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1 Introduction

In this paper we study non-extremal Kerr black holes [1] from a near horizon perspective

within Einstein gravity [2]. This work is organized as follows:

• In section 2 we introduce co-rotating Kruskal-Israel like coordinates for Kerr

black holes.

• In section 3 we provide fall-off conditions suitable to describe the region around the

bifurcation surface, discuss the near bifurcation Killing vector algebra and derive the

associated surface charges, which turn out to be finite, integrable and conserved.

• In section 4 we consider more generic boundary conditions that only assume the

existence of a null hypersurface as (fiducial or actual) boundary as well as additional

technical assumptions (co-rotation and Taylor-expandability). We derive the near

null hypersurface Killing vectors that preserve these fall-off conditions and deduce the

associated null hypersurface symmetry algebra, which contains a T-Witt subalgebra.

• In section 5 we construct the surface charge variations associated with the near hori-

zon symmetry generators of section 4. They are neither integrable nor conserved, in

general. We employ the Barnich-Troessaert modified bracket method to separate the

integrable part of the charge and establish a generalized charge conservation equation

that relates its time-derivative to the non-integrable part, which is interpreted as flux

through the null hypersurface. We also discuss ambiguities of the split into integrable

and flux-part and fix them such that the modified bracket algebra closes without cen-

tral extension, thereby recovering precisely the algebra discussed in section 4.

• In section 6 we examine the on-shell phase space and possible redundancies that can

be gauge fixed. We verify for generic and special cases (non-expanding or stationary

null hypersurfaces) that there is always a precise match between the independent

functions on the boundary phase space and the independent functions in the symme-

try generators.

• In section 7 we impose physically well-motivated conditions on the allowed variations

and recover earlier constructions of near horizon symmetries as special cases of our

analysis.

• In section 8 we conclude with a summary and give an outlook to current and future

research directions.

2 Kerr geometry and metric near its bifurcate horizon

The Kerr metric in Boyer-Lindquist coordinates

ds2 = −∆

ρ2

(
dt− a sin2 θ dϕ

)2
+
ρ2

∆
dr2 + ρ2 dθ2 +

(r2 + a2)2 sin2 θ

ρ2

(
dϕ− a

r2 + a2
dt

)2

(2.1)
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with

∆ = r2 − 2Mr + a2 ρ2 = r2 + a2 cos2 θ (2.2)

depends parametrically on mass M and angular momentum J = Ma. The angular coor-

dinates (also called “angular part”) are the usual polar angle θ ∈ [0, π] and the azimuthal

angle ϕ ∼ ϕ+ 2π. The time and radial coordinates (also referred to as “spacetime part”)

are non-compact, t ∈ (−∞, ∞) and r ∈ [0, ∞).

The inner and outer horizon radii r± are respectively the smaller and bigger roots of

∆ = 0,

r± = M ±
√
M2 − a2 . (2.3)

The loci r = r± are bifurcate Killing horizons with a bifurcation 2-sphere B. The outer

one is simultaneously a black hole event horizon and will be our main region of interest.

Surface gravity at the black hole horizon is given by

κ =
r+ − r−

2(r+ + r−)r+
. (2.4)

Since Boyer-Lindquist coordinates are not well-adapted to near horizon expansions we

introduce new coordinates below.

2.1 Near horizon coordinates

For near horizon analyses various coordinate choices have been used in the literature,

e.g. Eddington-Finkelstein (EF) types of coordinates [3–5], conformal types of coordinates

(HHPS) [6] and Rindler coordinates [7]. Of course, there is also the venerable set of

Kruskal coordinates [8] or simplifications thereof [9]. Each of these have their own merits

and drawbacks. For our purpose the most striking difference between various choices is the

way the horizon is approached and whether or not the bifurcation 2-sphere can be covered.

We found none of these coordinate systems suitable for our purposes.

Thus, we introduce a Kruskal-Israel-inspired coordinate system that is well-adapted

to study not only the black hole horizon, but specifically the region near the bifurcation

2-sphere. The main features of our coordinates are

• co-rotation with the horizon (as opposed to Kruskal- or Israel-coordinates)

• no mixing of angular and spacetime coordinates (as opposed to HHPS)

• cover open region around the bifurcation 2-sphere (as opposed to EF or Rindler)

We describe now explicitly the new coordinates, starting with the angular part.

Since we are interested in an expansion around the outer horizon, r ∼ r+, it is useful

to transform the azimuthal angle so that our coordinate frame is co-rotating with the outer

horizon

φ = ϕ− ΩH t ΩH =
a

r2
+ + a2

. (2.5)

As we are content with the polar angle θ we do not transform it.
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We address now the spacetime part. We introduce Kruskal-Israel-like coordinates that

we denote by x±, defined by

x+ = ±

√∣∣∣∣ r − r+

r+ − r−

∣∣∣∣ eκt x− = ±

√∣∣∣∣ r − r+

r+ − r−

∣∣∣∣ e−κt (2.6)

the inverse of which is

t =
1

2κ
ln

∣∣∣∣x+

x−

∣∣∣∣ r = r+ − (r+ − r−)x+x− (2.7)

and hence

∆ = (r+−r−)2x+x−(x+x−−1) ρ2 = (r+− (r+−r−)x+x−)2 +r+r− cos2 θ . (2.8)

In this coordinate system x± ∈ R. The signs in (2.6) are fixed as follows. As in the

usual Kruskal coordinates, the outside region corresponds to x+ > 0, x− < 0, the black

hole region to x± > 0, the white hole region to x± < 0 and the second outside region

to x+ < 0, x− > 0. The locus x+x− = 0 describes the bifurcate black hole horizon and

x+ = x− = 0 the bifurcation 2-sphere B. The inner (Cauchy) horizon corresponds to

x+x− = 1 and our coordinates break down on it. Thus, the only restriction on the range

of the coordinates x± is that their product is smaller than unity, x+x− < 1.

In these new coordinates the Kerr black hole is described by metrics of the form

ds2 = ρ2 dθ2−ρ2 (x− dx+ + x+ dx−)2

x+x−(1− x+x−)
+

sin2 θ

ρ2

(
a
(
x+ dx−−x− dx+

)(
2r+−(r+ − r−)x+x−

)
+
(
r2

+(1− x+x−)2 + r2
−(x+x−)2 + r+r−(1 + 2x+x−(1− x+x−))

)
dφ
)2

+
1− x+x−

ρ2 x+x−

(
ρ2

+

(
x− dx+ − x+ dx−

)
− a sin2 θ (r+ − r−)x+x− dφ

)2
(2.9)

with a =
√
r+r− and ρ2

+ = r+(r+ + r− cos2 θ). In the extremal case, r+ = r− > 0, the

metric (2.9) simplifies to the near horizon extremal Kerr (NHEK) geometry [10]

ds2
NHEK = r2

+ (1 + cos2 θ)

(
− (x− dx+ + x+ dx−)2

x+x−(1− x+x−)
+

(x− dx+ − x+ dx−)2(1− x+x−)

x+x−

+ dθ2 +
4 sin2 θ

(1 + cos2 θ)2

(
dφ− x− dx+ + x+ dx−

)2)
(2.10)

The reason why we obtain NHEK rather than extremal Kerr is because the coordinate

transformation (2.7) is singular in the extremal case and zooms into the region r = r+ for

any finite values of x±. So, our coordinate system captures generic and near extremal cases.

For convenience we collect the ranges of the coordinates: x± ∈ R, x+x− < 1, θ ∈ [0, π] and

φ ∼ φ+ 2π.

The Killing vectors of the Kerr metric in the Boyer-Lindquist coordinates (2.1) are

∂t and ∂ϕ, associated with stationarity and axi-symmetry, respectively. The combination
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ζH = ∂t + ΩH∂ϕ is null, tangential and normal at the black hole horizon r = r+, so we use

it instead of ∂t. In our new coordinates (2.9) the Killing vectors read

ζH = κ
(
x+∂+ − x−∂−

)
ζφ = ∂φ . (2.11)

Consistently, ζH is null at the bifurcate horizon x+x− = 0 and vanishes at the bifurcation

2-sphere B, whose properties we discuss next.

2.2 Bifurcation 2-sphere

The bifurcation surface B is a compact surface of S2 topology with metric

dσ2
B =

(2Mr+)2 sin2 θ

ρ2
+

dφ2 + ρ2
+ dθ2 (2.12)

where

ρ2
+ = r+(r+ + r− cos2 θ) . (2.13)

The area of the horizon B is

A =

∫
B

dθ dφ (2Mr+) sin θ = 8πMr+ . (2.14)

The metric (2.12) can be written as conformal to the metric of round 2-sphere

dσ2
B = ΩKerr

4 dz dz̄

(1 + zz̄)2
. (2.15)

by a Weyl factor

ΩKerr =
(2Mr+)2 sin2 θ

4ρ2
+

(
µ(θ) +

1

µ(θ)

)2

(2.16)

with coordinates defined by

z = eiφµ(θ) z̄ = e−iφµ(θ) µ(θ) = e−
r−
2M

cos θ cot
θ

2
. (2.17)

3 Near horizon symmetries at the bifurcation surface

In this section we analyse the horizon symmetries and associated charges around the bi-

furcation surface B, which we refer to as “near bifurcation symmetries”. In section 3.1 we

discuss the most general fall-off behavior for metric fluctuations preserving the bifurcation

surface. In section 3.2 we derive the near bifurcation Killing vectors compatible with the

fall-off conditions. In section 3.3 we study the ensuing near bifurcation Killing vector alge-

bra. In section 3.4 we determine the charges associated with the near bifurcation Killing

vectors, investigate their integrability and present the algebra generated by them.
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3.1 Fall-off conditions

To motivate our fall-off conditions, we expand the Kerr metric (2.9) near the bifurcation

surface B at x± = 0,

ds2 = −4ρ2
+ dx+ dx− − 8Ma

(
r2

+

ρ2
+

+ κr+

)
sin2 θ

(
x− dx+ − x+ dx−

)
dφ + dσ2

B + · · · (3.1)

where dσ2
B is given in (2.12) and the ellipsis denotes higher order terms in x±. In this

expansion we are assuming x+ and x− to be small and of the same order.

As suggested by the expansion (3.1) we postulate the near bifurcation fall-off conditions

g±± = O(x2) g±A = x∓C±A (xB) +O(x3) (3.2a)

g+− = η(xB) +O(x2) gAB = ΩAB(xC) +O(x2) (3.2b)

where xA = (θ, φ) denote the coordinates on B. To avoid clutter we use O(xn) as a

shorthand for O((x±)n). The near bifurcation expansion functions, ΩAB, CA, η, are not

constrained by the Einstein field equations to leading order. The fall-off conditions (3.2) are

the most general ones (subject to Taylor-expandability) preserving the bifurcation 2-sphere

at x± = 0.

