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1 Introduction

Recently, there has been much effort made to study T T̄ -deformation, which is an irrelevant

perturbation by a composite operator, the determinant of the energy momentum tensor.

Some peculiar characteristics of this operator were shown in 2004 by Sasha Zamolod-

chikov [1]. In particular, the T T̄ -operator is well-defined as a composite operator only in

two dimensions and the expectation value of the T T̄ -operator with non-degenerate station-

ary states exhibits the factorization for general 2d quantum field theories (QFTs).

In 2016, the T T̄ -deformation has been investigated in the context of 2d integrable

QFT [2, 3]. The quantum integrability is characterized by the novel factorization of S-

matrix. Then the two-body S-matrix is determined by a bootstrap program up to the

CDD factor [4]. Since the T T̄ -deformation is an irrelevant perturbation and cannot change

the IR information like the mass pole structure in the S-matrix, the deformation can modify

only the CDD factor. Thus, the S-matrix factorization is obviously preserved and in this

sense, the T T̄ -deformation is an integrable deformation.

In addition, by considering the effect of the CDD factor in the context of thermo-

dynamic Bethe ansatz (TBA), a flow equation, called the T T̄ -flow equation, has been

found [2, 3],

dL(α)

dα
= det

(
T (α)
µν

)
. (1.1)

Note here that the equality is shown for 2d integrable QFTs, but it is widely believed

that the flow equation holds in more general setup.1 Much investigation has been made in

1The T T̄ -deformation in closed form is presented in [5]. For a review, see for example [6].
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the T T̄ -deformation at the classical level. For example, by solving the flow equation, the

T T̄ -deformation of free massless bosons is found to be the Nambu-Goto action in the static

gauge, with α identified to the string tension [3]. The T T̄ -deformation is also related to

metric perturbation of 2d base space via a field-dependent coordinate transformation [7–11].

In this sense, the flow equation (1.1) at the classical level indicates an intimate connection

to classical gravity.

As another application, for 2d QFT on a cylinder, the T T̄ -flow equation can be rewrit-

ten into the inviscid Burgers equation [2, 3]. In particular, in the case of conformal field

theory (CFT), the usual CFT data can be used as the initial condition. Then by solv-

ing the Burgers equation, the energy spectrum of the T T̄ -deformed CFT can be exactly

derived. The resulting spectrum has been confirmed by TBA [12]. Here, an important

observation is that while the energy spectrum has been well established by the T T̄ -flow

equation or TBA, the associated states have not been studied so much. After all, from the

field-theoretical point of view, it may be rather natural to suspect that the positivity should

be broken for the high-energy states simply because the T T̄ -deformation is described by

an irrelevant operator. In order to see the consistency of the system at the quantum level,

it is significant to check the positivity of the states by non-perturbative method.

In this paper, we will tackle this issue by studying a T T̄ -deformed O(N) vector model

as a concrete example. In particular, we consider the large N limit. Then the leading

contribution of the path integral comes only from the configuration for a stationary point

of the action. Hence all we have to analyze is just the classical solution. Remarkably, the

degrees of freedom in the large N limit represent the bound states of the original field.

After evaluating their vacuum expectation values, we derive the kinetic terms for them. It

should be emphasized that this large N analysis can treat the full quantum correction.

We start from an infinitesimal T T̄ -deformation for simplicity. Section 2 presents our

crucial result that the induced kinetic term for the bound states has a wrong sign and leads

to negative-norm states. Then, in section 3, its origin is elucidated by focusing upon the

fact that the deformed theory may partially be seen as a theory coupled to gravity. From

this section, we treat a more general deformation by an operator consisting of the energy-

momentum tensor, which includes the original T T̄ -deformation. The negative-norm mode

emerges in the general deformation as well and it is identified with the conformal mode

in an ordinary gravitational theory, where the Liouville action is induced from matter

loops. As long as the theory is approximated by a CFT in the high-energy limit, the

coefficient of the Liouville action is proportional to the minus of central charge. This

indicates that the conformal mode is positive-definite only when the total central charge

is negative. This fact leads to the necessity to include something like the Faddeev-Popov

(FP) ghosts, that is, some modification so as to make the theory diffeomorphism-invariant.

In section 4, we generalize the preceding discussion on the infinitesimal deformation to the

finite deformation case, and conclude that the deformed theory still contains a negative-

norm state. We also make some discussion on the 1/N correction in section 5. Finally,

section 6 is devoted to summary and discussion.
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2 Large N analysis of T T̄ -deformation

2.1 Setup and gap equation

In the following, we will consider an infinitesimal T T̄ -deformation of a free O(N) vector

model. The classical action is given by

S =

∫
d2xN

[
1

2
(∂µ~φ)2 − m2

0

2
~φ 2 + α0 det(Tµν)

]
, (2.1)

Tµν ≡ ∂µ~φ · ∂ν~φ−
ηµν
2

(
(∂ρ~φ)2 −m2

0
~φ 2
)
. (2.2)

Here ~φ = t(φ1, · · · , φN ) is an O(N) vector multiplet composed of N real scalars satisfying
~φ 2 =

∑N
k=1 φ

2
k and Tµν is the energy-momentum tensor of the undeformed Lagrangian.

