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1 Introduction

The authors of the recent paper [1] have conjectured that four particle scattering amplitudes

in ‘consistent’ classical theories can grow no faster that s2, as s is taken to infinity, at fixed t

(s and t are Mandlestam variables). They then went on to use this ‘Classical Regge Growth’

(CRG) conjecture to classify consistent classical1 four graviton S-matrices. In particular

they demonstrated that the classical Einstein S-matrix in D ≤ 6 spacetime dimensions

admits no polynomial deformations2 consistent with the CRG conjecture. Making some

additional assumptions, they also argued that additions to the Einstein S-matrix with a

finite number of additional poles3 also always violates the CRG scaling bound in D ≤ 6.

These results imply that, at least when D ≤ 6, the Einstein S-matrix is the unique classical

four graviton S-matrix with a finite number of poles.

We emphasize that this important sounding conclusion has so far only been established

assuming both the validity of the CRG conjecture as well as an additional assumption. In

this paper we will present no additional evidence either in favor of or against the CRG

conjecture. We will however prove the validity of the additional assumption (see below)

that went into demonstrating that all finite pole exchange contributions to four particle

gravitational scattering (other than the graviton pole in Einstein gravity) lead to S-matrices

that grow faster than s2 at fixed t.

We now describe the assumption that was made in [1] which we rigorously establish

in this paper. In [1] the Regge growth of the pole exchange contribution of P to the four

graviton S-matrix was analyzed assuming that every kinematically allowed three particle

graviton-graviton-P S-matrix is generated by an interaction of the form∫ √
−g (RRS) (1.1)

(the extremely schematic notation used in (1.1) allows for a finite number of derivatives

acting on the two Riemann tensors and on S, the field associated with the particle P ).

Note in particular that scattering amplitudes generated by this class of interactions are

automatically of fourth or higher order in derivatives.

While it is clear that Lagrangians of the form (1.1) generate graviton-graviton-P S-

matrices, it is less clear that all such S-matrices are generated by Lagrangians of the

schematic form (1.1). For example Lagrangians of the schematic form∫ √
−g (RS) , 4 (1.2)

also contain cubic couplings of the form hhP . The reader might wonder whether this simple

observation is, in itself, already sufficient to falsify the assumption described above. This

is not the case. In addition to the hhP coupling described above, the Lagrangian (1.2)

1A classical S-matrix is one whose only non analyticities are simple poles corresponding to the exchange

of a physical particle.
2I.e. a deformation generated by a local addition to Einstein’s action.
3Corresponding to the exchange of a finite number of particles.
4Once again R is a schematic for the Riemann tensor and h is a schematic for the metric fluctuation.
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typically also generates a coupling of the form hP . Such a coupling results in an off

diagonal term in h and P propagators. When this happens it follows that the field h is a

linear combination of the true graviton and (some derivatives on) the field associated with

the particle P . In order to compute the true graviton-graviton-P coupling one must first

perform a field redefinition to the fields h′ and P ′ that diagonalize the quadratic part of

the action, and then compute the coefficient of h′h′P ′. It is at least possible — and on

physical grounds it seems plausible — that this new coupling always vanishes.5

Considerations of the sort outlined in the previous paragraph motivated the authors

of [1] to assume that all graviton-graviton-P three particle scattering amplitudes are gen-

erated by Lagrangians of the form (1.1). While plausible, these considerations do not seem

completely infallible.6 In this note we provide a clear and rigorous proof that the final

conclusion of these considerations is nevertheless true. All graviton-graviton-P 3 point

scattering amplitudes are indeed generated by Lagrangians of the form (1.1), at least when

the particle P is massive. We establish this fact in the most direct manner possible. We

simply construct all kinematically allowed 3 particle graviton-graviton-P S-matrices in

every dimension and verify by inspection that these S-matrices are indeed generated by

actions of the form (1.1).

The program of enumeration of all possible graviton graviton P three particle

S-matrices is not difficult to carry through explicitly because it is an effectively finite

problem. For any three particles P1, P2, P3 it is well known that the vector space of

kinematically allowed 3 particle S-matrices is finite dimensional. In the special case of

graviton-graviton-P scattering, it also turns out (see below) that the dimensionality of

this space does not grow as a function of the complexity of the Lorentz representation of

the particle P or of the spacetime dimension in which we work, but is, instead, bounded

to be less than or equal to eight. For this reason it is not too difficult to enumerate all

possible couplings for particles P transforming in any given representation of the massive

little group SO(D − 1).

Now the set of all possible representations of SO(D−1) is not finite; representations of

this form are specified by bD−12 c, integers or half integers which we take to be the highest

5The argument is the following. If we can perform the required field redefinition not just linearly but

also at the non-linear order, then the Lagrangian in the new variables must presumably now have no

couplings of the form (1.2) (because there should be no quadratic cross terms in the Lagrangian involving

the new graviton).
6For example, similar considerations would lead one to conjecture that all deformations of the Einstein

graviton-graviton-graviton 3 particle S-matrix are generated by Lagrangians of the form∫ √
−g (RRR) (1.3)

(the analogue of (1.1)). This result is famously untrue; in 5 and higher dimensions the Gauss Bonnet term

— which takes the schematic form ∫ √
−g (RR) (1.4)

(the analogue of (1.2)) also generates a new 3 graviton scattering amplitude. This action, which is quadratic

in Riemann curvatures turns out not to modify the graviton propagator owing to a well known but remark-

able algebraic fact; for the particular case of the Gauss-Bonnet action the term in (1.4) that is quadratic

in h is a total derivative and so does not modify the graviton propagator.

– 2 –
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weights (h1, h2, . . . hbD−1
2
c) under rotations in orthogonal two planes (see appendix A for

notation and more details). It might thus seem that the task of scanning through all

possible representations of SO(D − 1) is an onerous one, especially at large values of D.

This is not the case for a simple reason. While the set of all possible representations of

SO(D−1) is indeed quite large, only a small subset of these representations can consistently

scatter of two gravitons (see the end of subsection 4.1 for a listing). In particular this

subset stabilizes for D ≥ 8 (it does not further increase as D is increased above 8) and

is manageable enough to allow us to systematically and explicitly construct all non-zero

graviton-graviton-P scattering in a case by case manner.

Though we are primarily interested in graviton-graviton-P couplings, through this

paper we also explicitly construct all photon-photon-P couplings, partly as a warm up to

the problem of principal interest, and partly in the hope that the photon S-matrices that

we construct will also turn out to find their own applications (perhaps unrelated to the

CRG conjecture) in future work.

The method we use in our enumeration is explained in detail in section 2 below. We

first explain how the number of distinct photon-photon-P and graviton-graviton-P three

particle S-matrices can be counted using simple group theory considerations. We perform

this counting using a method that is essentially identical to the procedure described in [2]

for the counting of CFT correlators involving two stress tensor or two conserved currents in

d = D − 1. This counting problem is purely kinematical and makes no assumptions about

the nature of the Lagrangian that generates the corresponding S-matrix. We then proceed

to implement this counting procedure in every dimension. Once we know how many photon-

photon-P (or graviton-graviton-P ) 3 particle S-matrices there are for particles P transform-

ing in any given representation of the massive little group SO(D − 1), we then proceed by

trial and error to simply construct the same number of distinct interaction Lagrangians of

the form (1.1) (in the case of gravitons) or a similar form with curvatures R replaced by

field strengths F (in the case of photons). The key point is that in every example we are

always able to saturate this counting. Restated, there are always as many independent La-

grangians of the form (1.1) (or its photon analogue) as the number of graviton-graviton-P

couplings (or photon-photon-P couplings) enumerated through group theoretical means.

In order to be sure that the Lagrangians we have computed are all actually independent,

we have explicitly computed the S-matrices generated by each of these Lagrangians (see

appendix C and D) and verified their linear independence. As a further check of the

completeness of our results, in some cases we have also algebraically (with no reference to

a Lagrangian) constructed the most general Bose symmetric, Lorentz invariant and gauge

invariant function of scattering data, and so have independently constructed the linear

vector space of allowed 3 particle S-matrices. In each case for which we have performed

this construction we have compared the resultant vector space of S-matrices with the space

obtained from the Lagrangians described above (the ones we constructed by trial and error

to match the counting). In each case we find perfect agreement.

The set of Lagrangians that generate all 3 particle S-matrices stabilizes for D ≥ 8; our

final results for the corresponding Lagrangians in these asymptotic dimensions are listed

– 3 –
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in tables 1 (in the case of photons) and 6 (in the case of gravitons). The results for each

D ≤ 8 are also presented in the text and tables of subsections 3.2, 3.3, 3.4, 3.5 and 3.6 in

the case of photons, and in subsections 4.1, 4.2, 4.3 4.4, 4.5 for gravitons.

To the best of our knowledge the systematic enumeration of all photon-photon-P and

graviton-graviton-P three point functions (and corresponding Lagrangians) — for all pos-

sible particles P and every dimension D — has never before appeared in the literature.

However special cases of this enumeration have appeared in previous work. In particular the

complete enumeration of these three particle scattering amplitudes is particularly simple in

four dimensions for two separate reasons. First, the irreducible representations of the four

dimensional massive little group SO(3) are particularly simple (the representations that

can couple to two photons or two gravitons are all completely symmetric traceless tensors,

labelled by a single integer l). Second four dimensions is particularly well suited to the

spinor helicity formalism. Using both these advantages, the authors of [3] have provided

a very simple and completely general enumeration of all possible photon-photon-P and

graviton-graviton-P amplitude in four dimensions in the language of the spinor helicity

formalism. The paper [4] also studies photon-photon-P and graviton-graviton-P scatter-

ing in four dimensions, and generalizes this study to 5 dimensions for the special case that

P is a massless symmetric tensor. The spinor helicity approach has also been used to

study photon-photon-P and graviton-graviton-P amplitudes in the special case that P is a

symmetric tensor [5]. Though we have not carried out a completely systematic translation

of the results of these earlier studies to the notation employed in this paper, as far as we

can tell our general results agree with all earlier reported special cases that we are aware

of atleast from the viewpoint of counting.7

The explicit construction of all graviton-graviton-(or photon-photon-) P three point S

matrices in D dimensions is very closely tied to the construction of all Tµν Tµν (or JµJµ)

‘corresponding operator’ CFT three point functions in d = D−1 dimensions. This problem

has been studied by several authors. In particular, the number of coefficients in the three

point functions of two conserved symmetric currents of any rank with one non conserved

tensor (again of any rank) in d = 3 was enumerated in [6]. In the special case that the con-

served currents are of spin one and two, we have checked that the number of undetermined

coefficients in the CFT ennumeration match with the number of undetermined coefficients

listed in this paper for the scattering of two photons / two gravitons against a general

massive particle in D = 4, as expected from the AdS/CFT correspondence. The special

case of parity even couplings in which the ‘corresponding operator’ lies in the completely

symmetric tensor representation was studied for d ≥ 4 in [7]. The counting of three particle

S-matrix structures presented in this paper agrees with the counting of the corresponding

three point functions presented in table 1 of [7]. While the three point functions of more

general representations of SO(d) have been studied in [2, 8] (see also [9–12]), we have not

been able to locate a detailed CFT listing of the space of allowed three point functions

of two stress tensors (or two conserved currents) and an operator transforming in general

7As we mention in the next paragraph, comparison with CFT correlators gives us an independent check

of our results for the special case D = 4.
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representations of SO(d). It would be useful to perform such a study (if it indeed has

not already been done) and to establish the detailed map — induced by the AdS/CFT

correspondence — from the S-matrix structures constructed in this paper to three point

function CFT correlators.8

To end this introduction we note that three particle S-matrices play roughly the same

role for the Lorentz group that Clebsh-Gordon coefficients play in compact groups. In

this paper we have provided a detailed and completely explicit listing of this elemen-

tary group theoretic data for the special case of graviton-graviton-P and photon-photon-P

scattering. Specifically we have listed all kinematically allowed graviton-graviton-P (and

photon-photon-P ) S-matrices. The single application we have made of this detailed listing

so far — namely the tightening of the arguments of [1] — utilizes only a gross structural

feature of our results. We hope that future investigations into diverse aspects of gravita-

tional scattering will find several additional uses for the three point scattering amplitudes

listed in this paper.

2 Counting 3 point structures

2.1 Labelling massive particles

Consider the three point scattering of two photons — or two gravitons — with a mas-

sive particle P in D spacetime dimensions. The particle P transforms in an irreducible

non-spinorial9 representation of the massive little group SO(D − 1). As mentioned in the

introduction (and explained in more detail in appendix A), in this paper we label repre-

sentations of SO(2m) or SO(2m + 1) by their highest weights under rotations in the m

orthogonal two planes, h1, h2 · · ·hm. For the non spinorial representations of interest to

this paper, hi are positive integers for i < m. hm is also a positive integer for the case

SO(2m+1), but can be either a positive or negative integer for the case SO(2m). We work

with the convention

h1 ≥ h2 ≥ · · · ≥ |hm|,

and denote a representation labelled by these highest weights by (h1, h2 · · ·hm).

We will sometimes find it convenient to associate Young Tableaux with non spinorial

representations of SO(2m + 1) and SO(2m). We use the symbol Y(r1,r2···rm) to denote a

Young Tableaux with ri boxes in the ith row; note, of course, that all ri are positive.

In the case of SO(2m + 1) we associate the Young Tableaux Y(r1,r2···rm) with the rep-

resentation (r1, r2, · · · rm); in this case the map between irreducible representations and

Young Tableaux is one to one. In the case of SO(2m) we associate the Young Tableaux

Y(r1,r2···rm) with the direct sum of the representations (r1, r2 · · · rm) and (r1, r2 · · · − rm)

when rm > 0, but with the single representation (r1, r2 · · · 0) when rm = 0. In other words

Young Tableaux with less than m rows are associated with a unique SO(2m) irreducible

8As we have mentioned above, the counting of the number of distinct S-matrix structures presented in

this paper is identical to the counting of corresponding CFT correlators described in [2], so the number of

independent structures on the two sides is guaranteed to match.
9The three point coupling between two vectors or two tensors and an spinorial representation always

vanishes.
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representation, while Young Tableaux with m rows are associated with the direct sum of

a pair of SO(2m) irreducible representations.

Consider any particular Young Tableaux with a total of r boxes (i.e. r1+r2+. . . rm = r).

A set of spacetime fields that transform in the associated representations of SO(D − 1)

may be constructed as follows. We first consider the set of all traceless r index tensors

of SO(D − 1). In general, this set of tensors transforms in a sum over several irreducible

representations of SO(D − 1). It is, however, possible to project onto a subspace of the

full space of r index traceless symmetric tensors chosen so that this subspace transforms

in the irreducible representation(s) associated with the given Young Tableaux. The choice

of this subspace is not, in general, unique. In group theoretic terms the irreducible rep-

resentation(s) associated with the Young Tableaux in question generally occur in the de-

composition of traceless symmetric tensors with nontrivial multiplicity.10 When needed,

in this paper we work with a particular choice obtained as follows. We write down the

tableaux Y and fill in each of its boxes with distinct integers ranging from 1 to r. There

are r! distinct ways of assigning the integers to boxes; we simply pick any one. Any par-

ticular assignment of integers defines a projector according to the following rules. Let Π1

denote the operation of completely symmetrizing all entries in every particular row of a

Young Tableaux (without any associated normalization). Let Π2 denote the operation of

completely anti symmetrizing all indices in each column of a Tableaux, again without any

associated normalization. Let h denote the product of hooks associated with the Young

Tableaux. Then the projector P, defined by

P =
Π2Π1

h
, (2.1)

when acting on the space of traceless rank r tensors- is a projector onto a collection of

tensors that transforms in the representation of SO(D − 1) associated with the Young

Tableaux Y [13–15].11 The subspace of tensors projected onto by P transform in the

representation(s) associated with the Young Tableaux Y (see appendix B for an intuitive

explanation of this fact.). Similar projectors have been used to impose the symmetry of

the Young’s diagram on a tensor in CFT via “Young symmetrizers” in [8] following [16]

(see section 2.3 of [8] for more details).