3.2 Near bifurcation Killing vectors

The diffeomorphisms that keep the near bifurcation expansion (3.2) intact are generated

by “near bifurcation Killing vectors” given by

ξ± = ±x±T±(xA) +O(x3) ξA = Y A(xB) +O(x2) . (3.3)

Under a transformation generated by near bifurcation Killing vector fields (3.3), the leading

order metric functions transform as

δξη = Y A∂Aη +
(
T+ − T−

)
η (3.4a)

δξC
±
A = Y B∂BC

±
A + C±B∂AY

B +
(
T+ − T−

)
C±A ∓ η∂AT

∓ (3.4b)

δξΩAB = Y C∂CΩAB + ΩAC∂BY
C + ΩBC∂AY

C (3.4c)

In the case above η, C±A and ΩAB are tensors (scalar, 1-forms and 2-tensor, respectively)

on B, while in later sections we shall also encounter tensor-densities. The ξ± in (3.3)

generate xA-dependent scalings in x± directions. As required, these transformations map

x± = 0 to itself and hence keep B intact.

3.3 Near bifurcation Killing vector algebra

Under the usual Lie bracket, the near bifurcation Killing vector fields (3.3) satisfy the

algebra [
ξ(T+

1 , T
−
1 , Y

A
1 ), ξ(T+

2 , T
−
2 , Y

A
2 )
]

= ξ(T+
12, T

−
12, Y

A
12) (3.5)
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where

T±12 = Y A
1 ∂AT

±
2 − Y

A
2 ∂AT

±
1 Y A

12 = Y B
1 ∂BY

A
2 − Y B

2 ∂BY
A

1 . (3.6)

The generators T±, Y A are functions on B. As (3.6) shows, Y A generate general 2d diffeom-

rphisms on B. The T± transform as scalars under 2d diffeomorphisms, while commuting

among themselves and with each other. Thus, the T± generate so-called supertranslations.

Analogously to [11, 12] for simplicity we impose a further restriction on the metric,

namely conformality to the round S2 of the co-dimension two metric ΩAB,

ΩAB dxA dxB = Ω γAB dxA dxB = Ω
4 dz dz̄

(1 + z z̄)2
. (3.7)

The assumption (3.7) allows us to work with a single function Ω instead of ΩAB. That is,

η,Ω, C±A are now the functions parametrizing our phase space of this section. At the level

of diffeos, this amounts to working with a subclass of the Y A generating Weyl rescalings

of B, i.e., we are restricting to superrotations rather than generic 2d diffeomorphisms.

In the coordinates z, z̄ defined in (3.7) the generators expand as

T ±n,m := ±znz̄mx±∂± ξ±∂± =
∑
n,m∈Z

τ±nmT ±n,m (3.8a)

Ln := −zn+1∂z , L̄n = −z̄n+1∂z̄ Y A(xB)∂A =
∑
n∈Z

(
YnLn + ȲnL̄n

)
(3.8b)

where τ±nm, Yn and Ȳn are arbitrary numbers.

In the basis spanned by Ln, L̄n, T ±n,m the algebra (3.5) takes the form

[Ln,Lm] = (n−m)Ln+m [L̄n, L̄m] = (n−m)L̄n+m (3.9a)

[Lk, T ±n,m] = −n T ±n+k,m [L̄k, T ±n,m] = −m T ±n,m+k (3.9b)

[Ln, L̄m] = 0 [T ±n,m, T ±k,l] = 0 = [T +
n,m, T −k,l] . (3.9c)

The algebra (3.9a) consists of a Witt ⊕Witt algebra (the “superrotation part”), generated

by Ln, L̄m, and two towers of supertranslations generated by T ±n,m. This algebra closely

resembles the DGGP algebra [3] but we have two copies of supertranslations, instead of

one copy there. While the second copy will not play any role in this section, it will become

important from section 4 onwards.

3.4 Conserved charges and their algebra

There are different methods to compute the charges and their algebras, including the

Hamiltonian formulation [13–15], action based [16, 17] or field-equation based [18, 19]

formulations. These methods provide a formula for computing surface charge variations

associated with the near bifurcation Killing vectors, which generically may be written as

/δQξ[g; δg] =
1

8πG

∫
B
Qµν [g,∇µ; δg, ξ] dxµν (3.10)

where g is the metric of the background, δg the allowed metric variations around this

background and ξ is any near bifurcation symmetry generator. The two-form components

– 7 –
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Qµν [g,∇µ; δg, ξ] are linear in both δg and in ξ. Index manipulations and covariant deriva-

tive ∇µ are both defined with respect to the background metric g. Finally, dσµν denotes

the induced co-dimension two volume form on B.

The explicit form of Q is determined by the theory (and somewhat by the method used

as each of the charge-variation computation methods comes with some different ambiguities

to be dealt with). The /δ on the left-hand-side of (3.10) is used to stress that /δQξ[g; δg] is

not necessarily integrable in phase space. That is, there may or may not be a charge Qξ[g]

as a function over the phase space of metrics, such that δQξ[g] = /δQξ[g; δg]. If this equality

holds we call /δQξ[g; δg] integrable and replace /δ → δ. If the charge is integrable then the

fundamental theorem of the covariant phase space method (see [20] and refs. therein) states

δξ2Qξ1 = {Qξ1 , Qξ2} = Q[ξ1,ξ2] +K(ξ1, ξ2) (3.11)

where the bracket is defined by the first equality and K(ξ1, ξ2) is a possible central exten-

sion.

In the present case the metric g+ δg is given by the near bifurcation fall-off (3.2), the

symmetry generators by the near bifurcation Killing vectors (3.3) and the theory is general

relativity. The action based covariant phase space method [16, 17] yields

/δQξ =
1

8πG

∮
B

d2xµν
√
−g
(
hλ[µ∇λξν]−ξλ∇[µh

ν]
λ −

1

2
h∇[µξν]+ξ[µ∇λhν]λ−ξ[µ∇ν]h

)
(3.12)

where hµν = δgµν is a metric variation allowed by the near bifurcation fall-off (3.2).

Assuming that the generators T±, Y A are field-independent the charges are integrable

and independent from the difference T+ − T−,

Q(T, Y A) ≡
∫
B

d2x
(
T P + Y A JA

)
(3.13)

with T = (T+ + T−)/2 and the charge densities

P =
Ω

8πG
JA = − Ω

16πG

C+
A − C

−
A

η
. (3.14)

Since there are fewer charges in (3.14) than functions parametrizing our phase space, η, Ω,

C±A , there is a redundancy in our phase space. We discuss its physical meaning and how

to fix it in section 6.1.

As an example we consider Kerr black holes (2.9), the charges of which are given by

PKerr =
r+(r+ + r−)

8πG
sin θ J Kerr

A = PKerr εA
B∂Bψ

Kerr (3.15)

with εφ
θ = −gθθ

√
det ΩAB = −(r+ + r−) sin θ/(r+ + r− cos2 θ), and

ψKerr = 4 arctan
(√

r−/r+ cos θ
)

+ 2
r+ − r−
r+ + r−

√
r−/r+ cos θ (3.16)

which essentially coincides with eq. (VII.1) in [7].

– 8 –



J
H
E
P
0
4
(
2
0
2
0
)
1
2
8

Let us now come back to the general result for the charges (3.13) and derive the algebra

generated by them using (3.11). The transformation laws (3.4) yield

δξP = Y A∂AP + P∂AY A (3.17a)

δξJA = Y B∂BJA + JB∂AY B + JA∂BY B + P∂AT (3.17b)

which is the usual transformation behavior of scalar- and vector-densities of weight one

under 2d diffeos generated by Y A. The algebra above coincides with the DGGP algebra [3],

see also [7], which notably features no central extension, i.e., the quantity K(ξ1, ξ2) in (3.11)

vanishes. Thus, the near bifurcation boundary conditions recover known results.

In the next section we generalize these boundary conditions by dropping the assump-

tion of a preserved bifurcation 2-sphere. This is physically well-motivated since real black

holes that formed through some collapse of matter do not have bifurcate horizons.

4 T-Witt symmetries on null hypersurfaces

In this section we study near horizon symmetries associated with generic points on the

future horizon. For a black hole like Kerr, the future horizon is not just an arbitrary

null surface but has more properties and structure, e.g. it is a Killing and an event hori-

zon. However, these extra properties are not generically respected by physically important

processes like objects falling into the black hole or Hawking radiation. To allow for such pro-

cesses we relax some of these properties and impose merely the existence of a (co-rotating)

null hypersurface with suitable fall-off conditions that we refer to as “null hypersurface

conditions”; the associated symmetries are captured by the null hypersurface symmetry

algebra.

In section 4.1 we introduce near null hypersurface fall-off behavior, taking into account

on-shell constraints. In section 4.2 we derive the near null hypersurface Killing vectors. In

section 4.3 we introduce the null hypersurface symmetry algebra associated with the near

null hypersurface Killing vectors, and its particularly important subalgebra, which we call

“T-Witt algebra”.

4.1 Near null hypersurface expansion and on-shell conditions

Consider a null hypersurfaces which with no loss of generality we assume to be located at

x− = 0. The 1-form normal to the surface, lµ ∝ δ−µ at x− = 0, by definition has vanishing

norm

gµν lµlν
∣∣
x−=0

= 0 =⇒ g−−|x−=0 = 0 . (4.1)

The hypersurface is parametrized by x+ and xA, where x+ is the ‘time’ along the null hyper-

surface and xA denotes the angular part. As before we assume hypersurface-orthogonality

(which in previous sections implied co-rotation) with respect to the null hypersurface

lµ∂µx
A|x−=0 = 0 =⇒ g−A

∣∣
x−=0

= 0 . (4.2)

A physical consequence of this geometric assumption is that the normal vector field lµ∂µ ∝
∂+ has no angular components and hence can be identified with the Hamiltonian (for a

suitable choice of the proportionality factor). This justifies to label x+ as ‘time’.

– 9 –
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The conditions (4.1) and (4.2) together with regularity of the metric at x− = 0 yields

the following general fall-off behavior near the null hypersurface

g++ = x−η G +O
(
[x−]2

)
g−− = F +O

(
x−
)

(4.3a)

g+A = x−VA +O
(
[x−]2

)
g−A = UA +O

(
x−
)

(4.3b)

gAB = ΩAB +O
(
x−
)

g+− = η +O
(
x−
)

(4.3c)

where all fields appearing in (4.3) are functions of time x+ and angles xA. To have non-

vanishing determinant of the metric we require η 6= 0 and det ΩAB 6= 0. At this stage it

is not clear which (combinations of the) fields correspond to physical boundary degrees

of freedom and which of them are pure gauge. We shall clarify this after computing the

charges. As an example the metric expansion of the Kerr black hole metric (2.9) around

the future null horizon x− = 0 is displayed in appendix A.

