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1 Introduction

The discovery by the LHC collaborations of the Higgs boson [1, 2] provided the missing piece

of the puzzle for the Standard Model (SM) of particle physics. Since then, measurements of

the Higgs’ properties [3] have shown that this scalar, with mass around 125 GeV, behaves

largely as expected in the minimal SM: thus far, and within the measured precision, no

significant deviations from SM-like behavior have been observed. But the SM leaves a great

many questions unanswered, such as the origin of the matter-antimatter asymmetry, the

nature of dark matter as a particle, the observed fermion mass hierarchy, and the strong

CP problem. SM extensions are therefore of interest to attempt to provide answers to

these, and other, unsolved problems. Models with extended scalar sectors, in particular,

are quite popular and widely studied in the literature. One of the simplest beyond the

SM theories is the two Higgs doublet model (2HDM), first proposed by Lee in 1973 [4]

to provide an additional source of CP violation stemming from the scalar sector through

spontaneous symmetry breaking.

In the 2HDM, the gauge and fermion content are the same as in the SM, but instead of

a single SU(2) doublet with hyper-charge Y = 1,we now have two, Φ1 and Φ2. This leads

to a rich phenomenology (see [5] for a review), boasting a richer scalar spectrum than the

SM’s, with two CP-even scalars, a pseudo-scalar and a charged scalar. The model can have

tree-level flavor-changing neutral currents mediated by scalars, which can be eliminated via

a suitable discrete symmetry [6–8]; can provide a dark matter candidate [9–12]; and have
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spontaneous CP violation [4]. The 2HDM easily reproduces all experimental results from

the SM, and indeed it has a decoupling limit [13] where the extra scalars are very massive

and the model’s predictions can be made to be virtually indistinguishable from those of

the SM. The 2HDM also has a richer vacuum structure then the SM — whereas in the

SM the only possible vacuum is the one which breaks electroweak symmetry, in the 2HDM

spontaneous CP breaking is also possible, as well as minima where the electromagnetic

symmetry U(1)em is broken. These latter minima are unwanted since they would imply

a massive photon. The possibility of charge (and color) breaking already arises in SUSY

models, and leads to bounds on some of the parameters of the model [14].

The possibility of reducing the 2HDM parameter space in a similar manner — imposing

bounds on the model’s parameters to avoid global charge-breaking (CB) minima — is very

appealing. In many cases, sufficient conditions to avoid CB minima were considered [4, 13,

15], but at the time it wasn’t known whether such conditions were too restrictive. However,

in [16, 17] a remarkable result was obtained: the structure of the tree-level 2HDM scalar

potential is such that, if an electroweak breaking minimum exists, any CB extremum that

might then occur is necessarily a saddle point lying above the minimum. Likewise, it

was shown that if a CB minimum exists, any stationary point which would break the

normal electroweak symmetries is a saddle point lying above it. Analogous results were

also proved for the relationship between electroweak extrema and CP breaking ones. Thus

a 2HDM electroweak breaking minimum, if it exists, is guaranteed, at tree level, to be

stable against tunneling to deeper CB or CP breaking vacua, since such deeper minima

were shown to not exist. This result was further studied in refs. [18–22]. In particular,

using a Minkowski formalism to rewrite the 2HDM scalar potential, Ivanov was able to

show [20, 21] the stability of the different vacua through geometric arguments. Other results

concerning neutral minima in the 2HDM were also obtained — it was shown [20, 21, 23]

that neutral minima can coexist in the 2HDM scalar potential, provided they break the

same symmetries. This had implications for the Inert model [9–11], a version of the 2HDM

where a discrete Z2 symmetry is preserved by both the Lagrangian and by the vacuum

— the vacuum preserves Z2 since only one of the doublets acquires a non-zero vacuum

expectation value. Two possibilities for minima then arise, depending on which of the

doublets has the non-zero VEV, the Inert Minimum (where fermions acquire mass after

spontaneous symmetry breaking) and the Inert-Like Minimum (where the fermions remain

massless). In [21, 23] expressions relating the depth of the potential at each of these

minima were found, and it was shown that, for specific regions of parameter space, they

could coexist.

However, powerful though the demonstrations of [16, 17] and [20, 21] were, those works

dealt with the tree-level potential. The expressions found there comparing the depth of the

potential at different extrema depended heavily on tree-level formulae for the scalar masses;

for the minimization conditions determining the vacuum expectation values (VEVs); and

for the potential itself. A valid question is therefore whether these results are robust when

one considers loop corrections to the potential — will the stability theorems deduced for

the tree-level potential still hold at one-loop? The first hint that that may not be the

case was obtained in [24], where a one-loop calculation was undertaken to analyze the

coexistence of neutral minima in the Inert model. The effective potential formalism was
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employed and it was shown that, in certain cases, a tree-level local minimum could become

a one-loop global one, and vice-versa. This (rare) possibility occurred only for regions of

parameter space where the tree-level minima were close to degenerate, hence it did not

correspond to a breakdown in perturbation theory, rather it implied loop corrections could

change the nature of tree-level vacua. Further, the one-loop calculation enlarged the region

of parameter space for which different neutral minima could coexist. Coexisting minima

at one-loop in the 2HDM were also studied in [25]. A numerical study of the possibility

of charge breaking was undertaken in [26, 27],using Vevacious [28] to partially take into

account the one-loop effects on vacuum stability.

The purpose of this paper is to investigate, using the one-loop effective potential,

whether the conclusions concerning the (non-)coexistence of neutral and charge breaking

vacua in the 2HDM hold when radiative corrections are taken into account. We review the

tree-level results for the classical 2HDM potential in section 2 then proceed to review the

formalism of the one-loop effective potential in section 3, including a discussion of issues

related with gauge fixing. The numerical methods we use to carry the minimization of

the one-loop potential are detailed in section 4 where we also present results of numerical

scans of the model’s parameter space and give a few illuminating examples. We draw our

conclusions in section 6.

2 The tree-level vacuum structure of the 2HDM

The 2HDM contains two hyper-charge 1 SU(2) scalar doublets, and the most general scalar

potential one can write has a total of 14 real parameters. Since both doublets are identical,

any linear combination of them which preserves the scalar kinetic terms should lead to the

same physics. This basis invariance, which corresponds to a redefinition of the fields via

a 2× 2 unitary matrix U ,1 allows one to reduce the number of free parameters to 11 [29].

This most general 2HDM will include flavor changing neutral currents (FCNC), mediated

by neutral scalars at tree-level, when one considers the full Lagrangian, including fermions.

To prevent this, a discrete Z2 symmetry is introduced [6, 7], such that Φ1 → Φ1, Φ2 → −Φ2,

which is extended to the Yukawa sector in such a way that each class of same-charge

fermions (up and down-type quarks and charged leptons) only couple to one of the doublets.

This eliminates tree-level FCNC and, due to the several possibilities of extending Z2 to

the Yukawa sector leads to four types of 2HDMs (type I, type II, lepton specific and

flipped [5]). So that the model can possess a decoupling limit [13], a softly Z2 breaking

quadratic term, m2
12, is usually introduced, so that the scalar potential is characterized by

8 real independent parameters.

2.1 Classical potential

The 2HDM scalar potential we will be studying possesses a softly broken Z2 symmetry and

is therefore given, at tree-level, by

V (0)(Φ) =m2
11|Φ1|2 +m2

22|Φ2|2 −m2
12

[
Φ†1Φ2 + h.c.

]
(2.1)

+
1

2
λ1|Φ1|4 +

1

2
λ2|Φ2|4 + λ3|Φ1|2|Φ2|2 + λ4|Φ†1Φ2|2 +

1

2
λ5

[(
Φ†1Φ2

)2
+ h.c.

]
1Meaning, the theory is physically equivalent if one considers the new doublets Φ′i = UijΦj .
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where all the parameters are taken to be real.2 The scalar doublets, Φ1 and Φ2 contain a

combined eight real component fields which can be parameterized as follows:

Φ1 =
1√
2

(
c1 + i c2

r1 + i i1

)
, Φ2 =

1√
2

(
c3 + i c4

r2 + i i2

)
. (2.2)

It is well know that the 2HDM classical potential exhibits three-different types of extrema

(for instance, see section 5.8 of [5] for a demonstration): a U(1)EM and CP-conserving

extremum, which we denote by 〈Φi〉EW

〈Φ1〉EW =
1√
2

(
0

v1

)
, 〈Φ2〉EW =

1√
2

(
0

v2

)
, (2.3)

a U(1)EM-violating extremum,

〈Φ1〉CB =
1√
2

(
α

v̄1

)
, 〈Φ2〉CB =

1√
2

(
0

v̄2

)
(2.4)

with the VEV α 6= 0 breaking electric charge conservation and consequently giving a mass

to the photon and a CP-violating extremum:

〈Φ1〉��CP =
1√
2

(
0

v′1 + iδ

)
, 〈Φ2〉��CP =

1√
2

(
0

v′2

)
(2.5)

where δ 6= 0. In this work, we will be focusing on the EW and CB extrema.

