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1 Introduction

As a step toward understanding general properties of quantum gravity in four space-

time dimensions, one can study compactifications of weakly-coupled string theories on

six-manifolds whose curvatures are small in string units. Understanding what is possible

in such compactifications can shed light on what is possible in quantum gravity.

Bounds on topological or geometric properties of a class of compactifications can imply

interesting statements about the corresponding effective theories, such as bounds on the

number of fields, the rank of the gauge group, or the diameter of moduli space. Moreover,

an understanding of generic properties of compactifications can inform low-energy model

building, e.g. the fact that typical Calabi-Yau threefolds have scores or hundreds of moduli
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and axions suggests considering inflationary and dark sectors that might be discarded as

excessively complicated from a bottom-up perspective.

The Kreuzer-Skarke database of four-dimensional reflexive polytopes [1] is a fount of

data on Calabi-Yau compactifications. A fine, regular, star triangulation (FRST) of any of

the 473,800,776 polytopes ∆◦ in the list determines a toric variety V , in which a generic

anticanonical hypersurface is a smooth Calabi-Yau threefold X. However, only the most

elementary data, such as the Hodge numbers of X, can be obtained directly from the

database without computation. To more fully characterize a compactification on X, one

needs to compute and manipulate an FRST of ∆◦.

A key measure of the difficulty of this computation is the number N of relevant lattice

points in ∆◦, or equivalently the Picard number h1,1 of X: when X is favorable, N =

h1,1 + 4. The number of possible triangulations of a given ∆◦, and the complexity of

each triangulation, both grow rapidly with N . Most publicly-available software, such as

Sage, is effective only for N . 10. Through a major computational effort, Altman et

al. obtained the data of all compactifications with N ≤ 10 [2]. However, there have been

few studies, none systematic, of compactifications on Calabi-Yau threefold hypersurfaces

with h1,1 � 1. This is a critical gap in our understanding: the Kreuzer-Skarke list contains

threefolds with h1,1 as large as 491, and vast numbers of triangulations — corresponding

to potentially-distinct threefolds — are possible at h1,1 � 1. To the best of our knowledge,

most Calabi-Yau threefold hypersurfaces have not yet been examined.

In this work we initiate a study of Calabi-Yau threefold hypersurfaces with large Picard

number. We obtain FRSTs of 2,030,008 reflexive polytopes with 2 ≤ h1,1 ≤ 491, including

one triangulation for each polytope with 240 ≤ h1,1 ≤ 491.1 We compute the Mori cones

of the associated toric varieties V , and for 2 ≤ h1,1 ≤ 100 we compute the intersection

numbers of Calabi-Yau hypersurfaces X ⊂ V .

We first use these data to bound the Kähler cone KX of X. We know of no efficient

algorithm to compute KX directly in a hypersurface with h1,1 & 10, so we instead place

upper and lower bounds by computing cones containing KX , and contained in KX . The

Kähler cone KV of V obeys KV ⊂ KX , while a cone K∩ associated to the intersections of

divisors D̂ ⊂ V (see section 2 for a precise definition) obeys KX ⊂ K∩.

Equipped with bounds on the Kähler cone of X, we examine the α′ expansion in a

compactification of string theory2 on X. For the α′ expansion to be under control, we will

require that every holomorphic curve Σ on X has volume obeying

Vol(Σ) ≥ (2π)2c α′ ≡ c `2s , (1.1)

with c a dimensionless constant, so that worldsheet instantons wrapping Σ give corrections

to the effective action . e−2πc. Although we will suppose that c is of order unity, one can

immediately extend our findings to any desired numerical value of c. We henceforth set

1Huang and Taylor have shown that all Hodge number pairs with h1,1 ≥ 240 in the Kreuzer-Skarke list

can be realized by elliptically fibered Calabi-Yau threefolds [3].
2For specificity one can imagine type IIB string theory on an orientifold of X, but most of what follows

is purely geometric, and applies, mutatis mutandis, in other string theories.
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`2s = 1 and c = 1, and so the constraint (1.1) reads

Vol(Σ) ≥ 1 . (1.2)

We argue in section 2 that (1.2) is a useful proxy for control of perturbative and nonper-

turbative corrections in the α′ expansion.

The requirement that (1.2) holds for all Σ typically implies that some irreducible

holomorphic curves have volumes � 1. Moreover, some irreducible effective divisors have

even larger volumes, and the total threefold volume V is larger still. At first glance these

trends appear unsurprising: the number of nonvanishing triple intersection numbers κijk
must grow with h1,1, and so too should V = 1

6κijkt
itjtk, where ti, i = 1, . . . , h1,1, are the

volumes of a basis of H2(X,Z). However, obtaining the intersection numbers κijk for a

hypersurface with h1,1 � 1 is computationally expensive, so prior studies of this point

have been very limited. In this work we precisely quantify the growth of curve, divisor,

and threefold volumes with h1,1: our computation of K∩ leads to lower bounds on these

quantities. The volumes grow far more quickly with h1,1 than can be accounted for by the

growth of the intersection numbers alone. We find that there are only O(h1,1) nonvanishing

intersection numbers in each geometry, with mean size independent of h1,1, yet we find that

V grows as (h1,1)p with p ∼ 7: see section 6.

The primary cause of this rapid growth of volumes is the narrowness of the Kähler

cone. The Kähler cone conditions enforce inequalities relating the various curve volumes,

and with increasing h1,1, this effect becomes more pronounced, because the number of

inequalities grows. Intuitively, the Kähler cone becomes very narrow for h1,1 � 1, so to be

well-separated from every wall one must be very far from the origin of the cone.

One physical consequence of this finding is that requiring control of the α′ expansion,

in the sense of (1.2), typically leads to ultralight axions, unless h1,1 is small. As an example,

in a compactification of type IIB string theory on an orientifold of a hypersurface X, the

Ramond-Ramond four-form C4 gives rise to axion fields that are massless to all orders in

perturbation theory, and acquire mass from Euclidean D3-branes. Suitable holomorphic

four-cycles (i.e., suitable effective divisors) support superpotential contributions [4], which

are well-understood, while non-holomorphic four-cycles can support contributions to the

Kähler potential. We find that for typical geometries in our ensemble, every basis con-

structed from generators of the cone of effective divisors (cf. section 4) contains elements

with volume & (h1,1)3: see figure 6. Thus, superpotential couplings3 give extremely small

masses to some of the axions. In every geometry in our ensemble with h1,1 > 22, the

lightest axion is essentially massless, with m < 10−33 eV.

An important caveat is that our finding of rapid growth of volumes with h1,1 is a con-

sequence of the requirement (1.2). It is possible that α′ corrections to the four-dimensional

action are small in some cases even if some effective curves have volumes violating (1.2).

Constraining this possibility would be worthwhile, but would likely require advances in

computing perturbative corrections in the α′ expansion. Moreover, our qualitative results

would be unaffected unless most curves can be made small in string units.

3We argue in appendix A that contributions to the axion masses from Kähler potential instantons are

plausibly comparably suppressed.
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We also study the radius of the axion fundamental domain for each geometry in our

ensemble. Understanding whether super-Planckian displacements of an inflaton field can

occur in well-controlled compactifications is a pressing problem, and one way forward is to

search for geometries in which the axion field space has radius R �Mpl. Prior work in [5]

has shown that R . O(1) in every Calabi-Yau hypersurface with h1,1 ≤ 4. Here we extend

the analysis of [5] to 2×106 hypersurfaces with 5 ≤ h1,1 ≤ 100. We show that R .Mpl for

most of the geometries in our ensemble. However, in a small fraction of cases we cannot

exclude the possibility of radii R � Mpl in the parameter regime where (1.2) holds and

the α′ expansion is well-controlled. Obtaining definitive results in these intriguing cases

would require advances in computing the Kähler cones of Calabi-Yau hypersurfaces per se,

rather than just the Kähler cones of the corresponding ambient toric varieties.