We consider now on-shell conditions. Unlike the near bifurcation boundary conditions

in section 3.1, the dynamics of the metric functions in (4.3) are partly determined by the

near null hypersurface Einstein equations, corresponding to the leading orders in x− of the

full field equations Rµν = 0. The O(1) of R++ = 0 in general imposes a relation between

time derivatives of det ΩAB and det(∂+ΩAB). For our choice (3.7),1 where
√

det ΩAB = γΩ

in which γ is a fixed given function of z, z̄, this equation is

∂2
+Ω +

1

2
∂+Ω

(
Γ− ∂+η

η
− ∂+Ω

Ω

)
= 0 (4.4)

where

Γ := G − ∂+η

η
. (4.5)

The O(1) of R+A = 0 gives

∂+ΥA + Ω∂AΓ− Ω∂+∂A ln Ω + ∂+Ω
∂Aη

η
= 0 (4.6)

where

ΥA [VA,UA, η,Ω] := −Ω

η

(
VA − ∂+UA +

∂+Ω

Ω
UA
)
. (4.7)

The other components of the field equations do not yield further constraints for the leading

order functions.

1The physical motivation for the restriction (3.7) is that it eliminates part of the gravitational wave exci-

tations characterized by the traceless part of ΩAB and thus allows us to focus on the boundary excitations,

the main interest of our present work. To be more precise, we are eliminating all outgoing gravitational

waves propagating along the null hypersurface and all ingoing gravitational waves that would yield a mem-

ory effect, i.e., an imprint on the null hypersurface. The remaining gravitational waves allowed by the

restriction (3.7) are ingoing gravitational waves with a node on the null hypersurface.
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4.2 Near null hypersurface Killing vectors and field variations

The fall-off conditions (4.3), the null hypersurface at x− = 0 and the direction of the 1-form

normal lµ are preserved by the near null hypersurface Killing vector fields

ξ+ = T+(x+, xB)+x−ξ+
1 (x+, xB) +O

(
[x−]2

)
, (4.8a)

ξ− = −x−T−(x+, xB) +O
(
[x−]2

)
(4.8b)

ξA = Y A(xB) + x− ξA1 (x+, xB) +O
(
[x−]2

)
(4.8c)

where Y A satisfy the conformal Killing equation for the metric LY γAB = (∇̄CY C)γAB with

∇̄A being the covariant derivative with respect to γAB, defined in (3.7).

The remarkable feature of these symmetry generators is the appearance of two time-

dependent functions T±(x+, xA). As discussed below, this time dependence brings novel

features and new physics.

Under the transformations generated by the near null hypersurface Killing vector

fields (4.8) the functions in the near null hypersurface metric (4.3) transform as

δξΩAB = T+∂+ΩAB + Y C∂CΩAB + ΩAC∂BY
C + ΩBC∂AY

C (4.9a)

δξη = ∂+

(
T+η

)
− T−η + Y A∂Aη (4.9b)

δξG = −2∂+T
− + ∂+(G T+) + Y A∂AG . (4.9c)

Using (3.7) and that γAB is fixed under the variations, i.e. δξγAB = 0, yields

δξΩ = T+∂+Ω + Y A∂AΩ + Ω ∇̄AY A (4.10)

and

δξF = T+∂+F − 2T−F + Y A∂AF + 2 η ξ+
1 + 2UAξA1 (4.11a)

δξUA = T+∂+UA − T−UA + η∂AT
+ + ΩABξ

B
1 + Y B∂BUA + UB∂AY B (4.11b)

δξVA = ∂+

(
T+VA

)
− T−VA − (η∂A + UA∂+)T− + η G ∂AT+ + ΩAB∂+ξ

B
1

+ Y B∂BVA + VB∂AY B . (4.11c)

The composite fields which appear in the field equations (4.4) and (4.6), Γ and ΥA

defined in (4.5) and (4.7) vary as

δξΥA = T+∂+ΥA − Ω Γ ∂AT
+ − ∂+Ω ∂AT

+ + 2Ω ∂AT̃
−

+ Y B∂BΥA + ΥB∂AY
B + ΥA∂BY

B (4.12)

δξΓ = T+∂+Γ + Γ ∂+T
+ − 2∂+T̃

− + Y A∂AΓ (4.13)

with T̃− := 1
2 (T− + ∂+T

+). The transformation laws above show that ΥA is a 1-form

density of weight one with respect to Y -diffeos and mixes with Γ under T+-diffeos. The

quantity Γ is a scalar with respect to Y -diffeos and a 1-form with respect to T+-diffeos.
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4.3 T-Witt and null hypersurface symmetry algebras

As may be anticipated on general grounds (and as shown explicitly in the next section)

the charges associated with subleading terms of the near null hypersurface Killing vectors,

parameterized by ξ+
1 , ξ

A
1 in (4.8), vanish. Therefore, here we only consider non-zero T±, Y A

in the near null hypersurface Killing vectors (4.8). Their Lie bracket is[
ξ(T+

1 , T
−
1 , Y

A
1 ), ξ(T+

2 , T
−
2 , Y

A
2 )
]

= ξ(T+
12, T

−
12, Y

A
12) (4.14)

where

T+
12 = T+

1 ∂+T
+
2 − T

+
2 ∂+T

+
1 + Y A

1 ∂AT
+
2 − Y

A
2 ∂AT

+
1 (4.15a)

T−12 = T+
1 ∂+T

−
2 − T

+
2 ∂+T

−
1 + Y A

1 ∂AT
−
2 − Y

A
2 ∂AT

−
1 (4.15b)

Y A
12 = Y B

1 ∂BY
A

2 − Y B
2 ∂BY

A
1 . (4.15c)

With the Taylor-Maclaurin expansions in x+ and the Laurent expansions in z and z̄

T+(x+; z, z̄) ∂+ =
∞∑

n=−1

∞∑
p,q=−∞

τnpqRp,qn Rp,qn := −(x+)n+1zpz̄q ∂+ (4.16a)

T−(x+; z, z̄) ∂− =
∞∑
n=0

∞∑
p,q=−∞

ρnpq T p,qn T p,qn := −(x+)nzpz̄q ∂− (4.16b)

Y A(z, z̄) ∂A =
∞∑

p=−∞

(
Yp Lp + Ȳp L̄p

)
Lp := −zp+1 ∂z , L̄p := −z̄p+1 ∂z̄ (4.16c)

where τnpq, ρ
n
pq,Yn and Ȳn are some arbitrary numbers, the algebra (4.14) reads

[Rp,qn ,Rr,sm ] = (n−m)Rp+r,q+sn+m [Rp,qn , T r,sm ] = −m T p+r,q+sn+m [T p,qn , T r,sm ] = 0 (4.17a)

[Lp,Lq] = (p− q)Lp+q [L̄p, L̄q] = (p− q) L̄p+q [Lp, L̄q] = 0 (4.17b)

[Lr,Rp,qm ] = −pRp+r,qm [L̄r,Rp,qm ] = −qRp,q+rm (4.17c)

[Lr, T p,qm ] = −p T p+r,qm [L̄r, T p,qm ] = −q T p,q+rm (4.17d)

The Taylor-Maclaurin indices are such that they guarantee smoothness in the x+ → 0 limit,

that is n ≥ −1 for Rp,qn and n ≥ 0 for T p,qn .2 The Laurent indices p, q, r, s are integers.

We refer to the full algebra (4.17) as “null hypersurface symmetry algebra” (NHS); it

has several interesting subalgebras (see appendix B). We call the one generated by Rp,qn and

T p,qn “T-Witt algebra” (4.17a), and the one generated only by Rp,qn “S-Witt algebra”. At a

given point on the bifurcation sphere, the S-Witt algebra reduces to a Witt algebra and the

T-Witt algebra reduces to an algebra closely related to the BMS3 algebra [19, 21]. It differs

from the BMS3 algebra only in the bracket [Rn, Tm] that is proportional to −m instead of

(n−m). This algebra was called BMS
(0)
3 in [7] and W (0, 0) in [22]. The subalgebra (4.17b)

generated by Lp and Lq yields superrotations in the sense of [11, 23]. We discuss the relation

to previous near horizon and null hypersurface symmetry algebras in section 7, but point

out already here that the T-Witt algebra was missed in all previous constructions.

2We address generalizations of this smoothness condition in the concluding section 8.
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5 Charges, fluxes and generalized charge conservation

We first compute the variation of the charges associated to the symmetries (4.8) in sec-

tion 5.1. We find out that they are not integrable. One can separate the integrable and

non-integrable parts of the charge variation. There is, however, an ambiguity in doing so.

In section 5.2 we use the Barnich-Troessaert modified bracket method [24] to fix this ambi-

guity by demanding the absence of a central extension in the null hypersurface symmetry

algebra. Section 5.3 establishes a generalized charge conservation equation relating the

non-integrable part to the time-derivative of the integrable part of the charge.

5.1 Charge variations and non-integrability of the charge

Inserting the near null hypersurface expansion (4.3) together with the near null hypersur-

face Killing vectors (4.8) into the surface charge variations (3.12) yields

/δQξ =

∫
γ
δ
(
Ω∂+ T+ − 2T+∂+Ω + ΩT− + Y AΥA

)
+

∫
γ
T+

[(
−Γ +

∂+Ω

Ω

)
δΩ +

∂+Ω

η
δη

]
(5.1)

where we used the conformal form of the angular part, so that the integrals are over a 2d

space with reference metric γAB defined in (3.7). For convenience we absorb an overall

factor containing Newton’s constant into the definition of the integral.∫
γ
• ≡ 1

16πG

∫
d2x
√
γ • (5.2)

For later purposes we highlight that the charge variation (5.1) is independent from ξ+
1 and

from ξA1 .