2.2 Classical extrema

To investigate the relative depths of the classical potential evaluated at the EW and CB

extrema, it is useful to introduce the following gauge-invariant variables [15, 16]:

x1 = |Φ1|2 = c2
1 + c2

2 + r2
1 + i21 (2.6)

x2 = |Φ2|2 = c2
3 + c2

4 + r2
2 + i22 (2.7)

x3 = Re
(

Φ†1Φ2

)
= c1c3 + c2c4 + i1i2 + r1r2 (2.8)

x4 = Im
(

Φ†1Φ2

)
= c1c4 − c2c3 + i2r1 − i1r2 (2.9)

In terms of these variables, then, the classical potential of eq. (2.1) is written as

V (0)(x1, x2, x3, x4) =

4∑
i=1

aixi +
1

2

4∑
i,j=1

bijxixj (2.10)

2By real we mean the CP symmetry that the unbroken Z2 potential had is left unbroken. Considering a

complex coefficient m2
12 would lead to a model with explicitly broken CP, known as the Complex 2HDM [30–

39]. Further promoting the Z2 symmetry to a continuous U(1) but keeping the complex soft breaking

term and allowing for the possibility of flavor violation in the quark sector yields models with interesting

phenomenology [40, 41], but not the subject of the current paper.
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with real parameters ai and bij = bji. In terms of the original parameters of eq. (2.1), the

ai and bij are given by

a1 = m2
11, a2 = m2

22, a3 = −2m2
12 (2.11)

b11 =
λ1

2
, b22 =

λ2

2
, b33 = λ4 + λ5 (2.12)

b44 = λ4 − λ5, b12 =
λ3

2
(2.13)

with all the unspecified parameters equal to zero. Collecting the xi’s, ai’s and bij ’s in vectors

X,A and symmetric matrix B, respectively, we can rewrite the classical potential as

V (0) = ATX +
1

2
XTBX . (2.14)

The values of the vector X at the EW and CB extrema are given by

XT
EW = (v2

1, v
2
2, v1v2, 0) (2.15)

XT
CB = (v̄2

1, v̄
2
2 + α2, v̄1v̄2, 0) . (2.16)

We can then see that the non-trivial minimization conditions of the classical potential at

the EW extremum may be expressed in terms of XEW as

∂V

∂r1

∣∣∣∣
X=XEW

= 0 =⇒ ∂V

∂x1

∣∣∣∣
X=XEW

= − v2
2

2v1v2

∂V

∂x3

∣∣∣∣
X=XEW

(2.17)

∂V

∂r2

∣∣∣∣
X=XEW

= 0 =⇒ ∂V

∂x2

∣∣∣∣
X=XEW

= − v2
1

2v1v2

∂V

∂x3

∣∣∣∣
X=XEW

(2.18)

∂V

∂i1

∣∣∣∣
X=XEW

= 0 =⇒ ∂V

∂x4

∣∣∣∣
X=XEW

= 0 . (2.19)

We can therefore see that

∇XV
∣∣∣∣
X=XEW

=

(
− 1

2v1v2

∂V

∂x3

∣∣∣∣
X=XEW

)
v2

2

v2
1

−2v1v2

0

 (2.20)

and we note that this expression implies the following relation:

(X · ∇XV )

∣∣∣∣
X=XEW

= 0 . (2.21)

Combining this expression with ∇XV = A+BX, we obtain

XT
EWA+XT

EWBXEW = 0 . (2.22)

Therefore, the classical potential evaluated at the EW extrema is equal to:

VEW =
1

2
ATXEW = −1

2
XT

EWBXEW (2.23)
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In a similar manner, we find what the non-trivial minimization conditions imply for XCB:

∂V

∂r1

∣∣∣∣
X=XCB

= 0 =⇒ ∂V

∂x1

∣∣∣∣
X=XCB

= − v̄2
2

2v̄1v̄2

∂V

∂x3

∣∣∣∣
X=XCB

(2.24)

∂V

∂r2

∣∣∣∣
X=XCB

= 0 =⇒ ∂V

∂x2

∣∣∣∣
X=XCB

= − v̄2
1

2v̄1v̄2

∂V

∂x3

∣∣∣∣
X=XCB

(2.25)

∂V

∂c3

∣∣∣∣
X=XCB

= 0 =⇒ ∂V

∂x2

∣∣∣∣
X=XCB

= 0 (2.26)

∂V

∂i1

∣∣∣∣
X=XCB

= 0 =⇒ ∂V

∂x4

∣∣∣∣
X=XCB

= 0 . (2.27)

From these equations it is clear that

∇XV
∣∣
X=XCB

= 0 = A+BXCB =⇒ A = −BXCB (2.28)

from which one obtains the value of the classical potential at the CB extrema, to wit

VCB =
1

2
ATXCB = −1

2
XT

CBBXCB . (2.29)

Combining the above results, we obtain:

XT
EWBXCB = −XT

EWA = XT
EWBXEW = −2VEW (2.30)

Using this result, eq. (2.30), eq. (2.29) and the fact that B = BT , we find that

XT
CB

(
∇XV

∣∣
X=XEW

)
= XT

CBA+XT
CBBXEW (2.31)

= −XT
CBBXCB +XT

CBBXEW (2.32)

= 2VCB − 2VEW (2.33)

We thus find that

VCB − VEW = − 1

4v1v2

(
∂V

∂x3

∣∣∣∣
X=XEW

)[
(v1v̄1 − v2v̄2)2 + α2v2

1

]
(2.34)

Now suppose that VEW is a local minimum of the theory. It is possible to show that the

mass of the charged Higgs is given by:

M2
H± = −v

2
1 + v2

2

2v1v2

∂V

∂x3

∣∣∣∣
X=XEW

(2.35)

Using this, we finally obtain that

VCB − VEW =
M2
H±

2(v2
1 + v2

2)

[
(v1v̄1 − v2v̄2)2 + α2v2

1

]
(2.36)

The implications of this expression are clear: if the potential has coexisting EW and CB

stationary points, and the EW solution is actually a minimum, then all of its squared

scalar masses will necessarily be positive; therefore, since the quantity in square brackets

is guaranteed to be positive, an EW minimum implies VCB − VEW > 0 and therefore the

EW minimum is deeper than the CB stationary point. Further, it can be shown that under

these conditions the CB extremum is a saddle point. Thus, in refs. [16–22] the following

tree-level theorem was established:
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• If the 2HDM tree-level scalar potential has an electroweak minimum, any charge

breaking extremum that eventually exists will necessarily lie above that minimum.

• Further, the charge breaking extremum will necessarily be a saddle point.

We will now investigate these properties of the 2HDM vacuum structure at the

loop level.

3 One-loop corrections to the scalar potential

The classical scalar potential of a quantum field theory is not the true scalar potential. In

an interacting quantum field theory, quantum effects will induce corrections to the scalar

potential. The standard way of computing the corrections to the classical scalar potential

is to use the path integral and background field method. For clarity, we will explain this

formalism in a quantum field theory of a single interacting scalar field. We begin by writing

down the so-called generating functional of the theory in terms of a path integral over field

configurations:

Z[j] = N
∫
DΦe

i
~S[Φ]+ i

~
∫
d4xj(x)Φ(x) (3.1)

where Φ is the scalar field, j is an external source and S[φ] is the action of the theory.

By taking n-functional derivatives of Z[j] with respect to j, one can generate the n-point

Green’s function consisting of the connected and disconnected Feynman diagrams with

n-external propagators. We redefine the field Φ to consist of a classical component φcl and

a fluctuation field φ: Φ = φcl + ~φ(x). Here φcl is chosen to satisfy the classical equations

of motion in the presence of the external source j. We can expand the action of the theory

around the classical field using:

S[Φ] = S[φcl] + ~
∫
d4x

δS

δΦ(x)
φ(x) +

~2

2

∫
d4x

∫
d4y

δ2S

δΦ(x)δΦ(y)
φ(x)φ(y) + · · · (3.2)

where the · · · represent higher-order functional derivatives of the action (which aren’t of

interest to use here.) Using the expansion of the action in Z[j],

Z[j] = N e i
~S[φcl]+

i
~
∫
d4xj(x)φcl

∫
DΦ exp

[
i~
2

∫
d4x

∫
d4y

δ2S

δΦ(x)δΦ(y)

∣∣∣∣
φcl

φ(x)φ(y) (3.3)

+ i

∫
d4x

(
δS

δΦ(x)

∣∣∣∣
φcl

+ j

)
φ(x) + · · ·

]
where again, the · · · represent higher-order terms. Since φcl satisfies the classical equations

of motion in the presence of the source j, the term linear in φ vanishes. The quadratic

term can be integrated exactly, yielding:

Z[j] = N e i
~S[φcl]+

i
~
∫
d4xj(x)φcl

[
det

δ2S

δΦ(x)δΦ(y)

]−1/2

(1 +O(~)) (3.4)
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Next, we define W [j] = −i~ log(Z[j]), which is the generating functional for the connected

Green’s functions. To order ~, this is:

W [j] = −i~ log(N ) + S[φcl] +

∫
d4xj(x)φcl +

i~
2

log

(
det

δ2S

δΦ(x)δΦ(y)

)
+O

(
~2
)

(3.5)

From now on, we will drop the log(N ) term, since it a constant and will not play any role.

