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1 Introduction

Consider type II string theory toroidally compactified on T 2. This maximally supersymmet-

ric theory has a U-duality symmetry group SL(2,Z)×SL(3,Z). In the type IIB theory, the

non-perturbative1 SL(2,Z)τ S-duality symmetry which is inherited from ten dimensions

is contained in SL(3,Z) of the U-duality group. The perturbative T-duality symmetry

group is

SL(2,Z)T × SL(2,Z)U (1.1)

where T and U are the complexified Kahler and complex structure moduli of the T 2 respec-

tively. While SL(2,Z)U directly arises as the SL(2,Z) factor in the U-duality group, the

SL(2,Z)T is contained in SL(3,Z). The moduli dependent coefficients of various amplitudes

in this theory when expanded around weak string coupling exhibit a rich perturbative as

well as non-perturbative structure.

In the string frame, the perturbative part of the amplitude takes the form∑
g

(e−2φV )1−gfg(T, T ;U,U) (1.2)

where φ is the dilaton, and V is the volume of T 2 in the string frame metric. The Kahler

modulus is given by

T = T1 + iT2 = BN + iV, (1.3)

1Here perturbative and non-perturbative are with respect to the string coupling.
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where BN is the scalar from the NS-NS sector. In (1.2), the term involving fg is the

genus g amplitude, which involves the T-duality invariant string coupling e−2φV as the

overall factor. Equality of the IIA and IIB theories on compactifying on T 2 yields that

fg(T, T ;U,U) = fg(U,U ;T, T ). Note that the perturbative contribution (1.2) does not

involve states from the Ramond sector.

The non-perturbative contributions arise from D-instantons as well as from (p, q) string

instantons2 wrapping T 2 where q 6= 0, and are exponentially suppressed for large τ2. For

the n D-instanton contribution, the exponentially suppressed factor is of the form

e2πi(nτ1+i|n|τ2), (1.4)

while for the (p, q) string instanton contribution, it is of the form [1, 2]

e2πiTp,q , (1.5)

where Tp,q = (qBR+pBN )+ i|p−qτ |V , where BR is the scalar from the R-R sector. While

the instantons carry positive NS (or R) charge, the anti-instantons carry negative charge.

Let us consider the perturbative contributions given by (1.2). Though they are per-

turbative in the string coupling, they can receive contributions which are non-perturbative

in α′, the inverse string tension. These contributions arise from worldsheet instantons

and anti-instantons3 wrapping T 2. While it is difficult to calculate these contributions for

generic interactions, the BPS interactions are amenable to a detailed analysis.

First let us consider the 1/2 BPS R4 interaction, where only the terms involving g = 0

and 1 are non-vanishing in (1.2). The worldsheet (anti)instanton contributions are given

by [2–4]

f1 = 2π

∞∑
n=1

σ1(n)

n

(
e2πinT + e−2πinT

)
, (1.6)

where we have ignored all other contributions.4

For the 1/4 BPS D4R4 interaction, where only terms involving g = 0, 1 and 2 are

non-vanishing in (1.2), the worldsheet (anti)instanton contributions are given by [4, 5]

f1 =
4

π
E2(U,U)

∞∑
n=1

σ3(n)

n2

(
1 +

1

2πnT2

)(
e2πinT + e−2πinT

)
,

f2 =
4π2

3

∞∑
n=1

σ3(n)

n2

(
1 +

1

2πnT2

)(
e2πinT + e−2πinT

)
(1.7)

where the Eisenstein series E2 is defined by (A.1) and we have ignored all other

contributions.5

Thus (1.6) and (1.7) both involve an infinite sum of worldsheet (anti)instanton contri-

butions. In fact, each term in the sum results from either instantons or from anti-instantons.

