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Abstract: Scattering amplitudes at weak coupling are highly constrained by Lorentz

invariance, locality and unitarity, and depend on model details only through coupling con-

stants and the particle content of the theory. For example, four-particle amplitudes are

analytic for contact interactions and have simple poles with appropriately positive residues

for tree-level exchange. In this paper, we develop an understanding of inflationary correla-

tors which parallels that of flat-space scattering amplitudes. Specifically, we study slow-roll

inflation with weak couplings to extra massive particles, for which all correlation functions

are controlled by an approximate conformal symmetry on the boundary of the spacetime.

After systematically classifying all possible contact terms in de Sitter space, we derive an

analytic expression for the four-point function of conformally coupled scalars mediated by

the tree-level exchange of massive scalars. Conformal symmetry implies that the corre-

lator satisfies a pair of differential equations with respect to spatial momenta, encoding

bulk time evolution in purely boundary terms. The absence of unphysical singularities

(and the correct normalization of physical ones) completely fixes this correlator. More-

over, a “spin-raising” operator relates it to the correlators associated with the exchange of

particles with spin, while “weight-shifting” operators map it to the four-point function of

massless scalars. We explain how these de Sitter four-point functions can be perturbed to

obtain inflationary three-point functions. Using our formalism, we reproduce many classic

results in the literature, such as the three-point function of slow-roll inflation, and provide

a complete classification of all inflationary three- and four-point functions arising from

weakly broken conformal symmetry. Remarkably, the inflationary bispectrum associated

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP04(2020)105

mailto:arkani@ias.edu
mailto:dbaumann@uva.nl
mailto:hylee@g.harvard.edu
mailto:G.LeitePimentel@uva.nl
https://doi.org/10.1007/JHEP04(2020)105


J
H
E
P
0
4
(
2
0
2
0
)
1
0
5

with the exchange of particles with arbitrary spin is completely characterized by the soft

limit of the simplest scalar-exchange four-point function of conformally coupled scalars and

a series of contact terms. Finally, we demonstrate that the inflationary correlators contain

flat-space scattering amplitudes via a suitable analytic continuation of the external mo-

menta, which can also be directly connected with the signals for particle production seen

in the squeezed limit.
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1 Time without time

Cosmology is famously an observational rather than an experimental science. No exper-

imentalists were present in the early universe, and the experiment of the birth and sub-

sequent evolution of the universe cannot be repeated. Instead, we can only measure the

spatial correlations between cosmological structures at late times. The central challenge of

modern cosmology is to construct a consistent “history” of the universe that explains these

correlations. This cosmological history is a narrative, a story we tell to give a rational

accounting of the patterns that we see in the cosmological correlations.

In inflationary cosmology [1–4], all cosmological correlations can be traced back to the

origin of the hot big bang, or the end of inflation, where they reside on the “boundary” of an

approximate de Sitter (dS) spacetime (see figure 1). Given that cosmological observations

are firmly anchored to the spatial slice at future infinity, it is natural to ask whether we

can reproduce all of these spatial correlations in a radically different way, without making

explicit reference to the time evolution in the bulk spacetime. This is far from an academic

issue, since we suspect that amongst other things the notion of time itself must break down

in the initial big bang singularity. It is possible that we will eventually be forced to replace

cosmological time evolution with something else. How can this be done? Or, borrowing a

Wheeler-ism, how can we have “time without time”?

There are good reasons to suspect that the only well-defined quantum mechanical

observables in a theory of quantum gravity must live at infinity. Only at infinity can we

have infinitely massive measuring apparatuses, separated by infinite distances, capable of

making infinitely many measurements, with all these infinities needed to yield quantum-

mechanically precise results unpolluted by gravitational effects. Thus, quantum gravity

forces us to study boundary observables, and is therefore “holographic” in nature. The

past few decades have seen an intensive focus on various sorts of holographic theories
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Figure 1. Cosmological observations can be traced back to the end of inflation where they become

spatial correlations on the boundary of the approximate de Sitter spacetime.

for boundary observables. The most precise of these theories have been formulated in

asymptotically anti-de Sitter (AdS) space [5–8]. In that case, the boundary is an ordinary

flat spacetime of one lower dimension. The boundary observables are correlation functions

that can be measured by “pinging” the boundary, and are functions of the spacetime points

on the boundary. The gauge-gravity duality then provides a precise boundary theory to

compute the boundary observables. A crucial feature that makes the identification of this

dual description possible is that, while space and gravity are emergent from the dynamics

of the boundary gauge theory, the boundary theory is still an ordinary physical system

with a standard notion of locality and of time. Moreover, time flows on the boundary the

same way it does in the interior.

The situation is much murkier in asymptotically flat spacetimes, where the observable

is the S-matrix, and the boundary does not have standard notions of either locality or

of time evolution. In that case, it is less clear what the rules should be that govern

a potential boundary theory of scattering amplitudes. Indeed, even some first hints for

such a description, seen in perturbation theory, involve much more alien combinatorial,

geometric and number-theoretic ideas [9–16], from which the physics of spacetime and

quantum mechanics — locality and unitarity — emerge as derivative notions, with a huge

amount left to be understood.

A holographic description of cosmology [17–35] is even more confusing, since the bound-

ary geometry is a Euclidean manifold, and there is no notion of boundary time. We thus

face a rich irony: the cosmological spacetimes for which the notion of “emergent spacetime”

is of the most pressing significance, are the ones where we have the least clue of how to

make a meaningful start!

However, before getting too far ahead of ourselves with such lofty questions and ambi-

tions, it behooves us to ask a much simpler question. Suppose we were handed a candidate

set of cosmological correlations. How would we check if they are right or wrong? How could

we tell whether they arise from a consistent picture of causal time evolution? Precisely the

same question arises for AdS boundary correlators and the flat-space S-matrix. In AdS, it

– 2 –
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has a well-defined answer, since the thorny issue of “time” can be sidestepped altogether

by defining boundary correlators in Euclidean space satisfying sharply defined consistency

conditions of Euclidean conformal field theories (CFTs) with a unitary spectrum and a con-

sistent operator product expansion (OPE). In flat space, on the other hand, the question of

how causal time evolution is imprinted in the S-matrix is much more difficult, and cannot

be shunted to Euclidean space. There is clearly a sense in which causality is reflected in the

analytic structure of the S-matrix, and while the S-matrix program of the 1960’s hoped

to derive these analytic properties from first principles, to this day, we do not know what

they are, even in perturbation theory. Finally, the consistency conditions on cosmological

correlators are the least understood. It is disturbing that our understanding of these issues

becomes more and more primitive the closer and closer we get to the real world.

The explosion of progress in the understanding of scattering amplitudes over the past

few decades has been fueled by a more pragmatic attitude, exploiting various situations

where the analytic structure is understood well enough to make progress, as in [36, 37]

(see [38–43] for recent reviews). For instance, consistent tree amplitudes have an obvious

analytic structure reflecting locality and unitarity — they must have poles where the sums

of the external momenta corresponding to an internal propagator go on-shell (locality), and

they must factorize into products of lower-point amplitudes on the residues of these poles

(unitarity). Beyond tree level, amplitudes have branch cuts, with a completely understood

analytic structure at one loop and a steadily growing control of this structure at higher

loop orders. Moreover, when the notion of “the integrand” of the multi-loop scattering

amplitudes is available, the analytic structure is again nearly as simple as at tree level —

we have rational functions of external and loop momenta, with the locations of poles and

the factorization on residues dictated by the cutting rules reflecting locality and unitarity.

All of this has allowed, in a huge number of examples, the direct determination of scatter-

ing amplitudes from first principles, eschewing the crippling complexity of the Lagrangian

formalism and Feynman diagrams. Aside from its utility in making predictions for col-

lider experiments, these computations have generated an ocean of “theoretical data”, from

which the outlines of the more radical theories replacing locality and unitarity with new

mathematical and physical structures can more easily be seen.

Returning to cosmology, our present understanding of the way consistent time evolution

is encoded in cosmological correlators is still in its infancy, matching not even the level of

understanding for tree-level scattering amplitudes. As a simple and startling illustration of

this fact, we currently don’t even have good analytic control for the four-point function of

massless scalars in de Sitter space, mediated by the exchange of a massive scalar! At the

same time, there are many indications that a similarly rich and deep structure controlling

cosmological correlators must exist — not least because, as we will review, these correlators

contain and generalize flat-space scattering amplitudes in a beautiful way [24, 44].

In this paper, we initiate a systematic exploration of de Sitter and inflationary cor-

relators, from the point of view of “time without time” or, equivalently, that of the “cos-

mological bootstrap”. Indeed, it is useful to phrase our goals in the language of various

“bootstrap” programs that have been undertaken over the past fifty years. As we have

already alluded to, the earliest attempt to bootstrap physical observables by directly im-
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Figure 2. Schematic illustration of the logical connections between the different parts of the paper.

posing physical principles such as unitary, Lorentz invariance and causality, was for the

S-matrix. This endeavor was stymied by the fundamental difficulty of not knowing the

precise rules for encoding causality in the analytic structure of the S-matrix [45]. The

major success of this program — the discovery of string theory [46]—was made possible

by restricting attention to tree amplitudes with only poles as singularities, where the rules

are well-defined. The more recent wave of advances in the field has used the bootstrap phi-

losophy in combination with perturbation theory, which restricts the analytic structure of

the functions that can appear in the final results in a controllable way. The story is rather

different for the “conformal bootstrap” program for CFTs, where by focusing on Euclidean

correlation functions, the rules are completely, and even nonperturbatively, well-defined,

so a systematic exploration from numerical and analytical points of view becomes possi-

ble [47, 48]. The character of the “cosmological bootstrap” that we pursue in this paper is

closer in spirit to its modern incarnation in scattering amplitudes, striving to use a simpli-

fied analytic structure for correlators in perturbation theory, together with symmetries and

singularities, to fully determine the final answer without reference to bulk time evolution.

We will study the fundamentals of this physics, focusing our attention on the sim-

plest case of four-point correlators at tree level. One important motivation for doing this

comes from experiment: we wish to give a completely invariant and physical characteri-

zation of the way in which the exchange of particles of general masses and spins can be

extracted from cosmological probes of non-Gaussianity in the coming decades. This com-

pletes the dictionary of “cosmological collider physics” [49–64], giving physically motivated

templates for comparison with observational data. Another motivation is more theoretical:

we strongly believe that, as with the exploration of scattering amplitudes, the ability to

systematically compute cosmological correlators will generate a wealth of theoretical data

that might stimulate the possible discovery of deep new physical and mathematical struc-

tures underlying this physics. Finally, as an incidental by-product of wider interest, our

investigations involve a detailed study of the constraints of conformal symmetry in momen-

tum space, which appear to have some unfamiliar and beautiful properties that deserve

further exploration in their own right.
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Outline. Figure 2 provides a road map through this paper. In section 2, we first review

how the structure of scattering amplitudes in flat space is fixed by symmetries and singu-

larities. We then sketch that a similar logic can be used to determine four-point functions

in de Sitter space. In section 3, we use this approach to derive an analytic solution for

the four-point function of conformally coupled scalars in de Sitter space, mediated by the

tree-level exchange of massive scalars. In section 4, we show that a simple spin-raising

operator maps this solution to the solutions with spinning internal particles. In section 5,

we introduce weight-shifting operators that relate the solutions for conformally coupled

scalars to correlators with massless external fields, which is the case relevant to inflation.

Our derivation of the spin-raising and weight-shifting operators involves a mix of bulk

and boundary intuition. In an upcoming paper [65], we will present a more systematic

derivation of these operators (and their generalizations) using tools of conformal field the-

ory [66–68]. In section 6, we show how the de Sitter four-point functions can be perturbed

to obtain inflationary three-point functions [69, 70]. We reproduce many classic results

in the literature and provide a systematic way to obtain new results. In section 7, we

comment briefly on a few phenomenological consequences of our results. Our conclusions

are summarized in section 8.

A number of appendices contain additional technical details and derivations. In ap-

pendix A, we derive the conformal symmetry constraints on three- and four-point functions

in de Sitter space. In appendix B, we discuss the singularities of our solutions from both

the bulk and boundary perspectives. In appendix C, we present the solution of section 3 in

hypergeometric form, and analyze various limits of the result. In appendix D, we provide

further details on the solutions for massless external fields presented in section 5. In ap-

pendix E, we introduce a set of weight-shifting operators that allow us the bootstrap the

solutions for massless external fields from those for conformally coupled fields. appendix F

contains a few useful identities for the hypergeometric functions, and appendix G collects

important variables used in the paper.

Reading guide. Since the paper is quite long, it may be helpful to provide a short

reading guide. We recommend beginning with a careful reading of sections 2 and 3, which

first explain the bootstrap philosophy and then apply it to the specific example of scalar

exchange. The following sections 4 and 5, on the other hand, can be skipped on a first

reading. In particular, the rest of the paper can be read without having absorbed the

details of this part of the paper. The reader can therefore continue directly with sections 6

and 7, where we apply our formalism to inflationary bispectra and their phenomenology.

All appendices are for aficionados.

Main results. The main results of this paper are highlighted by gray boxes:

• Equation (3.36) is the solution for the four-point function of conformally coupled

scalars arising from the exchange of a massive scalar. This provides the fundamental

building block from which all other correlators are derived by spin-raising and weight-

shifting operators.

• Equations (4.4) and (4.35) display the solution for massive spin-exchange.
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• Equations (5.11), (5.22) and (5.37) are the four-point functions of massless scalars

arising from the exchange of massive scalars, spin-1 particles and spin-2 particles,

respectively.

• Equation (6.3) is the inflationary bispectrum for arbitrary spin-exchange, which be-

comes (6.6) for scalar exchange and (6.13) for graviton exchange.

• Equations (7.1) and (7.4) characterize all inflationary three-point functions arising

from interactions that only weakly break conformal invariance.

Notation and conventions. Our metric signature is (−+++), with apologies to our

particle physics friends. Throughout the paper, we use natural units, ~ = c ≡ 1. We will

denote scalar operators of dimension ∆ = 2 and ∆ = 3 by ϕ and φ, respectively. When

we need to refer to the corresponding bulk fields, we will use ϕ and φ. We use Greek

letters for spacetime indices, µ = 0, 1, 2, 3, and Latin letters for spatial indices, i = 1, 2, 3.