The organization of this note is as follows. In section 2 we review basic facts about

the Kähler cone of a Calabi-Yau hypersurface in a toric variety. In section 3 we introduce

the notion of a stretched Kähler cone, and in section 4 we explain how upper bounds on

axion masses can be obtained by computing cycle volumes in an appropriate stretched

Kähler cone. In section 5 we describe our algorithm for computing the Kähler cones, and

approximations to the Kähler cones, in an ensemble of Calabi-Yau threefold hypersurfaces

constructed from the Kreuzer-Skarke database. We present our results in section 6. In

section 7 we explore the implications of our findings for the axion mass spectrum in type

IIB compactifications. We conclude in section 8. Although our findings directly involve

the volumes of holomorphic cycles, in appendix A we discuss how instantons wrapping

non-holomorphic volume-minimizing chains could be governed to good approximation by

the growth of volume that we establish in the holomorphic case.

2 The effective, Kähler, and Mori cones

In this section we recall the definitions and basic properties of the effective cone, the Kähler

cone, and the Mori cone of a projective algebraic variety X, and we explain how to compute

approximations to these cones when X is a Calabi-Yau threefold hypersurface in a toric

variety. From the data of these convex cones one can read off properties of the effective

theory arising in a string compactification on X.

2.1 The effective cone

Let X be a projective algebraic variety of complex dimension n. A Weil divisor D on X is

a finite formal sum of irreducible codimension-one subvarieties DA,

D =
∑
A

nADA nA ∈ Z . (2.1)

The divisor D is called effective if the nA are all nonnegative. We define the effective cone

Eff(X) to be the convex cone in H2n−2(X,R) spanned by the classes of effective divisors.

The relevance of the effective cone is that a Euclidean D3-brane wrapping a divisor

D in an orientifold of a Calabi-Yau threefold X can contribute to the superpotential only

if D is effective. Intuitively, effective divisors consist of finite collections of irreducible

holomorphic hypersurfaces, each of which can support BPS D-branes.
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2.1.1 Effective divisors of a Calabi-Yau hypersurface

Let ∆◦ be a four-dimensional reflexive polytope. An FRST of ∆◦ defines a fan that

corresponds to a simplicial toric fourfold V . The generic anticanonical hypersurface X ⊂ V
is a smooth Calabi-Yau threefold [6].

Each lattice point vI on the boundary of ∆◦ corresponds to a homogeneous toric

coordinate xI , whose vanishing defines a prime toric divisor D̂I . The prime toric divisors

are irreducible effective divisors on V . A subset {vA} ⊂ {vI} of the points on the boundary

of ∆◦ are not interior to 3-faces (facets) of ∆◦, but instead lie in faces of dimension ≤ 2.

Each such lattice point vA not interior to a facet corresponds to a prime toric divisor that

intersects X transversely. The restriction to X then defines a divisor DA ⊂ X,

DA := D̂A ∩X , (2.2)

that is effective on X. Points interior to facets, on the other hand, define divisors of V

that do not intersect a generic Calabi-Yau hypersurface X. In triangulating ∆◦ we may

therefore ignore lattice points interior to facets; such a triangulation corresponds to a

maximal projective crepant partial (MPCP) desingularization, in the sense of [7]. We will

restrict ourselves to such partial desingularizations.

In general, DA may be a reducible divisor on X, even though D̂A is irreducible on

V . This occurs if and only if vA corresponds to a point in the strict interior of a 2-face

f ⊂ ∆◦, and `∗(f◦) > 0, where `∗(f◦) is the number of lattice points in the strict interior

of the dual face f◦ ⊂ ∆. The condition that all of the prime toric divisors D̂A on V that

intersect X in fact restrict to irreducible divisors on X is thus∑
f⊂∆◦

`∗(f)`∗(f◦) = 0 , (2.3)

where the sum is over all 2-faces f ⊂ ∆◦. A polytope obeying (2.3) is called favorable, and

by extension we refer to the associated V and X as being favorable.

For simplicity we will confine our attention to the case where X is favorable, though we

expect the results of our analysis to extend into the non-favorable regime. For X favorable,

there are exactly h1,1(X) + 4 prime toric divisors D̂A. We call

{DA} := {D̂A ∩X} A = 1, . . . , h1,1(X) + 4 (2.4)

the inherited prime toric divisors on X.

The set {DA}, A = 1, . . . , h1,1(X) + 4, provides a complete set of generators for

H4(X,Z). Since dimH4(X,Q) = h1,1(X), by reordering the DA we can ensure that {Di},
i = 1, . . . , h1,1(X), is a basis for H4(X,Q).

2.1.2 Inherited and autochthonous divisors

The inherited prime toric divisors DA of a Calabi-Yau threefold hypersurface X ⊂ V are

effective divisors on X that are inherited from effective divisors on V . We call the cone in

H4(X,R) generated by the classes of the {DA} the inherited effective cone Effι(X). Clearly,

Effι(X) ⊆ Eff(X). Because V is specified by combinatorial data, it is straightforward to
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compute Effι(X). However, in many cases Eff ι(X) ( Eff(X): that is, there are effective

divisors on X that are not inherited from any effective divisor on V . We call such a

non-inherited divisor an autochthonous divisor.

In this work, we approximate Eff(X) by Effι(X). In particular, in computing axion

masses in compactifications of type IIB string theory on X, we here consider only Euclidean

D3-branes wrapping inherited effective divisors. Autochthonous divisors of Calabi-Yau

hypersurfaces are studied in our forthcoming work [8]. Among other things, we show there

that Euclidean D3-branes wrapping autochthonous divisors do not significantly affect the

axion mass hierarchies found here, and so for present purposes it suffices to study the

conceptually and computationally simpler inherited effective cone.

2.2 The Kähler cone and the Mori cone

Let X be a projective algebraic variety, and let J ∈ H1,1(X,R) be a closed (1,1)-form on

X. For a k-dimensional subvariety U ⊂ X, we define

VolJ(U) :=
1

k!

∫
U
∧kJ . (2.5)

We define the Kähler cone of X, KX , as the subset of H1,1(X,R) consisting of cohomology

classes of Kähler forms J on X, i.e. J such that VolJ(U) > 0 for all subvarieties U . The

Kähler cone KX , also called the ample cone, is an open convex cone whose closure KX is

the cone of nef (1,1) classes.4

We next define the Mori cone of X, MX , to be the cone in H2(X,R) generated by

irreducible algebraic curves Ca on X. (The Mori cone of X is often denoted NE(X) in

other parts of the literature.) The Kähler cone and the Mori cone are related by

M∨ = KX , (2.6)

i.e. the dual of the Mori cone is the closure of the Kähler cone.

When X is a Calabi-Yau threefold hypersurface, the subvarieties of interest are the

curves Ca, the divisors DA, and the threefold itself. The volumes of these subvarieties are

ta := VolJ(Ca) =

∫
Ca

J ,

τA := VolJ(DA) =
1

2

∫
DA

J ∧ J ,

V := VolJ(X) =
1

6

∫
X
J ∧ J ∧ J .

(2.7)

It is convenient to expand J in terms of the Poincaré duals [Di] of the divisors Di,

J = ti[Di] . (2.8)

Defining
Mai := #Ca ∩Di ,

κAjk := #DA ∩Dj ∩Dk ,

κijk := #Di ∩Dj ∩Dk ,

(2.9)

4See [9] for a more detailed treatment.
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the volumes (2.7) are then written as

ta = Mait
i ,

τA =
1

2
κAjkt

jtk ,

V =
1

6
κijkt

itjtk .

(2.10)

The h1,1 Kähler parameters ti, which are not necessarily positive when J is inside the

Kähler cone, should not be confused with the curve volumes ta, which are positive for

J ∈ KX .

3 The stretched Kähler cone

One of the aims of this work is to determine the volumes of holomorphic submanifolds in

X, when every effective curve in X is constrained to have volume > 1, as in (1.2). We

therefore need to determine the cone of effective curves, i.e. the Mori cone MX .

To our knowledge there is no established algorithm for computing MX , even for the

well-studied ensemble of Calabi-Yau threefold hypersurfaces. However, we will identify two

cones Min and Mout that bound MX on the inside and the outside, respectively, i.e.

Min ⊆MX ⊆Mout , (3.1)

and it is these bounding cones that we will study. The duals of these cones will then provide

cones that bound KX on the outside and the inside, respectively: defining Kin := M∨out

and Kout :=M∨in, and writing Kin for the interior of Kin, and Kout for the interior of Kout,

we have

Kin ⊆ KX ⊆ Kout . (3.2)

As we shall see, the Kähler cone KV of the ambient toric variety V can play the role of

Kin, while a new cone, K∩, provides the outer bound Kout [10].