2We follow the convention of denoting the fundamental string as the (1, 0) state.
3In fact, (1.5) also contains such contributions for p 6= 0. However, for the sake of simplicity we restrict

ourselves to contributions involving no Ramond sector states.
4Our normalization is such that f0 = ζ(3).
5Our normalization is such that f0 = ζ(5).
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This feature changes qualitatively when we consider the 1/8 BPS D6R4 interaction which

preserves 4 supercharges. This interaction receives contributions from g = 0, 1, 2 and 3

in (1.2). Again, keeping only terms involving the worldsheet (anti)instanton contributions,

we have that [4, 6]6

f1 =
10

π2
E3(U,U)

∞∑
n=1

σ5(n)

n3

(
1 +

3

2πnT2
+

3

4π2n2T 2
2

)(
e2πinT + e−2πinT

)
+ 2πζ(3)

∞∑
n=1

σ1(n)

n

(
e2πinT + e−2πinT

)
,

f2 = 2π
(
E1(U,U) +

π

6

) ∞∑
n=1

σ1(n)

n

(
e2πinT + e−2πinT

)
+ F (T, T ),

f3 =
π3

9

∞∑
n=1

σ5(n)

n3

(
1 +

3

2πnT2
+

3

4π2n2T 2
2

)(
e2πinT + e−2πinT

)
. (1.8)

In (1.8), F (T, T ) satisfies the eigenvalue equation(
∆− 12

)
F (T, T ) = −6

(
E1(T, T )

)2
, (1.9)

where

∆ = 4T 2
2

∂2

∂T∂T
(1.10)

is the SL(2,Z)T invariant Laplacian. The relevant Eisenstein series that appear in (1.8)

are defined by (A.1) and (A.3). The 1/8 BPS couplings have also been analyzed from the

worldsheet perspective in [7–11], and from the spacetime point of view in [12–23].

Now in (1.8) all the contributions apart from that involving F (T, T ) are given by an

infinite sum of terms involving either worldsheet instantons or anti-instantons. However,

while F (T, T ) yields qualitatively similar contributions separately from bound states of

instantons or anti-instantons, it receives additional contributions involving bound states

of instantons/anti-instantons because of the presence of the source term in the eigenvalue

equation (1.9). In this paper, we analyze the content of (1.9) in detail to understand all

these contributions at a quantitative level.

2 The analysis of the eigenvalue equation for F (T, T )

We now analyze the eigenvalue equation (1.9) in detail. To start with, we express F (T, T ) as

F (T, T ) =
∑
n∈Z

Fn(T2)e
2πinT1 . (2.1)

This involves an infinite sum over topologically distinct sectors carrying non-trivial NS

charge (the n = 0 sector carries no charge).

We shall solve (1.9) along with specific boundary conditions. For large T2, we have

that F (T, T ) ∼ T 2
2 simply because this contribution arises at genus two and this is the

6Our normalization is such that f0 = ζ(3)2.
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large volume scaling. For small T2, the large T2 behavior along with SL(2,Z)T invariance

yields that [24]

Fn(T2) ∼ T−12 (2.2)

for all n.

2.1 The mode carrying no NS charge

First let us consider the mode F0(T2) in (2.1) which carries no NS charge. Using (1.9) and

the large T2 expansion of E1 given in (A.3), we have that(
T 2
2

d2

dT 2
2

− 12

)
F0(T2) = −6

(
π2

3
T2 − πlnT2

)2

− 48π2
∞∑
n=1

σ1(n)2

n2
e−4πnT2 . (2.3)

While the solution of the homogeneous equation is given by7

FH0 (T2) = a0T
−3
2 , (2.4)

where a0 is an arbitrary constant, the particular solution is given by [6]

FP0 (T2) =
π2

720

(
65− 20πT2 + 48π2T 2

2

)
+ π2lnT2

(
−π

3
T2 +

1

2
lnT2 −

1

12

)
+
∞∑
n=1

Qn(T2)e
−4πnT2 . (2.5)

In (2.5), Qn(T2) is given by

Qn(T2) = − σ1(n)2

224n5πT 3
2

[
24(x+ 1)2 + x4(2− x) + (x3 − 3)2 + 15 + x7exEi(−x)

]
, (2.6)

where x = 4πnT2 and Ei(−x) is the exponential integral function defined in (B.1). Us-

ing (B.2), we see that Qn(T2) is an infinite series in powers of T2 in the large T2 expansion.

