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1 Introduction

Recent studies of black holes from the point of view of string theory and quantum infor-

mation suggest that the horizon of a black hole may be modified. Most notably, modified

horizons appear in the context of the black hole information paradox in the form of a

firewall [1–3] and also within string theory in the tight fuzzball paradigm [4–6]. These

descriptions usually suggest modifications within a Planck length of the horizon, we refer

to these as “hard” modifications. These are in contrast to studies which suggest “soft”

modifications which can manifest as soon as one gets within a black hole radius of the
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horizon [7–9]. Furthermore, recent experimental results from the detection of gravitational

waves have provided tentative (albeit controversial) evidence of modified horizons [10–

12] (see [13] and [14], for counterpoint and rebuttal). A particularly interesting property

of black holes with modified horizons comes from the study of its quasi-normal modes.

Typically, quasi-normal modes of a black hole are found by requiring in-going boundary

conditions at the horizon [15, 16]. However, for black holes with modified horizons, it is

believed that such boundary conditions will be altered. One way to model such changes is

to introduce boundary conditions on a surface which exists within a proper Planck length

of the horizon.1 This surface or membrane allows for the partial reflection of perturbations.

Studies using this approach have shown that the quasi-normal modes exhibit “echoes” [17–

23]. The term “echoes” is used to refer to a feature of the late time decay behaviour of

the quasi-normal modes. For typical black holes (i.e. black holes with smooth horizons)

the decay is exponential. For black holes with modified horizons the late time behaviour is

accompanied by small repeating peaks in the amplitude. The physical reason why one sees

repeating peaks in the amplitude is because perturbations will bounce back and fourth be-

tween the modified horizon and angular momentum barrier (similar to echoes created using

sound waves). The time delay between adjacent peaks is referred to as the echo time. The

echo time, in the geometric optics approximation, is twice the tortoise coordinate distance

between the modified horizon/membrane and angular momentum barrier [10, 22]:

techo ' 2|r∗|membrane. (1.1)

It was first noted in [10] that the echo time was comparable to the scrambling time scale

for black holes.

The scrambling time scale appears when black holes are studied from an information

theoretic point of view.2 In the context of quantum information recovery, the scrambling

time scale can be viewed as a lower bound on the time it takes between throwing information

into a black hole and being able to recover it, with small error from the subsequent Hawking

radiation [24–26]. It has also been described as the amount of time it takes for a qubit

of information thrown into a black hole to become thoroughly “mixed” [25, 27]. There

are many methodologies in the current literature to calculate the scrambling time scale

for black holes [25, 27–30]. Depending on the particular approach one takes the exact

mathematical expression for the scrambling time scale may vary. However, as diverse as

they may be, it seems that the approaches described in [25, 27–31] give a time scale that

can be roughly quantified by the following expression:3

tscr ∼ β ln(S). (1.2)

Here, β is the inverse temperature of the system and S can be viewed as the number of

microscopic degrees of freedom in the system which take part in the fast scrambling process.

1Since these modifications are localized within a Planck length of the horizon we would classify these as

“hard” modifications.
2Usually these types of studies assume that black hole evaporation is unitary.
3This is not to say that every approach to compute scrambling time gives a time scale similar to eq. (1.2).

A notable exception is suggested by Peter Shor in [32], which we will comment on in section 7.
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The reason we do not explicitly identify S with entropy of the black hole is because this is

not generally true. For example, in [25] the scrambling time scale for very small AdS black

holes4 is given by setting S ∼ rH/`p, where rH is the horizon radius and `p is the Planck

length. However, for very large AdS black holes (i.e. the ones that are thought to be dual

to large N CFTs) the scrambling time scale is given by setting S ∼ L/`p, where L is the

AdS radius. From this it follows that, for very small AdS black holes (or asymptotically

flat black holes) it is reasonable to identify S with the full Bekenstein-Hawking entropy of

the black hole. However, for very large AdS black holes S is really given by the Bekenstein-

Hawking entropy of a small cell on the horizon whose characteristic length is given by the

AdS radius. Indeed, this seems to be consistent with the scrambling time scale given by

analyzing the behaviour of out of time order correlators [33] for large N CFTs which states

that the scrambling time scale is given by tscr ∼ β ln(N2).5

In this work, we will do a detailed analysis of the time scale set by the echo time

for asymptotically AdSd+1 black holes in various regimes. The main reason for analyzing

the echo time scale for AdS black holes is because, we want to understand exactly how

accurately the echo time scale can mimic the scrambling time scale.

In section 2, we introduce the definition for the echo time of a spherically static black

hole and define the location of the membrane in relation to the mathematical horizon. We

introduce the Planck length scale by requiring the membrane is within a proper Planck

length of the horizon. This enables us to expand the echo time integral as a series in the

Planck length with a leading order Log term that will later be compared with the scrambling

time scale. In sections 3 and 4, we explicitly calculate the echo time for different types

of AdS black holes and verify the validity of the series expansion defined in section 2. A

central aspect of of the calculations done in sections 3 and 4 is to do a detailed analysis

of the O(1) sub-leading term in the series expansion to see how large it gets in various

regimes. In section 5, we compare the echo time scale and the scrambling time scale.

More specifically, in section 5.1 we review the scrambling time scale in [25] and find that

the scrambling time scale and echo time scale agree up to a factor of two. In section 5.2

we review the results of [29, 30] and discuss how the scrambling time scale in [29, 30] is

related to the scrambling time scale given in [25]. Furthermore, we review how the results

of [29, 30] suggest that there are modifications to eq. (1.2) for near extremal Reissener-

Nordstrom (RN) black holes. We find that the modifications, suggested by [29], to the

scrambling time scale initially appears to be inconsistent with the echo time scale. We

show that the discrepancy can be traced back to how one defines the smallest “reasonable”

perturbation to a black hole. In Leichenauer’s work, the smallest reasonable semi-classical

perturbation is defined such that the entropy of a the black hole changes by one. We argue

that this is too restrictive and propose a different definition (see appendix E) which results

in an agreement between the echo and scrambling time scales in the near extremal regime.

In section 6 we pose the question of whether echoes can exist within the framework of

AdS/CFT. Based on the results of the previous sections, we give a heuristic picture of how

4Such black holes are good approximations to asymptotically flat black holes as long as we consider

processes occurring close to the horizon, fast scrambling is one such process.
5Where we identify (L/`p)

d−1 ∼ N2 for large N CFTs.
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the phenomena of echoes may be related to the phenomena of fast scrambling and what

they tell us about the evolution of the Planck scale structure of the horizon. In section 7,

we conclude by summarizing the major findings of this paper and discuss what they imply

for future studies into the connection between echoes and fast scrambling.

2 Universal features of echo time for spherically static black holes

2.1 Defining echo time

In this section, we will introduce the exact definition of the echo time we will be using

in this paper. To simplify our calculations we will restrict our discussions to spherically

symmetric d+ 1-dimensional black hole metrics of the form:

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΩ2

d−1, (2.1)

with d ≥ 3. The echo time, in the geometric optics approximation is [10, 22]:

techo = 2

∫ rt

rH+δr

dr

f(r)
, (2.2)

which is the coordinate time it takes for a radial null geodesic to go from rt to rH + δr

and back (hence the factor of two). Here, r = rH + δr is the location of the semi-reflective

membrane, with rH being the location of the event horizon, i.e. f(rH) = 0. The upper

bound of the integral, rt, can be understood as a turning point of the effective potential

that our perturbations are subject to. To understand exactly what this means we will

consider a minimally coupled scalar field in a background defined by eq. (2.1). In this case,

the equation of motion for the scalar field can be simplified to a radial equation of the form:

d2R
dr2
∗

+
(
ω2 − Veff(r)

)
R = 0. (2.3)

The details of the derivation of eq. (2.3) as well as the exact form of the effective potential,

Veff , is given in the appendix A. We define rt as:

rt = min{r : ω2 − Veff(r) = 0}. (2.4)

With this definition, it is clear that the turning point depends on the frequency, ω, of the

scalar perturbation. In this paper we will be focusing on the echo time for “low” frequency

perturbations.6 Exactly what is meant by “low” frequency will be explained later and

made more clear when we calculate the echo time in explicit examples. We shall see that,

for our purposes, the exact value of rt will not be important in the “low” frequency regime.

Finally, we will relate δr to the Planck length, `p, through the following integral expression:

`p =

∫ rH+δr

rH

dr√
f(r)

. (2.5)

Physically this means that the membrane is a proper Planck length away from the horizon.

6Recent studies [34, 35] involving echoes has suggested that the reflection probability off the membrane

for high frequency perturbations is exponential suppressed.
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2.2 Near horizon expansion of echo time

Now that we have defined what the echo time is, we will expand eq. (2.2) in terms of `p.