Also, m2
0 and α0 are the bare mass and the bare deformation parameters, respectively.

Note that α0 is normalized to be a ’t Hooft coupling constant as α0 = Nα. The flow

equation with respect to α0 is the same form as eq. (1.1), with the energy-momentum

tensor replaced with the normalized one: T
(α0)
µν = T

(α)
µν /N :

dL(α0)

dα0
= det

(
T (α0)
µν

)
. (2.3)

In this paper, we will write all the quantity with the normalization associated with α0.

By introducing an auxiliary field Cµν , the classical action (2.1) can be rewritten as

S

N
=

∫
d2x

[
1

2
(∂µ~φ)2 − m2

0

2
~φ 2 − 1

2
TµνC

µν +
1

8α0
det(Cµν)

]
, (2.4)

where Cµν is a symmetric tensor field. In the following, it is convenient to decompose Cµν

into the sum of the trace and traceless parts like

Cµν = C̃µν + ηµνC , (2.5)

where C̃µν denotes the traceless part, and the trace of Cµν is Cµµ = 2C .

Our analysis is concerned with some loop divergence. Hence, in addition to the ac-

tion (2.4), let us include the necessary counterterms in advance:

S

N
=

∫
d2x

[
1

2
(∂µ~φ)2 − m2

0

2
~φ 2 − 1

2
TµνC

µν +
1

8α0
det(Cµν)

+ Λ0C + β0(1 + C)(C̃µν)2
]
, (2.6)

where Λ0 and β0 are additional bare parameters that include divergent parts.

The partition function for the action (2.6) can be computed as∫
D~φDCDC̃µν exp

[
iN

∫
d2x

(
1

2
~φ
[
−∂2 − (1 + C)m2

0 − ∂µC̃µν∂ν
]
~φ

+ Λ0C + β0(1 + C)(C̃µν)2 +
1

8α0
(C̃µν)2 − 1

4α0
C2

)]
∝
∫
DCDC̃µν exp

[
−N

2
tr log

[
∂2 + (1 + C)m2

0 + ∂µC̃
µν∂ν − iε

]
+ iN

∫
d2x

(
Λ0C + β0(1 + C)(C̃µν)2 +

1

8α0
(C̃µν)2 − 1

4α0
C2

)]
,

– 3 –



J
H
E
P
0
4
(
2
0
2
0
)
1
2
7

where ∂2 ≡ ηµν∂µ∂ν . Thus, the effective action for C and C̃µν is given by

Γ

N
=
i

2
tr log

[
∂2 + (1 + C)m2

0 − iε+ ∂µC̃
µν∂ν

]
+

∫
d2x

(
Λ0C + β0(1 + C)(C̃µν)2 +

1

8α0
(C̃µν)2 − 1

4α0
C2

)
. (2.7)

In the large N limit, a single configuration for which the fields take the stationary point

of the effective action can contribute to the integration over C and C̃µν . The stationary

condition of the action determines the vacuum expectation values (VEVs) of the auxiliary

fields. Intuitively, the VEVs represent the ones of the square of the original variables like

〈0|C|0〉 ∼ 〈0|~φ 2|0〉 , 〈0|C̃µν |0〉 ∼ 〈0|(∂µ~φ · ∂ν~φ)traceless|0〉 . (2.8)

Note here that 〈0|C̃µν |0〉 = 0 because C̃µν is traceless and the vacuum is invariant under

the translations and the Lorentz transformations. This value satisfies the condition of the

stationary action.

On the other hand, the condition for 〈C〉 is given by the gap equation (or the quantum

equation of motion):

δΓ

δC

∣∣∣∣
C=〈C〉,C̃µν=0

= 0 (2.9)

⇐⇒ im2
0

2
tr

[
1

∂2 + (1 + 〈C〉)m2
0 − iε

]
+ Λ0 −

1

2α0
〈C〉 = 0 . (2.10)

Here we regulate the first term on the left-hand side of eq. (2.10) by Pauli-Villars (PV)

regulators. It turns out two regulators are necessary because quadratic and logarithmic

divergences appear in the following calculation. The Lagrangian for the PV regulators is

given by

LPV
N

=
∑
i=1,2

di∑
r=1

1

2
~ψir

[
−∂2 − (1 + C)M2

i − ∂µC̃µν∂ν
]
~ψir , (2.11)

where ~ψir are O(N) multiplets with masses Mi. Here we assume that for every i, {~ψir}dir=1

are bosonic and each di can be either positive or negative fraction. The divergence in the

loop integrals can be removed by tuning the parameters as

1 +
∑
i

di = 0 , m2
0 +

∑
i

diM
2
i = 0 . (2.12)

Since the total energy-momentum tensor is the sum of the energy-momentum tensor for

each field, the regularized trace term in (2.10) is the sum of the contributions from the

original field and the PV regulators.