KV . Although computing MX is challenging, the Mori cone MV of the toric variety

V can be computed efficiently from the fan using an algorithm due to Berglund, Katz,

and Klemm [11], which is equivalent to the classical algorithm of Oda and Park [12].

By (2.6), the dual of MV is the closure KV of the Kähler cone KV of V . Restricting the

Kähler parameters ti so that ti[Di] ∈ KV ensures that all holomorphic submanifolds of V

have positive volume, and therefore this restriction also guarantees that all holomorphic

submanifolds of X have positive volume. We therefore have

KV ⊆ KX . (3.3)

We remark that subvarieties of V that correspond to simplices interior to facets do

not intersect a generic X, and therefore any triangulations of ∆◦ that differ only by sim-

plices interior to facets define isomorphic Calabi-Yau hypersurfaces, but with different toric
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ambient spaces Vα. It is then natural to glue the Kähler cones KVα together and define

K∪ [7]:

K∪ :=
⋃
α

KVα . (3.4)

However, such a process appears prohibitively complicated at large h1,1, and will not play

a role in our analysis.

K∩. Consider the following set of surfaces in V :

{ŜAB} := {D̂A ∩ D̂B, A,B = 1, . . . , h1,1 + 4, A 6= B} . (3.5)

The intersection of any of the ŜAB with a generic anticanonical hypersurface X, if

nonempty, is transverse and defines a corresponding curve in X,

CAB = DA ∩DB ⊂ X (A 6= B) . (3.6)

The curve CAB lies in MX , but in general not every element of MX can be written in

the form (3.6). Because the {CAB} are the curves inherited from intersections of distinct

prime toric divisors, we call the {CAB} toric intersection curves. The volumes of the toric

intersection curves are

Vol(CAB) ≡ tAB :=

∫
DA∩DB

J . (3.7)

We define the intersection cone K∩ as the space of Kähler parameters ti for which the

volumes V, τA and tAB are all positive:

K∩ := {J | V , τA, tAB > 0} . (3.8)

As these conditions are necessary, but in general not sufficient,5 to ensure that ti[Di] ∈ KX ,

we have the inclusions

KV ⊆ KX ⊆ K∩ . (3.9)

The stretched Kähler cone. In order to study the effect of demanding that all cycles

satisfy the minimal volume constraint (1.2), we introduce the notion of a stretched Kähler

cone. Let X be a projective algebraic variety, let J ∈ H1,1(X,R) be a closed (1,1) form on

X, and let W = {W} be a set of subvarieties W ⊂ X. Given a number c > 0, we define

the (c,W)-stretched Kähler cone of X,

K̃X [c,W] :=
{
J ∈ H1,1(X,R)

∣∣∣VolJ(W ) ≥ c ∀ W ∈ W
}
. (3.10)

The first stretched Kähler cone we consider is the stretched Kähler cone of X,

K̃X := K̃X [1, {C ∈MX}] . (3.11)

We next define the stretched intersection cone

K̃∩
′
:= K̃X [1, {CAB}] , (3.12)

5In a few cases, K∪ = K∩ and we may therefore determine KX exactly, but this is far from generic.
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as the region in which all intersection curves CAB have volume ≥ 1. In all cases we have

K̃X ⊆ K̃∩
′
, but because the curves CAB typically do not generate MX , we typically have

K̃X ( K̃∩
′
.

Finally, noting that for favorable X, H1,1(V,R) can be naturally identified with

H1,1(X,R), we define the stretched Kähler cone of V,

K̃V := K̃V [1, {Ĉ ∈MV }] , (3.13)

i.e. K̃V is the subset of H1,1(X,R) ∼= H1,1(V,R) in which all curves Ĉ on V have volume

≥ 1.6

In a complete toric variety, any curve is rationally (and thus numerically) equivalent

to an effective sum of toric curves [13]. A curve Ĉ ⊂ X ⊂ V is also a curve in V , and so in

homology Ĉ can be expressed as a non-negative integral linear combination of toric curves.

It follows that K̃V ⊂ K̃X .

We have therefore bounded the stretched Kähler cone:

K̃V ⊆ K̃X ⊆ K̃∩
′
. (3.14)

In practice, it is easier to work with the cone

K̃∩ := K̃X [1, {CAB, DA, X}] , (3.15)

as it ensures that all inherited prime toric divisors DA, as well as X itself, have nonzero

volumes and renders the optimization problems posed in section 6 well defined.

4 Axion couplings

Consider a compactification of type IIB string theory on an orientifold7 of a Calabi-Yau

threefold hypersurface X. The four-dimensional theory contains h1,1 axions from reduction

of the Ramond-Ramond four-form C4. In this section we explain how the kinetic and

potential couplings of the axion fields are computed from geometric data.

4.1 Kinetic term

In terms of a basis {Di}, i = 1, . . . , h1,1 for H4(X,Z), we define

θi :=

∫
Di

C4 (4.1)

to be the corresponding dimensionless axions. The Kähler coordinates on Kähler moduli

space are the complexified divisor volumes

Ti := τi + iθi , (4.2)

6In a general computation of K̃V using the algorithm of [11], care would be needed to ensure that toric

curves Ĉ that can be singular in V obey the constraint (1.2) with c = 1, rather than with some fractional

c. However, for our analysis it suffices to require that smooth toric curves obey (1.2), and this is readily

checked using [11].
7For simplicity we suppose here that h1,1

− = 0.
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with τi = 1
2

∫
Di
J ∧ J , cf. (2.7). The axion kinetic term is then8

Lkin = −
M2

pl

2
Kij∂

µθi∂µθ
j , (4.3)

where the Kähler metric Kij is obtained from the Kähler potential K = −2 log V.

4.2 Nonperturbative superpotential

The axions are perturbatively massless and receive mass only nonperturbatively, from

instantons: specifically, from Euclidean D3-branes wrapping four-cycles.9

The leading-order bosonic action S for a Euclidean D3-brane is given by the Dirac-

Born-Infeld action plus an imaginary Chern-Simons term that provides the coupling to the

axion (see e.g. [14]). Consider Euclidean D3-branes wrapping the four-cycles

Σα := n i
αDi , (4.4)

for some n i
α ∈ Z, α = 1, . . . ,N , and for some N > 0. The action Sα of the Euclidean

D3-brane wrapping Σα is then

Sα = 2πVol(Σα) + 2πi

∫
Σα

C4 = 2πVol(Σα) + 2πin i
α θi . (4.5)

Although one can in principle consider Euclidean D3-branes wrapping any four-cycle Σα ∈
H4(X,Z), the situation is best-understood when Σα is an effective divisor, i.e. when [Σα] ∈
Eff(X): precisely in that case, Σα is calibrated by the Kähler form J , and so obeys

Vol(Σα) =
1

2

∫
Σα

J ∧ J = n i
α τi , (4.6)

so that Sα = 2πn i
α (τi + iθi) = 2πn i

αTi.

If instead [Σα] 6∈ Eff(X), determining the volume of the minimum-volume representa-

tive of the class [Σα] is in general very difficult, as we explain in appendix A. Moreover,

Euclidean D3-branes wrapping a representative Σα of a class [Σα] 6∈ Eff(X) cannot con-

tribute to the superpotential. They may contribute to the Kähler potential, but such effects

are not well understood.