Since this contribution is weighted by e−4πnT2 , it follows that it arises from the bound state

of worldsheet instantons/anti-instantons carrying equal and opposite NS charge n.

We now fix a0 in (2.4) using the boundary condition (2.2). Using (B.3) we see that

the singular terms in the small T2 limit in FP0 (T2) are given by

FP0 (T2) = − 3

14πT 3
2

∞∑
n=1

σ1(n)2

n5
+
π2

2
lnT2

(
lnT2 −

1

6

)
+O(T 0

2 ). (2.7)

While the O(T−32 ) contribution comes from the worldsheet instanton/anti-instanton sector,

the O(T−22 ) and O(T−12 ) terms that arise from this sector cancel on adding the various

contributions. Now using the relation

∞∑
n=1

σp(n)σq(n)

nr
=
ζ(r)ζ(r − p)ζ(r − q)ζ(r − p− q)

ζ(2r − p− q)
, (2.8)

7We neglect the solution T 4
2 as it violates the large T2 boundary condition.
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we see that (2.7) yields

FP0 (T2) = −ζ(3)ζ(5)

4πT 3
2

+
π2

2
lnT2

(
lnT2 −

1

6

)
+O(T 0

2 ). (2.9)

Thus demanding the cancellation of the O(T−32 ) terms between FH0 (T2) and FP0 (T2)

for small T2, we get that

a0 =
ζ(3)ζ(5)

4π
. (2.10)

This precisely agrees with this result obtained using a different method in [6]. Hence for

small T2, the singularity in F0(T2) is only logarithmic, and is weaker than the bound in (2.2).

Thus the complete solution is given by

F0(T2) = FH0 (T2) + FP0 (T2) (2.11)

on using (2.4), (2.5) and (2.10).

When expanded for large T2, we see that F0(T2) has terms that are power behaved and

logarithmic in T2, as well as terms that are exponentially suppressed in T2. In the large T2
expansion of Qn(T2) in (2.6), on using (B.2) we see that there are several cancellations at

leading orders, which yield the leading contribution

− 3σ1(n)2

n4T 2
2

e−4πnT2 (2.12)

to F0(T2) from the instanton/anti-instanton sector with weight e−4πnT2 .

2.2 The modes carrying NS charge

We now consider the modes in (2.1) that carry non-vanishing NS charge. We express the

mode Fn(T2) (n 6= 0) which carries n units of NS charge as

Fn(T2) = In(T2) +
∑

ni 6=0,n1+n2=n

In1,n2(T2), (2.13)

where In(T2) and In1,n2(T2) satisfy the differential equations(
T 2
2

d2

dT 2
2

− 12− 4π2n2T 2
2

)
In(T2) = −24π2σ1(n)

|n|

(π
3
T2 − lnT2

)
e−2π|n|T2 (2.14)

and(
T 2
2

d2

dT 2
2

−12−4π2(n1+n2)
2T 2

2

)
In1,n2(T2) =−24π2σ1(n1)σ1(n2)

|n1n2|
e−2π(|n1|+|n2|)T2 (2.15)

respectively.

We now solve (2.14) and (2.15) with appropriate choice of boundary conditions. For

large T2, the solutions In(T2) and In1,n2(T2) must have a growth no faster than T 2
2 for the

same reasons as before.8 For small T2 each mode has singular behavior no worse than T−12

in order to satisfy (2.2).

8In fact, we shall see that the solutions are exponentially suppressed, hence exhibiting significantly milder

behavior.
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2.2.1 The solution for In(T2)

We express

In(T2) = IHn (T2) + IPn (T2), (2.16)

where IHn (T2) is a solution to the homogeneous equation (2.14), while IPn (T2) solves the

particular equation (2.14).

Now IHn (T2) is given by [24]

IHn (T2) = bn
√
T2K7/2(2π|n|T2) (2.17)

where bn is an arbitrary constant. We ignore the other solution
√
T2I7/2(2π|n|T2) since it

grows exponentially for large T2, violating our boundary condition.