10It is easy to make this statement quantitative in the case of the group SU(m). When we decompose

the rth tensor product of m dimensional defining representations of the group SU(m) — i.e r index tensors

of SU(m) — into irreducible representations of the group, we find that the set of distinct representa-

tion associated with a Tableaux Y transform in the irreducible representation of Sr labelled by the same

Tableaux Y .
11A second natural choice — one that we will not make in this paper — would be to associate a particular

filling in of a Young Tableaux with the projector

P ′ =
Π1Π2

h
. (2.2)

While P and P ′ are not the same, it can be shown that the set of tensors projected onto by P corresponding

to all possible fillings of a Tableaux coincides with the set of tensors projected onto by P ′ corresponding

to all possible choices of filling of the tableaux. P and P ′ respectively project onto the tensors denoted by

TYT′ and TYT in [8].
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Different choices of filling the tableaux Y lead to different projectors P. Every choice

leads to a collection of tensors that transform in the same representation of SO(D − 1).

As all results we present below care only about this final representation content, they are

insensitive to the precise choice we make.

2.2 The scattering plane and physical polarizations

Consider the scattering of two massless particles — either photons or gravitons — of

momentum k1 and k2 with a single massive particle of momentum k3 with

k1 + k2 + k3 = 0.

Lorentzian RD can be viewed as a D dimensional vector space. The three scattering

momenta define a timelike two dimensional subspace of Lorentzian RD. This subspace is

spanned, for instance, by the two vectors k1 and k2. We refer to this two dimensional space

as the ‘scattering plane’.

2.2.1 Polarizations of the massless particles

It is standard, and convenient, to label the polarizations of any given photon or graviton

by a polarization vector ε (in the case of gravitons the polarization vector is null; see e.g.

subsubsection 2.1.3 of [1] for details). Let the polarization vector associated with the two

photons (or gravitons) be denoted by ε1 and ε2 respectively. It follows from the Lorentz

gauge condition (which we adopt in this paper in order to maintain manifest Lorentz

invariance) that

ki.εi = 0 (i = 1 · · · 2).12 (2.3)

As in subsubsection 2.1.3 of [1] we find it convenient to decompose εi into its components

orthogonal to the scattering plane and its components in the scattering plane

εi = ε⊥i + ε
‖
i . (2.4)

By definition ε
‖
i is the part of the polarization vector that lies in the scattering two plane.

It follows that ε
‖
i = aik1 + bik2. The condition (2.3) (and the fact that k1.k2 is generically

non-zero while k21 = k22 = 0) then implies that

ε
‖
i ∝ ki. (2.5)

In other words ε
‖
i , the ‘in plane’ part of the polarization vector εi, is necessarily pure

gauge, and can be set to zero by a gauge transformation. It follows that for the purpose

of enumerating gauge invariant amplitudes, the photon (or graviton) polarization vectors

can be taken to lie entirely orthogonal to the scattering plane, i.e.

εi = ε⊥i , k1.ε
⊥
i = k2.ε

⊥
i = 0. (2.6)

12Actually, the equation (2.3) also holds for the massive particle, i = 3.
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2.2.2 States of the massive particle from D dimensional fields

In this paper we will construct the scattering amplitudes of particles P that transform in

SO(D−1) irreducible representations(s) corresponding to any given Young Tableaux. The

scattering states of such particles are easily represented as the solutions to the linearized

equations of motion of a (Lorentzian) D dimensional spacetime field as follows.

Consider any Young Tableaux — like the one associated with the particle P — that is

linked to SO(D− 1) irreducible representation(s). Such a Young Tableaux — now thought

of as a Tableaux associated with SO(D) — can also be associated with a tensor field of

SO(D),13 We impose two equations of motion on this tensor field. First, the mass shell

condition k23 = −m2. Second, the condition that the contraction of k3 with each of the

tensorial indices vanishes.

The space of solutions to the equations of motion of this D dimensional tensor field

at any given value of k3 is then given by the space of SO(D) tensors associated with Y

subject to the condition that all indices of these tensors are orthogonal to k3. A mo-

ment’s reflection will convince the reader that this space of solutions transforms under the

SO(D − 1) ⊂ SO(D) that acts trivially on k3 (i.e leaves it invariant). Under this SO(D−1),

moreover, the space of solutions transforms in the representation associated with the Young

Tableaux Y as we wanted.

2.3 Counting three point structures

In the previous subsection we have explained that the polarization tensors of photons (and

gravitons) are effectively orthogonal to the scattering two plane and so each transform in a

vector (traceless symmetric two tensor) of the SO(D−2) that keeps the scattering two plane

fixed. The polarizations of the massive particle P , on the other hand, transform in a single

representation of the SO(D−1) orthogonal to k1+k2, and so transform in the sum of a given

collection of irreducible representations of SO(D− 2) (the precise list of representations is

given by the branching rules of appendix A). The most general kinematically allowed two

photon (or two graviton) and one P three point scattering amplitude is simply the most

general Bose symmetric SO(D − 2) singlet that can be formed from the product of two

SO(D−2) vectors (or two SO(D−2) symmetric tensors) and the SO(D−2) representations

obtained from the particle P . This is

In the rest of this section, we will count the number of such invariants for every choice

of the Young Tableaux Y associated with P . Schematically one writes:

3 Photons

Each photon polarization is a vector of SO(D − 2). The symmetric product (denoted by

S2) of two vectors transforms in the sum of a scalar and a traceless symmetric tensor. On

the other hand, the antisymmetric product (denoted by Λ2) of two vectors transforms in

13In the case when D is even, a generic Young Tableaux associated with SO(D) has D/2 rows. A Tableaux

associated with SO(D − 1) representations has D/2 − 1 rows, and so are a subset of all possible SO(D)

Tableaux. In the case when D is odd, on the other hand, the two sets of tableaux simply coincide. The

considerations of this subsection apply equally well to both cases.
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the antisymmetric two tensor representation.14 Schematically one writes:

S2
(
⊗

)
= ⊕ • , (3.1)

Λ2
(
⊗

)
= . (3.2)

The particle P transforms in one (or two) particular representation(s) of SO(D−1). It

is useful to decompose these representation(s) of SO(D−1) into the irreducible representa-

tions of the SO(D − 2) that leaves the scattering two plane invariant. This decomposition

is given by the SO(D−1)→ SO(D−2) branching rules reviewed in appendix A. SO(D−1)

tensors are decomposed into SO(D − 2) by either contracting every index with k1 − k2,15

or projecting each index orthogonal to k1 − k2 (or performing more complicated opera-

tions involving ε (where ε is the SO(D) Levi-Civita tensor) tensors and possibly factors of

k1− k2, see below for details). It is very important to keep in mind that k1− k2 picks up a

minus sign under the interchange 1↔ 2. The SO(D−2) representations that appear in the

branching rules of appendix A are of two sorts; those constructed only out of even powers

of k1− k2 (such representations are invariant under the interchange of the indices 1 and 2)

and those that are constructed out of a sum of terms, each of which is proportional to an

odd power of k1 − k2 (such representations pick up a minus sign under this interchange).

We will call the first set of representations the ‘even’ descendents of Y , and the second sort

of representations the ‘odd’ descendents of Y .

It follows from the discussion of this subsection (and (3.1), (3.2) in particular) that the

number of independent photon-photon-P three point structures is the sum of the number

of even scalar descendents of P , plus the number of even symmetric traceless two tensor

descendents of P , plus the number of odd antisymmetric two tensor descendents of P .

Using the branching rules of appendix A, it is now a simple matter to enumerate the

number of independent photon-photon-P structures for every choice of the tableaux Y in

which P transforms. To start with, it follows immediately from the rules of appendix A

that there are no three point structures if P transforms in a Tableaux with 4 or more

rows, or if the number of boxes in the second plus third row exceed 2.16 The most general

representations that can couple with two photons have either

• One box in the third row, one box in the second row, and one or more boxes in the

first row (see row 6 of table 1). They are denoted by Y(r,1,1).
17

14This antisymmetric tensor vanishes when D = 3, is equivalent to a parity odd scalar when D = 4 and

is equivalent to a parity odd vector when D = 5. When D = 6 the antisymmetric tensor is a sum of two

irreducible representations — self-dual and anti-self-dual. For D > 6 the antisymmetric tensor transforms

in the single (1, 1, 0 · · · 0) representation.
15The fact that every tensorial index is orthogonal to k1 + k2 ensures that k1 − k2 is the only vector

available for branching purposes.
16Intuitively this can be understood as follows. For two photons coupling to a mixed representation, we

can form Lorentz invariants by contracting the polarizations of the mixed tensor with either one ε1, one ε2
or k1 − k2. As we have only three independent vectors with which the SO(D − 1) tensor Y can be dotted,

it follows that no nonzero Lorentz scalar can be formed out of a representation with any columns of length

4 or greater.
17We define the symbol Y(a,b,c,d,··· ) to denote an Young Tableaux, which has a boxes in the first row, b

boxes in the second row, c boxes in the third row, d boxes in the fourth row and so on.
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• No boxes in the third row, either two (see row 5 of table 1), one (see row 3, row 4

of table 1) or zero boxes (see row 1, row 2 of table 1) in the second row and corre-

spondingly two or more, one or more and zero or more boxes in the first row. They

are denoted by Y(r+2,2,0), Y(r+1,1,0) and Y(r,0,0) respectively.

The final result for the number of three point structures depends on the dimension in

which we work. The dependence on dimension has its roots in the fact that a legal Young

Tableaux of SO(2N + 1) or SO(2N) cannot have more than N rows (and also the fact that

SO(2N) Tableaux with N rows are special). Since we are only interested in tableaux of

SO(D−1) with a most 3 rows, the bounds on Young Tableaux (and the speciality of SO(2N)

Tableaux with N rows) are unimportant when D ≥ 8. As a consequence, we first study

the counting problem for D ≥ 8 and then individually consider every dimension < 8.18

3.1 D ≥ 8

Let us first consider particles P that transform under SO(D − 1) in the representation

labelled by a completely symmetric Young Tableaux, Y(r,0,0) (l.h.s. of row 1, row 2 of

table 1). For every even r ≥ 0, there exists one photon-photon-P structure corresponding

to the fusion of the two photons into an SO(D − 2) scalar — this structure is obtained

by contraction of all the indices of the traceless symmetric tensor with factors of k1 − k2.
This contraction structure is schematically depicted in the Young Tableaux on the l.h.s.

of row 1 (recall that yellow shading denotes contraction with k2 − k1 in figure 1). The 3

particle Lagrangian that generates this 3 point function is displayed in the right column of

row 1 of table 1.

When r is even and r ≥ 2, there exists a second structure corresponding to the fusion

of the two photons into the traceless symmetric tensor representation of SO(D − 2). This

structure involves the contraction of r − 2 indices of the traceless symmetric tensor with

k1 − k2. The corresponding Lagrangian structure is given in r.h.s. of row 2 of table 1.

In summary, when P ∈ Y(r,0,0), there are no photon-photon-P structures when r is

odd19 one structure when r = 0 and 2 such structures when r is even and r ≥ 2.

Now consider particles P that transform under SO(D− 1) in Y(r+1,1,0) (l.h.s. of row 3,

row 4 of table 1). Contracting away r boxes in the first row (see row 3 of table 1) yields

the antisymmetric tensor representation listed in r.h.s. of (3.2); this contraction structure

results in a Bose symmetric three point function only when r is odd. The corresponding

Lagrangian is listed in the right most column of row 3 of table 1. Contracting r − 1 boxes

in the first row and the single box in the second row (row 4 of table 1) yields the symmetric

two tensor representation that appears on the r.h.s. of (3.1). This contraction structure

18The fact that the counting problem is different for D ≤ 7 and for D ≥ 8 may be understood more

physically as follows. A photon-photon-P scattering process has up to 7 independent vectors. These are the

two polarizations of the two photons, up to 3 independent polarizations needed to characterize the state of

the particle P (we need up to three independent polarizations because the Young Tableaux for P has upto

3 rows) and the two scattering momenta. It follows immediately that no scattering structure can involve

an ε tensor in D ≥ 8; however scattering structures proportional to ε do in general exist in D ≤ 7.
19The structures one can write down in this case are antisymmetric rather than symmetric under 1 ↔ 2.
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results in a Bose symmetric three point structure only when r is even. The Lagrangian that

gives rise to this S-matrix structure is listed in the rightmost column of row 4 of table 120

Next consider the case of a Tableaux Y(r+2,2,0). Contracting both boxes in the second

row and r boxes in the first row (see l.h.s. of row 5 of table 1) produces the traceless

symmetric two tensor representation (that appears in the r.h.s. of (3.1)); this manoeuvre

yields a single 3 point structure when r is even and no such structures when r is odd.

The explicit Lagrangian is listed in row 5 of table 1.21 There are no other three particle

S-matrices in this case.

Finally consider a Tableaux Y(r,1,1). Contracting the box in the third row and r − 1

boxes in the first row (see l.h.s. of row 6 of table 1) yields the antisymmetric two tensor

representation (that appears in the r.h.s. of (3.2)). Keeping track of Bose statistics, we

find a single 3 point structure when r is odd, and but no such structures when r is even.

Explicitly, the Lagrangian is given by r.h.s. of row 6 of table 1. There are no other three

particle S-matrices in this case.

The explicit scattering amplitudes generated by each of the Lagrangian structures

listed in the last column of table 1 are explicitly presented in appendix C.

3.2 D = 7

In this case D − 1 = 6. The only difference between D = 7 and D ≥ 8 (see the previous

subsection) comes from the fact that an SO(6) Young Tableaux Y(r1,r2,r3) with r3 > 0

corresponds to two irreducible representations of SO(6).22 As explained above, the highest

weights of the two representations are (r1, r2, r3) and (r1, r2,−r3) respectively.

Now consider the scattering of two photons with the particle P where P transforms in

the tableaux Y(r1,r2,r3). If r3 = 0 then the D ≥ 8 discussion of the previous subsection car-

ries over unchanged. The photon-photon-P three point functions are once again generated

by row 1 to row 5 of table 1).