For now we will focus on effective divisors, and we suppose that superpotential terms

arise from Euclidean D3-branes wrapping the divisors

Dα := q i
αDi ∈ Effι(X) , (4.7)

for some q i
α ∈ Z, α = 1, . . . , p, and for some p > 0. The superpotential then takes the

form [4, 15]

W = W0 +
∑
α

Aα exp
(
− 2πq i

α Ti
)

(4.8)

8Indices on τi and θi are raised with the identity matrix.
9Strong gauge dynamics on a stack of D7-branes wrapping a four-cycle can also produce a nonpertur-

bative contribution to the axion potential. Our considerations apply equally to Euclidean D3-branes and

to D7-branes, but for simplicity of language we only refer to the former.
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where W0 is the classical flux superpotential [16]. The Pfaffians Aα depend on the complex

structure moduli, and will be set to unity in our analysis. The axion potential can then be

written as

V =
8π

V2

[∑
α

q i
α τiW0e

−2πq i
α τi cos

(
2πq i

α θi
)

+
∑
α>α′

(
π(K−1)ijq

i
α q

j
α′ + (q i

α + q i
α′)τi

)
e−2πτi(q

i
α +q i

α′ ) cos
(
2πθi(q

i
α − q i

α′)
)] (4.9)

We will make the conservative choice W0 ∼ 1: a smaller value of the flux superpotential

would make our upper bounds on axion masses more stringent. Performing a GL(h1,1,R)

transformation φi = MplM
j
i θj such that φ has canonical kinetic term, we arrive at

L = −1

2
∂µφi∂µφ

i − V (φ) . (4.10)

The Hessian of the canonically-normalized axions is

Hij :=
∂2

∂φi∂φj
V (φ) , (4.11)

and we denote its eigenvalues by h2
1 ≤ . . . ≤ h2

h1,1 . The potential (4.9) has a rich structure

of minima and critical points, cf. e.g. [17–19], and finding the global minimum numerically

is expensive when h1,1 � 1 and p� h1,1 (for p slightly larger than h1,1, which does not hold

here, the methods of [19] could be used). In the remainder, by axion masses-squared we

mean the Hessian eigenvalues h2
i , evaluated at the origin ~0, i.e. at θ1 = θ2 = · · · = θh1,1 = 0.

By minimum axion mass-squared we mean

m2
min := min

i
|h2
i (~0)| . (4.12)

One should bear in mind that these quantities could change slightly upon shifting the axion

vev to a minimum, but we have found no evidence for changes large enough to invalidate

our parametric results.

4.3 Geometric field ranges

The effective Lagrangian for the axions is usefully rewritten as

L = −
M2

pl

2
Kij∂

µθi∂µθ
j −

P∑
a=1

Λ4
a

(
1− cos(Q i

a θi)
)
, (4.13)

where the mass scales Λa are determined by the instanton actions Sα, and the charge

matrix Q has the entries

Q i
a = 2π

(
q i
α

q i
β − q i

γ

)
, (4.14)

where a = 1, . . . p(p+ 1)/2 ≡ P . The rows involving q i
β − q i

γ arise from cross terms in the

F-term potential, see [5, 20].
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Because the potential is periodic it is natural to define the axion fundamental domain

F [5, 20], given by the hyperplane constraints:

F = {θi | − π ≤ Q j
a θj ≤ π} . (4.15)

The fundamental domain is compact when Q has rank h1,1.

A quantity of key interest for axion inflation is the geometric field range, i.e. the

maximum distance R from the origin to the boundary of F , measured with respect to Kij .

That is,

R := max
ρ

√
dTρ ·K · dρ , (4.16)

where dρ is the matrix of the vertices of F , and K is the Kähler metric. The walls and

vertices of F are determined by the integers q i
α , i.e. by the set of effective divisors {Dα}

in (4.7) that support superpotential terms. The problem of identifying those effective

divisors of a Calabi-Yau threefold hypersurface that support nonvanishing superpotential

terms has not been fully solved, cf. [21]. For the purposes of the present work we will

assume that every prime toric divisor DA supports a Euclidean D3-brane superpotential

term, cf. [5].

Computing R directly from (4.16) is prohibitively expensive at large h1,1, since the

number of vertices that must be checked is at least 2h
1,1−1. We will instead consider an

upper bound on R. By performing a basis transformation

θi = (Q−1) j
i ϑj , (4.17)

where Q is a rank h1,1 subblock of Q, we can trivialize 2h1,1 of the hyperplane constraints.

The metric in the ϑ basis is then

Ξ = (Q−1)T ·K · (Q−1) , (4.18)

with eigenvalues ξ2
1 ≤ · · · ≤ ξ2

h1,1
. An upper bound for R is then given by

R ≤ Rbound = π
√
h1,1ξh1,1 , (4.19)

where ξ2
h1,1 is the largest eigenvalue of Ξ. When Q is not square, Rbound depends on the

choice of Q, but each choice does provide an upper bound on R. Because we have assumed

that each of the DA supports a Euclidean D3-brane superpotential term, we can choose h1,1

of the toric coordinates for Q, in such a way that Q is the h1,1× h1,1 identity, and Ξ = K.

4.4 Masses

Suppose that, for some specified Kähler form J , and for some positive number L, every

basis of H4(X,Z) contains at least k ≥ 1 members Σα with Vol(Σα) > L in string units.

Then at least k axions must have mass . e−2πL. One can therefore place upper bounds

on the masses of the lightest axions by placing lower bounds on the volumes of four-cycles

furnishing bases for H4(X,Z).

Let us first consider placing upper bounds on superpotential contributions to axion

masses, by placing lower bounds on the volumes of effective divisors. As explained in

– 12 –



J
H
E
P
0
4
(
2
0
2
0
)
1
3
8

section 2.1.2, in this work we approximate Eff(X) by Effι(X); corrections to this approxi-

mation will be described in [8]. The inherited prime toric divisors {DA}, A = 1, . . . , h1,1+4,

provide a set of generators of Eff ι(X), and also, in the above approximation, of Eff(X).

For any J ∈ H1,1(X,R), not necessarily inside KX , we can compute the volumes τA :=
1
2

∫
DA

J ∧ J . There are at most
(
h1,1+4
h1,1

)
sets {Di} of h1,1 prime toric divisors that furnish

bases for H4(X,Q), and for each such basis B we can compute the volumes τB1 ≤ · · · ≤ τBh1,1
of the basis generators. Define Bmin to be the basis choice that minimizes τBh1,1 . Roughly

speaking, Bmin is a minimum-volume basis of generators of the effective cone. We write

τlast(J) := τBmin

h1,1
, (4.20)

denoting explicitly the dependence on the choice of J . We can now give an upper bound

on the magnitude of the leading superpotential term involving the lightest axion, for the

given J :

|W | ≤ exp
(
−2πτlast(J)

)
. (4.21)

Furthermore, given any region R ⊂ H1,1(X,R), not necessarily inside KX , we can compute

τRlast := min
J∈R

τlast(J) . (4.22)

We then write

τVlast := τ K̃Vlast , (4.23)

τXlast := τ K̃Xlast , (4.24)

τ∩last := τ K̃∩last . (4.25)

Using (3.14), we have τ∩last ≤ τXlast ≤ τVlast. Thus, when the condition (1.2) for control of the

α′ expansion is imposed, the superpotential for the lightest axion is bounded above by

|W∩| := exp
(
−2πτ∩last

)
. (4.26)

For h1,1 � 1 the exponentials in (4.9) are parametrically dominant, and in evaluating the

dependence of (4.9) on the lightest axion we can omit factors that are only polynomial in

the volumes, including the effect of canonical normalization.10 We then arrive at an upper

bound on the mass-squared m2
min of the lightest axion from (4.26),

m2
min . |W∩| . (4.27)

One of our main results is the computation of the bound m2
min for the geometries in our

ensemble.

What about axion mass terms from instanton contributions to the Kähler potential,

resulting from Euclidean D3-branes wrapping classes [Σα] ∈ H4(X,Z) that are outside

Eff(X), and admit no holomorphic representative? Could such instantons give masses

� mmin? We discuss this question in appendix A, and find that present knowledge of

minimum-volume representatives of classes outside Eff(X) is not sufficient to give a definite

answer, but at the same time there is no evidence of such a parametric enhancement

in known threefolds. We find it plausible that masses from K are least parametrically

comparable to those from W , and so are approximately given by (4.27).

10We will verify in section 6 that this is an excellent approximation, see figure 12.
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5 Computation

We obtained the topological data of Calabi-Yau threefold hypersurfaces as follows. For

each value of h1,1 that we studied, we drew a number N (h1,1) of polytopes at random

from the Kreuzer-Skarke database: see table 1.11 We manipulated the polytopes using

Sage [22]. For each polytope that was favorable, we used TOPCOM to obtain a fine and

regular (but not star) triangulation. We removed the lines in the strict interior of the

polytope and included a line from the origin to each point in the polytope, thus producing

an FRST T̂ [23]. Such a triangulation defines a fan, and in turn defines a toric variety V .

As explained in section 2.1.1, to study a generic Calabi-Yau threefold hypersurface, one

can omit simplices of T̂ that pass through facets of ∆◦. We denote the set of remaining

simplices by T , and abuse language slightly in calling T an FRST as well.

