+)− 1
2
Ω with (h, h) = (0, 1) (recall that

J0 = 2J3
0 in (2.7)). The six-dimensional space of states contributing to 2f1 = 6 is generated

by the following N = 4 primaries:

(χ1
+)− 1

2
(χ2
−)− 1

2
Ω, {(χ1

+)− 1
2
(χ1
−)− 1

2
− (χ2

+)− 1
2
(χ2
−)− 1

2
}Ω, (χ2

+)− 1
2
(χ1
−)− 1

2
Ω,

(χ1
+)− 1

2
(χ2
−)− 1

2

qΩ, {(χ1
+)− 1

2
(χ1
−)− 1

2
− (χ2

+)− 1
2
(χ2
−)− 1

2
}qΩ, (χ2

+)− 1
2
(χ1
−)− 1

2

qΩ.
(2.27)

The vacuum Ω is by definition invariant under SU(2)geom×SU(2)geom and so is qΩ, since χa+
with a ∈ {1, 2} is a doublet under SU(2)geom and a singlet under SU(2)geom. Hence each

row in (2.27) generates a (3, 1) representation of the group SU(2)geom × SU(2)geom. In the

diagonal twisted sector, the six dimensional space of states accounted for by gtw
1 = 6 is built

on the SU(2)geom × SU(2)geom invariant twisted ground state |αdiag〉 and also transforms

as the sum of two (3, 1) representations of the SU(2)geom× SU(2)geom action, generated by

(a1
+)− 1

2
(χ2
−)0|αdiag〉, {(a1

+)− 1
2
(χ1
−)0−(a2

+)− 1
2
(χ2
−)0}|αdiag〉, (a2

+)− 1
2
(χ1
−)0|αdiag〉,

(a1
−)− 1

2
(χ1
−)0|αdiag〉, {(a1

−)− 1
2
(χ2
−)0 +(a2

−)− 1
2
(χ1
−)0}|αdiag〉, (a2

−)− 1
2
(χ2
−)0|αdiag〉.

(2.28)

So at level 1, the “excess” 1
4 -BPS states in H+ belong to a pair of isomorphic representations

of SU(2)geom × SU(2)geom of opposite fermion number. A detailed analysis of the fate of

this 12-dimensional space of states when the K3 theories are deformed away from the Z2-

orbifolds has recently been carried out in [19]. The conclusion is that under the diagonal

deformation T diag, these states combine into non-BPS representations and thus cease to be

accounted for by ENS; in other words, deformations of a non-generic theory ‘lift’ a number of

massive 1
4 -BPS states, including all those contributing to U`= 1

2
(z). That this must happen

under deformations to generic theories follows already from the analysis of [12].

Level 2. At conformal weight n = 2, in H+
2 there is only a two-dimensional space of un-

twisted holomorphic excess states counted with one sign (2f2 = 2). A priori we must find a

two-dimensional subspace of the space Hrest
2 ⊕H+

2 of dimension ginv
2 +gtw

2 = 44, contributing

to ENS with the opposite sign, in order to identify the subspace of H+
2 matching the un-

twisted holomorphic excess states. The latter are singlets of SU(2)geom×SU(2)geom given by

|s(2)〉 :=

{ 2∑
k=1

(ak+)−1(ak−)−1 −
2∑

k=1

{(χk+)−3/2(χk−)− 1
2
− (χk+)− 1

2
(χk−)−3/2}

+ 2(χ1
+)− 1

2
(χ1
−)− 1

2
(χ2

+)− 1
2
(χ2
−)− 1

2

}
Ω,

|qs(2)〉 :=

{ 2∑
k=1

(ak+)−1(ak−)−1 −
2∑

k=1

{(χk+)−3/2(χk−)− 1
2
− (χk+)− 1

2
(χk−)−3/2}

+ 2(χ1
+)− 1

2
(χ1
−)− 1

2
(χ2

+)− 1
2
(χ2
−)− 1

2

}
qΩ.

(2.29)
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Remarkably, there are exactly two massive 1
4 -BPS singlets with respect to the SU(2)geom×

SU(2)geom action in the diagonal twisted sector to match |s(2)〉 and |qs(2)〉. These are also

the only singlets under the action of the diagonal SU(2) in SU(2)geom × SU(2)geom. There

are none in the untwisted sector accounted for by U`=0, a fact which serves as a justification

in section 3 when we generalise our arguments. With the notation

Ak`mnεδρ := (akε )− 1
2

(a`δ)− 1
2

(amρ )− 1
2

(χn−)0, ε, δ, ρ ∈ {+,−}, k, `,m, n ∈ {1, 2}, qk := 3− k,
(2.30)

the two SU(2)geom × SU(2)geom singlets in the diagonal twisted sector are given by

|s̃(2)〉 :=
2∑

k=1

{
(ak+)− 3

2
(χk−)0 − 3(ak+)− 1

2
(χk−)−1 − 3(−1)k(ak+)− 1

2
(χ

qk
+)−1(χ1

−)0(χ2
−)0

+ 2(Akkkk++− +Ak
qkqkk

++−)
}
|αdiag〉,

|qs̃(2)〉 :=

2∑
k=1

(−1)k
{

(ak−)− 3
2
(χ

qk
−)0 − 3(ak−)− 1

2
(χ

qk
−)−1 + 3(−1)k(ak−)− 1

2
(χk+)−1(χ1

−)0(χ2
−)0

+ 2(Akkk
qk

+−− −Ak
qkkk

+−−)
}
|αdiag〉. (2.31)

The remaining space of massive level two 1
4 -BPS states in the diagonal twisted sector is 26-

dimensional (gtw
2 = 28) and is presented in appendix B.1, while the 16-dimensional space

of massive 1
4 -BPS states in the untwisted sector accounted for by U`=0(z) is presented in

appendix B.2. This detailed analysis supports the conjecture that the matching of excess
1
4 -BPS states respects the SU(2)geom and the SU(2)geom actions on these states, both in

the untwisted and twisted sectors. We thus expect that the four states |s(2)〉, |qs(2)〉, |s̃(2)〉,
|qs̃(2)〉 are lifted from the BPS bound under a deformation by Tdiag. It would be interesting

to confirm this prediction by conformal perturbation methods along the lines of [19]. In

the next section we present general results corroborating our conjecture at low levels.

