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holographic method or gauge/gravity duality has made much progress. Most holographic

models have focused on the low temperature limit, where the linear-T resistivity has been

explained by the infrared geometry. We extend this analysis to high temperature and iden-

tify the conditions for a robust linear-T resistivity up to high temperature. This extension

is important because, in experiment, the linear-T resistivity is observed in a large range

of temperatures, up to room temperature. In the axion-dilaton theories we find that, to

have a robust linear-T resistivity, the strong momentum relaxation is a necessary condition,

which agrees with the previous results for the Guber-Rocha model. However, it is not suffi-

cient in the sense that, among large range of parameters giving a linear-T resistivity in low

temperature limit, only very limited parameters can support the linear-T resistivity up to

high temperature even in strong momentum relaxation. We also show that the incoherent

term in the general holographic conductivity formula or the coupling between the dilaton

and Maxwell term is responsible for a robust linear-T resistivity up to high temperature.
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1 Introduction

It has been shown that strongly correlated electron systems may have interesting uni-

versalities regardless of microscopic details. For example, the resistivity (ρ) is linear in

temperature (T ) [1]

ρ ∼ T , (1.1)

in various strange metals such as cuprates, heavy fermions and pnictides with a remarkable

degree of universality.1 This is a distinctive property compared with the ordinary metal

case, in which ρ ∼ T 2, a different universal property explained by the Fermi liquid theory.

However, this well known “linear-T resistivity” puzzle has not been completely re-

solved because of the theoretical difficulty in dealing with strong correlation. As a novel

and effective tool to address strong correlation in general, the holographic methods or

gauge/gravity duality [1, 14, 15] has been widely used. The basic idea is to understand

strongly correlated systems by mapping them to the dual classical gravity systems.

1As other examples of universal properties, there are the Hall angle [2–7] at finite magnetic field and

Homes’s law in superconductors [8–13].
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There have been many researches to understand the linear-T resistivity by holographic

methods. Most researches, for example [3–6, 16–25], have focused on the relation between

the linear-T resistivity and the infrared (IR) geometry, which can be supported by matter

fields and couplings. The IR geometry is characterized by three critical exponent: the

dynamical critical exponent (z), hyperscaling violating exponent (θ) and charge anomalous

parameter (ζ). In particular, Goutéraux [18], for the first time, systematically studied these

geometries with momentum relaxation and characterized their scalings in terms of z, θ and

ζ as well as derived the temperature scaling of the resistivity

ρ ∼ T x(z,θ,ζ) , (1.2)

in low temperature limit. Here, x is some function of critical exponents. It is an interesting

result since it gives an understanding of the linear-T resistivity based on the scaling prop-

erties of condensed matter systems, which are nicely geometrized in dual gravity models.

However, at the same time, it has an important limitation. The result (1.2) is valid

only in low temperature limit in the sense that T has to be very low compared with any

other scales in given models. For example, with a chemical potential (µ) and momentum

relaxation (of which strength is denoted by k), T/µ � 1 and T/k � 1 etc. Indeed, such

a condition enables us to compute the power x(z, θ, ζ) analytically. However, noting that

the linear-T resistivity has been observed in a ‘large’ range of temperatures, up to room

temperature ∼ 300K in experiments, the condition of ‘low’ temperature limit for (1.2) will

be too restrictive.

To deal with this problem, we first have to quantify ‘low’ or ‘high’ temperature com-

pared with ‘what’. We may choose the chemical potential µ as our reference, T/µ. However,

it is not clear the relation between ‘µ’ in holography and the chemical potential, µ, in real

world. Most holographic models including ours belong to bottom-up models. Without a

top-down construction with a precise field theory dual, the meaning of the ‘chemical po-

tential’ (‘µ’) is ambiguous. It is just a ‘chemical potential’ (‘µ’) for ‘some’ conserved U(1)

charge. Furthermore, even in the case they are exactly the same quantity, it is still possible

that there is some difference in numerical values, for example, µ ∼ 10‘µ’ or µ ∼ 0.01‘µ’.

Thus, for a reference scale, it will be better to choose an intrinsic scale in the model. For

example, because experimental results show that the resistivity is linear in T up to T > Tc
from zero T , where Tc is the superconducting transition (critical) temperature, Tc can play

a role as a reference scale. In other words, the ‘low’ or ‘high’ temperature can be defined

by the temperature below Tc or above Tc.
2 Of course, it is possible to have a different

reference scale other than Tc depending on the context. Our purpose here is to motivate

why a simple notion of small temperature based on T/µ < 1 might be misleading in some

cases. For example, in the context of superconductor, Tc is a better reference scale than µ

because we have to check if the linear-T resistivity persists up to high temperature T > Tc.

We refer to [26] for more details.

2One may think that Tc is of order µ so there is no essential difference to use Tc as a reference scale,

compared with µ. This may be true qualitatively. However, it turns out that the value of the order one

number is important. For example, see figure 3 of [26], where there are six cases. For all cases Tc ∼ µ up

to oder one number. However, only some of them exhibit the linear-T resistivity above Tc from zero T .
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Ref. [26] addressed this issue for the first time, to our knowledge. In this work, the

Gubser-Rocha model [27] with momentum relaxation [17, 28, 29] have been considered with

a complex scalar field to trigger superconducting instability. It has been shown that these

models can exhibit the linear-T resistivity up to ‘high’ temperature, i.e. above Tc only if

momentum relaxation is strong. The importance of strong momentum relaxation was first

emphasized in [30]: it was argued that, if the momentum relaxation, which is extrinsic

and non-universal, is strong (quick), transport can be governed by diffusion of energy and

charge, which is intrinsic and universal. Thus, the universality of the linear-T resistivity

emerges with strong momentum relaxation.3

The work in ref. [26] is important because it is the work studying the linear-T resistivity

at ‘high’ temperature, while most of holographic works [3–6, 16–21] have been focused in

the low temperature limit. However, ref. [26] deals with only one class of models based

on the Gubser-Rocha model, so it is not clear if strong momentum relaxation is really

necessary and/or sufficient to have the linear-T resistivity in general. The goal of this

paper is to investigate this issue in a more general setup.

We start with a most general scaling geometry studied in [3, 5, 6, 17–21], so called

axion-dilaton theories or the Einstein-Maxwell-Dilaton with Axion model (EMD-Axion

model). The axion field is introduced to realize the momentum relaxation effect. The dila-

ton field is introduced with some potentials and couplings charaterized by three parame-

ters (α, β, γ), in order to support the IR geometry parametrized by three scaling exponents

(z, θ, ζ) as explained above (1.2),4 which is rich enough to explore various possibilities. The

IR geometry with an emblackening factor is valid only at low temperature limit. For the

arbitrary temperature solutions, we need to introduce potentials and couplings support-

ing asymptotically ultraviolate (UV) AdS geometry [36–38]. In general, there are many

possibilities for potentials and couplings, and in this paper we consider a minimal (one-

parameter) UV completion for potentials without changing couplings. This UV completion

was introduced in [39] for the purpose of studying the shear viscosity to entropy ratio and

includes the Gubser-Rocha model in [26] as a special case.

In short, our strategy is i) start with the various IR geometry giving the linear-T

resistivity such that x(z, θ, ζ) = 1 in (1.2), which is valid only in low T limit; ii) after

UV completing the geometry, obtain the arbitrary finite T dependence of resistivity; iii)

change the momentum relaxation parameter to see how it affects the robustness of linear-

T resistivity at high temperature. As a result, we have found that, in general, the strong

momentum relaxation is still necessary to have a robust linear-T resistivity up to higher

temperature, but not sufficient: the parameter range for the robust linear-T resistivity is

quite limited compared with the high possibility in the low temperature limit [3, 4, 16–

20]. We have identified this parameter range which is different from the Gubser-Rocha

model. In addition, we have also clarified the term which is responsible for the linear-

3The linear-T resistivity may appear in weak momentum relaxation regime in the case of weakly-pinned

charge density waves (CDWs), where the resistivity is governed by incoherent, diffusive processes which do

not drag momentum and can be evaluated in the clean limit [31–33]. See also [34, 35].
4These three exponents are related with three action parameters (α, β, γ).
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T resistivity in axion-dilaton theories: it is the incoherent term5 the first term in the

conductivity formula (2.33) or the coupling between the Maxwell and dilaton fields (for

spatial dimension 2).

