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1 Introduction

Recently a very interesting connection between scattering amplitudes and tropical geometry

has been uncovered [1, 2]. The connection outlined so far is for tree-level biadjoint φ3

amplitudes, which can be related to the series of tropical Grassmannians Gr(2, n) and a

generalisation to higher Grassmannians Gr(k, n). Such amplitudes also have a formulation

in terms of a set of scattering equations which generalise the usual scattering equations

of [3–5]

Tropical Grassmannians are defined as a space of solutions to a set of tropical hyper-

surface conditions which derive from the defining Plücker relations of the Grassmannian.

An important ingredient in the relation to the generalised biadjoint scattering amplitudes

is the notion of positivity which singles out a particular region in the tropical Grassman-

nian. We describe here the tropical formulation of the Grassmannian spaces and how to

select the positive region. We will see that this coincides with the criteria recently used

in [1, 2] to determine the generalised φ3 amplitudes for Gr(3, 6) and Gr(3, 7).

We will also develop the link further and describe a relation of the positive tropical

Grassmannians to certain cluster algebras, as developed by Fomin and Zelevinsky [6, 7].

These same cluster algebras have also arisen in the study of the singularities of loop am-

plitudes in planar N = 4 super Yang-Mills theory [8]. The cluster algebra picture provides

extremely efficient calculational tools for determining the relevant positive solutions to the
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tropical hypersurface conditions, allowing for spaces of even quite large dimension to be

simply constructed.

Once the positive region is obtained, the generalised biadjoint φ3 amplitudes can be

constructed as its volume in a direct generalisation of the picture described in [9]. Such a

volume can be obtained additively via a triangulation of the region into simplexes. One such

triangulation is provided by the (dual of the) associated cluster polytope. For the Gr(2, n)

cases these polytopes are the An−3 associahedra. In the Gr(3, 6) case this corresponds to

the D4 polytope while in the Gr(3, 7) case it is the E6 polytope familiar from heptagon

amplitude in planar N = 4 super Yang-Mills theory. For the Gr(3, 8) case we can obtain

a triangulation from the E8 cluster polytope. This triangulation has the feature that it

makes use of eight spurious vertices generated by the cluster algebra but not strictly needed

to compute the volume. The above cases exhaust the list of finite Grassmannian cluster

algebras.

A feature of the polytopes arising as positive tropical Grassmannians is that in general

their facets are not all simplexes. This means that there is a redundancy in parametrising

their volumes since they may be triangulated (or cut into simplexes) in multiple ways,

each yielding a seemingly different but actually equivalent way of obtaining the volume. In

physical language this means there are multiple ways of writing the amplitude which are

in fact equivalent due to non-trivial identities between different contributions.

The non-simplicial nature of certain facets may also have a bearing on the analytic

structure of loop amplitudes in planar N = 4 theory. In the case of Gr(3, 7) it would be

relevant for the heptagon amplitudes studied in [10, 11] where it should be related to the

recently discovered property of cluster adjacency [11, 12] which forbids certain consecutive

pairs of branch cuts in loop amplitudes and is related to the Steinmann relations. The

non-simplicial facets can be thought of as a combination of simplexes, which corresponds

in the cluster polytope to shrinking edges so that many clusters combine together.

We describe how the cases of Gr(3, 6) and Gr(3, 7) fit into the above picture and we

extend it to the case of Gr(3, 8) whose positive tropical version corresponds to the E8

cluster algebra. Since all these cluster algebras are finite, the triangulation procedure

works in exactly the same way for all of them. Nevertheless the correspondence of between

the cluster algebra and the fan for each case contains intricacies of different nature with

valuable lessons and we elaborate on these in sections dedicated to different Grassmannians.

Before this we review the interpretation of the biadjoint φ amplitude as the volume of

the dual to a kinematic realisation of the associahedron. We then illustrate all the main

principles of the tropical Grassmannian, its positive part and the connection to cluster

algebras in the example of Gr(2, 5).

2 Amplitudes from volumes of dual associahedra

In [9] a connection between biadjoint scalar amplitudes and volumes was made. The main

idea is to introduce a kinematic realisation of the associahedron. This is done as follows.

Given an ordered set of light-like momenta p1, . . . , pn satisfying momentum conservation
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one introduces dual coordinates,

xi+1 − xi = pi , (2.1)

with all indices treated modulo n. The 1
2n(n− 3) square distances (xi− xj)2 = Xij can be

related to Mandelstam invariants via

Xij = si,i+1,...,j−1 = (pi + pi+1 + . . . pj−1)
2 . (2.2)

Note that the momenta being null implies Xi,i+1 = 0. The two-particle Mandelstam

invariants sij = (pi + pj)
2 can be related to the dual variables via

sij = Xi,j+1 +Xi+1,j −Xij −Xi+1,j+1 . (2.3)

To define the kinematic associahedron we take all Xij positive and choose (n − 3)

coordinates, e.g. the X1,i for i = 3, . . . , (n−1). The remaining 1
2(n−2)(n−3) independent

variables need to be constrained in order to obtain a space of dimension (n − 3). To do

this we impose 1
2(n− 2)(n− 3) conditions which we take to be of the form

sij = −cij , 2 ≤ i < j ≤ n , i ≤ j − 2 , (2.4)

for positive constants cij . The coordinates X1,i are then constrained to run only over a

certain region: the kinematic associahedron.

For the n = 5 example the conditions (2.4) become

X35 = c35 +X13 −X14 ,

X25 = c25 + c35 −X14 ,

X24 = c24 + c25 −X13 . (2.5)

The coordinates (X13, X14) then run over a region with the shape of a pentagon as shown

in figure 1.

To obtain the dual of the kinematic associahedron it is helpful to embed it into pro-

jective space Pn−3. We introduce the auxiliary point Y = (1, X13, X14, . . . , X1,n−1). The

boundary conditions Xij = 0 of the kinematic associahedron become Y ·Wij = 0 with Wij

given by projective dual vectors determined by the conditions (2.4).