3 Geometric SU(2) as a guiding principle

Let us now give a general definition of the SU(2)geom × SU(2)geom action on the space

Hrest⊕H+, along the lines indicated in section 2.1. We have defined this space as a space of

massive ground states common to all Z2-orbifold conformal field theories on K3, containing

both twisted and untwisted contributions, mindful however that its decomposition into

Hrest ⊕H+ has not been carried out so far. All states in Hrest ⊕H+ are elements of the

Fock space representations obtained from the vacuum Ω and the diagonal twisted ground

state |αdiag〉 by the action of the modes of the free fermionic fields χa±, a ∈ {1, 2}, and their

superpartners ja±, along with their antiholomorphic analogues. It thus suffices to state the

action of SU(2)geom × SU(2)geom on these fields, on the vacuum Ω and on |αdiag〉, yielding

an action on the entire Fock space built on these states. For each Z2-orbifold conformal

field theory on K3 we do this by using the left- and the right-moving action of the group

SU(2) which contains the linear part of the geometric symmetry group of our theory. In

other words, we use the standard action of the group SU(2) on C2, which is a subgroup of
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su(2)

SU(2)geom
+1 −1

+1 χ1
+ χ2

+

−1 χ2
− χ1

−

su(2)

SU(2)geom
+1 −1

0 j1
+ j2

+

0 j2
− j1

−

Table 2. Charges of free bosons and fermions under SU(2)geom and under the affine su(2) subalgebra

of the N = 4 superconformal algebra.

a global SO(4) symmetry group of our N = 4 superconformal algebra, see for instance [25,

§5.3]. Both Ω and |αdiag〉 are invariant under every geometric symmetry group for any

Z2-orbifold conformal field theory on K3. We therefore choose both these states to be

invariant under SU(2)geom × SU(2)geom, while the fields χa± and ja±, a ∈ {1, 2}, transform

as doublets under the action of SU(2)geom and trivially under SU(2)geom. Note that these

fields also carry a U(1) charge associated with the affine subalgebra su(2) of the N = 4

superconformal algebra. Our conventions for the two sets of charges, which are summarised

in table 2, inform on how to refine the holomorphic partition functions for the untwisted

and twisted sectors so they encode the action of the group SU(2)geom on 1
4 -BPS states. The

charges of χa± and ja± under SU(2)geom and su(2) are analogous. From our derivation of the

SU(2)geom × SU(2)geom action on Hrest ⊕H+, we do not expect any meaningful extension

to H⊥. Indeed, although a well-defined action of SU(2) exists on H⊥, which is trivial on

every twisted ground state, this action does not extend the action of the linear parts of our

geometric symmetry groups to SU(2), since these groups act non-trivially on H⊥.

We introduce the complex variable w := e2πiν , ν ∈ C, to track the SU(2)geom

charges of 1
4 -BPS states by refining the partition functions U`= 1

2
, U`=0, T`=0 introduced

in (2.15), (2.16) and (2.19) to

U`= 1
2
(z, ν) := −1

2
(w−1 − 2 + w)

ϑ3(z + ν)ϑ3(z − ν)

ϑ1(ν)2

+
1

2
(w−1 + 2 + w)

ϑ4(z + ν)ϑ4(z − ν)

ϑ2(ν)2
, (3.1a)

U`=0(z, ν) := −(w−1 − 2 + w)
ϑ3(z + ν)ϑ3(z − ν)

ϑ1(ν)2

−(w−1 + 2 + w)
ϑ4(z + ν)ϑ4(z − ν)

ϑ2(ν)2
, (3.1b)

T`=0(z, ν) :=
1

2

ϑ2(z + ν)ϑ2(z − ν)

ϑ4(ν)2
− 1

2

ϑ1(z + ν)ϑ1(z − ν)

ϑ3(ν)2
. (3.1c)

Given the action of SU(2)geom introduced above, the only states accounted for by the

above partition functions which carry a non-trivial action of this group are those built on

the Z2-orbifold odd ground states Ω̃1 := (χ1
+)− 1

2
Ω and Ω̃2 := (χ2

+)− 1
2

Ω. U`=0 is the graded

character for the space of Z2-orbifold invariant states in the Fock space built on these two

states, which transform as a doublet under SU(2)geom. To encode this action as well, we
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therefore multiply U`=0(z, ν) by 1
2

(
w + w−1

)
. We treat w as a formal variable separately

from w, to keep the actions of SU(2)geom and SU(2)geom apart, in the spirit of separating

the action of the left- and the right-moving N = 4 superconformal algebras.

The action of the diagonal SU(2) in SU(2)geom×SU(2)geom is then captured by identi-

fying w as the complex conjugate of w. Indeed, by what was said above, for any given K3

theory the action of SU(2)geom and SU(2)geom induces the action of the linear part of the

geometric symmetry group Gi mentioned in section 2.3 on holomorphic and antiholomor-

phic fields, respectively. If Gi acts on the holomorphic fields by the representation %, then

it acts by the complex conjugate representation % on the antiholomorphic partner fields.

This is used, for example, in the construction of the corresponding partition functions,

where the contributions from the antiholomorphic fields are simply obtained as the com-

plex conjugates of the contributions coming from their holomorphic partners (see, for exam-

ple, [1, (5.2)]). We remark that the partition functions U`= 1
2
(z, ν), 1

2

(
w + w−1

)
U`=0(z, ν),

T`=0(z, ν) were used in [18, (C.5), (C.8), (C.10)] at z = 0 and at three specific values of

w, with complex conjugates w, which were interpreted as eigenvalues of the elements g

of the linear parts of the geometric symmetry groups Gi. In that situation, w = w−1,

and the expressions in [18, (C.5), (C.8), (C.10)] are invariant under w ↔ w. Indeed, by

construction, at these special values our partition functions are the characters of g. In [18],

the latter play a crucial role in providing evidence for the symmetry surfing programme.