Three-dimensional vectors will be denoted in boldface (k) or with Latin superscripts (ki).

The magnitude of vectors is defined as k = |k| and unit vectors are written as k̂ = k/k.

The momentum of the n-th leg of a correlation function is denoted by kn and its magnitude

is kn ≡ |kn|. Our conventions for scattering amplitudes are the same as in [38, 39]. We will

use the following Mandelstam variables snm ≡ −(pn + pm)2, where s ≡ s12, t ≡ s23 and

u ≡ s24. We will often denote them by sflat and tflat to avoid confusion with s ≡ |k1 + k2|
and t ≡ |k2 + k3|, which we employ for the exchange momenta in cosmological correlators.

2 Amplitudes meet cosmology

We will begin with a general discussion of the power of symmetries to constrain the struc-

ture of scattering amplitudes in flat space (section 2.1) and correlation functions in de

Sitter space (section 2.2).

2.1 Amplitudes in flat space

Consider a theory of scalars of mass m in d spatial dimensions. All other particles are

taken to be significantly heavier than m. We now review how basic physical requirements

such as Lorentz invariance, locality and unitarity severely restrict the analytic structure of

the four-particle scattering amplitude A4 at tree level.

By Lorentz invariance, the scattering amplitude is a function of the Mandelstam vari-

ables s, t, u. At low energies, the theory is described by contact interactions, and A4 is a

purely analytic function of s, t, u, which can be written as a power series for small s, t, u.

At higher energies, we become sensitive to the exchange of massive particles. For example,

at tree level, the existence of a particle of mass M leads to poles as s, t, u → M2. As a

consequence of locality, these poles must be simple poles. Moreover, the residues of the

poles are fixed by kinematics. In particular, near the s-channel pole, the amplitude can be

– 6 –
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written as1

A4(s, t, u)
s→M2

−−−−−→ 1

s−M2

∑
λ

Aλ3(p1, p2, pI)A
−λ
3 (p3, p4,−pI) . (2.1)

We see that the residue of the pole factorizes into a product of on-shell three-particle

amplitudes Aλ3 involving two scalars and a massive spin-S particle with helicity λ. These

three-particle amplitudes are simple because there are no kinematical invariants analogous

to s, t, u for three-particle scattering. To see this, note that p2
n = −m2, implies (p1 +

p2)2 = (−p3)2 = −m2, etc. As we show in the insert below, the allowed three-particle

amplitudes depend on the spin of the exchanged particle. Summing over the different

helicity contributions, we get

A4(s, t, u)
s→M2

−−−−−→ g2 (4m2 −M2)S

s−M2
Pd,S

(
1 +

2t

M2 − 4m2

)
, (2.2)

where g is a coupling constant and Pd,S is the d-dimensional Gegenbauer polynomial. For

d = 2 and d = 3, the Gegenbauer polynomials become the Chebyshev and Legendre poly-

nomials, respectively. Note that the coefficient of the Gegenbauer polynomial is positive;

this is a consequence of unitarity.

Derivation — In this insert, we derive (2.2) for exchange particles with different spin.

• S = 0: if the internal state is a massive scalar, then the three-particle amplitude A3 is

just a constant,

A3(p1, p2, p3) = g , (2.3)

where g determines the interaction strength.

• S = 1: if the internal state is a massive vector, then Aλ3 must depend on the polarization

vector ελµ. Since pµελµ = 0, the most general amplitude is of the form

Aλ3 (p1, p2, p3) = g (pµ1 − pµ2 )ελµ(p3) . (2.4)

• S ≥ 1: if the internal state is a massive particle of general spin S, then we have

Aλ3 (p1, p2, p3) = g (p1 − p2)µ1 · · · (p1 − p2)µS ελµ1...µS (p3) . (2.5)

The polarization sum in the four-point amplitude (2.1) then reads

Pd,S(k, q) ≡
∑
λ

kµ1 · · · kµS qν1 · · · qνS ελµ1...µS ε
−λ
ν1...νS , (2.6)

where k ≡ p1 − p2 and q ≡ p3 − p4. This sum is evaluated most easily in the rest frame of

the massive particle, where only the spatial components of the polarization tensors are non-

vanishing. Switching to real space variables for the sake of notational familiarity, we then have

Pd,S(x,y) =
∑
λ

xi1 · · ·xiS yj1 · · · yjS ελi1...iS ε
−λ
j1...jS

≡ |x|S |y|SPd,S(cos θ) , (2.7)

1Note that our convention for the overall sign of the scattering amplitude is the opposite of that used in

most textbooks, e.g. [71–73], but is common in the modern literature on scattering amplitudes, e.g. [38–40].

Of course, this sign is physically irrelevant.
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where cos θ ≡ x · y/|x||y|. The sum over the polatization tensors must be made out of Kro-

necker delta’s, be symmetric in all i’s and j’s and traceless in the i’s and j’s separately. The

tracelessness condition implies

∇2
xPd,S(x,y) = 0 . (2.8)

The solution to the d-dimensional Laplace equation is

1

|x− y|d−2
=

1

(|x|2 − 2|x||y| cos θ + |y|2)d/2−1
=

1

|y|d−2

∞∑
S=0

( |x|
|y|

)S
C

(d/2−1)
S (cos θ) , (2.9)

where we have introduced the d-dimensional Gegenbauer polynomials. From the term propor-

tional to |x|S , we read off Pd,S(cos θ) = C
(d/2−1)
S (cos θ). Writing the amplitude in a Lorentz-

invariant form gives (2.2).

The most general four-particle amplitude arising from tree-level exchange therefore takes

the form

A4(s, t, u) = g2 (4m2 −M2)S

s−M2
Pd,S

(
1+

2t

M2 − 4m2

)
+ t- and u-channels + analytic . (2.10)

Symmetries and kinematics have fixed the structure of the amplitude near physical poles.

The rest of the amplitude is analytic. Note that the separation of the amplitude into

“pole” and “polynomial” parts is not unique; it is only the residues on the poles that have

unambiguous meaning.

A similar argument applies to the exchange of massless particles.2 The structure of the

three-particle amplitude is the same but with the replacement Pd,S(cos θ)→ Pd−1,S(cos θ).

This is a consequence of the little group reducing from SO(d) to SO(d − 1) for massless

particles. Note that for scalars and vectors the Gegenbauer polynomials are independent of

dimension, namely Pd,S=0(cos θ) = 1 and Pd,S=1(cos θ) = cos θ for all d. This implies that

the amplitudes have a smooth limit as M → 0. Starting at S = 2, however, the Gegenbauer

polynomials do depend on the dimension; for example, Pd,S=2(cos θ) = d cos2 θ − 1. The

amplitudes for particles with S ≥ 2 therefore have a discontinuity in the massless limit.

For spin two, this is the famous vDVZ discontinuity of massive gravity [82, 83]. Finally,

we note that in the limit M,m→ 0 the amplitude simplifies to tS/s.

2.2 Correlators in de Sitter space

We have seen that the four-scalar scattering amplitude was determined by Poincaré invari-

ance, locality, and unitarity, together with an ansatz giving the amplitude the “simplest

possible” analytic structure: being analytic in the case of contact interactions, and having

simple poles for tree-level particle exchange. In this paper, we will show that a similar logic

constrains the structure of conformally-invariant3 four-point functions in de Sitter space.

2In the case of massless particles, the requirement of consistent factorization of four-particle amplitudes

is highly restrictive, and makes almost all theories, other than the familiar gauge theories and gravity,

inconsistent [74–81].
3Strictly speaking, the correlation functions in question are covariant under the conformal symmetry.

For simplicity, we will not make this distinction and use conformal covariance and invariance synonymously

throughout the paper.
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We will first review the de Sitter isometries and show how they completely fix two- and

three-point functions. After that, we will set up the problem of determining the structure

of four-point functions both for contact interactions and for tree-level exchange.

2.2.1 Boundary perspective

In most of this paper, we will study quantum fields on a fixed four-dimensional de Sitter

background. In flat slicing, the metric of the dS spacetime can be written as

ds2 =
−dη2 + dx2

(Hη)2
, (2.11)

where H is the Hubble scale and η is conformal time. The line element is manifestly

invariant under spatial translations and rotations. Less obvious isometries are dilatation

and special conformal transformations (SCTs), whose associated Killing vectors are

D ≡ −η∂η − xi∂xi , (2.12)

Ki ≡ 2xiη∂η + 2xixj∂xj + (η2 − |x|2)∂xi . (2.13)

Correlators of quantum fields in dS must be invariant under the action of these isometries.

At late times, η → 0, a massive scalar field σ(η,x) behaves as

lim
η→0

σ(η,x) = σ+(x) η∆+
+ σ−(x) η∆− , (2.14)

where the scaling dimensions are

∆± =
3

2
∓ iµ , µ ≡

√
m2

H2
− 9

4
. (2.15)

We will mostly be interested in the correlation functions of conformally coupled scalars ϕ

and massless scalars φ, for which ∆+ = 2 and 3, respectively. The action of the genera-

tors (2.12) and (2.13) on the boundary operators σ±(x) becomes

D ≡ −∆± − xj∂xj , (2.16)

Ki ≡ 2∆± xi + 2xixj∂xj − |x|2 ∂xi , (2.17)

which are the generators of the conformal group in three dimensions. Because of transla-

tional invariance, cosmological correlators are usually studied in Fourier space. The Fourier

transforms of the operators (2.16) and (2.17) are

D ≡ −(∆± − 3) + kj∂kj , (2.18)

Ki ≡ 2(∆± − 3)∂ki − 2kj∂kj∂ki + ki∂kj∂kj , (2.19)

which are the generators acting on σ±(k).4 Unless stated otherwise, we will present the

correlation functions of σ+, but drop the superscript to avoid clutter. The correlation

functions of σ− are related to those of σ+ by simple momentum-dependent rescalings.

4For spinning operators, the action of the conformal group is more complicated, as SCTs also rotate the

indices of the operator.
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Two-point functions. The conformal group constrains the functional form of two-point

functions to be

〈σ1σ2〉 =

{
cσ1k

2∆1−3
1 × (2π)3δ3(k1 + k2) , ∆1 = ∆2 ,

0 , ∆1 6= ∆2 ,
(2.20)

where σn is shorthand for σn(kn). Dilatation symmetry fixes the overall momentum scaling,

while SCTs only allow nonzero two-point functions for ∆1 = ∆2. The only freedom left is

in the overall size of the correlation function, set by the constant cσ1 .

Three-point functions. Rotations and translations fix the form of generic three-point

functions to be

〈σ1σ2σ3〉 = B(k1, k2, k3)× (2π)3δ3(k1 + k2 + k3) . (2.21)

Just like Poincaré symmetry completely fixes three-particle scattering amplitudes, confor-

mal symmetry determines the functional form of three-point functions [84, 85] (see [32]

for a detailed analysis in momentum space). During inflation, the breaking of the exact

conformal symmetry allows for more freedom. As we will show in section 6, if the breaking

is sufficiently weak, these three-point correlators can be derived from the soft limits of

conformally-invariant four-point functions (see also [58, 69]).

Four-point functions. It is well known that four-point functions in conformal field the-

ories are less constrained kinematically. In position space, they are given by an arbitrary

function of two conformally-invariant cross-ratios. In this paper, we will study the kine-

matic constraints due to SCTs in momentum space, where the four-point function of scalar

operators takes the form

〈σ1σ2σ3σ4〉 = F (k1, k2, k3, k4, s, t)× (2π)3δ3(k1 + · · ·+ k4) . (2.22)

Momentum conservation and rotational invariance imply that the four-point function F

depends on six independent variables before imposing conformal symmetry. It is convenient

to take these variables to be the magnitudes kn ≡ |kn|, and Mandelstam-like variables5

s ≡ |k1 + k2| and t ≡ |k2 + k3|. In the inflationary literature, kI is often used in place of

s, and the sum of the energies kn is written as kt ≡
∑

n kn. Sometimes, we will trade t for

τ ≡ (k1 − k2) · (k3 − k4). Constraints from dilatation symmetry and SCTs reduce these

six independent variables to just two, which in position space are the conformally-invariant

cross-ratios. In momentum space, we will use

u ≡ s

k1 + k2
, v ≡ s

k3 + k4
. (2.23)

5From now on, we will denote the flat space, four-dimensional Mandelstam variables by sflat and tflat.
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Invariance under (2.18) and (2.19) impose the constraints (−3+
∑Dn)F = 0 and

∑KinF =

0 on the four-point function: [
9−

4∑
n=1

(
∆n − kjn

∂

∂kjn

)]
F = 0 , (2.24)

4∑
n=1

[
kin

∂2

∂kjn∂k
j
n

− 2kjn
∂2

∂kjn∂kin
+ 2(∆n − 3)

∂

∂kin

]
F = 0 . (2.25)

Dilatation symmetry is trivially reflected in the overall scaling dimension of the correlator:

for a general N -point function, the correlator must have scaling dimension ∆t ≡
∑

n ∆n

in position space, and thus dimension ∆t − 3N in momentum space. Stripping off the

momentum-conserving delta function leaves us with a function of dimension ∆t−3(N−1).

To make the dilatation symmetry of the four-point function manifest, it will be convenient

to define F = s∆t−9F̂ , where the form of the dimensionless function F̂ will be dictated by

special conformal invariance.

Invariance under SCTs implies three differential equations that must be satisfied by

the correlators. A bit of tedious algebra turns (2.25) into

4∑
n=1

kinDnF = 0 , (2.26)

where we have defined

D1F ≡
[
∂2

∂k2
1

+
1

s

∂

∂s

(
k1

∂

∂k1
+ k2

∂

∂k2

)
+

1

t

∂

∂t

(
k1

∂

∂k1
+ k4

∂

∂k4

)
− k2

3

st

∂2

∂s∂t

− 2(∆1 − 2)

k1

∂

∂k1
+

∆1 + ∆2

s

∂

∂s
+

∆1 + ∆4

t

∂

∂t

]
F , (2.27)

and the rest are given by the cyclic permutation of the indices (remembering that t → s

under a cyclic shift). The operator Dn is a combination of the SCT and dilatation operators,

whose derivation can be found in appendix A. The only nontrivial way to satisfy (2.26)

is to demand that all DnF are equal to each other, so that
∑

n k
i
nDnF vanishes as a

consequence of momentum conservation.6 To satisfy the SCT constraint, we can therefore

pick any three of the six conditions

(Dn −Dm)F = 0 , (2.28)

for n,m = 1, . . . , 4.