In the case n = 5 we have Y = (1, X13, X14) and

W13 = (0, 1, 0) ,

W14 = (0, 0, 1) ,

W24 = (c24 + c25,−1, 0) ,

W25 = (c25 + c35, 0,−1) ,

W35 = (c35, 1,−1) . (2.6)

These dual vectors define the dual to the Gr(2, 5) kinematic associahedron. Its volume

may be computed by first triangulating it, e.g. by picking the reference point W∗ = (1, 0, 0)
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X14

X13

X14 = 0

X13 = 0

X35 = 0

X25 = 0

X24 = 0

Figure 1. The shaded area is the kinematic associahedron for n = 5.

and adding the volume of the five triangles formed by W∗ and two adjacent dual vectors

according to

Vol(W1,W2,W3) =
〈W1W2W3〉

(Y ·W1)(Y ·W2)(Y ·W3)
. (2.7)

In this way we obtain the sum of five terms,

Vol(A∗) =
1

X13X14
+

1

X14X24
+

1

X24X25
+

1

X25X35
+

1

X35X13
,

=
1

s12s45
+

1

s45s23
+

1

s23s15
+

1

s15s34
+

1

s34s12
(2.8)

and we recognise the obtained representation as the Feynman diagram expansion for the

canonically ordered biadjoint φ3 amplitude.

3 Tropical Grassmannians and amplitudes

The Grassmannian Gr(k, n) is the space of k-planes in n dimensions. The Grassmannian

can therefore be parametrised by a k × n complex matrix with the k rows specifying a k

plane. Since the plane is invariant under the action of GL(k) transformations one must

mod out by the action of GL(k), leaving a space of dimension k(n− k).

The Grassmannian may also be specified in terms of the minors of the matrix. The

(k × k) minors pi1,...,ik (Plücker coordinates) of any matrix obey homogeneous quadratic

relations (Plücker relations) obtained by antisymmetrising (k + 1) indices,

pi1,...,ir,[ir+1,...ikpj1,...,jr+1],jr+2,...,jk = 0 . (3.1)

In the Gr(2, n) case the Plücker relations are given by the familiar
(
n
4

)
three-term equations

pijpkl − pikpjl + pilpjk = 0 , 1 ≤ i < j < k < l ≤ n . (3.2)
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The Plücker relations define a subspace in the Plücker space parametrised by the
(
n
k

)
Plücker coordinates pi1,...,ik . Algebraically this space may be thought of as the ideal gen-

erated by the quadratic Plücker relations inside the ring of polynomials in the Plücker

coordinates. After quotienting by a global rescaling of all Plücker coordinates the sub-

space satisfying the Plücker relations can be identified with the Grassmannian Gr(k, n) of

dimension k(n− k).

The original Plücker relations are actually homogeneous in n independent rescalings

pi1,...,ik → ti1 . . . tikpi1,...,ik with ti ∈ C∗. If we quotient by all of these scalings instead of

just the overall scaling we obtain a smaller space,

Confn(Pk−1) = Gr(k, n)/(C∗)n−1 , (3.3)

which has dimension m = (k− 1)(n− k− 1) and corresponds to taking the columns of our

original (k × n) to be elements of Pk−1 instead of Ck.

There exists a tropical version of the above construction. In tropical geometry one

takes the generating relations of the ideal and replaces multiplication with addition and

addition with minimum. For example the generating quadratic polynomials of the Gr(2, n)

Plücker relations (3.2) become the tropical polynomials

min(wij + wkl, wik + wjl, wil + wjk) , (3.4)

which are piecewise linear maps on the space of
(
n
2

)
variables wij ∈ R.

Piecewise linear maps have special surfaces between one region of linearity and another.

Such surfaces are called tropical hypersurfaces and are attained when at least two of the

terms of the tropical polynomial simultaneously attain the minimum. In other words the

tropical polynomial (3.4) defines the following tropical hypersurfaces,

wij + wkl = wik + wjl ≤ wil + wjk

or wij + wkl = wil + wjk ≤ wik + wjl

or wik + wjl = wil + wjk ≤ wij + wkl .

(3.5)

When we have many polynomial relations we must simultaneously satisfy the condi-

tions arising from each polynomial relation. In the case of Gr(2, n) we must simultaneously

satisfy the hypersurface relations coming from every Plücker relation, i.e. for every choice

of {i, j, k, l} in (3.2).

Note that for any solution {wij}, any global positive rescaling of the wij will also

obey the conditions. Solutions therefore form rays emanating from the origin and can be

represented by an
(
n
2

)
-component vector, or more generally for Gr(k, n) an

(
n
k

)
-component

vector. Note also that if {wij} are solutions of the above conditions then so are {wij+ai+aj}
for any set of n constants ai ∈ R. Such a shift symmetry is referred to as lineality. In

the context of generalised biadjoint scattering amplitudes it corresponds to momentum

conservation.

Quotienting the space of solutions of the tropical hypersurface conditions (3.5) by a

single global shift with ai = a corresponds to the tropical version of the Grassmannian.
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Quotienting by all shifts corresponds to the tropical version of the space Confn(Pk−1). Here

we are interested in the latter case where we quotient by all shifts. Despite this we will

refer to the space obtained simply as the tropical Grassmannian and we use the notation

Tr(k, n) to denote it.

The sign of the individual terms of the Plücker relations (3.2) is lost through tropi-

calisation. We can recover the information by identifying positive hypersurfaces as those

whose defining terms in (3.2) have opposite signs [13]. This prescription defines the positive

tropical Grassmannian. The positive part of Tr(2, n) (denoted Tr+(2, n)) is closely related

to the dual of the kinematic associahedron that we described above and hence can be iden-

tified with the canonically ordered amplitude of the bi-adjoint φ3 theory. This fact is at

the heart of the recent generalisation of the biadjoint amplitudes to general Tr(k, n) [1].

In section 4 we give a more detailed introduction to the positive tropical Grassmannian

following [14].