Lastly, we define the effective action Γ[φ̄] through the Legendre transform of W [j]:

Γ[φ̄] = W [j]−
∫
d4xj(x)φ̄ (3.6)

where φ̄(x) = δW [j]/δj(x). To order ~, the field φ̄(x) is given by (using eq. (3.5)):

δW [j]

δj
=

δS

δφcl

δφcl

δj
+ φcl + j

δφcl

δj
+O(~) =

(
δS

δφcl
+ j

)
δφcl

δj
+ φcl +O(~) = φcl +O(~)

(3.7)

Using this relationship, we can write φcl = φ̄ + φ1, where φ1 is of order ~. We can now

replace φcl in favor of φ̄. Given that δS/δφ
∣∣
φ=φcl

= −j, we can think of j as a functional

of φcl, replacing φcl in favor of φ̄. Writing Γ1[φcl] = i~/2 log det
(
δ2/δΦ(x)δΦ(y)

∣∣
φ=φcl

)
, we

find, to order ~:

Γ[φ̄] = S[φ̄] +

∫
d4xφ1(x)

δS[φ̄]

δφ̄(x)
+

∫
d4x(φ̄+ φ1)

(
j[φ̄] + φ1

δj

δφ̄

)
+ Γ1[φ̄] (3.8)

−
∫
d4xφ̄

(
j[φ̄] + φ1

δj

δφ̄

)
+O

(
~2
)

= S[φ̄] + Γ1[φ̄] +O(~) (3.9)

where we dropped terms that go like O
(
φ2

1

)
since they are O

(
~2
)
. If we take φ̄ to be

space-time independent, the classical action evaluated at φ̄ is simply −(V T )V0(φ̄) where

V T is the space-time volume and V0 is the tree-level scalar potential. We thus define the

effective potential as:

Veff(φ̄) = −Γ[φ̄]

V T
= V0(φ̄)− i~

2(V T )
log

(
det

δ2S

δΦ(x)δΦ(y)

∣∣∣∣
φ=φ̄

)
+O

(
~2
)

(3.10)

It is straightforward to evaluate the log
(
det
(
δ2S/δΦδΦ

))
term by using the identity

log(det(A)) = tr(log(A)). For a real scalar field, one has δ2S/δΦδΦ = � + m2(φ̄) (where

m2(φ̄) is the field-dependent mass computed by diagonalizing ∂2V0(φ̄)/∂φ̄2) and hence:

tr log
(
� +m2

)
= V T

∫
d4p

(2π)4
log
(
−p2 +m2

)
(3.11)

The integral can be computed by replacing log
(
−p2 +m2

)
with − limα→0

∂
∂α(−p2 +m2)−α

and using standard one-loop integral tables. The result is divergent and requires the
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couplings of the theory to be renormalized. Once the infinities are canceled off (using MS),

the result is:

− i~
2(V T )

log

(
det

δ2S

δΦ(x)δΦ(y)

∣∣∣∣
Φ=φ̄

)
=

~
64π2

m4(φ̄)

[
log

(
m2(φ̄)

µ2

)
− 3

2

]
(3.12)

with µ being the renormalization scale. It is straight forward to add in additional scalar

fields, gauge bosons, and fermions. The form of effective potential to O(~) is [42]:

Veff(φ̄) = V0(φ̄) +
~

64π2

∑
i

(−1)2sini
[
M2
i (φ̄)

]2 [
log

(
M2
i (φ̄)

µ2

)
− ci

]
+O

(
~2
)

(3.13)

where i runs over all the particles of the theory, si is the spin of the particle, ni is the

number of degrees of freedom of the particle, µ is the renormalization scale and M2
i (φ̄) is

the field dependent squared mass. The value of ci is renormalization-scheme-dependent.

For MS [42], ci = 5/6 for gauge fields and 3/2 for all other particles. In principle, one needs

to take into account the order ~ correction present in φ̄ when computing V0(φ̄). The terms

of order ~ arising from V0(φ̄) play an important role in ensuring that the effective potential

is gauge-independent order-by-order in ~. We will discuss this further in section 3.4. In the

remaining subsections, we provide results for the various contributions from the particles

involved in the 2HDM and discuss the ~ expansion of the effective potential.

3.1 Scalar contributions

For the scalar fields, the one-loop correction to the scalar potential is

V (1)(Φ) =
1

64π2

∑
i

[
M2
i (Φ)

]2 [
log

(
M2
i (Φ)

µ2

)
− 3

2

]
. (3.14)

In the expression above, the values of the squared masses are the eigenvalues of the second

derivative of the tree-level potential, M2
ij(Φ):

M2
ij(Φ) =

1

2

∂2V (0)

∂φi∂φj
(Φ) , (3.15)

with {φi, φj} any of the real components defined in eq. (2.2). In a general gauge, there

are additional gauge dependent pieces which contribute to the scalar squared mass matrix.

These gauge contribution have the effect of giving the Goldstones masses which are ξ

times the corresponding massive gauge bosons (see below for the gauge masses), where ξ

is the gauge-fixing parameter. However, we will chose the Landau gauge ξ = 0, where

the additional gauge-dependent pieces do not contribute to the scalar mass matrix. For a

general field configuration, this 8× 8 mass matrix is extremely complicated, preventing us

from giving explicit expressions to its eigenvalues. It is, however, possible to compute the

scalar masses and their derivatives (which we will need) for the cases where c2 = c3 = c4 =

i1 = i2 = 0. These expressions are lengthy and we will, therefore, omit the results, having

in any way developed a numerical procedure to obtain their values for our calculation.
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3.2 Gauge contributions

The field-dependent squared masses of the W and Z bosons and the photon are gener-

ated from the kinetic terms of the two Higgs doublets: (DµΦi)
†(DµΦi). Plugging in the

expectation values for the Higgs doublets, the result is:

Lgauge,mass =
1

4
g′2BµB

µ
(
| 〈Φ1〉 |2 + | 〈Φ2〉 |2

)
+ g2W a

µW
µ,a
(
| 〈Φ1〉 |2 + | 〈Φ2〉 |2

)
+

1

2
gg′BµW

µ,a
(
〈Φ1〉† σa 〈Φ1〉+ 〈Φ2〉† σa 〈Φ2〉

)
(3.16)

where g′ and g are the U(1)Y and SU(2)L gauge couplings and σa = σ1, σ2, σ3 are the

Pauli-sigma matrices. In order to compute the squared masses of the gauge fields, it is

useful to organize the gauge fields into the following vector:

~Gµ =
(
W 1
µ W

2
µ W

3
µ Bµ

)T
(3.17)

Computing the second derivative of Lgauge,mass with respect to the components of ~Gµ
generates the following 4× 4 mass squared matrix for the gauge bosons:

∂2Lgauge,mass

∂Giµ∂G
j
µ

= M2
i,j(Φ) =

g2

4


x+ y 0 0 2tW z

0 x+ y 0 2tWw

0 0 x+ y tW (y − x)

2tW z 2tWw tW (y − x) t2W (x+ y)

 (3.18)

where we have defined: tW ≡ tan(θW ) = g′/g and the parameters x, y, z and w as:

x = r2
1 + r2

2 + i21 + i22 (3.19)

y = c2
1 + c2

2 + c2
3 + c2

4 (3.20)

z = c2i1 + c4i2 + c1r1 + c3r2 (3.21)

w = c1i1 + c3i2 − c2r1 − c4r2 (3.22)

It is possible to explicitly compute the eigenvalues of the gauge mass squared matrix. In

terms of the above parameters, the squared masses of the W,Z and photon are:3

M2
W =

g2

4
(x+ y) (3.23)

M2
Z =

1

8
g2
(
1 + t2W

) [
x+ y +

√
(x+ y)2 + 16s2

W c
2
W (w2 − xy + z2)

]
(3.24)

M2
γ =

1

8
g2
(
1 + t2W

) [
x+ y −

√
(x+ y)2 + 16s2

W c
2
W (w2 − xy + z2)

]
(3.25)

with sW ≡ sin(θW ) and cW ≡ cos(θW ). In general, one also needs to consider the effects

of ghosts. Ghost fields add additional contributions to the effective potential with squared

mass equal to ξim
2
g,i, for each of the massive gauge bosons. However, we will work in the

ξ = 0 Landau gauge where the ghosts and Goldstone bosons are massless.

3For charge preserving minima alone; otherwise, none of these four masses would be zero and there

would not be states identified as charged or neutral since charge conservation would be broken.
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3.3 Top quark contribution

For simplicity, the only fermion we consider is the top quark. The contributions to the

effective potential from other fermions will be significantly smaller than the top quark

contribution since the top mass is almost two orders of magnitude greater than the next

heaviest fermion. To compute the field-dependent squared mass of the top quark, we

consider the Yukawa interactions between the Higgs doublets and the top quark:

LYukawa = −ytQ̄LΦ̃tR + h.c.+ · · · (3.26)

where Φ = Φ1 or Φ2 and the · · · terms represents Yukawa interactions involving the re-

maining fermions, which we ignore. Following the usual convention, we take Φ = Φ2, for

which the top quark mass is given by:

m2
t =

1

2
(c2

3 + c2
4 + r2

2 + i22)y2
t (3.27)

The Yukawa coupling yt will depend on the values we choose for the r2, i2, c3 and c4. We

define the Yukawa coupling through the EW VEV, i.e. with r2 = v2 and i2 = c3 = c4 = 0.