To do this we will make the following assumptions on f(r):7

1. f(rH) = 0

2. f ′(rH) 6= 0

3. f(r) is non zero and non-singular for r > rH

With these assumptions, we will split the echo integral into two parts:

techo =

∫ r0

rH+δr

2

f(r)
+

∫ rt

r0

2

f(r)
. (2.6)

Roughly speaking r0 is to be chosen such that we can do the first integral by retain-

ing only the leading order terms in the near horizon expansion of f(r). In general

r0 ∼ rH . This is deduced by considering the length scale set by the ratio of derivatives

|f (n)(rH)/f (n+1)(rH)| ∼ rH . Therefore, we will write the upper limit as r0 = CrH with

C > 1. With this we can calculate the first integral in eq. (2.6):∫ CrH

rH+δr

2dr

f(r)
≈
∫ CrH

rH+δr

2dr

f ′(rH)(r − rH) + 1
2f
′′(rH)(r − rH)2

=
β

2π
ln

[
(C − 1)rH

δr

(
1 + c2

c1
δr

1 + (C − 1) c2c1 rH

)]
,

(2.7)

where cn = f (n)(rH)/n!. It is straightforward to calculate the leading order relation be-

tween the Planck length and δr. Using eq. (2.5) we find that:

`p =

√
βδr

π
⇒ δr =

π`2p
β
, (2.8)

where β = T−1 = 4π/f ′(rH). To simplify the final result for the leading order term we will

set C = π + 1.8 Any error this introduces will be finite and of O(1). The O(1) error will

be absorbed into the sub-leading terms in the Planck length expansion. With this choice

of C, we find that:∫ (π+1)rH

rH+δr

2dr

f(r)
≈ β

2π

[
ln

(
βrH
`2p

)
− ln

(
1 +

f ′′(rH)

8
βrH

)
+O(`p)

]
. (2.9)

Therefore, in general we can write the series expansion for the echo time as:

techo =
β

2π

[
ln

(
βrH
`2p

)
+ χ+O(`p)

]
,

χ = − ln

(
1 +

f ′′(rH)

8
βrH

)
+ χ0.

(2.10)

7All the assumptions we make are true for the black holes considered in this work.
8This is simply a convention that fixes the form of the leading order Log term in the series expansion.
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In eq. (2.10) χ0 is roughly given by the second integral term in eq. (2.6) plus any small

errors we introduce by fixing C = π + 1 and doing integral in eq. (2.9). Consequently, the

way we defined χ0 makes it impossible to know its exact value without explicitly doing

the echo integral and expanding it as a series. However, we can give a sufficient condition

on it being finite. In particular, we are guaranteed that χ0 is finite as long as the second

integral in eq. (2.6) converges. This is guaranteed if rt is finite which brings us to a more

precise definition of what is meant by a “low” frequency perturbation. For the black holes

we will be considering the effective potential will vanish at the horizon and slowly increase.

Depending on the kind of black hole, the effective potential may continue to increase (for

very large AdS BH as shown in figure 1) or reach a local maximum at some point, rc,

(for very small AdS shown in figure 1 or asymptotically flat BH). In the case where a

local maximum is achieved we will only allow rt ≤ rc. This will naturally place an upper

bound Ω on the set of frequencies we are dealing with. We will define “low” frequency as

ω < Ω. So we see that the low frequency criterion is needed to ensure that the size of χ0

is controlled.9

However, note that even if χ0 is finite this does not imply that the entire sub-leading

term χ is going to be finite. This is why we decompose χ in eq. (2.10) into two pieces.

The Log term will be finite far from the extremal regime, but as we approach the extremal

regime the Log term will become uncontrollably large. Therefore, we should combine the

Log term in the definition of χ with the leading order Log term to get the following leading

order contribution to the echo time for a near extremal BH:

text
echo '

β

2π

[
ln

(
8

`2pf
′′
ext(rH)

)
+O

(
1

βrH

)]
. (2.11)

Together, eqs. (2.10)–(2.11) completely characterize the behaviour of the leading order

terms in the series expansion of the echo time in various important regimes. Furthermore,

we are guaranteed that sub-leading terms are either finite or suppressed by the Planck

length `p. In the next section, we will explicitly calculate the echo time for various types

of black holes and show that the echo time can be arranged as a series given by eq. (2.10).

We will give explicit expressions for χ in these examples. In particular, we will show

that χ is finite for non-extremal black holes and diverges logarithmically in β in the near

extremal regime.

3 Echo time for AdS Schwarzschild black holes

3.1 Overview of AdS Schwarzschild solution

The line element of a d+ 1-dimensional AdS Schwarzschild black hole is given by eq. (2.1)

with f(r) given by:

f(r) = 1− 2M

rd−2
+
r2

L2
, (3.1)

9We intentionally did not provide a definition of low frequency for large black holes whose effective

potential has no local max. This is because χ0 is always finite and does not change a great deal as we

increase the turning point.
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Figure 1. Above is a depiction of how echoes are generated for very large (rH/L � 1) and very

small (rH/L� 1) AdS black holes. The event horizon in these coordinates is at r∗ = −∞ and the

conformal boundary is at r∗ = 0. The general solution to the massless scalar wave equation near

the horizon takes the form ψ ∼ Ae−iω(t+r∗) +Be−iω(t−r∗). The semi-reflective membrane, depicted

by the vertical read line, allows for the partial reflection of scalar perturbations with a reflectivity of

|(B/A)e2iωr∗ |2. After the perturbation is partially reflected off the membrane it will head towards

the conformal boundary and encounter the effective potential causing reflection back towards the

membrane. The process repeats until the perturbation dissipates. For very small black holes the

effective potential contains a local max before diverging near the boundary. This is in contrast

to very large black holes whose effective potential continues to increase. For asymptotically flat

black holes the local maximum is still present. However, there is no conformal boundary and the

potential does not diverge.

where L is a constant called the AdS radius and M is a measure of the mass of the black

hole. The largest real root of f(r) is the location of the event horizon and will be denoted

as rH . Using this fact it is useful to rewrite f(r) in terms of the horizon radius to get:

f(r) = 1 +
r2

L2
−
(
rH
r

)d−2(
1 +

r2
H

L2

)
. (3.2)

We can then easily write down an expression for the temperature of the black hole:

T =
1

4π

df

dr

∣∣∣∣
r=rH

=
dr2
H + (d− 2)L2

4πrHL2
. (3.3)

Analyzing the sign of dT/drH gives us insight about the heat capacity of AdS black holes.

In particular, black holes with r2
H/L

2 < (d − 2)/d will have a negative heat capacity and

black holes with r2
H/L

2 > (d − 2)/d will have a positive heat capacity. The black holes

with positive heat capacity are commonly referred to as large black holes and ones with

negative heat capacity are referred to as small black holes.

3.2 Echo time in the planar limit

Since very large AdS Schwarzschild black holes at high temperature are well approximated

by planar black holes it will be useful to calculate the echo time for a planar black hole.

– 7 –
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The planar black hole metric is given by eq. (2.1) with:10

f(r) =
rd − rdH
L2rd−2

. (3.4)

The temperature is given by:

T =
drH
4πL2

. (3.5)

In this case the echo time integral can be expressed in terms of the hyper-geometric function

for d ≥ 3 and is given by:

techo =

∫ rt

rH+δr

2L2rd−2

rd − rdH

=
2L2

r

[
2F1

(
1,−1

d
,
d− 1

d
,
rd

rdH

)
− 1

] ∣∣∣∣rt
rH+δr

=
β

2π

[
drH
r

2F1

(
1,−1

d
,
d− 1

d
,
rd

rdH

)
− drH

r

] ∣∣∣∣rt
rH+δr

.

(3.6)

With some work, we can write the echo time above as a series given by eq. (2.10) with

χ(rt, rH) given by:

χ(rt, rH) =
drH
rt

2F1

(
1,−1

d
,
d− 1

d
,
rdt
rdH

)
+ d

(
1− rH

rt

)
− iπ − αd

αd = γ + ln(πd) + ψ

(
−1

d

)
,

(3.7)

where γ ≈ 0.577 is the Euler-Mascheroni constant and ψ is the digamma function. We

define χ∞ as the value of χ when we take the turning point rt =∞. For the planar black

hole we get a finite result:

lim
rt→∞

χ (rt, rH) = χ∞ = −γ − ln(πd)− ψ
(

1

d

)
. (3.8)

Here, χ∞ represents an upper bound on the set of all possible values of χ. In other words

if we find that χ∞ is finite, it puts a non-trivial upper bound on χ in the series expansion

given by eq. (2.10). In figure 2 we plot χ as a function of the ratio rt/rH in different

dimensions. We see that in general, χ is a strictly increasing function of the turning point.

This makes sense because the further the turning point is the longer it takes for the echo

to go from the membrane to the turning point. Furthermore, we see that for large values

of the turning point χ is approaching χ∞. We can ignore the divergence in the plot as

rt → rH because we always consider our turning points to be far away from the horizon.11

Most importantly the plot shows that χ ≤ χ∞ <∞.

10This not exactly correct. Technically we have to replace dΩd−1 with the metric on a d− 1 plane. Now

the solutions to the scalar wave equation will be decomposed into plane waves instead of hyper-spherical

harmonics. The large angular momentum modes maps to large linear momentum modes along the horizon.
11Actually the divergence we see is necessary. The echo time should go to zero if we approach the horizon

and indeed the divergence in χ will cancel with the divergence in the leading order term as we send `p → 0

to give an echo time of zero.
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d=3

d=4
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d=6
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rt
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χ

Figure 2. Correction to the echo-Log, χ (defined in eq. (2.10)) as a function of the upper bound

on echo integral (eq. (2.2)) for a d + 1-dimensional planar (or large spherical) black hole. We see

that χ asymptotes to a finite value given by eq. (3.8) for χ∞.

Now that we have verified that χ is finite we can safely ignore it and focus our attention

to the leading order term. We can use the expression for the temperature given by eq. (3.5)

to write down the leading order contribution to the echo time:

techo '
β

2π
ln

(
βrH
`2p

)
=

β

2π
ln

(
4π

d

L2

`2p

)
. (3.9)

This expression will be useful when we start comparing scrambling time to echo time for

very large AdS black holes.