The particular solution IPn (T2) is given by

IPn (T2) = −σ1(n)e−2π|n|T2

16πn4T 3
2

[
− 12

(
2x2 + 5x+ 5

)
ln(x/2π|n|)

− 4

|n|
P (x)lnx+ 4

(
1 +

1

|n|

)
P (−x)e2xEi(−2x)

−
(

26x2 + 95x+ 215
)
− 4

|n|

(
7x2 + 25x+ 55

)]
, (2.18)

where x = 2π|n|T2, and P (x) is a polynomial in x defined by

P (x) = x3 + 6x2 + 15x+ 15. (2.19)

To determine bn using the boundary condition at small T2 mentioned above, we ex-

pand both IHn (T2) in (2.17) and IPn (T2) in (2.18) for small T2. For the solution to the

homogeneous equation, we have that

IHn (T2) = bn

[
15

16|n|7/2π3T 3
2

(
1− 2

5
π2n2T 2

2

)
+O(T2)

]
. (2.20)

For the particular solution we get

IPn (T2) = −π
2σ1(n)

2|n|

[(
1− 2

5
π2n2T 2

2

)
Ψ(n)

(2π|n|T2)3
+ 4ln(2π|n|T2)

]
+O(T2lnT2) (2.21)

where we have used (B.3), and kept all terms that diverge as T2 → 0. Here Ψ(n) is given

by the expression

Ψ(n) = −215− 220

|n|
+ 60ln(2π|n|) + 60

(
γ + ln2

)(
1 +

1

|n|

)
. (2.22)

Note that there is no T−22 term in (2.21). Thus the cancellation of the T−32 in the small T2
expansion gives us that

bn =
π2σ1(n)Ψ3,n

15|n|1/2
(2.23)

– 6 –



J
H
E
P
0
4
(
2
0
2
0
)
1
6
8

yielding the complete solution. In fact the T−12 term also cancels on adding (2.20)

and (2.21), and hence the only singular term in In(T2) for small T2 is given by

− 2π2
σ1(n)

|n|
ln(2π|n|T2). (2.24)

Now for large T2, In(T2) behaves as e−2π|n|T2 with the leading contribution being given by

In(T2) = 2π2
σ1(n)

n2
ln(2π|n|T2)e−2π|n|T2 (2.25)

where we have used (B.2). Thus these are contributions from bound states of worldsheet

instantons (or anti-instantons) if n is positive (or negative).

2.2.2 The solution for In1,n2(T2)

Like before, we express

In1,n2(T2) = IHn1,n2
(T2) + IPn1,n2

(T2), (2.26)

where IHn1,n2
(T2) is a solution to the homogeneous equation (2.15), while IPn1,n2

(T2) solves

the particular equation (2.15).

The solution IHn1,n2
(T2) satisfying the large T2 boundary condition is given by

IHn1,n2
(T2) = cn1,n2

√
T2K7/2(2π|n1 + n2|T2) (2.27)

where cn1,n2 is an arbitrary constant.

We now consider the particular solution IPn1,n2
(T2). It is convenient to consider the

two cases separately:

(i) n1 and n2 have same sign (thus n1n2 > 0), and

(ii) n1 and n2 have opposite signs (thus n1n2 < 0).

For case (i), we have that

IPn1,n2
(T2) = −6π2σ1(n1)σ1(n2)

n1n2x3
e−x(2x2 + 5x+ 5), (2.28)

where x = 2π|n1 + n2|T2. Unlike the other cases, there are no contributions involving the

exponential integral function.

To determine cn1,n2 , we demand the cancellation of the T−32 term in the small T2
expansion of In1,n2(T2) as discussed earlier, which gives us that

cn1,n2 = 4π2
|n1 + n2|1/2

n1n2
σ1(n1)σ1(n2). (2.29)

This also cancels the T−12 term in the small T2 expansion and hence there are no singular

terms in In1,n2(T2) in this limit, as there is no T−22 term that arises from (2.28).