Outline and strategy. In this paper, we will give a systematic classification of the

solutions to (2.28). Since the details are rather technical, we will begin with a rough sketch

of our general strategy for solving these equations.

6If all momenta are collinear, then perhaps other possibilities are allowed. However, in that case the

four-point function would have to vanish in any non-collinear configuration, which we rule out on the basis

of continuity.
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As we have alluded to above (see figure 2), an object of particular interest is the

four-point function of conformally coupled scalars, mediated by the tree-level exchange of

massive scalars. In that case, the s-channel contribution7 can be written as F = s−1F̂ (u, v),

an ansatz which automatically satisfies the equations D12F = 0 and D34F = 0, where

Dnm ≡ Dn −Dm. The remaining conformal invariance equation D13F = 0 becomes

(∆u −∆v)F̂ = 0 , (2.29)

where we have introduced the differential operator

∆u ≡ u2(1− u2)∂2
u − 2u3∂u . (2.30)

The simplest solutions to this equation correspond to the four-point functions arising from

contact interactions (see section 3.1). These solutions, which we will denote by Ĉ(u, v),

are characterized by the simplest singularity structure possible. For four-particle scatter-

ing amplitudes, the simplest analytic structure we could possibly have corresponded to

polynomials in the Mandelstam variables. But simply by scaling, this is impossible for our

correlators, since even if they are rational functions, they must have some sort of poles.

The simplest choice corresponding to “contact” terms in the bulk is one where the correla-

tor has poles in the “total energy” variable kt ≡
∑
kn. As we will review in greater detail

below, this pole reflects a universal singularity of the correlator associated with bulk time

integrals where all the times head off to the infinite past, and the residue of this singularity

is related to the flat-space scattering amplitude. The contact terms can be classified by

the order of the pole. For example, the simplest solution corresponding to the bulk ϕ4

interaction is

Ĉ0 =
s

kt
=

uv

u+ v
. (2.31)

A tower of higher-derivative contact interactions is created by repeated application of ∆u:8

Ĉn ≡ ∆n
uĈ0 =

(
s

kt

)2n+1

f̂n(u, v) , (2.32)

where the functional form of f̂n(u, v) is fixed by conformal invariance.

For general tree exchange, we can write (2.29) as ordinary differential equations in u

and v separately:

(∆u +M2)F̂ = (∆v +M2)F̂ = Ĉ(u, v) , (2.33)

7It suffices to impose conformal invariance of a single channel to fix the whole four-point function. To

see this, note that the correlator 〈OOO′O′〉 with ∆O = ∆O′ , which is conformally invariant, coincides with

the s-channel of 〈OOOO〉. The other channels can be included by cyclic permutations, e.g. by replacing u

with |k2 +k3|/(k2 + k3) and |k2 +k4|/(k2 + k4) for the t- and u-channels, respectively. Finally, for contact

interactions, “s-channel” refers to a specific permutation of the external momenta.
8The basis (2.32) corresponds only to a subset of all possible contact terms, namely those arising from

integrating out scalar particles. To generate contact terms coming from the exchange of massive particles

with spin, we must feed the Ĉn into the spin-exchange ansatz of section 4.2— cf. (4.4) and (4.35)—and

sum over permutations. The resulting basis will be over-complete, but will encompass all possible scalar

contact interactions. We thank Scott Melville and the anonymous referee for discussions on this point.
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Figure 3. The four-point point function arising from tree exchange in the s-channel satisfy a pair

of ordinary differential equations (2.33), that determine the dependence as u ∝ (k1 +k2)−1 is varied,

or as v ∝ (k3 + k4)−1 is varied. These correspond to two different “holographic” pictures for time

evolution, which are nontrivially mutually consistent.

where the function Ĉ(u, v) must satisfy (2.29) and the parameter M2 ≡ µ2 + 1
4 is fixed in

terms of the mass of the exchange particle. The operator ∆u determines how the four-point

function changes as we scale k1 +k2, while keeping k3 and k4 fixed. Similarly, ∆v describes

the change when varying k3 + k4, for fixed k1 and k2 (see figure 3). In the limit µ → ∞,

the differential operators ∆u and ∆v become irrelevant, and the solution reduces to the

contact interactions obtained previously, F̂c ≡ µ−2Ĉ. This makes sense, since in this limit

the exchange particle can be integrated out, and the theory should reduce to pure contact

terms. The four-point function for general tree exchanges is then obtained by solving the

differential equations (2.33) with source terms given by the allowed conformally-invariant

contact terms.

A formal solution of (2.33) is

F̂ =
∑
n

(
−∆u

M2

)n Ĉ

M2
. (2.34)

This is the effective field theory (EFT) expansion of the correlation function. We see that

the solution is a sum over the contact terms ∆n
uĈ, organized in powers of M−2, i.e. as an

expansion in the inverse mass of the exchange particle is units of the Hubble parameter.

Moreover, the solution is analytic to all orders in M−2. For scattering amplitudes this

statement would be exact, but in a time-dependent background we expect nonperturba-

tive corrections due to spontaneous particle production. This effect scales as e−πµ and is

encoded in additional homogeneous solutions to (2.33).

To identify the effects of particle production, it is useful to write the solution of the

inhomogeneous equation (2.33) as two separate series expansions around u = 0 and u =∞.

Unlike the EFT expansion, which is formal, these expansions will have a well-defined radius

of convergence. Matching these two series expansions at |u| = |v| will force us to add a

specific homogeneous solution. This extra piece captures the effect of spontaneous particle

production, but here arises simply from the wish to define the solution for all u and v.

The freedom to add further homogeneous terms to the solution is removed by requiring

the solution only to have the physically expected singularities.

Inspection of the operator ∆u shows that the general solution of (2.33) has the following

two singularities (see also figure 4):

lim
u→+1

F̂ ∝ log(1− u) , (2.35)

lim
u,v→−1

F̂ ∝ log(1 + u) log(1 + v) . (2.36)
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(a) Collinear limit: u→ +1. (b) Factorization channel: u, v → −1.

Figure 4. Illustration of two important singularities of the solution F̂ (u, v). The singularity in

the collinear limit should be absent for the adiabatic vacuum. The singularity in the factorization

channel is an avatar of the standard factorization of the scattering amplitude and therefore expected

to be present.

The former should be absent for the standard adiabatic vacuum, while the latter corre-

sponds to the standard factorization of the flat-space amplitude and is therefore expected

to be there. Requiring the absence of the unphysical singularity (2.35) and correctly nor-

malizing the physical singularity (2.36) completely fixes the solution (see section 3.2). For

small u and v, with u� v, we find

F̂ =
∑
n

(−1)n

(n+ 1
2)2 + µ2

(
u

v

)n+1

+
π

2 coshπµ

(
u

v

) 1
2 sin(µ log u/v)

µ
, (2.37)

where the first term is analytic and corresponds to the EFT expansion, while the second

term is the non-analytic correction due to particle production. The solution for general

values of u and v takes a similar form and will be presented in section 3. We see that the

nonperturbative correction oscillates in the collapsed limit u→ 0, with a frequency set by

the mass of the exchange particle. This characteristic signature of massive particle exchange

during inflation was first highlighted in [58]. Solutions corresponding to the exchange of

particles with spin will be given in section 4. Finally, in section 5, we will show that these

solutions can be mapped to the corresponding solutions for massless external fields.

Note that this derivation, mirroring that of the construction of tree-level scatter-

ing amplitudes, reflects the ability to encode “time without time”, reproducing what

is normally thought of as an intrinsically “time-dependent” phenomenon from a purely

boundary perspective.

2.2.2 Bulk perspective

It is instructive to re-derive the conformal constraint equations from the bulk integrals

defining the correlators in the in-in formalism [17, 86]. From the bulk perspective, the

tree-exchange diagram involves integrating over two different times η and η′ associated

with the three-point interactions. A differential operator in k1 + k2 can be applied to

collapse the internal propagator, giving the equation we have found above.

For concreteness, let us assume a three-point vertex of the form gϕ2σ, where σ is the

massive particle being exchanged and g is a coupling constant. The corresponding four-
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point function can schematically be written as (see section B.2 for a more precise discussion)

F̂ = −g
2

s2

∫
dη

η2

dη′

η′2
eik12ηeik34η′Ĝ(sη, sη′) , (2.38)

where Ĝ(sη, sη′) ≡ s3G(s, η, η′) and we have set H ≡ 1. Instead of trying to compute the

integral, we note that bulk-to-bulk propagator satisfies(
η2∂2

η − 2η∂η + s2η2 +m2
)
G(s, η, η′) = −iη2η′2 δ(η − η′) . (2.39)

Since Ĝ depends on η, η′ only in the combinations sη and sη′, it is easy to trade η-derivatives

with s-derivatives. To have the derivatives act only on the first argument of the Green’s

function, we rescale η′ → η′/s. The function sF̂ then satisfies the differential equation

1

s

(
s2∂2

s − 2s∂s − s2∂2
k12

+m2
) (
sF̂
)

= ig2s

∫
dη eiktη = g2 s

kt
. (2.40)

Letting F̂ = F̂ (u, v), and using (2.15), we find

(∆u +M2)F̂ = g2 uv

u+ v
, (2.41)

where M2 ≡ m2−2. This is precisely our previous result (2.33) for the lowest-order contact

term (2.31). Permutation symmetry implies a second equation with u↔ v. We can think

of (2.41) as tracking the evolution in η purely in boundary terms, while the corresponding

equation in terms of v tracks the evolution in η′. The fact that these two histories are

consistent, and give the same four-point function, is made manifest in the bulk picture,

but it is nonetheless a nontrivial property of the solution.

A particularly interesting limit of the correlator is kt → 0. Of course, this limit cannot

be reached for physical momenta with positive magnitudes, but requires an analytic con-

tinuation of the momenta. In this limit, we expect the correlator to have a singularity with

a coefficient that is related to the flat-space scattering amplitude [24, 44]. Rather remark-

ably, cosmological correlators therefore contain in them flat-space scattering amplitudes.

This provides a strong consistency condition on the structure of cosmological correlators.

This feature of the correlator has a simple bulk interpretation. The four-point function

coming from a contact term involves an integral of the form

F ∼
∫ 0

−∞
dη ηp−1eiktηA(k1, k2, k3, k4) → Aflat

kpt
, (2.42)

where Aflat is the flat-space amplitude in the high-energy limit upon a suitable analytic

continuation of the energies. The singularity for kt → 0 arises when all bulk interactions

are pushed to very early times η → −∞. Since all interactions are then far from the future

boundary of the de Sitter spacetime, we expect to recover flat-space results. For instance,

taking the flat-space limit of the contact terms in (2.32), we find

lim
kt→0

Cn = (2n)!
snflat

k2n+1
t

, (2.43)
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where sflat = (k1 + k2)2 − |k1 + k2|2 is the four-dimensional Mandelstam invariant. We

recognize the numerator as the derivative expansion of the flat-space amplitude. Similarly,

the flat-space limit of the scalar-exchange solution turns out to be (see section 3.3)

lim
kt→0

F =
1

sflat
(−kt log kt) . (2.44)

We see that the discontinuity at kt = 0 is related to the high-energy limit of the scattering

amplitude, Aflat = 1/sflat.

Finally, let us show that conformal invariance of the correlator implies Lorentz in-

variance of the amplitude. To see this, consider the SCT constraint (2.25) for the ansatz

F = Aflatk
−p
t . The most singular contribution, proportional to k−p−2

t , arises from terms

with two derivatives in the generator. However, the result is proportional to the sum of

spatial momenta and therefore vanishes due to momentum conservation. The next most

singular piece, proportional to k−p−1
t , is more interesting and leads to∑

n

knb
j∂
kjn
Aflat = 0 . (2.45)

If we consider the “four-momentum” kµ ≡ (k,k)µ, with k = |k|, then (2.45) implies that

Aflat is a Lorentz-invariant function of the null momenta kµ, with Lorentz transformations

given by δk0 = bjkj and δkj = bjk0.

2.3 Symmetries and singularities

In this section, we have shown how symmetries and singularities constrain the structure

of correlation functions in de Sitter space in a way that is completely analogous to the

bootstrapping of amplitudes in flat space. Let us summarize the many parallels and a few

small differences:

• In flat space, Lorentz invariance demands that scattering amplitudes are functions

of the Mandelstam invariants, A4(s, t), while in de Sitter space, conformal invariance

imposes the constraint (∆u −∆v)F̂ = 0 on the dimensionless four-point function F̂ .

• While contact terms in flat space correspond to purely analytic terms in the am-

plitude, in de Sitter space contact terms have poles at kt = 0. Higher-order poles

correspond to higher-derivative interactions.

• By locality, the only allowed singularities of tree-level amplitudes are simple poles,

i.e. (s −M2)A4 = analytic, corresponding to the exchange of massive particles. In

de Sitter space, tree exchange is described by a pair of differential equations

(∆u +M2)F̂ = Ĉ ,

(∆v +M2)F̂ = Ĉ ,
(2.46)

where Ĉ is one of the contact solutions.
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• On the poles, s → M2, four-particle amplitudes factorize into products of three-

particle amplitudes with positive coefficients. Similarly, de Sitter four-point func-

tions factorize into products of three-particle amplitudes in the limit u, v → −1.

The correct normalization of this limit is an important condition in determining the

solution.

• The de Sitter correlators can have a singularity as u → 1, corresponding to the

flattened momentum configuration shown in figure 4. This singularity specifies the

initial state and has no analog in the amplitudes bootstrap. We expect no such

singularity if the initial state is the standard adiabatic vacuum. Demanding the

absence of this singularity, together with the correct normalization of the factorization

channel, completely fixes the solution.

In the rest of the paper, we will apply this formalism to derive analytic solutions for de

Sitter four-point functions and inflationary three-point functions.