It only remains to study the case r2 = r3 = 1, r1 = r ≥ 1. In this case the tableaux

Y(r,1,1) corresponds to a sum of two irreducible representations of SO(6). We can project

onto these two representations in turn by demanding that the indices in the first row of

the tableaux are self or anti-self dual, i.e. obey the equation

εα1α2α3α4α5α6S[α4α5α6]β2···βr = ±iS[α1α2α3]β2···βr (3.3)

(α1 to α3 are the indices in the first column of the tableaux, while βm is single index

corresponding to the mth column of the tableaux). For either choice of sign in (3.3),

the rules listed in appendix A once again tell us that we have a single photon-photon-

P coupling when r is odd and no such coupling when r is even, corresponding to the

20Note that the rules of appendix A tell us that we are not allowed to contract away all boxes in order to

produce the singlet. Intuitively this is because two indices in the same column are mutually antisymmetrized,

and so cannot be contracted with the same vector.
21In this case the rules of appendix A inform us that there is no legal way to obtain the two index

antisymmetric or the scalar representation. Again the intuitive reason is that we are not allowed to contract

two indices corresponding to the same column of the Young Tableaux.
22Rather than one irreducible representation of SO(D − 1) as would have been the case for D ≥ 8.
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Scattering

Amplitude
Young Tableaux Lagrangian Structure

1 µ1 · · · µr ∇µ1 · · · ∇µrFµνFµνSµ1···µr
r is even & r ≥ 0

2 µ1 µ2 µ3 · · · µr ∇µ3 · · · ∇µrFαµ1Fαµ2Sµ1µ2µ3···µr
r is even & r ≥ 2

3 α µ1 µ2 · · · µr
β

∇µ2 · · · ∇µr∇µ1FαγFβγS[αβ]µ1µ2···µr
r is odd & r ≥ 1

4 α µ1 µ2 µ3 · · · µr
β

∇µ3 · · · ∇µr∇µ2∇βFαγFµ1γS[αβ]µ1µ2µ3···µr
r is even & r ≥ 2

5 α γ µ1 · · · µr
β δ

∇µ1 · · · ∇µrFαβFγδS[αβ][γδ]µ1···µr
r is even & r ≥ 0

6 µ1 µ2 · · · µr
α

β

∇µ2 · · · ∇µr∇βFµ1δFαδS[µ1αβ]µ2···µr
r is odd & r ≥ 1

Table 1. Photons, D ≥ 8. The yellow shaded part of the Young’s Tableaux denotes contraction of

the SO(D − 1) tensor with k1 − k2. The Tableaux obtained after omitting all shaded boxes gives

the SO(D − 2) representation in which the fusion with photons (in later tables gravitons) occurs.

This convention is used in all the tables presented in this paper.

contraction structure depicted in row 6 of table 1. The Lagrangians that describe the

scattering of both the ‘self dual’ and the ‘anti-self dual’ particles (the two signs in (3.3))

both take the form listed in the third column of row 6 of table 1. In the two cases above,

however, the field S that participates in this coupling is constrained to obey the additional

condition
∂α4

m
εα1α2α3α4α5α6α7S[α5α6α7]β1···βr−1

= ±S[α1α2α3]β1···βr−1
(3.4)

((3.4) is simply the spacetime equation that reduces to (3.3)) in the particle’s rest frame).

From the Lagrangian point of view, the coupling between particles in the Y(r,1,1) and

two photons can be understood from an alternate point of view. We could choose to work

with a spacetime field S[α5α6α7]β1···βr−1
that is not further constrained by either of the

conditions (3.4). The quantization of the field S then produces both the self dual and the

anti-self dual particle. The most general coupling of S to two photons is given by23

A
(
∇µ2 · · · ∇µr∇βFµ1δFαδS[µ1αβ]µ2···µr

)
+B

(
∇µ2 · · · ∇µr∇βFµ1δFαδ

(
εζµ1αβθ1θ2θ3

∂ζ
m
S[θ1θ2θ3]µ2···µr

))
.

(3.5)

23The first term in (3.5) is simply the Lagrangian listed in row 6 of table 1. The second term in (3.5) is

the same Lagrangian with the replacement

S[α1α2α3]β1···βr−1
→ ∂α4

m
εα1α2α3α4α5α6α7S[α5α6α7]β1···βr−1

:

compare with (3.4).
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In the Lagrangian (3.5) the coupling of the two photons to the self and anti-self dual

particles, respectively are proportional to A + B and A − B. Setting A = ±B we recover

the coupling of the two photons to just the self dual or just the anti-self dual particle

respectively.

3.3 D = 6

In this case, the massive particle transforms in a representation of SO(5). There are two

differences between this case and the D ≥ 8 case. The first difference is simply that

Tableaux of SO(5) never have more than two rows, so there is no analogue of the three

point function depicted in row 6 of table 1. The second difference arises from the fact that

D − 2 = 4, and SO(4) Young Tableaux of the form Y(r1,r2) with r2 > 0 correspond to the

sum of two — rather than a single — irreducible representations of SO(4). It follows that

the tableaux depicted on the r.h.s. of (3.2) denotes two irreps. of SO(4); these are self-dual

and anti self-dual antisymmetric two tensor of SO(4), i.e. the representations with highest

weights (1, 1) and (1,−1) respectively.24

Similar remarks hold for the branching rules from SO(5) to SO(4). SO(4) represen-

tations with |r2| 6= 0 appear on the r.h.s. of the branching rules in pairs; every time the

representation (r1, r2) appears, the representation (r1,−r2) also appears. In other words

the r.h.s. of the SO(5) branching rules produce SO(4) representations that always group

together into tableaux of the form Y(r1,r2).

When P transforms in a Tableaux Y(r,0) or Y(r+2,2) — recall all Tableaux now have at

most two rows — the D ≥ 8 analysis carries through unchanged. The coupling of P to two

photons and corresponding Lagrangian structures continue to be listed in row 1, row 2 and

row 5 of table 1. When P transforms in the representation labelled by the Young Tableaux

Y(r+1,1), the three point coupling depicted in row 4 of table 1 also continues to work as for

D ≥ 8. However, the coupling in row 3 of table 1 splits up into two independent couplings,

respectively corresponding to (linear combinations of) fusion of the anti-self-dual and the

self dual parts of (3.2) respectively. One of these two couplings is simply the one denoted

in row 3 of table 1. The second coupling uses the SO(4) ε tensor. Recall, however, that

the covariant version of this structure is proportional to

ka1k
b
2εabµ1µ2µ3µ4 (3.8)

and so is odd under the interchange of k1 and k2. It follows that the second coupling

exists only when r is even (as opposed to the case recorded in row 3 of table 1 which exists

only when r is odd). The new contraction and Lagrangian structures for this parity odd

coupling are presented in row 1 of table 2.

All other couplings — and corresponding Lagrangians — are identical to those in

subsection 3.1.
24In equations

Λ2(1, 0) = (1, 1)⊕ (1,−1). (3.6)

The symmetric decomposition of the two photons, (3.2) continues to work as in higher dimensions. In

equations

S2(1, 0) = (2, 0)⊕ (0, 0). (3.7)
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Scattering

Amplitude
Young Tableaux Lagrangian Structure

1 ∗ e µ1 . . . µr

f

εabcdef∇µ1 · · · ∇µrFabFcdS[ef ]µ1···µr
r is even & r ≥ 0

Table 2. Photons, D = 6, Recall that the Young Tableaux obtained after omitting the shaded

boxes denotes the SO(4) representation in which fusion with photons occurs. The representation in

this case is the antisymmetric two tensor. The∗ in the diagram indicates that this two tensor is

Hodge dualized before fusing with the photons — or equivalently that this two tensor is fused with

the hodge dual of the two photon representation that appears on the r.h.s. of (3.2). The symbol∗ has an analogous meaning every time it appears in any table in this paper referring to an even

spacetime dimension D. Note however that we assign the same symbol a slightly different meaning

in tables referring to odd values of D.

3.4 D = 5

In this case, the polarization vectors of the photons transform as vectors of SO(D − 2) =

SO(3). The symmetric product of two photons continues to be given by (3.1) (in the

particular case of SO(3) (3.1) is simply the assertion that the symmetric product of two

j = 1 representations is the sum of a j = 0 and j = 2). The antisymmetric product of

two photons also continues to be given by (3.2); in the case of SO(3), however, the two

box Tableaux on the r.h.s. of (3.2) can be dualized to a single box Tableaux, i.e. a j = 1

representation. We thus recover the familiar statement that the antisymmetric product of

two j = 1 SO(3) representations transforms in the j = 1.

The massive particle transforms in an irreducible representation of SO(D−1) = SO(4).

We will continue to label representations of SO(4) by the highest weights under the Cartans

corresponding to rotations in orthogonal two planes, (h1, h2). Note that SO(4) ∼ SU(2)×
SU(2), and so representations of SO(4) can also be labelled by (j1, j2), the two ‘j’ values

for the two SU(2) factors. The reader who wishes to translate between our labelling of

SO(4) irreps. and the SU(2) × SU(2) notation can do so using the following dictionary25

j1 =
h1 + h2

2
, j2 =

h1 − h2
2

. (3.9)

The SO(4) representations that can couple to two photons are those with (h1, h2) = (r, 0)

or (r+1,±1) or (r+2,±2). When r is even, the coupling of the first of these representations

to two photons is identical to the analogous coupling for D ≥ 8 — The Lagrangians for

even r continue to be given by r.h.s. of row 1 and row 2 of table 1. In this special dimension,

however, this particular representation has a nonzero coupling to two photons even when r

is odd. This parity odd coupling — listed in row 1 of table 3; results from a fusion channel

in which the photons couple antisymmetrically to SO(3) spin 1.

25Using the fact that SO(3) is simply the diagonal combination of the two SU(2) factors, it follows that

the branching rule in SU(2)× SU(2) language is simply

(j1, j2)→ |j1 − j2| ⊕ · · · ⊕ (j1 + j2).
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We now turn to the case in which P transforms in the (h1, h2) = (r+1, 1) and (r+1,−1)

representations. Before studying the couplings of these fields to two photons, it is useful to

first examine the free equations of motion of the field that create these particles. Let the

field in question be denoted by S[αβ]µ1µ2···µr . As usual S is assumed to have the symmetry

properties associated with the Young Tableaux in row 3 of table 1. As usual, S obeys the

5 dimensional spacetime equation of motion(
∇2 −m2

)
S[αβ]µ1µ2···µr = 0.

The quantization of a tensor field with these symmetry properties, and subject this equation

of motion, produces both the (r+1, 1) and the (r+1,−1) representations. In order, to focus

on just the (r+1, 1) representation (or just the (r+1,−1) representation) we would need to

impose an additional spacetime equation of motion on the field S[αβ]µ1µ2···µr that constrains

it to be completely self-dual or completely anti-self-dual. The self duality condition in the

little group SO(4) is

εijklS[kl]m1m2···mr = ±S[ij]m1m2···mr . (3.10)

The covariant 5 dimensional version of (3.10) is

iεαβθγδ
∂θ
m

(
S[γδ]µ1µ2···µr

)
= ±S[αβ]µ1µ2···µr . (3.11)

Note that in contrast with (3.4), (3.11) has a factor of i on the l.h.s. .26

It follows that (3.11) has no solutions if S is a real field. In other words it is impossible

to impose any equation on the real field S that restricts its particle content to just the

(r + 1, 1) excluding the (r + 1,−1) or vice versa. A real field S always contains both of

these representations together. For this reason the physically useful counting question is

the following: how many 3 point couplings are there between two photons and either a

(r + 1, 1) or a (r + 1,−1)?

At the level of counting, this question is easy to answer. It is useful to separately

consider the case r odd and r even. Let us first focus on the case r odd. There is a

single Bose symmetric j = 1 SO(3) representation in the branching rules of each of the

representations (r + 1, 1) and (r + 1,−1). One of these three point structures, and its

corresponding Lagrangian, is listed in row 3 of table 127 The second structure predicted

26The presence or absence of this factor of i is determined by the following considerations. One can re-

insert the equation (3.10) into the l.h.s. of the same equation. The resultant equation takes the schematic

form

εεS = S.

Taking care of the index contractions, it is easy to check that in this dimension εε = I. In other words the

equation we get by iterating (3.10) twice is identically true; there are no obstructions to finding solutions

for this equation. If we carry through the same procedure for SO(2m) we find

εε = (−1)mI.

It follows that an equation of the form (3.10) has solutions only when m is even. When m is odd, on the

other hand, the analogous equation must have an extra factor of i on the r.h.s. in order to admit solutions,

explaining, for instance, the factor of i in (3.3).
27Recall that j = 1 is the same as a Young Tableaux with a single column and two boxes in the case

of SO(3).
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Scattering

Amplitude
Young Tableaux Lagrangian Structure

1 ∗ µ1 µ2 . . . µr εabcdµ1∇µ2 · · · ∇µrFabFcdSµ1µ2···µr
r is odd & r ≥ 1

2 ∗ α µ1 µ2 · · · µr
β

∇µ2 · · · ∇µr∇µ1FαγFβγ
(
εθα1β1αβ∇θS[α1β1]µ1µ2···µr

)
r is odd & r ≥ 1

3 ∗ α µ1 µ2 µ3 · · · µr
β

∇µ3 · · · ∇µr∇µ2∇βFαγFµ1γ
(
εθα1β1αβ∇θS[α1β1]µ1µ2µ3···µr

)
r is even & r ≥ 2

4 ∗ α γ µ1 · · · µr
β δ

∇µ1 · · · ∇µrFαβFγδ
(
εθα1β1αβ∇θS[α1β1][γδ]µ1···µr

)
r is even & r ≥ 0

Table 3. Photons, D = 5. Here — and also for the analogous table for gravitons in D = 5 later

in this paper — the symbol ∗ has one of two meanings. Whenever the SO(4) representation is

symmetric traceless — as in Row 1 in this table — this symbol indicates that fusion of the unshaded

part of the Young Tableaux occurs with the SO(3) Hodge star of the representation on the r.h.s.

of (3.2) (or analogous representation in the case of gravitons). In rows 2 and 3 of this table the

same symbol indicates that the original SO(4) Tableaux is Hodge stared before we shade in boxes

and then fuse with photon representations.

by our counting is not difficult to work out. This structure — and the corresponding

Lagrangian — are listed in row 2 of table 3. Now let us turn to the case r even. From a

counting point of view we once again have a single coupling corresponding to the branching

of (r + 1, 1) to j = 2 and a second coupling corresponding to the descent of (r + 1,−1)

to j = 2. One of these two structures was already listed in row 4 of table 1. The second

structure (and the Lagrangian that generates it) is new to this dimension. It is parity odd

and is listed in row 3 of table 3.

When P transforms in the (h1, h2) = (r + 2, 2) and (r + 2,−2) representations, the

situation is very similar to the case dealt with in the previous paragraph (i.e. the (r+ 1, 1)

and (r+ 1,−1) representations). As in the case above, the ‘equation of motion’ that would

restricts to one of the two representations (r+2, 2) or (r+2,−2) is complex and has no real

solutions. A real field S produces particles transforming in both representations at the same

time. As in the paragraph above we have an effective doubling of the D ≥ 8 couplings cor-

responding to this symmetry. Concretely, we have two three point couplings for every even

value of r and no couplings when r is odd. Each of these couplings correspond to branching

of the representation to j = 2. One of the three point couplings is that presented in row 5

of table 1 and the second (parity odd) three point coupling is listed in row 4 of table 3.