While the first line in (5.1) is manifestly the variation of a function over the phase

space, the second line is not. Therefore, we split (5.1)

/δQξ =

∫
γ

(
δQI

ξ + Fξ(δg)
)

(5.3)

into integrable part

QI
ξ = Ω∂+T

+ − 2T+∂+Ω + ΩT− + Y AΥA (5.4)

and non-integrable part

Fξ(δg) = T+

[(
− Γ +

∂+Ω

Ω

)
δΩ +

∂+Ω

η
δη

]
. (5.5)

This split is not unique due to the ambiguity

QI
ξ → Q̃

I
ξ = QI

ξ +Aξ(g) Fξ(δg)→ F̃ξ(δg) = Fξ(δg)− δAξ(g) (5.6)

for any arbitrary functional Aξ(g). We shall discuss below how this ambiguity can be fixed.
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5.2 Barnich-Troessaert method and modified bracket algebra

As discussed in the first two paragraphs of section 3.4, for the integrable charges the

fundamental theorem of the covariant phase space method implies that the algebra of

charges is the same as the algebra of asymptotic (near bifurcation surface/near horizon/near

null hypersurface) Killing vectors (up to a possible central extension). One may use a

similar criterion for fixing the ambiguity in separation of the integrable and non-integrable

parts when charges are not integrable, as in the case we are dealing with. This method

was developed by Barnich and Troessaert in [24]. They proposed a “modified bracket” of

the integrable part of charges, QBT
ξ , such that3

{QBT
ξ1 , Q

BT
ξ2 }
∗ := δξ2Q

BT
ξ1 + FBT

ξ2 (δξ1g) (5.7)

where QBT
ξ1

=
∫
γ Q

BT
ξ and FBT

ξ =
∫
γ F

BT
ξ . On-shell the modified bracket satisfies

{QBT
ξ1 , Q

BT
ξ2 }
∗ = QBT

[ξ1,ξ2] +Kξ1,ξ2 (5.8)

where Kξ1,ξ2 is a central extension term. In our case on-shell the latter is given by

Kξ1,ξ2 = −
∫
γ

Ω
[(
T+

1 ∂
2
+T

+
2 − T

+
2 ∂

2
+T

+
1

)
+
(
T+

1 ∂+T
−
2 − T

+
2 ∂+T

−
1

)]
(5.9)

The central extension (5.9) is in general non-vanishing.

Under the ambiguity (5.6) the form of the modified bracket (5.8) is preserved but the

central extension term shifts,

K̃ξ1,ξ2 = Kξ1,ξ2 + δξ2Aξ1(g)− δξ1Aξ2(g)−A[ξ1,ξ2](g) (5.10)

where Aξ(g) =
∫
γ Aξ(g). This begs the question whether or not there is a choice for

the ambiguity such that the central extension vanishes. We show now that the answer is

yes. To be minimalistic we consider only ambiguities that are linear combinations of terms

resembling the ones already present in the non-integrable part (5.5), namely T+(∂+Ω) log Ω,

T+(∂+Ω) log η and T+ Γ. We find that the choice

Aξ(g) = −T+ Ω Γ (5.11)

for the ambiguity leads to vanishing central extension, K̃ξ1,ξ2 = 0. (The choice (5.11) is

not unique; for instance, adding to Aξ(g) a term proportional to T+∂+Ω would not change

our conclusions; however, the choice above is minimalistic.)

Thus, we fix the ambiguity by demanding the absence of a central extension. Us-

ing (5.11) the integrable and non-integrable parts of the charge become

QBT
ξ =

∫
γ

[(
∂+T

+ + T−
)

Ω− T+
(
2∂+Ω + Ω Γ

)
+ Y AΥA

]
(5.12)

FBT
ξ (δg) =

∫
γ
T+

[
∂+Ω

Ω
δΩ +

∂+Ω

η
δη + ΩδΓ

]
. (5.13)

3One should note the difference between “adjusted brackets” which arise due to field dependence of the

generators, e.g. see [25], and the “modified bracket” [24] which arise in the non-integrability context.
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Introducing modes for the charges analogous to (4.16),

Rp,qn := QBT
ξ for ξ = −(x+)n+1zpz̄q∂+ (5.14a)

T p,qn := QBT
ξ for ξ = −x−(x+)nzpz̄q∂− (5.14b)

Lp := QBT
ξ for ξ = −zp+1∂z (5.14c)

L̄p := QBT
ξ for ξ = −z̄p+1∂z̄ (5.14d)

their modified bracket algebra

{Rp,qn , Rr,sm }∗ = (n−m)Rp+r, q+sn+m {Rp,qn , T r,sm }∗ = −mT p+r, q+sn+m (5.15a)

{T p,qn , T r,sm }∗ = 0 {Lp, L̄q}∗ = 0 (5.15b)

{Lp, Lq}∗ = (p− q)Lp+q {L̄p, L̄q}∗ = (p− q) L̄p+q (5.15c)

{Lr, Rp,qm }∗ = −pRp+r, qm {L̄r, Rp,qm }∗ = −q Rp,q+rm (5.15d)

{Lr, T p,qm }∗ = −p T p+r, qm {L̄r, T p,qm }∗ = −q T p, q+rm (5.15e)

coincides with the null hypersurface symmetry algebra (4.17) without central extension.

This is one of the key results of our paper.

5.3 Generalized charge conservation, Hamiltonian and entropy

We study now the time evolution of the charge QBT
ξ (5.12). Depending on the observer,

there are different interesting cases for the choice of time coordinate. Below, we discuss

two such cases.

Null hypersurface observer (x+ as time). The natural time coordinate for an ob-

server temporarily residing at the x− = 0 null hypersurface is x+. The corresponding sym-

metry generator is translation along x+, R0,0
−1 = −∂+ and the corresponding charge (5.12),

the Hamiltonian, is QBT
∂+

= R0,0
−1 =

∫
γ(2∂+Ω + ΩΓ). The charge algebra (5.15) implies that

this Hamiltonian commutes with superrotations Lr, L̄
s

but does not commute with the

T-Witt generators Rp,qn , T p,qn . In the stationary limit, where ∂+Ω = Γ = 0, the Hamiltonian

QBT
∂+

vanishes and is thus not a useful observable. So for (almost) stationary situations one

should use the time coordinate below instead.

Nevertheless, if one considers the charge associated with the Hamiltonian QBT
∂+

and

evaluates its bracket with another charge QBT
ξ for generic ξ then (5.8) yields

{QBT
∂+
, QBT

ξ }∗ = QBT

[∂+,ξ]
= QBT

∂+ξ (5.16)

while (5.7) yields

{QBT
∂+
, QBT

ξ }∗ = −δ∂+Q
BT
ξ − FBT

∂+
(δξg) . (5.17)

As implied by (4.9) and (4.10), we have QBT
∂+ξ

+ δ∂+Q
BT
ξ = ∂+Q

BT
ξ and therefore arrive at

the generalized charge conservation equation (GCCE)

∂+Q
BT
ξ = −FBT

∂+
(δξg) . (5.18)

The GCCE means that the non-integrable part of the charge is the source of the non-

conservation of the integrable part and therefore represents the flux passing through the null
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hypersurface. The GCCE (5.18) provides a consistency check of our boundary conditions

and is expected to hold on general grounds [24], see also [26] for the canonical viewpoint

and [4] for similar discussions and results in a special case addressed in section 7.2.

Stretched horizon observer (t = 1
2κ

ln(−x+/x−) as time). For an observer just

outside the horizon in the stationary case the most natural time-translation generator is

the one associated with the Killing vector ζH given in (2.11). The corresponding time

coordinate is proportional to ln(−x+/x−), see (2.7). Even for non-stationary situations we

can consider this time-coordinate. Following [7] we define the near horizon Hamiltonian

HNH as

HNH := QBT
∂t = κ

(
T 0,0

0 −R0,0
0

)
. (5.19)

The Hamiltonian HNH commutes with superrotations and all T p,qn . In the stationary case

it is conserved and commutes with all other charges, and hence the associated physical

excitations are soft hair, as explained in [7]. For the Kerr background (see section 2),

the near horizon Hamiltonian is given by the Wald entropy times Hawking temperature,

thereby recovering the near horizon first law [3].

In full generality, however, HNH is not conserved since HNH does not commute with

Rp,qn . This non-conservation in particular, and time variation of the charges in general, is

captured by a GCCE similar to (5.18):

∂tQ
BT
ξ = −FBT

∂t (δξg) . (5.20)

In the adiabatic limit, the left hand side of the above equation for ξ = ζH (2.11) is the time

variation of the entropy, which equals to the flux through the null hypersurface. We shall

return to this point in section 8.

6 Redundancies and on-shell phase space

The phase spaces defined in the previous three sections describe boundary excitations [since

we switched off the bulk excitations through our assumption (3.7)]. These boundary excita-

tions correspond to edge states and are physical, modulo residual pure gauge redundancies,

so that the number of functions parametrizing these phase spaces are typically larger than

the number of surface charges. We have seen this effect already in section 3: the near

bifurcation Killing vectors involve T±, while the charges (3.13) depend only on their sum.

So there is a pure gauge degeneracy in the near bifurcation Killing vectors. This particular

degeneracy is lifted in sections 4–5. However, even in the phase space defined through the

boundary conditions in section 4 and the charge analysis in section 5 there are still gauge

redundancies, which we address in this section.

In section 6.1 we perform residual gauge fixing to remove gauge redundancies from the

boundary phase space. In section 6.2 we discuss the on-shell phase space to verify that

the number of charges matches with the number of functions parametrizing our boundary

phase space. Two special cases require separate discussion, namely non-expanding and

sationary null hypersurfaces, which we deal with in section 6.3.
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6.1 Fixing residual gauge redundancies

The first type of pure gauge redundancy arises when certain symmetry generators do not

contribute to the charges at all. In the present case the functions ξ+
1 and ξA1 appearing

in the near null hypersurface Killing vectors (4.8) do not contribute to the charge vari-

ation (5.1). Therefore, the diffeomorphisms generated by near null hypersurface Killing

vectors that have only these functions switched on are proper diffeomorphisms, even at

the null hypersurface boundary. Anticipating this result we considered only the remain-

ing free functions, T± and Y A, when deriving the near null hypersurface Killing vector

algebra (4.17).

There is a second type of pure gauge redundancies: it could be that not all linear

combinations of free functions appearing in the near null hypersurface expansion of the

metric appear in the charges. Linear combinations that do not appear thus do not label

any physical states and can be gauge fixed to a convenient form. In the present case there

are four scalar fields, η,F ,G and Ω, and two vector fields, VA and UA, appearing in our

parametrization of the near null hypersurface metric (4.3). However, the expressions for

the charges (5.12) and fluxes (5.13) depend only on three of the scalar fields — there is

no dependence on F — and on one combination of the vector fields, namely ΥA defined

in (4.7). This means that F and one combination of VA and UA that is linearly independent

from ΥA can be gauge-fixed conveniently.

Recalling (4.11), we eliminate now F and UA by a diffeomorphism generated by a near

null hypersurface Killing vector (4.8) with non-zero functions4

ξ+
1 = − 1

2η
(F − ΩABUAUB) ξA1 = −ΩABUB . (6.1)

Removing the gauge freedom from our phase space reduces the near null hypersurface

expansion (4.3) of the metric

g++ = x−η G +O
(
[x−]2

)
g−− = O

(
x−
)

(6.2a)

g+A = x−θA +O
(
[x−]2

)
g−A = O

(
x−
)

(6.2b)

gAB = ΩAB +O
(
x−
)

g+− = η +O
(
x−
)

(6.2c)

where θA := − η
ΩΥA. The dynamical fields G, η, ΩAB = γAB Ω [see (3.7)] and θA are

functions of time x+ and angles xA and parameterize our phase space. Terms not displayed

are subleading and do not contribute to the charges or fluxes.