3.3 Echo time for asymptotically flat Schwarzschild black hole

In this subsection, we will compute the echo time for asymptotically flat Schwarzschild

black holes. The reason this is interesting is because, we expect the effective potential

close to the horizon of a small AdS black hole to be well approximated by the effective

potential of an asymptotically flat black hole. Due to this fact, we should expect the low

frequency echo time for a small AdS black hole to approximately match with echo time of

an asymptotically flat black hole.

To begin, we recall that for an asymptotically flat Schwarzschild black hole in d + 1-

dimensions f(r) is given by:

f(r) = 1−
(
rH
r

)d−2

, (3.10)

and the temperature is given by:

T =
d− 2

4πrH
. (3.11)

It follows that the echo time is given by:12

techo =
β

2π

∫ rt

rH+δr

(d− 2)

rH

(
1−

(
rH
r

)d−2
)dr

=
β

2π

[
(d− 2)

r

rH
2F1

(
1,− 1

d− 2
,
d− 3

d− 2
,
(rH
r

)d−2
)] ∣∣∣∣∣

rt

rH+δr

.

(3.12)

12It should be noted that taking the limit of the above expression as d → 3 is ill defined. The formula

above only works for d ≥ 4. The d = 3 case will be calculated separately in the next subsection.
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d=4
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Figure 3. Same as figure 2, but for a d + 1-dimensional asymptotically flat Schwarzschild black

hole. The divergent behaviour implies we must impose a cutoff to control the how large χ becomes.

The cutoff is implemented using the low frequency criterion discussed in section 2.

With some work we can eventually write the echo time in the prescribed form given by

eq. (2.10) with χ given by:

χ(rt, rH) =
(d− 2)rt

rH
2F1

(
1,

1

2− d
,
d− 3

d− 2
,

(
rH
rt

)d−2
)
− αd−2

αd−2 = γ + ψ

(
−1

d− 2

)
+ ln (π(d− 2)) .

(3.13)

Just like for the planar black hole we can plot χ as a function rt/rH in figure 3.

Once again we find a strictly increasing function. However this time we find its not

bounded and diverges as the turning point gets larger. The reason for this is because the

point r → ∞ is mapped to infinity in tortoise coordinates. To get finite results we have

to restrict rt to something finite. A natural choice of the turning point is the location of

the local maximum of the effective potential. It will represent the upper bound on the set

of possible turning points that leave χ finite. In this case, it turns out that in the large l

regime we can analytically solve for the location of the local maximum. It is located at:

rc =

(
d

2

) 1
d−2

rH . (3.14)

Using this we can calculate χ(rc, rH) = χmax and find that:

χmax = (d− 2)

(
d

2

) 1
d−2

2F1

(
1,

1

2− d
,
d− 3

d− 2
,

2

d

)
− αd−2. (3.15)

By definition we know χ < χmax <∞ and therefore finite. At this point the reader may be

worried about the fact that rc < r0 = (π+1)rH . In section 2 we split the echo integral into

two parts and made an implicit assumption that rt > r0 we can see that this assumption is

not true here. Even so, this fact will not change the conclusion that χ is finite. However,

it will change the sign of χ and make χ < 0. More generally, when we plot χ as a function
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of the turning point there will always be a set of turning points in which χ < 0. This will

roughly correspond to when rt < r0. We say roughly because χ is not exactly given by

the second integral in eq. (2.6) it also contains other small errors which we discussed in

section 2.

Now that we have addressed the subtleties that go into making χ finite for asymptoti-

cally flat Schwarzschild black holes we can analyze what the leading order term looks like.

We can use the expression for temperature given by eq. (3.11) to get:

techo '
β

2π
ln

(
βrH
`2p

)
=

β

2π
ln

(
4π

d− 2

r2
H

`2p

)
. (3.16)

This expression will also be useful when we start comparing scrambling time to echo time

for very small AdS black holes.

3.4 Echo time for 4D AdS black hole

So far we have only done calculations that will give the echo time for for very large or

very small AdS black holes in arbitrary dimensions. Now, we want to fix the dimension of

spacetime and do the integrals without making assumptions on the size of the AdS black

hole. In 4D the echo time is given by an integral of the form:

techo =

∫ rt

rH+δr

2rL2

L2(r − rH) + (r3 − r3
H)
dr

=
β

2π

 2 + 3x2
H

xH

√
4 + 3x2

H

arctan

 2x+ xH√
4 + 3x2

H

+ ln

 x− xH√
1 + x2 + xxH + x2

H

 ∣∣∣∣∣
xt

xH+δx

,

(3.17)

where xH = rH/L, x = r/L, δx = δr/L, and xt = rt/L. We can express the result as a

series expansion given by eq. (2.10) with χ given by:

χ(xt, xH) =
2 + 3x2

H

xH

√
4 + 3x2

H

arctan

 2xt + xH√
4 + 3x2

H

− arctan

 3xH√
4 + 3x2

H


+ ln

(
xt − xH
πxH

√
1 + 3x2

H

1 + x2
t + xtxH + x2

H

)
.

(3.18)

We can use this result to compute χ for d = 3 asymptotically flat black hole by taking the

limit as L→∞ we find:

χ(rt, rH) =
rt
rH
− 1 + ln

(
rt
rH
− 1

)
− ln(π). (3.19)

It is easy to see that χ is strictly increasing with the turning point and diverges with rt as

expected. We can compute χmax by setting rt = rc = 3rH/2 this gives:

χmax =
1

2
− ln (2π) ≈ −1.34. (3.20)

This completes our d = 3 calculation for asymptotically flat black holes.
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Next we calculate χ∞ by taking rt to infinity this will result in the following expression:

χ∞(xH) =

(2 + 3x2
H)

[
π − 2 arctan

(
3xH√
4+3x2

H

)]
2xH

√
4 + 3x2

H

+ ln


√

1 + 3x2
H

πxH

 . (3.21)

We plot χ∞ as a function of xH = rH/L to get the blue line in figure 4. We see that χ∞
strictly decreases and approaches the value of χ∞ for the planar black hole represented by

the horizontal yellow line. The reason that χ∞ is strictly decreasing is because the horizon

of a larger black hole will be closer to the conformal boundary at infinity. If we analyze

the behaviour of χ∞ for small values of xH we will find that it diverges as xH → 0. The

divergent behaviour can by deduced by analyzing the series expansion of χ∞ near xH = 0:

χ∞ ≈
π

2xH
− ln (πxH)− 3

2
+O(xH). (3.22)

The green line in figure 4 shows that the series expansion above describes χ∞ accurately

for xH . 0.3. This means that for very small black holes even though χ∞ is finite it

can become arbitrarily large for an arbitrarily small AdS black hole. However, we recall

from our discussions in section 2 that we only want to consider low frequency modes. In

such a case, the “low” frequency modes will encounter a local maximum in the effective

potential, similar to the asymptotically flat case, before they have a chance of getting to the

conformal boundary. Therefore, for low frequency modes we can ignore the fact that χ∞
is unbounded for very small AdS black holes. This means that χ will always be bounded

and much smaller compared to the leading order Log term in the series expansion.

Finally, we can make the following statement about the leading order contribution to

the echo time for a d+ 1-dimensional AdS black hole for low frequency perturbations:

techo '
β

2π
ln

(
4π

d(x2
H + 1)− 2

r2
H

`2p

)

=


β

2π

[
ln

(
4πL2

`2pd

)
+O(1/x2

H)

]
xH � 1

β

2π

[
ln

(
4πr2

H

`2p(d− 2)

)
+O(x2

H)

]
xH � 1 and rt ≤ rc.

(3.23)

Unsurprisingly, we see that up to small corrections the leading order term for very large and

very small AdS Schwarzschild black holes will match the planar black hole, eq. (3.9), and

Schwarzschild black hole, eq. (3.16), at the same temprature respectively. Similar calcula-

tions can be done in higher dimensions to verify similar results that have been explored for

4D AdS Schwarzschild black holes. Through these calculations we have explicitly checked

that for non-extremal black holes χ is always finite.13

13With the additional assumption that for very small black holes we only consider echo time for modes

of sufficiently small frequency such that rt ≤ rc.
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Exact

Planar BH

Small BH (Series)

0.0 0.5 1.0 1.5 2.0
xH

2

4

6

8

10
χ∞

Figure 4. The blue line plots χ∞, the yellow line represents the planar black hole result, and the

green line plots the truncated series of χ∞ near xH = 0 given in eq. (3.22).

4 Echo time for Reissner-Nordstrom black holes

4.1 Overview of RN solution

In this section, we want to understand what happens to the echo time for a Reissner-

Nordstrom (RN) black hole in the near extremal regime. The RN black hole in d + 1-

spacetime dimensions is given by eq. (2.1) with:

f(r) = 1− 2M

rd−2
+

Q2

r2(d−2)
. (4.1)

The event horizon is given by the largest root of f we can explicitly write down the roots as:

y± = rd−2
± = M

[
1±

√
1− Q2

M2

]
, (4.2)

where the event horizon is at r+ and r− is the inner horizon. We can rewrite everything

in terms of r±:

Q2 = y+y−

M =
1

2
(y+ + y−)

f(r) =
(rd−2 − rd−2

+ )(rd−2 − rd−2
− )

r2(d−2)
.

(4.3)

The temperature of the black hole is given by:

T =
d− 2

4πr+

[
1−

(
r−
r+

)d−2
]
. (4.4)

The extremal limit of the black hole occurs when r− = r+. Since we are dealing with an

asymptotically flat black hole solution we should use the position of the local maximum
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as the turning point to get finite results. In the large l regime we can find the local

maximum at:

rc =

[
d(rd−2

+ + rd−2
− )

4

(
1 +

√
1− 4(d− 1)

d2

4rd−2
− rd−2

+

(rd−2
+ + rd−2

− )2

)] 1
d−2

. (4.5)

It can be checked that as long as Q2 ≤M2 then rc is real.