3 De Sitter four-point functions

We begin our exploration with the four-point function of scalar fields in de Sitter space. We

will consider both contact interactions and tree-level exchange of massive scalars. We will

take the external fields to be conformally coupled scalars ϕ, with scaling dimension ∆ = 2

(corresponding to bulk scalars with m =
√

2H). A spin-raising operator will relate the

solutions that we will obtain in this section to solutions for general spin exchange (see sec-

tion 4), while a weight-shifting operator will map the solutions to four-point functions

of external scalars φ, with ∆ = 3 (corresponding to massless scalars in the bulk) (see

section 5+section E).

In section 3.1, we derive the simplest solutions to the conformal invariance equa-

tions (2.28), corresponding to contact interactions in the bulk. We show that the solu-

tions can be organized by inverse powers of kt =
∑
kn. In section 3.2, we study tree-level

exchange for which the conformal invariance equations separate into a pair of ordinary dif-

ferential equations. We first consider a simple limit of these equations, where the dynamics

reduces to that of a forced harmonic oscillator. We identify the oscillatory part of the solu-

tion with the effects of particle production in the expanding spacetime. Finding the general

solution is more involved, but the structure of the answer is the same as in the harmonic

oscillator limit. In section 3.3, we explicitly confirm the expectation that the correlator

contains the scattering amplitude in the limit kt → 0. Moreover, we relate the disconti-

nuity at kt = 0 to the effects of particle production, providing an interesting link between

scattering in flat space and particle production in curved space. Finally, in section 3.4, we

speculate about the fate of the kt-singularity in gravitational UV completions.

3.1 Contact interactions

We first consider the four-point functions associated with contact interactions. Up to six

derivatives, the independent bulk interactions are ϕ4, ϕ2ϕ;µνϕ
;µν and ϕ2ϕ;µνρϕ

;µνρ, using

– 17 –



J
H
E
P
0
4
(
2
0
2
0
)
1
0
5

integration by parts and equations of motion.9 In the following, we will reproduce this fact

from the boundary perspective and determine the corresponding four-point functions.

First, we assume that the four-point function F depends only on the magnitudes kn. In

that case, the s and t dependences drop out in (2.27), and the constraint equations (2.28)

simply become

(∂2
kn − ∂2

km)F = 0 . (3.1)

These wave equations are solved by F (kn) = Fc(±k1±k2±k3±k4), where Fc is an arbitrary

function. The absence of any singularities in the physical region kn > 0, and the fact that

Fc has mass dimension −1, fixes the solution to be

Fc(kn) =
c0

kt
, (3.2)

where c0 is an arbitrary coupling constant. This is the four-point function due to the bulk

interaction ϕ4.

Next, we allow F to depend on s and t. It is easy to see from the form of the conformal

invariance equation that the dependence on s and t must be a polynomial dependence on

s2 and t2. We therefore try the ansatz

Fc(kn, s, t) = gs(kn)s2 + gt(kn)t2 + h(kn) , (3.3)

assuming higher orders of s2 and t2 to be absent. The conformal invariance equation then

implies that the coefficient functions satisfy (∂2
kn
− ∂2

km
)gs,t = 0, which must take the form

gs,t = cs,tk
−3
t because Fc has mass dimension −1. The only singularities of the function

h(kn) are also of the form k−3
t , and the general solution is

Fc(kn, s, t) =
cs[s

2 + (k1 + k2)(k3 + k4)] + ct[t
2 + (k2 + k3)(k1 + k4)]

k3
t

+
c0

kt
. (3.4)

A symmetry under the exchange k1 ↔ k3 would require the coefficients cs and ct to be

equal to each other, while a symmetry under k1 ↔ k2 would enforce cs = ct = 0. The

four-point function of identical scalars therefore has no nontrivial dependence on s2 and t2

at this order. This has a simple bulk interpretation: the interaction ϕ2(∂µϕ)2 does not give

rise to a new shape, since it is identical to ϕ4 after integration by parts; i.e. ϕ2(∂µϕ)2 ∼
ϕ3�ϕ = 2H2ϕ4 on-shell.

To derive the most general form of the four-point function due to contact interactions,

we now solve the conformal invariance equation systematically. Consider the ansatz F =

s−1F̂ (u, v), where F̂ satisfies (2.29):

(∆u −∆v)F̂ = 0 , (3.5)

where the differential operator ∆u was defined in (2.30). The simplest solution of this

equation is given by (3.2), which we can write as

F̂c(u, v) = c0
uv

u+ v
≡ c0 Ĉ0(u, v) . (3.6)

9Counting such independent operators up to total derivatives and equations of motion is equivalent to

counting flat-space S-matrices; see e.g. the discussion in §4.1 of [87].
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All higher-derivative contact interactions coming from the integrating out of massive scalars

can be generated by acting with ∆u on Ĉ0, i.e. Ĉn(u, v) ≡ ∆n
uĈ0(u, v), which trivially

satisfy the constraint (∆u−∆v)Ĉn = 0. A general contact solution is a linear combination

of these solutions

F̂c(u, v) =

∞∑
n=0

cn∆n
uĈ0(u, v)

= c0
uv

u+ v
− 2c1

(
uv

u+ v

)3 1 + uv

uv
(3.7)

− 4c2

(
uv

u+ v

)5 u2 + v2 + uv(3u2 + 3v2 − 4)− 6(uv)2 − 6(uv)3

(uv)3
+ · · · ,

where the dimensionless parameters cn are couplings constants.10 The solution has a few

interesting features:

• The expansion is organized in powers of uv/(u + v) = k−1
t , multiplied by functions

whose form is dictated by conformal symmetry. Already at this early stage, we can

appreciate the power of this boundary perspective on de Sitter correlators. Even

these contact interactions are relatively intricate functions of the momenta, but are

fully controlled by symmetries and singularities without any reference to a Lagrangian

description.

• The shapes produced by different bulk interactions correspond to linear combinations

of the contact terms Ĉn; for example {c0, c1, c2} = {1, 0, 0} for ϕ4 and {1, 1, 1/4} for

(∂µϕ)4. Here, the coefficients cn were determined by looking at a single arrangement

of the external legs, and the final four-point function is obtained by summing over

all permutations. For identical fields, the contact term Ĉ1 then won’t contribute to

the four-point function; see the discussion below (3.4).

• The solution is symmetric under the exchange u↔ v. In fact, this is a general feature

of all conformally-invariant four-point interactions. This is manifest in (3.7) because

Ĉ0(u, v) is symmetric and Ĉ1 = ∆uĈ0 = ∆vĈ0, etc. (by conformal symmetry).

• Finally, the flat-space limit kt → 0, or u→ −v, of the individial contact terms is

lim
kt→0

Cn = (2n)!
snflat

k2n+1
t

. (3.8)

We see that each contact term has a pole in kt, whose residue is a positive power

of the Mandelstam invariant sflat. This confirms the expected relation between the

singularity of the correlator at kt = 0 and the scattering amplitude for contact interac-

tions. When the correlator is a sum of contact terms, the coefficients of the expansion

should inherit positivity from the positivity of the corresponding parameters in the

low-energy limit of the scattering amplitude [88].
10In a bulk theory with a derivative expansion, i.e. a weakly coupled EFT of a self-interacting scalar field

with a cutoff Λ, we expect the expansion coefficients to satisfy the scaling cn ∼ (H/Λ)2n. Even though

the contact terms appear to be on an equal footing in (3.7), the Ĉn’s therefore become less relevant for

increasing n.
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3.2 Tree-level exchange

Next, we consider the four-point function involving the tree-level exchange of a scalar

particle. We will perform the analysis in several steps of increasing level of generality.

In the operator product expansion (OPE) limit, we expect the four-point function to

factorize into a product of three-point functions. A simple product of conformally invariant

three-point functions should therefore produce a conformally invariant four-point function.

To see this, consider the ansatz

F̂ (u, v) = Î(u)Ĵ(v) , (3.9)

where Î(u) and Ĵ(v) satisfy the correct constraint equation for a three-point function

involving a massive particle (see section A.2):[
∆u +

(
µ2 +

1

4

)]
Î(u) = 0 ,[

∆v +

(
µ2 +

1

4

)]
Ĵ(v) = 0 .

(3.10)

It is then trivial to see that (3.9) solves the conformal invariance condition (3.5).

This motivates us to find a more general solution of conformal invariance, not of the

factorized form, but satisfying (∆u −∆v)F̂ = 0 by taking[
∆u +

(
µ2 +

1

4

)]
F̂ =

[
∆v +

(
µ2 +

1

4

)]
F̂ = Ĉ(u, v) . (3.11)

Note that these are now ordinary differential equations in u and v separately. The solution

corresponding to a product of three-point functions corresponds to homogeneous solutions

to these equations, which explains the introduction of the µ-dependent terms, to dictate the

mass of the exchanged particle. For consistency, the source functions Ĉ(u, v) must satisfy

(∆u − ∆v)Ĉ(u, v) = 0 and are thus themselves conformally invariant. For large µ, the

interaction effectively reduces to a contact interaction, F̂ (u, v) → F̂c(u, v) = µ−2Ĉ(u, v).

Given our classification of the contact solutions in section 3.1, we can therefore classify the

corresponding exchange solutions.

The differential operator ∆u has three singularities at u → 0 and u → ±1, and thus

the homogeneous solutions of (3.11) can be expressed as hypergeometric functions, which

we will denote by F̂+ and F̂−. The Wronskian W [F̂+, F̂−] = F̂+F̂
′
− − F̂−F̂ ′+ satisfies

∂uW = 2u/(1−u2)W , so it is natural to normalize the solutions so that W = 1/(1−u2).11

The homogeneous solutions are then

F̂±(u) =

(
iu

2µ

) 1
2
±iµ

2F1

[
1
4 ±

iµ
2 ,

3
4 ±

iµ
2

1± iµ

∣∣∣∣∣u2

]
. (3.12)

From the differential equation directly, we can see that the solution has logarithmic singu-

larities for u → ±1. This is reflected in the fact that the sum of the first two parameters

11This choice of normalization avoids unnecessary factors of µ in the intermediate steps, but the final

solution will of course not depend on it.
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of the hypergeometric function equals the third, which implies that there is a logarithmic

singularity as we take its argument u2 → 1 (see appendix F). In the limit u → 1, the

solution has the following singular behavior

lim
u→1

F̂±(u) = α± log(1− u) , where α± ≡ −
(
i

2µ

) 1
2
±iµ Γ(1± iµ)

Γ(1
4 ±

iµ
2 )Γ(3

4 ±
iµ
2 )

. (3.13)

As we explained in section 2.2, this corresponds to a singularity in the collinear limit,

which should be absent in the standard adiabatic vacuum. Removing this singularity will

be important for determining the physically relevant solution.

We now wish to find the particular solution to the inhomogeneous equation (3.11). For

concreteness, we will choose the simplest contact term Ĉ0 as a source:12[
∆u +

(
µ2 +

1

4

)]
F̂ = g2 uv

u+ v
. (3.14)

The coupling constant g2 can be absorbed into the normalization of F̂ , so we will set g2 ≡ 1.

We will first study this equation in a simple limit and then for the general case.

Harmonic oscillator. Consider the limit v → 0. Writing u = ξv and F̂ = vF̃ , the

differential equation (3.14) then takes the form[
ξ2∂2

ξ +

(
µ2 +

1

4

)]
F̃ =

ξ

1 + ξ
. (3.15)

Defining F̃ =
√
ξ q and ξ = eρ, this becomes the equation of a forced harmonic oscillator

(∂2
ρ + µ2)q =

1

2 cosh(1
2ρ)

. (3.16)

The homogenous solutions of this equation are e±iµρ = ξ±iµ. The particular solution that

vanishes at early “times”, i.e. when ξ → 0, can be written as a power series in ξ:

q<(ξ) =

∞∑
n=0

(−1)n
ξn+1/2

(n+ 1
2)2 + µ2

. (3.17)

Modulo the overall factor of
√
ξ, this solution is analytic around ξ = 0. It is convergent for

ξ ≤ 1 and divergent for ξ > 1. We are interested in the analytic continuation of the solution

for ξ > 1. In this simple case, we could recognize the solution as a hypergeometric function

q<(ξ) =
∑
±

±i√ξ
µ(1± 2iµ)

2F1

[
1
2 ± iµ, 1

3
2 ± iµ

∣∣∣∣∣ − ξ
]
, (3.18)

and rely on the known analytic structure of the hypergeometric functions. To make contact

with the general case, however, it will be more useful to understand the regime ξ > 1

directly from the properties of the differential equation and the series expansion itself.

12As we will see below, the exchange solutions with higher-order contact terms as sources are related in

a very simple way to the solution derived from Ĉ0.
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Note that another solution of the differential equation, which is analytic around ξ →∞,

can be written as a power series in 1/ξ:

q>(ξ) =

∞∑
n=0

(−1)n
ξ−n−1/2

(n+ 1
2)2 + µ2

. (3.19)

Since q<(ξ) and q>(ξ) satisfy the same differential equation, the difference q<(ξ) − q>(ξ)

must be a solution of the homogeneous equation, i.e.

q<(ξ)− q>(ξ) =
∑
±
A±ξ±iµ . (3.20)

Continuity at ξ = 1 then implies that A+ = −A− ≡ A and

2iµA =
∞∑
n

(−1)n
(2n+ 1)

(n+ 1
2)2 + µ2

=
π

coshπµ
, (3.21)

where the second equality can be established by showing that the residues at µ = ±i(k+ 1
2)

match on both sides. We have therefore obtained an explicit form for the solution of the

differential equation which is analytic around the origin:

F̃<(ξ) =



∞∑
n=0

(−1)n
ξn+1

(n+ 1
2)2 + µ2

for ξ ≤ 1 ,

∞∑
n=0

(−1)n
ξ−n

(n+ 1
2)2 + µ2

+
π

coshπµ

ξ
1
2
−iµ − ξ 1

2
+iµ

2iµ
for ξ ≥ 1 .