Such generalised biadjoint amplitudes can also be related to a generalisation of the

scattering equations [1, 3, 4] to CPk−1 and through them to amplitudes of a generalised

scalar bi-adjoint theory [5]. Focusing for simplicity to k = 3, we consider homogenous

coordinates of n particles on CP2 and form the 3× n matrix

m =

 1 1 · · · 1

x1 x2 · · · xn
y1 y2 · · · yn

 . (3.6)

We then define the potential function

S3 =
∑

1≤i<j<k≤n
sijk log[ijk], (3.7)

where [ijk] represent minors of m and sijk are generalized Mandelstam variables that satisfy∑
j 6=k sijk = 0, ∀i. We can now write down the amplitude of a generalised scalar theory as

A(3)
n (α|β) =

1

vol(SL(3,C))

∫ ∏
i

dxidyiδ(S3,xi)δ(S3,yi)PT(α)PT(β), (3.8)

where S3, i denotes derivative with respect to i and the generalized Parke-Taylor factors

involve two orderings α and β and are given by

PT(I) =
1

[123][234] · · · [n12]
. (3.9)

The positive region of the tropical computation should then equal (3.8) for the canonical

ordering α = β = I.
Let us consider explicit examples of the tropical Grassmannian [15]. The simplest case

is Gr(2, 4), defined by the single Plücker relation,

p12p34 − p13p24 + p14p23 = 0 . (3.10)

In this case the tropical hypersurface conditions have three solutions (modulo lineality),

given by the three possibilities in (3.5) with {i, j, k, l} = {1, 2, 3, 4}. They are represented
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by the following six component vectors corresponding to the canonical ordering of the

{w12, w13, w14, w23, w24, w34},

e12 = (1, 0, 0, 0, 0, 0) ,

e13 = (0, 1, 0, 0, 0, 0) ,

e14 = (0, 0, 1, 0, 0, 0) . (3.11)

Of these only the first and third are positive. Note that one may not generally add solutions

to obtain other solutions, the above vectors represent three distinct solutions. Note also

that because of the shift symmetry wij 7→ wij + ai + aj the following vectors

e34 = (0, 0, 0, 0, 0, 1) ,

e24 = (0, 0, 0, 0, 1, 0) ,

e23 = (0, 0, 0, 1, 0, 0) (3.12)

are equivalent to the original three. This shift symmetry has the interpretation of momen-

tum conservation once the solution vectors eij are contracted with a canonically ordered

vector of Mandelstam invariants y = (s12, . . . , s34) entering the massless biadjoint scatter-

ing amplitudes.

Let us now describe the Gr(2, 5) case. In this case we have ten Plücker coordinates pij
and the Plücker relations are given by (3.10) and four more relations obtained from cyclic

rotation of the labels. These relations give rise to the tropical hypersurface conditions (3.5)

for {i, j, k, l} given by {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5}, {1, 3, 4, 5} and {2, 3, 4, 5}. Each of

these five cases must be simultaneously satisfied.

We arrange the coordinates in the standard, lexicographical order,

{w12, w13, w14, w15, w23, w24, w25, w34, w35, w45} (3.13)

and define ray vectors as

e12 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) ,

e13 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0) ,

...

e45 = (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) (3.14)

and so on. The vectors eij so defined are simultaneously solutions to all five of the tropical

hypersurface conditions.

In this case we can also combine certain solutions. For example we find that any

positive linear combination ae12 + be34 with a, b > 0 is also a solution. However no positive

linear combination ae12 + be13 is a solution. We thus obtain a notion of connectivity

of solutions: two solutions are connected if any positive linear combination of them is a

solution. We say that there is an edge between such solutions. In the case of Gr(2, 5) we can

never combine three or more solutions to obtain another solution. In higher dimensional

examples one can obtain triangles of solutions and higher dimensional faces.
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s12

s45

s23s15

s34

s35

s13

s14s24

s25

Figure 2. The 10 vertices and 15 edges of the full Tr(2, 5) space. The highlighted star is the

positive region. It corresponds to the canonical order amplitude of the scalar bi-adjoint φ3 theory.

1

2

3

4 5 6 7

x1 x3 x5

x2 x4 x6

Figure 3. Example web diagram for Gr(3, 7).

Performing permutations on the indices leads us to find 15 edges between the 10 vertices

given by the eij . The full set of solutions corresponding to the tropical Grassmannian

Tr(2, 5) can be depicted by the Petersen graph shown in figure 2.

The positive part Tr+(2, 5) is identified with those solutions where only the first and

third possibilities in (3.5) are allowed in each of the five cases. This picks out the solutions

{e12, e23, e34, e45, e15}. The positive part is then given by the positive rays and the edges

between them (any positive linear combination of connected positive solutions is a positive

solution). The positive part is highlighted in figure 2.

4 The positive tropical Grassmannian from webs

In [14] an alternative way of describing just the positive part Tr+(k, n) was given. In this

approach one introduces a grid called a web diagram with labels {1, . . . , k} on the horizontal

edge and labels {(k+1), . . . , n} on the vertical edge. The squares of the grid are populated

with variables xi. In figure 3 we illustrate the general procedure in the case of Tr(3, 7).

A Plücker coordinate is indexed by a set K of k distinct labels chosen from {1, . . . , n}.
We denote the set {1, . . . , k} by [k]. We may then associate a Plücker coordinate pK to

a set of paths on the web diagram as follows. Consider sets S of non-intersecting paths

– 8 –
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1

4 5 6 7

x1 x3 x5

x2 x4 x6

3

2

1

4 5 6 7

x1 x3 x5

x2 x4 x6

3

2

1

4 5 6 7

x1 x3 x5

x2 x4 x6

3

2

1

4 5 6 7

x1 x3 x5

x2 x4 x6

3

2

1

4 5 6 7

x1 x3 x5

x2 x4 x6

3

2

1

4 5 6 7

x1 x3 x5

x2 x4 x6

Figure 4. Possible sets of non-intersecting paths from {1, 2} to {6, 7} describing the representa-

tion (4.1) of the Plücker coordinate p367 in Gr(3, 7).