Let us first restrict our attention to the action of SU(2)geom. Since the SU(2)geom

action commutes with that of N = 4 and using (2.15), (2.16), (2.19), the refined partition

functions enjoy a decomposition in N = 4 superconformal characters of the form

U`= 1
2
(z, ν) = χNS

0 (z) + f(ν)χ̃NS(z), (3.2a)

U`=0(z, ν) = 2(w + w−1)χNS
1
2

(z) + ginv(ν)χ̃NS(z), (3.2b)

T`=0(z, ν) = χNS
1
2

(z) + gtw(ν) χ̃NS(z). (3.2c)

As before, and by abuse of notation, f(ν) is our shorthand notation for f(τ, ν), and f(τ) =

f(τ, ν = 0), etc. By construction, SU(2)geom maps the spaces of massive ground states that

contribute to U`= 1
2
, U`=0, T`=0, respectively, to themselves, such that these three spaces

decompose into direct sums of irreducible representations of SU(2)geom. Therefore,

f(ν) =

∞∑
n=1

qn

(∑
p

fn,pχ
SU(2)
p (ν)

)
, (3.3a)

ginv(ν) =

∞∑
n=1

qn

(∑
p

ginv
n,pχ

SU(2)
p (ν)

)
, (3.3b)

gtw(ν) =
∞∑
n=1

qn

(∑
p

gtw
n,p, χ

SU(2)
p (ν)

)
, (3.3c)

with the SU(2) character of the representation with isospin p ∈ 1
2N given by

χSU(2)
p (ν) :=

2p∑
r=0

e2πi(2p−2r)ν =
sin 2π(2p+ 1)ν

sin 2πν
(3.4)
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and fn,p, g
inv
n,p and gtw

n,p ∈ N the multiplicity of the (2p + 1)-dimensional representation at

level n in the two untwisted and the twisted diagonal sectors, respectively.

In fact, as explained in appendix A.5, using identities amongst Jacobi theta functions

and Appell functions, one may rewrite (3.3a)–(3.3c) as

f(τ, ν) = −1−
{

1

2
(w − 2 + w−1)h1(τ, ν)− 1

2
(w + 2 + w−1)h2(τ, ν)

}
η(τ) q

1
8 , (3.5a)

ginv(τ, ν) = −
{

(w − 2 + w−1)h1(τ, ν) + (w + 2 + w−1)h2(τ, ν)
}
η(τ) q

1
8 , (3.5b)

gtw(τ, ν) = −1

2
{h3(τ, ν) + h4(τ, ν) } η(τ) q

1
8 . (3.5c)

The three functions f(τ, ν), ginv(τ, ν) and gtw(τ, ν) are the graded characters of certain

subspaces of the space of massive 1
4 -BPS ground states, whose decomposition into Hrest ⊕

H+ is at the heart of our investigation. Recall that we have defined the space H+ as

to contain pairs of ground states at opposite fermion numbers whose contributions to the

elliptic genus ENS cancel. Upon deformation of our K3 theory by T diag, each such pair is

lifted to a common long N = 4 representation off the BPS bound. On the other hand,

for every Z2-orbifold CFT on K3, SU(2)geom× SU(2)geom acts on Hrest⊕H+ as to restrict

to the action of the linear part of the geometric symmetry group of the theory, which

remains unbroken under deformations by T diag. This, together with the symmetry surfing

proposal, prompts us to postulate that the states in H+ are paired up according to their

transformation properties under SU(2)geom×SU(2)geom. In other words, we postulate that

H+ decomposes into pairs of isomorphic representations under SU(2)geom and SU(2)geom

with opposite fermion numbers.

To determine which subspaces of the spaces accounted for by f(ν), ginv(ν) and gtw(ν)

may contribute to H+, we recall from the above that by the results of [12], all untwisted

holomorphic states accounted for by f(ν) are non-generic and thus belong to H+. All

of them are bosonic, while ginv(ν) and gtw(ν) account for fermionic states only. In other

words, we must find SU(2)geom × SU(2)geom representations matching those accounted for

by f(ν) within the spaces whose graded characters are ginv(ν) and gtw(ν). Observe that

by (A.11) and (3.5a)–(3.5c), f(ν) and gtw(ν) are invariant under a shift of the variable ν by
1
2 , while ginv(ν + 1

2) = −ginv(ν). This shows that ginv(ν) only accounts for representations

of SU(2)geom with half-integer spin, while f(ν) and gtw(ν) only account for representations

with integer spin. Moreover, all states accounted for by f(ν) and gtw(ν) transform trivially

under SU(2)geom, in contrast to those accounted for by ginv(ν). This, together with the

evidence provided by the explicit calculations at levels n = 1, 2, prompts us to postulate

that, at any level n ∈ N, n ≥ 1, only 1
4 -BPS states belonging to the diagonal twisted sector

can pair up with those occurring in the untwisted sector and accounted for by f(ν). In light

of the decompositions (3.3a)–(3.3c) into characters of SU(2)geom, this implies the claim that

∀p, n ∈ N : gtw
n,p − 2fn,p ≥ 0. (3.6)

We have expanded the functions f(ν) and gtw(ν) as q-power series and verified (3.6) up

to O(q101), supporting our postulates. We present the data up to O(q16) in table 3 for

reference. We hope to provide an analytic proof of (3.6) in the near future.
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4 Discussion

The VOA(s) underlying Mathieu Moonshine remain elusive to the extent that even a

consensus on whether or not to expect a link between Mathieu Moonshine and K3 theories

has not been reached. The works of [11, 12] indicate that such a link could involve a

generic space of states of K3 theories, in accordance with the ideas behind our symmetry

surfing programme [13–16]. The present work is a contribution to the study of generic

properties of K3 theories which we find interesting in their own right. This can be viewed

as a preparation for a new attempt at the construction of a Mathieu Moonshine VOA on

the generic space of states.