– 4 –
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By adopting the PV regularization, the regularized trace term in (2.10) is evaluated

as

im2
0

2
tr

[
1

∂2 + (1 + 〈C〉)m2
0 − iε

]
→ i

2

∫
d2k

(2π)2

(
m2

0

−k2 + (1 + 〈C〉)m2
0 − iε

+
∑
i

diM
2
i

−k2 + (1 + 〈C〉)M2
i − iε

)

=
1

8π

[
m2

0 log

(
m2

0

M2
1

)
− r log(r)

1− r
M2

1 +
r log(r)

1− r
m2

0

]
, (2.13)

where r ≡ M2
2

/
M2

1 . As a result, the gap equation is rewritten as

Λ0 +
1

8π

[
m2

0 log

(
m2

0

M2
1

)
− r log(r)

1− r
M2

1 +
r log(r)

1− r
m2

0

]
=

1

2α0
〈C〉 . (2.14)

This equation contains the quadratic and logarithmic divergent parts as M1 → ∞ . But

these are controlled by renormalizing Λ0, not α0!
2 This is the reason why the Λ0C term

was added to the action (2.4) in (2.6) in advance.

The renormalized parameter Λ can be defined as

Λ ≡ Λ0 +
1

8π

[
m2

0 log

(
m2

0

M2
1

)
− r log(r)

1− r
M2

1 +
r log(r)

1− r
m2

0

]
. (2.15)

Thus 〈C〉 is proportional to Λ like

〈C〉 = 2α0Λ . (2.16)

2.2 Two-point function and propagating degrees of freedom

Let us next evaluate a two-point function of Cµν to see the propagating degrees of freedom.

The fluctuation of C around the VEV can be described by C ′ as

C = 〈C〉+ C ′ . (2.17)

It is later convenient to define a dressed mass m as

m2 ≡ (1 + 〈C〉)m2
0 . (2.18)

Then the action (2.7) can be expanded as, up to second order in C ′ and C̃µν ,

Γ

N
= − i

4
tr

[
1

−∂2 −m2 + iε

(
−m2

0C
′ − ∂µC̃µν∂ν

)]2
+

1

α0

∫
d2x

[
1

8
(C̃µν)2 − 1

4
C ′2
]

+ (1 + 〈C〉)β0
∫
d2x (C̃µν)2 +O((C ′, C̃µν)3). (2.19)

The zeroth-order term has been dropped because it is just a constant term. The first-order

term vanishes due to the gap equation.

2Although the renormalization of α0 is discussed in [13], our interpretation here is different.
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In a generic regularization scheme, the two-point function of C̃µν is quadratically di-

vergent. Expanding them by the external momentum, we will have some kinetic terms

with logarithmically divergent coefficients. We can cancel them by introducing the corre-

sponding counterterm to eq. (2.6), which takes the following form:

δ(∂λC̃
µν)2, (2.20)

where δ is a logarithmically divergent coefficient.3 However, this term leads to a nonlocal

form of Tµν , and hence of ~φ, when we eliminate Cµν from eq. (2.6) with eq. (2.20).

Even if we allow such a counterterm, the corresponding finite part in the effective

action, b(∂λC̃
µν)2, causes another problem, namely violation of positivity. Regardless of

the sign of b, this term necessarily gives rise to negative-norm states. In fact, (∂λC̃
µν)2

includes kinetic terms for the components of C̃µν , which have relatively opposite signs:

(∂λC̃
µν)2 = (∂λC̃

00)2 − (∂λC̃
0i)2 + (∂λC̃

ij)2. (2.22)

Therefore, at least one mode is of negative norm whether we tune the sign of b positive or

negative. Thus the coefficient b must be tuned to be zero in order to avoid the violation of

positivity.

Even if we set b = 0, the quadratic part of the effective action contains a wrong-sign

kinetic term for a specific component of Cµν . In fact, by PV regularization we obtain

Γ|quad
N

=

∫
d2p

(2π)2

[
1

2
g(p)

(
1

1+〈C〉
C ′(−p)− pµpν

p2
C̃µν(−p)

)(
1

1+〈C〉
C ′(p)− pµpν

p2
C̃µν(p)

)
+

(
1

8α0
+(1+〈C〉)β

)
C̃µν(−p)C̃µν(p)− 1

4α0
C ′(−p)C ′(p)

]
, (2.23)

where the scalar function g(p) and the renormalized parameter β are defined respectively as

g(p) ≡ −m
2

8π
− p2

48π
+

m4

2πp
√

4m2 − p2
tan−1

(
p√

4m2 − p2

)
, (2.24)

β ≡ β0 −
1

32π

[
m2

0 log

(
m2

0

M2
1

)
− r log(r)

1− r
M2

1 +
r log(r)

1− r
m2

0

]
. (2.25)

For the detail of the calculation, see appendix A. Note here that the first term in eq. (2.23)

is nonlocal in C̃µν because of the factor 1/p2. Therefore its overall coefficient, 1/2, cannot

be changed by any finite renormalization, and hence is determined independently of the

regularization scheme.