Higher powers of x− in the near null hypersurface Killing vectors (4.8) do not contribute

to the charges and thus generate gauge redundancies that can be used to remove the

higher powers in the g−µ components of the metric. The fully gauge-fixed version of the

4To eliminate F and UA we need to consider the finite form of diffeomorphisms generated infinitesimally

by ξ1. This means in particular that we need to keep the terms to second order in ξ1 in our transformations,

whereas (4.11) are only showing the first order ones. The transformation for F is then modified to δξF +

ΩABξ
A
1 ξ

B
1 , where δξF is given in (4.11). The expression for δξUA does not receive second order corrections.
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metric (6.2)

g++ = x−η G +O
(
[x−]2

)
g−− = 0 (6.3a)

g+A = x−θA +O
(
[x−]2

)
g−A = 0 (6.3b)

gAB = γAB Ω + λAB x
− +O

(
[x−]2

)
g+− = η . (6.3c)

is preserved by near null hypersurface Killing vectors

ξ = T+(x+, xB) ∂+ − x−T−(x+, xB) ∂− + Y A(xB) ∂A + ξfix . (6.4)

The subleading term ξfix = x−ξ̂A ∂A +x− 2ξ̂− ∂−ξ̂
A is completely determined by the metric

and the leading order functions, ξ̂A = − η
Ωγ

AB∂BT
+ +O(x−) and ξ̂− = − 1

2η ξ̂
A
(
θA+∂Aη

)
+

O(x−). This shows explicitly that all residual gauge redundancies present in the near null

hypersurface Killing vectors (4.8) are removed and the remaining free functions, T± and

Y A, generate null hypersurface symmetries that are not gauge redundancies in general.

After removing all residual gauge redundancies our boundary phase space is therefore

characterized by three scalar functions, η,Γ,Ω and a vector ΥA; the quantity λAB does not

appear in the charges and captures (ingoing and memoryless) gravitational wave degrees

of freedom that are part of the bulk phase space.

Before moving on we mention a similar redundancy that is also present in the near

bifurcate horizon analysis of section 3, since the charges (3.13) depend only on the func-

tion Ω and the combination (C+
A − C−A )/η, as evident from (3.14). The phase space is

parametrized by four functions η, Ω and C±A , and therefore there are two redundant func-

tions. The redundancy is eliminated by gauge fixing, e.g. η = 1 and C−A = 0.5

6.2 On-shell phase space for generic null hypersurfaces

At first sight there seems to be a mismatch between the degrees of freedom of the boundary

phase space and the number of surface charges since there are more functions on the phase

space, η,Γ,Ω,ΥA, than null hypersurface symmetry generators, T±, Y A. The reason for

this is that we did not consider all on-shell conditions yet. Therefore, we analyze now

the equations of motion (eom) (4.4) and (4.6) and evaluate the charge and the flux (5.12)

and (5.13) on-shell.

The eom yield a dichotomy: generic solutions have ∂+Ω 6= 0, while special solutions

have a non-expanding null hypersurface, ∂+Ω = 0. We postpone a discussion of the latter

case to section 6.3 and focus here on generic solutions.

In the generic case the eom (4.4) can be solved for Γ,

Γ = Γ(η,Ω) = ∂+

(
ln

ηΩ

(∂+Ω)2

)
. (6.5)

Then the eom (4.6) yields

∂+ΥA = 2∂+

(
Ω ∂A

(
ln
∂+Ω
√
η

)
− ∂AΩ

)
. (6.6)

So ΥA is fully determined by η,Ω and the initial value Υ0
A := ΥA(x+ = 0).

5Note that, given ξP := 1
2
T (xA)(x+∂+ − x−∂−) and ξD := T̃ (xA)(x+∂+ + x−∂−), P is the charge

associated with ξP and the charge for ξD vanishes on our phase space. That is, ξD generates trivial

transformations which can be used to gauge fix η to 1.
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Thus, generic points in the phase space (modulo possible ‘accidental gauge redundan-

cies’ which we discuss below) are uniquely specified on-shell by two arbitrary functions of

time x+, namely Ω and η, together with the initial value Υ0
A(xB). These on-shell degrees

of freedom match the symmetry generating functions appearing in the near horizon Killing

vectors, T±(x+, xA) and Y A(xB), and the associated charges

Qeom
ξ =Qeom

ξ [Ω, η,Υ0
A;T±, Y A]

:=(16πG)
[
T̃−P− + Y AJA + T+P+

] (6.7)

where T̃− := 1
2(T− + ∂+T

+). The charge densities P±,JA read

JA =
ΥA

16πG
(6.8a)

P− =
Ω

8πG
(6.8b)

P+ =
Ω

8πG
∂+

[
ln
∂+Ω

Ω
− ln

√
ηΩ

]
(6.8c)

and their variations yield6

δξJA = P−∂AT̃− + T+∂+JA + P+∂AT
+ +

1

2
∂+P−∂AT+

+ Y B∂BJA + JB∂AY B + JA∂BY B (6.9a)

δξP− = T+∂+P− + Y A∂AP− + P−∇̄AY A (6.9b)

δξP+ = ∂+T̃
−P− + ∂+

(
T+P+

)
+ Y A∂AP+ + P+∇̄AY A . (6.9c)

Thus, there are exactly as many charges, P±,JA, as there are independent functions on

the boundary phase space, Ω, η,Υ0
A. As (6.9) show, the symmetry algebra of the on-shell

charges is isomorphic to the symmetry algebra of the off-shell charges (5.15).

While the charges JA,P− are non-zero even in the limit of vanishing expansion, this is

not true for P+. A reason for this significant difference is that the two former are integrable

and conserved while the latter is not. This may be seen from the fact that the flux (5.13)

is proportional to T+ and is independent of T−, Y A. Explicitly, the on-shell value of the

flux is

F eom
ξ = F eom

ξ [Ω, η;T+] = 2T+
[
∂+

(
Ωδ ln

√
ηΩ
)
− Ω∂+

(
δ ln(∂+Ω)

)]
. (6.10)

The expression for the on-shell flux (6.10) is a function over the same on-shell phase space

as the charges, and it is related to the latter through our GCCE (5.18).

6.3 On-shell phase space for non-expanding and stationary null hypersurfaces

We consider now non-expanding null hypersurfaces, ∂+Ω = 0. This is a consistent trun-

cation of the phase space since the condition ∂+Ω = 0 is preserved under the orbit of the

near null hypersurface Killing vectors.

6Note that P± are scalar densities and JA is a vector density. Therefore, Y A∂AP± + P±∇̄AY A =

∇̄A
(
Y A P±

)
, where ∇̄A is the covariant derivative with respect to metric γAB .
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In this case Γ may not be solved for since the eom (4.4) is satisfied identically. The

eom (4.6) and the expressions for charge (5.12) and flux (5.13) simplify to

∂+ΥA + Ω ∂AΓ = 0 (6.11a)

Qnon-ex
ξ = 2 T̃−Ω + Y AΥA − T+ Ω Γ (6.11b)

Fnon-ex
ξ (δg) =T+Ω δΓ . (6.11c)

Within the special case of vanishing expansion we still encounter a dichotomy: generi-

cally, δΓ 6= 0, so despite of vanishing expansion there is a non-trivial flux, but for stationary

solutions δΓ = 0 and the flux vanishes. We discuss first the generic case.

Generic non-expanding case. Our goal is to compare the number of free functions

on the on-shell phase space with the number of free functions appearing in the surface

charges. Since the functions G and η always appear through the combination Γ there is

an accidental gauge symmetry, namely any transformation that changes η,G (4.9b), (4.9c)

but keeps Γ invariant. With no loss of generality we exploit this gauge symmetry to fix

G = 0, implying

Γ = −∂+ ln η ∂+

(
ΥA − Ω

∂Aη

η

)
= 0 (6.12)

where in the right equation we used (6.11b). For consistency also its variation (4.9c)

must vanish, yielding ∂+T
− = 0 so that T− = T−(xA), where we take T− to be field

independent. The remaining eom (6.11a) implies that the on-shell degrees of freedom are

Γ(x+, xA), Ω(xA) and Υ0
A(xB). This matches precisely with the freedom contained in the

symmetry generators T+(x+, xA), T−(xA) and Y A(xB).

For completeness, we also present the on-shell variation of the remaining fields in this

gauge from which one can read the algebra of charges. These variations may be obtained

by setting ∂+Ω = 0 and using ∂+T
− = 0 in (4.10), (4.12) and (4.13),

δξΩ = Y A∂AΩ + Ω ∇̄AY A (6.13a)

δξΥA = Ω ∂AT
− + Ω∂A(∂+T

+ − T+Γ) + Y B∂BΥA + ΥB∂AY
B + ΥA∂BY

B (6.13b)

δξΓ = ∂+(T+Γ)− ∂2
+T

+ + Y A∂AΓ . (6.13c)

In δξΥA we dropped the term T+ (∂+ΥA + Ω∂A Γ), which vanishes on-shell (6.11a). In

the G = 0 gauge the variation (6.13c) is equivalent to (4.9b) for ∂+T
− = 0. For this

sector we have the charges Rp,qn , T p,q0 , Lp and L̄
r
. The T-Witt part of the algebra hence

reduces to a Witt algebra among Rp,qn and T p,q0 generators which commute with all the

Rr,sn . The generators T p,q0 , Lp and L̄
r

form an algebra obtained in [3] for the near horizon

Kerr geometry.

Stationary case. Finally, for the special case of stationary non-expanding null hyper-

surfaces, δΓ = 0, the flux (6.11c) vanishes and the charge (6.11b) is integrable

Qstat
ξ =

∫
γ

(
T̂ Ω + Y A ΥA

)
Fξ = 0 (6.14)
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where T̂ := T− + ∂+T
+ − ΓT+. The value of the charge and the charge variation has

no η-dependence (or equivalently Γ-dependence). It implies that there is a new accidental

gauge symmetry in the stationary sector. One can use this to gauge-fix η to a constant

and thus Γ = 0. In this gauge T̂ = T− + ∂+T
+ and (6.13c) implies ∂2

+T
+ = 0. Therefore,

∂+T̂ = ∂+(T−+∂+T
+) = 0. Moreover, as a consequence of the eom (6.12), ∂+ΥA = 0. The

charge (6.14) is time independent and thus conserved, consistently with the GCCE (5.18).