In [12], crucially building on the results of [11], it was shown that indeed there exists a

generic space of states H0 for all K3 theories, roughly defined through the property that it

embeds into the space of BPS states of every K3 theory as a representation of the holomor-

phic N = 4 superconformal algebra, extended by the zero modes L0, J0 of the Virasoro

field and u(1) current in the antiholomorphic N = 4 superconformal algebra. Although H0

can be modelled by the chiral de Rham cohomology of a K3 surface [11, 12], its detailed

structure has not been studied so far. Approaching the space from the perspective of non-

generic yet accessible K3 theories, we have, in the present work, studied more closely the

structure of the 1
4 -BPS states of Z2-orbifold CFTs of toroidal theories. We propose a strat-

egy to earmark the 1
4 -BPS states that move off the BPS bound under the most symmetric

deformation T diag of Z2-orbifold CFTs on K3, away from the Z2-orbifold limit. Such states

must come in pairs of opposite fermion numbers, such that their contributions cancel each

other in the conformal field theoretic elliptic genus of K3, in order to be part of the same

(long) non-BPS representation after deformation. In [16], where the first concrete study of

BPS states contributing to the count at level n = 1 in the conformal field theoretic elliptic

genus of K3 was undertaken, we identified a 15-dimensional space of twisted ground states

carrying a Fock space representation H⊥ which turns out to be generic in the above sense,

that is, along deformations by T diag. In the twisted sector, H⊥ is the orthogonal comple-

ment of a ‘diagonal’ subspace from which T diag arises. The findings were guided by the

symmetry surfing programme [14, 15] and were inspired by Margolin’s construction of a 45-

dimensional representation of M24 [17]. They highlighted the action of the octad group, a

maximal subgroup of M24, on the 45-dimensional subspace of H⊥ at level 1. Evidence of the

octad group action at all levels was provided in the work [18], fueling the symmetry surfing

programme whose aim is to exhibit an M24 action on the generic space of states. More re-

cently, Keller and Zadeh [19] deformed the Z2-orbifold CFTs away from the Kummer point

by a marginal operator and showed that if the deformation is taken in the diagonal direc-

tion T diag, then indeed all the BPS states in the twisted sector of the original non-generic

K3 theory that are orthogonal to H⊥ move off the BPS bound under the deformation.

It remains that beyond level n = 1, we do not have total control on which BPS states

move off the BPS bound under a given deformation. By the results of [12], we know that

under deformations to generic K3 theories this happens for every untwisted massive state

accounted for by the partition function U`= 1
2
. Since each state that moves off the BPS

bound pairs up with a state of opposite fermion number, to become part of the same long
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non-BPS representation, one needs to identify the correct partners in either the untwisted

subsector U`=0 or the twisted sector. Following the results of [18], we know that under the

deformation by T diag, of the twisted states only those in the diagonal twisted sector can

move off the BPS bound. We postulate that none of the untwisted states accounted for in

U`=0 do. At level n = 1 this trivially holds as the level one contribution to U`=0 is zero. In

fact, all states in the twisted diagonal sector move off the BPS bound under deformation

by T diag. This is a very special situation that does not persist at higher levels.

In order to identify potential states to pair up with the states accounted for in U`= 1
2

and move off the BPS bound under deformation by T diag, we postulate compatibility

with a geometric action of the group SU(2), denoted SU(2)geom in this work. Indeed, as

already pointed out in [16], the holomorphic Dirac fermion fields χa±, a ∈ {1, 2}, and their

superpartners, which are the building blocks of Z2-orbifold CFTs, transform as doublets

under SU(2)geom. The group acts trivially on the vacuum and on the twisted diagonal

ground state, and also on the antiholomorphic partners of the χa±, a ∈ {1, 2}, and their

superpartners. We have introduced refined partition functions that keep track of that

group action on 1
4 -BPS states in the untwisted and twisted diagonal sectors, and we were

able to show that at level n ≤ 2 only states stemming from the twisted diagonal sector carry

representations of SU(2)geom that match those in the untwisted subsector accounted for by

U`= 1
2
. The SU(2)geom action on the 1

4 -BPS states thus helps to identify sets of states in the

diagonal twisted sector that may lift off the BPS bound under the deformation by T diag.

We note that a certain degree of indetermination remains, as the multiplicities of isospin p

representations at any fixed level n in the diagonal twisted sector quickly exceed by far twice

the multiplicities of isomorphic representations at the same level in the untwisted sector,

as evidenced in table 3. Therefore, except for levels n = 1, 2, our postulate is not powerful

enough to pin down the exact states that are generic along the deformation by T diag.

As explained above, SU(2)geom in particular leaves the Z2-orbifold odd ground states in

the untwisted subsector accounted for by U`=0 invariant. From the perspective of symmetry

surfing, it is perhaps more natural to consider the action of a diagonal SU(2) in SU(2)geom×
SU(2)geom, where SU(2)geom is the antiholomorphic analog of SU(2)geom. In particular,

under this diagonal action of SU(2), the ground states in the untwisted sector accounted

for by U`=0 transform non-trivially. We argue that representations from this sector do not

pair up with states accounted for by U`= 1
2

to form long representations off the BPS bound

under any deformation. Indeed, if this were the case, then there should be a deformation

in the underlying toroidal theory that would lift these states off the BPS bound. However,

such states are generic to all toroidal theories and hence such deformations do not exist.

Altogether we expect the role of SU(2)geom to be helpful in understanding the generic

space of states of K3 theories, independently of Mathieu Moonshine. An analysis of de-

formations beyond level n = 1 along the lines of those followed in [19] would certainly

shed more light on the relevance of SU(2)geom. The analysis of [19] already shows that any

sufficiently small deformation away from the Z2-orbifold conformal field theories on K3 re-

duces the space of 1
4 -BPS states at massive level one to a generic space. Given the results

of [12], the same must hold at arbitrary level. It would be interesting to understand the
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structure of the underlying VOAs and their dependence on the details of the deformation.

Indeed, is it possible that the dependence on the choice of deformation drops out entirely?