(3.22)

We see that it is impossible for the solution which is analytic around ξ = 0 to be analytic

around ξ =∞. It is also notable that for large µ, we have an expansion for F̃<(ξ) in powers

of 1/µ, and each term in this “effective field theory expansion” is analytic both around

ξ → 0 and ξ →∞; but there is a nonperturbative correction of order e−πµ which spoils this

property. In the oscillator analog, we begin with a ball at rest at early times, and “kick” it

with the forcing term, ending up with an oscillating ball at late times. In the cosmological

context, the presence of these oscillatory terms can physically be attributed to particle

production by the time-dependent inflationary background. It is striking that an effect we

normally so vividly ascribe to “time-dependence”, follows directly from consideration of

the conformal invariance equations, which are formulated purely on the future boundary

of the spacetime and make no direct reference to “time evolution” whatsoever.

General case. Having studied the solution in the limit v → 0, let us return to the

full differential equation (3.11). We will again find it easier to understand the analytic

properties of the inhomogeneous solution directly from a series expansion. The solution

written in canonical hypergeometric form can be found in appendix C.

We again have two solutions, F̂<(u, v) and F̂>(u, v), which are analytic for u→ 0 and

u→∞, repsectively. We will give a convergent series expansion for F̂<(u, v) when u < v,
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and another for F̂>(u, v) when u > v. As before, we will match the solutions at u = v, so

that F̂<(u, v) can be extended to u > v. The explicit solution for F̂< is

F̂<(u, v) =



∞∑
m,n=0

cmnu
2m+1(u/v)n u ≤ v ,

∞∑
m,n=0

cmnv
2m+1(v/u)n +

π

coshπµ

(
F̂+(v)F̂−(u)− F̂−(v)F̂+(u)

)
u ≥ v ,

(3.23)

where the series coefficients are given by

cmn =
(−1)n(n+ 1)(n+ 2) · · · (n+ 2m)

[(n+ 1
2)2 + µ2][(n+ 5

2)2 + µ2] · · · [(n+ 1
2 + 2m)2 + µ2]

. (3.24)

The details of the derivation can be found in the following insert.

Derivation — For u < v, we seek a power series solution of the form

F̂<(u, v) =

∞∑
m,n=0

cmnu
m+1(u/v)n . (3.25)

This form of the series solution is motivated by the series expansion of the source term uv/(u+

v). Plugging this ansatz into the differential equation, we find that the series coefficients obey

the following recursive relation:

c0n =
(−1)n

(n+ 1
2 )2 + µ2

, c1n = 0 , cm+2,n =
(m+ n+ 2)(m+ n+ 1)

(m+ n+ 5
2 )2 + µ2

cmn , (3.26)

where the condition c1n = 0 implies that cmn vanishes for all odd m. Redefining 2m→ m and

solving the recursive relation, we find

F̂<(u, v) =
∞∑

m,n=0

cmn u
2m+1(u/v)n , (3.27)

with

cmn =
(−1)n(n+ 1)(n+ 2) · · · (n+ 2m)

[(n+ 1
2 )2 + µ2][(n+ 5

2 )2 + µ2] · · · [(n+ 1
2 + 2m)2 + µ2]

. (3.28)

Note that the series solution (3.27) is the unique particular solution that is regular at the origin,

since both homogeneous solutions are non-analytic at u = 0. In contrast, regularity around

u =∞ does not uniquely fix F̂>(u, v). Instead, we will demand that the full particular solution

is symmetric under the exchange u↔ v. For u > v, the solution therefore is

F̂>(u, v) = F̂<(v, u) =

∞∑
m,n=0

cmn v
2m+1(v/u)n , (3.29)

where cmn are same coefficients as in (3.28). It is straightforward to check that (3.29)

solves (3.11).
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As before, the difference between the two particular solutions must be a homogeneous

solution, so we can write

F̂<(u, v)− F̂>(u, v) =
∑
±
A±(v;µ)F̂±(u) , (3.30)

where the functions F̂± are given by (3.12). Evaluating this at u = v gives A±(v;µ) =

∓a(v;µ)F̂∓(v), for some function a(v;µ). Matching the u-derivative at u = v fixes the function

in terms of the Wronskian of the homogeneous solutions, namely(
∂uF̂< − ∂uF̂>

)∣∣∣
u→v

= a(v;µ)
(
F̂+(v)F̂ ′−(v)− F̂ ′+(v)F̂−(v)

)
=
a(v;µ)

1− v2
= a(v;µ)×

∞∑
m=0

v2m . (3.31)

It remains to evaluate the left-hand side(
∂uF̂< − ∂uF̂>

)∣∣∣
u→v

=

∞∑
m,n=0

(2m+ 2n+ 1)cmnv
2m . (3.32)

Somewhat remarkably, the sum over n above is m-independent; we have the identity

∞∑
n=0

(2m+ 2n+ 1)cmn =

∞∑
n=0

(−1)n(2m+ 2n+ 1)(n+ 1) · · · (n+ 2m)

[(n+ 1
2 )2 + µ2] · · · [(n+ 1

2 + 2m)2 + µ2]
=

π

coshπµ
. (3.33)

Once again, this identity can be established by matching the residues on both sides. For

instance, for m = 1, only the terms in the sum with n = k−2, k have a residue as µ→ ±i(k+ 1
2 );

the residue is

− (−1)k(1 + k)(2 + k)

2(1 + 2k)
+

(−1)k(k − 1)k

2(1 + 2k)
= (−1)k , (3.34)

which matches that of the right-hand side. This allows us to fix a(v;µ) = π/ coshπµ indepen-

dent of v.

The solution (3.23) still has two deficiencies:

• First, it isn’t symmetric in u ↔ v, as required by consistency of the bulk evolution

(and the symmetry of the conformally-invariant contact terms). In particular, the

nonperturbative correction is absent as u→ 0, and as a result the solution is analytic

in this limit.

• Second, it has a singularity at u = 1:

lim
u→1

F̂<(u, v) =
π

coshπµ

(
α+F̂−(v)− α−F̂+(v)

)
log(1− u) , (3.35)

where the constants α± were defined in (3.13). This singularity in the folded config-

uration, k1 +k2 = |k1 + k2|, is a signature of excited initial states [89, 90] and should

be absent in the standard Bunch-Davies vacuum. Removing this singularity further

restricts the solution.
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Figure 5. Illustration of the analytic structure of the function F̂ (u, v).

In order to find a solution that is symmetric in u ↔ v and regular at u = 1, we add

appropriate homogeneous solutions. A residual freedom in adding further homogeneous

solutions is fixed by imposing a boundary condition in the limit u, v → −1. In this limit,

the four-point function factorizes into a product of three-particle amplitudes. Correctly

normalizing this limit uniquely fixes the solution to be

F̂ (u, v) =



∞∑
m,n=0

cmnu
2m+1(u/v)n +

π

2 coshπµ
ĝ(u, v) u ≤ v ,

∞∑
m,n=0

cmnv
2m+1(v/u)n +

π

2 coshπµ
ĝ(v, u) u ≥ v ,

(3.36)

where we have defined

ĝ(u, v) ≡ F̂+(u)F̂−(v)− F̂−(u)F̂+(v) − α−
α+

(β0 + 1)F̂+(u)F̂+(v)

− α+

α−
(β0 − 1)F̂−(u)F̂−(v) + β0

[
F̂−(u)F̂+(v) + F̂−(v)F̂+(u)

]
, (3.37)

with

β0 ≡
1

i sinhπµ
. (3.38)

It is interesting that the only solutions that are symmetric and free of spurious singularities

are necessarily non-analytic around u → 0 and v → 0. This is how particle production in

the time-dependent bulk spacetime is encoded in the boundary correlators.

Derivation — The most general solution of the differential equation that is symmetric in u↔
v is

F̂ (u, v) = F̂<(u, v) +
π

2 coshπµ

{[
F̂+(u)F̂−(v)− F̂−(u)F̂+(v)

]
+
[
β+F̂+(u)F̂+(v) + β−F̂−(u)F̂−(v) + β0

[
F̂−(u)F̂+(v) + F̂+(u)F̂−(v)

]]}
. (3.39)

Demanding the absence of the spurious singularity at u = 1 implies β± = −(β0 ∓ 1)α∓/α±,

but still leaves β0 unfixed. To fix β0, we take the limit u = v → −1. Since the function F̂ (u, v)
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has a branch point at u = v = −1 (see figure 5), the limit will depend on how this point is

approached. In particular, for u = v = −1+ ≡ eiπ and u = v = −1− ≡ e−iπ, we get

lim
u,v→−1+

F̂ (u, v) =
i

2

(
β0 sinhπµ − coshπµ

)
log(1 + u) log(1 + v) , (3.40)

lim
u,v→−1−

F̂ (u, v) =
i

2

(
β0 sinhπµ + coshπµ

)
log(1 + u) log(1 + v) . (3.41)

We see that these limits have a universal β0 sinhπµ contribution and ambiguous cosh πµ terms.

To isolate the physically relevant contribution, we define the u = v → −1 limit as

lim
u,v→−1

F̂ (u, v) ≡ 1

2

(
lim

u,v→−1+
+ lim
u,v→−1−

)
F̂ (u, v)

=
iβ0 sinhπµ

2
log(1 + u) log(1 + v) . (3.42)

Restoring the coupling constant g2, the coefficient of this singularity takes the form of a product

of three-particle amplitudes. The correct normalization of the singularity that follows from a

simple bulk computation is 1
2 (see appendix B), which we get by setting

β0 =
1

i sinhπµ
. (3.43)

As we show in appendix B, the same value of β0 can also be found purely from the boundary

point of view. This can be done by imposing the correct normalization of the disconnected

contribution to the four-point function. Finally, another way to determine β0 is by comparing

the u → −1 limit, for general 0 < v < 1, with the corresponding limit of the bulk calculation.

In that limit, the four-point function factorizes into the product of a three-point correlation

function and a three-particle amplitude. This limit has the advantage that it doesn’t depend

on the way the branch point is approached.

Collapsed limit. The effects of particle production are most manifest in the collapsed

limit, u, v → 0, in which the homogeneous part of the solution (3.36) dominates. Keeping

only the terms which are non-analytic in s, we get

lim
u,v→0

F̂ (u, v) =

(
uv

4

) 1
2

+iµ

(1 + i sinhπµ)
Γ(1

2 + iµ)2Γ(−iµ)2

2π
+ c.c. , (3.44)

which agrees with equation (5.98) in [58]. The overall amplitude scales as e−πµ for large

µ. This leading part captures the interference effect between physically producing and not

producing a pair of massive particles. Restoring the coupling constant g2, we see that the

overall coefficient of the collapsed limit is manifestly positive. This is a consequence of bulk

unitarity and is related to the fact that going to the collapsed limit is equivalent to taking

the OPE limit, for which the four-point function factorizes and becomes proportional to the

two-point function of the intermediate particle. As we will see in section 4, the positivity

of the collapsed limit is also true for spin exchanges, for which there are nontrivial angular

dependences with positive coefficients. This can be viewed as an analog of the positivity
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of the coefficients of the Gegenbauer polynomials on the s-channel pole for amplitudes (see

section 2.1).

So far, we have presented results for the exchange of particles belonging to the prin-

cipal series, for which m > 3
2H or µ > 0, and the signal in the collapsed limit displayed

distinct oscillatory features. However, our results are also valid for the exchange of lighter

particles belonging to the complementary series, with masses 0 < m < 3
2H, corresponding

to µ → iν, with ν ∈ (0, 3
2).13 In this case, the nonperturbative contribution is no longer

suppressed relative to the EFT part. Instead of giving oscillations, the intermediate parti-

cle now leads to a smooth, but still non-analytic, scaling in the collapsed limit, (uv)1/2−ν .

This scenario is often dubbed quasi-single-field inflation, and has been studied extensively

e.g. in [49–51, 54].

The µ → 0 limit of the result, which lies on the boundary of the complementary and

principal series, is also interesting. Although the formulas above naively blow up, taking

the limit carefully one can show that the leading µ-independent behavior is

lim
µ→0

lim
u,v→0

F̂ (u, v) =
√
uv log u log v . (3.45)

Because of the logarithms, some of the terms that were analytic in s and therefore neglected

in (3.44) now also contribute in the collapsed limit. This behavior is consistent with the

bulk expectation, since massive particles with m = 3
2H scale as η3/2 log η at late times. As

we show in appendix C, it also agrees precisely with an explicit calculation for µ = 0.

Convergence. Figure 6 shows a comparison between the analytic solution (3.36) and

the numerical solution obtained by directly integrating (3.11). As we can see, the expres-

sion (3.36) is both exact and practical, since the series is highly convergent around u = 0,

and we get a good approximation by keeping only a few terms. The convergence is par-

ticularly fast for small values of µ because in this limit the nonperturbative part plays a

dominant role in determining the overall shape of the solution. For larger µ, we see that

more terms need to be kept to achieve convergence. In particular, when full convergence

has not been reached, a kink appears at u = v. This is a consequence of the fact that,

although the full solution is smooth everywhere in the physical domain, the individual

perturbative and nonperturbative parts are not; for instance, the first derivatives of ĝ(u, v)

and ĝ(v, u) do not agree at u = v. The reason for the slow convergence near u = v is

that this point lies precisely on the boundary of the two disks of convergence. A better

convergence behavior could then be achieved e.g. by gluing (3.36) with the series expansion

around u = v. In this case, the different series expansions would have overlapping disks of

convergence, resulting in a smoother transition.

Higher-derivative interactions. So far, we have presented a systematic classification of

all contact terms, as well as derived the explicit solution for the simplest tree-level exchange,

corresponding to the vertex ϕ2σ in the bulk. It remains to determine the exchange solutions

associated with higher-derivative interactions in the bulk, such as (∂µϕ)2σ. As we will now

13Except when m = 0 or
√

2H, for which our solution becomes singular. These special cases will be

treated separately in section 4.3.
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Figure 6. Comparison of the analytic expression for F̂ (u, v) keeping only terms from m,n =

0, . . . , N to the numerical solution of the differential equation (solid black lines). We have chosen

v = 0.5. The left and right plots are for µ = 1 and µ = 2, respectively.

show, these solutions can be expressed in terms of the simplest exchange solution and a

sum of contact terms.