Thus, also the stationary subsector of the boundary phase space shows a matching

between charges, Ω(xA) and ΥA(xB), and symmetry generators, T̂ (xA) and Y A(xB). For

the stationary phase space, Γ = ∂+Ω = 0, the charge variation simplifies to

δξΩ = Y A∂AΩ + Ω ∇̄AY A (6.15a)

δξΥA = 2 Ω ∂AT̂ + Y B∂BΥA + ΥB∂AY
B + ΥA∂BY

B . (6.15b)

The above is precisely what we obtained in section 3 as the symmetry algebra near the

bifurcation point as well as the algebra obtained in [7]. See also section 7.3 for further

discussions.

We come back to bulk aspects of the phase space and gravitational wave excitations

in the concluding section 8.

7 Recovering other near horizon symmetries

In this section we curtail the analysis of sections 4, 5 and 6 by imposing physically well-

motivated conditions on the general variations around the null hypersurface x− = 0.

Thereby, we recover near horizon symmetries discussed earlier as special cases.

In section 7.1 we restrict the null hypersurface generator to have a constant non-

affinity parameter over spacetime and phase space. In section 7.2 we discuss the Gaussian

null coordinates. In section 7.3 we require the null hypersurface to be a Killing horizon,

which in a special case recovers the phase space established in section 3.

7.1 Null hypersurfaces with constant non-affinity parameter

The generator of the x− = 0 null hypersurface in the metric (6.2) to leading order in x− is

l =
N

η
∂+ +O(x−) (7.1)

where N is an arbitrary function of x+ and xA. Its non-affinity parameter κl defined

through l · ∇lµ = κll
µ on the surface x− = 0 is

κl =
1

η

(
∂+N −

GN
2

)
. (7.2)

The subscript l is a reminder that the non-affinity parameter κl in general is not associated

with surface gravity κ, since we are currently not assuming to have a Killing horizon; for

the special case of a Killing horizon both quantities coincide with each other.

Requiring κl to be constant on both spacetime and phase space, i.e., ∂µκl = 0 and

δκl = 0, fixes N as a function of G and η. This does not impose any further restriction
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on our phase space. However, physically motivated choices can lead to further restrictions.

Here we focus on the case N ∝ x+η. Constancy of κl in this case leads to

G = 2
∂+η

η
. (7.3)

The above condition constitutes a special case for which the η,G-dependence drops out of

the field equation (4.4), yielding

Ω = Ω0 + 2
√

Ω0Ω1 x
+ + Ω1 (x+)2 Ω0 = Ω0(xA), Ω1 = Ω1(xA) . (7.4)

Recalling the variations (4.9), to preserve the condition (7.3) on the phase space the trans-

formation parameter T+ has to obey

∂2
+T

+ = 0 =⇒ T+ = T0 + x+T1 (7.5)

where T0, T1 are arbitrary functions of xA, while T− and Y A are unrestricted. Therefore,

the on-shell phase space in general is determined by η(x+, xA),Ω0(xA),Ω1(xA),Υ0
A(xB)

and the symmetry generators are T−(x+, xA), T0(xA), T1(xA), Y A(xB).

7.2 Null hypersurfaces in Gaussian null coordinates

Many previous near horizon studies invoked Gaussian null coordinates, see e.g. [3–5, 27].

It is one of the purposes of this subsection to show that there is loss of generality in

assuming Gaussian null coordinates, because the coordinate transformations required to

transform to these coordinates are not proper ones within our more general set of boundary

conditions (6.3). Technically, it turns out that Gaussian null coordinates require to fix η = 1

and δη = 0 on the phase space of metrics (6.3). This leads to a reduced phase space. Hence

there is loss of generality in making these assumptions. In the remainder of this subsection

we make explicit the consequences of the choice η = 1 (and δη = 0), in particular for the

metric and for the symmetry generators.

The condition η = 1 is achieved as follows. Consider the coordinate system in sec-

tion 6.1, in particular the metric (6.3). Next, perform the coordinate transformation

x− → x−C (7.6)

where C is an arbitrary function of x+ and xA. The functions in the metric (6.3) then

transform as

η → Cη G → G + 2
∂+C
C

1

η
θA →

1

η
θA +

∂AC
C

. (7.7)

The coordinate transformation (7.6) is generated by T− in (4.8). The transformations of

the metric functions (7.7) leave invariant Ω and G−2∂+η/η, while G, η, and ΥA transform.

Therefore, the coordinate transformation (7.6) is a nontrivial diffeomorphism since there

is a non-vanishing surface charge associated with it. The choice C = 1/η yields the desired

reduction of the phase space to a sector in which η = 1. The metric (6.3) is then manifestly

in the Gaussian null coordinates,

ds2 = −2x−K (dx+)2 + 2 dx− dx+ + 2x−θ̃A dx+ dxA + ΩAB dxA dxB + · · · (7.8)
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where

K = −G
2

+
∂+η

η
θ̃A =

1

η
(θA − ∂Aη) . (7.9)

Due to the form of the near null hypersurface Killing vectors (4.8) a generic transfor-

mation moves us away from η = 1. To keep this condition we require δξη = 0, which by

virtue of (4.9b) yields

T− = ∂+T
+ . (7.10)

One may use (4.4) to solve G in terms of Ω and then (4.6) to solve ΥA in terms of Ω

and an initial value function Υ0
A. So in this sector our on-shell phase space is described

by Ω(x+, xA),Υ0
A(xB) and the independent symmetry generators are T+(x+, xA), Y A(xB).

The T-Witt algebra (4.17a) is then reduced to the S-Witt algebra, generated by Rp,qn .

In addition to the case η = 1 considered here, one can demand the generator lµ∂µ =

N ∂+ +O(x−) to have a constant non-affinity parameter, as it was done in section 7.1. The

constant non-affinity parameter case with N ∝ x+η yields (7.3) and does not constrain T−.

It is hence compatible with the η = 1 constraint and the two restrictions may be combined.

Requiring constancy of the non-affinity parameter in (7.3) together with η = 1 implies

G = 0. Preserving this condition yields

∂2
+T

+ = 0, T− = ∂+T
+ =⇒ T+ = T0 + x+T1 , T

− = T1 (7.11)

where T0, T1 are arbitrary functions of xA. The field equations for Ω yield (7.4) and for

ΥA (4.6) reduce to ∂+ΥA = Ω∂+∂A ln Ω. Therefore, time dependence of ΥA is com-

pletely determined in terms of Ω, the on-shell phase space in general is specified by

Ω0(xA),Ω1(xA),Υ0
A(xB), and the symmetry generators are T0(xA), T1(xA), Y A(xB). The

symmetry generators, charge and flux read

ξ = T0∂+ + T1(x+∂+ − x−∂−) + Y A∂A (7.12a)

Qξ = 2Ω∂+T
+ − 2T+∂+Ω + Y AΥA (7.12b)

Fξ = 4T+
√

Ω1 δ(
√

Ω) . (7.12c)

The charge becomes integrable when the flux vanishes, i.e., for Ω1 = 0. This is the station-

ary case with ∂+Ω = 0, discussed in section 6.3.

We finally note that upon the coordinate transformation

x+ = eκv +O(ρ2) x− =
e−κv

κ
ρ+O(ρ2) xA = yA +O(ρ2) , (7.13)

with κ := κl, the line-element (6.3) (for η = 1,G= 0) takes the standard Gaussian null form

ds2 = −2κ ρ dv2 + 2 dv dρ+ 2 ρ θA dv dyA + (ΩAB + ρ λAB) dyA dyB +O
(
ρ2
)
. (7.14)

The null hypersurface x− = 0 is mapped to the surface ρ = 0 in (7.14) and is generated

by ζH = κ (x+∂+ − x−∂−) = ∂v whose the non-affinity parameter κ is constant. Note that

the coordinate transformation (7.13) is a proper gauge transformation over the restricted

phase space we are considering in this section.
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The near horizon Killing vector (7.12) in Gaussian null coordinates

ξ = f∂v − ∂vfρ∂ρ +
(
Y A − ρΩAB∂Bf

)
∂A +O(ρ2) with f =

1

κ

(
T1 + e−κvT0

)
(7.15)

is exactly the near-horizon symmetry generator for isolated horizons presented in [4, 27].

The near horizon symmetry algebra in this case is given by (4.17), but with the T-Witt

sector restricted to Rp,q0 ' Rp,q0 + T p,q0 (which in terms of differential operators is −ζH/κ)

and Rp,q−1.

7.3 Killing horizons

In this subsection we restrict the phase space to describe Killing horizons. It means we

require the existence of a vector field ζH normal to the null hypersurface x− = 0 such that

LζHgµν = 0 and ζ2
H = 0 at x− = 0. The geometry (6.3) admits such a Killing vector field,

ζH =
N

η
∂+ + lµ(1) x

− ∂µ +O(x−)2 (7.16)

where N is a possibly field-dependent function over the phase space, if

∂+Ω = 0 Γ = ∂+ ln
N2

η
− 2

η

N
κ (7.17a)

ΩABl
B
(1) = −N∂A ln

N

η
l−(1) = −∂+N

η
l+(1) = 0 (7.17b)

∂+ΥA + Ω ∂AΓ =
2η

N
∂Aκ (7.17c)

where κ(xA) is the non affinity parameter of (7.16). Moreover the eom ΥA (6.11a) implies

∂Aκ = 0. This is the zeroth law of black hole thermodynamics stating that the surface

gravity κ has to be constant over the Killing horizon.

The Killing horizon case is therefore a special case of the non-expanding case of sec-

tion 6.3 which has constant surface gravity. The charges and their algebra are hence the

same as the one discussed below (6.13). As in section 6.3, one may fix G = 0 gauge in

which ∂+N = κη, and thus N = κ
∫ x+

η+U(xA). However the integration function U(xA)

has to vanish in order to consistently describe the bifurcation point. The variation of N is

δξN = T+∂+N − T−N + Y A∂AN (7.18)

where we used (4.9b) and the fact that T− = T−(xA).

As in the previous subsection, one may further restrict N . For example, for the case

of N = κηx+, ∂+N = κη yields ∂+η = 0 and (7.17b) yields lA(1) = 0. Therefore,

ζH = κ
(
x+∂+ − x−∂−

)
+O(x−)2 . (7.19)

Moreover, in this case Γ = 0, δΓ = 0 and hence we recover the stationary case of section 6.3.

That is, after fixing the extra accidental symmetries we find in this case, the on-shell

physical phase space is described by Ω(xA),Υ0
A(xB) and the symmetry algebra reduces to

that of section 3.
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8 Concluding remarks

We conclude with a brief summary of the main results and a perspective on future research

directions.