Ultimately, this could answer some of the open questions of Mathieu Moonshine.
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A Modular and mock modular input

A.1 Jacobi theta functions

Let q = e2πiτ , τ ∈ H and y = e2πiz, z ∈ C. Our notations for the Jacobi theta functions are

ϑ1(z) := i

∞∑
n=−∞

(−1)n q
1
2

(n− 1
2

)2 yn−
1
2 = iq

1
8 y−

1
2

∞∏
n=1

(1−qn)(1−qn−1y)(1−qny−1),

ϑ2(z) :=

∞∑
n=−∞

q
1
2

(n− 1
2

)2 yn−
1
2 = q

1
8 y−

1
2

∞∏
n=1

(1−qn)(1+qn−1y)(1+qny−1),

ϑ3(z) :=

∞∑
n=−∞

q
1
2
n2
yn =

∞∏
n=1

(1−qn)(1+qn−
1
2 y)(1+qn−

1
2 y−1),

ϑ4(z) :=

∞∑
n=−∞

(−1)n q
1
2
n2
yn =

∞∏
n=1

(1−qn)(1−qn−
1
2 y)(1−qn−

1
2 y−1),

(A.1)

with ϑi(0) := ϑi, i ∈ {2, 3, 4} and ϑ1(0) = 0. All the theta function identities used in this

paper can be found in [26]. In particular, for z1, z2 ∈ C, the following addition formulae

are useful, all of which can be proved by residue analysis,

ϑ1(z1 + z2)ϑ1(z1 − z2)ϑ2
4 = ϑ3(z1)2ϑ2(z2)2 − ϑ2(z1)2ϑ3(z2)2

= ϑ1(z1)2ϑ4(z2)2 − ϑ4(z1)2ϑ1(z2)2,

ϑ4(z1 + z2)ϑ4(z1 − z2)ϑ2
2 = ϑ4(z1)2ϑ2(z2)2 + ϑ3(z1)2ϑ1(z2)2

= ϑ2(z1)2ϑ4(z2)2 + ϑ1(z1)2ϑ3(z2)2,

(A.2)

and

ϑ2(z1±z2)ϑ3(z1∓z2)ϑ2ϑ3 = ϑ2(z1)ϑ3(z1)ϑ2(z2)ϑ3(z2)∓ϑ1(z1)ϑ4(z1)ϑ1(z2)ϑ4(z2),

ϑ2(z1±z2)ϑ4(z1∓z2)ϑ2ϑ4 = ϑ2(z1)ϑ4(z1)ϑ2(z2)ϑ4(z2)∓ϑ1(z1)ϑ3(z1)ϑ1(z2)ϑ3(z2), (A.3)

ϑ3(z1±z2)ϑ4(z1∓z2)ϑ3ϑ4 = ϑ3(z1)ϑ4(z1)ϑ3(z2)ϑ4(z2)∓ϑ1(z1)ϑ2(z1)ϑ1(z2)ϑ2(z2).
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The Dedekind η function is defined as

η(τ) := q
1
24

∞∏
n=1

(1− qn), (A.4)

and is related to the Jacobi theta functions by the identity

2η3 = ϑ2ϑ3ϑ4. (A.5)

For future reference, we note

ϑ2
1

(
τ + 1

2

)
= q−

1
4 ϑ2

3(τ), ϑ2
2

(
τ + 1

2

)
= −q−

1
4 ϑ2

4(τ),

ϑ2
3

(
τ + 1

2

)
= 0, ϑ2

4

(
τ + 1

2

)
= q−

1
4 ϑ2

2(τ).

(A.6)

A.2 Appell functions

Let

K`(τ, ν, µ) :=
∑
m∈Z

q
`m2

2 w`m

1− wxqm
, w = e2πiν , x = e2πiµ (A.7)

be the Appell function at level ` ∈ N, ν, µ ∈ C, ν + µ /∈ Zτ + Z [28–30]. Define

h3(τ, ν) :=
1

η(τ)

1

ϑ3(τ, ν)
q−

1
8 K1

(
τ, ν,−τ + 1

2

)
=

1

η(τ)

1

ϑ3(τ, ν)

∑
m∈Z

q
m2

2
− 1

8wm

1 + wqm−
1
2

. (A.8)

By evaluating (A.8) at ν shifted by the three two-torsion points of an elliptic curve, one

defines three new functions,

h4(τ, ν) := h3

(
τ, ν +

1

2

)
=

1

η(τ)

1

ϑ4(τ, ν)

∑
m∈Z

(−1)mq
m2

2
− 1

8wm

1− wqm−
1
2

,

h2(τ, ν) := h3

(
τ, ν +

τ

2

)
=

1

η(τ)

1

ϑ2(τ, ν)

∑
m∈Z

q
m2

2
+m

2 wm+ 1
2

1 + wqm
,

h1(τ, ν) := h3

(
τ, ν +

τ + 1

2

)
=
−i
η(τ)

1

ϑ1(τ, ν)

∑
m∈Z

(−1)mq
m2

2
+m

2 wm+ 1
2

1− wqm
.

(A.9)

The following properties are immediate:

hi(−ν) = hi(ν), hi(ν + τ) = hi(ν) ∀i ∈ {1, 2, 3, 4} (A.10)

and

h1

(
ν+

1

2

)
=h2(ν), h2

(
ν+

1

2

)
=h1(ν), h3

(
ν+

1

2

)
=h4(ν), h4

(
ν+

1

2

)
=h3(ν).

(A.11)
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Identities. Here and throughout the paper, hi := hi(ν = 0), i ∈ {1, 2, 3, 4}. The following

identities can be established by residue analysis,

h3(ν) = h3−
ϑ1(ν)2

ϑ3(ν)2

η2

ϑ2
3

, h4(ν) = h4 +
ϑ1(ν)2

ϑ4(ν)2

η2

ϑ2
4

, h2(ν) = h2 +
ϑ1(ν)2

ϑ2(ν)2

η2

ϑ2
2

. (A.12)

New ones are obtained by shifting ν by the three two-torsion points in (A.12),

h4(ν) = h3 −
ϑ2(ν)2

ϑ4(ν)2

η2

ϑ2
3

, h3(ν) = h4 +
ϑ2(ν)2

ϑ3(ν)2

η2

ϑ2
4

, h1(ν) = h2 +
ϑ2(ν)2

ϑ1(ν)2

η2

ϑ2
2

,

h2(ν) = h3 +
ϑ4(ν)2

ϑ2(ν)2

η2

ϑ2
3

, h1(ν) = h4 +
ϑ4(ν)2

ϑ1(ν)2

η2

ϑ2
4

, h3(ν) = h2 −
ϑ4(ν)2

ϑ3(ν)2

η2

ϑ2
2

, (A.13)

h1(ν) = h3 +
ϑ3(ν)2

ϑ1(ν)2

η2

ϑ2
3

, h2(ν) = h4 +
ϑ3(ν)2

ϑ2(ν)2

η2

ϑ2
4

, h4(ν) = h2 −
ϑ3(ν)2

ϑ4(ν)2

η2

ϑ2
2

.