We organize the paper as follows: in section 2, we review axion-dilaton theories and

its low T limit properties focusing on the linear-T resistivity. In section 3, we classify all

possible parameter range in the action to obtain the linear-T resistivity in IR and explain

our UV-completion. In section 4, we report our results showing a robust linear-T resistivity

up to high temperature and demonstrate the importance of strong momentum relaxation.

In section 5, we interpret our results in more detail. We identify the term responsible for

the linear-T resistivity. We also describe the effects of the parameters introduced in axion-

dilaton theories on the temperature dependence of the resistivity. In section 6 we conclude.

2 Axion-dilaton theories: a quick review

In this section, we make a very brief review on the axion-dilaton theory investigated in [18].6

The purpose of this section is to set the stage and collect the results that will be useful for

our discussion later. We refer to the original work [18] or a review in [21] for more detailed

explanation and derivations.

2.1 Action and equations of motion

An action of generic EMD-Axion models (or axion-dilaton theories) can be expressed as

follows,

S =

∫
dtddxdr

√
−g (R+ Lm) ,

Lm = −1

2
(∂φ)2 − J(φ)

2

d∑
i=1

(∂χi)
2 + V (φ)− Z(φ)

4
F 2 , (2.1)

where φ and χi are scalar fields which are called dilaton and axion respectively. The terms

denoted by J , Z, and V are the coupling functions and potential function.

The action yields the following Einstein equations:

Rµν = Tµν −
1

d
gµνT

=
1

2
∂µφ∂νφ+

J(φ)

2

d∑
i=1

∂µχi∂νχi +
Z(φ)

2
Fµ

ρFνρ −
Z(φ)F 2

4d
gµν −

V (φ)

d
gµν ,

(2.2)

5The first term in (2.33) can be properly called ‘incoherent’ which means ‘no momentum dragging’ only

for strong momentum relaxation, which is the very regime we are interested in. For weak momentum

relaxation, there is an incoherent contribution from the second term too [40]. The first term is sometimes

called a pair-creation term, which is proper if there is no net charge. The first term also has an interpretation

as the conductivity in the absence of heat flows [23].
6See also [16] for the original work without axion.

– 4 –



J
H
E
P
0
4
(
2
0
2
0
)
1
5
3

where Tµν := − 1√
−g

δ(
√
−gLm)
δgµν and T = gµνTµν . The Maxwell equation, scalar equation,

and axion equation are

∇µ(Z(φ)Fµν) = 0 ,

�φ+ V ′(φ)− 1

4
Z ′(φ)F 2 − 1

2
J ′(φ)

d∑
i=1

(∂χi)
2 = 0 ,

∇µ(J(φ)∇µχi) = 0 .

(2.3)

By considering the following homogeneous (meaning all functions are only functions

of r) ansatz

ds2 = −D(r)dt2 +B(r)dr2 + C(r)
d∑
i=1

dx2i ,

φ = φ(r) , A = At(r)dt , χi = kxi ,

(2.4)

we obtain the Einstein equations

0 =
Z(d− 1)A′2t

dD
+

2BV

d
+
B′D′

2BD
− dD′C ′

2DC
+
D′2

2D2
− D′′

D
, (2.5)

0 = φ′2 − dC ′2

2C2
− dC ′D′

2CD
− dC ′B′

2CB
+
dC ′′

C
, (2.6)

0 =
Jk2B

C
− 2BV

d
+
ZA′2t
dD

+
C ′

2C

(
D′

D
− B′

B

)
+

(d− 2)C ′2

2C2
+
C ′′

C
, (2.7)

which come from the equations corresponding to Rtt, Rrr, and Rxx in (2.2) respectively.

The prime ′ denotes the derivative with respect to r. The Maxwell equation and scalar

equation are reduced to

0 =

[
Z

C
d
2

√
BD

A′t

]′
, (2.8)

0 = −
dJ,φk

2B

2C
+
Z,φA

′2
t

2D
+BV,φ −

B′φ′

2B
+

(
dC ′

2C

)
φ′ +

D′φ′

2D
+ φ′′ , (2.9)

and the axion equations are satisfied trivially.

2.2 IR analysis of the axion-dilaton theories

Our task is to find the functions B(r), C(r), D(r), At(r), and φ(r) in the ansatz (2.4) satis-

fying the equations of motion (2.5)–(2.9) for a given the couplings and potential functions

in J, Z and V in (2.1).

In order to have analytic scaling solutions in IR (Infrared: far from the AdS boundary),

we give the following constrains to J, Z and V in IR:

V (φ) ∼ V0eαφ , J(φ) ∼ eβφ , Z(φ) ∼ eγφ , (2.10)

where the constant parameters (α, β, γ, V0) are introduced. We consider the coefficient V0
only for V without loss of generality because the overall factors for J and Z can be absorbed
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into the field χi and At. Plugging the “IR scaling coupling” (2.10) into the equations of

motion (2.5)–(2.9) with the following scaling solution ansatz,

ds2 = r
2θ
d

(
−dt2

r2z
+
L2dr2

r2
+

∑d
i=1 dx2i
r2

)
,

At = Qrζ−z , φ = κ ln (r) , χi = kxi ,

(2.11)

we obtain the solution (z, θ, ζ, L, Q, κ) in terms of (α, β, γ, V0, k). We will call the expo-

nents (z, θ, ζ) and the coefficients (L,Q, κ) “solution parameters” or “output parameters”.

We will call the parameters (α, β, γ, V0, k) “action parameters” or “input parameters”.7

Physically, Q is proportional to the charge density and k means the strength of the momen-

tum relaxation. Note that φ→ ±∞ in IR8 as r →∞ where J ∼ rκβ , Z ∼ rκγ and V ∼ rκα.

After plugging scaling solution ansatz (2.11) into equations of motion (2.5)∼(2.9), we

find that there are four possibilities to satisfy the equations of motion. We may classify

these solutions according to the “relevance” of the axion and/or charge, following [18].

By “marginally relevant axion” we mean the axion parameter k appear explicitly in the

leading solutions and by “marginally relevant charge” we mean Q appears explicitly in the

leading solutions. By “irrelevant axion (charge)” we mean k (Q) do not appear explicitly

in the leading solutions but they can appear in the sub-leading solutions. Therefore, we

may consider four classes as follows.

• class I: marginally relevant axion & charge (k 6= 0, Q 6= 0)

• class II: marginally relevant axion & irrelevant charge (k 6= 0, Q = 0)

• class III: irrelevant axion & marginally relevant charge (k = 0, Q 6= 0)

• class IV: irrelevant axion & charge (k = 0, Q = 0)

Notice that the classification is based on the property of the leading solutions. To

have a more complete picture, we also should consider the deformation by the sub-leading

solutions:

Φi → Φi + εir
βi + · · · , (2.12)

where Φi denotes every leading order solution collectively, εi is a small parameter and

βi denotes the exponent of the sub-leading order and βi < 0 (βi > 0) when the IR is

located at r → ∞ (r → 0). Therefore, Q = 0 in the leading solution does not mean zero

density and k = 0 in the leading solution does not mean no momentum relaxation because

these parameters can appear in the sub-leading solutions. In particular, if the axion is

relevant, we may expect the momentum relaxation affects IR physics more strongly than

the irrelevant axion cases.

We present the explicit solutions for every classes in the following.