consistent with the arrows which go from [k]\ ([k]∩K) to K \ ([k]∩K). We denote the set

of all such sets as Path(K). For each path in a given set S we record the product of the

variables in the squares above the path (if there are no squares above the path we record

the value 1). For a set S of paths we take the product over all paths in the set which we

denote by ProdS(x) (if the set is empty we record the value 1). Finally we sum over all

possible choices of sets S of such non-intersecting paths, i.e. we sum over S ∈ Path(K),

pK =
∑

S∈Path(K)

ProdS(x) . (4.1)

The procedure is best illustrated with an example: consider the Plücker coordinate

p367 in the case illustrated in figure 3. We need to consider sets of non-intersecting paths

from {1, 2} to {6, 7}. We find the possible choices illustrated in figure 4. The final result

for the Plücker coordinate is therefore,

p367 = x1x2x3x5 + x1x2x3x4x5 + x1x2x3x4x5x6

+ x21x2x3x4x5 + x21x2x3x4x5x6 + x21x2x
2
3x4x5x6 . (4.2)

To consider the tropical Grassmannian we tropicalise the resulting polynomial, replacing

multiplication with addition and addition with minimum to obtain wK .

Following exactly the same logic for the simpler example of Gr(2, 5) we obtain (as

in [14])

p1i = p23 = 1 , w1i = w23 = 0 ,

p24 = 1 + x1, w24 = min(0, x̃1) ,

p25 = 1 + x1 + x1x2 , w25 = min(0, x̃1, x̃1 + x̃2) ,

p34 = x1 , w34 = x̃1 ,

p35 = x1 + x1x2 , w35 = min(x̃1, x̃1 + x̃2) ,

p45 = x1x2 , w45 = x̃1 + x̃2 .

– 9 –
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x̃1

x̃2

(a) The Tr+(2, 5) polyhedral fan.

x̃2

x̃1

x̃3

(b) The Tr+(2, 6) polyhedral fan.

Figure 5. The intersection of the Tr+(2, n) fan with the unit sphere Sn−4 gives the dual of the

Gr(2, n) associahedron. Notice the Tr+(2, 5) subfan on the (x̃1, x̃2) plane of Tr+(2, 6).

The resulting tropical minors are piecewise linear functions in the space parametrised by

(x̃1, x̃2). Each such function defines tropical hypersurfaces in exactly the same way as

before. Taking the union over the tropical hypersurfaces gives rise to a fan with five

domains of linearity separated by five rays as illustrated in figure 5a. We may label the

five rays by

{e1, e2,−e1,−e2, e1 − e2} (4.3)

where e1 and e2 are the two-component vectors,

e1 = (1, 0) , e2 = (0, 1) . (4.4)

More generally, the tropical minors in Tr+(k, n) define a polyhedral fan in the (k −
1)(n − k − 1)-dimensional space of x̃i variables with many domains of linearity separated

by walls of codimension one. The walls intersect in surfaces of codimension two and so on

all the way down to individual rays of dimension one defined by the multiple intersection

of (at least) ((k − 1)(n − k − 1) − 1) walls. We illustrate the fan obtained in the case of

Tr+(2, 6) in figure 5b.

The five rays we have obtained correspond to the five positive rays among the set (3.14).

We may verify this by evaluating the tropical minors wij in (4.3) on the five rays {e1, e2,
−e1,−e2, e1 − e2}. For example if we evaluate the ten-component vector of the wij on e1
we obtain the vector

e1 7→ ev(e1) = (0, 0, 0, 0, 0, 0, 0, 1, 1, 1) ∼ (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) = e12 . (4.5)

where the equivalence corresponds to the lineality shift wij → wij +ai +aj with (a1, a2, a3,

a4, a5) = 1
2(1, 1,−1,−1,−1). Doing the same for each of the five rays in (4.3) we indeed

obtain the ten-component vectors {e12, e45, e23, e15, e34}, precisely the five positive rays in

the list of ten solutions given in (3.14). The regions between the rays in figure 5a then

correspond to the edges between the positive rays in figure 2.

– 10 –



J
H
E
P
0
4
(
2
0
2
0
)
1
4
6

We may also recover the rays (4.3) from {e12, e45, e23, e15, e34} by tropically evaluating

the coordinates x1 and x2 which are given by

x1 =
p12p34
p14p23

, −→ x̃1 = w12 + w34 − w14 − w23 ,

x2 =
p13p45
p15p34

, −→ x̃2 = w13 + w45 − w15 − w34 . (4.6)

So for example the vector e12 evaluates to (1, 0) = e1 and the vector e34 evaluates to

(1,−1) = e1 − e2.

Note that the rays (4.3) we have obtained from the tropical minors (4.3) correspond

to the dual vectors (2.6) after dropping their first components. For example we have

W24 = (c24 + c25,−1, 0) ∼ −e1 . (4.7)

The first component of the dual vector W24 may be recovered by demanding for example

Y ·W24 = y · ev(−e1) = s23 = X24 , (4.8)

where we recall Y = (1, X13, X14) and y = (s12, . . . , s45). Since the dual vectors are

equivalent to the defining constraints of the kinematic associahedron, this gives us a way

to recover the kinematic associahedron from the tropical minors.

The expressions of the web variables xi in terms of Plücker coordinates in fact identi-

fies them with the cluster X -variables of [6, 7] for the initial cluster of the Gr(2, 5) cluster

algebra. Indeed more generally the web variables are identified with the X -coordinates of

the initial cluster for any Gr(k, n). As we now outline, we can use the algebraic machin-

ery of the cluster algebra to generate all the ray vectors describing the positive tropical

Grassmannian Tr+(k, n).

5 The tropical Grassmannian and cluster algebras

As mentioned above, we can identify cluster X -coordinates with web variables. As we

shall see we can also identify the ray vectors with cluster A-coordinates. This allows us

to generalise the notion of mutation to these rays such that we can generate all rays in

the fan in a cluster algebraic way [16]. For a description of the relation between cluster

algebras and polyhedral fans, see also [17]. Before we demonstrate this it is useful to revisit

mutation for A-coordinates in Grassmannian cluster algebras.