A.3 N = 4 characters at c=6

The characters for unitary, irreducible representations of the N = 4 superconformal algebra

were first derived in [21]. When the central charge is c = 6, the representations fall into

an infinite class of ‘long’ or ‘massive’ representations with Neveu-Schwarz characters of the

form

qh χ̃NS(τ, z) = qh−
1
8
ϑ3(τ, z)2

η(τ)3
, (A.14)

with h ∈ R, h > 0, the conformal weight of the highest weight state alongside two ‘short’ or

‘massless’ representations labelled by the su(2) ‘spin’ ` ∈ {0, 1
2} and the conformal weight

h = ` of their highest weight states. The corresponding Neveu-Schwarz characters are

expressible in a variety of ways. Here, we use their expressions in terms of the Appell

functions hi(z) defined in (A.8) and (A.9). We have

χNS
1
2

(τ, z) := χNS
h=`= 1

2

(τ, z) = h3(τ, z)
ϑ3(τ, z)2

η(τ)2
= h3(τ, z) η(τ) q

1
8 χ̃NS(τ, z). (A.15)

This form of the characters was first presented in [27] and expresses the branching of N = 4

characters in an infinite sum of N = 2 characters at central charge c = 6. Inserting (A.12)

and (A.13) into (A.15), one gets

χNS
1
2

(τ, z) = −ϑ1(τ, z)2

ϑ3(τ)2
+ h3(τ) η(τ) q

1
8 χ̃NS(τ, z) (A.16a)

=
ϑ2(τ, z)2

ϑ4(τ)2
+ h4(τ) η(τ) q

1
8 χ̃NS(τ, z) (A.16b)

= −ϑ4(τ, z)2

ϑ2(τ)2
+ h2(τ) η(τ) q

1
8 χ̃NS(τ, z). (A.16c)

The second massless N = 4 character in the Neveu-Schwarz sector is given by

χNS
0 (τ, z) := χNS

h=`=0(τ, z) = χ̃NS(τ, z)− 2χNS
1
2

(τ, z). (A.17)
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Twisting by the fermion number operator one obtains

χ̃ÑS(τ, z) = χ̃NS

(
τ, z +

1

2

)
,

χÑS
` (τ, z) = χNS

`

(
τ, z +

1

2

)
, ` ∈

{
0,

1

2

}
.

(A.18)

Under spectral flow, the Neveu-Schwarz and Ramond characters flow to each other as

χ̃NS
(
τ,z+

τ

2

)
=q−

1
4 y−1 χ̃R(τ,z), χ̃NS

(
τ,z+

τ+1

2

)
=−q−

1
4 y−1 χ̃R̃(τ,z), (A.19)

χNS
`

(
τ,z+

τ

2

)
=q−

1
4 y−1χR

1
2
−`(τ,z), χNS

`

(
τ,z+

τ+1

2

)
=−q−

1
4 y−1χR̃

1
2
−`(τ,z), `∈

{
0,

1

2

}
.

Given (A.15) and (A.17), all N = 4 characters may be expressed in terms of Appell

functions. In particular,

χR
0 (τ, z) = h2(τ, z)

ϑ2(τ, z)2

η(τ)2
= h2(τ, z) η(τ) q

1
8 χ̃R(τ, z),

χÑS
1
2

(τ, z) = h4(τ, z)
ϑ4(τ, z)2

η(τ)2
= h4(τ, z) η(τ) q

1
8 χ̃ÑS(τ, z),

χR̃
0 (τ, z) = h1(τ, z)

ϑ1(τ, z)2

η(τ)2
= h1(τ, z) η(τ) q

1
8 χ̃R̃(τ, z).

(A.20)

The Witten index of the various representations is obtained by setting z = 0 in the R̃

characters. The massive representations all have Witten index zero while by (A.19), (A.17)

and (A.12),

χR̃
1
2

(τ, 0) = −2 = −q
1
4 χNS

0

(
τ,
τ + 1

2

)
,

χR̃
0 (τ, 0) = 1 = −q

1
4 χNS

1
2

(
τ,
τ + 1

2

)
.

(A.21)

A.4 The functions f(τ ), ginv(τ ) and gtw(τ )

The functions (2.17) and (2.20) can all be obtained by standard manipulations,

U`= 1
2
(z)

(2.15)
=

1

2

{
ϑ3(z)2

η6
+ 4

ϑ4(z)2

ϑ2
2

}
(A.14), (A.16c)

=
1

2η3
q

1
8 χ̃NS(z) + 2

{
−χNS

1
2

(z) + h2 η q
1
8 χ̃NS(z)

}
(A.17)

= χNS
0 (z) +

{
2h2 η q

1
8 − 1 +

1

2η3
q

1
8

}
︸ ︷︷ ︸

=f(τ)

χ̃NS(z), (A.22)
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U`=0(z)
(2.16)

=
ϑ3(z)2

η6
− 4

ϑ4(z)2

ϑ2
2

(A.14), (A.16c)
=

1

η3
q

1
8 χ̃NS(z)− 4

{
−χNS

1
2

(z) + h2 η q
1
8 χ̃NS(z)

}
= 4χNS

1
2

(z) +

{
−4h2η q

1
8 +

1

η3
q

1
8

}
︸ ︷︷ ︸

=ginv(τ)

χ̃NS(z) (A.23)

and

T`=0(z)
(2.19)

=
1

2

{
ϑ2(z)2

ϑ2
4

− ϑ1(z)2

ϑ2
3

}
(A.16a), (A.16b)

=
1

2

{
χNS

1
2

(z)− h4 η q
1
8 χ̃NS(z)

}
+

1

2

{
χNS

1
2

(z)− h3 η q
1
8 χ̃NS(z)

}
= χNS

1
2

(z)−1

2
(h3 + h4) η q

1
8︸ ︷︷ ︸

=gtw(τ)

χ̃NS(z). (A.24)

A.5 The functions f(τ, ν), ginv(τ, ν) and gtw(τ, ν)