Motivated by the desire to understand non-extremal Kerr black holes from a near

horizon perspective we introduced new coordinates (2.9) that are co-rotating with the event

horizon but otherwise do not mix angular and spacetime coordinates and allow to cover the

whole Kerr manifold up to the Cauchy horizon. Expanding around the bifurcation 2-sphere

of the Kerr geometry led us to propose bifurcation fall-off conditions (3.2). The associated

bifurcation Killing vector algebra (3.9a) consisted of superrotations and two towers of

supertranslations. However, only one such copy entered the surface charges (3.13), while

as we discussed in the end of section 6.1, the other one turned out to be pure gauge.

We generalized the fall-off conditions to generic (but co-rotating) null hypersurfaces

(regardless of whether they describe bifurcate Killing horizons, isolated horizons or no

horizons), see (4.3). The near null hypersurface Killing vectors (4.8) generated an alge-

bra (4.17) that contained again superrotations and two towers of supertranslations, which

among themselves formed a subalgebra (4.17a) that we dubbed ‘T-Witt’ algebra. In con-

trast to the previous case both towers of supertranslations turned out to be relevant for the

charges (5.1), which no longer were integrable. Their split into integrable and flux parts

was ambiguous, as expected on general grounds, but the ambiguity could be largely fixed by

demanding the absence of a central extension. This led us to the integrable part (5.12) and

the flux part (5.13), which together obey a generalized charge conservation equation (5.18)

[or (5.20)] that justifies the label ‘flux’. We verified in section 6 that there are always

equally many functions parametrizing the on-shell phase space and functions appearing

in the symmetry generators, which is why we referred to the phase space as ‘boundary

phase space’. In section 7 we recovered special cases considered in earlier literature on near

horizon symmetries.

For readers exclusively interested in results pertaining to Kerr black holes (2.9) we

summarize them briefly in this paragraph. The near bifurcation charges and their variations

are displayed in (3.15)–(3.17). The more generic near horizon expansion of Kerr is displayed

in appendix A.

In this work we considered some subalgebras of the T-Witt algebra motivated by geo-

metric and/or physical restrictions of the boundary conditions, see figure 1 and appendix B.

There are numerous further algebraic aspects that deserve further study. We list here some

of them. It could be interesting to fully classify all maximal finite subalgebras and the in-

finite subalgebras of the T-Witt algebra, as well as all their central extensions. To obtain

the latter we would need to relax the regularity assumption stated below (4.17) (e.g. by

compactifying the null hypersurface or by allowing a singular point x+ = 0) and allow for

positive and negative mode numbers. Besides these purely algebraic aspects, it would be

physically interesting to find a geometric realizations of boundary conditions that switch

on some of the algebraically allowed central extensions. Also the superrotation part of the

algebra may deserve further study, see e.g. [28] and refs. therein for a recent discussion in

the context of asymptotically flat spacetimes.
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generic: T-Witt

Rp,qn , T p,qn

eq. (4.17a)

non-expanding

Rp,qn , T p,q0

section 6.3

GNC: S-Witt

Rp,qn
section 7.2

const. non-affinity

Rp,q−1, Rp,q0 , T p,qn

section 7.1

GNC & const. κ

Rp,q−1, Rp,q0

section 7.2

stationary

Rp,q0 ' R
p,q
0 +T p,q0

section 3 &

6.3 & 7.3

Figure 1. Selected infinite subalgebras of T-Witt algebra. The null hypersurface symmetry algebra

consists of superrotations and the T-Witt. Some physically motivated restrictions, such as vanishing

expansion, leave intact the superrotations but reduce T-Witt to one of its subalgebras discussed

in appendix B. Particularly the assumption of Gaussian null coordinates reduces T-Witt to S-

Witt. Assuming additionally constant surface gravity and/or stationarity yields further reductions,

recovering near horizon symmetries also found in previous literature.

Some current and future research directions that have strong overlap with the results

of our work are listed below.

• Bulk and boundary. The discussions in our work also reflect on purely theo-

retical considerations relevant for field theories in the presence of boundaries, see

e.g. [20, 29–32] and refs. therein. On general grounds, the phase space splits into a

bulk part, capturing the local physical excitations (in our case two helicities of mass-

less gravitational waves), and a boundary part, capturing physical boundary degrees

of freedom. While there seems universal agreement on the bulk, there are different

perspectives in the literature on how to interpret the boundary degrees of freedom,

sometimes even to the extent that it is questioned whether they are physical. A com-

mon perspective is to view the surface charges as a necessary boundary contribution

to the canonical gauge generators to render them functionally differentiable. Follow-

ing this line of thought to its conclusion means that the surface charges parametrize
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those boundary condition preserving transformations that are pure gauge in the bulk,

but fail to be pure gauge at the boundary. Hence, there are fewer gauge degrees of

freedom at the boundary, which is the essence of why physical boundary excitations

emerge. An alternative perspective is to explicitly add boundary degrees of freedom

with their own boundary equations of motion to restore gauge invariance and fac-

torizability of the Hilbert space under splitting of spacetime into subregions, see [31]

and refs. therein. Either way, the total physical phase space consists of two parts,

the bulk phase space (describing gravitational wave excitations in Einstein gravity)

and the boundary phase space (described by surface charges and governed by the

symmetries they generate). In our work we focused almost exclusively on the latter.

It would be interesting to generalize our discussion to address also the bulk phase

space (the gravitational waves) and its interaction with boundary degrees of freedom,

for instance to describe physical processes such as formation of a black hole, things

falling into the hole or black hole evaporation and their impact on the surface charges.

• Gravitational waves. As a first step to generalize our work to include a discussion

of bulk degrees of freedom we can identify where gravitational wave excitations are

hidden in our construction. In the coordinates adapted to null hypersurfaces we have

an ingoing direction x−, an outgoing direction x+ and transversal directions xA, see

for instance the fully gauge-fixed version of metrics (6.3). Ingoing gravitational waves

can be Fourier-decomposed with factors eik−x
−

, and thus are captured by metric

functions such as λAB (and subleading terms) in (6.3). Outgoing gravitational waves

with Fourier factors eik+x+
are switched off by the conformality assumption (3.7), so

by relaxing this assumption the information about such waves would be contained

in ΩAB. Thus, we see that three quarters of all gravitational wave modes require to

drop the assumption (3.7); the remaining quarter, which is already included in our

current work, are ingoing gravitational waves with nodes on the null hypersurface.

The latter do not influence the surface charges, while the remaining three quarters

will generically induce non-trivial changes of the surface charges and fluxes. It should

be rewarding to consider some elementary processes — e.g. capture or emission of a

single plane graviational wave — to unravel the possible interactions between surface

charges and gravitational waves, and more generally between boundary and bulk

degrees of freedom.

• Charges and fluxes. The charges associated with boundary conditions in the

present work are not generically integrable. The Barnich-Troessaert method of using

a modified bracket almost uniquely allows to separate the integrable from the non-

integrable part (there remains an inessential ambiguity, up to algebra 2-cocycles).

The generalized charge conservation equation (5.18) relates the non-integrability of

the charge to the non-conservation of the integrable part. Instead of using the modi-

fied bracket one could elevate the generalized charge conservation equation to a pos-

tulate. This is essentially the idea behind the Wald-Zoupas method [33]: if there is a

region of stationary configurations in the phase space one expects there the charges

to be conserved (and hence integrable), and the fluxes to vanish. This region may
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then be used as reference point for charge-flux separation. In all examples that both

the Barnich-Troessaert and Wald-Zoupas methods can be applied to they yield the

same result. In our case, however, as the discussions in section 6 reveal, in general

we do not have a reference point of stationary configurations. Hence, one may not

unambiguously employ the Wald-Zoupas method. It could be interesting to explore

if the Wald-Zoupas method can be generalized to cover cases like ours.

• Soft hair. Numerous previous papers considered near horizon aspects of black holes,

see e.g. [34–50] and refs. therein. A new aspect addressed during the past five years is

the emergence of soft hair excitations. The name ‘soft hair’ was coined by Hawking,

Perry and Strominger [51], where ‘soft’ refers to zero energy excitations and ‘hair’

to these excitations being physical. This line of research has engendered a lot of re-

cent activities, see for instance [4–7, 27, 52–77]. The first papers where soft hair was

constructed as near horizon excitations were based on boundary conditions that kept

fixed surface gravity and had integrable surface charges [3, 55], unlike the present

work. A subtlety in these constructions is the precise state-dependence of the near

horizon Killing vectors: depending on the assumptions one can construct different

near horizon symmetries, with or without central charges, including BMS symmetries

with supertranslation generators of arbitrary spin and Heisenberg symmetries [7]. It

is possible (and could be useful for applications) to generalize the construction in

our present work to allow for suitable state-dependence of the near null hypersurface

Killing vectors (4.8), i.e., to allow certain field-variations of the functions T± and Y A

appearing therein. Like in [7] this would model the physical properties of the black

hole and its interactions with some fiducial thermal bath, much like macroscopic elec-

trodynamics models certain materials through suitable boundary conditions without

having to deal with details of the microphysics. The novel aspect provided by our re-

sults in the context of this program compared to the discussions in [7] is the possibility

to allow for non-integrable charges and hence fluxes through the horizon.

• Thermodynamical aspects. In the stationary limit there is a simple near horizon

first law relating variations of the near horizon energy to temperature times the

variation of the black hole entropy [3], as expected from the Iyer-Wald derivation [17]

of the first law of black hole mechanics (see also [78] for generalizations of the Iyer-

Wald analysis). For time-dependent situations considered in the present work it is

plausible that at least in the adiabatic limit there could be a generalized first law

relating time variations of the near horizon energy to time variations of entropy and

fluxes across the horizon. It will be interesting to establish such a generalized first

law, based on the generalized charge conservation equation (5.20).

• Kerr entropy. One of the outstanding goals is to provide a microscopic picture

of the entropy of generic Kerr black holes. While for the extremal case one may

invoke the Kerr/CFT correspondence [79, 80] to count the black hole microstates, it

remains unclear what these microstates are and how to generalize this construction to

generic Kerr black holes. Haco, Hawking, Perry and Strominger [6] proposed the two-
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dimensional conformal algebra (with central charges given by the black hole angular

momentum times 12) near the horizon of generic Kerr black holes as responsible for

the microstates and verified that applying the Cardy formula to the conformal alge-

bra reproduces the correct Bekenstein-Hawking entropy. A discussion by Aggarwal,

Castro and Detournay [81] suggests alternatively at the same level of rigor centrally

extended Virasoro-Kac-Moody symmetries. In the present work as in many previous

works, e.g. [3–5, 7, 27, 82], the near horizon symmetry algebras do not have central

charges. Absence of central terms in the canonical realization of the near horizon

symmetry algebra bars simple ‘Cardyology’ but does not mean that these symmetry

algebras cannot be used for microstate counting, as long as there is a gap between the

vacuum and the black holes state. While we do not know if the T-Witt symmetries

of our present work will ultimately be useful for a generic Kerr black hole microstate

counting, it is an exciting possibility to ponder about in the future.