The resulting Yukawa coupling is given by:

yt =

√
2mt

|v2|
(3.28)

Given this Yukawa coupling, the field dependent top quark mass is:

m2
t =

m2
t

v2
2

(c2
3 + c2

4 + r2
2 + i22) (3.29)

Given that we will not consider the (much smaller than the top’s) contributions from other

quarks or leptons, the results we present here will (within that approximation) therefore

be valid for the several Yukawa-types of 2HDM (Type I, II, lepton-specific and flipped [5]).

3.4 ~-expansion

As is well known, the effective potential is a gauge-dependent quantity. In principle, how-

ever, physical quantities calculated from the effective potential should not be gauge depen-

dent. In practice, however, how such physical quantities are calculated determines whether

or not the gauge dependence appears.

The theoretical backbone for these issues are the so-called Nielsen identities [43], which

can be cast as the fact that variations of the effective potential with respect to the gauge

parameter ξ are proportional to variations with respect to the field itself,

∂

∂ξ
Veff(φ, ξ) = C(φ, ξ)

∂

∂φ
Veff(φ, ξ). (3.30)

The equation above holds order by order in perturbation theory and, in particular, it implies

that the value of Veff at critical points, i.e. where ∂Veff/∂φ = 0, is gauge independent.

The key issue with the “brute force” minimization of the effective potential to compute

physical quantities lies with the fact that truncating the perturbative expansion means
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that incomplete higher-order terms are, implicitly, introducing a spurious gauge depen-

dence. The proposal of ref. [44], known as the ~ expansion method, consists of casting

the effective potential (and its derivatives) as a series in ~, after “reintroducing” the ~
in the partition function. The minimization is then carried out by an “inversion of se-

ries” method [44]. Notice that while the ~-expansion method was originally developed

for the finite-temperature effective potential, its applicability extends (in fact, in a much

more straightforward way) to the zero-temperature effective potential we are concerned

with here.

The ~-expansion method is manifestly gauge-independent, and unlike “brute force”

minimization, it does not introduce an imaginary part in the broken phase. Also, it is valid

at all types of extrema, including maxima and saddle points. In practice, the method’s

prescription is simply to find the extrema of the tree-level potential, with the perturbative

series generating the corrections order by order.

As mentioned in eq. (3.13), the effective potential can be expanded in terms of

~. To be consistent, we must also include the order ~ contributions present in the

vacuum configuration:

~φvac = ~φ(0)
vac + ~~φ(1)

vac +O(~2) (3.31)

The effects of including the O(~) contribution to the vacuum configuration is to intro-

duce additional terms arising from the tree-level potential that contribute to the effective

potential at order ~. The full scalar potential evaluated at ~φvac, expanded to order O(~2) is:

Veff(~φvac) = V (0)(~φ(0)
vac) + ~

[
V (1)(~φ(0)

vac) +
∑
k

~φ
(1)
vac,k

∂V (0)

∂φk
(~φ(0)

vac)

]
(3.32)

The extrema conditions for the full effective potential are then given by:

∂Veff

∂φn
(~φvac) =

∂V (0)

∂φn
(~φ(0)

vac) + ~

[
∂V (1)

∂φn
(~φ(0)

vac) +
∑
k

~φ
(1)
vac,k

∂2V (0)

∂φk∂φn
(~φ(0)

vac)

]
(3.33)

From this expression, we can immediately interpret the meaning of ~φ
(0)
vac: if ~φvac is an

extrema of Veff , then ~φ
(0)
vac is a vacuum configuration that extremizes the classical scalar

potential. Eq. (3.33) also shows us how to find the extrema of the full effective scalar

potential to order ~. One simply needs to determine all the extrema of the tree-level

potential. Then, setting the term of order ~ in eq. (3.33) to zero, we can determine the one-

loop correction to the classical vacuum configuration, ~φ
(1)
vec. Once the classical extrema have

been determined, the minimum of the effective scalar potential will be the configuration

which gives the smallest value of

Veff(~φvac) = V (0)(~φ(0)
vac) + ~V (1)(~φ(0)

vac) (3.34)

Note we have dropped ∂V (0)

∂φk
(~φ

(0)
vac) since ~φ

(0)
vac extremizes the classical scalar potential.

Ref. [45] and [46] revealed IR divergences in the Landau gauge arising from massless

Goldstone bosons, and argued that a resummation is necessary. However, e.g. ref. [47] ar-

gued that the ~-expansion obviates the need for a resummation because the IR divergences
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cancel order by order in perturbation theory. Notice that this procedure was extended in

ref. [48] to the small mass limit. In the case of small, non-Goldstone masses, a resummation

is necessary. If negative masses are found corresponding to a one-loop minimum, which

would always be the case in our theory (because remember, a tree-level EW minimum

implies that any coexisting tree-level CB extremum is a saddle point), one would addi-

tionally need to perform a resummation of the two-point correlation functions to obtain a

more accurate result for the scalar masses. In the ~-expansion method, attempting to find

a counterexample to the tree-level theorem, e.g. simultaneous minima at one-loop, would

always result in at least one set of negative squared masses (since either the EW or CB

vacuum would be a saddle point at tree-level) and thus one would be left with imaginary

one-loop potentials. Therefore, using the ~-expansion method to find counterexamples to

the tree-level theorem would always require a resummation to provide a sensible result.

We, therefore, will instead perform a numerical minimization of the effective potential and

require that the tree-level potential is convex at one-loop minima, the one-loop effective

potential thus becoming free of any imaginary pieces. Any gauge dependence of the results

will be residual, stemming from the truncated perturbative expansion and arising, at least

at the two-loop level, at order O
(
~2
)
.

4 Numerical methods

In this section, we describe the procedure we employ in finding counterexamples to the

tree-level theorem on EW vacuum stability against charge breaking at one-loop order. A

counterexample to the tree-level theorem is obtained if we can find a set of parameters for

which there exist simultaneous EW and CB minima — this, at tree-level, is impossible.

Further, we will show that one-loop EW minima may have deeper CB minima and thus

their stability is not guaranteed. In brief, the algorithm we use to find counterexamples is

as follows:

1. Generate EW and CB VEVs for Φ1 and Φ2 by sampling from a uniform distribution.

2. Generate initial random guesses for all eight of the 2HDM parameters: m2
11, m2

22,

m2
12, λ1, λ2, λ3, λ4 and λ5 by sampling from uniform distributions. These will be

used later as initial “seeds” for a numerical minimization of the potential.

3. Extremize the effective potential at both the EW and CB by solving the following

five non-linear root equations:

0 =
∂Veff

∂r1

∣∣∣∣
φEW

=
∂Veff

∂r2

∣∣∣∣
φEW

=
∂Veff

∂r1

∣∣∣∣
φCB

=
∂Veff

∂r2

∣∣∣∣
φCB

=
∂Veff

∂c1

∣∣∣∣
φCB

. (4.1)

We solve these equations by holding the EW and CB VEVs fixed and varying five of

the 2HDM parameters. We randomly chose which of the five 2HDM parameters we

use to solve these equations each time.

4. Choose a set of 50 random vacua and perform minimizations at each to find remaining

extrema.
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5. Categorize all of the extrema (as minimums, maximums or saddle points) by com-

puting the eigenvalues of the effective potential Hessian.

Below, we describe the algorithm is more detail. Note that all the code was written in

Julia and is available on GitHub.

Randomly choosing VEVs: our starting point is to choose EW and CB vacua at which

we will attempt to extremize the effective potential. We characterize the mass scale of our

problem in terms of the renormalization scale µ which we set to be the SM Higgs VEV:

µ = 246 GeV. Since the effective potential contains logarithms of the form log
(
M2/µ2

)
, we

choose all of our dimensionful parameters to be of the order of the renormalization scale.

We do this to avoid unwanted large logarithms which can ultimately spoil our perturbative

expansion. As we did in section 2, we define the EW and CB vacua as:

〈Φ1〉EW =
1√
2

(
0

v1

)
, 〈Φ2〉EW =

1√
2

(
0

v2

)
, (4.2)

〈Φ1〉CB =
1√
2

(
α

v̄1

)
, 〈Φ2〉CB =

1√
2

(
0

v̄2

)
. (4.3)

In terms of the individual components of the fields Φ1 and Φ2 (see eq. (2.2)), this means

that the following real components will have non-zero VEVs,

〈r1〉EW = v1, 〈r2〉EW = v2, (4.4)

〈r1〉CB = v̄1, 〈r2〉CB = v̄2, 〈c1〉CB = α (4.5)

with all other component fields of eq. (2.2)) have expectation values equal to zero. As

stated above, we choose the scale of the VEVs to be on the order of the renormalization

scale. That is, we set:

v2
1 + v2

2 = (246 GeV)2, −µ ≤ v̄1, v̄2, α ≤ µ (4.6)

We set v2
1 +v2

2 = µ2 = (246 GeV)2 to of course in order obtain a SM-like EW vacuum, with

gauge boson and quark masses in accordance wit experiment, but with an arbitrary value

of tanβ = v2/v1. However, when we search for other minima by numerically minimizing

the effective potential w.r.t. the fields r2, r2 and c1 (see below), we may find deeper EW

minima which no longer satisfy this condition v2
1 + v2

2 = (246 GeV)2 (this is a well known

property of the 2HDM, already occurring at tree level). However, this condition allows us

to find situations where at least there is a SM-like vacuum.