Because we have restricted to favorable polytopes, there are h1,1+4 prime toric divisors

D̂A ⊂ V , each corresponding to a ray of the fan determined by T . We picked a basis for

H4(X,Q) by selecting a set of h1,1 of the inherited prime toric divisors DA := D̂A ∩ X
that are linearly independent. Using Sage, we computed the triple intersection numbers

κijk in the chosen basis. Finally, we computed the Mori cone MV of the toric variety in

Mathematica using the algorithm described in [11], which is equivalent to that of [12], but

easier to implement.

With this data in hand, we turned to analyzing the resulting cones. For each geometry

the stretched cones K̃V and K̃∩ were constructed as described in section 3. We minimized

the volumes τA and V inside K̃V and K̃∩ using IPOPT, a software package for large-scale

nonlinear optimization, which is included in version 11 of Mathematica. Because IPOPT

uses an interior point algorithm that finds a local solution to the optimization problem, we

performed the minimization multiple times, from different starting points, in an attempt

to find the global minimum. Finding even one feasible starting point for the optimization

algorithm is challenging at large h1,1, as the cones K̃V and K̃∩ become very narrow. We

made use of IBM’s optimization software CPLEX as well as the LinearProgramming function

of Mathematica to find such points.

Non-convex optimization is NP-hard, and so at large h1,1 we are unable to definitively

prove that the local minima we obtain are global minima. However, we can provide some

evidence in support of this possibility. First, the parameter space in which we perform the

optimization, namely the space of Kähler forms, has a natural decomposition into an over-

all scaling variable and angular variables. The overall scaling rigidly dilates the volumes of

all cycles. In this work we have demonstrated that the angular variables are severely con-

strained, lying in a narrow cone, and so to achieve a large amount of variation in the cycle

volumes one must go far out in the stretched Kähler cone itself. Therefore, near the apex

where the volumes are generally small, we do not expect there to be many solutions to the

optimization problem. In addition, for each data point we have performed the optimiza-

tion with many initial values, finding little variation in the solution. For a subset of the

data, the optimizations were repeated, and verified, using global optimization algorithms

11We remark in passing that the Euler number χ of X is negative in more than 99% of the geometries in

our ensemble with h1,1 ≤ 18, but by h1,1 = 100 less than 2% of geometries have χ < 0.

– 14 –



J
H
E
P
0
4
(
2
0
2
0
)
1
3
8

h1,1 # of polytopes in KS database # of polytopes studied # of favorable polytopes # of volume minimizations

2 36 36 36 36

3 244 244 243 243

4 1197 1,197 1,185 1,185

5 4,990 4,990 4,987 3,000

6 17,101 17,101 16,608 3,000

7 50,376 50,376 48,221 3,000

8 128,165 128,165 120,759 3,000

9 285,929 285,929 264,558 3,000

10 568,078 568,078 515,319 3,000

11 1,022,264 300,000 261,541 3,000

12 1,685,784 100,000 86,860 3,000

13 2,580,222 100,000 84,923 3,000

14 3,697,767 100,000 82,939 3,000

15 5,011,933 100,000 80,415 3,000

16 6,473,431 100,000 78,756 3,000

17 7,989,780 100,000 76,749 3,000

18 9,561,562 100,000 75,109 3,000

19 11,054,578 100,000 73,454 3,000

20 12,434,427 100,000 71,656 3,000

21 13,652,664 20,000 14,136 3,000

22 14,677,475 20,000 13,844 3,000

23 15,484,811 3,000 2,047 2,047

24 16,088,119 3,000 2,025 2,025

25 16,495,690 3,000 1,988 1,988

30 15,914,795 3,000 1,907 1,907

35 12,955,936 3,000 1,866 1,866

40 9,620,216 3,000 1,808 1,808

45 6,787,275 3,000 1,774 1,774

50 4,659,208 3,000 1,729 1,729

55 3,171,468 3,000 1,700 1,700

60 2,174,347 3,000 1,654 1,654

65 1,494,731 3,000 1,634 1,634

70 1,018,865 3,000 1,641 1,641

75 762,815 3,000 1,627 1,627

80 487,805 3,000 1,655 1,655

85 339,574 3,000 1,641 1,641

90 246,570 3,000 1,604 1,604

95 179,981 3,000 1,629 1,629

100 129,605 3,000 1,626 1,626

105 92,887 3,000 1,597 0

110 68,453 3,000 1,627 0

115 51,509 3,000 1,619 0

120 39,847 3,000 1,602 0

130 23,001 3,000 1,597 0

135 16,731 3,000 1,659 0

140 12,392 3,000 1,626 0

145 9,411 3,000 1,596 0

155 5,440 3,000 1,646 0

160 4,101 3,000 1,697 0

165 3,160 3,000 1,717 0

170 2,502 2502 1,403 0

180 1,486 1486 899 0

185 1,318 1318 750 0

190 1,209 1209 685 0

195 830 830 497 0

205 535 535 324 0

210 483 483 276 0

215 392 392 233 0

220 356 356 208 0

230 219 219 113 0

235 172 172 113 0

240–491 4,358 4,358 2,671 0

Table 1. The dataset.

– 15 –



J
H
E
P
0
4
(
2
0
2
0
)
1
3
8

with many thousands of initial points. We therefore expect our general conclusions about

minimal volumes to be robust.

Note that we computed one FRST for each favorable polytope studied. With our

methods it takes of order a day to obtain the topological data of all FRSTs of all threefolds

with h1,1 ≤ 6, but for larger h1,1 it quickly becomes infeasible to compute all triangulations.

In order to provide a better point of comparison for the data we can obtain at h1,1 � 1,

we limited ourselves to one FRST per polytope even for small h1,1.

The values of h1,1 that we studied, and the numbers N (h1,1), were chosen to balance

the computational expense at h1,1 � 1 against the potential for illuminating scaling laws.

Obtaining more extensive data at large h1,1 is an obvious next step [8]. In fact, the present

work has established the feasibility of obtaining the topological data of at least one threefold

(i.e., one FRST) for each polytope in the Kreuzer-Skarke database. A very rough estimate

is that such a computation could require a few CPU-centuries, absent any improvements

to the algorithms.

6 Results

The primary topological data produced by our analysis are the generators of the Mori

conesMV of toric varieties V , and the intersection numbers κABC of inherited prime toric

divisors DA of Calabi-Yau hypersurfaces X ⊂ V . Taking these data and imposing the

condition (1.2), we can compute the stretched Kähler cones K̃V and K̃∩, which bound the

stretched Kähler cone K̃X of X from the inside and the outside, respectively, cf. (3.14).

Then, for any holomorphic 2k-cycle Σ2k (1 ≤ k ≤ 3) in X, K̃∩ determines a lower bound

on Vol(Σ2k) ≡ 1
k!

∫
Σ2k
∧kJ .

In this section we report salient features of the intersection numbers, Mori cones,

volumes of holomorphic cycles, geometric field ranges, and masses in our ensemble.

Topological data. The volumes V, τA and tAB depend on the intersection numbers κijk,

as given in (2.7). Since κijk depends on a choice of basis of H4(X,Z), we instead report

the statistical properties of κABC , which is basis-independent.

We first examine the sparseness of κABC . The number of nonvanishing intersection

numbers per geometry increases approximately linearly with h1,1, as shown in figure 1. As

a result, κABC becomes very sparse at large h1,1. In figure 2 we show the root mean square

(RMS) size of the nonvanishing intersection numbers for each geometry.

The cone KV is given by the intersection of the half-spaces defined by the linear

inequalities

Mait
i > 0. (6.1)

As h1,1 increases, the number of inequalities grows and KV becomes very narrow. A

conceptually straightforward way to quantify the narrowness of the cone KV would be to

analyze the behavior of the solid angle subtended by KV as a function of h1,1. However,

this becomes computationally expensive when h1,1 & 15. Instead, we characterize the

narrowness of KV by computing the cosine of the smallest angle between two hyperplanes,
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Figure 1. Number of nonzero entries of κABC , cf. (2.9), vs. h1,1.

denoted Ma and M b:

cos(θmin) := min
a,b

(
Ma ·M b

|Ma||M b|

)
. (6.2)

As the angle θmin between two hyperplanes approaches zero, the cone becomes infinitely

narrow. This can also be understood from the perspective of the dual cone MV . When

MV has two generating rays Ma and M b that are almost antiparallel (such that KV has

facets whose normals are almost antiparallel), it is difficult to find a Kähler form J such

that both of the associated curves have positive volumes simultaneously. Figure 3 shows

cos(θmin) as a function of h1,1.