7In fact, k is not introduced in an “action” level but we will include it in “action parameters” for

convenience because it is one of the “input parameters”.
8The IR regime in general can be near r → 0 or r → ∞. Without loss of generality, we may choose

r →∞ as IR.
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Class I: charge and axions are marginally relevant. The leading order solutions

read

z =
−2 + dα2 − dβ2

d(α− β)β
, θ =

dα

β
, ζ =

α+ γ

β
, κ = − 2

β
,

L2 = −2(d− θ + z − 1)(d− θ + z)

(d− 1)k2 − 2V0
, Q2 =

2(dz − θ)k2 − 4V0(z − 1)

((d− 1)k2 − 2V0)(d− θ + z)
,

(2.13)

as well as a constraint between input parameters:

γ = (d− 1)α− dβ . (2.14)

or output parameters:

d+ ζ − θ = 0 . (2.15)

Class II: charge is irrelevant; axions are marginally relevant. The leading order

solutions read

z =
−2 + dα2 − dβ2

d(α− β)β
, θ =

dα

β
, κ = − 2

β
,

L2 =
(d− θ + z)(dz − θ)

V0
,

(2.16)

as well as a constraint between input parameters:

k2 =
2V0(z − 1)

dz − θ
. (2.17)

Note that the Q and γ does not appear in the solution (2.16) and the constrain (2.17) can

be understood as the condition Q = 0 in (2.13) so ζ is also undetermined.

The value of Q and ζ and their γ dependences will be determined in the subleading

order

ζ = d− κγ − d− 2

d
θ = d+

2γ

β
− (d− 2)α

β
. (2.18)

As explained in (2.12), this subleading order solution will back-react to metric and dilaton

field, which behave as

∼ rd+ζ−θ . (2.19)

To have a stable IR geometry, we impose the constraint

d+ ζ − θ < 0 , (2.20)

near IR, r →∞. In terms of α, β, γ this constraint means

2d− 2(d− 1)α

β
+

2γ

β
< 0 . (2.21)
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Class III: charge is marginally relevant; axions are irrelevant. The leading order

solutions read

z =
4d− κ2(dα2 − 2)

2d(2 + ακ)
, θ =

d2α

(d− 1)α− γ
, ζ = −1

2
κ(α+ γ) , κ = − 2d

(d− 1)α− γ
,

L2 =
(d− θ + z − 1)(d− θ + z)

V0
, Q2 =

2(z − 1)

d− θ + z
. (2.22)

Note that the k and β does not appear in the solutions (2.22) so, compared with class I

and II solutions, κβ = −2 does not hold anymore. The solutions (2.22) may be understood

from (2.13) by setting k = 0 and replacing β by using (2.14).

Similarly to class II, in the subleading order, the axion (χi = kxi) starts playing a role

and its back-reaction to metric and dilaton field behaves as

∼ r2+κβ . (2.23)

To have a stable IR, we impose the constraint

2 + κβ < 0 , (2.24)

in the IR, r →∞. In terms of α, β, γ this constraint means

2 +
2dβ

γ − (d− 1)α
< 0 . (2.25)

Class IV: charge and axions are irrelevant. The leading order solutions read

z = 1 , θ =
d2α2

dα2 − 2
, κ = − 2dα

dα2 − 2
, L2 =

(d− θ)(d− θ + 1)

V0
. (2.26)

Note that the Q, γ, k, and β do not appear in the solutions. The solutions (2.26) can be

understood from (2.22) by setting Q = 0 or z = 1. Similarly to case II the subleading

gauge field yields

ζ = d− κγ − d− 2

d
θ =

2d(α(α+ γ)− 1)

dα2 − 2
. (2.27)

Similarly to class II and III we have the following constraints, (2.19) and (2.23):

d+ ζ − θ < 0 and 2 + κβ < 0 , (2.28)

or equivalently
2d(α(α+ γ)− 2)

dα2 − 2
< 0 and 2− 2dαβ

dα2 − 2
< 0 . (2.29)

2.3 Resistivity in low temperature limit

Furthermore, it turns out that the emblackening factor f(r)

f(r) = 1−
(
r

rH

)z+d−θ
, (2.30)

– 8 –
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can be turned on (dt2 → fdt2 and dr2 → dr2/f in (2.11)) for all classes. Then, the

Hawking temperature from this emblackening factor allows us to study the axion-dilaton

theories at low temperature. However, it should be emphasized that the solution with this

emblackening factor is valid only for very low temperature compared with any other scales,

for example, chemical potential and momentum relaxation.

In this low temperature limit, the Hawking temperature T and charge density q can

be expressed in terms of solution parameters (z, θ, ζ,Q): [18, 21]

T :=
1

4π

|D′|√
DB

∣∣∣∣
rH

=
|d+ z − θ|

4π
r−zH , (2.31)

q :=

√
Cd

DB
ZA′t

∣∣∣∣∣
rH

= Q(ζ − z) , s := 4πCd/2
∣∣∣
rH

= 4πrθ−dH , (2.32)

where the subscript H denotes horizon. The transport coefficients, for instance electric

conductivity or thermal conductivity, can be calculated [18, 23]. Especially the electric DC

conductivity formula for the EMD-Axion model is given by

σDC = ZHC
d−2
2

H +
q2

k2C
d/2
H JH

(2.33)

∼ T−(2−ζ)/z +
q2

k2
T−

d−θ−κβ
z . (2.34)

Note that only the behavior of (Z, J,C) at the horizon play a role in determining the power

of T via the relation between rH and T (2.31). More variables (At, B,C,D,Z) enter for

the charge density q as shown in (2.32).

By using the constraints between ζ, β, κ, (2.14), (2.20), (2.24), (2.28), we can find which

term in (2.33) is dominant in low temperature limit. In class I both two terms are of the

same order, in class II the first term is dominant, in class III the second term is dominant,

and in class IV the dominant term depends on the parameters. i.e. in low temperature

limit the resistivity ρ ∼ σ−1DC behaves as:

Class I: ρ ∼ T (2+d−θ)/z ,

Class II: ρ ∼ T
2−ζ
z ,

Class III: ρ ∼ T
d−θ−κβ

z ,

Class IV: ρ ∼ T d−θ−κβ or T 2−ζ .

(2.35)

Note that the power x in ρ ∼ T x does not depend on the momentum relaxation k. This is

because this formula is valid only in low temperature limit. At finite temperature, this is

not the case as we will show.

In fact, in addition to the constrains, (2.14), (2.20), (2.24), (2.28), there are more

constraints9 for the exponents z and θ, which will be necessary to constrain our physical

9For more details, we refer to [18, 21].
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model later. First, since we are considering the case that IR is located at r → ∞,10 the

exponent of r of each metric component in (2.11) should be negative, which implies

θ < dz , θ < d . (2.36)

Second, the emblackness factor (2.30) f(r)→ 1 at the UV (r → 0), which implies

θ < z + d . (2.37)

Third, the condition that the specific heat is positive implies

d− θ
z

> 0 , (2.38)

where we used the relation between the entropy and temperature (2.31): s ∼ T
(d−θ)
z .

Fourth, the κ,Q, and L in the (2.13), (2.16) and (2.22) should be real. The κ can be

rewritten by:

κ2 =
2(d− θ)(d(z − 1)− θ)

d
. (2.39)

The conditions (2.36)–(2.37) and Q2 > 0, L2 > 0, κ2 > 0 imply

z > 1, θ < d . (2.40)

Note that eqs. (2.28) and (2.40) imply that both 2 − ζ and d − θ − κβ can not be 1

in class IV. Thus, the class IV solution does not allow the linear-T resistivity in the low

temperature limit. Being interested in the linear-T resistivity, we study only class I, II and

III solutions in the following section.

3 Resistivity up to high temperature

From (2.35), we may obtain the condition for the linear-T resistivity. However, as we

emphasized in the previous section, the temperature dependence of the resistivity (2.35) is

valid only in low temperature limit, which means that the temperature is very low compared

with any other scales such as the chemical potential, the momentum relaxation strength,

or the superconducting phase transition scale. However, from experimental results, it is

important to have a robust linear-T resistivity also at intermediate and high temperature,

which we will call finite temperature to distinguish it from low temperature limit.