Initializing the 2HDM parameters: in the 2HDM we consider, there are a total of 3

dimensionful mass parameters and 5 dimensionless quartic couplings (see eq. (2.1)):

m2
11,m

2
22,m

2
12, λ1, λ2, λ3, λ4, λ5 (4.7)

As with the vacua, we choose the dimensionful mass parameters to be of the same order

as the renormalization scale. That is, we choose:

−µ2 ≤m2
11,m

2
22,m

2
12 ≤ µ2. (4.8)
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As we stated above, we make this choice to avoid generating large scalar masses which in

turn could lead to large logarithms. In choosing the values of the dimensionless couplings,

we keep in mind that sufficiently large couplings will result in a breakdown of perturbation

theory. In practice, the breakdown occurs when dimensionless expansion parameters exceed

4π (since the perturbative expansion is in powers of (expansion parameter)/4π.) To satisfy

perturbative unitarity, we keep all of the quartic couplings to be below 10. In addition to

perturbative unitarity, we also wish to have a stable potential for the scalars. The tree-level

conditions for stability of the scalar potential are:

0 ≤ λ1, λ2, (4.9)

−
√
λ1λ2 ≤ λ3, (4.10)

−
√
λ1λ2 ≤ λ3 + λ4 − |λ5| (4.11)

With these conditions and perturbative unitarity in mind, we choose the quartic couplings

such that:

0 ≤λ1, λ2 ≤ 10, (4.12)

−
√
λ1λ2 ≤λ3 ≤ 10 +

√
λ1λ2 (4.13)

−1 ≤λ4, λ5 ≤ 1. (4.14)

Even with these choices, it is possible to violate the stability conditions. Thus, we generate

parameters according to the above prescriptions and then check if the tree-level potential

is bounded. If it is, we continue, otherwise, we continue to generate parameters until the

potential is stabilized.

We note that the above restrictions on the parameters only apply to the starting values

for solving the extremum equations given below in eq. (4.15). As explained below, we select

five out of the eight of the parameters from eq. (4.7) to vary (fixing the VEVs to be the

chosen using the procedure explained above) in order to find solutions to the extremum

equations of the effective potential. It is possible that the solutions to the extremum

equation with yield large values of the mass parameters and or the quartic coupling. After

finding roots to the extremum equations, we will enforce that |mij/µ|, |λi| < 10. These

choices are in order to avoid a potential breakdown of perturbation theory.

Extremize the effective potential: our goal is ultimately to have minima at the EW

and CB vacua we have chosen. As a first step, we simultaneously extremize (not knowing

ahead of time whether or not we are at a minimum, maximum or saddle point) the effective

potential at the EW and CB vacua. To do this, we must simultaneously solve the following

five root equations:

0 =
∂Veff

∂r1

∣∣∣∣
φEW

=
∂Veff

∂r2

∣∣∣∣
φEW

=
∂Veff

∂r1

∣∣∣∣
φCB

=
∂Veff

∂r2

∣∣∣∣
φCB

=
∂Veff

∂c1

∣∣∣∣
φCB

. (4.15)
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The derivatives of the effective potential are given by:

∂Veff

∂φ
(Φ) =

∂Vtree

∂φ
(Φ) +

1

32π2

∑
i

∂M2
s,i(Φ)

∂φ
M2
s,i(Φ)

[
log

(
M2
s,i(Φ)

µ2

)
− 1

]
(4.16)

+
1

32π2

∑
i

∂M2
g,i(Φ)

∂φ
M2
g,i(Φ)

[
3 log

(
M2
g,i(Φ)

µ2

)
− 1

]

− 12

32π2

∂M2
top(Φ)

∂φ
M2

top(Φ)

[
log

(
M2

top(Φ)

µ2

)
− 1

]

Here M2
s,i(Φ) are the eigenvalues of the scalar squared-mass matrix, M2

g,i(Φ) are the eigen-

values of the gauge squared-mass matrix and M2
top(Φ) is the squared top mass. Note that

the factor of 3 on the log of the gauge contribution comes from the polarization of the

massive gauge fields (the fact that the W boson is charged is also taken into account on the

sum over the four eigenvalues of the gauge boson mass matrix of Eqn (3.18)) and the factor

of 12 for the top contribution accounts for the 3 colors, 2 spins, and charge of that particle.

To solve the five root equations, we must have five independent parameters which

can vary. Since we wish to fix the EW and CB vacua, we must resort to varying five

of the 2HDM parameters. To ensure that we can sample the entire parameter space,

we randomly choose any five 2HDM parameters (i.e., any given five of the quadratic or

quartic parameters) to vary each time we solve the extremal equations. We employ the

NLsolve.jl Julia library [49] using the Trust Region method. Since we allow five of

the 2HDM parameters to vary, we could potentially find solutions which make the scalar

potential unstable or spoil the perturbative expansion. We thus reject solutions which for

which the stability conditions are violated or solutions which have 2HDM parameter which

are too large (m2
ij > (10µ)2 or |λi| > 10.)

We note that when solving eq. (4.16), we neglect the imaginary part of the logarithms,

which occur for negative squared mass eigenvalues. It is possible that the vacua at the

extremum of the effective potential, i.e., the solution to eq. (4.16), will result in negative

squared masses for the scalar fields. As mentioned in section 3.4, the presence of negative

squared masses suggests that one must perform a resummation. Since we do not perform

any resummations, we do not analyze the solutions which yield negative squared scalar

masses. That is, we restrict our analysis to solutions that have positive semi-definite

squared scalar masses, for which there is no imaginary part of the effective potential.

As explained in section 3, there are no analytical expressions for the squared scalar

masses for an arbitrary vacuum configuration. They must, therefore, be computed nu-

merically by calculating the eigenvalues of the scalar squared mass matrix. This makes

computing the derivatives of the eigenvalues of the scalar mass matrix extremely difficult.

To obtain those (first and second-order) derivatives, then, we employ an algorithm using

forward-mode automatic differentiation through the use of dual-numbers, which we explain

in appendix A. We use the FowardDiff.jl package [50], which implements a dual-number

type in Julia. This allows us to simply pass dual-number types into the effective potential,

and we obtain automatic derivatives without ever needing to use eq. (4.16).4

4Currently, Julia implements its linear algebra by calling LAPACK which doesn’t accept any types other

than floating-point numbers. Thus, we wrote a version of the Jacobi algorithm for computing eigenvalues.
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Finding additional minima: as explained above, we solve the minimization conditions

of the one-loop effective potential so as two obtain two different extrema. But beyond

those two vacua — one EW breaking, the other CB — the 2HDM potential may yet have

other extrema. For instance, if at tree-level the CB minimum is unique (see [16, 17])

other neutral minima may exist ( [20, 21, 23, 51]). To search for any remaining minima

of the effective potential, we randomly generate 50 vacuum configurations and perform

a numerical minimization starting from these vacua, verifying whether the potential may

assume deeper values than the starting points. The minimization is performed using the

Broyden-Fletcher-Goldfarb-Shanno algorithm provided from the Optim.jl library [52]. Af-

ter performing this procedure, we sometimes find a minimum which is not one of the initial

solutions found by solving the extremal equations of eq. (4.15). For these deeper neutral

minima, it is likely that we will now have v2
1 +v2

2 6= 2462 GeV2, the so-called “panic vacua”

of refs. [53, 54].

Characterizing extrema: after we have found extrema of the effective potential, we

need to determine if they are minima, maxima or saddle points. In general, an extremum of

a scalar function can be characterized by computing the eigenvalues of the Hessian matrix.

The Hessian matrix is the matrix consisting of all second derivatives of the function, which

in our case is an 8 × 8 matrix with components: ∂2Veff/∂φi∂φj . The components of the

Hessian matrix of the effective potential are given by:

∂2Veff

∂φi∂φj
(Φ) =

∂2Vtree

∂φi∂φj
(Φ)

+
1

32π2

∑
i

{
M2
s,i(Φ)

∂2M2
s,i(Φ)

∂φi∂φj

[
log

(
M2
s,i(Φ)

µ2

)
− 1

]
(4.17)

+
∂M2

s,i(Φ)

∂φi

∂M2
s,i(Φ)

∂φj
log

(
M2
s,i(Φ)

µ2

)}

+
1

32π2

∑
i

{
M2
g,i(Φ)

∂2M2
g,i(Φ)

∂φi∂φj

[
3 log

(
M2
g,i(Φ)

µ2

)
− 1

]

+
∂M2

g,i(Φ)

∂φi

∂M2
g,i(Φ)

∂φj

[
3 log

(
M2
g,i(Φ)

µ2

)
+ 2

]}

+
1

32π2

{
M2

top(Φ)
∂2M2

top(Φ)

∂φi∂φj

[
log

(
M2

top(Φ)

µ2

)
− 1

]

+
∂M2

top(Φ)

∂φi

∂M2
top(Φ)

∂φj
log

(
M2

top(Φ)

µ2

)}
If the Hessian matrix is positive semi-definite (i.e. all the eigenvalues are greater than or

equal to zero), then the extremum is a minimum (note that the zero eigenvalues signal

a flat direction, which we will explain momentarily.) Similarly, if the eigenvalues of the

Hessian are negative semi-definite or neither positive nor negative semi-definite, then the

extremum is a maximum or saddle point, respectively. When the two Higgs doublets

attain their non-trivial VEVs, the SU(3)c× SU(2)L×U(1)Y gauge group is broken. In the
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∂2Veff/∂φi∂φj Eigenvalues Extrema Type

3 zero, 5 positive EW minimum

3 zero, 5 negative EW maximum

3 zero, 5 positive and negative EW saddle

4 zero, 4 positive CB minimum

4 zero, 4 negative CB maximum

4 zero, 4 positive and negative CB saddle

Table 1. Characterization of the extrema of the 2HDM effective potential.

case of the EW VEVs, the gauge group is broken down to SU(3)c × U(1)EM and in the

case of CB VEVs, the gauge group is broken down to SU(3)c. In either case, we expect

there to be Goldstone bosons corresponding to each broken generator of the gauge-group.