From (3.2a)–(3.2c) and using (3.1a)–(3.1c) together with (A.16a)–(A.16c) as well as some

theta function identities obtained from (A.3) and (A.5),

f(ν) = −1 + q
1
8
ϑ2

2ϑ
2
3

4η3

{
ϑ4(ν)2

ϑ1(ν)2
+
ϑ3(ν)2

ϑ2(ν)2

}
− 2q

1
8

{
ϑ4

2

4η3
− h3η

}
− (w + w−1)q

1
8
ϑ2

2ϑ
2
3

8η3

{
ϑ4(ν)2

ϑ1(ν)2
− ϑ3(ν)2

ϑ2(ν)2

}
, (A.25a)

ginv(ν) = q
1
8
ϑ2

2ϑ
2
3

2η3

{
ϑ4(ν)2

ϑ1(ν)2
− ϑ3(ν)2

ϑ2(ν)2

}
+ (w + w−1)q

1
8

{
ϑ4

2

2η3
− 2ηh3

}
− (w + w−1)q

1
8
ϑ2

2ϑ
2
3

4η3

{
ϑ4(ν)2

ϑ1(ν)2
+
ϑ3(ν)2

ϑ2(ν)2

}
, (A.25b)

gtw(ν) = q
1
8

{
ϑ4

2

4η3
− h3η

}
− q

1
8
ϑ2

2ϑ
2
3

8η3

{
ϑ1(ν)2

ϑ4(ν)2
+
ϑ2(ν)2

ϑ3(ν)2

}
. (A.25c)

One now uses some of the relations (A.12) and (A.13) between Appell functions as well as

the theta function identities (A.2) and (A.3) to obtain (3.5a)–(3.5c).

We also note that the functions f(ν), ginv(ν) and gtw(ν) may be written in terms of

the massless characters of an N = 4 SCA at central charge c = 6. Taking advantage
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of (A.17), (A.18), (A.19) and (A.20), one has

f(ν) = −1

2

χR̃
1
2

(ν)

χ̃R̃(ν)
+
χR

1
2

(ν)

χ̃R(ν)

− 1

2
(w + w−1)

[
χR̃

0 (ν)

χ̃R̃(ν)
− χR

0 (ν)

χ̃R(ν)

]
, (A.26)

ginv(ν) = −

χR̃
1
2

(ν)

χ̃R̃(ν)
−
χR

1
2

(ν)

χ̃R(ν)

− (w + w−1)

[
χR̃

0 (ν)

χ̃R̃(ν)
+
χR

0 (ν)

χ̃R(ν)

]
, (A.27)

gtw(ν) = −1

2

 χÑS
1
2

(ν)

χ̃ ÑS(ν)
+
χNS

1
2

(ν)

χ̃NS(ν)

 . (A.28)

A.6 Fourier coefficients of f(τ, ν) and gtw(τ, ν)

The data in table 3 is presented in support of our claim that under deformation of our Z2-

orbifold CFT on K3 by T diag, only 1
4 -BPS ground states stemming from the diagonal twisted

sector pair up with those in the untwisted subsector accounted for by U`= 1
2

to form long

representations off the BPS bound. For reference, we also present data in table 4 relating to

the action of SU(2)geom on 1
4 -BPS ground states from the untwisted subsector accounted for

by U`=0. We also note that for the action of the diagonal SU(2) in SU(2)geom × SU(2)geom

(see section 3 and appendix B.2), the information in table 5 should be used. However, at

level 1 (resp. 2), the two triplets (resp. the two singlets) from the untwisted subsector

accounted for by U`= 1
2

only match the SU(2) representation contributions of the 1
4 -BPS

ground states in the diagonal twisted sector: at level n = 1, there are just no states available

in the untwisted subsector U`=0, and there are no singlets in that sector at level n = 2.
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n

p
15/2 13/2 11/2 9/2 7/2 5/2 3/2 1/2

1 ginv
1 = 0

2 44 ginv
2 = 16

3 24 ginv
3 = 8

4 68 44 24 ginv
4 = 72

5 64 412 24 ginv
5 = 80

6 812 612 416 216 ginv
6 = 264

7 88 624 428 220 ginv
7 = 360

8 1016 824 644 456 232 ginv
8 = 904

9 1012 848 672 476 260 ginv
9 = 1360

10 1220 1036 884 6132 4140 292 ginv
10 = 2808

11 1216 1072 8132 6204 4224 2136 ginv
11 = 4360

12 1424 1248 10132 8252 6344 4348 2236 ginv
12 = 8176

13 1420 1296 10216 8392 6540 4540 2344 ginv
13 = 12816

14 1628 1460 12180 10400 8656 6864 4860 2524 ginv
14 = 22368

15 1624 14120 12300 10624 81044 61320 41272 2812 ginv
15 = 34888

Table 4. SU(2)geom representations and multiplicities at level n, 1 ≤ n ≤ 15. An entry of type

bm at level n is understood as multiplicity m = ginvn,p of SU(2)geom representation of dimension

b = 2p+ 1.

B Quarter BPS states at level 2

B.1 Twisted sector

Note that |αdiag〉 is invariant under SU(2)geom × SU(2)geom. There is a 28-dimensional

space of massive 1
4 -BPS states in the diagonal twisted sector at level 2 which accounts

for gtw
2 and which transforms trivially under SU(2)geom. We have already presented two

SU(2)geom-singlets in (2.31) which actually are the only singlets within the 28-dimensional

space in question. The remaining 26-dimensional space transforms as two triplets and four

quintuplets of SU(2)geom. We use the notations introduced in (2.30) to give an explicit

expression for these states.

The two triplets.