Let us read off the propagating degrees of freedom from eq. (2.23) in the high-energy

limit, |p| → ∞. In this limit, g → −p2/48π.4 Then one can see that only one degree of

3In a general dimension, there are two kinds of kinetic terms for C̃µν : (∂λC̃
µν)2 and (∂µC̃

µν)2. In 2d

spacetime, however, these terms are not independent due to the following identity:∫
d2p

(2π)2
F (p)C̃ λ

µ (p)C̃ ν
λ (−p) =

∫
d2p

(2π)2
F (p)

1

2
δ νµ C̃

ρ
λ (p)C̃ λ

ρ (−p), (2.21)

where F (p) is an even function of pµ.
4While g(p2) has a branch point p2 = 4m2

0 in the complex p2 plane, the behavior g(p2 →∞) ∼ −p2/48π

is independent of branches.
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freedom in Cµν ,

χ ≡ 1

1 + 〈C〉
C ′ − pµpν

p2
C̃µν , (2.26)

propagates, and the sign of its kinetic term becomes asymptotically negative.

If we employ a generic regularization scheme, the kinetic term for C ′ is modified while

that for (pµpν/p
2)C̃µν is not. Therefore, the kinetic term in the high-energy limit is written

as

Γ|quad
N

→ 1

2

∫
d2p

(2π)2
p2
(
χ(p) C ′(p)

)(− 1
48π t

t u

)(
χ(−p)
C ′(−p)

)
, (2.27)

An important point is that the eigenvalues of the matrix in eq. (2.27) always include at

least one negative value, regardless of the values of t and u. It can be easily seen from the

behavior of eq. (2.27) for large χ.

In this manner, the emergence of negative-norm state from χ is inevitable even if we

set b = 0 by renormalization. This is a non-perturbative result for the T T̄ -deformed theory

at the quantum level. Recall that Cµν stands for composite operators made of ~φ at the tree

level. This means that bound states of two ~φ are contained in the T T̄ -deformed theory as

negative-norm states.

It is worth mentioning that the PV regularization or the dimensional regularization

automatically realizes the tuning b = 0. That is, the kinetic term of C̃µν is identically

zero with these regularizations. We further note that the second term in eq. (2.25) is just

the minus quarter of that in eq. (2.15). It means that we can tune the bare parameter as

β0 = −Λ0/4, although the renormalizations of Λ and β are independent in the first place.

The underlying structure of these facts will be demystified in the next section.

3 Relation to gravity

In this section, we shall reveal why the wrong-sign kinetic term is induced as a radiative

correction. We also answer some questions which one might have noticed in the previous

section and appendix. Why is the divergent part in β0 just a quarter of that in −Λ0 ?

Why do we have no local kinetic term for Cµν induced under the PV regularization or the

dimensional regularization? Why does only one degree of freedom propagate among Cµν?

The answers to these questions will be provided by comparing the deformed theory and a

theory coupled to 2d gravity.

In the following, let us consider a generalization of T T̄ -deformation described by a

modified flow equation,

dL(α0)

dα0
= f(T (α0)

µν ) , (3.1)

where f(T
(α0)
µν ) is an arbitrary function of the energy-momentum tensor T

(α0)
µν for the de-

formed Lagrangian L(α0). The original T T̄ -deformation is contained as a special case. Note

here that the quantum integrability is not ensured by the modified flow equation (3.1) in

general.

– 7 –
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According to this modification, the action for an infinitesimal deformation is given by

S =

∫
d2xN

[
1

2
(∂µ~φ)2 − m2

0

2
~φ 2 + α0f(Tµν)

]
. (3.2)

Note here that eq. (3.2) is equivalent to the following action:

S

N
=

∫
d2x

[
1

2
(∂µ~φ)2 − m2

0

2
~φ 2 − 1

2
TµνC

µν + h (Cµν ;α0)

]
, (3.3)

where the function h(Cµν ;α0) is determined so that eq. (3.2) is reproduced after removing

Cµν with the use of the equation of motion for Cµν .

In order to compare the theory described by (3.3) with the O(N) vector model coupled

to gravity, let us rewrite the classical action (3.3) as

S

N
=

∫
d2x

√
−g′

[
− det

(
ηab − C̃ab

)] 1
2

[
1

2
g′µν∂µ~φ · ∂ν~φ−

m2
0

2
~φ 2

]
+

∫
d2xh

=

∫
d2x

√
−g′

[
1

2
g′µν∂µ~φ · ∂ν~φ−

m2
0

2
~φ 2

]
+

∫
d2x

√
−g′Ψ

[
1

2
g′µν∂µ~φ · ∂ν~φ−

m2
0

2
~φ 2

]
+

∫
d2xh, (3.4)

where we have introduced new quantities:

g′µν ≡ ηµν − C̃µν

1 + C
,

√
−g′ =

[
− det

(
g′µν

)]− 1
2 , (3.5)

Ψ ≡
[
− det

(
ηab − C̃ab

)] 1
2 − 1 = −1

4
(C̃µν)2 +O((C̃µν)3). (3.6)

It should be remarked that C and C̃µν are not infinitesimal fluctuations but parametrize

the metric as g′µν , and that eq. (3.4) is exactly the same action as eq. (3.3) for finite Cµν .

This action is not invariant under diffeomorphism. In fact, the diffeomorphism invariance

is broken by the determinant factor det(η− C̃)1/2 (or Ψ equivalently), and by the last term

unless h =
√
−g′. Recall that diffeomorphism invariance plays a crucial role in making a

gravitational theory positive-definite. Then it looks quite in question whether the present

theory is positive-definite or not. Indeed, this lack of diffeomorphism invariance is exactly

the source for the positivity-violating kinetic term in eq. (2.23).