The Goldstone bosons will manifest themselves as zero eigenvalues5 of the Hessian matrix,

i.e. flat directions of the effective potential. In table 1, we list the various extrema type

corresponding to the eigenvalues of the effective potential Hessian. As with computing first

derivatives of the effective potential, to compute the second derivatives, we use automatic

differentiation. This again allows us to simply pass dual-numbers into the effective potential

(in this case we pass nested dual numbers, i.e. dual numbers consisting of dual-numbers,

see appendix A) and we obtain the second derivatives without ever having to use eq. (4.17).

Notice that the second derivatives of the one-loop effective potential provide the one-loop

squared scalar masses computed at zero external momentum. For massive scalars they are

therefore an approximation to the exact result, but for the massless Goldstones — which

must be computed at precisely zero external momentum — they yield the exact result.

Obtaining the correct number of massless Goldstones for either the EW or CB extrema is

a powerful check of our calculations.

5 Results

In this section, we describe the results of running the algorithm described in the previous

section to find counter-examples to the tree-level theorem described in section 2. To wit,

our purpose is to investigate whether at the one-loop level an EW minimum is guaranteed

to be stable against charge breaking — i.e., whether still at one-loop there is no deeper CB

extremum. Further, we will verify whether at one-loop the existence of an EW minimum

also implies that any CB extremum must need be a saddle point. All computations were run

on a 2015 Mac Book Pro using 8 threads. We developed all of the code for this algorithm

using the Julia language, using various well-developed Julia packages. For example, we

use the ForwardDiff.jl [50] package for automatic differentiation, NLsolve.jl [49] for

solving the root equations of eq. (3.33) and Optim.jl [52] for performing minimizations.

All the code developed for this project can be viewed/downloaded on GitHub. For more

details, the interested reader may e-mail the authors.

5This is the case for the particular gauge choice of ξ = 0. If ξ 6= 0, then the Goldstone squared masses

will be ξm2
g,i where mg,i are the masses of the gauge fields.
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To consider a set of vacua (EW and CB) and 2HDM parameters to yield a counter-

example to the tree-level theorem, we set various requirements. First, to be a counter-

example to the tree-level theorem, we must have a minimum of the effective potential at an

EW and CB vacuum. We consider a vacuum to be an extremum of the effective potential

if the infinity-norm of the gradient is less than 10−5 (although in many cases we obtain

much higher accuracy.) We categorize the extremal type (minimum, maximum or saddle)

of a vacuum using the conditions in table 1. In particular, we consider an EW vacuum a

minimum if the Hessian of the effective potential evaluated at the vacuum contains three

zero masses (Goldstone bosons corresponding to the breaking of SU(2)L×U(1)Y → U(1)EM)

and five positive masses. In the case of a CB vacuum, we require four zero masses (the

additional zero mass due to the explicit breaking of U(1)EM) and four positive masses.

In addition, we require that the tree-level potential is bounded from below (following the

conditions of eqs. (4.9)–(4.10).) We also require that the values of the 2HDM be constrained

to be of natural order: |m2
ij | < (10µ)2, |λi| < 10 where µ is the renormalization scale. We

make these requirements to preserve our perturbative expansion and avoid generating large

masses which could result in large logarithms.

After running our algorithms for roughly 24 hours, we found ∼ 3000 sets of parameters

which yield simultaneous one-loop EW and CB minima — this is the first demonstration

that the tree-level vacuum stability theorem is no longer valid at one-loop. Out of these

3000 sets, for ∼ 1000 of then, the global minimum of the one-loop effective potential was

the CB vacuum; the remaining ∼ 2000 had the EW vacuum as the global minimum. To

get a sense of how common the sets of parameters yielding counter-examples were, we also

recorded those sets of parameters for which there was only an EW minimum (no CB) and

for which there was only a CB minimum (no EW). The former yielded ∼ 54000 sets of

parameters, while the latter ∼ 17000. Thus, we can see that parameters which yield both

a CB and an EW minimum are roughly 5% of those which yield a single minimum — thus

even at one-loop, we can expect that the exclusion of regions of parameter space due to CB

vacuum instability will be rare. Furthermore, only 4 out of the 1000 points which yielded a

deeper CB minimum have positive tree-level masses and 10 for the case where the EW was

deeper (the remaining contained at least one negative tree-level mass from either the CB

or EW vacuum.) We should stress, however, that our purpose is not to perform a thorough

scan of the 2HDM parameter space to find charge breaking bounds of the model, but rather

to prove that the tree-level vacuum stability theorem no longer holds. As mentioned in

section 3.4, for parameters with negative tree-level masses which result in one-loop minima,

one likely needs to perform a resummation to obtain a sensible result (i.e. one that doesn’t

exhibit an apparent instability — imaginary part of the effective potential), which we have

not done. We will thus not analyze the points for which result in negative scalar squared

masses and instead focus on points which yield positive definite squared scalar masses.

We provide two sets of parameters yielding counterexamples to the tree-level theorem

in table 2: one for the case where the CB vacuum is deeper than the EW one (left column)

– 19 –



J
H
E
P
0
4
(
2
0
2
0
)
1
2
5

and one where the EW minimum is deeper than the CB one (right column.)6 We reiterate

that both of these points are convex at tree-level, meaning all of the squared scalar masses

at tree-level are positive at the one-loop extrema, yielding no complex contributions to

the effective potential. To better visualize the behavior of the potential at both extrema

for both sets of parameters, consider figure 1. Of course, it is impossible to visualize the

full, 8-dimensional potential at these points, but to give some sense of what it looks like in

the vicinity of the one-loop vacua, we resort to one- and two-dimensional “slices”. Thus,

in figure 1, we display the one-loop potential evaluated at each vacuum and along a line

linearly interpolating the EW and CB one-loop vacua for the parameters/vacua given in

table 1. This means we are evaluating the potential along values of the fields given by, for

each component of the doublets, ~φ(t) = (1− t)~φEW + t~φCB. Thus, at t = 0, the potential is

being evaluated at the EW vacuum and at t = 1 at the CB vacuum. We show the tree-level

potential evaluated at the same field configurations for reference.

Before illustrating how the effective behaves as a function of the field configurations,

we should comment on the structure of the one-loop VEVs given in table 2. One may notice

that the one-loop vacuum structure exhibits large values of tan(β) = tan(v2/v1). The large

values of tan(β) are a consequence of the fact that we chose to couple the second doublet Φ2

with the top quark, which plays an important role in generating counterexamples. While

the majority of counterexamples that we’ve found exhibit large values of tan(β), this is

not a generic feature. There exists counterexamples for which tan(β) ∼ 1. We chose the

parameters given in table 2 because they result in better-looking plots.

Figure 1 show that the potential has minima at the EW and CB extrema, both at

tree and one-loop level. This is, however, deceiving — at tree-level, the vacuum stability

theorem states that if there is an EW minimum, any CB extrema will be a saddle point.

However, the tree-level potential is not in fact at minima for both the EW and CB one-loop-

vacua. If one computes the tree-level minima given the parameters used in figure 1(a), they

would find that φEW is near the global tree-level minimum (which is an EW-like vacuum,

i.e. α = 0) and that φCB is simply at some convex point at tree-level (but not an extremum;

the global tree-level vacuum in this case is also and EW-like.) See table 2 for the tree-level

global minima. It would be easy to see that along some other direction(s) in field space

the seeming tree-level extrema would not be minima at all. What is however clear from

figure 1 is, as soon as we realize that at one-loop both the EW and CB extra are minima,

the tree-level vacuum stability theorem is once again violated at the one-loop level — it is

possible, at one-loop, to obtain a potential with an electroweak breaking minimum, which

also possesses a deeper charge breaking minimum. Thus the absolute stability of 2HDM EW

minima found at tree-level is broken by radiative corrections — the quantum mechanical

effects on the effective potential can change the vacuum properties of the model.