{ |t1〉, |t2〉, |t3〉 } and { |t̃1〉, |t̃2〉, |t̃3〉 }, (B.1)

– 28 –



J
H
E
P
0
4
(
2
0
2
0
)
1
8
4

n

p
8 7 6 5 4 3 2 1 0

1 ginv
1 = 0

2 52 32 ginv
2 = 16

3 32 12 ginv
3 = 8

4 74 56 34 12 ginv
4 = 72

5 72 58 38 12 ginv
5 = 80

6 96 712 514 316 18 ginv
6 = 264

7 94 716 526 324 110 ginv
7 = 360

8 118 920 734 550 344 116 ginv
8 = 904

9 116 930 760 574 368 130 ginv
9 = 1360

10 1310 1128 960 7108 5136 3116 146 ginv
10 = 2808

11 138 1144 9102 7168 5214 3180 168 ginv
11 = 4360

12 1512 1336 1190 9192 7298 5346 3292 1118 ginv
12 = 8176

13 1510 1358 11156 9304 7466 5540 3442 1172 ginv
13 = 12816

14 1714 1544 13120 11290 9528 7760 5862 3692 1262 ginv
14 = 22368

15 1712 1572 13210 11462 9834 71182 51296 31042 1406 ginv
15 = 34888

Table 5. SU(2)geom×SU(2)geom representations and multiplicities at level n, 1 ≤ n ≤ 15. An entry

of type bm at level n is understood as multiplicity m = ginvn,p of the representation of dimension

b = 2p+ 1 of the diagonal SU(2) in SU(2)geom × SU(2)geom.

with

|t1〉 =
(

(a1
+)− 3

2
(χ2
−)0 + 3(a1

+)− 1
2

(χ2
−)−1 + 3(a1

+)− 1
2

(χ1
+)−1(χ1

−)0(χ2
−)0 − 6A1112

++−

−6A1222
++−

)
|αdiag〉,

|t2〉 =

(
2∑

k=1

(−1)k
(

(ak+)− 3
2
(χk−)0 + 3(ak+)− 1

2
(χk−)−1

)
+ 3

2∑
k=1

(ak+)− 1
2
(χ

qk
+)−1(χ1

−)0(χ2
−)0

−6

2∑
k=1

(−1)k (Akkkk++− +Ak
qkqkk

++−)

)
|αdiag〉,

|t3〉 =
(
− (a2

+)− 3
2

(χ1
−)0 − 3(a2

+)− 1
2

(χ1
−)−1 + 3(a2

+)− 1
2

(χ2
+)−1(χ1

−)0(χ2
−)0 + 6A2221

++−

+6A2111
++−

)
|αdiag〉, (B.2)
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and

|t̃1〉 =
(

(a2
−)− 3

2
(χ2
−)0 + 3(a2

−)− 1
2

(χ2
−)−1 + 3(a2

−)− 1
2

(χ1
+)−1(χ1

−)0(χ2
−)0 − 6A2222

+−−

−6A1122
+−−

)
|αdiag〉,

|t̃2〉 =

(
2∑

k=1

(
(ak−)− 3

2
(χ

qk
−)0 + 3(ak−)− 1

2
(χ

qk
−)−1

)
− 3

2∑
k=1

(−1)k (ak−)− 1
2
(χk+)−1(χ1

−)0(χ2
−)0

−6
2∑

k=1

(Akkk
qk

+−− +Akk
qkk

+−−)

)
|αdiag〉,

|t̃3〉 =
(

(a1
−)− 3

2
(χ1
−)0 + 3(a1

−)− 1
2

(χ1
−)−1 − 3(a1

−)− 1
2

(χ2
+)−1(χ1

−)0(χ2
−)0 − 6A1111

+−−

−6A2211
+−−

)
|αdiag〉, (B.3)

where qk := 3− k.

The four quintuplets.{
A1112

+++|αdiag〉, (A1111
+++ − 3A1122

+++)|αdiag〉, (A1222
+++ −A2111

+++)|αdiag〉,
(A2222

+++ − 3A2211
+++)|αdiag〉, A2221

+++|αdiag〉
}
,{

A2222
−−−|αdiag〉, (A2221

−−− + 3A1222
−−−)|αdiag〉, (A1122

−−− +A2211
−−−)|αdiag〉,

(A1112
−−− + 3A2111

−−−)|αdiag〉, A1111
−−−|αdiag〉

}
,{

A1122
++−|αdiag〉, (A1112

++− +A1121
++− − 2A1222

++−)|αdiag〉,
(A1111

++− +A2222
++− − 2A2112

++− − 2A1221
++−)|αdiag〉,

(A2221
++− +A2212

++− − 2A2111
++−)|αdiag〉, A2211

++−|αdiag〉
}
,{

A1222
+−−|αdiag〉, (A2222

+−− −A1221
+−− − 2A1122

+−−)|αdiag〉,
(A1112

+−− −A2221
+−− + 2A1211

+−− − 2A2122
+−−)|αdiag〉,

(A1111
+−− −A2112

+−− − 2A2211
+−−)|αdiag〉, A2111

+−−|αdiag〉
}
. (B.4)

B.2 Untwisted sector

Besides the two singlets (2.29), the untwisted sector at level 2 contains a 16-dimensional

space of massive 1
4 -BPS states contributing to ginv

2 . They are N = 4 primaries built as

eight odd combinations of oscillator modes acting on the Z2-orbifold odd ground states

Ω̃1 := (χ1
+)− 1

2
Ω and Ω̃2 := (χ2

+)− 1
2

Ω. These two states transform non-trivially under our

geometric symmetry groups Gi. Indeed, as argued in section 3, they are invariant under

the action of SU(2)geom and form a doublet under the action of SU(2)geom.

On the other hand, we find four quadruplet representations of SU(2)geom at level 2 in

this sector. We introduce the notation

Bk`m
± := (ak±)−1 (χ`+)− 1

2
(χm− )− 1

2
, k, `,m ∈ {1, 2}, (B.5)

so that the 16-dimensional space is generated by the following 16 states:

B112
+ Ω̃i, (B122

+ +B212
+ −B111

+ )Ω̃i, (B211
+ +B121

+ −B222
+ )Ω̃i, B221

+ Ω̃i,

B212
− Ω̃i, (B112

− +B211
− −B222

− )Ω̃i, (B221
− +B122

− −B111
− )Ω̃i, B121

− Ω̃i.
i ∈ {1, 2}, (B.6)
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where each row generates a (4, 2) representation of SU(2)geom×SU(2)geom. Note that under

the action of the diagonal subgroup SU(2) of SU(2)geom× SU(2)geom, we obtain two copies

of 4⊗ 2 ∼= 3⊕ 5, yielding no singlets altogether.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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