3.5 D = 4

In this case the photon polarizations transform in the vector representation of SO(D−2) =

SO(2). This is a two dimensional (reducible) representation with SO(2) charges ±1. The

symmetric product of two photons transforms with SO(2) charges +2, 0, −2 and the

antisymmetric product is a single spin zero state. This antisymmetric spin zero state is
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Scattering

Amplitude
Young Tableaux Lagrangian Structure

1 ∗ µ1 . . . µr εabcd∇µ1 · · · ∇µrFabFcdSµ1···µr
r is even & r ≥ 0

2 ∗ µ1 µ2 µ3 . . . µr εabcµ1∇µ4 · · · ∇µr∇δ∇µ3FabFµ2δ∇cSµ1µ2µ3···µr
r is odd & r ≥ 3

Table 4. Photons, D = 4. The meaning of the symbol∗ was explained in the caption to table 2.

the Hodge dual of the r.h.s. of (3.2); recall that the SO(2) Hodge dual of an antisymmetric

two tensor is a scalar. The covariant version of this dualization uses the two dimensional ε

tensor proportional to kµ1 k
ν
2εµναβ which itself picks up a minus sign under 1↔ 2. It follows

that this antisymmetric spin zero combination of photons is Bose symmetric rather than

antisymmetric.

The most general non-spinorial field S, associated with the massive particle P , is

labelled by its SO(3) ∼ SU(2) label j (completely symmetric tensor with j indices). To

start with, for every even j ≥ 0 there exists two photon-photon-P coupling corresponding

to the symmetric and anti-symmetric fusion of the photons to spin zero (all the free indices

of the field associated with the particle P are dotted with k1 − k2.). The Lagrangian

corresponding to the symmetric fusion continue to be given by row 1 of table 1 while the

anti symmetric fusion results in row 1 of table 4.

In the case that j ≥ 2 and j continues to be even we have one additional three point

structure corresponding to the branching to the parity even combination of the two spins

with ±2 (in this case all but two of the indices of P are contracted with k1 − k2), as in

D ≥ 8. The Lagrangian structure continues to be given by row 2 of table 1.

Finally, when j is odd and j ≥ 3 there exists a single parity odd coupling corresponding

to the branching of P to the parity odd combination of spins ±2. In equations this spin 2

combination of polarizations is given by

kµ1 k
ν
2εµναθ

(
εθ1ε

β
2 + εθ2ε

β
1

)
. (3.12)

Note that this combination is symmetric under the interchange ε1 ↔ ε2 but antisymmetric

under k1 ↔ k2, so overall picks up a minus sign under 1↔ 2.

In this case all but two indices of P are contracted with k1 − k2; Bose statistics is

satisfied because the phase −1 obtained from the k1 − k2 interchange is compensated for

by the antisymmetry under interchange of the photon polarization structure (3.12). The

corresponding Lagrangian is listed in row 2 of table 4.

3.6 D = 3

In this case SO(D − 2) = SO(1) and so the SO(D − 2) singlet condition is empty. Photon

polarizations are just numbers; photons carry one scalar degree of freedom. The antisym-

metric product of two photon polarizations is empty, while the symmetric product of these

polarizations is one dimensional.
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Scattering

Amplitude
Young Tableaux Lagrangian Structure

1 ∗ µ1 . . . µr ∇µ1 · · · ∇µrFabFab (εµ1θ2θ3∂θ2Sθ3µ2···µr)

r is even & r ≥ 2

Table 5. Photons, D = 3. The symbol ∗ here signifies that one of the indices of the SO(2)

symmetric tensor denoted in the second column of the table is Hodge dualized (i.e. r.h.s. of (3.13)

is replaced by l.h.s. of (3.13))before we shade boxes and contract with the two photons.

The most general massive particle can be thought of as a two dimensional traceless

symmetric tensor with r indices. All such two dimensional tensors have only two nonzero

components given by C++···+ or C−−···− (tensor elements with some plus and some minus

index components are not traceless — this follows from the fact that the metric in 2

dimensions has no ++ and no −− components but has +− and −+ components). Self-

dual (or anti-self dual) rank r traceless symmetric tensors — i.e. traceless symmetric tensors

that obey

iενµCµα2···αr = ±Cµα2···αr (3.13)

have only + (or only −) indices. The three dimensional equation of motion that forces a

symmetric traceless tensor to be self-dual or anti-self dual is given by

εθ1θ2θ3∂θ2Cθ3α1···αr = ±Cθ1α1···αr . (3.14)

Note that as in D = 7 (but unlike D = 5) this equation is real and so can be meaningfully

imposed on real fields S.

There is one nonzero three point photon photon self-dual tensor coupling, and also

a corresponding photon photon anti self-dual tensor coupling for every even r. The cor-

responding contraction structure and Lagrangian is given in row 1 of table 1 — once we

remember that the field S is constrained to obey the self duality (or anti self duality)

condition (3.14). The coupling between two photons and tensors with odd r vanishes.

As in D = 7 we could choose to adopt an alternate point of view. We could work with

a symmetric tensor field S without imposing the self duality condition (3.14). In this case

the field S corresponds to a particle of SO(2) spin r plus a particle of SO(2) spin −r (i.e. to

both the self dual and the anti-self dual particle). In this case in addition to the coupling

listed in row 1 of table 1 there is an additional coupling listed in row 1 of table 5. The

most general coupling of S to two photons is given by A times the coupling of row 1 of

table 1 plus B times the coupling of row 1 of table 5. Effectively, the two photons couple

to the self dual particle (i.e. particle of spin r) with a coupling proportional to A + B

while they couple to the anti self dual particle (i.e. the particle of spin -r) with a coupling

proportional to A−B. We obtain the coupling only to the self or anti-self dual particle by

setting B = ±A.
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4 Gravitons

Each graviton polarization is a symmetric traceless tensor of SO(D − 2). For D ≥ 7 the

symmetric product of two gravitational polarizations transforms as

S2
(

⊗
)

= ⊕ ⊕ ⊕ • . (4.1)

The antisymmetric product of two graviton polarizations transforms as

Λ2
(

⊗
)

= ⊕ . (4.2)

As in the case of photons we count graviton-graviton-P three point structures by using

branching rules to decompose the SO(D − 1) representation P into SO(D − 2) represen-

tations and enumerate those fusions with the two graviton representation content ((4.2)

and (4.1)) that are consistent with Bose symmetry.

It follows immediately from the branching rules of appendix A that there are no three

point structures if P transforms in a Tableaux Y(a,b,c,d,··· ) with d > 0. Even when d = 0,

no three point structures exist if c > 2 or if b + c > 4. It follows that the most general

representations that can couple with two gravitons have Young Tableaux of one of the

following structures:

• Y(r+m,m,0,··· ,0,0) with 0 ≤ m ≤ 4 and r ≥ 0 (see l.h.s. of row 1–row 7, row 10–row 13,

row 17, row 18, and row 20 of table 6 ).

• Y(r+m,m+1,1,0,··· ,0) where 0 ≤ m ≤ 2 and r ≥ 1 (see l.h.s. of row 8, row 9, row 14,

row 15 and row 19 of table 6)

• Y(r,2,2,0,··· ,0) where r ≥ 2 (see l.h.s. of row 16 of table 6).

As in the case of photons we proceed to enumerate the 3 point structures dimension by

dimension.

4.1 D ≥ 8

P in Y(r,0··· ,0): r ≥ 0. As in the case of photons, first consider P that transforms under

SO(D−1) in the Y(r,0··· ,0) Young Tableaux where r ≥ 0. In this case the graviton-graviton-

P three point function is nonzero only if r is even. If r = 0 there exists a single coupling

corresponding to the fusion of two gravitons into the SO(D − 2) singlet (i.e. the fusion

to Y(0,··· ,0) which we denote by the symbol • on the r.h.s. of (4.1)). The corresponding

Lagrangian is listed in row 1 of table 6.

When r = 2 there exist two couplings corresponding to the fusion of two gravitons into

the SO(D − 2) singlet and symmetric two tensor (Y(0,··· ,0) and Y(2,0··· ,0) on r.h.s. of (4.1)).

The corresponding Lagrangians are listed in row 1 and row 2 of table 6.

For every even r ≥ 4, there are three couplings corresponding to the fusion of gravitons

into the SO(D − 2) representations Y(0,··· ,0), Y(2,0,··· ,0) and Y(4,0,··· ,0) (See r.h.s. of (4.1)).

The corresponding Lagrangians are listed in row 1, row 2 and row 3 of table 6.
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Bose symmetry ensures that there are no graviton-graviton-P couplings when r is odd.

An SO(D−1) symmetric spin r representation turns into an SO(D−2) spin s representation

once r − s of the tensor indices are dotted with (k1 − k2) (and the remaining s indices are

projected orthogonal to k1 − k2). It follows that the corresponding couplings are Bose

symmetric only when r is even.

P in Y(r+m,m,0,··· ,0): 1 ≤ m ≤ 4, r ≥ 0. Now consider particles P that transform

under SO(D − 1) in a Tableaux Y(r+m,m,0,··· ,0) with 1 ≤ m ≤ 4. When m = 4, contracting

r boxes in the first row and all 4 boxes in the second row with k1 − k2 (see row 20 of

table 6) yields the SO(D − 2) representation that transforms in Y(4,0,···0). It follows there

exists a single graviton-graviton-P three point function corresponding to the fusion of

the two gravitons into the Y(4,0,···0) that appears on the r.h.s. of (4.1). This structure

has r + 4 factors of k1 − k2 and so is Bose symmetric when r is any even integer. The

SO(D − 1) → SO(D − 2) descent allow for no further three point S-matrices in this case.

In particular, Bose statistics forces the graviton-graviton-P coupling to vanish when r is

odd. The corresponding Lagrangian is listed in row 20 of table 6.

When m = 3, contracting r − 1 boxes in the first row and all 3 boxes in the second

row (row 18 of table 6) once again gives the SO(D − 2) representation that transforms in

Y(4,0,···0) yielding one Bose symmetric graviton-graviton-P three point function when r is

even and r ≥ 2. On the other hand contracting r boxes in the first row and 2 boxes in the

second row yields the SO(D−2) representation Y(3,1,0···0) that appears on the r.h.s. of (4.2)

. This contraction structure, depicted in row 17 of table 6, yields a single Bose symmetric

graviton-graviton-P three point function for every odd r. It follows in summary that when

P transforms in this representation we have a single 3 point structure for every r, even or

odd, as long as r ≥ 1.

When m = 2 we continue to have a single Bose symmetric structure for every odd r (see

row 13 of table 6), corresponding to contracting r−1 boxes in the first row and 1 box in the

second row yielding the SO(D− 2) Tableaux Y(3,1,0,··· ,0) that appears on the r.h.s. of (4.2).

For even r, on the other hand, we have two Bose symmetric structures when r = 0 and

three structures when r ≥ 2. The two structures that exist for all even r ≥ 0 correspond

to contracting only r boxes in the top row yielding the SO(D − 2) Tableaux Y(2,2,0,··· ,0)
that appears on the r.h.s. of (4.1) (see row 10 of table 6) or contracting r boxes in the top

row and both boxes in the bottom row yielding the SO(D − 2) Tableaux Y(2,0,0,··· ,0) (see

row 11 of table 6). The structure that exists only for r ≥ 2 corresponds to contracting r−2

boxes in the top row and both boxes in the second row yielding the SO(D − 2) Tableaux

Y(4,0,0,··· ,0) that appears on the r.h.s. of (4.1) (see row 12 of table 6). In summary when

m = 2, we have two structures for r = 0 (row 10, row 11 of table 6), three structures for

every even r ≥ 2 (row 10, row 11 and row 12 of table 6) and one structure for every odd

r ≥ 1 (row 13 of table 6).

When m = 1, we have one structure when r = 1, listed in row 4 of table 6 (correspond-

ing to contracting one index in the top row to yield the SO(D − 2) Tableaux Y(1,1,0,··· ,0));

and two structures when r is odd and r ≥ 3, listed in row 4 and row 5 of table 6 (contracting

r boxes in the first row yields the SO(D − 2) Tableaux Y(1,1,0,··· ,0) while contracting r − 2
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boxes in the first row yields the SO(D − 2) Tableaux Y(3,1,0,··· ,0)). Turning to even values

of r, there are no Bose symmetric structures when r = 0. There exists one structure when

r = 2, listed in row 6 of table 6 (corresponding to contracting one index in the top row

and one index in the second row yielding the SO(D− 2) Tableaux Y(2,0,··· ,0)); and two such

structures when r ≥ 4, listed in row 6 and row 7 of table 6 (corresponding to contracting

r − 1 indices in the top row and the single box in the second row to get the SO(D − 2)

Tableaux Y(2,0,··· ,0) or contracting r − 3 boxes in the first row and the single box in the

second row to get the SO(D− 2) Tableaux Y(4,0,··· ,0)). In summary for m = 1 there are no

structures for r = 0, one structure for r = 2 (row 6 of table 6) and two structures for even

r ≥ 4 (row 6 and row 7 of table 6). When r is odd, we have one structure for r = 1 (row 4

of table 6) and two structures for r ≥ 3 (row 4 and row 5 of table 6).

P in Y(r+m,m+1,1,0,··· ,0): 0 ≤ m ≤ 2, r ≥ 1. Now, consider the massive par-

ticle P transforming in the SO(D − 1) representation labelled by the Young Tableaux

Y(r+m,m+1,1,0,··· ,0), where 0 ≤ m ≤ 2 (note r ≥ 1). When m = 2, no Bose symmetric

structure exists when r is even. When r is odd on the other hand, there is always one Bose

symmetric structure, obtained by contracting the single box in the third row, two boxes in

the second row and all r − 1 boxes in the top row to obtain the SO(D − 2) representation

Y(3,1,0,··· ,0) (see row 19 of table 6).

When m = 1 and r is even, there is a single structure listed in row 15 of table 6

(obtained by contracting the single box in the 3rd row and r − 1 boxes in the first row to

obtain the SO(D − 2) Tableaux Y(2,2,0,··· ,0)). Turning to odd r, there is no structure when

r = 1 and one structure for r ≥ 3, listed in row 14 of table 6 (corresponding to contracting

the single box in the third row, one box in the second row and r−2 boxes in the top row to

yield the SO(D − 2) Tableaux Y(3,1,0,··· ,0)). In summary, for m = 1, we have one structure

for every r ≥ 2.

Finally, when m = 0, there are no Bose symmetric structures when r is even. Turning

to odd r, for all r ≥ 1 there is a one such structure corresponding to contracting the

single box in the third row and r − 1 boxes in the first row to yield the SO(D − 2)

Tableaux Y(1,1,0,··· ,0) (see row 8 of table 6). For odd r ≥ 3 there is one additional structure

corresponding to contracting the single box in the third row and r − 3 boxes in the first

row to obtain the SO(D − 2) Tableaux Y(3,1,0,··· ,0) (see row 9 of table 6). In summary in

this case there is one structure when r = 1, two structures for odd r ≥ 3 and no structures

for even r.