Let us re-derive the previous result by considering integration of ~φ in the action written

as eq. (3.4). Note that the radiative correction is the same as that of the theory coupled to

the ordinary gravity, except for the Ψ contribution. However, Ψ has no influence on the two-

point function. Since Ψ is O((C̃µν)2), it could affect the mass term of the two-point function

through the tadpole diagram for it. The contribution from the diagram eventually vanishes

because the interaction vertex for Ψ and ~φ is just the inverse of the propagator for ~φ:

(tadpole for Ψ) =

∫
d2p

(2π)2
i

p2 −m2
0 + iε

(−i)(p2 −m2
0)

=

∫
d2p

(2π)2
1

regularized−−−−−−→ 0. (3.7)
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Therefore, as long as we investigate the two-point function, we obtain exactly the same

result as in the ordinary gravitational theory.

There are three essential points to be explained: 1) the necessity of the cosmological

constant for renormalization, 2) the induction of the kinetic terms as the Einstein-Hilbert

(EH) action, and 3) the induction of the Liouville action in a CFT.

1) the necessity of the cosmological constant for renormalization. Let us consider

the following action instead of eq. (3.4):

S

N
=

∫
d2x
√
−g′
[

1

2
g′µν∂µ~φ ·∂ν~φ−

m2
0

2
~φ2+Λ0

]
+

∫
d2x
√
−g′Ψ

[
1

2
g′µν∂µ~φ ·∂ν~φ−

m2
0

2
~φ2

]
+

∫
d2xh. (3.8)

By expanding the cosmological constant term up to the second order in Cµν , we obtain∫
d2x
√
−g′Λ0 = (const.) + Λ0C −

1

4
Λ0(C̃

µν)2 +O((C, C̃µν)3). (3.9)

This is why we had a choice to set the bare parameter as β0 = −Λ0/4 in the previous

section.

2) the induction of the kinetic terms as the Einstein-Hilbert (EH) action. Re-

call that in a gravitational theory, matter loops induce the kinetic term for the metric in the

form of the EH action, as long as we adopt a regularization preserving the diffeomorphism

invariance. Since the PV and dimensional regularizations preserve the diffeomorphism in-

variance, the kinetic terms for Cµν in eq. (2.23) might be obtained as the linearized EH

action.

However, the combination of the kinetic terms identically vanishes because the EH

action is topological in two dimensions. This fact corresponds to the absence of local

kinetic terms such as eq. (2.20) in eq. (2.23).

3) the induction of the Liouville action in a CFT. The third point is the most

critical in our analysis. Recall that in the case of 2d CFT coupled to gravity, the integration

of a matter field induces the Liouville action:

SL =
1

2

∫
d2xd2y

√
−g(x)R(x)D(x− y)

√
−g(y)R(y), (3.10)

where D(x − y) is the inverse operator of d’Alembertian. The crucial point is that the

coefficient of SL in the effective action is proportional to the minus of the central charge

for the integrated field. If we take the loop contribution only from the ordinary matter

field, the coefficient is of wrong sign for SL, because it represents the kinetic term of the

conformal mode of the metric. This discussion is applicable even to a general 2d field

theory as long as it is approximated by a CFT in the high-energy limit.
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Indeed, the quadratic part of the effective action (eq. (2.23)) approaches that of SL in

the high-energy limit p2 →∞:

Γ|quad → −
∫

d2p

(2π)2
N

96π
p2χ(−p)χ(p) (3.11)

=
−N
48π

SL

∣∣∣
gµν=g′µν , quad

(3.12)

with

g′µν =
ηµν − C̃µν

1 + 〈C〉+ C ′
(3.13)

and χ defined by eq. (2.26). Note that each component of ~φ approaches to the conformal

matter with a central charge c = +1 in the high-energy limit. The coefficient of SL con-

sistently appears with the total matter contribution to the central charge ctot = N . Now,

the meaning of the only propagating mode is obvious; it is the conformal mode. Consider

a reparametrization of C ′ and C̃µν according to the diffeomorphism and conformal parts:

g′µν = (1 + 〈C〉+ C ′)(ηµν + C̃µν + C̃ λ
µ C̃λν + · · · )

= (1 + 〈C〉)(ηµν + ηµνχ+ ∂µξν + ∂νξµ). (3.14)

Here, χ is identical to that defined by eq. (2.26), which is the only propagating mode.

Therefore, we conclude that the general deformation (eq. (3.2)), even equipped with the

necessary counter terms (eq. (3.4)), violates the positivity at the quantum level.

The only possible way to flip the sign of the Liouville action is to introduce ghosts. The

healthy ghosts that do not cause any pathology in the context of the ordinary field theory

are nothing but the FP ghosts. This discussion compels us to recover the diffeomorphism-

invariance in the theory and to take account of the corresponding FP ghosts.