3.1 UV-completion of potentials

At finite temperature, the couplings and potential in (2.10) only valid in IR have to be

UV-completed. In order to have asymptotically AdS space in UV, we impose the following

conditions [16]:

V (φ) =
(d+ 1)d

`2AdS

− 1

2
m2φ2 + · · · , (3.1)

Z(φ) = 1 + · · · , J(φ) = 1 + · · · , (3.2)

10In principle, we may consider the case that IR is located at r → 0. In this case we will end up with

negative z in (2.40). We do not consider this case because it is not physical.
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near boundary (r ∼ 0). In other words, for V (φ),

V (0) = −2Λ =
(d+ 1)d

`2AdS

, V ′(0) = 0 , V ′′(0) = −m2 =
−∆(∆− d− 1)

`2AdS

, (3.3)

where ∆ is the conformal dimension of the dual operator of φ and φ → 0 in UV. For

simplicity we set `AdS = 1 from here.

In principle, there will be many possibilities to construct V,Z, J satisfying (2.10) in IR

and (3.1) and (3.2) in UV. See for example [35, 36, 39, 41]. Here, for simplicity, we choose

one minimal way studied in [39]:

Z(φ) = eγφ , J(φ) = eβφ , (3.4)

and three cases for V (φ)

V (φ) =


2d
α2 sinh2

(
αφ
2

)
+ (d+ 1)d , for θ < 0 ,

(d+ 1)d , for θ = 0 ,

d
(

1
α2 + 2 (d+ 1)

)
sech(αφ)− d

(
1
α2 + (d+ 1)

)
sech2 (αφ) , for d > θ > 0 .

(3.5)

Let us now explain the rationale for our choice. All V (φ) in (3.5) satisfy the expan-

sion (3.1), where the dilaton mass m2 = −d for θ 6= 0 and m2 = 0 for θ = 0. The dilaton

φ behaves near boundary as follows

φ(r) ∼

{
c+ · · · , θ = 0 ,

r + · · · , θ 6= 0 ,
(3.6)

where c is a constant and we will set c = 0. Thus, our choice of the dilaton mass makes (3.4)

satisfy the UV condition (3.2). The particular choice of V0 we make is not necessary but

for simplicity. Thanks to this choice, our V (φ) becomes a function of only α.11

We consider three kinds of V (φ) depending on the sign of θ in (3.5). To understand the

necessity of these three different forms let us first find the relation between the signs of α

and θ. Near IR r →∞, we choose φ→ +∞, which means κ > 0 from (2.11). When κ > 0,

the relations between α and θ in (2.13), (2.16), (2.22) imply that the signs of θ and α are

opposite, and if θ = 0 then α = 0. Thus, we find that the asymptotic potentials near IR read

V (φ) =


d

2α2

(
eαφ + e−αφ − 2

)
+ (d+ 1)d ≈ V0eαφ , V0 = d

2α2 , forα > 0 ,

(d+ 1)d , V0 = (d+ 1)d , forα = 0 ,

d
(

1
α2

+2(d+1)
)

cosh(αφ) −
d
(

1
α2

+(d+1)
)

cosh2(αφ)
≈ V0eαφ , V0 = 2d

(
1
α2 + 2d+ 2

)
, forα < 0 ,

(3.7)

which precisely match to our IR condition V ∼ V0eαφ in (2.10). For example, the first po-

tential will take a form of V0e
−αφ for α < 0, which is not consistent with our IR condition

V ∼ V0eαφ in (2.10).

11For example, if we do not choose the dilaton mass as m2 = −d our potential will include m2 as a free

parameter.
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Figure 1. The (α, β, γ) region which gives the linear-T resistivity in low temperature limit. The

(red/blue) surface corresponds to the (class II/class III) solution. The black line, which is the

intersection of the red and blue surface, corresponds to the class I. Class IV does not allow the

linear-T resistivity.

Note that the first potential in (3.5) includes the Gubser-Rocha model with linear

axion. For (α, β, γ) = (1/
√

3, 0,−1/
√

3) and d = 2, V (φ), Z(φ) and J(φ) in (3.4) and (3.5)

yield

V (φ) = 6 cosh
φ√
3
, Z(φ) = e

− φ√
3 , J(φ) = 1 , (3.8)

which is nothing but the Gubser-Rocha model with linear axion studied in [18, 26].

3.2 Numerical methods

Because the potential is changing, the scaling solution (2.11) is not valid anymore so we

start with the following ansatz:

ds2 =
1

u2

(
−(1− u)U(u)e−S(u)dt2 +

du2

(1− u)U(u)
+

d∑
i=1

dx2i

)
,

φ = φ(u) , χi = kxi , A = (1− u)At(u)dt ,

(3.9)

where u := r/rh. In this coordinate, the horizon and the boundary are located at u = 1

and u = 0 respectively. Since we want the geometry to be asymptotically AdSd+2 near

boundary, we impose the conditions U(0) = 1 and S(0) = 0.

In our set-up, there are three dimensionful parameters: the chemical potential µ =

At(0), the Hawking temperature T , and the momentum relaxation strength k. For numer-

ical analysis, we will take d = 2. We choose the chemical potential as our scale so the

dimensionless parameters are T/µ and k/µ.

Our controlling parameters are (α, β, γ), which determine the whole action as well as

the IR behavior of the model via (3.4) and (3.5). We want to find the parameter range

(α, β, γ) which yield the linear-T resistivity from low temperature to high temperature.

Therefore, we start with the restricted range of (α, β, γ), which gives the linear-T resistivity

in low temperature regime. Figure 1 shows such a range in (α, β, γ) space. It can be

understood as follows.
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• class I: the linear-T condition (2.35) ((2+d−θ)/z = 1 in terms of α, β, γ with (2.13))

and (2.14) gives a curve in 3 dimensional α, β, γ space:(
α, α±

√
2

d(d+ 1)
,−α∓

√
2

d(d+ 1)
d

)
, (3.10)

which is the black line in figure 1.

• class II: the linear-T condition (2.35) ((2 − ζ)/z = 1 in terms of α, β, γ with (2.16))

defines a surface in 3 dimensional α, β, γ space:(
α,
d2α− d(2α+ γ)±

√
d(2 + d((α+ γ)2 − 2))

d(d− 1)
, γ

)
. (3.11)

However, the inequality (2.21) restricts the available surface, which is the red surface

in figure 1.

• class III: the linear-T condition (2.35) ((d − θ − κβ)/z = 1 in terms of α, β, γ

with (2.22)) defines a surface in 3 dimensional α, β, γ space:(
α,

3α2 + 4αγ + γ2 − 2− (α+γ)2

d

2(α+ γ)
, γ

)
. (3.12)

However, the inequality (2.25) restricts the available surface, which is the blue surface

in figure 1.

• class IV: there is no range. See the explanation below (2.40).

The potential we consider is valid only for β < 0 because it corresponds to κ > 0

due to (2.13), (2.16) and (2.22) so correctly match the IR potential (3.7). If we want to

consider the case β > 0 we need to reconstruct the potential (3.5) accordingly. Note also

that the sign of α is opposite to θ so i) for α > 0 region, the first potential in (3.5) should

be used ii) for α = 0, the second potential should be used. iii) for α < 0 region, the third

potential in (3.5) should be used.

4 Linear-T resistivity from low temperature to high temperature

We have fine-gridded the surface in figure 1. By trying out all gridded data set (α, β, γ),

we have found that, only for a small range of parameters near the parameter set

(α, β, γ) =

(
− 1√

3
,− 2√

3
,
√

3

)
⇔ (z, θ, ζ) = (3, 1,−1) , (4.1)

yields the linear-T resistivity from low temperature to high temperature when the momen-

tum relaxation is strong.

See figure 2a for the numerical results for this parameter set with a strong momentum

relaxation k/µ = 20. It is a plot for the resistivity (ρ) vs temperature T , showing ρ ∼ T x
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1

T/μ

ρ

(a) Resistivity (ρ) vs Temperature (T/µ).

0 1 2 3 4 5 6
0

0.5

1

1.5

2

T/μ

∂ln ρ

∂ln T

(b) The power x where ρ ∼ T x. The red dashed line

is a guide to the eye.

Figure 2. Resistivity vs temperature: the linear-T resistivity. (α, β, γ) =
(
− 1√

3
,− 2√

3
,
√

3
)

(i.e.

(z, θ, ζ) = (3, 1,−1)) with large momentum relaxation k/µ = 20.