4.2 Echo time for non-extremal RN black hole

To calculate the echo time we need to calculate the following integral:

techo =

∫ rc

r++δr

2[
1−

( r+
r

)d−2
] [

1−
( r−
r

)d−2
]dr. (4.6)

Unfortunately, there does not appear to be a closed form for the integral unless we fix d ≥ 3

to some particular value. As an example we can fix d = 3. When we do this we find that:

t
(d=3)
echo =

β

2π

[
r(r+ − r−) + r2

+ ln (r − r+)− r2
− ln (r − r−)

r2
+

] ∣∣∣∣rc
r++δr

. (4.7)

The expression for rc when d = 3 is:

rc =
3

4
(r+ + r−)

(
1 +

√
1− 32

9

r+r−
(r+ + r−)2

)
. (4.8)

We expand the echo time in terms of the Planck length and get it into the form given by

eq. (2.10), where χ is given by:

χ =
1− x

4

[
3x− 1 +

√
9 + x(9x− 14)

]
+ x2 ln

[
4(1− x)

3− x+
√

9 + x(9x− 14)

]

+ ln

[
−1 + 3x+

√
9 + x(9x− 14)

4π

]
,

(4.9)

where x = r−/r+. It is not difficult to see that χ is well defined and finite away from the

extremal regime. However, as we approach the extremal regime there is a divergence of

the form:

χ = ln

(
1− x
π

)
+O(1− x). (4.10)

As expected, χ will diverge logarithmically as x → 1. We will address this divergence in

more detail in the next section. Assuming we are far from the extremal regime, we can

write down the leading order contribution to the echo time for a d + 1-dimensional RN

black hole as:

techo '
β

2π
ln

(
βr+

`2p

)
=

β

2π
ln

(
4π

(d− 2)(1− xd−2)

r2
+

`2p

)
. (4.11)

Looking at the expression above it is clear that the expression in the log is also diverging

in the extremal limit.
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4.3 Echo time for near extremal RN black hole

In the previous section, we calculated the echo time for an RN black hole in 4D and showed

that χ was divergent in the near extremal limit. If we now go towards the extremal limit

and combine the result for χ given in eq. (4.10) with eq. (4.11) the echo time for a 4D RN

black hole is given by:

t
(d=3)
echo =

β

2π

[
ln

(
4r2

+

`2p

)
+O(1− x) +O(`p)

]
. (4.12)

We see that the divergence in χ canceled with the divergence in β leading to a finite

expression for the Log. Moreover, we can check that the leading order term in the expansion

of echo time in the near extremal limit is exactly given by eq. (2.11). To do this we

recall that:

fext(r) =

(
rd−2 − rd−2

+

)2

r2(d−2)
⇒ f ′′ext(r+) =

2(d− 2)2

r2
+

. (4.13)

Plugging this into eq. (2.11) we find:

text
echo '

β

2π
ln

(
4r2

+

(d− 2)2`2p

)
. (4.14)

Which correctly reproduces the leading order term in the echo time in the near extremal

limit for d = 3. One can also check this formula also works for any d ≥ 3. This corroborates

our claim that the leading order term in the echo time should look like eq. (2.11) for near

extremal black holes.

We can also apply eq. (2.11) for very large near extremal AdS RN black holes to find:

text
echo '

β

2π
ln

(
4L2

d(d− 1)`2p

)
. (4.15)

For very small near extremal AdS RN black holes we will get the same leading order term

as in the asymptotically flat case, assuming rt ≤ rc, which is given in eq. (4.14). The

details of how to calculate f ′′ext(r+) for AdS RN black holes is given in appendix B.

We can summarize the results of section 3 and section 4 as follows. We found that the

leading order term for the echo time for very large AdS black holes in both near extremal

and non-extremal regimes is given by:14

t
(Large)
echo ' β

2π
ln

(
L2

`2p

)
' 2

d− 1

β

2π
ln(N2). (4.16)

For very small or asymptotically flat black holes in both near extremal and non-extremal

regimes the echo time is given by:

t
(Small)
echo ' β

2π
ln

(
r2
H

`2p

)
' 2

d− 1

β

2π
ln(SBH), (4.17)

14Note that in the context of AdS/CFT the ratio L/`p is a measure of the effective degrees of freedom of

the dual CFT state [36]. In particular, for large black holes dual to large N CFTs we know N2 ∼ Ld−1/`d−1
p .
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where SBH is the Bekenstein-Hawking entropy of the black hole. The important fact to

note here is that the echo time scale for large black holes is set by the AdS radius and

for small AdS (or asymptotically flat) black holes it is set by the horizon radius. This is

consistent with the way the scrambling time scale differs for large and small AdS black

holes discussed in section 2.

In the next section we will do a more detailed comparison of the time scales given by

eqs. (4.16)–(4.17) to the scrambling time scales given in [25, 29, 30].

5 Echoes vs. scrambling

5.1 Comparison to charge spreading time scale

In this section, we will compare the echo time scales given by eqs. (4.16)–(4.17) with the

scrambling time scale conjectured in [25]. We will focus on the charge spreading derivation

which is done in the stretched horizon framework [37]. In the derivation it is assumed that

the amount of time it takes for charge from a point source to spread uniformly throughout

the black hole horizon can be identified with the scrambling time scale. In [25] the true

horizon was replaced by a Rindler horizon and the charge spreading calculation was done for

the Rindler horizon. With some work, which is detailed in [25, 38], the following expression

was derived:

tsp =
β

2π
ln

(
∆x

`s

)
, (5.1)

where tsp is the Schwarzschild time it takes for the charge density to spread a distance ∆x

along the horizon and `s is the string length.15 The length scale ∆x, in general, cannot be

identified with the horizon radius of a black hole. In particular, depending on the size of

the AdS black hole, one will naturally choose either rH or L length scales for ∆x. In [25]

for asymptotically flat black holes ∆x ∼ rH and for large AdS black holes ∆x ∼ L. Let us

now discuss why these choices make sense.16

In the charge spreading calculation the true black hole horizon is replaced by a Rindler

horizon. Such a replacement can only be valid within a small patch on the horizon. The

size of this patch should be identified with ∆x. We can estimate the length scale of the

patch by calculating the Kretschmann invariant, at the horizon of the AdS black hole. To

understand why the Kretschmann invariant is important one can consider Riemann normal

coordinates at a point on or near the horizon. At the point of choice one is free to choose

a flat metric, up to corrections second order in displacement. In other words, we are free

to use use a Rindler patch. However, as we move away from this point along the horizon

corrections will arise that can be written in terms of the Riemann tensor. The Riemann

tensor will set an inverse length scale which should roughly be given by (the fourth root

of) the Kretschmann invariant. Therefore, to suppress higher order corrections, the size

of the neighborhood should be no bigger than this length scale. Now that we have an

15In this paper we will simply assume `s = `p and use the two interchangeably.
16The argument we present is not explicitly contained in [25]. The authors simply identified ∆x with rH

for the asymptotically flat black holes without explicitly explaining why such a choice is valid. With our

argument we hope to fill in this gap.

– 16 –



J
H
E
P
0
4
(
2
0
2
0
)
1
3
6

understanding of this point, let us consider the example of a 4D AdS black hole. The

Kretschmann invariant is given by [39]:

RµνρσR
µνρσ|r=rH = 12

 2

L4
+

(
1 +

r2
H
L2

)2

r4
H

 '


36

L4

[
1 +O(1/x2

H)
]

rH � L

12

r4
H

[
1 +O(x2

H)
]

rH � L,
(5.2)

where xH = rH/L. We see that the curvature invariant sets different length scales for large

and small or asymptotically flat black holes. This means that ∆x ∼ rH for small black

holes and for large black holes ∆x ∼ L. This is consistent with the scrambling time scales

suggested in [25].

Comparing to the echo time scales in eqs. (4.16)–(4.17), we find agreement (up to a

factor of two) between the leading order echo time scale with the charge spreading time

scales for both small and large AdS black holes. Therefore, if it is reasonable to identify

scrambling time scale with charge spreading then, it is also valid to identify the echo time

with the scrambling time scale defined in [25].

5.2 Comparison to mutual information disruption timescale

In the previous subsection, we showed that the leading order contribution to the echo

time reproduces the scrambling time scale as defined by charge spreading in [25] (at least

for non-extremal black holes). In this section, we will review how the scrambling time

scale appears in Leichenauer’s calculation [29] of mutual information disruption. After this

review, we will compare with the echo time scale that we calculated.

In [29] one considers a two sided RN black hole in AdS. It is known that the holographic

dual to the two sided RN geometry is a charged thermofield double state of the form:

|cTFD〉 =
1√
Z

∑
n,σ

e−
β
2

(En−φQσ) |n,Qσ〉L ⊗ |n,−Qσ〉R , (5.3)

where |n,Qσ〉L and |n,Qσ〉R are energy and charge eigenstates that live on the left and

right conformal boundaries respectively. One can then consider two sub-regions A and B

on the left and right field theories respectively and ask how much entanglement there is

between the two sub-regions. One way of quantifying the entanglement is to calculate the

mutual information which is given by:

I(A,B) = S(A) + S(B)− S(A ∪B) ≥ 0, (5.4)

where S is the standard von Neumann entropy of the reduced density matrix of each

sub-region. In general, for sufficiently large sub-regions one can show that the mutual

information is non-vanishing. With these quantities in mind, one can then consider a

small perturbation to the field theory on one side. This will change or disrupt the mutual

information between regions A and B. More specifically, Leichenauer shows that the mutual

information goes to zero after a time t∗ given by [29]:

t∗ ∼
β

2π
ln

(
∆E

δE

)
, (5.5)
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where ∆E = Etot − Eext, is the excess energy above the extremal energy and δE is the

energy of the perturbation.17 The calculation was not directly carried out on the field

theory side but instead calculated in the bulk. This was done using the Ryu-Takayanagi

conjecture [36, 40, 41] which relates the quantities S(A), S(B), and S(A ∪ B) to the

area of the extremal surfaces that extend into the bulk. The perturbation on the bound-

ary is dual to the introduction of a shock wave that travels towards the event horizon

and lengthens the wormhole connecting the two sides of the RN black hole. The disrup-

tion of mutual information occurs because the extremal surface that extends through the

lengthened wormhole represents the term S(A ∪B), which will also increase and cause an

overall decrease in the mutual information. By considering the non-extremal regime (i.e.