To further illustrate the behavior of the 2HDM potential close to these extrema consider

figures 2 and 3. There we display a two-dimensional slice of the effective and tree-level

6For more values, with more precision, see https://github.com/LoganAMorrison/THDMMinimizer.

jl/blob/master/data/verified_pos_mass_a1.csv (for parameters for which φCB < φEW) and https:

//github.com/LoganAMorrison/THDMMinimizer.jl/blob/master/data/verified_pos_mass_a2.csv) (for

parameters for which φEW < φCB.)
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CB Deepest EW Deepest

m2
11 −47729.7 −56573.3

m2
12 2062.2 -3666.6

m2
22 −25134.0 −41089.7

λ1 3.3 2.8

λ2 0.8 1.4

λ3 1.7 2.0

λ4 1.5 0.9

λ5 −0.02 0.5

yt 1.00 1.00

v1 −11.4 −20.8

v2 −245.7 245.1

v̄1 63.4 −196.3

v̄2 43.9 26.9

α −161.1 −56.0

Veff(φEW) −3.68× 108 −6.17× 108

Veff(φCB) −3.72× 108 −6.07× 108

Tree-Level Minimum

v
(tree)
1 −10.4 −19.7

v
(tree)
2 −245.7 245.3

α(tree) 0.0 0.0

Vtree(φtree
min) −3.83× 108 −6.32× 108

Table 2. Parameter values. Quadratic parameters in GeV2, VEVs in GeV and potential values in

GeV4. All values have been rounded for readability.

potentials. In these figures, the horizontal axis is identical to that of the one-dimensional

plots of figure 1 — that is, a line interpolating between both one-loop minima. The vertical

axis in figures 2 and 3 represents variation along a direction s in r1 − r2 − c1 space which

is orthogonal to the line interpolating the EW and CB vacua. These figures give us a

slightly more convincing visualization of the minimization at the EW and CB vacua, and

show the distortion induced upon the tree-level potential by the loop corrections. Having

said that, they are nonetheless incomplete images of the full 8-dimensional picture and can

not illustrate, for instance, the conversion between tree-level saddle points and one-loop

extrema that the violation of the tree-level vacuum theorem implies.

We have fixed the renormalization scale µ to 246 GeV, and the procedure we followed

should, obviously, not depend on that choice. To verify that the results we obtained are

indeed not dependent on a particular choice of µ, we took the parameters given in ta-

ble 2 and evolved them according to their RG equations (see the appendix of ref. [55]

for explicit expressions for the RG equations for the THDM parameters.) We use the

DifferentialEquations.jl[56] package to perform the RG evolution of the parameters
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Figure 1. One dimensional slices of the effective (solid red) and tree-level (dashed blue) scalar

potential evaluated at field configurations interpolating between the EW and CB minima of the

effective potential. The horizontal-axis represents vacuum configurations interpolating between the

CB and EW vacua. i.e. we interpolate between φ(t) = (1 − t)φEW + tφCB. Hence, at t = 0,

φ(t = 0) = φEW and at t = 1, φ(t = 1) = φCB. Figure (a) demonstrates a scenario where

Veff(φEW) < Veff(φCB) and figure (b) demonstrates the scenario where Veff(φCB) < Veff(φEW). The

values of the VEVs and parameters are given in table 2.

from µ = 246 GeV to µ = 400 GeV. At all renormalization scales between 246− 400 GeV,

we re-minimize the effective potential starting from both the EW and CB vacua, determin-

ing the new VEVs at each minimum for the new values of the parameters of the potential

at the new scales. We then compute the value of the one-loop effective potential at each

minimum, which we show as a function of the renormalization scale in figure 4, for both

sets of parameters given in table 2. As we can see, the separation of the EW and CB vacua

is preserved as a function of the renormalization scale. Also, we can see that the difference

of the values of the potentials is nearly a constant, which is a consequence of the fact that

the effective potential at the minimum is RG independent. The values of the effective po-

tential only change due to us not including the RG evolution of the field-independent piece

of the effective potential (which is the same for both the curves). To better understand this

point consider the discussion in [57, 58]: the one-loop effective potential depends on a set of

parameters λi, fields φj and renormalization scale µ, and it may be written generically as

V (µ, λi, φj) = Ω(µ, λi) + V0(λi, φj) + ~V1(µ, λi, φj) + O
(
~2
)

(5.1)

where the field-independent term Ω is the same for any extremum of the potential. The

crucial insight to understand the behavior shown in figure 4 is that, unlike what one usually

thinks, the sum V0 + ~V1 of the tree-level and one-loop contributions to the potential, is

not RG independent. Rather, the independence of the renormalization scale on the full

effective potential, dV/dµ = 0, is accomplished at the one-loop level by “compensating”

the µ dependence on V0 + ~V1 with that of the Ω term [59]. But since Ω does not depend

on the value of the fields it will not change between the EW and CB minima, and as such

it is trivial to obtain d(V0 + ~V1)EW /dµ = d(V0 + ~V1)CB/dµ — meaning, one expects
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Figure 2. A two-dimensional slice of the effective potential (left) and the corresponding tree-level

potential (right) for the case where Veff(φCB) < Veff(φEW). The horizontal axis is identical to that

of figure 1. The vertical axis is an line in r1−r2−c1 space orthogonal to the t-axis, i.e. orthogonal to

a line connecting ~φEW and ~φCB. The scale of s vertical axis is identical to the scale of the horizontal

axis, i.e. distance in field space from (t = 0, s = 0) and (t = 1, s = 0) is identical to the distance in

field space between (t = 0, s = 0) and (t = 0, s = 1) (both these distances are the distances between
~φEW and ~φCB .)

that by varying the value of the renormalization scale, the value of the potential at the EW

minimum evolves “parallel” to that of the CB minimum, and that is exactly the behavior

one witnesses in figure 4. Thus the conclusion is that indeed our one-loop result is not

an artifact of a specious choice of renormalization scale, but rather it is independent of

the value of µ. However, we emphasize that these parameter sets exemplify the best case

scenario obtained in our numerical calculations, boasting nearly perfect RG evolution. Not

all parameter sets we found behave as well. In particular, we find some parameter sets

for which the RG curves cross. Crossing of the RG curves signals that 2-loop corrections

to the effective potential and RG equations are likely important for those particular sets

of parameters.

Before concluding, it is worth mentioning the consequences of these results. At tree-

level, it was clear that, since it is impossible to have simultaneous EW and CB minima, an

EW vacuum would be stable against the possibility of charge breaking, i.e. no tunneling

could occur that would spoil the residual U(1)EM gauge symmetry and disastrously give

the photon a mass. This is no longer the case when one considers the quantum corrections

to the classical potential. That is, simultaneous EW and CB minima can exist at one-loop.
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Figure 3. Same as in figure 2 but for the case where Veff(φEW) < Veff(φCB).

260 280 300 320 340 360 380 400

µ (GeV)

−4.00

−3.95

−3.90

−3.85

−3.80

−3.75

−3.70

×108

VEW

VCB

(a)

260 280 300 320 340 360 380 400

µ (GeV)

−6.6

−6.5

−6.4

−6.3

−6.2

−6.1

×108

VEW

VCB

(b)

Figure 4. Running of the values of the effective potential evaluated at its EW and CB minima

for the case where Veff(φCB) < Veff(φEW) (left) and Veff(φEW) < Veff(φCB) (right). These plots

demonstrate that our results are independent of the particular choice of renormalization scale that

we chose.

This implies that, if we lived in a EW vacuum of the one-loop effective potential in a

scenario where there is an additional, deeper CB vacuum, it would be possible to tunnel to

the CB vacuum. The decay rate of the EW vacuum would be highly suppressed since the

simultaneous minima are only realized at one-loop. In particular, we would then expect

the decay rate to be a two-loop effect and of the order O
(
~2
)
.
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6 Conclusions

In this work, we have analyzed the vacuum structure of the one-loop effective potential

of the 2HDM. At tree-level, the 2HDM scalar potential is found to have a remarkable

stability — any minimum which breaks the ordinary electroweak symmetries and thus

preserves charge conservation (and furthermore, also preserves CP) is guaranteed to be

stable against the possibility of charge breaking vacua — meaning, any CB extremum that

eventually might coexist with that minimum is guaranteed to lie above it, and furthermore

to be a saddle point. This theorem was found in 2004 via analytical calculations with the

2HDM potential, along with a series of other remarkable results concerning the model’s

vacuum structure [16, 17, 20, 21].

The first hint that these vacuum stability theorems might not hold at one-loop was

obtained analyzing the coexistence of neutral minima in a version of the 2HDM, the Inert

Model. Comparing tree-level minima with one-loop ones, using the formalism of the effec-

tive potential, it was possible to show that the loop corrections might indeed change the

nature of the vacuum — for certain choices of parameters, a minimum which at tree-level

was global would become a local one at one-loop [24]. It then became clear that an analysis

of the one-loop potential was required to ascertain whether the stability of EW minima

against deeper CB vacua remained a valid conclusion. This work shows that the theorem

does not hold at one loop.

We have indeed obtained, through extensive numerical scans of the parameters of the

model, many cases where an EW minimum of the one-loop effective potential can coexist

with a CB minimum — this is a first violation of the tree-level theorem, which stated that

an EW minimum implied necessarily CB saddle points. We have also determined that one-

loop EW minima can coexist with deeper CB minima — and hence the tree-level stability

against CB of the 2HDM no longer holds at one-loop. The conclusion one must draw from

these results is that quantum corrections to the potential may change the vacuum structure

of said potential. Conclusions drawn at tree level for which kind of minimum is the global

one, and whether it is stable, may well not survive a higher-order calculation. And this, in

fact, perhaps should not surprise us — after all, this is indeed what one already obtained

in the case of the Coleman-Weinberg potential [60].