0 1 2 3 4 5 6
0

0.25

0.5

0.75

1

T/μ

ρ

(a) (α, β, γ) =
(

1

3
√
3
,− 2

3
√
3
, 5

3
√
3

)
(i.e.(z, θ, ζ) =

(5,−1,−3))) with k/µ = 10. The black dot case

in figure 9b.

0 1 2 3 4 5 6
0

0.25

0.5

0.75

1

T/μ

ρ

(b) (α, β, γ) =
(

0,− 1√
3
, 2√

3

)
(i.e.(z, θ, ζ) =

(4, 0,−2)) with k/µ = 10. The black dot case in

figure 11.

Figure 3. Resistivity vs temperature: non-linear-T resistivity.

with x ∼ 1. To show the value of the exponent x more clearly, we make another plot for
∂ ln ρ
∂ lnT in figure 2b, where we see x ∼ 1 for T/µ . 5. As we explain in section 5.2, a small

neighborhood of the point (−1/
√

3,−2/
√

3,
√

3) also exhibits the linear-T resistivity.

For a purpose of comparison, we also show typical plots for non-linear-T resistivity in

figure 3. The parameters used in figure 3 were chosen as the same as the one in figure 9b

and figure 11. Note that figure 2 corresponds to the third potential (α < 0) in (3.5) while

figure 3a and figure 3b correspond to the first (α > 0) and second (α = 0) potential in (3.5)

respectively. It turns out that the third potential or α < 0 is more advantageous to have

a linear-T resistivity than the others. We will discuss about it more in section 5.2.
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(a) ρ vs T/µ.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

T/μ

∂ln ρ

∂ln T

(b) x vs T/µ (ρ ∼ T x). The dotted line is for x = 1.

Figure 4. The temperature dependence of resistivity for (α, β, γ) = (−1/
√

3,−2/
√

3,
√

3) or

(z, θ, ζ) = (3, 1,−1). The color represents the momentum relaxation strength k/µ: {color(k/µ)} =

{red(0.1), orange(0.5), yellow(1), green(5), blue(10), purple(20)}.

4.1 Momentum relaxation effect

In this subsection, we will show how the momentum relaxation affects the linear-T resistiv-

ity behavior in the finite temperature region. In figure 4, we find that if the momentum re-

laxation becomes smaller, the temperature range of the linear-T resistivity becomes shorter.

The different colors in the figures represent different momentum relaxation strength: {red,

orange, yellow, green, blue, purple} means k/µ = {1/10, 1/2, 1, 5, 10, 20}. From figure 4a,

one may think, for all k/µ we considered, the resistivity looks linear in T for certain range

of T . However, in fact it is not. By carefully reading off the exponent x in ρ ∼ T x in

figure 4b, we find that in most cases x becomes quickly deviated from 1 as T increases

from zero. Nevertheless, we stress all the curves in figure 4b go to 1 as T goes to zero.

This confirms our numerics are consistent with the analytic formula (2.35). It turns out

that the strong momentum relaxation is important to have robust linear-T resistivity up

to high temperature. For example, the range for the linear-T resistivity is around up to

T/µ ∼ 5 for k/µ = 20 and T/µ ∼ 2 for k/µ = 10 as shown in figure 4b.

5 Interpretations of numerical results

In the previous section, we have shown the importance of large momentum relaxation to

have a robust linear-T resistivity at finite temperature. To have a better understanding on

the mechanism for this observation, in this section, we want to answer the following two

questions.

1. (section 5.1) To have a robust linear-T resistivity, which term is important among

two terms in (2.33)? We will show it is the first term, so called the pair creation

term.

2. (section 5.2) What are the effects of α, β, and γ in (3.4) and (3.5) on x in ρ ∼ T x?

We will show that
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(a) Class I, eq. (5.2).
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(b) Class II, eq. (5.3).
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(c) Class III, eq. (5.4).

Figure 5. The relative contributions of two terms to the conductivity in (5.1). The green and blue

curves represent k/µ = (5, 10) respectively.

• Increasing α or γ =⇒ increasing x.

• Increasing β =⇒ dicreasing x.

5.1 First term or second term?

In general, the conductivity (2.33) consists of two terms. The first term is called the pair

creation term (σDC,pc) and the second term is called the dissipation term (σDC,diss) [18].

For d = 2, (2.33) reads

σDC = σDC,pc + σDC,diss = ZH +
q2

k2CHJH
. (5.1)

Thus, we may ask which term is responsible for the linear-T resistivity at finite temperature.

To answer this question we compare
σ,DC,pc
σDC

and
σDC,diss
σDC

in figure 5 for three represen-

tative cases12

Class I : (α, β, γ) =

(
− 1√

3
,− 2√

3
,
√

3

)
, (z, θ, ζ) = (3, 1,−1) , (5.2)

Class II : (α, β, γ) =

(
1√
5
,− 2√

5
,

4√
5

)
, (z, θ, ζ) = (4, 1,−2) , (5.3)

Class III : (α, β, γ) =

(
1√
5
,− 3√

5
,

3√
5

)
, (z, θ, ζ) = (4, 1,−1) , (5.4)

where (z, θ, ζ) can be calculated by using (2.13), (2.16), (2.22). We can determine which

(α, β, γ) corresponds to which class by checking the equality and inequalities (2.14), (2.21),

and (2.25). For all cases, the resistivity is linear in T in low temperature limit as shown

in (2.35). Class I (5.2), Class II (5.3), and Class III (5.4) are shown in figure 5a, Fiq. 5b

and figure 5c respectively. The green and blue curves represent the momentum relaxations,

k/µ = 5 and k/µ = 10.

We find that, in general, at high temperature, the pair creation term contribute more

dominantly. It can be understood by more active pair creation at high temperature. At

strong momentum relaxation, naively, one may think that the second term is always sup-

pressed because there is k2 factor in the denominator. However, this is not obvious because

12Here, we changed z and ζ by one for comparison. In terms of α, β, γ our choice looks more complicated.
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all the other factors q, CH , and JH are also implicitly functions of k. Indeed, we find that

the dissipation term is dominant at low temperature in Class III in figure 5c.

In particular, figure 5a is for eq. (5.2), which exhibits a robust linear-T resistivity. In

this case, the larger momentum relaxation is, the more pair creation term is dominant.

Thus, we find that the pair creation term, the horizon value of Z (ZH), is responsible for

the linear-T resistivity at finite temperature.

Furthermore, from figure 5c, we may understand why class III case is hard to exhibit the

robust linear-T resistivity at finite temperature. As temperature increases, the dominant

mechanism for conductivity is changed: at low temperature, the dissipation term dominates

while at high temperature the pair creation term dominates. It will be more difficult to

have a universal physics from two different mechanism.13

5.2 α, β, γ dependence

In the previous subsection, we have investigated the effect of the momentum relaxation on

the resistivity in finite temperature regime. In this subsection we want to investigate the

effect of {α, β, γ} or {z, θ, ζ} on the resistivity.

Because we found that, in general, the large momentum relaxation is important to

have a robust linear-T resistivity, here we fix the momentum relaxation to be large, say

k/µ = 10. For a systematic study we first need to choose a potential in (3.5). Thus, we

have three cases depending on the sign of θ

θ > 0 , θ = 0 , θ < 0 . (5.5)

This classification is equivalent to

α < 0 , α = 0 , α > 0 , (5.6)

respectively because ακ = −2θ
d with a positive dilaton φ (κ > 0).

For a given potential we have three classes Class I,II, and III explained in section 2.2.

The classes are determined by the parameter range. This parameter range and the effect

of α, β, γ on resistivity are best explained by figures, from figure 6 to figure 12.

Because there are common features in a class of figures (figure 6, figure 9, figure 11) and

another class of figures (figure 7, figure 10, figure 12) we explain them here for all of them.

1. (Figure 6, figure 9, figure 11) show allowed region of (β, γ) for a given α. The red

region, blue region, and the black line between them correspond to class II, class III,

and class I respectively.