If the action could be equipped with diffeomorphism-invariance, the diffeomorphism

part of the field can be gauged away and then the effective action in the large N limit

would take the following form:

Γ =

(
26−N

48π
SL +

∫
d2x
√
−gΛ

) ∣∣∣∣
gµν=ηµν(1+χ)

+

∫
d2p

(2π)2

[
p2O

(
m2

0

p2

)
+O(χ3)

]
, (3.15)

where the number 26 has come from the central charge of the FP ghosts. It means that the

theory will be positive-definite with a condition N < 26. This observation might be related

to [14], where a T T̄ deformed CFT is proposed to be a gauge-fixed noncritical string, and

the Virasoro condition is taken into account to make the total central charge vanish. The

diffeomorphism in the T T̄ -deformation is discussed by focusing on its equivalence to the

massive gravity theory [15].

4 Unavoidable negative-norm states in finite deformation

So far, we have discussed the positivity of the infinitesimally T T̄ -deformed O(N) vector

model. In this section, we will show that the negative norm state exists even in the case

of finite deformation.

– 10 –



J
H
E
P
0
4
(
2
0
2
0
)
1
2
7

To get a solution to eq. (3.1), it is useful to rewrite the Lagrangian with auxiliary fields

like eq. (3.3). For this purpose, let us introduce new quantities:

sµν ≡
1

2
∂µ~φ · ∂ν~φ , M ≡ m2

0

2
~φ 2 . (4.1)

Then the undeformed Lagrangian is expressed only by these quantities as

L(0)

N
= gµνsµν −M

∣∣∣
gµν=ηµν

. (4.2)

Since the energy-momentum tensor is defined as the functional derivative of the covari-

antized action by gµν , the solution to eq. (3.1) with the initial condition eq. (4.2) can be

formally given by the following form:

L(α0) = L(0) + α0
dL(α0)

dα0

∣∣∣∣
α0=0

+
α2
0

2

d2L(α0)

dα2
0

∣∣∣∣
α0=0

+ · · ·

= L(0) + α0F (sµν ,M ; gµν ;α0)
∣∣∣
gµν=ηµν

. (4.3)

Here we have separated the undeformed Lagrangian and have explicitly extracted α0 as

the overall factor of the deformation term.

In the following, we write the trace and the traceless parts as s and s̃µν , respectively.

Now we can transform eq. (4.3) into a form with auxiliary fields, whose action is given by

S

N
=

∫
d2x

[
L(0) − s̃µνC̃µν −MC − sB +H(C̃µν , C,B;α0)

]
. (4.4)

H is determined so that eq. (4.4) should turn back to eq. (4.3) with the solutions of EoM

for C̃µν , C and B. This is the finite deformation counterpart of eq. (3.3)5 (note that

s̃µνC̃
µν +MC = (1/2)T

(0)
µν Cµν).

There is one essential difference between eqs. (4.4) and (3.3); the introduction of a new

scalar field B. In the following, we perform the large N analysis on eq. (4.4) just in the

same manner as in the previous section.

Would it be convenient to interpret eq. (4.4) in terms of gravitational quantities, like

eq. (3.4)? We have already parametrized all the components of gµν with Cµν . Therefore we

must treat B as an additional scalar field independent of the metric. In this case, however,

we are not able to rewrite eq. (4.4) with gµν . The action can be written down as follows:

S

N
=

∫
d2x

√
−g′

[
1

2
g′µν∂µ~φ · ∂ν~φ−

m2
0

2
~φ 2

]
+

∫
d2x

√
−g′Ψ

[
1

2
g′µν∂µ~φ · ∂ν~φ−

m2
0

2
~φ 2

]
−
∫
d2x

1

2
B ηµν∂µ~φ · ∂ν~φ +

∫
d2xH. (4.5)

5In the infinitesimally deformed theory, we have focused on the lowest-order term in F . It does not

include s because it is written with the undeformed energy-momentum tensor:

T (0)
µν = 2s̃µν +Mgµν

∣∣∣
gµν=ηµν

.

Thus we did not have to introduce B as a source for s in the infinitesimal case.
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The new term involving B explicitly violates the diffeomorphism invariance. Hence, it

seems likely that there is no advantage even if we consider the action of the form (4.5).

We would like to evaluate the kinetic terms for χ and B. The difference between this

analysis and that in the previous sections is the presence of the mixing term of χ and B.

Here, we can conclude the existence of the negative-norm mode by following the discussion

around eq. (2.27) again. The induced kinetic terms are written as6

Γ|quad
N

→ 1

2

∫
d2p

(2π)2
p2
(
χ(p) B(p)

)(− 1
48π t

t u

)(
χ(−p)
B(−p)

)
, (4.6)

where t and u are some constants.7 Thus we have at least one negative-norm mode.

From the above analysis, we conclude that the general deformation of the theory with

a function of the energy-momentum tensor has a negative-norm state even at the finite

deformation. This is a non-perturbative result obtained by the large N analysis.

On the other hand, there is no criterion so far in making eq. (4.4) covariant under

the diffeomorphism. In order to realize the diffeomorphism invariance, it is critical to

understand the gravitational meaning of B, which is coupled to other fields only at higher

order in α0.

5 Beyond the large N limit?

It is natural to ask how things would change when the 1/N corrections are taken into

account. If the theory is modified to be diffeomorphism-invariant, the 1/N corrections can

be evaluated rather easily.