Consider the generalized inhomogeneous equation

(∆u +M2)F̂n = (−1)n Ĉn , (3.46)

where the source term on the right-hand side is a higher-order contact term, Ĉn ≡ ∆n
uĈ0,

and we have defined M2 ≡ µ2 + 1
4 . We have chosen the alternating signs for the source

term so that the solution to (3.46) can be written in the following recursive form:

F̂n = M2F̂n−1 − Ĉn−1 . (3.47)

Applying this relation iteratively, the n-th order solution F̂n can be written in terms of the

0-th order solution F̂0 and a sum of contact terms:

F̂n = M2nF̂0 −
n−1∑
m=0

M2(n−1−m)Ĉm . (3.48)

In this way, all solutions to (3.46) can be related to the solutions F̂0 and Ĉm that we

obtained before. The fact that the higher-derivative exchange solutions can be reduced to

the lowest-derivative exchange solution and a series of contact terms also has a close analog

in the treatment of scattering amplitudes. Indeed, a general exchange amplitude will have

the form

A =
∑
n

ans
n

s−M2
=

b−1

s−M2
+
∑
n

bns
n , (3.49)

where the coefficients bn are easily determined from the coefficients an by matching residues.

This shows that the exchange of a new particle can always be represented as (s−M2)−1, and

higher-derivative interactions can be reinterpreted as contact terms in the EFT expansion.
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3.3 Flat-space limit

Having the full solution for the correlators allows us to analytically continue them in the

complex plane. A particular interesting limit is

kt ≡
∑
n

|kn| → 0 or u→ −v , (3.50)

where we expect to recover flat-space results [24, 44]. In the following, we explicitly verify

that our solution indeed has a discontinuity at kt = 0 whose coefficient is given by the

flat-space scattering amplitude. Moreover, we show that this discontinuity is related to

the homogeneous part of the solution, which, as we have seen, characterizes the effects of

particle production. This provides a fascinating link between scattering in flat space and

particle production in curved space.

To study the kt → 0 limit, we go back to the differential equation (3.14). For u→ −v,

the most singular piece of the equation is

lim
u→−v

∂2F̂

∂u2
= − 1

1− v2

1

u+ v
. (3.51)

Integrating this, we get14

lim
u→−v

F ≡ 1

s
lim
u→−v

F̂ = − 1

s(1− v2)
(u+ v) log(u+ v) =

1

sflat
(−kt log kt) , (3.52)

where we have used the definitions of v and sflat in the second equality. We see that the so-

lution has a discontinuity at kt = 0 whose coefficient is given by the high-energy limit of the

flat-space amplitude, Aflat = 1/sflat. Next, we show that analyticity arguments allow us to

relate Aflat to the discontinuity of the homogeneous solution of the differential equation (or

more accurately the discontinuity of its first derivative), which controls the nonperturbative

piece of the four-point function, and is intimately tied to particle production.

Harmonic oscillator. We begin by going back to the limit v → 0 and u = ξv → 0, for

which the conformal invariance equation took the form of the equation of motion of a forced

harmonic oscillator. We found series solutions to this equation, F̃<(ξ) and F̃>(ξ), which

are regular around ξ = 0 and ξ = ∞, respectively. By construction, the function F̃<(ξ) is

analytic for |ξ| ≤ 1, but has a branch cut for |ξ| > 1. On the other hand, by looking at

the large n behavior of the series coefficients, we see that the first derivative F̃ ′<(ξ) fails

to converge at ξ = −1. To understand the behavior at ξ = −1, we let ξ → −1 + δ, for

infinitesimal δ > 0. Using the equation of motion, together with the fact that F̃< is finite

at ξ = −1, we find

lim
ξ→−1+δ

d2F̃<
dξ2

= −1

δ
⇒ lim

δ→0
F̃<(−1 + δ) = Aflat(−δ log δ) , (3.53)

14This scaling is true for Ĉ0 as the source term in (3.11). For higher-order contact terms Ĉn as source

terms, we must first subtract the more divergent terms Ĉm, with m < n, that contribute to the four-point

function. See the discussion on “higher-derivative interactions” at the end of the previous section.
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Figure 7. Illustration of the analytic structures of the functions F̃h(ξ) (left) and F̂h(u, v) (right).

where the ellipses denote less singular terms, and we have introduced Aflat = 1 to keep track

of the expected dependence on the scattering amplitude.15 The first derivative of (3.53) is

F̃ ′< = −Aflat log δ + · · · , which at ξ = −1, has the following discontinuity

lim
δ→0+

Disc[F̃ ′<(−1 + δ)] = −2πi×Aflat , (3.54)

where Disc[f(ξ)] ≡ f(ξ + i0) − f(ξ − i0). We see that the discontinuity is related to the

scattering amplitude.

An alternative way to compute the discontinuity at ξ = −1 is to first recall that

F̃<(ξ)− F̃>(ξ) =
π

coshπµ

ξ
1
2

+iµ − ξ 1
2
−iµ

2iµ
≡ F̃h(ξ) , (3.55)

where F̃h(ξ) is the homogeneous solution whose analytic structure is illustrated in the left

panel of figure 7. Since F̃ ′>(ξ) is analytic for |ξ| > 1, we obtain

lim
δ→0+

Disc[F̃ ′<(−1 + δ)] = Disc[F̃ ′h(−1)] = −2πi . (3.56)

Comparing this to (3.54), we find

Aflat = −Disc[F̃ ′h(−1)]

2πi
= 1 , (3.57)

which is the expected amplitude. Although this example looks somewhat trivial since

the scattering amplitude was just a constant,we will see below the same relation between

the flat-space amplitude and the discontinuity of the homogeneous solution holds in the

general case.

General case. By construction, the function F̂<(u, v) is analytic within the disk of

convergence, |u| < |v|, but becomes non-analytic outside the disk. Conversely, the function

F̂>(u, v) is analytic for |u| > |v|. The difference between the two solutions is

F̂<(u, v)− F̂>(u, v) =
π

coshπµ

(
F̂+(u)F̂−(v)− F̂−(u)F̂+(v)

)
≡ F̂h(u, v) , (3.58)

15Note that we would have gotten Aflat = g2 if we had kept the coupling constant g2 in the source term

in (3.14).
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where the analytic structure of F̂h(u, v) is illustrated in the right panel of figure 7. The

discontinuity of F̂ ′< at u = −v can be defined as the limit

lim
δ→0+

Disc[F̂ ′<(−v + δ, v)] = −2πi× s2

v2
Aflat , (3.59)

where the equality follows from (3.52). Since F̂ ′> is analytic at u = −v, we get

Aflat = −v
2

s2

Disc[F̂ ′h(u = −v, v)]

2πi
, (3.60)

which, as before, relates the scattering amplitude in flat space to the homogeneous solution

associated with particle production in curved space. Substituting (3.58), we find

Aflat =
v2

s2

[
F̂+(v)F̂ ′−(v)− F̂−(v)F̂ ′+(v)

]
≡ v2

s2
W [F̂+, F̂−] , (3.61)

where W = 1/(1 − v2) is the Wronksian of the solution. Using the definitions of v and s,

this becomes

Aflat =
1

(k1 + k2)2 − (k1 + k2)2
=

1

sflat
, (3.62)

as expected.

Conformal invariance — In (3.61), we have established a precise relation between the scattering

amplitude and the Wronskian of the homogenous solutions of the conformal invariance equation.

As we will show in this insert, this relationship can be inverted: requiring the Wronskian of the

homogeneous solutions to a general second-order differential equation to match the flat-space

amplitude fixes the form of the equation to be of the form of the conformal invariance constraint.

Suppose that we are looking for a second-order differential equation of the form(
p(u)∂2

u + q(u)∂u +m2
)
F̂ =

uv

u+ v
, (3.63)

and a similar equation for v. Symmetry in u↔ v demands that(
p(u)∂2

u + q(u)∂u − p(v)∂2
v − q(v)∂v

) uv

u+ v
= 0 , (3.64)

and hence

2
(
u2p(v)− v2q(u)

)
− (u+ v)

(
u2q(v)− v2q(u)

)
= 0 . (3.65)

It is easy to see that the general solution to this equation is

p(u) = au4 + bu2 ,

q(u) = 2au3 + cu2 ,
(3.66)

where a, b, c are arbitrary constants. The special case of the conformal differential equations

corresponds to the choice a = −b = −1 and c = 0. We will now show that the same choice

of parameters follows from demanding that the singularity at kt = 0 has the right flat-space

scattering amplitude as its discontinuity.
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Above, we saw that the scattering amplitude matches the Wronskian of the differential

equation. Given (3.63) and (3.66), the Wronskian is

W (u) =
d

b+ au2

(√
b− i√au√
b+ i
√
au

)− ic

2
√
ab

, (3.67)

where d is an additional constant. Demanding that this correctly reproduces the flat-space

scattering amplitude, i.e. W (u) = λ(1 − u2)−1 fixes the parameters to be a = −b, c = 0. The

ratio d/b can then be interpreted as the coupling constant.

3.4 Ultraviolet completion

As we have just seen, the coefficient of the leading divergence of the correlator as kt → 0 is

related to the high-energy limit of the flat-space scattering amplitude. It therefore probes

the ultraviolet completion of the physics. Note in particular that taking this limit does not

commute with the effective field theory expansion. For physical momenta, we can imagine

adding higher-dimension operators to the theory, and these make progressively smaller

contributions to the correlators. However, near kt → 0 the behavior of the singularity

will be dominated by the operator with the highest dimension, which means that the EFT

approximation is not useful in this limit, and one really needs a UV-complete theory for

high-energy scattering to correctly compute the behavior of the singularity near kt → 0.

It is interesting to note that we expect radically different behavior as kt → 0, for “field

theoretic” vs. “stringy/gravitational” UV completions. In a field-theoretic UV completion,

amplitudes die as powers of energy, which translates into a suppression of the bulk integrals

for cosmological correlators at early times. For example, we expect

F ∼
∫

dη η−p eiktη ∼ kp−1
t log kt , (3.68)

which still has a branch-cut singularity near kt → 0.16 Note that the presence of the

singularity in the complex kt-plane can be detected far from the origin: a contour integral

with large radius, circling around the origin, will give a nonzero result. Indeed, we might

imagine that the low-energy observer only saw a contact ϕ4 interaction, and inferred a

1/kt singularity. Approaching kt → 0, this singularity could be softened to kt log kt, if the

ϕ4 interaction is seen to arise from integrating out a massive field with a ϕ2σ coupling.

However, the presence of some kind of singularity as kt → 0 is correctly captured by the

effective theory, and in particular, the contour integral with large radius around kt = 0 is

correctly computed by the ϕ4 approximation.

The presence of singularities as kt → 0 is a sharp feature of local quantum field theory

in de Sitter space. Of course, we know that, in the presence of dynamical gravity, we cannot

have such field-theoretic UV completions, and the behavior of the high-energy scattering

amplitude drops faster than exponentially at high energies. For example, in a weakly

16There is a singularity as kt → 0 because kt only regulates the oscillatory integral when it is a nonzero

real number. When kt has a negative imaginary part, the eiktη factor is exponentially growing. For this

reason, we cannot have analyticity in kt as kt → 0.
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coupled string theory the high-energy amplitude scales as e−E logE , while in any consistent

theory of gravity, we expect it to behave like e−SBH(E) = e−E
2/M2

pl . It is then easy to

see that

F ∼
∫

dη e−cη
2
eiktη

kt→0−−−−→ analytic . (3.69)

The integral is convergent, in every direction of complex kt-space, as long as the UV-

softening factor is stronger than e−E at high energies. If the same effective ϕ4 contact

interaction is UV completed into a gravitational theory, the local effective field theory

expectation of a singularity as kt → 0 is therefore completely incorrect, and the contour

integral around kt → 0 even with large radius is dramatically different than the effective-

field-theoretic expectation. If there is any weakly coupled stringy description for computing

the correlators, then in the same approximation, the flat-space amplitude still falls fast

enough that the same conclusion holds. This is how “stringy UV completeness” is encoded

in the structure of the correlators.

This discussion also holds in AdS space, where it is simply the momentum-space avatar

of the absence of the “bulk-point singularity” for boundary CFT correlators [91]. Having

said that, the situation in dS is even more interesting. We are motivated to look for

some “Veneziano correlator” in de Sitter space, with the magical property of having the

oscillatory features in the squeezed limit corresponding the particle production of string

excitations, with appropriately positive weights, while not leaving a singular mark of any

sort as kt → 0. This poses a concrete (if difficult!) challenge for an inroad into whatever

“string theory in de Sitter space” should mean, which can be sought even in the absence

of any sort of standard worldsheet description.

4 Exchange of spinning particles

In this section, we generalize our results for the de Sitter four-point functions with scalar

exchange to tree exchange of particles with spin, again with the external fields being con-

formally coupled scalars. We show that these solutions can be obtained from our previous

results for the scalar exchange through the action of suitable ladder operators. We will

determine these operators through a combination of bulk reasoning, boundary considera-

tions, and educated guesswork. In a future publication [65], we will show how to obtain

them in a more systematic way, using tools from conformal field theory [66–68].

In section 4.1, we introduce an ansatz for the four-point function associated with the

exchange of particles with spin, and derive the conformal invariance constraints satisfied

by each of its helicity components. In section 4.2, we solve these equations, first for spins

1 and 2, and then for arbitrary spins. In section 4.3, we specialize to the exchange of

(partially) massless particles.

4.1 Polarization basis

In the case of scalar exchange, and for ∆ = 2, the four-point function depended on the

following variables

x ≡ k1 + k2 , y ≡ k3 + k4 , s = |k1 + k2| , (4.1)
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and we have usually worked with the dimensionless combinations u = s/x and v = s/y.

As in the case of flat-space scattering amplitudes (cf. section 2.1), intermediate particles

with spin lead to a characteristic dependence of the four-point function on the transverse

momentum t = |k2 + k3|. More generally, the contractions of the polarization tensors of

the intermediate spinning particles with the external momenta lead to a dependence on

the following variables

α ≡ k1 − k2 , β ≡ k3 − k4 , τ ≡ (k1 − k2) · (k3 − k4) , (4.2)

where τ is related to t via

τ =
1

2

(
α2 + β2 + x2 + y2

)
− s2 − 2t2 . (4.3)

We showed, in section 2.1, how the angular dependence of higher-spin exchange in flat

space is encapsulated in the Gegenbauer polynomial of order S, the spin of the exchange

particle. In that case, a boost symmetry allowed us to go to the center-of-mass frame, in

which there is a single angle controlling the scattering and the polarization sums could be

determined in a simple way. The situation is a bit different in de Sitter space. Unlike in flat

space, different helicity17 states now have different amplitudes, which are fixed by imposing

(special) conformal symmetry of the full answer. This implies that the four-point function

can naively depend on more angles. A second difficulty is the absence of a boost symmetry,

so that it is significantly more complicated to determine this angular dependence compared

to flat space.