2. The dotted line in blue and red corresponds to the parameters giving the linear-T

resistivity in low temperature limit. Let us imagine that we file up the dashed lines

for every α. Then, the blue(red) dashed lines form a blue(red) surface in (α, β, γ)

space. This surface is nothing but the surface in figure 1. In other words, the dashed

lines in figures (figure 6, figure 9, figure 11) are cross-section of figure 1 at a given α.

13If the momentum relaxation is weak, the dissipation term is always dominant so there is no crossing in

figure 5c. We thank Blaise Goutéraux for pointing this out.
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The region above (below) the dashed line corresponds to x > 1 (x < 1), where x is

defined in the relation ρ ∼ T x in low temperature limit.

3. Therefore, the black dot in (figure 6, figure 9, figure 11) gives the linear-T resistivity

as a class I case. Because all the other color dots do not belong to the dotted line

they do not give the linear-T resistivity in low temperature limit. We chose these

deviated points to investigate the effect of α, β, γ.

4. α increase as the purple dot→ the black dot→ the red dot in (figure 6 and figure 9).

This was shown as an arrow in (figure 7a, figure 10a).

5. β increase as the blue dot → the black dot → the orange dot in (figure 6, figure 9,

figure 11). This was shown as an arrow in (figure 7b, figure 10b, figure 12a).

6. γ increase as the dark yellow dot → the black dot → the green dot in (figure 6,

figure 9, figure 11). This was shown as an arrow in (figure 7c, figure 10c, figure 12b).

7. (Figure 7, figure 10, figure 12) shows the exponent x in ρ ∼ T x. The colors of the

curves are chosen to be the same as the colors of the dots in (figure 6, figure 9,

figure 11). Recall that the region above (below) the dashed line corresponds to x > 1

(x < 1), where x is defined in the relation ρ ∼ T x in low temperature limit. Our

results show that this tendency remain at finite temperature in general.

8. As a consistency check of our numerics, we have confirmed that the numerical values

of x in the limit T/µ→ 0 for every curve in (figure 7, figure 10, figure 12) agree with

the analytic expressions (2.35) i.e. in the low temperature limit x→ 1 for class I, x→
(2−ζ)/z for class II and x→ (2−θ−κβ)/z for class III. For example, in figure 7a, the

black, purple, and red curves correspond to class I, II and III respectively. By using

the values (z, θ, ζ) = (215 ,
7
5 ,−1) for the purple curve (class II) and (z, θ, ζ, β, κ) =

(4918 ,
2
3 ,−

4
3 ,−

2√
3
, 10
3
√
3
) for the red curve (class III) we find that x ∼ 0.71 and x ∼ 1.31

respectively.14 These agree with our numerical results. One may think that x ∼ 0.71

is fine but x ∼ 1.31 looks quite different from the value in our numerics (the red curve

in the limit of T/µ→ 0). However, this is because the red curve belongs to class III.

As we showed in figure 5c in class III the second term of (5.1) is dominant but the

first term’s contribution is still not negligible at low temperature. This contamination

by the first term is reflected on our numerics. If we go to extremely low T/µ we will

find a good agreement, which we have checked.15

The third potential in (3.5) (α < 0 and θ > 0). The reference point is the black

dot in figure 6b, which is

(α, β, γ) = (α3, β3, γ3) :=

(
− 1√

3
,− 2√

3
,
√

3

)
⇔ (z, θ, ζ) = (3, 1,−1) . (5.7)

14Here, we used (2.13), (2.16), (2.22) to compute (z, θ, ζ, β, κ) from (α, β, γ).
15The same argument should work for class I, but we do not see a similar discrepancy to class III. This

is because, in class I, the first term and second term have the same power x in ρ ∼ T x.
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Figure 6. Allowed region of (β, γ) for a given α < 0. In figure 7 we show the resistivity for the

parameters corresponding to the dots in (a), (b), and (c). See the items 1-5 in sec, 5.2 for the

meanings of colors, lines, and dots. In figure 8 we show the resistivity for the squares in (a) and (c).
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Figure 7. The exponent x in ρ ∼ T x. The colors of the curves are chosen to be the same as the

colors of the dots in figure 6.

Figure 6 shows the allowed region of (β, γ) for a given α: α = 1.4α3 for figure 6a, α = α3

for figure 6b, and α = 0.6α3 for figure 6c.

For fixed (β, γ) = (β3, γ3), the α decreases from the purple dot (α = 1.4α3) to the

black dot (α = α3) and to the red dot (α = 0.6α3). For these three points the change of x

in ρ ∼ T x is shown in figure 7a. The value of x increases as α increases at low temperature

T/µ while it does not change at high temperature T/µ.

For fixed (α, γ) = (α3, γ3), the β increases from the blue dot (β = 1.4β3) to the black

dot (β = β3) and to the orange dot (β = 0.6β3). For these three points the change of x

in ρ ∼ T x is shown in figure 7b. The value of x decreases as β increases in general, but it

does not change much in the intermediate temperature range 1 < T/µ < 3.

For fixed (α, β) = (α3, β3), the γ increases from the dark yellow dot (γ = 0.6γ3) to the

black dot (γ = γ3) and to the green dot (γ = 1.4γ3). For these three points the change of

x in ρ ∼ T x is shown in figure 7c. The value of x increases as γ increases.

In brief, these can be summrized as follow. The region above (below) the dashed line

corresponds to x > 1 (x < 1) in the relation ρ ∼ T x in low temperature limit. Our results

show that this tendency remain at finite temperature in general.

From figure 7 one might wonder if we decrease α and increase γ the shift-up effect and

shift-down effect cancel each other and the linear-T may be obtained again in another point
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Figure 8. The exponent x in ρ ∼ T x. The black curve corresponds to the black dot in figure 7a.

The purple (red) curve corresponds to the square in figure 7a (figure 7c).

different from the black dot. Indeed, it is true as shown in the purple curve in figure 8.

By this way, we have found that there is some range of parameters yielding the linear-T

resistivity. However, this does not work in the other way, i.e. first increase α and then

decrease γ. See the red curve in figure 8. The difference between two ways is the class that

the ending point arrives at. The former belongs to class II and the latter belongs to class III.

As we showed in figure 5c the dominant mechanism for conductivity changes as temperature

increases in class III, so it is not easy to keep the linear-T resistivity across this change.

Because of very complicated coupled dynamics at finite temperature, it is not easy to

have some analytic understanding of our observation. However, we speculate that it may

have something to do with the vanishing potential near IR, V ∼ eαφ, for α < 0. For α > 0

the potential will diverge or be constant.

The first potential in (3.5) (α > 0 and θ < 0). The reference point is the black dot

in figure 9b, which is

(α, β, γ) = (α1, β1, γ1) :=

(
1

3
√

3
,− 2

3
√

3
,

5

3
√

3

)
⇔ (z, θ, ζ) = (5,−1,−3) . (5.8)

Figure 6 shows the allowed region of (β, γ) for a given α: α = 0.6α1 for figure 6a, α = α1

for figure 6b, and α = 1.4α1 for figure 6c.

Similarly to the previous case α < 0(θ > 0), we consider six points around the reference

black dot. For fixed (β, γ) = (β1, γ1), the α increases from the purple dot (α = 0.6α1) to

the black dot (α = α1) and to the red dot (α = 1.4α1). For fixed (α, γ) = (α1, γ1), the

β increases from the blue dot (β = 1.4β1) to the black dot (β = β1) and to the orange

dot (β = 0.6β1). For fixed (α, β) = (α1, β1), the γ increases from the dark yellow dot

(γ = 0.6γ1) to the black dot (γ = γ1) and to the green dot (γ = 1.4γ1)

As α increases, β decreases, or γ increases the curves shift up at finite temperature. See

figure 10. It is again consistent with the fact that the region above (below) the dashed line

corresponds to x > 1 (x < 1), where x is defined in the relation ρ ∼ T x in low temperature

limit.
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Figure 9. Allowed (β, γ) region for a given α > 0. In figure 10 we show the resistivity for the

parameters corresponding to the dots in (a), (b), and (c). See the items 1-5 in sec, 5.2 for the

meanings of colors, lines, and dots.
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Figure 10. The exponent x in ρ ∼ T x. The colors of the curves are chosen to be the same as the

colors of the dots in figure 9.