A Gr(k, n) cluster is identified by its m = (k − 1)(n− k − 1) unfrozen nodes, n frozen

nodes, and an (m+n)× (m+n) exchange matrix B which encodes the connectivity of the

nodes within the cluster. The first m rows and columns correspond to the arrows between

the unfrozen nodes. Mutating an unfrozen node k transforms B to B′ given by

b′ij =

{
−bij if i = k or j = k.

bij + [−bik]+bkj + bik[bkj ]+ otherwise,
(5.1)
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where [x]+ = max(x, 0). The mutated node also transforms, given by

a′k =
1

ak

m+n∏
i=1

a
[bik]+
i +

m+n∏
i=1

a
[−bik]+
i . (5.2)

Generalising mutations to rays requires additional information, namely an additional ma-

trix C (the coefficient matrix), its mutation given by1

c′ij =

{
−cij if j = k.

cij − [cik]+bkj + cik[bkj ]+ otherwise.
(5.3)

To each unfrozen A-coordinate we associate a ray vector g. We start by constructing the

initial cluster such that the m unfrozen nodes are the m basis vectors for Rm and C is the

identity

gl = el, l = (1, . . . ,m), C = Im. (5.4)

We then select a node k to mutate on, following the mutation rule

g′l = gl, for l 6= k

g′k = −gk +
n∑

i=1

[−bik]+gi +
n∑

j=1

[cjk]+b
0
j (5.5)

where b0
j , j ∈ {1, . . . ,m} corresponds to the jth column of B0, the exchange matrix for

the initial cluster. We can then repeat this process as many times as required to generate

a vector for each unfrozen A-coordinate. In the cases where the cluster algebra is of finite

type (in this context the cases are Gr(2, n), Gr(3, 6), Gr(3, 7) and Gr(3, 8)) we obtain a

finite cluster polytope by performing all mutations where each vertex is associated to a

cluster. Each face of the polytope is associated to an unfrozen A-coordinate a and also by

the above procedure a vector g.

The advantage of having the relation of the positive tropical fan to the cluster algebra

is that it gives us a very easy algebraic way to generate the relevant ray vectors to describe

the fan. Once we have the fan we can embed it into the original Plücker space using the

tropical minors and compute its volume to obtain the generalised scattering amplitude.

The resulting polytope in the simplest case is given in figure 6a. It has five clusters

connected in the shape of a pentagon. This pentagon is the dual of the pentagon obtained

from intersecting the fan illustrated in figure 5a with the unit circle; its edges are labelled

with ray vectors (4.3).

In fact for Gr(2, n) the polytope obtained by intersecting the positive tropical fan

with the unit sphere is always the dual polytope of the Gr(2, n) associahedron or Stasheff

polytope. For example in figure 6b we show the vectors associated to the faces of the A3

associahedron. The dual polytope coincides with the intersection of the Gr(2, 6) positive

tropical fan with the unit sphere given in figure 5b.

For the other finite cases the tropical positive fan gives polytopes that are closely

related to the duals of the cluster polytopes as we now describe.

1Note that we have modified slightly the mutation rule of the coefficient matrix of [16] so that the g

vectors defined by (5.4), (5.5) match precisely the ray vectors for Tr+(k, n) as defined in section 4.
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(0, 1)

(−1, 0)

(0,−1)

(1,−1)

(1, 0)

(a) The Tr+(2, 5) polytope labelled by rays.

(0, 0, 1) (1,−1, 0)

(0, 0,−1)(−1, 0, 0)

(0,1,0) (1, 0,−1)

(1, 0, 0)

(0, 1,−1)

(0,−1, 0)

(b) The Tr+(2, 6) polytope with the faces

labelled by rays.

Figure 6. The cluster polytopes pictured here are the dual polyhedra of those arising from the

fans shown in figure 5.

6 Tr+(3, 6)

Let us now consider the first case of the generalised biadjoint amplitudes which was ad-

dressed in [1]. In analogy to the Gr (2, n) cases of the previous section, the generalised

amplitude for higher k and n can be interpreted as the volume of the computed by trian-

gulating the relevant Tr+(3, 6) fan.

Following [15] we start by considering by the Plücker relations of Gr(3, 6), of which

there are two kinds, three-term relations and four-term relations,

p123p145 + p125p134 − p124p135 = 0, . . .

p123p456 − p156p234 + p146p235 − p145p236 = 0, . . . (6.1)

While one can combinatorially generate many relations, only 35 of them are linearly inde-

pendent.

We then tropicalise these polynomials in Plückers to obtain

min(w123 + w145, w125 + w134, w124 + w135), . . .

min(w123 + w456, w156 + w234, w146 + w235, w145 + w236), . . . . (6.2)

As before the tropical polynomials define regions of linearity in the tropical Plücker space

R20 separated by hypersurfaces defined as the set of points at which the two smallest argu-

ments of the min functions are equal. Consider for instance, the first tropical polynomial

in (6.2). It gives rise to a boundary between two cones if one of the following is satisfied:

w123 + w145 = w125 + w134 ≤ w124 + w135 (6.3a)

or w123 + w145 = w124 + w135 ≤ w125 + w134 (6.3b)

or w124 + w135 = w125 + w134 ≤ w123 + w145. (6.3c)
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3

2

1

4 5 6

x1 x3

x2 x4

Figure 7. The web diagram for Gr(3, 6).

This polytope contains 65 vertices [15]. As above we denote the unit vectors in the wijk

directions by eijk. These vectors give 20 of the vertices. A further 15 are of the form

fijkl = eijk + ejil + eikl + ejkl . (6.4)

The remaining 30 are of the form (for {i, j, k, l,m, n} distinct)

gij,kl,mn = fijkl + eklm + ekln . (6.5)

The part of the polytope that is relevant for a planar ordering is its positive part

Tr+(3, 6). In [1] the positive vertices were determined by requiring compatibility with

a planar ordering for the scattering amplitude. Here we identify the positive rays by

requiring that they satisfy the hypersurface conditions generated by monomials in the

Plücker coordinates with opposite signs as we described in section 3. This leaves us with

16 rays out of 65, coinciding precisely with the set of [1]. They are e123 and cyclic, f1234
and cyclic and g12,34,56, g23,45,61, g34,12,56 and g45,23,61.