∆E ≈ Etot), it was shown that the scrambling time scale, given by eq. (1.2), is obtained

by identifying δE ∼ Etot/S, where S is the entropy of the black hole. Using this fact it

was suggested that the scrambling time scale for a near-extremal black holes should be

modified to tscr ∼ β ln(S − Sext), where S − Sext is the excess entropy above the extremal

black hole of the same charge.

More recently, the same time scale has been discussed in [30]. In [30] the time scale

derived by Leichenauer is recast completely in terms of black hole entropy rather than

energy quantities on the boundary:

t∗ ∼
β

2π
ln

(
S − Sext

δS

)
, (5.6)

where S is the entropy of the black hole, Sext is the entropy of the extremal black hole with

same charge, and δS is how much the entropy of the black hole has changed after begin

perturbed. Note that, by setting δS = 1 one will recover Leichenauer’s modified scrambling

time scale. Furthermore, we can use the first law for black hole thermodynamics and easily

see that setting δS = 1 corresponds to δE = TH , where TH is the Hawking temperature of

the black hole. Usually the absorption or emission of a single Hawking quantum is regarded

as the smallest “natural” choice of perturbation to a black hole in the semi-classical regime.

However, we should note that this condition might be too restrictive. For example, explicit

string theory constructions of near-extremal black holes can have δS � 1 (e.g., see chapter

11.3 of textbook [42]). Moreover, the statistical interpretation of entropy suggests that the

number of microstates is given by eS , implying that δSmin ∼ e−S � 1 (in lieu of significant

degeneracies).18

Of course, perturbations with δS < 1 will not admit to a Hawking quanta (with

characteristic energy TH) interpretation. However, we suggest that this may not be enough

reason to disregard such perturbations in the semi-classical regime. To understand why

consider the following. Suppose we have a static spherically symmetric black hole and we

17The energy above extremality of the field theory corresponds to taking the total energy Etot and

subtracting off the energy of the field theory in the zero temperature limit, Eext, keeping the charge fixed.
18One way to think about this is to consider the black hole of as a collection of qubits (as is done in many

considerations of scrambling in black holes) with a number of micro states equal to W = eS . The smallest

change in micro-states (or bits) should be larger than one. So this implies that δW = eSδS > 1. This in

turn implies δSmin > e−S . So even in the context of scrambling it is not necessary that δS > 1.
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perturb19 it to another static spherical black hole of a different radius. Since one cannot

resolve proper distances smaller than a proper Planck length it is reasonable to require

that any “measurable” perturbation should shift the horizon by an amount larger than a

proper Planck length. (We give a precise definition of what it means to shift the horizon of

a black hole by a certain proper length in appendix E). For our purposes, we require that

for a given δR which corresponds to a coordinate shift in the horizon radius:∫ RH+δR

RH

dr√
f(r)

& `p. (5.7)

The minimal observable perturbation will saturate the constraint above and will be denoted

as δRobs ∼ `2pTH . Recall that the entropy of a spherically symmetric black hole in (d+ 1)

dimensions is given by:

SBH =
CdR

d−1
H

`d−1
p

Cd =
Sd−1

4
=

πd/2

2Γ
(
d
2

) , (5.8)

where Sd−1 is the area of a (d− 1) unit sphere. We can take the first order variation of the

entropy with respect to the horizon radius and plug in δRobs ∼ `2pTH to find:

δSobs ∼
Rd−2
H TH

`d−3
p

, (5.9)

where we dropped order one factors such as Cd. The expression above gives the smallest

change in entropy that results in a measurable change in the horizon radius. When we deal

with AdS RN black holes it is possible to have δSobs � 1 when sufficiently close to the

extremal regime (See appendix D). So proper Planck shifts in the near extremal regime do

not have to admit to a description of perturbing by Hawking quanta with characteristic

energy TH . Nonetheless, you can still detect the effect of such perturbations by measuring

the proper shift in the horizon. This is why it is not always necessary to discard perturba-

tions that have δS < 1 since there are alternate ways to detect a perturbation other than

counting Hawking quanta.

Going back to eq. (5.6) and using the choice δS = δSobs we will obtain time scales

consistent with the echo time given by eqs. (4.16)–(4.17) (see appendix C for details of

calculations).

To summarize, we find that the mutual information disruption time scale defined by

eq. (5.6) is connected to the scrambling time scale by making a choice of the smallest

reasonable δS. If one chooses δS = 1 one obtains Leichenauer’s modified scrambling time

scale for near extremal black holes. However if one instead insists that the smallest semi-

classical perturbation results in observable shifts in the horizon by a proper Planck length

then one will get a different time scale for scrambling consistent with the echo time. The

usual choice of setting δS = 1 or some other constant that is independent of any parameters

19Assume the perturbation only changes energy and not charge or angular momentum.
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specific to the black hole will always give some kind of S−Sext dependence inside the Log.

However, as we argued these may not be the only perturbations of physical interest. One

may choose perturbations that depend on parameters of the black hole. Our example of

choosing perturbations that shift the horizon by a proper Planck length is one example

where δS has non-trivial β dependence (of the form δS ∼ rs/β).

More recently the scrambling time scale has also been calculated in holographic con-

texts that use entanglement wedge reconstruction [43, 44]. In particular, Pennington’s

work [43] applies to the types of black holes we have been studying in this paper. The

scrambling time in his work is given by:

tscr ∼
β

2π
ln

(
RH
cevapβ

Rd−1
H

`d−1
p

)
∼ β

2π
ln

(
S − Sext

cevap

)
. (5.10)

In his expressions for the scrambling time there is a parameter, cevap, which depends on

where the Hawking radiation is being extracted near the horizon. In our recent work [45] we

have shown that cevap will generally have non-trival dependence on β. Depending on how

one chooses to extract radiation near the horizon cevap can have different β dependence.

This freedom/ambiguity on how we choose the β dependence of cevap is similar to the

freedom/ambiguity we have in choosing the β dependence of δS in eq. (5.6).

6 Discussion: a holographic description of echoes?

Thus far, we have motivated a mere mathematical relationship between that echo and

scrambling time scales. In this section, we want to speculate on the physical consequences

of being able to identify the scrambling time scale with the echo time scale in the context

of AdS/CFT.

For the sake of argument, we will assume that echoes really do exist in nature and

that they owe their existence to a modification of the event horizon at Planck scales due to

quantum gravity effects. Under these assumptions, it is natural to ask whether there is a

holographic description of echoes within the framework of AdS/CFT. This is because the

AdS/CFT correspondence claims to provide a complete description of quantum gravity in

the bulk in terms of a CFT. If echoes exist in nature they should somehow also show up

in the CFT description of quantum gravity.

To get an idea of how echoes might manifest themselves in a CFT calculation. It

is useful to assume the existence of a state |ψ〉 which resembles a large one-sided black

hole with a modified horizon. More specifically, we want the bulk dual to have a smooth

geometrical description of a black hole when far away from the horizon. However, within

a Planck length of the horizon the smooth geometrical picture of spacetime should break

down. This is similar to the tight fuzzball proposal discussed [6]. This will result in an

interface between a smooth geometric exterior and a non-geometric interior as depicted in

figure 5. We will assume that the interface will effectively behave like the membrane that

generates echoes in the bulk. We will denote this bulk spacetime as Mψ. Based on this

bulk model of the CFT state |ψ〉 we will speculate how echoes in the bulk would manifest

in a CFT calculation involving |ψ〉.
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Figure 5. A diagram depicting the bulk dual of a particular CFT state that exhibits echoes.

The exterior far from the horizon resembles a standard black hole geometry. Within a Planck

length of the horizon one expects the smooth geometrical description of spacetime to breakdown

at the jagged surface colored in red. Effectively the interface between the smooth exterior and

non-geometric interior generates echoes.