As KV becomes more narrow, the stretched cone K̃V , defined in (3.13), gets pushed

further away from the origin. Another measure of the size of KV is therefore the shortest

distance dVmin between the origin and any point of K̃V ,

dVmin := min
ti

{√
titi

∣∣∣ ti[Di] ∈ K̃V
}
, (6.3)

and we denote the minimum-distance point by tVd . See figure 4.

Although KV is computationally accessible (even for h1,1 = 491), and the size of KV
is generally correlated with the size of KX , KV can in principle be much more narrow

than KX . Analysis of KV alone can therefore provide only estimates of the volumes of

holomorphic cycles in X, for ti[Di] ∈ KX , rather than definite bounds. To obtain lower

bounds on cycle volumes, we instead examine K∩, which contains KX . The tradeoff is that

K∩ is a complicated cone defined by linear, quadratic and cubic constraints, and defining

a quantity analogous to θmin is difficult. We can, however, compute d∩min, the shortest
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Figure 2. Root mean square size of nonzero entries of κABC vs. h1,1.

Figure 3. cos(θmin), defined in (6.2), vs. h1,1.

distance between the origin and any point of K̃∩,

d∩min := min
ti

{√
titi

∣∣∣ ti[Di] ∈ K̃∩
}
, (6.4)

and we denote the minimum-distance point by t∩d . See figure 5.

Volumes. To compute lower bounds on τlast and V, for each prime toric divisor DA we

numerically minimize the divisor volume τA in K̃V and in K̃∩. We then calculate τVlast and

τ∩last as described in section 4 and section 5. The resulting bounds are shown in figures 6–9.12

Geometric field ranges. As explained in section 4, we estimate the radius R (4.16) of

the axion fundamental domain F by assuming that all prime toric divisors DA contribute

to the superpotential. The radius depends on the Kähler parameters ti, and we report

12We omit cases in which the only K∩ constraint on V is the trivial one V > 1, cf. (3.15): for these

geometries a direct computation of KX is plausibly necessary.
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Figure 4. log10(dV
min), defined in (6.3), vs. h1,1 and vs. log10(h1,1). The fit is log10(dV

min) =

−1.7 + 3.1 log10(h1,1).
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Figure 5. log10(d∩
min), defined in (6.4), vs. log10(h1,1). The fit is log10(d∩

min) = −1.4 +

2.5 log10(h1,1).

upper bounds on R at two locations. We define tVV and t∩V to be the points in K̃V and K̃∩,

respectively, where the threefold volume V is minimized, and we define

RV := R(tVV ), R∩ := R(t∩V) . (6.5)

We first compute the Kähler metric Kij at tVV . We next trivialize 2h1,1 of the hyperplane

constraints, as in (4.17), taking Q to be the h1,1 × h1,1 identity subblock of the charge

matrix Q corresponding to a choice of h1,1 of the toric coordinates. This yields an upper

bound RVbound ≥ RV , shown in figure 10. Computing Kij instead at t∩V and repeating the

trivialization, we obtain the upper bound R∩bound ≥ R∩, shown in figure 10.

Axion masses. Now consider type IIB string theory compactified on an orientifold of a

hypersurface X from our ensemble. The large divisor volumes lead to powerful suppression

of superpotential contributions to the potential for C4 axions θi. We find that in every

geometry in our ensemble13 with h1,1 > 22, the lightest axion is essentially massless, with

the canonically-normalized field having mass

m < 10−33 eV . (6.6)

Let us also give a heuristic estimate of the expected mass of the lightest axion. By the

definition (4.22), every basis for H4(X,Q) consisting of elements of Eff(X) has members

with volume ≥ τ∩last. As seen from the fit in figure 6, τ∩last ∼ 0.02(h1,1)p with p ∼ 3. Hence,

one or more of the h1,1 axions θi receives no superpotential contributions larger than

|W∩| ≡ exp(−2πτ∩last) ∼ exp
(
−0.1(h1,1)3

)
. (6.7)

13One must bear in mind that we have examined a very limited sample of the Kreuzer-Skarke list, and

so our findings should be understood as indicating typical behavior, not establishing a no-go.
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(a) log10(τVlast) vs. log10(h1,1). The fit is log10(τVlast) = −1.9 + 4.3 log10(h1,1).

(b) log10(τ∩last) vs. log10(h1,1). The fit is log10(τ∩last) = −1.7 + 3.2 log10(h1,1).

Figure 6. Lower bounds on τVlast, defined in (4.23), and τ∩last, defined in (4.25), vs. h1,1.
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(b) log10(τ∩last).

Figure 7. τVlast (left) and τ∩last (right) for h1,1 = 10 (leftmost peak), 30 (center peak), and 50

(rightmost peak).
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(a) log10(VV ) vs. log10(h1,1). The fit is log10(VV ) = −3.4 + 7.2 log10(h1,1).

(b) log10(V∩) vs. log10(h1,1). The fit is log10(V∩) = −3.8 + 6.2 log10(h1,1).

Figure 8. Lower bounds on V, defined in (2.7), vs. h1,1 in K̃V (top) and K̃∩ (bottom).
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Figure 9. Lower bounds on V in K̃V (left) and K̃∩ (right) for h1,1 = 10 (leftmost peak), 30 (center

peak), and 50 (rightmost peak).
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(a) RV
bound vs. h1,1. (b) R∩

bound vs. h1,1.

Figure 10. Upper bounds on the geometric field range, cf. (6.5), vs. h1,1. Left: log10(RV
bound).

Right: log10(R∩
bound). 5th, 50th, and 95th percentiles are shown.

The exponent p changes, within the range 3 . p . 6, depending on whether one examines

τ∩last — which is the most direct and conservative — or instead a more computable proxy

such as τVlast or (dVmin)2. However, such changes do not alter our central finding that one or

more axions are extremely light when h1,1 � 1 and J ∈ K̃∩.

Summary. A root cause of our findings is that the Kähler cones of Calabi-Yau threefold

hypersurfaces are very narrow for h1,1 � 1, as shown in figure 3. The condition (1.2) that

every effective curve has volume ≥ 1, which we have used as a proxy for control of the

α′ expansion, then implies that the Kähler form J ∈ H1,1(X,R) is far from the origin in

H1,1(X,R), in the sense of (6.3): see figures 4 and 5. In turn, many irreducible effective

curves and irreducible effective divisors have large volumes, see figures 6–7. Furthermore,

the volume V of X itself is large (figures 8–9), the geometric field range is generally small

(figure 10), and the eigenvalues of the axion kinetic matrix are small (figure 11). The

minimum axion mass is small, and strongly correlated with τ∩last (figure 12).14

7 Implications for axion cosmology

The overall picture that emerges from our analysis is that in a compactification of type IIB

string theory on an orientifold of a Calabi-Yau threefold hypersurface X with h1,1 � 1, in

the regime of control of the α′ expansion, X and most of its subvarieties have very large

volumes in string units. The resulting effective theory has many axions, some of which are

essentially massless,15 with m� 10−33 eV. The axion kinetic matrix has small eigenvalues,

and the radius of the axion fundamental domain is sub-Planckian.16 In summary, we find

an axiverse with hundreds of axions, some of them massless, and all with small periodicities.

14In fact, mmin(t∩d ) is almost perfectly correlated with τlast(t
∩
d ). Note that by (4.20), τ∩last 6= τlast(t

∩
d ).

15Many authors use the term ‘ultralight axion’ for axions with m & 10−33 eV that could make up part of

the dark matter, as in [24, 25]. We avoid the term ‘ultralight’ when speaking of the far lighter axions found

here, with m � 10−33 eV; these we instead call ‘massless’, even though strictly speaking their masses are

negligibly small, not zero.
16As explained in section 6, in a small fraction of cases we cannot exclude the possibility of super-Planckian

radii, but neither can we prove that all curves in X have positive volume in these cases. For the present dis-

cussion we consider only the better-established examples with J ∈ K̃V , for which the radii are sub-Planckian.
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(a) log10(ξVh1,1) vs. h1,1. (b) log10(ξV1 ) vs. h1,1.

(c) log10(ξ∩h1,1) vs. h1,1. (d) log10(ξ∩1 ) vs. h1,1.