We will show that the conformal invariance constraints are solved by an ansatz of

the form

FS =

S∑
m=0

Π̄mΠ̃S,mAS,m , with AS,m =
1

s
ÂS,m(u, v) , (4.4)

where Π̄m(τ, α, β) and Π̃S,m(α, β) are the polarization sums of the transverse and longi-

tudinal modes, respectively. In the following, we will first determine the functional forms

of the polarization sums, and then derive the conformal invariance constraints satisfied by

the coefficient functions.

Transverse polarizations. We first consider the contractions of the external momenta

with internal polarization tensors ε̄λi1···iS that are traceless and transverse in all of their

indices. By the same reasoning as in section 2.1, the unique polarization sum is

Π̄S ≡ αi1 · · ·αiSβj1 · · ·βjS
∑
λ=±

ε̄λi1···iS (ŝ)ε̄−λj1···jS (ŝ)︸ ︷︷ ︸
≡ P j1···jSi1···iS (ŝ)

, (4.5)

where α ≡ k1 − k2 and β ≡ k3 − k4.18 The tensor P j1···jSi1···iS (ŝ) projects all momenta

orthogonal to the direction of the internal momentum s ≡ k1 +k2. For example, the spin-1

17By helicity, we mean the helicity of the representation with respect to the spatial slices of de Sitter

space, and not the helicities of representations of the Poincaré group.
18Warning: note that |α| 6= α and |β| 6= β.
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projection tensor is

Pij(ŝ) = δij − ŝiŝj . (4.6)

All higher-spin projection tensors can be built out of this tensor (see e.g. [92]):19

P j1···jSi1···iS =

bS/2c∑
m=0

C(S,m)P(i1i2 · · ·Pi2m−1i2mP
(j1j2 · · ·P j2m−1j2mP

j2m+1

i2m+1
· · ·P jS)

iS) ,

C(S,m) ≡ (−1/2)mS!

m!(S − 2m)!

(2S − 2m− 2)!!

(2S − 2)!!
.

(4.7)

For example, the spin-2 and spin-3 projection tensors are

P j1j2i1i2
= P

(j1
(i1
P
j2)
i2) −

1

2
Pi1i2P

j1j2 , (4.8)

P j1j2j3i1i2i3
= P

(j1
(i1
P j2i2 P

j3)
i3) −

3

4
P(i1i2P

(j1j2P
j3)
i3) . (4.9)

Since the external momenta are contracted with the projection tensor Pij in two different

ways, the transverse polarization sums Π̄S are functions of the following two dimensionless

variables:

T̂ ≡ αiP
ijβj
s2

=
s2 τ + xyαβ

s4
, (4.10)

L̂2 ≡ αiP
ijαj βkP

klβl
s4

=
(s2 − x2)(s2 − α2)(s2 − y2)(s2 − β2)

s8
. (4.11)

Given the projection tensors defined in (4.7), we find

Π̄S = 2S
bS/2c∑
m=0

C(S,m) T̂S−2mL̂2m , (4.12)

with Π̄0 ≡ 1, where the normalization was chosen for later convenience. Explicitly, the

first few terms are Π̄1 = 2T̂ , Π̄2 = 4T̂ 2− 2L̂2, and Π̄3 = 8T̂ 3− 6T̂ L̂2. It will be important,

in section 6 and appendix D, that these functions are homogeneous in T̂ and L̂, and that,

in the soft limit k4 → 0, both T̂ and L̂ vanish.

Longitudinal polarizations. To describe the lower-helicity contributions for fixed spin,

we will need to use polarization tensors that carry some transverse and some longitudinal

indices. A generic polarization tensor can then be expressed as a symmetrized product of

transverse and longitudinal tensors

ελ,mi1···iS (ŝ) = ε̄λ(i1···im(ŝ) ε̃im+1···iS)(ŝ) , (4.13)

where ε̄ and ε̃ denote the transverse and longitudinal parts of the polarization tensor,

respectively. The polarization tensor is labeled by its total spin S, its helicity λ and the

number of transverse indices m. The longitudinal piece ε̃ is built out of the unit vector ŝ

and Kronecker delta’s, and needs to be constructed in such a way that the complete tensor

19The indices of the projection tensors are raised and lowered with δij .
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ελ,mS is symmetric and traceless. A key property of the longitudinal piece of the polarization

tensor is

q̂im+1 · · · q̂iS ε̃im+1···iS (ŝ) = P̃mS (q̂ · ŝ) , (4.14)

where P̃mS (x) ≡ (1 − x2)−|m|/2PmS (x), with PmS (x) the associated Legendre polynomial.

Notice that (4.14) depends not only on the number of longitudinal indices, but also on the

total spin.

This time, however, it is not a priori clear which combination of k1, k2 and s will be

contracted with the longitudinal polarization tensor; we have not derived the longitudinal

polarization sum from first principles. However, by a combination of educated guesswork

and trial-and-error, we have found20

Π̃S,m ≡ (−1)mP̃mS (α/s)P̃−mS (β/s) . (4.15)

As we will see, using this form of the polarization sum in the ansatz (4.4) allows us to solve

the conformal invariance conditions. Note that (4.15) reduces to Π̃S,S = Γ(1
2 + S)/(

√
πS!)

for m = S. This completes our discussion of the polarization basis.

Coefficient functions. The functional form of the coefficient functions ÂS,m is deter-

mined by solving the differential equations DijFS = 0. It is slightly easier to first write

these equations in terms of (x, y) rather than (u, v). For ∆ = 2, the equations D12FS = 0

and D34FS = 0 then are[
∂xα + ∂τ

(
y∂β + β∂y +

yβ

s
∂s

)
− αx∂2

τ

]
FS = 0 , (4.16)[

∂yβ + ∂τ

(
x∂α + α∂x +

xα

s
∂s

)
− βy∂2

τ

]
FS = 0 , (4.17)

while D13FS = 0 reads[
∂2
x − ∂2

y + ∂2
α − ∂2

β − 2
(

(α∂τ − ∂α)∂x − (β∂τ − ∂β)∂y + (x∂α − y∂β)∂τ

)
(4.18)

+
1

s
∂s

(
x∂x − y∂y + α∂α − β∂β + 2(yβ − xα)∂τ

)
+ (x+ y − α− β)(x− y − α+ β) ∂2

τ

]
FS = 0 .

Substituting the ansatz (4.4), we find

(∆m,u −∆m,v)ÂS,m = 0 , (4.19)

where we introduced the following differential operator for each helicity component

∆m,u ≡ u2(1− u2)∂2
u − 2u(u2 +m)∂u . (4.20)

20It is worth noting that s−1Π̃S,m solves the conformal constraints by itself.
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This equation follows from looking at the coefficient of the various powers of τ in the

D12 and D34 equations. These will determine certain cross derivatives of the coefficient

functions. Demanding consistency of those equations forces ÂS,m to satisfy (4.19).

We see that the functions ÂS,m obey an equation that is very similar to the scalar

equation. The only difference lies in the modified differential operator ∆m,u instead of

∆0,u ≡ ∆u. To relate ÂS,m to a solution of the scalar equation, we introduce the following

spin-raising operator

Duv ≡ (uv)2∂u∂v . (4.21)

This operator satisfies the very useful relation

∆m,uDuv = Duv(∆m−1,u − 2m) , (4.22)

when acting on any function of (u, v). This means that acting with the operator Dm
uv on

a function turns the action of ∆m,u into the action of ∆u, the scalar differential operator.

In other words, a general solution of (4.19) can be written in the form

ÂS,m(u, v) = Dm
uvf̂m(u, v) , (4.23)

where f̂m(u, v) are solutions of the scalar constraint equation (∆u−∆v)f̂m = 0. Moreover,

as we will see below, starting from the highest-helicity component ÂS,S = DS
uvf̂ , all lower-

helicity components ÂS,m<S can be written as suitable powers of Duv and ∆u acting on

the same function f̂ . This means that the full answer in the spinning case is determined

in terms of the scalar-exchange solutions obtained in section 3.2.

4.2 Results for spin exchange

Before presenting general results for arbitrary spin, we will provide explicit results for spins

1 and 2. The pattern that emerges from these examples is then easily generalized.

Spin-1 exchange. For the case of spin-1 exchange, the ansatz (4.4) takes the following

simple form21

F1 =
1

s

[
Π̄1Π̃1,1Duv f̂ + Π̃1,0 Â1,0

]
. (4.24)

It can be shown that this solves the D12 and D34 equations if

Â1,0 = ∆uf̂ . (4.25)

The four-point function corresponding to spin-1 exchange can therefore be written as

F1 =
1

s

[
Π̄1Π̃1,1Duv + Π̃1,0 ∆u

]
f̂ , (4.26)

where f̂ is any solution of the scalar constraint equation, (∆u−∆v)f̂ = 0. Substituting the

scalar solution (3.36) therefore gives the four-point function arising from spin-1 exchange.

21Notice that this is odd under k1 ↔ k2 or k3 ↔ k4, which implies that the four-point function vanishes if

the external scalars are all identical. This is true for all odd-spin exchange. In these cases, we must assume

that the external fields are described by complex or non-identical scalars.
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Spin-2 exchange. For the case of spin-2 exchange, the ansatz becomes a bit more com-

plicated

F2 =
1

s

[
Π̄2Π̃2,2D

2
uv + Π̄1Π̃2,1 Â2,1 + Π̃2,0 Â2,0

]
, (4.27)

which solves the D12 and D34 equations if

Â2,1 = Duv(∆u − 2)f̂ , (4.28)

Â2,0 = ∆u(∆u − 2)f̂ . (4.29)

The four-point function corresponding to spin-2 exchange hence is

F2 =
1

s

[
Π̄2Π̃2,2D

2
uv + Π̄1Π̃2,1Duv(∆u − 2) + Π̃2,0 ∆u(∆u − 2)

]
f̂ , (4.30)

where (∆u −∆v)f̂ = 0. Substituting (3.36) for f̂ completes the analysis.

Spin-S exchange. Inspection of the spin-1 and spin-2 solutions (4.26) and (4.30) sug-

gests a systematic procedure to determine the coefficient functions for general spin. Indeed,

we will now show how all lower-helicity components are related to highest-helicity compo-

nent ÂS,S = DS
uvf̂ , and hence to the solution f̂ for scalar exchange.

To obtain the lower-helicity components ÂS,m, we replace the outermost operator of

ÂS,m+1 by ∆m,u, and then commute it through the ladder operators m times all the way to

the right. For example, the lower-helicity components for spin-4 exchange are obtained by

Â4,3 = ∆3,uD
3
uvf̂ → D3

uv(∆u − 12)f̂ , (4.31)

Â4,2 = ∆2,uD
2
uv(∆u − 12)f̂ → D2

uv(∆u − 6)(∆u − 12)f̂ , (4.32)

Â4,1 = ∆1,uDuv(∆u − 6)(∆u − 12)f̂ → Duv(∆u − 2)(∆u − 6)(∆u − 12)f̂ , (4.33)

Â4,0 = ∆u(∆u − 2)(∆u − 6)(∆u − 12)f̂ . (4.34)

Generalizing this pattern to arbitrary spin, we find

ÂS,m = Dm
uv

S−m∏
j=1

(
∆u − (S − j)(S − j + 1)

)
f̂ . (4.35)

This solves all the constraints as long as (∆u−∆v)f̂ = 0. This is quite remarkable because

it means that we can bootstrap our way up to all higher spins by using our previous

solutions for scalar exchange. To derive the contact interactions arising from integrating

out massive particles with spin, we therefore substitute (3.7) into (4.35). Similarly, for

exchange interactions we substitute the scalar solution (3.36). In the following, we will

show that our solution has the correct behavior in the collapsed and flat-space limits.

Collapsed limit. It is straightforward to verify that our solution has the correct limiting

behavior for u, v → 0. To see this, first note that ∆u → u2∂2
u as u→ 0. Since f̂ ≡ f̂+ + f̂−,

with f± ∝ (uv)
1
2
±iµ in the same limit, each action of ∆u on f̂ brings down a factor of
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Figure 8. Illustration of the angles used in (4.38) and (4.41).

−(µ2 + 1
4). On the other hand, it is easy to verify that applying Dm

uv to f̂ gives Dm
uvf̂
± =

(uv)m[(1
2±iµ)m]2f̂±, where (·)n is the Pochhammer symbol. Combining these facts, we find

lim
u,v→0

Â±S,m = (−1)S(uv)m
Γ(1

2 +m± iµ)Γ(1
2 −m± iµ)

Γ(1
2 − S + iµ)Γ(1

2 − S − iµ)

Γ(1
2 ∓ iµ)

Γ(1
2 ± iµ)

lim
u,v→0

f̂±

= (−uv)m−SI±2 (S,m) lim
u,v→0

Â±S,S , (4.36)

where we have defined

I±2 (S,m) ≡ Γ(1
2 +m± iµ)Γ(1

2 + S ∓ iµ)

Γ(1
2 +m∓ iµ)Γ(1

2 + S ± iµ)
. (4.37)

As we mentioned before, in the collapsed limit the four-point function becomes proportional

to the two-point function of the intermediate particle, whose normalization is given by I±2
(see appendix A).

Next, we analyze the behavior of the polarization structure in the collapsed limit.