On expanding In1,n2(T2) for large T2, we see that all the terms are suppressed by

a factor of e−2π|n1+n2|T2 . Hence they arise from bound states of worldsheet instantons

– 7 –
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or anti-instantons depending on whether n1 is positive or negative. In fact, the leading

contribution is given by

2π2σ1(n1)σ1(n2)

n1n2
e−2π|n1+n2|T2 . (2.30)

Now for case (ii), we have the particular solution

IPn1,n2
(T2) =

3e−2π(|n1|+|n2|)T2σ1(n1)σ1(n2)

32π2n1n2|n1 + n2|7T 3
2

[
(α− β)

(
5(|n1|+ |n2|)R13,15

+ 10π(n1 + n2)
2R3,5T2 + 4π2(n1 + n2)

2(|n1|+ |n2|)R1,5T
2
2

)
− αβ

2π
R1,5

(
P (2π|n1 + n2|T2)eαT2Ei(−αT2)

− P (−2π|n1 + n2|T2)eβT2Ei(−βT2)
)]
, (2.31)

where α (> 0) and β are defined by

α = 2π(|n1|+ |n2| − |n1 + n2|),
β = 2π(|n1|+ |n2|+ |n1 + n2|), (2.32)

while Ra,b is defined by

Ra,b = a(n1 + n2)
2 − b(n1 − n2)2. (2.33)

Also P (x) is the polynomial defined by (2.19).

In order to determine cn1,n2 , we cancel the T−32 term in the small T2 expansion of

In1,n2(T2) as before. On using (B.3), the small T2 expansion of (2.31) is given by

IPn1,n2
(T2) =

3σ1(n1)σ1(n2)

64π3n1n2|n1 + n2|7T 3
2

[
1− 2

5
π2(n1 + n2)

2T 2
2

]
Ψ(n1, n2) +O(T 0

2 ) (2.34)

where

Ψ(n1, n2) = −15αβR1,5ln(α/β) +
5

2
(α2 − β2)R13,15. (2.35)

We note that the T−22 term vanishes in (2.34). Thus we have that

cn1,n2 = −σ1(n1)σ1(n2)Ψ(n1, n2)

20n1n2|n1 + n2|7/2
. (2.36)

In fact, the T−12 term also cancels in the small T2 expansion of In1,n2(T2) and hence there

are no singular terms in this expansion.

Now consider the large T2 expansion of In1,n2(T2). For fixed n1 and n2, the leading

contribution comes from the homogeneous solution and is of the form e−2π|n1+n2|T2 . Thus

the leading contribution is given by

− σ1(n1)σ1(n2)

40n1n2(n1 + n2)4
Ψ(n1, n2)e

−2π|n1+n2|T2 . (2.37)
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The particular solution is exponentially suppressed by an additional factor of e−αT2 , and

the leading contribution is given by

− 3σ1(n1)σ1(n2)

2n21n
2
2T

2
2

e−2π(|n1|+|n2|)T2 (2.38)

on using (B.2).

Contributions of this kind that are exponentially suppressed at large T2 arise from

bound states of worldsheet instantons and anti-instantons.

Thus the above expressions yield the complete data needed to evaluate (2.13). Now

in (2.13), the contributions arising from n1n2 < 0 yield an infinite sum given by

2
∑

n1≥n+1

In1,n−n1 (2.39)

and hence it is worthwhile to check the convergence of this sum. For this, we focus on

the large n1 behavior of the various terms while keeping n fixed. The contribution arising

from the particular solution (2.31) is exponentially damped in this limit, hence convergence

is trivial. To analyze the contributions that arise from the homogeneous solution (2.27)

consider the large n1 limit of cn1,n−n1 in (2.36). This is given by

cn1,n−n1 →
4π2σ1(n1)

2|n|7/2

35|n1|5
(2.40)

as several leading contributions cancel. Using the inequality [25]

σ1(n) < eγnlnlnn+
0.6483n

lnlnn
(2.41)

for n ≥ 3, it follows that the sum over n1 is convergent.9

3 S-duality and an elementary consequence for D string instanton

contributions

The worldsheet instanton contributions under S-duality get mapped to D string instanton

contributions [1, 27]. Given the exact expressions for the worldsheet instanton contribu-

tions, though it takes work to implement S-duality in order to obtain the complete D

string instanton contributions, it is elementary to implement strong weak coupling duality

to obtain a part of the D string instanton contributions, which we now illustrate.