Figure 11. Maximum (left) and minimum (right) eigenvalues of the kinetic matrix Ξ, defined

in (4.18), vs. h1,1, evaluated at tVV (top) and t∩V (bottom).

Figure 12. ln(mmin) evaluated at t∩d , cf. (4.12), vs. τ∩last. The edge is at ln(mmin) = −πτlast.
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In this section we will mention a few of the implications of these findings for the cosmology

of compactifications with h1,1 � 1.

Axions and axion-like particles with appreciable couplings to the Standard Model are

strongly constrained by a wealth of data from diverse channels, including terrestrial ap-

pearance experiments such as helioscopes and haloscopes; red giant evolution; supernovae;

CMB spectral distortions; and X-ray production in galactic or cosmological magnetic fields.

See [26] for a review. To apply these constraints to the large-h1,1 axiverse that we have

described, it would be necessary to make specific assumptions about the realization of the

Standard Model, and its couplings to the axion sector. While very interesting, such an

analysis is extremely model-dependent.

Cosmological effects of the gravitational couplings of axions present a more direct,

but still somewhat model-dependent, set of constraints. Sufficiently light axions, with

m � 10−33 eV, are indistinguishable from vacuum energy unless excitations of the axion

field (i.e., particles) are produced as dark radiation, for example through the decay of an

associated modulus. The limits on dark radiation are rather stringent, cf. [27–29], but again

depend on the details of post-inflationary evolution. For example, if the lightest modulus

decays only to a single axion, as well as to Standard Model particles, the dark radiation

constraints are insensitive to the existence of other axions and moduli [29], but can be

severe nonetheless [27, 28]. Axions with m ∼ 10−33 eV can be quintessence fields [30], and

in special cases could even alleviate the “why now” problem [31]. Axions with m ∼ 10−22 eV

could constitute a portion of the dark matter, and could give rise to small-scale structure

in better agreement with observations than that predicted by cold dark matter models [24]

(for recent work, see e.g. [25, 32–34]). Overproduction of axion dark matter — and in some

mass ranges, isocurvature perturbations in the CMB — provide serious constraints [35–37],

especially in models with many axions [38].

Perhaps the most interesting constraints on the large-h1,1 axiverse come from black

hole superradiance [39]. Axions in the mass range 10−10 eV− 10−20 eV, even if not present

as a cosmologically abundant population, can trigger instabilities of black holes. Detailed

modeling of moduli stabilization would be necessary to make precise statements, but as a

rough estimate, we find that approximately half the geometries in our ensemble have an

axion in the mass range 10−10 eV ≤ m ≤ 10−20 eV. Superradiance limits on many-axion

theories have been obtained in [40]. However, the analysis of [40] is only directly applicable

to theories with relatively large decay constants, f & 1014 GeV. Axions with smaller

periodicities suffer from nonlinear interactions, potentially changing the limits of [40]. A

dedicated study of superradiance constraints on the Kreuzer-Skarke axiverse would be a

worthwhile topic for the future.

8 Conclusions

We have initiated a survey of compactifications on Calabi-Yau threefold hypersurfaces with

arbitrary h1,1, i.e. of the entire Kreuzer-Skarke list.

This work extends and complements the complete enumeration carried out by Altman

et al. [2] for h1,1 ≤ 6. The large h1,1 regime presents evident computational challenges,

a few of which we have overcome. Publicly-available software such as Sage [22] gener-
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ally produces FRSTs only for h1,1 . 10, and the improved triangulation algorithms that

have been implemented on a large scale in the past are expensive, and function only for

h1,1 . 30 [2, 41]. Moreover, the sheaf cohomology computations needed for studying divi-

sors D ⊂ X likewise explode in difficulty for h1,1 & 10. These limitations have led to a

perception that systematic enumeration and study of hypersurfaces with h1,1 � 10 — cor-

responding to the bulk of the Kreuzer-Skarke database — is not possible at present. In this

work we have demonstrated, on the contrary, that large-scale studies are feasible for any

range of h1,1 arising in the Kreuzer-Skarke list, given only modest computational resources.

A key step was implementing the triangulation algorithm described in [23], which

allowed us to obtain fine regular star triangulations ∼ 5 · 103 times faster (per CPU)

than was possible in [2, 41]. With our methods, finding one FRST takes just seconds

even for h1,1 = 491.17 However, although we can efficiently generate large numbers of

compactifications at any desired h1,1, several challenges remain. In this work, we used Sage

to obtain the intersection numbers of hypersurfaces with h1,1 ≤ 100, at a computational

cost of order half a CPU-hour per hypersurface at h1,1 = 100. Significant further gains

are possible in this area, and allow efficient computation of intersection numbers for any

h1,1 ≤ 491, as we will show in [8]. Even so, one thing that remains out of reach is a

complete enumeration of hypersurfaces at large h1,1, simply because the number of such

hypersurfaces — corresponding to the number of inequivalent triangulations of reflexive

polytopes with many lattice points — appears to be vast.

The principal raw data produced by our analysis are FRSTs of four-dimensional reflex-

ive polytopes; the Kähler cones of the corresponding toric varieties V ; and the intersection

numbers of generic Calabi-Yau threefold hypersurfaces X ⊂ V . These data provide a wealth

of information about four-dimensional effective theories arising from string compactifica-

tions on such X. In this paper we studied two of the most salient physical findings, axion

mass hierarchies and axion field ranges, leaving a complete characterization of the physical

implications of our topological and geometric data as a significant task for future work.

The first observable we studied is the set of relations among cycle volumes enforced

by the Mori cone conditions, which control the structure of the potential generated by

instantons. We found that enforcing that every effective curve has volume at least one in

string units, as a proxy for ensuring control of the α′ expansion, has — for h1,1 � 1 — a

striking consequence: the volumes of many irreducible curves and divisors on X, and of X

itself, become extremely large. We found that these volumes scale roughly as (h1,1)p, with

the exponent 3 . p . 7 depending on the type of cycle considered.

One consequence is that in a compactification of type IIB string theory on an orientifold

of a typical Calabi-Yau threefold hypersurface with h1,1 � 1, one of the following holds:

1. One or more axions are effectively massless.

2. Many effective curves have volumes . 1.

3. The axion mass terms produced by Euclidean D3-branes wrapping non-holomorphic

four-cycles are parametrically larger than those from holomorphic four-cycles.

17Given such a triangulation, the results of [21] allow immediate study of the Hodge numbers of square-free

divisors of the corresponding threefold.
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When condition (3) holds, the breakdown of the α′ expansion cannot be detected by com-

puting the volumes of calibrated cycles, while condition (2) suggests but does not guarantee

the existence of large perturbative and nonperturbative corrections in the α′ expansion.

Thus, we have established a tension between nonvanishing masses for all axions, and man-

ifest control of the α′ expansion.

The second observable we studied is the metric on Kähler moduli space, which is

relevant for understanding quantum gravity constraints on large-field inflation. We found

that the eigenvalues of the axion kinetic matrix are typically small at large h1,1, primarily

because of the large volume of X. In each geometry we computed an approximation to the

radius of the axion fundamental domain. The radius depends strongly on how restrictive

a condition one imposes on the Kähler form J . For Kähler forms such that every curve in

the ambient toric variety V has volume ≥ 1, we found field ranges�Mpl in every example.

In the less restrictive case of Kähler forms in the region defined by (3.15), corresponding

to the outer approximant to the stretched Kähler cone of X, we found super-Planckian

axion field ranges in a small fraction of geometries, at each h1,1. While intriguing, this

finding cannot be taken as evidence for large field ranges in the regime of control of the α′

expansion, because without a direct computation of KX we cannot exclude the possibility

that in each example giving an apparent large field range, one or more effective curves

C ∈ MX has volume < 1, or indeed < 0.18 Overcoming this limitation is an important

task for the future.

Because our results are drawn from a statistical study of an ensemble of geometries,

they should be taken as statements about typical compactifications, and there can be special

Calabi-Yau threefolds that violate the behavior observed in this work. For instance, the

Mori cone constraints in the geometry studied in [42] are much milder than those of a

typical hypersurface, possibly because the Kähler moduli space in [42] has a symmetry

corresponding to exchanging the Kähler moduli that correspond to blowups. It would be

interesting to understand the incidence of such geometries.