To start we know that if we want to “see” echoes we need to perturb the bulk in

some way. This can be done by introducing a small perturbation near the conformal

boundary in the bulk at time t0. We can then consider the following quantity ∆ 〈Ô(t)〉 =

〈ψ| Ô(t) |ψ〉 − 〈BH| Ô(t) |BH〉. Where |BH〉 is the CFT dual state to a black hole with a

smooth horizon (i.e. same bulk as figure 5 without jagged red interface) and Ô(t) is the

dual field theory operator to the perturbation in the bulk. We will refer to the smooth

horizon spacetime as MBH. The time evolution of the expectation value of the operator

Ô(t) in |ψ〉 and |BH〉 should be dual to the time evolution of the bulk perturbation around

a background Mψ and MBH respectively. Based on the bulk geometry we should roughly

expect the following behaviour:

∆ 〈Ô(t)〉 = 〈ψ| Ô(t) |ψ〉 − 〈BH| Ô(t) |BH〉 ≈

{
0 0 < t− t0 < techo

O[〈ψ| Ô(t0) |ψ〉] t− t0 ' techo,
(6.1)

To understand why this should be the case we consider what is happening in the bulk

as time evolves. Initially, at t = t0 the perturbation is close boundary and far from the

horizon. Since Mψ and MBH are the same in such a region we also expect time evolution

of the perturbation to be the same. However, once the perturbation gets close to the

horizon it will behave differently in the two bulk spacetimes we are considering. In MBH

the perturbation will be unhindered and eventually pass through the horizon. However,

in Mψ the perturbation will encounter a reflective surface and get partially reflected back

towards the conformal boundary. Information of this reflection will not arrive back at the

conformal boundary until t− t0 ' techo. This is why we should expect ∆ 〈Ô(t)〉 ≈ 0 when
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Figure 6. A diagram depicting how echoes will manifest themselves in a calculation involving

∆ 〈Ô(t− t0)〉. Initially, the difference in the expectation value of the operator is subject to small

fluctuations around zero. After one echo time scale, one would find a distinct signal above the usual

fluctuations represented by the first peak. This signals the first echo in the bulk. This would reflect

off the boundary and go back towards horizon and the process would repeat except subsequent

echoes would gradually weaken (depicted by subsequent peaks with smaller amplitude).

0 < t− t0 < techo. Once the reflected perturbation hits the boundary there should be a big

difference between 〈ψ| Ô(t) |ψ〉 and 〈BH| Ô(t) |BH〉 roughly of the order O[〈ψ| Ô(t0) |ψ〉].
After this time we expect the perturbation to bounce off the conformal boundary and

go back towards the horizon and repeat the same process we outlined above until the

perturbation dissipates entirely. If we were to plot ∆ 〈Ô(t− t0)〉 we would expect a result

resembling figure 6.

Now that we have discussed how echoes in the bulk would manifest themselves in a

dual CFT calculation we will discuss how we can use this picture to argue how echoes and

fast scrambling can be physically related. To begin, we recall that by perturbing a black

hole we can deduce the structure of the horizon by analyzing how the perturbation decays.

If the decay is accompanied by echoes then it suggests the existence of a modified horizon.

On the other hand, perturbing a black hole can also be regarded as the introduction of

information into the black hole. As the information approaches the horizon it will become

scrambled within a scrambling time scale. The process of scrambling the newly added

information should gradually destroy the finely tuned entanglement between degrees of

freedom close to the horizon and lead to the development of modified horizons similar to

the scenarios discussed in [28, 46, 47]. Eventually, the bulk geometry should evolve into

configurations depicted in figure 5 and these types of bulk geometries would give us echoes.

In other words, we believe fast scrambling to be a mechanism by which bulk geometries

with smooth horizons can develop modified horizons which result in echoes. The findings

of this paper which suggest that echoes and fast scrambling occur within time scales that

can be reasonably identified with each other seems to be consistent with this idea.

Another interesting proposal we have on how echoes may manifest in CFT calculations

is based on the work [33]. It was shown that for large N CFTs, with a holographic Einstein

dual, the following quantity has the following 1/N perturbative expansion:

F (t) = Tr[yV (0)yW (t)yV (0)yW (t)] = f0 −
f1

N2
e

2πt
β +O(N−4)

y4 =
1

Z
e−βH ,

(6.2)

where f0, f1 > 0 and depend on the choice of the operators V and W . The calculation

of the sub-leading term above is done by doing a gravity calculation similar to the type
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of calculations done using shock wave geometries in [28, 29, 47]. In such calculations the

shock waves are perturbations to the horizon and the function F (t), we suggest, should

be viewed as a kind of response function which can diagnose the existence of a modified

horizon. In particular, we see that the echo time for very large black holes is consistent

with the scrambling time set by β
2π ln(N2),20 which is also when the sub-leading term in

eq. (6.2) becomes of order one. This means that the perturbative calculation after such a

time scale breaks down and one needs to include higher order terms. By including all the

higher order terms one might see echoes in the function F (t). If this was indeed the case,

it would help corroborate the claim that probing the horizon (via shock waves) will cause

the horizon to develop some modified structure, which would be responsible for the echoes

in F (t).

7 Conclusion

As we already stated in the introduction of this work the existence of echoes from an

experimental point of view is still tentative and controversial [10–14]. On the theoretical

side, there are reasons to think that General Relativity does not tell the whole story of the

nature of spacetime near the horizon of a black hole [1–8, 32, 46].

In this paper, we explored the potential connection between the echo and fast scram-

bling time scales. We began by defining the echo time scale and explored whether it was

capable of reproducing the scrambling time scale in various regimes for AdS black holes. In

non-extremal regimes, we found agreement between the echo and scrambling time scales.

For near extremal black holes, we showed that the echo and scrambling time agree with

each other for perturbations that shift the horizon by a proper Planck length. We argued in

in section 5.2 that the usual choice of setting δS = 1 in eq. (5.6) as the smallest perturbation

to a black hole is too restrictive. In light of this, we proposed that the smallest semi-classical

perturbation should shift the horizon by a proper Planck length. The consequences of this

alternate proposal is explored in depth in appendix D and appendix E. Depending on the

exact value of the ratios Rext/RH and RH/L, one will see a proper Planck shift results

in different changes in the entropy (details in appendix D). In general, the farther one is

from the extremal regime, the larger the entropy change is for a proper Planck shift in

the horizon. Furthermore, in the limit where RH/L becomes arbitrarily large, one can get

arbitrarily close to an extremal black hole before δS < 1.

In section 6, we speculated on how echoes might manifest themselves in the context

of AdS/CFT. We postulated the existence of a state |ψ〉 whose dual geometry, Mψ,

resembled the bulk depicted in figure 5. With this correspondence we argued that the echo

time represented the amount of time it takes to determine whether a bulk geometry has a

smooth or modified horizon based on the time evolution of the expectation value of some

operator on the boundary. We then conjectured that the phenomena of fast scrambling and

echoes are related to each other in the sense that one is a precursor for the other. More

specifically we argued that fast scrambling would provide a mechanism by which black

20Recall that (L/`p)
d−1 ∼ N2.
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holes would develop modified horizons when perturbed. The development of modified

horizons would be accompanied by echoes in the thermalization behaviour of certain CFT

observables. We went further and speculated that echoes may actually be found in non-

perturbative calculations of quantities similar to the ones explored in [33] given by eq. (6.2).

It would be interesting to see if it is possible to perform such non-perturbative calculations.

As interesting as the proposals in section 6 are there is one major problem. The problem

lies in our assumption that states that resemble black holes with modified horizons actually

exist. Such an assumption is critical for the discussions in section 6 to be valid. In order for

our arguments to be convincing one should try to explicitly find or construct a CFT state

and show it exhibits echoes when perturbed. At the moment we do not have a concrete

way of constructing such a state. However, it is interesting to draw upon the work of

Shenker and Stanford [28] which discusses the holographic dual of the thermofield double

state begin perturbed by strings of operators referred to as “thermal-scale operators.” The

bulk interpretation of such a state is that of a two sided black hole with a smooth horizon

connected by a very long wormhole. Perhaps in a similar way if one acts with more generic

operators on the thermofield double one might transition from a black hole with a smooth

horizon to a black hole with a modified horizon. If so, such states may exhibit echoes in

the way we discussed in section 6.

A recent paper [35], investigating the reflectivity of modified black hole horizons, was

able to show that Boltzmann reflectivity21 can be derived by considering perturbations on

an RP 3 geon. This is interesting because it provides a connection between the Boltzmann

reflectivity of a modified black hole to the RPn geons which have also been discussed in

the context holography. In particular, work done in [48] which discussed the construction

CFT2 states dual to the RP 2 geon may provide ways to construct CFT states that have

horizons with Boltzmann reflectivity.

Finally, it is worth noting that not all notions of scrambling give a time scale com-

parable to eq. (1.2). A recent paper by Shor [32] suggests that in order for scrambling to

occur as fast as the time scale given by eq. (1.2), via causal processes outside the stretched

horizon, one needs information to leave the stretched horizon at a rate greater than what

would be allowed by conventional Hawking radiation. To arrive at this conclusion, Shor

used a definition of scrambling which is stronger than the definitions used in [25, 27–30].

In particular, Shor identifies the scrambling time scale as the amount of time it takes for

two unentangled hemispheres of a black hole to become maximally entangled. Naively, it

seems that echoes would allow for information to escape the stretched horizon at a non-

conventional rate and provide a mechanism to speed up the generation of entanglement

between the two hemispheres. Therefore, it would be interesting to see if echoes can be used

to speed up scrambling and make Shor’s scrambling time scale consistent with eq. (1.2).