In the ordinary gravity. First, let us make a short review of the ordinary 2d gravity,

which would be the simplest example of diffeomorphism-invariant theories [16–18]. In a 2d

CFT coupled to gravity, it is standard to take the conformal gauge as gµν = eϕĝµν and to

integrate the conformal mode ϕ. One can convert ϕ to an ordinary scalar field defined on

the background metric ĝµν by taking account of the path-integral measure as follows. The

original measure Dgϕ is defined by the following metric:

||δϕ||2g ≡
∫
d2x
√
−g(δϕ(x))2 =

∫
d2x
√
−ĝeϕ(δϕ(x))2. (5.1)

On the other hand, the ordinary scalar field on the background metric ĝµν has the measure

Dĝϕ defined by the following metric:

||δϕ||2ĝ ≡
∫
d2x
√
−ĝ(δϕ(x))2. (5.2)

6The VEVs have been dropped off in this section. While its existence is guaranteed by the large N

limit, it does not play an essential role in proving the existence of the negative-norm mode. It is because

the nonzero values of 〈C〉 simply rescale the flat metric, and 〈B〉 has nothing to do with the sign of (∂µχ)2.
7Note that in order to keep them finite, we need to add counterterms to the action in the form of (∂µB)2

and ∂µB∂
µχ. From the viewpoint of the original action (4.4), these terms inevitably violate the locality.
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One can show that these two measures, Dgϕ and Dĝϕ, are related as

Dgϕ = Dĝϕ exp

(
1

48π
SL

∣∣∣∣
gµν=eϕĝµν

)
. (5.3)

Therefore the total effective action for ϕ takes the following form:

Γ =
25−N

48π
SL

∣∣∣∣
gµν=eϕĝµν

+

∫
d2x
√
−ĝΛ : eα

′ϕ : ĝ, (5.4)

where we have renormalized the cosmological constant term. The notation : eα
′ϕ : ĝ denotes

the normal-ordered operator for eα
′ϕ and a constant α′ is determined by the fact that

eq. (5.4) should be invariant under the transformation ĝµν → eσ ĝµν , ϕ → ϕ − σ. The

explicit value of α′ is given by

α′ =
25−N −

√
(25−N)(1−N)

12
. (5.5)

The system with the cosmological constant is positive-definite only when N ≤ 1. (On the

other hand, when the renormalized cosmological constant is tuned to be zero, the quantum

fluctuation of ϕ can be integrated out as long as N < 25.) The crucial point is that

the path-integral of the fluctuation of ϕ amounts only to the shift of the kinetic term in

eq. (5.4), and the renormalization of the cosmological constant (5.5). ϕ is now a free field

on the background ĝµν , in that the interactions generated by the cosmological constant

term do not modify the kinetic term by radiative corrections. This conclusion also holds

in a general field theory as long as it is approximated by a CFT in the high-energy limit,

by regarding N as the central charge of the CFT.

The crucial observation here is that the quantum effect of the conformal mode amounts

just to the shift of N by unity. In other words, the 1/N correction appears in the effective

action as a quantity of 1/N without a large numerical factor.

In our theory. Let us go back to our theory eq. (3.8). In this case, χ corresponds to

the conformal mode ϕ in the above discussion as ϕ = log(1 + χ), as can be seen from

eq. (3.14). However, eq. (3.8) does not have the diffeomorphism invariance because h and

Ψ are not invariant. They produce the extra contributions to the effective action for Cµν .

In particular, they induce corrections in the kinetic terms.

However, we still expect that the 1/N corrections to eq. (3.8) are of the same order

as that in the ordinary gravitational theory. As a result, the conclusion in the previous

section should hold even when the 1/N corrections are taken into account. If it is true, the

emergence of the negative norm state is not avoidable unless the central charge N is of O(1).

6 Summary

In this paper, we have performed the large N analysis to study quantum aspects of the

O(N) vector model that is deformed by a general function of Tµν , including the T T̄ -

deformation. Bound states of the original field appear and are of negative norm. The

negative-norm mode can be understood by comparing the theory with the one coupled to
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gravity. It corresponds to the conformal mode of the metric, whish is described by the Liou-

ville action. As for the two-point function in the large N limit, there is no difference between

our theory and the ordinary gravity. Hence, in conclusion, the theory non-perturbatively

violates positivity at least in the large N limit, whether the deformation is infinitesimal or

finite.

In order to remedy it, some degrees of freedom with negative central charge need to be

introduced. The natural candidates are the FP ghosts, and accordingly, diffeomorphism

invariance should be equipped. Then the theory becomes positive-definite for N < 25.

Without the diffeomorphism invariance, we expect that the numerical factor of the 1/N

correction should not be too large. Unless N is of O(1), the negative-norm states will

unavoidably emerge. To study this correction remains as a future problem.

Another important point is that the finite deformation (namely, higher order correc-

tions in α0) induces B in addition to the ordinary gravity. While B might be interpreted

as a kind of dilaton, the diffeomorphism invariance has not been manifest so far. To

investigate this issue is an interesting open question.
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A Derivation of the induced kinetic term

This appendix is devoted to explaining the details of the derivation of the induced kinetic

term.