The Gr+(3, 6) web diagram shown in figure 7 produces a matrix with following piece-

wise linear tropical minors [13, 14],

w12i = w134 = w234 = 0 ,

w135 = min(0, x̃1),

w136 = min(0, x̃1, x̃1 + x̃3),

w145 = x̃1 ,

w146 = min(x̃1, x̃1 + x̃3) ,

w156 = x̃1 + x̃3 ,

w235 = min(0, x̃1, x̃1 + x̃2) ,

w236 = min(0, x̃1, x̃1 + x̃2, x̃1 + x̃3, x̃1 + x̃2 + x̃3, x̃1 + x̃2 + x̃3 + x̃4) ,

w245 = min(x̃1, x̃1 + x̃2) ,

w246 = min(x̃1, x̃1 + x̃2, x̃1 + x̃3, x̃1 + x̃2 + x̃3, x̃1 + x̃2 + x̃3 + x̃4) ,

w256 = min(x̃1 + x̃3, x̃1 + x̃2 + x̃3, x̃1 + x̃2 + x̃3 + x̃4) ,

w345 = x̃1 + x̃2 ,

w346 = min(x̃1 + x̃2, x̃1 + x̃2 + x̃3, x̃1 + x̃2 + x̃3 + x̃4) ,

w356 = min(x̃1 + x̃2 + x̃3, x̃1 + x̃2 + x̃3 + x̃4, 2x̃1 + x̃2 + x̃3 + x̃4) ,

w456 = 2x̃1 + x̃2 + x̃3 + x̃4 . (6.6)
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g12,34,56

g45,16,23

g16,45,23

g34,12,56

Figure 8. The arrangement of bipyramids inside Tr+(3, 6). The vertices represent the intersections

of the rays ri with the unit sphere S4. Two triangles are shaded to emphasize that they are actual

2-faces of the polytope.

The regions of linearity of the tropical minors (6.6) define the fan for Tr+(3, 6) and its

intersection with the unit sphere S3 is a polytope with 16 vertices, 66 edges, 98 triangles

and 48 three-dimensional facets. The tropical X -coordinates are given by

x̃1 = w123 + w145 − w125 − w134 , x̃3 = w124 + w156 − w126 − w145 , (6.7)

x̃2 = w124 + w345 − w145 − w234 , x̃4 = w134 + w125 + w456 − w124 − w156 − w345 .

With the above relations (6.6) and (6.7) we can go back and forth between the represen-

tation of the 16 positive vertices in terms of the eijk and in terms of a four-component

representation which we can also obtain from cluster mutations as we now describe.

6.1 Triangulating Tr+(3, 6) with clusters

Unlike in Gr(2, 5), the Tr+(3, 6) fan contains facets that are not simplicial. In particular, it

contains 46 simplicial facets and two bipyramids defined by five vertices. This is a common

feature of k > 2 (tropical) Grassmannians.

To see this, first recall that (k−1)(n−k+1) rays define a facet of the fan if an arbitrary

positive linear combination of them solves the positive versions of inequalities derived from

the Plücker relations. In particular Tr+(3, 6) has 2 such facets with five vertices that

form bipyramids. These non-simplicial bipyramids are arranged inside the fan Tr+(3, 6) as

sketched in figure 8.

The fan Tr+(3, 6) is closely related to the dual of the Gr+(3, 6) associahedron in that

the latter provides a natural triangulation of the former [13]. The vertices of the dual of

the associahedron correspond to cluster A-coordinates. Two vertices are connected by an

edge when the corresponding pair of A-coordinates appear together in a cluster, i.e. are

cluster-adjacent in the sense of [11]. By definition, a pairwise connected quadruplet of

vertices of the dual Gr+(3, 6) associahedron corresponds to a cluster, which in turn can be

identified as a simplex triangulating Tr+(3, 6).
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We begin with the initial cluster

(124) (125)

(134) (145)

and associate its unfrozen A-coordinates with the unit vectors e1, . . . , e4 in the tropical x̃i
coordinates,

(124)↔ e1 = (1, 0, 0, 0), (125)↔ e2 = (0, 1, 0, 0), (6.8)

(134)↔ e3 = (0, 0, 1, 0), (145)↔ e4 = (0, 0, 0, 1) . (6.9)

Performing all possible mutations generates the full set of 16 ray vectors which arise from

50 distinct clusters.

Among the 16 rays we find the following five,

e3 7→ ( 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 1 ) ∼ f1234
−e1 7→ ( 0 0 0 0 0 −1 −1 −1 −1 −1 0 −1 −1 −1 −1 −1 −1 −1 −2 −2 ) ∼ f1256
e2 7→ ( 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 ) ∼ f3456

e2+e3−e4 7→ ( 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1 1 1 1 ) ∼ g12,34,56
e4−e1 7→ ( 0 0 0 0 0 −1 −1 −1 −1 −1 0 −1 −1 −1 −1 −1 −1 −1 −1 −1 ) ∼ g34,12,56

where we have also given their evaluations through the tropical minors (6.6) and the cor-

responding positive solutions given above. The fact that these five vertices form a single

bipyramid rather than two tetrahedral facets can be seen from the linear relation,

f1234 + f1256 + f3456 = g12,34,56 + g34,12,56 . (6.10)

Note that the cluster algebra provides a canonical way of determining a triangulation.

In particular the bipyramid formed by the five rays described above is triangulated by

two clusters whose vertices are given by {f1234, f1256, f3456, g12,34,56} and {f1234, f1256, f3456,
g34,12,56}.

Equipped with the cluster triangulation, we can express the scattering amplitude as a

sum over clusters,

m6
3(I|I) =

∑
c∈ clusters of

Gr+(3, 6)

∏
a∈A-coords of c

1

y · ev(ra)
, (6.11)

where as before y = (s123, . . . , s456) is the lexicographically ordered vector of Mandelstam

invariants, ra is the representation of the A-coordinate a as a ray in x̃ coordinates and ev

means the evaluation using the tropical minors in (6.6).