21This model assumes that the reflectivity of a modified black hole horizon depends on the frequencies of

perturbations. In particular, different frequencies are weighted by a Boltzmann factor e−βω. This means

that for very high frequencies the modified horizon behaves very similar to a smooth horizon (reflectivity

is approximately zero).
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A Derivation of effective potential for scalar perturbations

In this appendix, we derive the effective potential and wave equation for a minimally

coupled massless scalar field propagating a spacetime with a metric of the following form:

ds2 = gµνdx
µdxν = −f(r)dt2 +

dr2

f(r)
+ r2gΩ

IJdφ
IdφJ , (A.1)

where gΩ
IJ is the metric on a d− 1 unit sphere and φI are angular coordinates on the d− 1

unit sphere. Notice that we made no assumptions of the functional form f(r) so our results

will work for any metric of the form given above. The equation of motion for the scalar

field is a wave equation given by:

�Ψ =
1√
−g

∂µ
(√
−ggµν∂νΨ

)
= 0. (A.2)

Upon expansion of the sums we can write the wave equation in the form:

�Ψ = − 1

f(r)
∂2
t Ψ +

1

rd−1
∂r

(
rd−1f(r)∂rΨ

)
+

1

r2
√
gΩ
∂I

(√
gΩ
(
gΩ
)IJ

∂JΨ
)

= 0. (A.3)

We make the anzatz Ψ = R(t,r)
r∆ Φl(φ

I), where ∆ = d−1
2 and Φl(φ

I) are hyper-spherical

harmonics on the unit d− 1 sphere which obeys the eigenvalue equation:

1√
gΩ
∂I

(√
gΩ
(
gΩ
)IJ

∂JΦl

)
= l(2− d− l)Φl. (A.4)

Using the anzatz outlined above along with the eigenvalue expression for the hyper-spherical

harmonics the wave equation can be written as:

− ∂2
tR+ ∂2

r∗R− f(r)

[
∆

r

∂f

∂r
+

∆(d− 2−∆)

r2
f(r) +

l(l + d− 2)

r2

]
R = 0. (A.5)

Where we introduced a simple change of variables in the radial coordinate dr∗ = dr
f(r) . The

resulting equation is a simple radial wave equation with an effective potential given by:

−∂2
tR+ ∂2

r∗R− Veff(r)R = 0

Veff(r) = f(r)

[
d− 1

2r

∂f

∂r
+

(d− 1)(d− 3)

4r2
f(r) +

l(l + d− 2)

r2

]
.

(A.6)

This gives the form of the effective potential. The angular momentum barrier occurs at a

local maxima of the effective potential outside the horizon radius. In general it is not as

clear that such a local maxima will exist until one specifies f(r). In the large l limit we

can approximate the effective potential by:

Veff(r) ≈ l2

r2
f(r). (A.7)
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This is only valid in a finite neighborhood of the horizon but it is much easiler to analyze

and find local maxima and minima of the potential in this regime. To conclude, we can

plug in the Anzatz R(t, r) = e−iωtR(r∗) to write down the radial equation as:

d2R
dr2
∗

+
(
ω2 − Veff(r)

)
R = 0. (A.8)

The equation above makes it clear why the turning points of the effective potential depend

on the frequency, ω, of the scalar perturbation.

B Near extremal AdS RN black holes

In this section we will go over the AdS RN black hole solution and its extremal regime.

The AdS RN black hole has the metric given by eq. (2.1) with:

f(r) = 1− 2M

rd−2
+

Q2

r2(d−2)
+
r2

L2
. (B.1)

The horizon occurs at r = r+ where f(r+) = 0. Using this we can rewrite f in terms of

the horizon radius rH and the charge Q:

f(r) =

(
1−

rd−2
+

rd−2

)(
1− Q2

rd−2rd−2
+

)
+
r2

L2

(
1−

rd+
rd

)
. (B.2)

Using this we can compute the temperature of the black hole:

T =
f ′(r+)

4π
=
d− 2

4πr+

(
1− Q2

r
2(d−2)
+

+
d

d− 2

r2
+

L2

)
. (B.3)

We set the temperature equal to zero to compute the relation between Q and rext when

the black hole is extremal. We find that:

Q2 = r
2(d−2)
ext

(
1 +

d

d− 2

r2
ext

L2

)
. (B.4)

We can plug this back into the expression for f and write:

f(r) =

(
1−

rd−2
+

rd−2

)[
1−

(
1 +

d

d− 2

r2
ext

L2

)
r

2(d−2)
ext

rd−2rd−2
+

]
+
r2

L2

(
1−

rd+
rd

)
. (B.5)

We get fext(r) by setting r+ = rext. Using this we will find that:

f ′′ext(r+ = rext) =
2(d− 2)2

r2
+

+
2d(d− 1)

L2
. (B.6)

Now we can analyze what happens when r+ � L and r+ � L:

f ′′ext(r+) =


2(d− 2)2

r2
+

+ . . . r+ � L

2d(d− 1)

L2
+ . . . r+ � L.

(B.7)

We can use these results to compute the leading order contribution to the echo time for

AdS RN black holes in the near extremal regime.
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C Calculating t∗ with δR = π`2p/β

To calculate t∗ with the choice δR = π`2p/β it will be useful to manipulate eq. (5.6) as

follows. Using the first law of black hole thermodynamics at constant charge we know

δS = βδE. Where δE is the energy of the perturbation. Using the fact that the entropy

of a black hole is proportional to its area (A ∼ Rd−1
H ) we can rewrite everything in terms

of δR, RH , and Rext:

t∗ ∼
β

2π
ln

[
RH

(d− 1)δR

(
1− Rd−1

ext

Rd−1
H

)]

=


β

2π

[
ln

(
RH
δR

)
+O

(
ln

(
1− Rd−1

ext

Rd−1
H

))]
Rext � RH

β

2π

[
ln

(
RH −Rext

δR

)
+O

(
1− Rext

RH

)]
Rext ≈ RH ,

(C.1)

where RH is the radius of the black hole, δR is the change in the radius of the black hole,

and Rext is the radius of an extremal black hole with the same charge as the black hole we

are considering. Now we set δR = π`2p/β and then substitute this into the leading order

terms in the two cases in eq. (C.1) we will find:

t∗ ∼


β

2π
ln

(
βRH
`2p

)
Rext � RH

β

2π
ln

(
β(RH −Rext)

`2p

)
Rext ≈ RH .

(C.2)

From this, we can clearly see that far from the extremal limit, we reproduce the echo time

scale. The second case which corresponds to a near extremal black hole requires a bit

more work.

First we start with:

text
∗ '

β

2π
ln

(
β(RH −Rext)

`2p

)
. (C.3)

Using eqs. (B.3)–(B.4) we can express the temperature in terms of RH and Rext:

T = β−1 =
d− 2

4πRH

[(
1− R

2(d−2)
ext

R
2(d−2)
H

)
+

d

d− 2

R2
H

L2

(
1− R

2(d−1)
ext

R
2(d−1)
H

)]
. (C.4)

Using this this we can do a series expansion for t∗ in the near extremal limit to get:

t∗ '
β

2π
ln

 2πR2
H

`2p

[
(d− 2)2 +

R2
H
L2 d(d− 1)

]
+O

(
1− Rext

RH

)
. (C.5)

Using the result above we will find:

text
∗ ∼


β

2π
ln

(
R2
H

`2p

)
RH � L

β

2π
ln

(
L2

`2p

)
RH � L.

(C.6)
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Therefore, t∗ with the choice δR = π`2pTH , reproduces the echo time scale correctly to

leading order for both large and small black holes in extremal and non-extremal regimes

eqs. (4.16)–(4.17).

D Entropy shift corresponding to a proper Planck shift of the horizon

In this appendix we study how the entropy of an AdS RN black hole changes when its

horizon is shifted by a proper Planck length. We define the physical shift in the horizon

radius of a spherical black hole through the following integral expression:

δRphys =

∫ RH+δR

RH

dr√
f(r)

. (D.1)

This is simply the proper length between the horizons of the unperturbed black at RH
hole and the perturbed black hole at RH + δR. Therefore, δR is the coordinate change

in the radius of the horizon which goes into the formula for calculating the entropy of a

black hole.

The semi-classical description of spacetime as a smooth manifold is an effective de-

scription only valid on proper length scales larger than a Planck length. Due to this fact

we impose the constraint, δRphys & `p. Essentially, this means that the smallest possible

perturbation to a black hole (which a classical observer can resolve) must shift the horizon

by a proper Planck length.22

Now we analyze how a proper Planck shift changes the entropy content of a black hole.

Using eq. (5.8) and δR = π`2pTH we can obtain the following change in the entropy of the

black hole:

δS = πCd(d− 1)RHTH

(
RH
`p

)d−3

. (D.2)

Based on the arguments we made, the above expression represents the smallest perturbation

to a black hole which results in a shift in the horizon which is classically measurable. We

see that the entropy shift corresponding to a proper Planck length shift of the horizon

depends on the temperature of the black hole being perturbed. In particular, there is a

critical temperature below which when the change in entropy of the black hole is less than

one. Setting δS ≥ 1 gives us the following constraint on the temperature of the black hole:

TH ≥
1

Cd(d− 1)πRH

(
`p
RH

)d−3

(D.3)

Now we substitute the expression for the temperature of an AdS RN black hole, given in

terms of Rext and RH which is given by combining eqs. (B.3)–(B.4). We will get:

d− 2

4πRH

[
1− R

2(d−2)
ext

R
2(d−2)
H

+
d

d− 2

R2
H

L2

(
1− R

2(d−1)
ext

R
2(d−1)
H

)]
≥ 1

Cd(d− 1)πRH

(
`p
RH

)d−3

. (D.4)

22One may object to the way we define the shift in the horizon of a black hole on the grounds that the

perturbed black hole and the unperturbed black hole are not equivalent spacetime manifolds. The integral

we defined is not a good measure of how much the horizon changed because it does not account for the fact

that the perturbed black hole represents a new manifold. To address this concern we show, in appendix E,

that a more reasonable definition that measures the change in the horizon radius essentially gives back the

same result we would get using the naive integral defined in eq. (D.1).
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Rearranging the terms in the inequality above gives:[
1− R

2(d−2)
ext

R
2(d−2)
H

+
d

d− 2

R2
H

L2

(
1− R

2(d−1)
ext

R
2(d−1)
H

)]
≥ 4

Cd(d− 1)(d− 2)

(
`p
RH

)d−3

. (D.5)

Where RH is the horizon radius, Rext is the radius if the extremal RN black hole with the

same charge, and L is the AdS radius.