Our results give a sharper picture of the spectrum of axion masses and decay constants

arising in geometric compactifications of string theory. Reasonable a priori estimates of

these spectra, as well as studies in families of examples, have been made and used in the

study of the string axiverse [29, 39, 43–45], and our ensemble provides a foundation for

refining these estimates.

There are several directions for future work. By applying computational resources

on a larger scale, one could more finely sample the Kreuzer-Skarke database. A rough

estimate is that in under a few hundred CPU-years one could find one FRST for every

one of the 473,800,776 polytopes in the list. Intersection numbers could be obtained at

comparable cost given the improved methods of [8]. As we have stressed, however, the

number of distinct triangulations is plausibly vastly larger than the number of polytopes,

and so it remains to be seen whether it is possible even to store the topological data of

every compactification arising from the Kreuzer-Skarke database.

18Note that because KX ⊂ K∩, computing K∩ is sufficient to place definite lower bounds on volumes,

or upper bounds on field ranges. However, because KX ( K∩ in general, any examples with J 6∈ KV are

necessarily provisional, and await a direct computation of KX .
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The geometric data obtained here can serve to answer questions about which sorts of

effective theories are possible in compactifications on Calabi-Yau hypersurfaces. To answer

such questions, it would be natural to use machine learning [46–53], among other tools,

given the scale and complexity of the data.
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A Non-holomorphic instantons

We noted in section 2 that computing contributions to the superpotential from Euclidean

D3-branes wrapping holomorphic four-cycles (i.e., effective divisors) is much simpler than

computing contributions to the Kähler potential from Euclidean D3-branes wrapping non-

holomorphic four-cycles. On the physics side, one reason for the disparity is that super-

potential terms are constrained by holomorphy. Geometrically, the difference between the

two computations is that a holomorphic four-cycle Σ4 is calibrated by the Kähler form J ,

and enjoys the relation

Vol(Σ4) =
1

2

∫
Σ4

J ∧ J , (A.1)

so that once J is given, Vol(Σ4) is determined by topological data. Similarly, an anti-

holomorphic four-cycle Σ4 has orientation opposite to that of a holomorphic cycle, and

obeys

Vol(Σ4) = −1

2

∫
Σ4

J ∧ J . (A.2)

However, it is much more difficult to compute the volume of a cycle that is neither holo-

morphic nor antiholomorphic, as we now explain.

A.1 Volume-minimizing currents

Suppose that X is a compact Kähler manifold of dimension n,19 with Kähler form J ,

and consider a class [α] ∈ H2n−2(X,Z). By definition, [α] can be represented by some

effective divisor D if and only if [α] ∈ Eff(X). So suppose, henceforth, that [α] 6∈ Eff(X),

and also −[α] 6∈ Eff(X). Then [α] admits neither a holomorphic representative nor an

antiholomorphic representative.

19Assuming that X is Calabi-Yau, and/or that n = 3, does not lead to appreciable simplifications, and

so we shall not make these assumptions in this section.
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Writing Vol(α) for the volume of a given representative α of the class [α], one might

attempt to define

MinVol([α]) = min
α∈[α]

Vol(α) , (A.3)

i.e. MinVol([α]) is the volume of the smallest-volume representative of the class α.

However, it is not obvious that the variational problem implied by (A.3) is well-posed:

does one search over all representatives of α, or just representatives obeying an appropriate

smoothness condition? It is also not clear a priori how smooth the volume-minimizing

configuration will be: in fact, one can easily find examples in which the volume-minimizing

configuration has singularities, at least at complex codimension one.

Fortunately, the problem of finding the minimum-volume representative of a given

homology class is one of the central questions of geometric measure theory, and was put on

sound footing in the 1960s by Federer and Fleming. They defined objects called integral

p-currents, which roughly correspond to formal sums of p-dimensional submanifolds, except

for sets of p-dimensional Hausdorff measure zero. Federer and Fleming showed that the

class of integral p-currents has a compactness property that is very useful in formulating

variational problems: in fact, they proved that for each class20 [α] ∈ H2n−2(X,Z), there

exists an integral current of least volume [54]. In other words, (A.3) actually does define

the solution of a well-posed variational problem, provided that α is understood to vary

over integral currents, not just over smooth submanifolds.

A.2 Non-holomorphic instantons and volume reduction

Consider a Euclidean D3-brane in a homology class [α] 6∈ Eff(X), which necessarily cannot

contribute to the superpotential, but may contribute to the Kähler potential. The real

part of the action of such a Euclidean D3-brane is plausibly proportional to MinVol([α]),

which is well-defined thanks to geometric measure theory. Even so, computing MinVol([α])

is nontrivial.

As a toy example, suppose that X is such that four-cycles α1 and α2 are a basis for

H4(X,Z) = Z2, and α1 and α2 also generate Eff(X). For a given Kähler form J , define

τi := 1
2

∫
αi
J ∧ J and θi :=

∫
αi
C4, i = 1, 2. If J is such that τ1, τ2 � L for some L � 1,

then Euclidean D3-brane terms in the superpotential are no larger than e−2πL.

In this situation, one should ask about contributions to the Kähler potential from

Euclidean D3-branes wrapping a representative γ of a non-effective class such as [γ] :=

[α1−α2] 6∈ Eff(X). Because α1 and α2 are calibrated by J , we have MinVol([αi]) = τi � L.

The action of instantons on γ is determined by τγ := MinVol([γ]). However, we cannot

conclude that

τγ ≥ τ1 + τ2 . (A.4)

If α1 and α2 are disjoint, then (A.4) actually does hold, but more generally the intersection

locus of the minimum-volume representatives of [α1] and [α2] can be deformed to produce

20Federer and Fleming’s theory of integral currents is not limited to the case that X is Kähler, nor even

complex, nor does it require that [α] is dual to a hypersurface, but for simplicity of presentation we state

what their results imply for the case of present interest.

– 29 –



J
H
E
P
0
4
(
2
0
2
0
)
1
3
8

a representative of [γ] with volume < τ1 + τ2. When τγ = τ1 + τ2−∆τ for ∆τ > 0, we will

say that recombination has led to volume reduction by an amount ∆τ > 0.

The question of volume reduction is best-understood for two-dimensional currents.

Building on work of Almgren [55], Chang proved that in any Riemannian manifold, the

singular set of a volume-minimizing two-dimensional current consists of isolated branch

points [56]. It is therefore tempting to conjecture that in a Kähler manifold, a volume-

minimizing two-dimensional current consists of a union of holomorphic and antiholomorphic

curves, intersecting at points; one consequence would be that there is no volume reduction

for two-dimensional currents in a Kähler manifold. However, in [57], for X a K3 surface,

Micallef and Wolfson gave an explicit example of a non-effective class [α1−α2] ∈ H2(K3,Z)

whose minimum-volume representative is not a union of holomorphic and antiholomorphic

curves,21 and for which MinVol([α1 − α2]) < MinVol([α1]) + MinVol([α2]). The volume

reduction is proportional to the small parameter εmeasuring the deviation from the orbifold

limit of K3.

The issue, returning to four-cycles, is then the following. If a significant volume reduc-

tion ∆τ ∼ O(τ1, τ2) could occur in some setting, so that τγ � τi, then ensuring τ1, τ2 � L

would not place any upper bound on the size of Euclidean D3-brane terms in the Kähler po-

tential. The axion masses from non-holomorphic instantons in K would be parametrically

larger than those from holomorphic instantons in W .

Although the Micallef-Wolfson construction proves that nonzero volume reduction can

occur in a Calabi-Yau compactification, we are not aware of any example of parametrically

large volume reduction in a comparable setting. Moreover, the cycle volume determines

only the leading semiclassical action of a Euclidean D-brane, and one should compute

corrections to this action, such as the fluctuation determinant, before drawing conclusions

about the relative sizes of physical effects.22

In summary, determining whether Euclidean D3-branes wrapping non-holomorphic

cycles can contribute axion masses that are parametrically larger than those arising from

holomorphic cycles is an open problem. The available evidence does not exclude this

possibility, but also does not, in our view, strongly support it. Our results on axion masses

rely on our computation of the volumes of holomorphic cycles, and could be affected if

large volume reduction occurs and causes non-holomorphic instantons to dominate in the

potential. This proviso should be kept in mind when interpreting our findings.

21However, see [58] for a related variational problem whose extrema are unions of holomorphic and

antiholomorphic curves.
22We thank Eran Palti for comments on this point.
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