First of all, we will evaluate the trace term in eq. (2.19) explicitly as

tr

[
1

−∂2 −m2 − iε
(−m2

0C − ∂µC̃µν∂ν)

]2
=

∫
d2x d2y d2z d2w

{
〈x| 1

−∂2 −m2 + iε
|y〉 〈y|

(
m2C + ∂ρC̃

ρσ∂σ

)
|z〉

× 〈z| 1

−∂2 −m2 + iε
|w〉 〈w|

(
m2C + ∂µC̃

µν∂ν

)
|x〉
}

=

∫
d2x d2y

{
C(x)

(
m4

0G(x− y)2
)
C(y)

− 2C(x)

(
m2

0

∂

∂yµ
G(x− y)

∂

∂yν
G(y − x)

)
C̃µν(y)

+ C̃µν(x)

(
∂2

∂xµ∂yρ
G(x− y)

∂2

∂xν∂yσ
G(y − x)

)
C̃ρσ(y)

}
, (A.1)
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(a) M . (b) Mµν . (c) Mµνρσ.

Figure 1. Feynman diagrams corresponding to M , Mµν and Mµνρσ.

where the propagator G(x− y) is as usual

G(x− y) ≡ 〈x| 1

−∂2 −m2 + iε
|y〉 =

∫
d2k

(2π)2
eik·(x−y)

k2 −m2 + iε
. (A.2)

Thus the effective action takes the following form:

Γ =
1

2

∫
dx

∫
dy
(
C(x) C̃µν(x)

)( M Mρσ

Mµν Mµνρσ

)(
C(y)

C̃ρσ(y)

)
, (A.3)

M ≡ m4
0

2i
[G(x− y)]2 − 1

2α0
δ2(x− y) , (A.4)

Mµν ≡ −
m2

0

2i

∂

∂xµ
G(x− y)

∂

∂xν
G(y − x), (A.5)

Mµνρσ ≡
1

2i

∂2

∂xµ∂yρ
G(x− y)

∂2

∂xν∂yσ
G(y − x)

+

(
1

4α0
+ (1 + 〈C〉)Λ0

)
ηµρηνσδ

2(x− y) . (A.6)

Practically, Mµν and Mµνρσ are projected out so that they should be symmetric traceless

with respect to indices (µν) and (ρσ), because they are contracted with C̃µν . Each term

corresponds to one of the diagrams depicted in figure 1.

After moving to the momentum space, it is easy to perform the loop integrals with PV

regularization. The results are listed below:8

M(p) = g(p)− 1

2α0
, (A.8)

Mµν(p) = −pµpν
p2

g(p), (A.9)

Mµνρσ(p) =
pµpνpρpσ

p4
g(p) + ηµρ

pνpσ
p2

h(p) + ηµρηνσf(p)

+

(
1

4α0
+ (1 + 〈C〉)β0

)
ηµρηνσ, (A.10)

8The normalization of functions in the momentum space here is taken as∫
d2x f(x) =

∫
d2p

(2π)2
f(p). (A.7)
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where scalar functions f(p) , g(p) and h(p) are defined as

f(p) ≡ −h(p)

2
+

1 + 〈C〉
16π

[(
M2

1 −m2
0

) r

1− r
log(r) + log

(
M2

1

m2
0

)]
, (A.11)

g(p) ≡ −m
2
0

8π
− p2

48π
+

m4
0

2πp
√

4m2 − p2
tan−1

(
p√

4m2 − p2

)
, (A.12)

h(p) ≡ m2
0

6π
+

p2

144π

[
3 log

(
m2

0

M2
1

)
+

3 log(r)

r − 1
− 8

]

−
(
4m2

0 − p2
) 3

2

24πp
tan−1

(
p√

4m2 − p2

)
. (A.13)

An important point is that both of the finite and divergent parts in the coefficient of

p2(C̃µν)2 completely vanishes. One can easily check this by using the following identity:∫
d2p

(2π)2
F (p2)C̃ λ

µ (p)C̃ ν
λ (−p) =

∫
d2p

(2π)2
F (p2)

1

2
δ ν
µ

(
C̃ ρ
λ (p)C̃ λ

ρ (−p)
)
, (A.14)

where F (p2) is an arbitrary function of p2. The reason for the absence of p2(C̃µν)2 term is

explained in section 3. On the other hand, the mass terms for C ′ and C̃µν are given by∫
d2p

(2π)2

[
− 1

4α0
C ′(p)C ′(−p)

+

{
1

8α0
+

1 + 〈C〉
2

(
β0 −

1

32π

[
m2

0 log

(
m2

0

M2
1

)
− r log(r)

1− r
M2

1

+
r log(r)

1− r
m2

0

])}
C̃µν(p)C̃µν(−p)

]
. (A.15)

The divergent contribution should be absorbed into β0 . By noting that it is just the minus

quarter of the divergent correction to Λ0, the parameter β0 can be set as β0 = −Λ0/4.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] A.B. Zamolodchikov, Expectation value of composite field T T̄ in two-dimensional quantum

field theory, hep-th/0401146 [INSPIRE].

[2] F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl.

Phys. B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].
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