For an uncharged AdS Schwarzschild black hole one can set Rext = 0. In this case,

it is easy to see that the constraint is satisfied whenever RH � `p. This means that for

any Schwarzschild AdS black hole (RH � `p) a proper Planck shift in the horizon always

changes the entropy by an amount larger than one. However, once we consider black holes

sufficiently close to the extremal regime it is clear that the inequality will be violated.

To understand exactly how close we need get to the extremal regime before violating the

inequality. We do a series expansion of the left hand side of eq. (D.5) near R ' Rext and

find to leading order that:

1− Rext

RH
&

2

C(d− 1)(d− 2)
[
d− 2 + d(d−1)

d−2
R2
H
L2

] ( `p
RH

)d−3

. (D.6)

Based on the result above, it is clear that if d ≥ 4 we can get “reasonably” close to an

extremal black hole (i.e. arbitrarily close in limit `p/RH → 0) before a proper Planck length

shift changes the entropy by an amount less than 1.

In the case when d = 3 we can show that eq. (D.5) exactly takes the form of a quadratic:

− 3x2
Hy

2 − y +

(
1 + 3x2

H −
2

π

)
≥ 0, (D.7)

where y = R2
ext/R

2
H and xH = RH/L. Taking a derivative of the left hand side of the

inequality with respect to y reveals that in the interval y ∈ [0, 1] the function is strictly

decreasing. Furthermore, we know that the y-intercept of the quadratic function is positive.

This means that it will become negative after it achieves its positive root. The location of

the root will tell us how close we can get to the extremal regime before δS < 1. Therefore,

the problem simplifies to finding the positive root of the quadratic on the left hand side of

the inequality. Using the quadratic formula it is easy to see that the positive zero is at:

y = y0 =
−1 +

√
1 + 12x2

H

(
1 + 3x2

H −
2
π

)
6x2

H

. (D.8)

Using the previous arguments it is clear that the inequality given by eq. (D.7) is

satisfied as long as y ∈ [0, y0]. This gives us the result in eq. (D.9).

R2
ext

R2
≤
−1 +

√
1 +

12R2
H

L2

(
1 +

3R2
H

L2 − 2
π

)
6R2

H
L2

. (D.9)

In figure 7 we plot the square root of the right hand side of the inequality as a function

of RH/L to get an idea of how close we can get to the extremal regime for small AdS
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δS=1 for Planck Shift

Rext /RH=1 (Extremal BH)

0.2 0.4 0.6 0.8 1.0

RH

L

0.7

0.8

0.9

1.0

Rext

RH

δS<1 Region

δS>1 Region

Figure 7. Above is a plot of Rext/RH as a function of RH/L for d = 3 (plot of the square root of

the right hand side of eq. (D.9)). The solid line represents the closest one can get to the extremal

regime (i.e. Rext/RH = 1 represented by the dashed line) before a proper Planck length shift of the

horizon results in δS < 1.

black holes in 4D. Any black hole below the solid line whose horizon is shifted by a proper

Planck length will result in δS > 1. Black holes above the solid line whose horizon is

shifted by a proper Planck length will have δS < 1. Analyzing figure 7, we see that for

asymptotically flat black holes in 4D, one cannot get very close to the extremal regime

(i.e. Rext/RH . 0.6) before a proper Planck length shift results in δS < 1. However,

we see that as RH/L becomes larger, one can get asymptotically closer to the extremal

regime. For example, we see that once RH/L = 1 one can get as close as Rext/RH ≈ 0.95.

Based on these results we can conclude that that for very large AdS black holes in 4D (i.e.

RH/L� 1) we can get very close to the extremal regime before δS < 1.

E A semi-classical notion of black hole distinguishability

In this appendix we will consider a family of spherically symmetric black hole metrics,

labelled by their horizon radius, which can be written in the form:

ds2 = −fRH (r)dt2 +
dr2

fRH (r)
dr2 + r2dΩ2

d−1. (E.1)

Where the subscript RH is the radial coordinate of the horizon. Now consider two black

holes; one with a horizon at RH and another at RH + δR, with δR � RH . In the semi-

classical regime, spacetime is described by a smooth manifold. This is an effective descrip-

tion which is assumed to break down on length scales smaller than a Planck length. Since

there is a limit on the distances we can resolve within a spacetime it also seems reasonable

to suggest that there is a limit on how well we can semi-classically distinguish two nearby

black hole solutions. We propose that the following constraint should be enforced for black
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holes described by eq. (E.1):

δRphys =

∫ ∞
RH

dr√
fRH (r)

−
∫ ∞
RH+δR

dr√
fRH+δR(r)

& `p. (E.2)

The constraint above describes the difference between the proper radial lengths between

infinity and the horizon of two black holes. In general, the two integrals on their own will

diverge. However, the difference of the integrals will converge to a finite expression. We

interpret this difference as the “proper” change in the horizon radius and posit that in the

semi-classical regime, the proper change in the radius must be larger than a Planck length.

This places a constraint on the smallest possible δR (and thereby the smallest semi-classical

perturbation to a black hole). Before trying to obtain a result on the smallest δR we will

write the difference in a suggestive manner:

δRphys =

∫ RH+δR

RH

dr√
fRH (r)

+

∫ ∞
RH+δR

(
1√

fRH (r)
− 1√

fRH+δR(r)

)
. (E.3)

Notice that the first integral is exactly the integral given in eq. (D.1). We analyze the first

integral in eq. (E.3) by expanding fRH at r = RH to second order:∫ RH+δR

RH

dr√
fRH (r)

≈
∫ RH+δR

RH

dr√
c1(r −RH) + c2(r −RH)2

=
2
√
c2

ln

[√
1 +

c2

c1
δR+

√
c2

c1
δR

] (E.4)

Where cn = 1
n!

dnfRH (RH)

drn , in particular c1 = 4πTH . We do an expansion in δR to find (for

an AdS RN BH):∫ RH+δR

RH

dr√
fRH (r)

≈
√

δR

πTH

[
1− c2δR

24πTH
+ . . .

]
c2 =

1

R2
H

[
(d− 2)2 +

d(d− 1)R2
H

L2
− (2d− 5)2πRHTH

] (E.5)

Now we analyze the second integral in eq. (E.3). To approximate the value of this

integral we will again take the example of an AdS RN black hole. We begin by expanding

fRH+δR(r) as a series in δR to second order:

fRH+δR(r) = fRH (r) + 4πRHTH

(
RH
r

)d−2 δR

RH

− (d− 2)2

[
1 +

d− 1

(d− 2)2

(
dR2

H

L2
− 2πRHTH

)](
RH
r

)d−2( δR
RH

)2

+ . . .

(E.6)

We can plug this expansion into the integrand of the second integral and expand the

integrand order by order in δR. At each order in δR we will need to evaluate integrals of

the form given below:

In =

∫ ∞
RH+δR

dr

(fRH (r))1/2+n rd−2
. (E.7)
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These integrals clearly converge for any n ∈ N due to the fact that fRH (r) ∼ r2/L2 at

infinity. Since the largest contribution to the integrals will come from the lower limit of the

integration, we should get a good approximation to the value of the integral by expanding

fRH (r) near r = RH to second order. Then we find the anti-derivative and evaluate at the

lower and upper limits of integration. We then expand the result in δR and we will find

the following result:∫ ∞
RH+δR

(
1√

fRH (r)
− 1√

fRH+δR(r)

)
dr

≈ − 5

8

√
δR

πTH
+

Γ
(
d− 3

2

)
2Γ(d− 2)

δR√
RHTH

− 1

64R2
H

[
5d(d− 1)R2

H

L2
+ 5(d− 2)2 − 2(7d− 9)πRHTH

](
δR

πTH

)3/2

+ . . .

=

√
δR

πTH

[
−5

8
+

Γ
(
d− 3

2

)
2Γ(d− 2)

(
πδR

RH

)1/2
]

×
√

δR

πTH

[
− 1

64

(
5d(d− 1)R2

H

L2
+ 5(d− 2)2 − 2(7d− 9)πRHTH

)(
δR

πTHR2
H

)]
+O(δR2) (E.8)

Once we factor out an overall factor of
√
δR/(πTH) we can see how the series organizes

itself into two parts. One part will involve terms that are multiplied by powers of δR/RH ,

such terms come from the upper limit of the integral at infinity. The other part of the

series involves powers of δR/(THR
2
H) which come from the lower limit of the integral at

RH + δR. Once we combine the series expansions given in eq. (E.5) and eq. (E.8) we will

find the following terms in the expansion for δRphys:

δRphys ≈
√

δR

πTH

[
3

8
+

Γ
(
d− 3

2

)
2Γ(d− 2)

(
πδR

RH

)1/2
]

+

√
δR

πTH

[
− 1

64R2
H

(
5d(d− 1)R2

H

L2
+ 5(d− 2)2 − 2(7d− 9)πRHTH

)
δR

πTHR2
H

]
+ . . . (E.9)

We see that by ignoring the sub-leading terms we will have:

δRphys ≈
3

8

√
δR

πTH
∼ `p ⇒ δR ∼ TH`2p. (E.10)

It can be checked that if δRphys ∼ TH`
2
p, then the sub-leading terms will be negligible as

long as `p � min{RH , L}.
Therefore, the leading order behaviour of δRphys is captured, up to an overall constant,

by the first integral in eq. (E.3). This is why we can safely use the definition given in

eq. (D.1) to quantify the horizon shift.
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