• Semi-classical microstate construction. Even if the microstate counting based

on symmetries did work, it does not tell us precisely what these microstates are.

A more ambitious approach is to explicitly construct these microstates, at least in

some semi-classical limit (large black holes, sufficiently far away from extremality).

We have no idea if this ever will work for generic Kerr black holes, but we offered a

concrete “fluff” proposal for three-dimensional black holes in anti-de Sitter space [57,

83] that was based on near horizon soft hair. This construction gives at least a glimpse

of hope that near horizon symmetries, such as the ones discussed in the present work,

will be a key aspect in semi-classical microstate constructions of generic Kerr black

holes.

• Information loss. Charge non-conservation/non-integrability and generalized con-

servation equations like (5.18) and (5.20) may also be useful to move beyond station-

ary questions (like microstates) and address dynamical ones, e.g. Hawking radiation

and the information loss problem. It would be rewarding to explore this further.

Finally, the effect that assuming some a priori gauge like Gaussian null coordinates can

reduce the boundary phase space is independent from whether one expands near the hori-

zon or in the asymptotic region. Indeed, a similar effect was observed already in three-

dimensional gravity where the assumption of Fefferman-Graham gauge reduces the physical

phase space [84, 85]. Thus, it seems plausible that also in the context of four-dimensional

asymptotically flat gravity standard assumptions like Bondi-gauge can reduce the boundary

phase space. In conclusion, it would be interesting to reconsider yet-another-time asymp-

totic symmetries of asymptotically flat spacetimes to verify whether or not the same effect

arises there. It cannot be excluded that an enlarged set of asymptotic symmetries will al-

low to make novel statements about the infrared triangle asymptotic symmetries/memory

effects/soft theorems [29, 86, 87].
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A Near horizon expansion for Kerr

Here we present the expansion of the Kerr geometry around an arbitrary point on the future

horizon, i.e., we start from (2.9) and expand around x− = 0 for arbitrary (but finite) x+.

We display only non-zero metric components

g++ = O
(
[x−]2

)
(A.1)

g+− = −2r+(r+ + r− cos2θ)−
4r2

+r− sin2θ

r+ + r− cos2θ
x+x− +O

(
[x−]2

)
(A.2)

g−− =
2r+(r2

+ − 2r−(r+ + r−) cos2θ − r2
− cos4 θ)

r+ + r− cos2θ
x+ 2 + F (θ)x+ 3x− +O

(
[x−]2

)
(A.3)

g+φ = − sin2θH(θ)x− +O
(
[x−]2

)
(A.4)

g−φ = sin2θH(θ)x+ − (r+ − r−) sin2θK(θ)x+ 2x− +O
(
[x−]2

)
(A.5)

gφφ =
r+(r+ + r−)2 sin2θ

r+ + r− cos2θ
− (r+ − r−) sin2θ G(θ)x+x− +O

(
[x−]2

)
(A.6)

gθθ = r+(r+ + r− cos2θ)− 2r+(r+ − r−)x+x− +O
(
[x−]2

)
(A.7)

with the definitions

F (θ) = r2
+ − 2r2

− − r+r− cos2θ − 8r+r− cos2θ
r2

+ − r2
−

(r+ + r− cos2θ)2
(A.8)

G(θ) = r+ − r− +
r+(r2

+ − r2
−) + r−(3r2

+ + 4r+r− + r2
−) cos2θ

(r+ + r− cos2θ)2
(A.9)

H(θ) =
√
r+r− (r+ − r−) + 2

√
r+r−

r+ (r+ + r−)

r+ + r− cos2θ
(A.10)

K(θ) =
√
r+r− − (r+ + r−)

√
r+r−

r+ − 3r− cos2θ

(r+ + r− cos2θ)2
. (A.11)
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Comparing the results above with the fall-off conditions (4.3) yields

G = Uθ = Vθ = Ωθφ = 0
F
x+ 2

=
4r2

+(r+ + r−)

r+ + r− cos2θ
− 2r+

(
r+ + r−(2 + cos2θ)

)
(A.12a)

η = −2r+(r+ + r− cos2θ)
Uφ
x+

= −Vφ = sin2θH(θ) (A.12b)

Ωθθ = r+(r+ + r− cos2θ) Ωφφ =
r+(r+ + r−)2 sin2θ

r+ + r− cos2θ
. (A.12c)

B Some subalgebras of the null hypersurface symmetry algebra

The null hypersurface symmetry algebra (4.17) has different subalgebras which on their

own may arise as near horizon symmetry algebras for more restrictive sets of boundary

conditions (like in section 7). In this appendix we list some of these subalgebras.

B.1 Finite subalgebras

Finite subalgebras of the near horizon/asymptotic symmetry algebras are typically asso-

ciated with the global symmetries (isometries) of the corresponding background or their

conformal extensions. Finite maximal subalgebras are subalgebras where no additional

generator can be added without producing an infinite algebra.

Rather than being encyclopedic we focus on the physically most interesting finite maxi-

mal subalgebra, where the superrotations are restricted to La, L̄a, a = ±1, 0, which form an

sl(2,R)⊕ sl(2,R) ' so(2, 2) algebra. Geometrically, this algebra is the global part of the con-

formal algebra acting on the bifurcation surface B. The supertranslations are restricted to

R0,0
a , a = ±1, 0 and T 0,0

0 . These generators commute with the conformal algebra and form

an sl(2,R)⊕u(1) subalgebra. Geometrically, R0,0
−1 generates rigid timeshifts, x+ → x++x+

0 ,

while R0,0
0 and T 0,0

0 generate rigid scalings (also known as conformal boosts) in x+ and x−

directions, respectively, i.e., x+ → λ+x
+ and x− → λ−x

−. Therefore, R0,0
0 −T

0,0
0 generates

boosts and R0,0
0 +T 0,0

0 dilatations on the x± plane. The remaining generator R0,0
1 generates

special conformal translations along x+. Notably, we do not have translations (nor special

conformal translations) along x− and hence the 2d Poincaré algebra is not contained in

our subalgebra. Physically, this is expected since we fix the locus of the null hypersurface

to be x− = 0, a condition which manifestly breaks translation invariance along x−.

In conclusion, an interesting finite maximal subalgebra of the null hypersurface sym-

metry algebra (4.17) is so(2, 2)⊕ sl(2,R)⊕ u(1), with the first part corresponding to global

conformal transformations of the bifurcation surface, the second part to a chiral half of

global conformal transformations in the x± plane and the abelian factor corresponding to

boosts along x−. As differential operators the generators of this algebra are given by ∂z,

z∂z, z
2∂z, ∂z̄, z̄∂z̄, z̄

2∂z̄, ∂+, x+∂+, (x+)2∂+ and x−∂−.

B.2 Infinite subalgebras

Infinite subalgebras. One can identify many different infinite dimensional subalgebras

of the null hypersurface symmetry algebra (4.17). Here we list some of the most impor-

tant ones.
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1. One can switch off everything except for the T-Witt algebra generated by Rp,qn and

T p,qn , keeping rigid the bifurcation surface B. The T-Witt algebra itself also has some

interesting subalgebras, for instance the BMS
(s=0)
3 algebra (also known as ‘warped

Witt algebra’) generated by Rn := R0,0
n as Witt generators and Tn := T 0,0

n as lower-

spin supertranslations, or the sl(2,R) ⊕ u(1) extended Witt algebra generated by

Rp,qa , a = ±1, 0 and T p,q0 .

2. Alternatively, one can switch off the T-Witt part of the algebra. The remainder is a

Witt⊕Witt subalgebra, the conformal algebra over B, generated by Lp, L̄p.

3. Physically more relevant are combined subalgebras that contain part of the T-Witt

algebra and the full conformal algebra over B. For example, one can keep the T-

Witt generators R0,0
n , T 0,0

n and all Witt generators Lp, L̄q, yielding the subalgebra

Witt⊕Witt⊕BMS
(s=0)
3 . This subalgebra is an infinite-dimensional lift of the max-

imal finite subalgebra discussed above. In the remaining cases below we single out

some of these algebras that either appeared in earlier literature or in the present

work by imposing additional restrictions on the boundary conditions. We start with

the former.

4. There are infinitely many DGGP type [3] subalgebras, generated by Lp, L̄p, Rp,qn or

Lp, L̄p, T p,qn for any fixed n. These algebras are BMS
(s=0)
4 in the notation of [7],

or W(0, 0; 0, 0) in the notation of [88]. The only difference to the original BMS4

algebra [23, 89, 90] is the lower spin of the supertranslations, see the discussion in

the appendix of [7].

5. The algebra discussed in [4, 5, 27] is a subalgebra generated by Lp, L̄p, Rp,q−1 and Rp,q0 .

Upon changing the basis7 Rp,q0 → R
p,q
0 + T p,q0 this subalgebra arises as a special case

discussed in section 7 where surface gravity is constant and Gaussian null coordinates

are used (with loss of generality), see the next item.

6. Finally, we address subalgebras that emerged as special cases in sections 6 or 7. The

non-expanding case discussed in section 6.3 yields a subalgebra generated by Lp, L̄p,
T p,q0 and Rp,qn , see the statements after (6.13). Constant surface gravity with (7.3)

leads to a subalgebra generated by Lp, L̄p, T p,qn , Rp,q−1 and Rp,q0 . Gaussian null co-

ordinates, i.e., constant η, lead to a subalgebra generated by Lp, L̄p and Rp,qn , see

the statements below (7.10). Combining both cases, i.e., assuming constant η and

constant surface gravity, leads to a smaller subalgebra, generated by Lp, L̄p, Rp,q−1 and

Rp,q0 +T p,q0 , see the statements below (7.15). Killing horizons in general also yield the

constant surface gravity subalgebra, but when restricted to near bifurcation boundary

conditions recover the smaller algebra (3.9a) found in section 3, which is a subalgebra

generated by Lp, L̄p, T p,q0 and Rp,q0 . [Notational alert: in (3.9a) all mode indices ap-

pear as lower indices and are labelled by letters n,m, l, k, as opposed to (4.17).] Since

7More generally, the algebra automorphism Rp,qn →Rp,qn +α(n+1)T p,qn (with some constant α) amounts

to shifting the null hypersurface symmetry generator T− → T− + α∂+T
+.
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only the linear combination Rp,q0 +T p,q0 enters the charges this subalgebra further re-

duces to the DGGP algebra [3], generated by Lp, L̄p and supertranslationsRp,q0 +T p,q0 .

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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