P in Y(r,2,2,0,··· ,0): r ≥ 2. Finally consider Tableaux Y(r,2,2,0,··· ,0) When r is even there

is a single Bose symmetric structure obtained by contracting r − 2 boxes in the first row

and both boxes in the third row to obtain Y(2,2,0,··· ,0) (see row 16 of table 6). When r is

odd on the other hand no three point structures exist.

As in the case of photons, it is also not difficult to find explicit expressions for the

S-matrices generated by each of these Lagrangian structures. We present these explicit

expressions in appendix D.
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Scattering

Amplitude
Young Tableaux Lagrangian Structure

1 µ1 · · · µr ∇µ1 · · ·∇µrRαβγδRαβγδSµ1···µr

r is even & r ≥ 0

2 µ1 µ2 µ3 · · · µr ∇µ3 · · ·∇µrRµ1αβγRµ2αβγSµ1µ2µ3···µr

r is even & r ≥ 2

3 µ1 µ2 µ3 µ4 µ5 · · · µr ∇µ5 · · ·∇µrRµ1αµ2βRµ3αµ4βSµ1µ2µ3µ4µ5···µr

r is even & r ≥ 4

4 a µ1 µ2 · · · µr
c

∇µ2 · · ·∇µr∇dRacefRµ1defS[ac]µ1···µr

r is odd & r ≥ 1

5 a µ1 µ2 µ3 µ4 · · · µr
e

∇µ4 · · ·∇µr∇hRaeµ3iRhµ1µ2iS[ae]µ1µ2µ3µ4···µr

r is odd & r ≥ 3

6 a µ1 µ2 µ3 · · · µr
d

∇µ3 · · ·∇µrRefµ2h∇µ1∇hRefadS[ad]µ1µ2µ3···µr

r is even & r ≥ 2

7 a µ1 µ2 µ3 µ4 µ5 · · · µr
f

∇µ5 · · ·∇µr∇βRαµ1µ2h∇h∇µ4∇αRβµ3afS[af ]µ1µ2µ3µ4µ5···µr

r is even & r ≥ 4

8 µ1 µ2 · · · µr
b

c

∇µ2 · · ·∇µr∇fRµ1bdeRcfdeS[µ1bc]µ2···µr

r is odd & r ≥ 1

9 µ1 µ2 µ3 µ4 · · · µr
b

c

∇µ4 · · ·∇µr∇hRµ1bµ2fRchµ3fS[µ1bc]µ2µ3···µr

r is odd & r ≥ 3

10 r t µ1 · · · µr
s u

∇µ1 · · ·∇µrRprqtRpsquS[rs][tu]µ1···µr

r is even & r ≥ 0

11 r t µ1 · · · µr
s u

∇µ1 · · ·∇µrRpqrsRpqtuS[rs][tu]µ1···µr

r is even & r ≥ 0

12 a c µ1 µ2 µ3 · · · µr
b d

∇µ3 · · ·∇µrRabµ1hRcdµ2hS[ab][cd]µ1µ2µ3···µr

r is even & r ≥ 2

13 c i µ1 µ2 · · · µr
a j

∇µ2 · · ·∇µrRabµ1k∇kRbcijS[ca][ij]µ1µ2···µr

r is odd & r ≥ 1

14 a µ1 µ2 µ3 µ4 · · · µr
b e

c

∇µ4 · · ·∇µr∇µ3Rabµ2jRcjµ1eS[abc][µ1e]µ2µ3µ4···µr

r is odd & r ≥ 3

15 a µ1 µ2 µ3 · · · µr
b e

c

∇µ3 · · ·∇µrRabµ2iRciµ1eS[abc][µ1e]µ2µ3···µr

r is even & r ≥ 2

16 µ1 µ2 µ3 · · · µr
b e

c f

∇µ3 · · ·∇µrRµ1bµ2hRchefS[µ1bc][µ2ef ]µ3···µr

r is even & r ≥ 2

Continued on next page
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Continued from previous page

Scattering

Amplitude
Young Tableaux Lagrangian Structure

17 c i k µ1 µ2 · · · µr
a j d

∇µ2 · · ·∇µrRabkd∇µ1RbcijS[ca][ij][kd]µ1µ2···µr

r is odd & r ≥ 1

18 a b c µ1 µ2 µ3 · · · µr
f i j

∇µ3 · · ·∇µr∇kRafcj∇µ2Rbiµ1kS[af ][bi][cj]µ1µ2µ3···µr

r is even & r ≥ 2

19 a d µ1 µ2 · · · µr
b e i

c

∇µ2 · · ·∇µr∇jRabdeRcjµ1iS[abc][de][µ1i]µ2···µr

r is odd & r ≥ 1

20 a c e i µ1 · · · µr
b d f j

∇µ1 · · ·∇µrRabcdRefijS[ab][cd][ef ][ij]µ1···µr

r is even & r ≥ 0

Table 6. Gravitons, D ≥ 8. The colouring principle of the Young’s Tableaux, in the second column

of this table, has been outlined in the caption to table 1.

4.2 D = 7

As for photons, the discussion of graviton scattering in D = 7 is identical to the corre-

sponding discussion for D ≥ 8 for particles P transforming in representations (r1, r2, 0).

For such representations the coupling of two gravitons to P is listed in rows (1–7), (10–13),

17, 18 and 20 of table 6.

As in the case of photons, tableaux Y(r1,r2,r3) with r3 6= 0 correspond to the sum of two

irreducible representations of SO(6). We encounter this situation when P transforms in the

representations associated with the tableaux Y(r+1,1,1) (row 8 and 9 of table 6), Y(r+2,3,1)

(row 19 of table 6) Y(r+1,2,1) with r ≥ 2 (row 14, 15 of table 6), Y(r,2,2) (row 16 of table 6).

All except the last of these Tableaux have only one column of length 3 — the last Tableaux,

Y(r,2,2) has two columns of length 3. As we have mentioned above each of these Tableaux

correspond to two rather than one irreducible representations of SO(6) (see appendix B).

In each case we can project onto the irreducible representations by demanding that the

indices in the column of length 3 are self dual or anti self dual.28 In equations we impose

the condition

εα1α2α3α4α5α6A[α4α5α6]··· = ±iA[α1α2α3]··· (4.3)

where the first three indices of A are the indices corresponding to the first column of the

Young Tableaux, and the · · · refers to all the other indices of the tensor (corresponding

to all the other columns of the tableaux). As in the case of photons, for either choice

of sign in (4.3) we have as many independent couplings to two gravitons as are listed in

table 6 for the corresponding Tableaux. So each of the representations (r + 1, 1,±1) can

couple to two gravitons in the two ways tabulated in (row 8 and 9 of table 6). Each of the

representations (r+ 2, 3,±1) can couple to two gravitons in the unique way represented in

28In the special case of Y(r,2,2) which has two columns of length 3, we impose the same condition on any

one of the columns — symmetry ensures that it does not matter which column we project.
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(row 19 of table 6), each of the representations (r+ 1, 2,±1) can couple to two gravitons in

one of the two ways represented in row 14, row 15 and each of the representations (r, 2,±2)

can couple in the unique manner represented in row 16 of table 6. As in the case of photons,

the Lagrangians for the particles corresponding to the two signs of (4.3) both take the form

listed in the third column of the corresponding rows of table 6, with the one caveat that

the field S corresponding to the particle P that participates in this coupling obeys the

additional self / anti-self duality condition

∂α4

m
εα1α2α3α4α5α6α7S[α5α6α7]··· = ±S[α1α2α3]··· . (4.4)

As in the case of photons, from the Lagrangian point of view, the coupling between

particles in Young Tableaux with atleast one column of length 3 and two gravitons can be

alternately understood as follows. We start with P[α5α6α7]··· that is not further constrained

by the condition (4.4). The quantization of P produces both the self dual and the anti-

self dual particle. The most general coupling of P to two gravitons is given either by the

Lagrangian listed in the corresponding row of the third column of table 6 or by the same

Lagrangian structure with the replacement

S[α1α2α3]··· → εα1α2α3α4β1β2β3

∂α4

m
S[β1β2β3]··· . (4.5)

For concreteness we list all these ‘new’ parity odd couplings in table 7. As in the case of

photons, we can, as a special case, obtain the coupling of two gravitons to the self dual or

anti self dual particle by taking an the appropriate linear combinations of the new couplings

of table 7 and the old couplings of table 6.

4.3 D = 6

As the Young Tableaux of SO(5) have no more than two rows, there is no analogue in this

dimension, of the couplings presented in Rows 8, 9, 14, 15, 16, 19 of table 6.

The analogues of the couplings in the remaining rows of table 6 (namely rows 1–7, 10–

13, 17, 18 and 20) are slightly modified because Young Tableaux of SO(4) with two rows

correspond to two rather than one irreducible representations. In D = 6 the formula for

the symmetric and antisymmetric tensor product for two gravitons (the analogue of (4.1)

and (4.2)) become

S2(2, 0) = (4, 0)⊕ (2, 0)⊕ (0, 0)⊕ (2, 2)⊕ (2,−2),

Λ2(2, 0) = (3, 1)⊕ (3,−1)⊕ (1, 1)⊕ (1,−1).
(4.6)

When P transforms in the representation (r, 0) the graviton-graviton-P three point

functions are identical in number and structure to those for D ≥ 8 and are listed in row 1–

3 of table 6.

Now let us consider the case that P that transforms in the (r +m,m) representation

of SO(5) with 1 ≤ m ≤ 4. When m = 4 all the graviton-graviton-P three point structures

are once again identical to D ≥ 8 and are listed in row 20 of table 6. We have one such

structure for even r and no such structures for odd r. When m = 3 and r is even, the
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Scattering

Amplitude
Young Tableaux Lagrangian Structure

1 ∗ µ1 µ2 · · · µr
b

c

∇µ2 · · · ∇µr∇fRµ1bdeRcfde
(
εµ1bcα4β1β2β3

∇α4
m S[β1β2β3]µ2···µr

)
r is odd & r ≥ 1

2 ∗ µ1 µ2 µ3 µ4 · · · µr
b

c

∇µ4 · · · ∇µr∇hRµ1bµ2fRchµ3f
(
εµ1bcα4β1β2β3

∇α4
m S[β1β2β3]µ2µ3···µr

)
r is odd & r ≥ 3

3 ∗ a µ1 µ2 µ3 µ4 · · · µr
b e

c

∇µ4 · · · ∇µr∇µ3Rabµ2jRcjµ1e(
εabcα4β1β2β3

∇α4
m S[β1β2β3][µ1e]µ2µ3µ4···µr

)
r is odd & r ≥ 3

4 ∗ a µ1 µ2 µ3 · · · µr
b e

c

∇µ3 · · · ∇µrRabµ2iRciµ1e
(
εabcα4β1β2β3

∇α4
m S[β1β2β3][µ1e]µ2µ3···µr

)
r is even & r ≥ 2

5 ∗ µ1 µ2 µ3 · · · µr
b e

c f

∇µ3 · · · ∇µrRµ1bµ2hRchef
(
εµ1bcα4β1β2β3

∇α4
m S[β1β2β3][µ2ef ]µ3···µr

)
r is even & r ≥ 2

6 ∗ a d µ1 µ2 · · · µr
b e i

c

∇µ2 · · · ∇µr∇jRabdeRcjµ1i
(
εabcα4β1β2β3

∇α4
m S[β1β2β3][de][µ1i]µ2···µr

)
r is odd & r ≥ 1

Table 7. Gravitons, D = 7. Here the symbol ∗ indicates that the first column of the original

SO(6) Tableaux, in the second column of this table, is Hodge stared (i.e. r.h.s. of (4.4) is replaced

by l.h.s. of (4.4)) before we shade in boxes and then fuse with graviton representations.

D ≥ 8 results once again apply unchanged and are listed in row 18 of table 6. When m = 3

and r is odd, contracting away r indices in the top row and 2 indices in the bottom row

leads to a Tableaux with 3 free indices in the first row and one free index in the second row,

as for D ≥ 8 (see row 17 of table 6). As for D ≥ 8 this representation leads to one three

point coupling for odd r. However as in the case of photons we can use the effective SO(4)

ε tensor (3.8) to dualize the column of the tableaux to obtain another (parity odd) tensor

that also transforms in a Tableaux with 3 boxes in the first row and one box in the second

row. This dualized tensor gives rise to another — parity odd — three point structure, but

this time only when r is even (r must be even because the effective ε tensor (3.8) picks up

a minus sign under the 1 ↔ 2 interchange). It follows that we now have two three point

functions when r is even — one of these is parity even while the other is parity odd. The

Lagrangian for the additional (parity odd) structure is listed in row 5 of table 8.

When m = 2 we continue to have a single three point structure corresponding to

coupling to the antisymmetric product of two gravitons in a way that is very similar to

the case m = 3. Once again we contract r − 1 boxes in the first row and 1 box in the

second row to obtain an SO(4) Tableaux Y(3,1). As in the case m = 3 this Tableaux leads
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Scattering

Amplitude
Young Tableaux Lagrangian Structure

1 ∗ e µ1 . . . µr

f

εabcdef∇µ1 · · · ∇µrRabghRcdghS[ef ]µ1···µr
r is even & r ≥ 0

2 ∗ e µ1 µ2 µ3 . . . µr

f

εabcdef∇µ3 · · · ∇µrRabµ1hRcdµ2hS[ef ]µ1µ2µ3···µr
r is even & r ≥ 2

3 ∗ e i µ1 µ2 µ3 . . . µr

f g

εabcdef∇µ3 · · · ∇µr∇g∇µ2RabikRcdµ1kS[ef ][ig]µ1µ2µ3···µr
r is even & r ≥ 2

4 ∗ e g µ1 µ2 . . . µr

f h

εabcdef∇µ2 · · · ∇µr∇µ1RabgjRcdhjS[ef ][gh]µ1µ2···µr
r is odd & r ≥ 1

5 ∗ a g h µ1 · · · µr
b i j

εabcdef∇µ1 · · · ∇µrRabgiRcdhjS[ef ][[gi][hj]µ1···µr
r is even & r ≥ 0

Table 8. Gravitons, D = 6. The meaning of the symbol∗ was explained in the caption to table 2.

to one three point structure when r is odd, and its dual leads to another (parity odd)

three point structure when r is even. The doubling of structures is a reflection of the fact

that the tableaux Y(3,1) corresponds to 2 SO(4) irreps, namely the (3, 1) and the (3,−1)

representations.The new parity odd structure is listed in row 3 of table 8.

Still working with the case m = 2, we now turn to the structures corresponding to

the symmetric fusion of two gravitons. The structures correspond to the coupling of the

gravitons to the (4, 0) or (2, 0) representations of SO(4), and take the same structure as

for D ≥ 8. They are listed in rows 12 and Row 11 respectively of table 6. The coupling of

two gravitons to the Y(2,2) Tableaux has a new feature because this Tableaux corresponds

to two irreps. — the (2, 2) and the (2,−2) of SO(4). This leads to a doubling of the D ≥ 8

structures in this case. One of the two couplings is listed in row 10 of table 6, for even r.

The second coupling is obtained by using the effective SO(4) Levi-Civita tensor to dualize

any one of the columns of the tableaux Y(2,2); the corresponding new coupling exists only

for odd values of r. The Lagrangian corresponding to this new structure is listed in row 4

of table 8.