9A related inequality is given by [26]

σ1(n) < Hn + eHn lnHn,

for n > 1, where Hn is the nth harmonic number. Using the asymptotic expansion for Hn given by

Hn = lnn+ γ +
1

2n
−

∞∑
m=1

B2m

2m · n2m

where Bm are the Bernoulli numbers, we again see that the sum over n1 in (2.40) is convergent.

– 9 –
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As a simple example, consider the worldsheet instanton contribution to the R4 coupling

given by

2π

∞∑
n=1

σ1(n)

n
e2πinT , (3.1)

which follows from (1.6). In the background where τ1 = 0, strong weak coupling duality

yields

τ2 →
1

τ2
, V → τ2V, BN → BR, BR → −BN . (3.2)

Thus performing the S-duality transformation (3.2) on (3.1), we get the D string instanton

contribution10

2π

∞∑
n=1

σ1(n)

n
e2πinS , (3.3)

where

S = S1 + iS2 = BR + iτ2V. (3.4)

Similarly for the D6R4 coupling the S-duality transformations (3.2) yield partial con-

tributions to the D string instanton contributions using the various expressions for the

worldsheet instanton contributions we have analyzed. For example, from (2.6) we see that

the contribution from the bound states of D string instantons/anti-instantons carrying no

net RR charge is given by
∞∑
n=1

Q̃n(S2)e
−4πnS2 , (3.5)

where Q̃n(S2) is given by

Q̃n(S2) = −3σ1(n)2

n4S2
2

[
1− 4

y
+

1

168

∞∑
m=0

(−1)m(m+ 7)!

ym+2

]
, (3.6)

where y = 4πnS2 and we have performed a weak coupling (large τ2) expansion using (B.2).

While the overall S2 dependence must arise from the structure of zero modes in the

instanton/anti-instanton background, we see that the infinite sum is an expansion in

y ∼ e−φ, the open string coupling. Note that performing (3.2) on IPn (T2) in (2.18) yields

contributions having factors of lnτ2, which arise from non-local interactions logarithmic in

the external momenta in the string frame, on converting to the Einstein frame. This is

precisely what is expected from the structure of the U-duality invariant eigenvalue equation

that arises for the D6R4 coupling [4, 6], as the source term contains lnτ2 that arises from

the R4 coupling [2].

10In fact this is the complete answer from the sum over the (0, n) D string instantons which follows from

the U-duality invariant expression for the R4 coupling [2, 3].
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A The SL(2,Z) invariant non-holomorphic Eisenstein series

The non-holomorphic Eisenstein series Es(T, T ) is given by the expression

Es(T, T ) = 2ζ(2s)T s2 + 2
√
πT 1−s

2

Γ(s− 1/2)

Γ(s)
ζ(2s− 1)

+
4πs
√
T2

Γ(s)

∑
n 6=0

σ2s−1(n)

|n|s−1/2
Ks−1/2(2π|n|T2)e2πinT1 (A.1)

on expanding around large T2. Here the divisor function σm(n) is defined by

σm(n) =
∑

d|n,d>0

dm, (A.2)

where the sum is over the positive divisors of n. The case s = 1 has to be regularized and

is given by

E1(T, T ) = −πln
(
T2|η(T )|4

)
=
π2

3
T2 − πlnT2 + 2π

∑
n 6=0

σ1(n)

|n|
e2πi(nT1+i|n|T2). (A.3)

B The exponential integral function

The exponential integral function Ei(−x) is given by the integral representation

exEi(−x) = −1

x
+

∫ ∞
0

dt
e−t

(t+ x)2
, x > 0. (B.1)

Thus we see that exEi(−x) is a polynomial in 1/x of the form

exEi(−x) = −1

x
+

∞∑
n=0

(−1)n(n+ 1)!

xn+2
(B.2)

for large x. On the other hand, for small x, the series expansion is given by

Ei(−x) = γ + lnx+
∞∑
n=1

(−x)n

n · n!
, x > 0. (B.3)
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