Using this identification, we can read off the two terms in the amplitude directly from

the two clusters as2
1

t1234t1256t3456

[
1

R12,34,56
+

1

R34,12,56

]
. (6.12)

2Here we use the notation tijkl = sijk + sijl + sikl + sjkl and Rij,kl,mn = tijkl + sklm + skln.
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Note that using the identity between kinematic invariants

R12,34,56 +R34,12,56 = t1234 + t3456 + t5612 (6.13)

we can write these two terms as

(6.12) =
1

R12,34,56R34,12,56

[
1

t1256t3456
+

1

t1234t3456
+

1

t1234t1256

]
(6.14)

which was noted in [1] to correspond to a different triangulation of the bipyramid. However

the cluster algebra prefers a particular one of these triangulations.

7 Tr(3, 7): the amplitude from E6 clusters

In this section we explicitly demonstrate how the triangulation of the fan associated to

the positive tropical Grassmannian Tr+(3, 7) can be worked out from the Gr(3, 7) cluster

algebra.

As in the previous section, one can either compute F3,7 from the web Web3,7 or run

the cluster-algebra machinery to obtain the generalised amplitude without even referring

to Tr(3, 7). Nevertheless let us first describe Tr+(3, 7) starting from Tr(3, 7) and elaborate

on a situation that is not encountered in Grassmannians of lower dimension.

The tropical Grassmannian Tr(3, 7) has 721 rays which come in six types,3

b1,1234567 = e123, (7.1a)

b2,1234567 = e123 + e124 + e134 + e234, (7.1b)

b3,1234567 = e123 + e124 + e125 + e126 + e127, (7.1c)

b4,1234567 = e123 + e124 + e125 + e126 + e127 + e134 + e234, (7.1d)

b5,1234567 = e123 + e124 + e125 + e126 + e127 + e134 + e156 + e234 + e256, (7.1e)

b6,1234567 = b3,1234567 + b3,3456712 + b3,6712345 , (7.1f)

where as before the lexicographically-ordered eijk are identified with unit vectors in R(73).

Other rays are obtained by the permutations of those that are written out above. For the

types b1, . . . , b5 and b6, the permutations generate the six symmetry classes of respective

sizes 35, 35, 21, 210, 315 and 105. These rays have also been tabulated in [18] with their

explicit Plücker coordinates. Henceforth we will drop the labels in bi,1234567 and just write

bi unless the order of the indices is not canonical.

To compute positive Grassmannian Tr+(3, 7), we select out of the 721 rays above those

which solve the positive versions of tropicalised Plücker relations. One finds that 49 of them

satisfy such relations. This seems incompatible with the fact that the cluster algebra has

42 distinct unfrozen A-coordinates.

The resolution to this discrepancy is that seven positive rays of the type b6 are linear

combinations of three mutually-connected rays of type b3, any positive linear combination

3This form was also given in [2].
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of which is a solution. In other words, b6,1234567 is in the middle of a triangular 2-face of

Tr+(3, 7) and is not necessary to define a cone of the fan.

As explained by Speyer and Williams [14], the Tr+(3, 7) fan has 693 facets. While 595

of these facets are simplicial, there are also 63 facets with 7 vertices, 28 with 8 vertices and

7 with 9 vertices. These non-simplicial facets are the Gr(3, 7) analogues of the bipyramids

of Tr+(3, 6).

We again resort to the relevant cluster algebra E6 to obtain a triangulation on which

we evaluate the amplitude. The E6 cluster algebra has 833 clusters that give the vertices

of the associahedron. These 833 clusters make up the simplexes of the triangulation each

of which contain six vertices.

If we employ the duality between Gr(3, 7) and Gr(4, 7) and work in terms of the latter,

we can relate the positive vertices above to the established notation for A-coordinates in

the literature on N = 4 amplitudes [10, 11]. The different types of rays classified in (7.1a)–

(7.1f) nicely match the conventional cluster A-coordinates:

a11 ↔ b2,7123456 a41 ↔ b4,7156234

a21 ↔ b1,7123456 a51 ↔ b4,2345671

a31 ↔ b3,5671234 a61 ↔ b5,1234675 , (7.2)

where the rest of the correspondence can be worked out by cyclic rotations of the second

indices of the aij and the arguments of the bi. With this correspondence, we find that the

E6 initial cluster

a24 a37

a13 a17

a32 a27

(7.3)

produces the following term in the amplitude

1

(y · b1,1234567)(y · b3,1234567)(y · b2,1234567)(y · b2,4567123)(y · b3,6712345)(y · b1,5671234)
, (7.4)

with y = (s123, . . . , s567). We then mutate these rays according to (5.5) iteratively until we

cover all 833 clusters of the E6 polytope. Recovering the corresponding kinematic invariants

using (7.2), we can construct the Gr(3, 7) amplitude as the volume of the positive tropical

Grassmannian. An expression for this amplitude is provided in the supplementary material

Gr37amp.m.

8 Gr(3, 8): redundant triangulations

In this section we will run the same construction in Gr(3, 8) to provide a conjecture for the

canonically-ordered part of the generalised biadjoint amplitude that one would obtain by

solving the scattering equations for this Grassmannian.
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We start with the initial cluster of Gr(3, 8)

(124) (125) (126) (127)

(134) (145) (156) (167)

(8.1)

and identify its A-coordinates with the rays (124) ↔ e1, (134),↔ e2, (125)↔ e3, . . . ,

(167) ↔ e8 in R8. Using the map explained in section 4.3 we recover the Plücker coordi-

nates for the Speyer-Williams rays e1, . . . , e8 and deduce that the initial cluster produces

the following for the first term in the amplitude

1/
(
(y · b1,12345678)(y · b3,12345678)(y · b2,12345678)(y · b5,67548123)
× (y · b5,34215678)(y · b2,56781234)(y · b3,78123456)(y · b1,67812345)

)
, (8.2)

where the b vertices are given below in (8.4) and as before y = (s123, . . . , s678).