Finally when m = 1 the structures corresponding to the symmetric fusion of two

gravitons work exactly as for D ≥ 8 and are listed in rows 6 and 7 of table 6. We now

examine the structures corresponding to the antisymmetric fusion of graviton polarizations.

As in D ≥ 8, the contraction structure depicted in row 5 of table 6 leads to the SO(4)

Tableaux Y(3,1). As this Tableaux corresponds to two SO(4) irreps., there is a doubling of

three point structures. In addition to the structure tabulated in row 5 of table 6 we have

the parity odd three point couplings — for even r — listed in row 2 of table 8. Similarly

the contraction structure depicted in row 4 of table 6 is effectively doubled. Apart from

the structure listed in table 6 we have the new parity odd structure listed in row row 1 of

table 8, once again for even r.
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4.4 D = 5

In this case SO(D−2) = SO(3). Representations of SO(3) are most conveniently labelled by

their spin j. The symmetric product of two gravitons transforms in the sum of j = 0, 2, 4.

The antisymmetric product of two gravitons transforms in j = 1, 3. These representations

are obtained by dualizing the single column of length two in each of the Young Tableaux

on the r.h.s. of (4.2) (this operation turns the first representation on the r.h.s. of (4.2)

into the j = 3 while turning the second representation on the r.h.s. of (4.2) into the j = 1

representation). Note that the effective SO(3) ε tensor is proportional to a single factor of

k1 − k2. It follows that the structures corresponding to the j = 3 and j = 1 fusion of two

gravitons pick up a minus sign under the interchange k1 ↔ k2, a second minus sign under

the interchange ε1 ↔ ε2, and therefore are invariant under the full Bose interchange 1 ↔ 2.

As in the case of photons, we choose to label allowed representations of SO(D − 1) =

SO(4) by the highest weights for Cartans corresponding to rotations in orthogonal two

planes, (h1, h2). The SO(4) representations that can couple to two gravitons are those

with (h1, h2) = (r, 0) or (r + 1,±1), (r + 2,±2), (r + 3,±3) and (r + 4,±4).

When r is even the coupling of first of these representations ((r, 0)) to two gravitons

is the same as for D ≥ 8 (see row 1 and row 2 and row 3 of table 6). The novelty in D = 5

is that there also exist graviton-graviton-P couplings in this case when r is odd. More

specifically there exists one such (parity odd) structure for r = 1 (corresponding to the

antisymmetric coupling of two gravitons to SO(3) spin 1) and two structures for odd r ≥ 3

(corresponding to the antisymmetric coupling of the two gravitons to SO(3) spins 1 and 3).

The corresponding new Lagrangians are listed in row 2 and row 1 of table 9 respectively.

As in the case of photons, the particles (r + m,±m) (for any given m ≥ 1) have to

be considered together. The Lorentzian SO(5) covariant equation of motion that projects

onto either + or − is complex and has no real solutions. As in D = 7 we have an effective

doubling of the couplings of this pair of particles to the product of two gravitons. The new

couplings are obtained by making the replacement

S[α1α2]··· → εα1α2α3β1β2

∂α3

m
S[β1β2]··· . (4.7)

Explicitly, when m = 1 the couplings listed rows 4–7 of table 6 are supplemented by

their counterparts listed in rows row 3–6 of table 9. For the case m = 2 the couplings

of rows 10–13 of table 6 are supplemented by the new couplings of rows 7–10 of table 9.

For the case m = 3 the couplings of rows 17–18 of table 6 are supplemented by the new

couplings listed in rows 11–12 of table 9. Finally, when m = 4 the coupling listed in row 20

of table 6 is supplemented by its shadow coupling listed in row 13 of table 9

4.5 D = 4

In this case SO(D− 2) is SO(2). The symmetric product of two gravitons transforms with

SO(2) charges +4, 0, −4 and the antisymmetric product is a single spin zero state.
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Scattering

Amplitude
Young Tableaux Lagrangian Structure

1 ∗ µ1 µ2 µ3 µ4 · · · µr εabcdµ3∇µ4 · · · ∇µrRabµ1γRcdµ2γSµ1µ2µ3µ4···µr
r is odd & r ≥ 3

2 ∗ µ1 µ2 · · · µr εabcdµ1∇µ2 · · · ∇µrRabµγRcdµγSµ1µ2···µr
r is odd & r ≥ 1

3 ∗ a µ1 µ2 · · · µr
c

∇µ2 · · · ∇µr∇dRacefRµ1def
(
εacα3β1β2

∇α3
m S[β1β2]µ1···µr

)
r is odd & r ≥ 1

4 ∗ a µ1 µ2 µ3 µ4 · · · µr
e

∇µ4 · · · ∇µr∇hRaeµ3iRhµ1µ2i(
εaeα3β1β2

∇α3
m S[β1β2]µ1µ2µ3µ4···µr

)
r is odd & r ≥ 3

5 ∗ a µ1 µ2 µ3 · · · µr
d

∇µ3 · · · ∇µrRefµ2h∇µ1∇hRefad(
εadα3β1β2

∇α3
m S[β1β2]µ1µ2µ3···µr

)
r is even & r ≥ 2

6 ∗ a µ1 µ2 µ3 µ4 µ5 · · · µr
f

∇µ4 · · · ∇µr∇βRαµ1µ2h∇h∇αRβµ3af(
εafα3β1β2

∇α3
m S[β1β2]µ1···µr

)
r is even & r ≥ 4

7 ∗ r t µ1 · · · µr
s u

∇µ1 · · · ∇µrRprqtRpsqu
(
εrsα3β1β2

∇α3
m S[β1β2][tu]µ1···µr

)
r is even & r ≥ 0

8 ∗ r t µ1 · · · µr
s u

∇µ1 · · · ∇µrRpqrsRpqtu
(
εrsα3β1β2

∇α3
m S[β1β2][tu]µ1···µr

)
r is even & r ≥ 0

9 ∗ a c µ1 µ2 µ3 · · · µr
b d

∇µ3 · · · ∇µrRabµ1hRcdµ2h
(
εεabα3β1β2

∇α3
m S[β1β2][cd]µ1µ2µ3···µr

)
r is even & r ≥ 2

10 ∗ c i µ1 µ2 · · · µr
a j

∇µ2 · · · ∇µrRabµ1k∇kRbcij
(
εcaα3β1β2

∇α3
m S[β1β2][ij]µ1µ2···µr

)
r is odd & r ≥ 1

11 ∗ c i k µ1 µ2 · · · µr
a j d

∇µ2 · · · ∇µrRabkd∇µ1Rbcij
(
εcaα3β1β2

∇α3
m S[β1β2][ij][kd]µ1µ2···µr

)
r is odd & r ≥ 1

12 ∗ a b c µ1 µ2 µ3 · · · µr
f i j

∇µ2 · · · ∇µr∇kRafcjRbiµ1k
(
εafα3β1β2

∇α3
m S[β1β2][bi][cj]µ1···µr

)
r is even & r ≥ 2

13 ∗ a c e i µ1 · · · µr
b d f j

∇µ1 · · · ∇µrRabcdRefij
(
εabα3β1β2

∇α3
m S[β1β2][cd][ef ][ij]µ1···µr

)
r is even & r ≥ 0

Table 9. Gravitons, D = 5. The meaning of the symbol∗ was explained in the caption to table 3.

The antisymmetric spin zero state is constructed with the aid of an SO(2) ε tensor. As

mentioned above, the covariant version of this tensor, kµ1 k
ν
2εµναβ , is antisymmetric under

the interchange k1 ↔ k2. As this antisymmetric structure also picks up a minus sign under

the interchange ε1 ↔ ε2 it follows that this structure is invariant under the overall Bose

exchange 1↔ 2.
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Scattering

Amplitude
Young Tableaux Lagrangian Structure

1 ∗ µ1 µ2 µ3 µ4 µ5 µ6 · · · µr εabcµ1∇µ6 · · · ∇µr∇νRabµ3δ∇µ5∇cRµ2δνµ4Sµ1µ2µ3µ4µ5µ6···µr
r is odd & r ≥ 5

2 ∗ µ1 · · · µr εabcd∇µ1 · · · ∇µrRabefRcdefSµ1···µr
r is even & r ≥ 0

Table 10. Gravitons, D = 4. The meaning of the symbol ∗ was explained in the caption to

table 2.

The symmetric singlet of two gravitons is, of course, by itself Bose symmetric. The

two symmetric product states with charges 4 and −4 can be thought of in tensor language

as a symmetric traceless four index tensor (recall that any such tensor has all + or all −
indices (see the discussion in section 3.5). This traceless symmetric tensor is given by

Aαβγδ = ε1(αε
1
βε

2
γε

2
δ) (4.8)

where the brackets ( and )in the subscript of (4.8) denote complete symmetrization of

indices together with a removal of all traces. Note that the tensor listed in (4.8) is also

manifestly Bose symmetric.

The ‘dual’ four index traceless symmetric tensor corresponding to Aαβγδ given by

kµ1 k
ν
2εµναθAθβγδ. (4.9)

Note that the dual tensor listed in (4.9) picks up a minus sign under the 1 ↔ 2 inter-

change.29

The most general non-spinorial field S, associated with the massive particle P , is

labelled by its SO(3) ∼ SU(2) label j (completely symmetric tensor with j indices). For

every even j there exists one graviton-graviton-P coupling corresponding to the symmetric

fusing of the gravitons to spin zero (all the free indices of the field associated with the

particle P are dotted with k1 − k2.) This is the coupling listed in row 1 of table 6. For

every even j there is also a second coupling corresponding to the antisymmetric fusing

of the gravitons to spin zero; this structure is also Bose symmetric for even j (see the

discussion earlier in this subsection). This additional Lagrangian has no analogue an any

higher dimension and is listed in row 2 of table 10.

For every even j ≥ 4, there is another coupling corresponding to the fusion of the 4

index SO(2) descendent of P with Aαβγδ defined in (4.8) (the remaining j − 4 indices of

P are dotted with k1 − k2). This coupling is listed in row 3 of table 6. Similarly, for every

odd j ≥ 4 there is a yet another coupling corresponding to the fusion of the 4 index SO(2)

descendent of P with Aαβγδ defined in (4.8). Once again the remaining j − 4 indices of P

are dotted with k1 − k2. This coupling is listed in row 1 of table 10.

This exhausts the list of graviton-graviton-P couplings in D = 4.

29The fact that we can construct two independent four index traceless tensors — Aαβγδ and its dual

— reflects the fact that the traceless symmetric tensor was made up of two irreducible representations of

SO(2), namely the spin 4 and the spin −4 state.
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5 Discussion

As we have emphasized in the introduction, we have demonstrated in this paper that every

graviton-graviton-P 3 particle S-matrix is generated by a Lagrangian of the form (1.1)

and so is of fourth order in derivatives. It follows immediately from this observation that

every two derivative theory of gravity interacting with other fields admits a consistent

truncation to Einstein gravity at cubic order in amplitudes. It seems very likely that this

result continues on to arbitrary order. A specification of all 3 point graviton-graviton-P S-

matrices completely specifies the Lagrangian (1.1). Expanding (1.1) in powers of the metric

fluctuation h then also specifies a class of (graviton)n P couplings for n ≥ 3 (these couplings

are tied to the given graviton-graviton-P couplings by diffeomorphism invariance). Of

course (graviton)n P couplings are not uniquely determined by three particle S-matrix

data. For instance in the case n = 4 we could have additional couplings generated by

Lagrangians of the schematic form ∫ √
−g (RRRS) . (5.1)

However, every such Lagrangian is of 6 or higher order in derivatives. This discussion can

be continued. Once we have fixed (graviton)3-P scattering, the new data in (graviton)4-P

scattering appears likely to lie at 8 and higher order in derivatives and so on. In particular

it seems extremely likely to us that any two derivative theory of gravity coupling to any

number of additional fields, just on kinematical grounds, always admits a consistent trun-

cation to Einstein gravity at the full non-linear level. Note that a similar result does not

hold for photons even at cubic order — several of the photon-photon-P couplings presented

in this paper are nonzero at two derivative order.

In this paper we have classified all graviton-graviton-P (and photon-photon-P ) S-

matrices for all possible massive particles P . For completeness it would be useful to perform

the same classification for massless particles. The study of massless particles introduces

a few new complications. In particular the onshell decay of a massless particle P to two

photons or gravitons is very kinematically restricted. The two gravitons (or photons) can

only be emitted collinearly with the initial particle P (which, recall, cannot now be in its

rest frame). If we continue to work with real momenta as in this paper, the scattering two

plane of our paper is replaced by a scattering line, modifying our analysis significantly.

Another complication with massless particles is that they often enjoy additional gauge

invariance. For all these reasons we postpone the (definitely doable) analysis of graviton

graviton massless particle (or photon photon massless particle) coupling to future work.

We note that the spinor helicity formalism is particularly well suited to this problem atleast

in D = 4 and D = 6 [17].

Finally it would be useful to ‘sew’ two identical copies of each of the graviton-graviton-

P three point functions, classified in this paper, through a P propagator (see [11] for a

discussion of the projectors that appear in the numerator of these projectors) in order to

compute the explicit form for all kinematically allowed P exchange contributions to four

graviton scattering. Conceptually, these contributions are the classical scattering analogues
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of conformal blocks. Simple examples of these blocks were constructed in [1]. It would be

useful to have explicit expressions for these blocks for the most general case. Though the

process of obtaining these blocks may prove algebraically intensive, the procedure that

needs to be followed in order to find them is completely straightforward. We leave this to

future work.
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A Branching rules

Irreducible representations of SO(2m) and SO(2m + 1) are both labelled by the highest

weights (h1, h2 · · ·hm). Here hi denotes the eigenvalue under rotations in the ith two plane.

For any given irreducible representation either all hi are integers or all hi are half integers.

In the case SO(2m+ 1) (or more precisely Spin(2m+ 1))

h1 ≥ h2 · · · ≥ hm (A.1)

the hi are all positive. In the case of SO(2m) (or more precisely Spin(2m)) a version

of (A.1) still holds. In this case, however, while h1 · · ·hm−1 are all positive, hm can be

either positive or negative,a and the condition (A.1) is replaced by (A.2)

h1 ≥ h2 · · · ≥ |hm| (A.2)

For examples of use of our notation, the n index traceless symmetric tensor repre-

sentation of SO(2m) has highest weights (n, 0 · · · 0). The n index antisymmetric tensor

with n < m has highest weights (1, 1, · · · 1, 0 · · · 0) (i.e. hi = 1 for i = 1 · · ·n and hi = 0 for

i > n). The unique 2m dimensional spinor representation of SO(2m+1) has highest weights

(12 ,
1
2 , · · · ,

1
2). The two different 2m−1 dimensional spinor representations of SO(2m) have

highest weights ( 12 ,
1
2 , · · · ,±

1
2). The self dual and anti self dual m index tensors of SO(2m)

respectively have highest weights (1, 1, · · · ,±1).