Our calculations were performed using tried-and-true computational algorithms and

numerical minimization routines which are widely available, and we offer two examples

of parameter sets to be checked by interested readers. Issues of gauge dependence of

the effective potential should not affect the validity of the conclusions drawn here since

we are fundamentally comparing the value of the effective potential in different minima.

Though we only included the contribution of the top quark, clearly the results would not

qualitatively mutate with the inclusion of further fermions. And the calculations underwent

a rigorous check via the computation, at each EW and CB extremum, of the respective

one-loop Hessian matrices. That check had a twofold purpose: to verify the nature of

any given extremum, so that we could be certain when claiming to have found minima

and to verify whether the correct number of Goldstone bosons was found — three for

any EW vacuum, four for a CB one. Further, a verification of the independence of our
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results from the value of the renormalization scale µ we chose was undertaken — an RG

evolution of the parameters of the potential in an interval of values of µ was performed,

followed by a re-minimization of the potential to obtain the values of the VEVs at each

new scale. The comparison of the values of the potential showed that the relative depth of

the minima remained unchanged with the renormalization scale, and thus our conclusions

are RG stable.

Should this mean that we are witnessing a breakdown in perturbation theory, wherein

higher-order corrections invalidate our calculations? Hardly — the RG evolution performed

showed us that perturbation theory is working as one would expect. The results of [24]

should further illuminate our conclusions — what was found there was that loop corrections

could change tree-level expectations for the nature of the vacua by “swapping” global

and local minima, but that this could only occur if both minima were nearly degenerate.

Thus, one concludes, at least for the results of [24], the loop corrections are small and

acceptable perturbations that “flip” the system between two states of nearly degenerate

energies. Likewise, the interpretation of the results we present in the current work points

to perturbation theory still holding: a vast numerical scan of the model’s parameters only

yields counterexamples to the tree-level theorem for a small subset of the parameter space.

Also, the tree-level result was strongly dependent on the specific form of the potential; of its

derivatives; of the scalar squared masses. At one-loop something remarkable occurs — the

vacuum is determined, not only by the scalar sector but by all sectors of the theory, gauge

and Yukawa included. It is therefore unsurprising that different statements can be made.

To conclude, the 2HDM electroweak vacua is not guaranteed to be stable against charge

breaking vacua — there may well be, for certain regions of parameter space, deeper CB

minima below an EW one, and it may well happen that the tunneling time to the deeper

minimum is smaller than the age of the universe. Though we expect this situation to

be rare, this work raises the necessity to perform a wide reassessment of bounds imposed

upon the parameters of the 2HDM, by fully analyzing the one-loop vacuum structure

of the model. The task is not an easy one, for the one-loop effective potential is very

complex and unwieldy, especially at CB vacua. Finally, two comments — first, we have

used the results from [16, 17] concerning the simplest form one could take for CB vacua;

but those results stem from an analysis of the tree-level potential, so they too might

change when considering a one-loop calculation. Second, in [16, 17] the tree-level theorems

deduced concerned the stability of EW vacua against, not only CB, but also minima with

spontaneous CP violation. As for the case of CB, the conclusion therein obtained was that

any EW minimum cannot have a deeper CP breaking extremum, and any such extremum

is found to lie above the EW minimum and be a saddle point. Given that we have shown

that at one-loop an EW could coexist with a deeper CB minimum, there are strong reasons

to believe that the same will apply to coexistence with CP minima.
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A Forward-mode automatic differentiation

In this appendix, we explain the technologies we use to numerically compute derivatives.

There are many ways to numerically compute derivatives. The standard way is to use finite

differences in which the derivative is approximated using (with forward finite differences):

f ′(x) ≈ f(x+ ε)− f(x)

ε
+O(ε) (A.1)

This method suffers from many issues. First off, to get a good approximation of the

derivative, one would like to make ε as small as possible. However, due to the finite

precision of machine numbers, as ε becomes sufficiently small, round-off errors will seep

into the calculation and the error in the approximation will increase [61]. Thus, there is

a given value of ε for which finite-differences yields the smallest error and one can do no

better. Another method for evaluating derivatives is to use the complex-step method [62],

in which the derivative is approximated using:

f ′(x) ≈ Im
f(x+ iε)

ε
(A.2)

This method doesn’t suffer from the round-off errors that arise from finite differencing. ε

can be taken arbitrarily small. However, the complex step method requires one to only use

real numbers (if one mixes complex derivatives with the complex step method, the results

will be non-sense.)

A slightly more complicated, but robust method of numerically computing derivatives

in forward-mode automatic differentiation [61]. The core idea of forward-mode automatic

differentiation is the concept of dual-numbers. A dual-number is defined similarly to in-

finitesimals:

d = a+ εb (A.3)

where ε has the property that ε2 = 0. The algebra of dual numbers is defined as follows:

d1 + d2 = (a1 + εb1) + (a2 + εb2) ≡ (a1 + a2) + ε(b1 + b2) (A.4)

d1 · d2 = (a1 + εb1) · (a2 + εb2) ≡ (a1a2) + ε(a1b2 + a2b1) (A.5)

When we evaluate a function f(x) at a dual number, we obtain the standard infinitesimal

shift of the function:

f(d) = f(a+ εb) ≡ f(a) + εbf ′(a) (A.6)

If we set d = x+ε (i.e. set b = 1), then we find f(x+ε) = f(x)+εf ′(x). We thus obtain f(x)

and f ′(x) by evaluating f at the dual number x+ ε. Using dual-numbers provides us with

a method of computing exact derivatives (up to machine precision.) Dual-numbers can

also be used to compute higher-order derivatives by nesting dual-numbers: i.e. have dual-

numbers of dual-numbers. For example, if d = a+ ε1b with a = a1 +a2ε2 and b = b1 + b2ε2,
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with ε21 = ε22 = 0 and ε1ε2 6= 0, then we find the following:

f(d) = f(a) + ε1bf
′(a) (A.7)

= f(a1) + ε2a2f
′(a1) + ε1(b1 + ε2b2) · (f ′(a1 + ε2f

′′(a1))) (A.8)

= f(a1) + b1ε1f
′(a1) + a2ε2f

′(a1) + b2ε1ε2f
′(a1) + a2b1ε1ε2f

′′(a1) (A.9)

If we set a = x+ ε2 and b = 1 + 0ε2, then we obtain:

f((x+ ε2) + ε1(1 + 0ε2)) = f(x) + ε1f
′(x) + ε2f

′(x) + ε1ε2f
′′(x) (A.10)

Hence, the ε1 component of the number gives the first derivative of f and the ε1ε2-

component gives the second derivative of f . If we continue nesting dual-numbers, we

can compute arbitrary derivatives of f(x).

Given the power of template meta-programming and multiple-dispatch built into

Julia, it is an easy task to implement dual-numbers numerically. Below we provide

code snippets of how this is done (note that this is not what we use, instead we use

ForwardDiff.jl a well-developed Julia package.) The basic idea of implementing dual-

numbers is to define a new type, which we call Dual. We then overload all necessary

operations that we need, i.e., addition, subtraction, multiplication, division and any other

functions we wish to use with dual-numbers. Our type Dual contains two attributes: val

(the real component of the dual-number) and eps (the infinitesimal part):

struct Dual{T<:Real} <:Real

val::T # real component of the dual number.

eps::T # infinitesimal component of the dual number. eps^2 = 0

end

The remaining implementation of the Dual type is to define all the overloads of functions

we want to use Dual numbers with. For example, we can define multiplication and the

trignometric sine function as follows:

# Overload the ‘*‘ operator

function Base .:*(z::Dual{T}, w::Dual{T}) where {T<:Real}

Dual{T}(z.val * w.val , z.val * w.eps + z.eps * w.val)

end

# Overload the ‘sin ‘ function

Base.sin(z::Dual{T}) where T<:Real = Dual{T}(sin(z.val), cos(z.eps))

Then, one can easily perform calculations of a function and its derivative. For example,

take d1 = 1.0 + ε and d2 = 2.0 + 0ε. Then, if we evaluate d1 ∗ d2, we find:

julia > d1 = Dual{Float64 }(1.0, 1.0)

julia > d2 = Dual{Float64 }(2.0, 0.0)

julia > d1 * d2

Dual{Float64 }(2.0, 2.0)

where the second component of the dual number is: ∂
∂x(xy) = y = 2. Another example

would be to take the sine of a dual number:

julia > sin(d1)

Dual{Float64 }( 0.8415 , 0.5403)
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which we notice has sin(1) in the first component and cos(0) in the second component.

Once basic operations like the above have been defined, one can then chain together very

complicated functions and easily obtain their derivatives. Additionally, we can easily take

second derivatives as well by nesting the dual numbers. If we define a cos overload, we can

then take the second derivative of the sine function:

Base.cos(z::Dual{T}) where {T<:Real}

= Dual{T}(cos(z.val),-sin(z.eps))

julia > d3 = Dual{Dual{Float64 }}( Dual{Float64 }(1., 0.),

Dual{Float64 }(0., 1.))

julia > sin(d3)

Dual{Dual{Float64 }}( Dual{Float64 }( 0.8415 , 1.0),

Dual{Float64 }(1.0, -0.8415))

Here, the second component of the first dual is d/dx sin(x) = cos(1), the first component

of the second dual is the same and the second component of the second dual is the second

derivative of sin at x = 1.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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