The second potential in (3.5) (α = θ = 0). The reference point is the black dot in

figure 11, which is

(α, β, γ) = (α2, β2, γ2) :=

(
0,− 1√

3
,

2√
3

)
⇔ (z, θ, ζ) = (4, 0,−2) . (5.9)

In this case, there is no change in α since α = θ = 0.

For fixed (α, γ) = (0, γ2), the β increases from the blue dot (β = 1.4β2) to the black

dot (β = β2) and to the orange dot (β = 0.6β2). For fixed (α, β) = (0, β2), the γ increases

from the dark yellow dot (γ = 0.6γ2) to the black dot (γ = γ1) and to the green dot

(γ = 1.4γ1). Similarly to other cases, as β decreases or γ increases the curves shift up at

finite temperature. See figure 12.

6 Conclusion

In this paper, we studied the linear-T resistivity up to finite temperature in more general

cases: axion-dilaton theories or the EMD-Axion models. In order to study resistivity from

low to high temperature, we start with the low temperature limit or IR limit. In this limit,

resistivity can be analyzed by the scaling geometries supported by the asymptotic potential
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Figure 11. Allowed region of (β, γ) for α = 0. In figure 12 we show the resistivity for the

parameters corresponding to the dots. See the items 1-5 in sec, 5.2 for the meanings of colors, lines,

and dots.
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Figure 12. The exponent x in ρ ∼ T x. The colors of the curves are chosen to be the same as the

colors of the dots in figure 11.

and couplings in IR (2.10)

V (φ) ∼ V0eαφ , J(φ) ∼ eβφ , Z(φ) ∼ eγφ . (6.1)

They are characterized by three parameters α, β, γ, in terms of which, the necessary con-

ditions for the linear-T resistivity has been well studied in [18] and summarized in (2.35).

In addition, there are many constraints for α, β, γ coming from physical conditions. For

instance, the specific heat should be positive and our geometry should be stable under

small perturbation [18, 21]. The constraints are expressed in (2.14), (2.21), (2.25), (2.29),

and (2.40). Considering all, we have explicitly identified a parameter region which yields

the linear-T resistivity in low temperature limit. This region is displayed as a two dimen-

sional surface in three dimensional α, β, γ space. See figure 1.

To study resistivity at finite temperature, not only in the limit of low temperature, we

have UV-completed V (φ) as

V (φ) =


2d
α2 sinh2

(
αφ
2

)
+ (d+ 1)d , for θ < 0 ,

(d+ 1)d , for θ = 0 ,

d
(

1
α2 + 2 (d+ 1)

)
sech(αφ)− d

(
1
α2 + (d+ 1)

)
sech2 (αφ) , for d > θ > 0 .

(6.2)

with the same J(φ) and Z(φ) in (6.1). Contrary to the low temperature limit, no analytic

solution is available so we need to resort to numerical analysis.
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By fine-gridding the surface of the linear-T resistivity in low temperature limit, in

figure 1, we have systematically searched the parameters yielding the linear-T resistivity

up to high temperature. We found that the point

(α, β, γ) =

(
− 1√

3
,− 2√

3
,
√

3

)
⇔ (z, θ, ζ) = (3, 1,−1) , (6.3)

and its small neighborhood give the linear-T resistivity from low temperature to high

temperature if momentum relaxation is strong.

We have found (6.3) by systematic and hard work by brute force. However, unfortu-

nately, we do not have a deep understanding on the precise physical mechanism for (6.3)

yet. The values (and the size of its neighborhood) will be changed with different UV com-

pletions. Thus, our main point is not the values (6.3) but some qualitative discoveries we

have obtained, which will be summarized as follows.

1. Large momentum relaxation is a necessary condition to obtain robust linear-T resis-

tivity from low temperature up to high temperature. See figure 4.

2. Among two terms in the conductivity formula (2.33), the pair-creation term (the first

term) is responsible for the linear-T resistivity. In terms of geometry, this is nothing

but the horizon value of the coupling Z(φ) with the Maxwell term for d = 2 as shown

in (2.1) and (5.1), i.e.

eγφ(rh) = rγκh . (6.4)

It is a very simple formula. However, it is not easy to have a good intuition, because

rh is a functions of (T, µ, k) determined by complicated coupled dynamics of various

fields. Only in low temperature limit, rh ∼ T so things are simplified.

3. In class III the dominant mechanism for conductivity is switched from the second

(dissipation) term to first (pair-creation) term in the conductivity formula, as tem-

perature increases. See figure 5. Thus, we may expect that it is not easy to have a uni-

versal property, the linear-T resistivity, in class III because of this mechanism change.

Indeed, the parameters we found for linear-T resistivity belong to class I and II.

4. In class I, since both deformations (axion and charge) are marginal, the condition

T � Max(µ, k) is enough for the geometry to be captured by the IR scaling geome-

try. Thus, by increasing momentum relaxation k, it is more possible to have a larger

range of linear-T resistivity than the other classes.16,17

5. We also discussed how the conductivity behavior changes as α, β, γ changes for ev-

ery potential in section 5.2. We speculate that the third potential in (6.2) may be

16We thank Blaise Goutéraux for pointing this out.
17Not all parameters in class I do not show this behavior. It may be partly understood by the fact

the precise value of µ (not an order of magnitude) depends on the whole geometry, so depends on UV

completion. Thus, we cannot simply say T/µ > 1 or T/µ < 1 without knowing UV completion. When

we say “high temperature”, we do not mean T/µ � 1, we mean, for example, T/µ = 4 or T/µ = 6, so

the numerical value of O(1) number matters. Thus, we cannot simply judge T/µ > 1 or T/µ < 1 without

having a specific UV completion.
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Figure 13. The figure shows allowed (β, γ) region in the case of α = 1√
3
. The black line represent

class I case. The red, blue and green region stand for the class II, class III and class IV respectively.

The dashed red(blue) line shows (α, β, γ) for the linear-T resistivity in low temperature limit of

class II(class III). The green dot (α, β, γ) = ( 1√
3
, 0,− 1√

3
).

favorable for the robust T dependence of resistivity because the potential V ∼ eαφ

vanishes near IR for α < 0. For α > 0 the potential will diverge or be constant.

It has been shown in [26] that the Gubser-Rocha model with linear axion exhibits the

linear-T resistivity up to high temperature. This model is also included in our set-up as

shown in (3.8). It corresponds to the parameter set (α, β, γ) = (1/
√

3, 0,−1/
√

3), which is

the green dot in figure 13. It belongs to the first potential in (6.2) and class I.18 In this

case, the DC conductivity (σDC) is

σDC =

√
1 + Q̃+

√
1 + Q̃

(k/µ)2
, (6.5)

where Q̃ is a complicated function of (T, µ, k). Thus, the first (pair creation) and second

(dissipation) term contribute in the same way through Q̃. However, it has been shown that

the resistivity is linear in T up to high temperature only for large momentum relaxation,

k/µ� 1, so the first term dominates. This agrees with what we have found in this paper.

In order to identify the power x in ρ ∼ T x in a more precise way we made a plot of

∂ ln ρ/∂ lnT . This method is good enough to find a linear-T behavior all the way from zero

T to high T . However, if there is a residual resistivity at zero T (i.e. T = constant + T x)

or if there is the linear-T resistivity after some temperature T1 (i.e. for T > T1 > 0, T =

constant+T x), our measure ∂ ln ρ/∂ lnT may not be able to capture it. Thus, in such more

relaxed conditions, which may be relevant for some phenomenology (for example, [42]),

there may be more parameter regime allowing the linear-T resistivity in our model.