The branching rules from SO(2m) to SO(2m− 1) are given as follows (Theorem 8.1.3

of [18]). The SO(2m) representation (h1, h2, · · ·hm) decomposes into the sum of SO(2m−1)

representations labelled by highest weights (ha1, h
a
2 · · ·ham−1) where

• hai have the same integrality properties as hi (i.e. hai are all integers/ half integers if

the same is true of hi).
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• The collection of numbers hai runs over all possibilities consistent with the inequalities

h1 ≥ ha1 ≥ h2 ≥ ha2 · · · ≥ ham−1 ≥ |hm|. (A.3)

On the other hand branching rules from SO(2m + 1) to SO(2m) are given as follows

(Theorem 8.1.4 of [18]). The SO(2m + 1) representation (h1, h2, · · ·hm) decomposes into

the sum of SO(2m) representations labelled by highest weights (ha1, h
a
2 · · ·ham) where

• hai have the same integrality properties as hi (i.e. hai are all integers/ half integers if

the same is true of hi).

• The collection of numbers hai runs over all possibilities consistent with the inequalities

h1 ≥ ha1 ≥ h2 ≥ ha2 · · · ≥ ham−1 ≥ hm ≥ |ham|. (A.4)

• Each of the representations described above occur exactly once (i.e. with multiplicity

unity).

B Representations associated with Young Tableaux

Around (2.1) we have defined a projection onto a subspace of traceless SO(2m + 1) or

SO(2m) tensors associated with a Young Tableaux Y(r1,r2···rm).We have also mentioned

that this subspace of tensors transforms under SO(2m+1) in the irreducible representation

(r1, r2 . . . rm) when rm = 0. or when the group is SO(2m+ 1) (even when rm 6= 0). In the

case of the group SO(2m) and when rm 6= 0, however, the subspace of tensors described

above transforms in the direct sum of two irreducible representations of SO(2m), namely

(r1, r2 · · · rm) ⊕ (r1, r2 . . . − rm). In this appendix we will give an intuitive explanation of

these facts.

Staying away from the case SO(2m) with rm 6= 0 for a moment, it is easy to convince

oneself that the tableaux Y(r1,r2···rm) corresponds to a single representation with highest

weights (r1 · · · rm). Tensors of SO(N) differ from tensors of SU(N) in two crucial ways.

First SO(N) indices can be contracted with each other — the same is not true of SU(N).

Second the SO(N) ε tensor can be used to impose group covariant equations (like self

duality conditions) on SO(N) tensors; the same is not true of SU(N).

All the tensors we deal with in this paper are traceless. It follows that the indices of

these tensors cannot contract with each other. Consequently, the only significant differ-

ence between SU(N) and SO(N) traceless tensors lies in the possibility of new equations

involving the ε tensor. Now an ε tensor has to act on antisymmetrized indices. In the case

of SO(2m+1) the highest number of mutually antisymmetrized indices is ≤ m. The action

of an ε tensor on such a Tableaux always results in a tensor with more indices that the

original tensor. It follows that ε cannot be used to impose new equations on the tensors

corresponding to any particular Young Tableaux. The same is true of the group SO(2m)

with rm = 0. It follows in these cases that the tensors associated with a given Tableaux

transform in a single irreducible representation of SO(N) (because this result is famously
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true of SU(N) tensors and there is no significant difference between traceless SO(N) and

SU(N) tensors in this case).

The highest weights of the corresponding representation are also easily deduced. We

put the first r1 vectors in the highest possible weight state, namely the state (1, 0, 0 · · · 0).

Putting the (r + 1)th index into the same state gives zero (because of the symmetry prop-

erties of the tableaux) so we do the next best thing but putting the next r2 indices in the

(0, 1, 0 · · · 0) state and so on. It follows that the highest weight state of this representation

is (r1, r2 · · · rm).

We now turn to the case SO(2m) with rm 6= 0. Let us first consider the special case

Y(1,1,··· ,1,1). This Young Tableaux denotes an antisymmetric tensor with m indices. In

precisely this case the ε tensor can be used to impose a group covariant equation on the

space of such tensors and so break it up into two irreducible representations of SO(2m).

The first of these is the self-dual tensor with highest weights given by (1, 1, 1, . . . 1). The

second is the anti self-dual tensor whose highest weights are (1, 1, . . . , 1,−1).

Next let us consider the case of a Young Tableaux with two columns, each of length m,

i.e. Y(2,2,··· ,2,2). This representation can be thought of as the traceless part of the symmetric

product of two copies of Y(1,1,··· ,1,1). In this context traceless simply means the projection

onto representations (h1, h2 · · ·hm) such that

m∑
i=1

|hi| = 2m.

Now the symmetric product of two self-dual tensors has a single traceless representation

— its highest weights are equal to (2, 2 . . . 2). Similarly the symmetric product of two anti

self-dual tensors has a single traceless representation: its highest weights are (2, 2 . . . 2,−2).

However there are no traceless representations in the product of the self dual and the anti

self dual tensor. The ‘biggest’ such representation has highest weights (2, 2, 2, 0) and so has∑
i |hi| = 2m− 2 and so is not traceless (this representation is part of the Young Tableaux

Y(2,2,··· ,2,2,0)).

The generalization of these remarks to Young Tableaux Y(p,p,··· ,p,p) is obvious. The pth

symmetric product of Y(1,1,··· ,1,1) has only two traceless representations (i.e. representations

such that
∑m

i=1 |hi| = pm.) These are the representations (p, p · · · p) and (p, p · · ·−p) which

respectively occur in the pth product of self dual and the pth product of anti-self dual

tensors respectively. The generalization to more complicated representations of SO(2m)

can be worked out along similar lines.

C Photon amplitudes

In this appendix we present explicit expressions for the photon-photon-P S-matrix for a

particular convenient choice of the polarization tensor of P .

Recall that in subsection 2.1 we defined a projector onto a subspace of tensors that

transforms under SO(m) in the representation associated with the Young Tableaux Y . For

the purpose of studying photon-photon-P and graviton-graviton-P scattering we focus on

Young Tableaux with no more than three rows. Let the number of boxes in the ith row of
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the tableaux be denoted by ri. In subsection 2.1 our algorithm for constructing a projector

required us to fill in the boxes of the tableaux with any choice of integers running from

1, · · · , r1 + r2 + r3. We choose here to fill the first row of the tableaux with the integers

1, · · · , r1, the second row with r1 + 1, · · · , r1 + r2 and the third row with the integers

r1+r2+1, · · · , r1+r2+r3. This choice of filling of the Young Tableaux defines a projector P
defined in (2.1). The (Lorentzian SO(D)) wave solution for the particle P is chosen to be30

Sµ1µ2···µr1+r2+r3 (x) = e−ik3.xP
(
εµ13 · · · ε

µr1
3 ε

µr1+1

4 · · · εµr1+r24 ε
µr1+r2+1

5 · · · εµr1+r2+r35

)
(C.1)

where εµm are Lorentzian SO(D) vectors that obey the constraints

εm · εn = 0, k3 · εm = 0, m, n = 3 · · · 5. (C.2)

In order to find an explicit expression for the scattering amplitude we simply plug (C.1) —

along with a similar wave solution for the photon fields Aµ(x) into the explicit expression

for the cubic interaction action- and then simply evaluate the onshell value of the cubic

Lagrangian associated with each of the three point coupling. We list our final results below

in terms of the variables

A1 = ε1.k2, b12 = ε1.ε2, A2 = ε2.k1,

A3 = ε3. (k1 − k2) , A′3 = ε4. (k1 − k2) , A′′3 = ε5. (k1 − k2) ,
b23 = ε2.ε3, b′23 = ε2.ε4, b′′23 = ε2.ε5,

b13 = ε1.ε3, b′13 = ε1.ε4, b′′13 = ε1.ε5.

(C.3)

C.1 D ≥ 8

In this subsection we present explicit results for the S-matrix corresponding to the parity

even interactions listed in table 1. The results below apply unrestrictedly in D ≥ 8, and

also apply for the allowed parity even amplitudes in D ≤ 8.31

Each S-matrix is assigned a name of the form Ai,j(a,b,c). The subscript in this symbol

gives the lengths of the first three rows of the SO(D− 1) Young Tableaux associated with

P . The first superscript is e when the three point coupling is constructed via fusion to a

representation in a Bose symmetric product of two photons (or gravitons below) and is o

when the coupling is constructed via fusion to a representation in the Bose antisymmetric

product of two photons (or gravitons).32

30In our notation for the field corresponding to the particle P in (C.1) we have not attempted to denote

the symmetry properties of the various indices.
31The ‘disallowed’ amplitudes are nonvanishing in D ≤ 8 but carry the same information as the collection

of all allowed amplitudes. For instance the Young Tableaux with a single column of three boxes is disallowed

in D = 5. The amplitude for this Tableaux does not vanish — but is simply equal to the amplitude for P

transforming in a Tableaux with a single box (the vector) once we choose the effective value of εµ3 for this

vector to equal

εµ3 → εµαβγδεα3 ε
β
4 ε
γ
5 (k1 + k2)δ .

32In our notation we keep track of the symmetry or antisymmetry of structures under the simultaneous

interchange ε1 ↔ ε2 and k1 ↔ k2.
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The second superscript is a multiplicity label. The amplitudes we have listed are

obtained from the interaction Lagrangian terms recorded in the specified rows of table 1.

In the rest of this appendix and the next appendix we present a systematic listing of the

scattering amplitudes obtained from the Lagrangians listed in the various tables of the main

text. The expressions for all amplitudes are presented ignoring constant proportionality

factors (i.e. factors of i, 2 and various hook factors entering the projectors P).

Row 1 : Ae,1
(r,0,0)∝−2Ar

3

(
2A1A2+b12m

2
)

Row 2 : Ae,2
(r,0,0)∝A

r−2
3

(
A3

(
A2b13−

A3b12
2

)
−b23

(
A1A3+b13m

2
))

Row 3 : Ao,1
(r+1,1,0)∝

1

4
Ar

3

(
b23
(
A1A

′
3+m2b′13

)
+A2 (b13A

′
3−A3b

′
13)−b′23

(
A1A3+b13m

2
))

Row 4 : Ae,1
(r+1,1,0)∝

1

16
Ar−1

3(
b23
(
A3m

2b′13−A′3
(
A1A3+2b13m

2
))

+A2A3 (b13A
′
3−A3b

′
13)+A3b

′
23

(
A1A3+b13m

2
))

Row 5 : Ae,1
(r+2,2,0)∝−

1

2
Ar

3 (b13A
′
3−A3b

′
13)(b23A

′
3−A3b

′
23)

Row 6 : Ao,1
(r,1,1)∝

1

12
m2Ar−1

3 (b′23 (A3b
′′
13−b13A′′3)+b′′23 (b13A

′
3−A3b

′
13)+b23 (A′′3b

′
13−A′3b′′13))

C.2 D = 7

Here we list the S-matrix corresponding to the single parity odd interaction term in D = 7

listed in (3.5).

Ao,1(r+1,1,0) ∝ mA
r−1
3 ε (k1, ε1, ε2, k2, ε3, ε4, ε5)

where ε (v1, v2, · · · , vn) is defined as

ε (v1, v2, · · · , vn) ∝ εµ1µ2···µnv
µ1
1 vµ22 · · · v

µn
n . (C.4)

C.3 D = 6

Here we list the S-matrix corresponding to the single parity odd interaction term in D = 6

recorded in table 2.

Ae,1(r+1,1,0) ∝ 2Ar3 ε (k1, k2, ε1, ε2, ε3, ε4)

C.4 D = 5

In this sub-section we list S-matrices corresponding to the D = 5 parity odd interaction

structures listed in table 3.

Row 1 : Ao,1(r,0,0)∝ 4Ar3 ε(k1,k2, ε1, ε2, ε3)

Row 2 : Ao,1(r+1,1,0)∝−
1

2
mAr3ε(ε1, ε2,k3, ε3, ε4)

Row 3 : Ao,2(r+1,1,0)∝−
Ar−2

3

(
ε(k2, ε3, ε4, ε1,k1)

(
A2A3−b23m2

)
−ε(k1, ε3, ε4, ε2,k2)

(
A1A3+b13m

2
))

2m

Row 4 : Ao,1(r+2,2,0)∝−
Ar3 (ε(k1, ε1,k2, ε3, ε4)(b23A

′
3−A3b

′
23)+ε(k2, ε2,k1, ε3, ε4)(A3b

′
13−b13A′3))

m
(C.5)
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C.5 D = 4

In this subsection, we list the D = 4 S-matrices corresponding to the parity odd interaction

Lagrangians recorded in the corresponding rows of table 4.

Row 1 : Ao,1(r,0,0)∝ 4Ar3ε(k1,k2, ε1, ε2)

Row 2 : Ae,1(r,0,0)∝
1

2
Ar−23

(
ε(ε1,k1,k2, ε3)

(
A2A3−b23m2

)
−ε(ε2,k1,k2, ε3)

(
A1A3+b13m

2
))

D Graviton amplitudes

D.1 D ≥ 8

In this subsection, we list the S-matrices corresponding to the parity even interaction

Lagrangians (for D ≥ 8 as well as for the allowed amplitudes in lower dimensions) listed

in the corresponding rows of table 6.

Row 1 : Ae,1
(r,0,0)∝

1

4
Ar

3

(
2A1A2+b12m

2
)2

Row 2 : Ae,2
(r,0,0)∝

1

16
Ar−2

3

(
2A1A2+b12m

2
)(
A3 (A3b12−2A2b13+2A1b23)+2b13b23m

2
)

Row 3 : Ae,3
(r,0,0)∝

1

64
Ar−4

3

(
A3 (A3b12−2A2b13+2A1b23)+2b13b23m

2
)
2

Row 4 : Ao,1
(r+1,1,0)∝

3

32
Ar

3

(
2A1A2+b12m

2
)

(
−A2b13A

′
3−A1b23A

′
3+A2A3b

′
13+A1A3b

′
23−b23m2b′13+b13m

2b′23
)

Row 5 : Ao,2
(r+1,1,0)∝−

5

128
Ar−2

3

(
A3 (A3b12−2A2b13+2A1b23)+2b13b23m

2
)

(
−A2b13A

′
3−A1b23A

′
3+A2A3b

′
13+A1A3b

′
23−b23m2b′13+b13m

2b′23
)

Row 6 : Ae,1
(r+1,1,0)∝−

1

16
Ar−1

3

(
2A1A2+b12m

2
)

(
b23
(
A3m

2b′13−A′3
(
A1A3+2b13m

2
))

+A2A3 (b13A
′
3−A3b

′
13)+A3b

′
23

(
A1A3+b13m

2
))

Row 7 : Ae,2
(r+1,1,0)∝−

3

128
Ar−3

3

(
A1A3+b13m

2
)(
A2A3−b23m2

)
(
b23
(
A3m

2b′13−A′3
(
A1A3+2b13m

2
))

+A2A3 (b13A
′
3−A3b

′
13)+A3b

′
23

(
A1A3+b13m

2
))

Row 8 : Ao,1
(r,1,1,0)∝

1

12
m2Ar−1

3

(
2A1A2+b12m

2
)

(b′23 (A3b
′′
13−b13A′′3)+b′′23 (b13A

′
3−A3b

′
13)+b23 (A′′3b

′
13−A′3b′′13))

Row 9 : Ao,2
(r,1,1,0)∝

1

48
m2Ar−3

3

(
2b23

(
A1A3+b13m

2
)
+A3 (A3b12−2A2b13)