We then generate all 25,080 clusters using the mutation rules of [16] which we have

adapted in equation (5.5). These clusters contain 128 distinct vectors in R8, identified

with the 128 A-coordinates of Gr(3, 8). As usual, the Plücker coordinates of these vectors

provides us the factors in the denominator of every term in the amplitude. We provide all

25080 terms in the supplementary material Gr38amp.m.

Let us comment further on the correspondence between the Tr+(3, 8) fan and the

Gr(3, 8) cluster algebra. We find that, out of the 128 vectors generated by the cluster

algebra, only 120 are rays of the corresponding fan. The extra 8 vectors have the form

be = b8,12345678 + b8,78564123 (8.3)

and cyclic rotations thereof. These too are positive vectors but being linear combinations

of two genuine rays they lie on an edge of the fan. In other words, they separate only 7

regions of piecewise linearity for the tropical minors instead of 8. This can be interpreted as

the Gr(3, 7) cluster algebra producing redundant triangulation of the fan which decomposes

already simplicial facets into even smaller simplexes.

We can compare the Plücker coordinates of the vectors we obtain to the rays of another

object called the Dressian Dr(3, 8), studied in [19]. Dr(3, 8) is a non-simplicial fan that

consists of 15470 rays which split into 12 symmetry classes of size (56, 70, 28, 420, 56, 1260,

420, 560, 1680, 840, 5040, 5040). These define facets in groups of sizes ranging from 8 to

12. While all rays of Dr(k, n) are expected to be rays of Gr(k, n), the converse is not true.

Indeed the Dressian Dr(3, 8) does not capture the rays b8 which give rise to “superfluous”

triangulations.

The rays of Dr(3, 8), positive and non-positive, are explicitly given as:

b1 = e123,

b2 = e123 + e124 + e134 + e234,

b3 = e123 + e124 + e125 + e126 + e127 + e128,

b4 = e123 + e124 + e125 + e126 + e127 + e128 + e134 + e234,
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b5 = e123 + e124 + e125 + e134 + e135 + e145 + e234 + e235 + e245 + e345,

b6 = e123 + e124 + e125 + e126 + e127 + e128 + e136 + e145 + e236 + e245,

b7 = e123 + e124 + e125 + e126 + e127 + e128 + e138 + e147 + e156 + e238

+ e247 + e256,

b8 = e123 + e124 + e125 + e126 + e127 + e128 + e134 + e135 + e145 + e234

+ e235 + e245 + e345,

b9 = e123 + e124 + e125 + e126 + e127 + e128 + e134 + e135 + e145 + e167

+ e234 + e235 + e245 + e267 + e345,

b10 = e123 + e124 + e125 + e134 + e135 + e145 + e146 + e147 + e148 + e234

+ e235 + e236 + e237 + e238 + e245 + e345,

b11 = e123 + e124 + e125 + e126 + e127 + e128 + e134 + e137 + e147 + e156

+ e234 + e237 + e247 + e256 + e345 + e346 + e347 + e348,

b12 = e123 + e124 + e125 + e126 + e127 + e128 + e134 + e138 + e148 + e157

+ e234 + e238 + e248 + e257 + e345 + e346 + e347 + e348 + e356 + e456.

(8.4)

Out of these, the 120 vectors defined by

{b1,12345678, b2,12345678, b3,12345678, b4,12345678, b4,23184567, b5,23184567,
b6,12378456, b8,12345678, b8,34128567, b9,12345786, b9,23178456, b10,13482567,

b11,34185627, b11,12457836, b12,12457683}
(8.5)

and their cyclic copies lie in the positive region in the sense that they satisfy the positive

version of the inequalities (3.5). These vectors are in one-to-one correspondence with the

120 non-redundant rays generated by the cluster algebra.

Note that the redundant vectors be that we encountered in Gr(3, 8) are of different

nature to the b6 of Gr(3, 7). While both types of vectors are not rays of the relevant fan,

unlike the be, the b6 are not generated by the cluster algebra.

9 Conclusions and outlook to Gr(4, 8)

In this paper we have utilised cluster algebra technology to construct tree-level biadjoint

amplitudes on Gr(3, n) for n = 6, 7, 8. These amplitudes arise from scattering equations

on the corresponding Grassmannians [1, 2] and the relevance of cluster algebras for these

amplitudes arises from the interpretation of these amplitudes as volumes of certain ge-

ometric objects. In the cases we studied in this paper these objects are polyhedra in

(k − 1)(n− k − 1)− 1 dimensions, where k = 3.

Cluster algebras provide a natural triangulation of the polyhedra whose volumes cor-

respond to the scattering amplitudes. Therefore we were able to employ mutation rules

to “bootstrap” the amplitude starting from a single term only. In particular we provided
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a prescription for the volume of the simplex that corresponds to the initial cluster and

obtained the volumes of the remaining simplexes through consecutive cluster mutations.

Each of the cases we considered has new features that provide important lessons. In

n = 6 we saw that the clusters triangulate the bipyramids of Tr+(3, 6) into two simplexes.

In n = 7 we identified that positive rays that define cones of Tr+(3, 7) are not rays of

the Tr+(3, 7) fan and are also not detected by the cluster algebra. When we studied the

n = 8 case, we found that the cluster algebra generates redundant triangulations of the

Tr+(3, 8) fan.

Having studied the fans corresponding to various Grassmannians, a natural direction

to take is to attempt to construct the fan for Tr+(4, 8), which corresponds to the positive

part of Gr(4, 8). The cluster algebra of the latter is expected to capture the rational symbol

letters of 8-particle amplitudes in N = 4 but the fact that the Gr(4, 8) cluster algebra is

infinite has been a forbidding obstacle in utilising cluster algebras in the computations of

these amplitudes.

We find that restricting the mutations to clusters that contain only rays obeying the full

number of intersection conditions for Tr+(4, 8) closes on a finite number of 169,192 clusters.

The corresponding A-coordinates in these clusters provides us with a finite alphabet of 356

rational letters closed under cyclic rotations of the twistors. In particular, this alphabet

contains the rational letters reported in [20]. It would be interesting to check if these letters

are in correspondence with the faces of the polytope found by Arkani-Hamed, Lam and

Spradlin, as reported in [21].
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