Investigating conductivity at high temperature involves full bulk geometry so it de-

pends on UV-completion of potential and couplings in general. In this paper, as a first

18It looks in class III because it is in the blue region. However, the boundary of the blue and red region

is excluded in the definition of class II and class III. The green dot is a very special point, where z → ∞,

θ → −∞ and η := −θ/z → 1. The extension of the green dot to α direction corresponds to the case in

section 3.2 in [26].
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step, we used a kind of minimal UV completion, in the sense that the potential V depends

on only one parameter α. As reviewed in appendix A other UV completions are also possi-

ble. It will be interesting if we can find more conditions to constrain UV completion from

other phenomenological input or theoretical consistency such as a top-down approach. Or,

from phenomenological perspective, we may ask what kind of UV completion can allow the

linear-T resistivity up to high temperature.
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A UV completion

In this appendix, we explain how to obtain the potential for UV completion in a little more

detail. In principle, there are many ways to construct V,Z, and J satisfying (2.10)

J(φ) ∼ eβφ , Z(φ) ∼ eγφ , V (φ) ∼ V0eαφ , (A.1)

in IR for scaling geometry, and (3.1) and (3.2)

V (φ) =
(d+ 1)d

`2AdS

− 1

2
m2φ2 + · · · , (A.2)

Z(φ) = 1 + · · · , J(φ) = 1 + · · · , (A.3)

in UV for asymptotically AdS space. In other words, for V (φ),

V (0) = −2Λ =
(d+ 1)d

`2AdS

, V ′(0) = 0 , V ′′(0) = −m2 =
−∆(∆− d− 1)

`2AdS

, (A.4)

where ∆ is the conformal dimension of the dual operator of φ. φ→∞ in IR and φ→ 0 in

UV. For simplicity, in this paper, we choose a minimal potentials studied in [39]:

Z(φ) = eγφ , J(φ) = eβφ , (A.5)

and three cases for V (φ)

V (φ) =


2d
α2 sinh2

(
αφ
2

)
+ (d+ 1)d , for θ < 0 ,

(d+ 1)d , for θ = 0 ,

d
(

1
α2 + 2 (d+ 1)

)
sech(αφ)− d

(
1
α2 + (d+ 1)

)
sech2 (αφ) , for d > θ > 0 ,

(A.6)

where we set `AdS = 1 for simplicity.
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One way to determine the potential is to introduce several exponential terms as follows:

V (φ) = V0e
αφ + V1e

α1φ + V2e
α2φ + · · ·+ Vne

αnφ . (A.7)

The simplest way is to use only first two terms, of which parameters (V0, V1, α1) will

be completely fixed by three conditions. Instead, we may choose three terms which is

considered in [36]:19

V (φ) = V0e
αφ + V1e

α1φ + V2e
α2φ . (A.8)

There are five free parameters (V0, V1, α1, V2, α2) and we have only three constraints. To

fix two parameters we choose α2 = 0 and V0 = d
2α2 . There are two motivation for this

choice: i) it avoids the log behavior of φ in UV [36], ii) it can include the Gubser-Rocha

model by choosing (α, β, γ) = (1/
√

3, 0,−1/
√

3) (see (3.8)). Furthermore, we also choose

m2 = −d so the potential becomes only a function of α. By these choices, the potential

V (φ) in (A.8) becomes

V (φ) =
2d

α2
sinh2 αφ

2
+ (d+ 1)d . (A.9)

Because we want to have a form V (φ) ∼ V0eαφ in IR, (A.9) is valid for α > 0 since φ > 0.

Otherwise, the dominant term in IR will be V (φ) ∼ V0e−αφ or constant.

Although we may construct the potential by using 3 exponential terms (A.8) for α < 0,

we use a different ‘building block’ to construct the potential:

V (φ) =
V0
2

sech(αφ) + V1 sech2(αφ) , (A.10)

where 1/2 in V0/2 is chosen to match the IR condition at αφ → −∞ (A.1). With this

sech(αφ) form, one of the UV condition, the second of (A.4) is automatically satisfied since

φ → 0 in UV. Thus the remaining free parameters V0 and V1 are fixed by the first and

third constraints in (A.4):

V (φ) =

(
(d+ 1)d− V0

2

)(
1− tanh2(αφ)

)
+

V0
2 cosh(αφ)

, (A.11)

where V0 = 2d(−m2/(dα2) + 2d + 2). Finally with the choice of m2 = −d, which is the

same as the first potential in eq. (3.5), the potential becomes a function of α only.

For α = 0 case, we choose the constant potential:

V (φ) = (d+ 1)d , (A.12)

where m = 0. Even with this constant potential the field φ still runs nontrivially due to a

non trivial J and Z.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

19Ref. [36] considers the 3 exponential terms rather than 2 exponential terms so that φ does not have a

log behavior in UV.
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[35] R.A. Davison, S.A. Gentle and B. Goutéraux, Impact of irrelevant deformations on

thermodynamics and transport in holographic quantum critical states, Phys. Rev. D 100

(2019) 086020 [arXiv:1812.11060] [INSPIRE].

[36] E. Kiritsis and J. Ren, On holographic insulators and supersolids, JHEP 09 (2015) 168

[arXiv:1503.03481] [INSPIRE].

[37] Y. Ling, Z. Xian and Z. Zhou, Power law of shear viscosity in Einstein-Maxwell-dilaton-axion

model, Chin. Phys. C 41 (2017) 023104 [arXiv:1610.08823] [INSPIRE].

– 28 –

https://doi.org/10.1007/JHEP11(2016)128
https://arxiv.org/abs/1606.07905
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.07905
https://doi.org/10.1007/JHEP04(2017)009
https://arxiv.org/abs/1608.04394
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.04394
https://doi.org/10.1007/JHEP01(2018)140
https://arxiv.org/abs/1708.08822
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.08822
https://doi.org/10.1007/JHEP03(2013)136
https://doi.org/10.1007/JHEP03(2013)136
https://arxiv.org/abs/1302.4898
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.4898
https://doi.org/10.1007/JHEP11(2014)081
https://arxiv.org/abs/1406.4742
https://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4742
https://doi.org/10.1007/JHEP12(2014)170
https://arxiv.org/abs/1409.8346
https://inspirehep.net/search?p=find+EPRINT+arXiv:1409.8346
https://doi.org/10.1016/j.physletb.2015.07.058
https://arxiv.org/abs/1502.02100
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.02100
https://doi.org/10.1007/JHEP10(2018)191
https://doi.org/10.1007/JHEP10(2018)191
https://arxiv.org/abs/1806.07739
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.07739
https://doi.org/10.1103/PhysRevD.81.046001
https://arxiv.org/abs/0911.2898
https://inspirehep.net/search?p=find+EPRINT+arXiv:0911.2898
https://doi.org/10.1103/PhysRevD.94.106015
https://arxiv.org/abs/1512.01434
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.01434
https://doi.org/10.1007/JHEP06(2017)030
https://arxiv.org/abs/1704.00947
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.00947
https://doi.org/10.1038/nphys3174
https://arxiv.org/abs/1405.3651
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.3651
https://doi.org/10.21468/SciPostPhys.3.3.025
https://arxiv.org/abs/1612.04381
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.04381
https://doi.org/10.1103/PhysRevD.97.086017
https://arxiv.org/abs/1711.06610
https://inspirehep.net/search?p=find+EPRINT+arXiv:1711.06610
https://doi.org/10.1103/PhysRevLett.120.171603
https://arxiv.org/abs/1712.07994
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.07994
https://doi.org/10.1103/PhysRevLett.123.141601
https://arxiv.org/abs/1808.05659
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.05659
https://doi.org/10.1103/PhysRevD.100.086020
https://doi.org/10.1103/PhysRevD.100.086020
https://arxiv.org/abs/1812.11060
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.11060
https://doi.org/10.1007/JHEP09(2015)168
https://arxiv.org/abs/1503.03481
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.03481
https://doi.org/10.1088/1674-1137/41/2/023104
https://arxiv.org/abs/1610.08823
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.08823


J
H
E
P
0
4
(
2
0
2
0
)
1
5
3

[38] J. Bhattacharya, S. Cremonini and B. Goutéraux, Intermediate scalings in holographic RG

flows and conductivities, JHEP 02 (2015) 035 [arXiv:1409.4797] [INSPIRE].

[39] Y. Ling, Z. Xian and Z. Zhou, Power law of shear viscosity in Einstein-Maxwell-dilaton-axion

model, Chin. Phys. C 41 (2017) 023104 [arXiv:1610.08823] [INSPIRE].
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