)
(b′23 (A3b

′′
13−b13A′′3)+b′′23 (b13A

′
3−A3b

′
13)+b23 (A′′3b

′
13−A′3b′′13))

Row 10 : Ae,1
(r+2,2,0)∝

1

32
Ar

3

(
A2b13A

′
3+A1b23A

′
3−A2A3b

′
13−A1A3b

′
23+m2 (b23b

′
13−b13b′23)

)
2

Row 11 : Ae,2
(r+2,2,0)∝

1

8
Ar

3

(
2A1A2+b12m

2
)

(b13A
′
3−A3b

′
13)(b23A

′
3−A3b

′
23)

Row 12 : Ae,3
(r+2,2,0)∝

1

32
Ar−2

3

(
A3 (A3b12−2A2b13+2A1b23)+2b13b23m

2
)

(A3b
′
13−b13A′3)(A3b

′
23−b23A′3)

Row 13 : Ao,1
(r+2,2,0)∝−

1

16
Ar−1

3

(
b23
(
A1A

′
3+m2b′13

)
+A2 (b13A

′
3−A3b

′
13)−b′23

(
A1A3+b13m

2
))

(
b23
(
A3m

2b′13−A′3
(
A1A3+2b13m

2
))

+A2A3 (b13A
′
3−A3b

′
13)+A3b

′
23

(
A1A3+b13m

2
))
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Row 14 : Ao,1
(r+1,2,1)∝−

1

192
Ar−2

3 (b′23 (b13A
′′
3−A3b

′′
13)+b′′23 (A3b

′
13−b13A′3)+b23 (A′3b

′′
13−A′′3b′13))(

b23
(
A′3
(
A1A3+2b13m

2
)
−A3m

2b′13
)
+A2A3 (A3b

′
13−b13A′3)−A3b

′
23

(
A1A3+b13m

2
))

Row 15 : Ae,1
(r+1,2,1)∝

1

96
Ar−1

3 (b′23 (b13A
′′
3−A3b

′′
13)+b′′23 (A3b

′
13−b13A′3)+b23 (A′3b

′′
13−A′′3b′13))(

−b23
(
A1A

′
3+m2b′13

)
+A2 (A3b

′
13−b13A′3)+b′23

(
A1A3+b13m

2
))

Row 16 : Ao,1
(r,2,2)∝−

1

4
m2Ar−2

3 (b′23 (A3b
′′
13−b13A′′3)+b′′23 (b13A

′
3−A3b

′
13)+b23 (A′′3b

′
13−A′3b′′13))2

Row 17 : Ao,1
(r+3,3,0)∝

1

64
Ar

3 (b13A
′
3−A3b

′
13)(b23A

′
3−A3b

′
23)(

b23
(
A1A

′
3+m2b′13

)
+A2 (b13A

′
3−A3b

′
13)−b′23

(
A1A3+b13m

2
))

Row 18 : Ae,1
(r+3,3,0)∝

1

128
Ar−1

3 (b13A
′
3−A3b

′
13)(b23A

′
3−A3b

′
23)(

b23
(
A3m

2b′13−A′3
(
A1A3+2b13m

2
))

+A2A3 (b13A
′
3−A3b

′
13)+A3b

′
23

(
A1A3+b13m

2
))

Row 19 : Ao,1
(r+2,3,1)∝

1

96
Ar−1

3 m2 (b13A
′
3−A3b

′
13)(b23A

′
3−A3b

′
23)

(b′23 (A3b
′′
13−b13A′′3)+b′′23 (b13A

′
3−A3b

′
13)+b23 (A′′3b

′
13−A′3b′′13))

Row 20 : Ae,1
(r+4,4,0)∝

1

32
Ar

3 (b13A
′
3−A3b

′
13)2 (b23A

′
3−A3b

′
23)2

D.2 D = 7

In this subsection, we list the D = 7 S-matrices generated by parity odd Lagrangians listed

in the corresponding rows of table 7.

Row 1 : Ao,1
(r,1,1)∝

1

2
mAr−1

3 ε(k1, ε1, ε2,k2, ε3, ε4, ε5)
(
2A1A2+b12m

2
)

Row 2 : Ao,2
(r,1,1)∝

1

8
mAr−3

3 ε(k1, ε1, ε2,k2, ε3, ε4, ε5)
(
2b23

(
A1A3+b13m

2
)
+A3 (A3b12−2A2b13)

)
Row 3 : Ao,1

(r+1,2,1)∝−
Ar−2

3

4m
ε(k1, ε1, ε2,k2, ε3, ε4, ε5)((

A2A3−b23m2
)

(A3b
′
23−b23A′3)+A1A3 (b13A

′
3−A3b

′
13)+b213m

2A′3−A3b13m
2b′13

)
Row 4 : Ae,1

(r+1,2,1)∝
Ar−2

3 ε(k1, ε1, ε2,k2, ε3, ε4, ε5)

4m((
A2A3−b23m2

)
(A3b

′
23−b23A′3)+A1A3 (A3b

′
13−b13A′3)−b213m2A′3+A3b13m

2b′13
)

Row 5 : Ae,1
(r,2,2)∝−

1

2
mAr−2

3 ε(k1, ε1, ε2,k2, ε3, ε4, ε5)

(b′23 (A3b
′′
13−b13A′′3)+b′′23 (b13A

′
3−A3b

′
13)+b23 (A′′3b

′
13−A′3b′′13))

Row 6 : Ao,1
(r+2,3,1)∝

1

2
mAr−1

3 ε(k1, ε1, ε2,k2, ε3, ε4, ε5)(A3b
′
13−b13A′3)(A3b

′
23−b23A′3) (D.1)

D.3 D = 6

In this subsection, we list the D = 6 S-matrices generated by parity odd Lagrangians listed

in the corresponding rows of table 8.

Row 1 : Ae,1
(r+1,1,0)∝−A

r
3

(
2A1A2+b12m

2
)
ε(k1,k2, ε1, ε2, ε3, ε4)

Row 2 : Ae,2
(r+1,1,0)∝

1

2
Ar−2

3

(
A3

(
A2b13−

A3b12
2

)
−b23

(
A1A3+b13m

2
))

ε(k1,k2, ε1, ε2, ε3, ε4)
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Row 3 : Ae,1
(r+2,2,0)∝

1

32
Ar−1

3 ε(k1,k2, ε1, ε2, ε3, ε4)(
b23
(
A′3
(
−A1A3−2b13m

2
)
+A3m

2b′13
)
+A2A3 (b13A

′
3−A3b

′
13)+A3b

′
23

(
A1A3+b13m

2
))

Row 4 : Ao,1
(r+2,2,0)∝

1

8
Ar

3ε(k1,k2, ε1, ε2, ε3, ε4)(
b23
(
A1A

′
3+m2b′13

)
+A2 (b13A

′
3−A3b

′
13)−b′23

(
A1A3+b13m

2
))

Row 5 : Ae,2
(r+3,3,0)∝−

1

4
Ar

3 (b13A
′
3−A3b

′
13)(b23A

′
3−A3b

′
23)ε(k1,k2, ε1, ε2, ε3, ε4)

D.4 D = 5

In this subsection, we list the D = 5 S-matrices generated by parity odd Lagrangians listed

in the corresponding rows of table 9.

Row 1 : Ao,1
(r,0,0)∝−A

r−3
3 ε(k1,k2, ε1, ε2, ε3)

(
A3

(
A2b13−

A3b12
2

)
−b23

(
A1A3+b13m

2
))

Row 2 : Ao,2
(r,0,0)∝ 2Ar−1

3 ε(k1,k2, ε1, ε2, ε3)
(
2A1A2+b12m

2
)

Row 3 : Ao,1
(r+1,1,0)∝

Ar−1
3

4m

(
2A1A2+b12m

2
)

((
b23m

2−A2A3

)
ε(k1, ε1,k2, ε3, ε4)+

(
A1A3+b13m

2
)
ε(k2, ε2,k1, ε3, ε4)

)
Row 4 : Ao,2

(r+1,1,0)∝
Ar−3

3

(
2b23

(
A1A3+b13m

2
)
+A3 (A3b12−2A2b13)

)
16m((

b23m
2−A2A3

)
ε(k1, ε1,k2, ε3, ε4)+

(
A1A3+b13m

2
)
ε(k2, ε2,k1, ε3, ε4)

)
Row 5 : Ae,1

(r+1,1,0)∝−
Ar−1

3

(
2A1A2+b12m

2
)

8m(
ε(k1, ε1,k2, ε3, ε4)

(
A1A3+b13m

2
)
+ε(k2, ε2,k1, ε3, ε4)

(
A2A3−b23m2

))
Row 6 : Ae,2

(r+1,1,0)∝−
Ar−3

3

(
A1A3+b13m

2
)(
A2A3−b23m2

)
32m(

ε(k1, ε1,k2, ε3, ε4)
(
A1A3+b13m

2
)
+ε(k2, ε2,k1, ε3, ε4)

(
A2A3−b23m2

))
Row 7 : Ae,1

(r+2,2,0)∝
1

8
mAr

3ε(ε1, ε2,k3, ε3, ε4)(
−b23

(
A1A

′
3+m2b′13

)
+A2 (A3b

′
13−b13A′3)+b′23

(
A1A3+b13m

2
))

Row 8 : Ae,2
(r+2,2,0)∝

Ar
3

(
2A1A2+b12m

2
)

2m
(ε(k1, ε1,k2, ε3, ε4)

(b23A
′
3−A3b

′
23)+ε(k2, ε2,k1, ε3, ε4)(A3b

′
13−b13A′3))

Row 9 : Ae,3
(r+2,2,0)∝−

Ar−2
3

(
2b23

(
A1A3+b13m

2
)
+A3 (A3b12−2A2b13)

)
8m

(ε(k1, ε1,k2, ε3, ε4)(A3b
′
23−b23A′3)+ε(k2, ε2,k1, ε3, ε4)(b13A

′
3−A3b

′
13))

Row 10 : Ao,1
(r+2,2,0)∝

Ar−1
3

8m
(−A3 (A1ε(k1, ε2,k2, ε3, ε4)+A2ε(k2, ε1,k1, ε3, ε4))(

b23
(
A1A

′
3+m2b′13

)
+A2 (b13A

′
3−A3b

′
13)−b′23

(
A1A3+b13m

2
))
− 1

2
m2ε(ε2, ε1,k3, ε3, ε4)(

b23
(
A3m

2b′13−A′3
(
A1A3+2b13m

2
))

+A2A3 (b13A
′
3−A3b

′
13)+A3b

′
23

(
A1A3+b13m

2
)))

Row 11 : Ao,1
(r+3,3,0)∝

1

8
mAr

3ε(ε2, ε1,k3, ε3, ε4)(b13A
′
3−A3b

′
13)(b23A

′
3−A3b

′
23)
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Row 12 : Ae,1
(r+3,3,0)∝−

Ar−1
3 (A3b

′
13−b13A′3)(A3b

′
23−b23A′3)

8m(
ε(k1, ε1,k2, ε3, ε4)

(
A2A3−b23m2

)
+ε(k2, ε2,k1, ε3, ε4)

(
A1A3+b13m

2
))

Row 13 : Ae,1
(r+4,4,0)∝

Ar
3 (b13A

′
3−A3b

′
13)(b23A

′
3−A3b

′
23)

2m

(ε(k1, ε1,k2, ε3, ε4)(A3b
′
23−b23A′3)+ε(k2, ε2,k1, ε3, ε4)(b13A

′
3−A3b

′
13)) (D.2)

D.5 D = 4

In this subsection, we list the D = 4 S-matrices corresponding to the parity odd Lagrangians

listed in the corresponding rows of table 10.

Row 1 : Ao,1(r,0,0) ∝
1

8
Ar−43

(
2b23

(
A1A3 + b13m

2
)

+A3 (A3b12 − 2A2b13)
)

(
ε (ε1, k1, k2, ε3)

(
A2A3 − b23m2

)
+ ε (ε2, k1, k2, ε3)

(
A1A3 + b13m

2
))

Row 2 : Ae,1(r,0,0) ∝ −A
r
3 ε (ε1, k1, ε2, k2)

(
2A1A2 + b12m

2
)

E Bootstrap

The set of all possible parity even, gauge invariant and Lorentz invariant Bose symmetric

photon-photon-P and graviton-graviton-P amplitudes- for the special choice of P polar-

ization listed at the beginning of appendix C — can also be enumerated following the

‘bootstrap’ method outlined (for special cases) in subsubsection 7.2.1 of [1]. Briefly, the

most general amplitude of this form is a polynomial of first (for photons) or second (for

gravitons) order individually in ε1, ε2, and of rth1 order in ε3, r
th
2 order in ε4 and rth3 order

in ε5, and can be of any order in the momenta.

To begin with we ignore the requirement of gauge invariance. We impose the condi-

tion that our amplitude is consistent with the fact that P is a tensor with the symmetry

properties of Y(r1,r2,r3,0···0) as follows. Following the discussion of subsection 2.1 we imag-

ine assigning fictitious integer labels (running from 1 · · · r1) to every occurrence of ε3, and

similar labels for every occurrence of ε4 and ε5, and then completely antisymmetrizing the

expressions along columns of the tableaux. For every column of length 3 this procedure

specifies that we have the unique factor given by

Det

A3 A
′
3 A

′′
3

b13 b
′
13 b

′′
13

b23 b
′
23 b

′′
23

 (E.1)

(see (C.3) for notation).

Now turning to columns of length 2 — each such column can be associated with one

of three factors depending on the way we have labelled the Young Tableaux. The allowed

factors are the 3 minors of the elements of the last column in the matrix (E.1). Which

minor we get depends on our particular labelling scheme. One way to proceed at this point

could be to choose a ‘gauge’. We could, for instance, simply declare that every column of

length 2 is associated with a factor of the minor of b′′23 — but this ‘gauge choice’ will fail

in an amplitude that contains no factor of — for instance — b′13 (for such an amplitude we
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are forced to choose an alternate gauge). In order not to have to deal with these ‘gauge’

subtleties in a case by case basis, we use an over complete basis in which we consider each

of these possibilities as a separate basis vector (this is not much extra work as we do all

our computations on Mathematica).

Finally every column of length 1 in the Young Tableaux is then simply a factor of any

of A3, b13 and b23 (the number of occurrences of each of the last two terms cannot be larger

than one in the case of photons or two in the case of gravitons).

The end result of this procedure is a set of polynomials that are not linearly indepen-

dent (because we worked with an over complete basis). In the next step we construct a

linearly independent basis for the vector space spanned by our collection of polynomials.

This is not difficult to do and yields a complete, linearly independent basis for the most gen-

eral Bose symmetric, Lorentz invariant (but not yet gauge invariant) graviton-graviton-P

or graviton-graviton-P S-matrix.

Finally, we demand that the variation under gauge transformations of the S-matrix

vanish. This requirement yields a set of conditions that relates previously independent

coefficients of our basis vectors. The most general solution to this constraint is the set of

allowed gauge invariant S-matrices.

We have explicitly implemented this program for parity even S-matrices in D ≥ 8,

both for photons and for gravitons, and have verified that the results of this program agree

exactly with the amplitudes in subsections C.1 and D.1. We view this agreement as a

nontrivial algebraic check on the results presented in this paper.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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