Taking u, v → 0, the angular variables become

τ → 4 k1 · k3 ≡ 4k1k3 cos γ ,

α

u
→ 2k1(k̂1 · ŝ) ≡ 2k1 cos θ ,

β

v
→ −2k3(k̂3 · ŝ) ≡ −2k3 cos θ′ ,

(4.38)

and the variables defined in (4.10) and (4.11) can be written as

T̂ → 4k1k3

s2
(cos γ − cos θ cos θ′) , (4.39)

L̂→ 4k1k3

s2
sin θ sin θ′ . (4.40)
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Using the trigonometric identity

cos γ = cos θ cos θ′ + sin θ sin θ′ cosψ , (4.41)

where ψ is the angle between k̂1 and k̂3 projected onto the plane perpendicular to ŝ (see

figure 8), the polarization sums in (4.12) and (4.15) become

Π̄m → (2− δ0m)(−uv)−m(sin θ sin θ′)m cos(mψ) , (4.42)

Π̃S,m → (−1)mP̃mS (cos θ)P̃−mS (cos θ′) . (4.43)

We find that the contribution from each helicity component becomes

Â±S,mΠ̄mΠ̃S,m → (−uv)−SÂ±S,S(2− δ0m)(−1)mI±2 (S,m) cos(mψ)PmS (cos θ)P−mS (cos θ′) .

(4.44)

This means that different helicity components scale in the same way as a function of u and

v, and only differ by the angular dependence. Substituting the behavior of the highest-

helicity component in the collapsed limit

(uv)−SÂS,S(u, v) →
(uv

4

) 1
2

+iµ (1 + i sinhπµ)Γ(1
2 + S + iµ)2Γ(−iµ)2

2π
+ c.c. (4.45)

we reproduce equation (5.120) in [58].

For contact diagrams, all helicity components contribute equally and we get

FS →
(2S)!

2

(k1k3)S

(k1 + k3)2S+1
PS(cos γ) . (4.46)

However, the appearance of the Legendre polynomial is an artifact of looking only at the s-

channel contribution. Summing over all channels, the spin-S contact contribution will just

be a linear combination of the scalar contact terms Ĉn that we have classified in section 3.1.

Flat-space limit. Another useful consistency check is the flat-space limit, where we

expect to reproduce the angular dependence of the flat-space scattering amplitude. For

this purpose, it suffices to determine the leading behavior of the solution as u + v → 0.

Since all helicity components follow from the scalar solution, let us examine[
u2(1− u2)∂2

u − 2u3∂u +

(
µ2 +

1

4

)]
f̂ =

uv

u+ v
. (4.47)

The most singular piece in the flat-space limit is given by

lim
u→−v

∂2
uf̂ = − 1

1− v2

1

u+ v
⇒ lim

u→−v
f̂ = −(u+ v) log(u+ v)

1− v2
. (4.48)

Substituting this into (4.35), the limiting behavior of the coefficient functions becomes

lim
u→−v

1

(2S)!
ÂS,m =

v4S−2

(u+ v)2S+1

(
1− v2

v2

)S−m−1

. (4.49)
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Since the polarization sums do not diverge in the flat-space limit, all the helicity coefficients

contribute in this limit. Switching to the variables x and y, we find

lim
x+y→0

(−1)S

(2S)!
(x+ y)2S−1 FS = sS−1

flat × PS
(

1 + 2
tflat

sflat

)
∝ tSflat

sflat
+ contact terms , (4.50)

where have introduce the flat-space Mandelstam variables

sflat = (k1 + k2)2 − |k1 + k2|2 → y2 − s2 , (4.51)

tflat = (k2 + k3)2 − |k2 + k3|2 →
1

2v2

(
(τ − αβ)v2 − s2(1− v2)

)
. (4.52)

This shows that the leading behavior of the four-point function in the flat-space limit gives

the scattering amplitude (2.10) (in the high-energy, massless limit).

4.3 (Partially) Massless exchange

The conformal dimension of a field σ with spin S and mass Mσ is

∆σ =
3

2
+

√(
S − 1

2

)2

− M2
σ

H2
, (4.53)

for S ≥ 1, while the formula for S = 0 is given by shifting the mass M2
σ →M2

σ − 2H2. So

far, we have been working with intermediate particles in the principal and complementary

series. Another interesting case is the discrete series, for which ∆σ takes integer values,

corresponding to massless and partially massless particles [93]. The latter are an interesting

generalization of massless particles in (anti-)de Sitter space, for which there is no analog

in flat space. Naively extrapolating our previous results to these mass values would lead

to divergences, so we will have to treat these cases separately. As was shown by explicit

bulk calculations in [64], these correlation functions turn out to be rational functions.

∆σ = 2 exchange. Consider the exchange of a conformally coupled scalar field with

∆σ = 2. At leading order in derivatives, the exchange contribution is given by ∆uF̂ = Ĉ0,

and its explicit solution is [58]

F̂ =
1

2

[
Li2

(
x− s
x+ y

)
+ Li2

(
y − s
x+ y

)
+ log

(
x+ s

x+ y

)
log

(
y + s

x+ y

)
+
π2

3

]
≡ F̂∆σ=2 , (4.54)

where Li2 denotes the dilogarithm. Using the formulas in the previous section, this can be

used to obtain all solutions for spin exchange with ∆σ = 2.

Before presenting a few explicit examples, let us make an important comment on the

distinction between the wavefunction coefficients and correlation functions, which is par-

ticularly relevant for exchange particles in the discrete series (see also appendix A). First

of all, our proposed ansatz in terms of a scalar solution of the conformal constraints guar-

antees that the four-point function we obtain will be conformally invariant. However, for

particles in the discrete series, the disconnected contribution to the correlation function —

the product of two three-point functions of two external scalars and the spinning particle

— is not exactly conformally invariant. This is because particles in the discrete series
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satisfy Ward identities related to their gauge symmetries. In practice, this means that the

three-point function, instead of satisfying a homogeneous differential equation, satisfies an

inhomogeneous equation, where the source term is local and enforced by the Ward iden-

tity. In other words, the disconnected four-point function satisfies an ordinary differential

equation with local source terms that are controlled by symmetry. These contributions are

not captured by our ansatz, but can be accounted for by adding the known expressions in

the literature [28, 32].22

Substituting the scalar solution (4.54) into (4.26), we get the four-point function for

massless spin-1 exchange

F̂1 =
s3

(x+ y)(x+ s)(y + s)
Π̄1 −

s

x+ y
Π̃1,0 . (4.55)

Since gauge fields are conformally coupled in dS4, the result is the same as in flat space.

We see that the helicity-1 component has singularities not only at kt ≡ x+ y → 0, but also

at x+s→ 0 and y+s→ 0. These new singularities aren’t present in the longitudinal part,

because it is a pure constraint. We also see that the result is a rational function, unlike

the case of scalar exchange.

Similar to the spin-1 example, the result for the partially massless spin-2 [94–97] ex-

change turns out to be a rational function. However, since a partially massless spin-2 field

is not conformal, it has a more complicated structure than the spin-1 example. Substitut-

ing (4.54) into (4.30), we find

F̂2 =
s5(f2 + 2s(x+ y))

(x+ y)3(x+ s)2(y + s)2
Π̄2Π̃2,2 −

s3(f2 + s(x+ y))

(x+ y)3(x+ s)(y + s)
Π̄1Π̃2,1 +

sf2

(x+ y)3
Π̃2,0 ,

(4.56)

where f2 ≡ s2 +xy+ (x+y)2. Again, we see that the longitudinal part, being a constraint,

does not have a singularity as x + s → 0 and y + s → 0. However, the helicity-1 and 2

components have nontrivial singularities, which indicate that they carry information about

propagating degrees of freedom.

∆σ > 2 exchange. Beyond ∆σ = 2, the discrete series consists of a whole tower of

particles with integer conformal weights ∆σ = 3, 4, · · · . The corresponding higher-spin

exchange solutions can be obtained once the scalar-exchange solution of the same conformal

dimension is known. For example, (partially) massless spin-S exchange with ∆σ = 3 can

be obtained from the massless scalar exchange solution, while for ∆σ > 3 we need solutions

for tachyonic scalars. For generic ∆σ, the scalar solution satisfies[
∆u − (∆σ − 1)(∆σ − 2)

]
F̂∆σ = Ĉ0 . (4.57)

Remarkably, the solution for every integer ∆σ can be obtained from the ∆σ = 2 solu-

tion (4.54). To see this, consider the operator

Muv,∆σ(·) ≡ − 1

(∆σ − 2)2

[
(u(1− u2)∂u −∆σ + 2)(v(1− v2)∂v −∆σ + 2)(·)

uv
+
uv + 1

u+ v

]
,

(4.58)

22However, as far as we know, the form of 〈ϕϕσ〉 for an arbitrary member of the discrete series is not

known.
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which shifts the weight of the internal field. This operator can be found by inspection of

the homogeneous solutions of the exchange equation (4.57). The first term in Muv,σ relates

the solutions of homogeneous equations with different ∆σ, while the second, multiplica-

tive term, is necessary to relate the inhomogeneous solutions of the exchange equation.23

For example, the four-point function associated with the exchange of a massless scalar is

given by

F̂∆σ=3 = Muv,3F̂∆σ=2

= − 1

uv

[
F̂∆σ=2 − u log

(
u(1 + v)

u+ v

)
− v log

(
v(1 + u)

u+ v

)
+ uv

]
. (4.59)

It is easy to check that this satisfies the equation (∆u − 2)F̂∆σ=3 = Ĉ0.

The solution for general ∆σ is then given by

F̂∆σ=2+n = Muv,2+n · · ·Muv,3F̂∆σ=2 . (4.60)

In this way, we can determine all solutions for the exchange of particles belonging to the

discrete series from that of a conformally coupled scalar.24

Using the solution for massless scalar exchange above, we can obtain the graviton-

exchange four-point function of conformally coupled external scalars. It is given by

F̂2,∆σ=3 =
s5(s2 + xy + 2s(x+ y))

(x+ y)3(x+ s)2(y + s)2
Π̄2Π̃2,2 −

s3

(x+ y)3
Π̄1Π̃2,1 +

s(s2 + xy)

(x+ y)3
Π̃2,0 . (4.61)

An important feature of this solution is that it is not purely transverse, but also includes

lower helicity components as constraints. For example, the partially massless graviton

has nontrivial poles in its helicity-1 components, unlike the ordinary graviton. Note also

that this four-point function automatically eliminates the lower-helicity modes without

reference to a gauge-fixed propagator. Demanding consistent propagation of a massless

spin-2 field in de Sitter therefore automatically ensures that only the helicity-2 degree of

freedom is propagating.

5 Massless external fields

In sections 3 and 4, we presented results for the four-point functions of conformally coupled

scalars, while for inflation we need the corresponding results for (nearly) massless scalar

fields. In this section, we introduce a set of weight-shifting operators that map the four-

point functions of conformally coupled scalars ϕ (∆ = 2) to those of massless scalars φ

(∆ = 3). We present the explicit weight-shifting operators for exchange particles of spin

23Note that this operator only relates the tree-exchange solutions with the contact term Ĉ0 as the source

term. As we have seen in section 3, however, this is sufficient to generate other solutions with higher-order

source terms.
24Note that, for ∆σ > 3, the other members of the scalar discrete series are all tachyonic, but their

correlation functions can be used in the ansatz for the spinning four-point function to generate the non-

tachyonic members of the discrete series at high enough spin, since the number of partially massless fields

increases with spin.
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0, 1, 2 and sketch a procedure to determine the operators for general spin. As we will

demonstrate, this weight-shifting procedure provides a simple way to obtain the four-

point functions arising from shift-symmetric couplings of the inflaton. Non-shift-symmetric

interactions of the inflaton satisfy anomalous conformal Ward identities — allowing for a

local violation of the dilatation constraint — and therefore have to be treated separately

(see appendix D).

5.1 Conformal invariance for ∆ = 3

Modulo one technical detail, the analysis of the four-point functions of massless scalars is

very similar to that for conformally coupled scalars. We will briefly review the relevant

conformal invariance equations, but leave their detailed analysis to appendix D.

For notational clarity, we denote the four-point functions of massless scalars by F .

In the case of scalar exchange, these are functions only of (kn, s). Substituting ∆n = 3

into (2.27), we find that (D1 −D2)F = 0 implies(
∂2
k1
− 2

k1
∂k1

)
F −

(
∂2
k2
− 2

k2
∂k2

)
F = 0 . (5.1)

A similar equation follows from (D3 −D4)F = 0. Both equations are solved by the ansatz

F = s3O12O34 F̂(u, v) , (5.2)

where F̂ is (so far) an arbitrary function of (u, v), and O12 and O34 are the following

differential operators

Onm ≡ 1− knkm
knm

∂knm . (5.3)

The ansatz (5.2) works because commuting Dn with Onm gives a result that is symmetric

in the two momenta; for instance,(
∂2
k1
− 2

k1
∂k1

)
O12 h(k1 + k2) = O12

(
∂2
k12
− 2

k12
∂k12

)
h(k1 + k2) . (5.4)

We see that the introduction of the operators O12 and O34 has trivialized the 12- and

34-equations. The dimensionless function F̂(u, v) is then determined by the remaining

constraint equation, (D1 −D3)F = 0, which becomes(
∆̃u − ∆̃v

)
F̂ = 0 , (5.5)

where we have introduced the differential operator25

∆̃u ≡ u2(1− u2)∂2
u + 4u(1− u2)∂u . (5.6)

Equation (5.5) is very similar to equation (2.29) for the four-point function of conformally

coupled scalars. In appendix D, we will present the explicit solutions of (5.5) corresponding

to contact terms and the exchange of massive particles.

25Note that u−3 is a zero mode of the operator ∆̃u. This implies that F̂loc ≡ u−3 + v−3 is a trivial

solution of (5.5) and can be added (with arbitrary coefficient) to any of the solutions studied below. This

extra term corresponds to “local non-Gaussianity”, and can be removed by a field redefinition.
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5.2 Mapping ∆ = 2 to ∆ = 3

Instead of embarking on a detailed analysis of the solutions to the ∆ = 3 constraint

equations, we will now show that the same solutions can be obtained directly by applying

certain differential operators to the four-point functions with external ∆ = 2 legs. These

operators depend on the spin of the exchanged particle. We analyze explicitly the cases of

spins 0, 1, 2, and briefly describe the generalization to general spin exchange.

Spin-0 exchange. We first consider scalar exchange, and take inspiration from the bulk

calculation. Although we will analyze a specific three-point vertex for the bulk four-point

function, conformal symmetry guarantees that our result will apply more generally. This

can be confirmed explicitly by checking that the ansatz derived below solves the conformal

constraint equations.

Let us write the mode functions of massless and conformally coupled scalar fields as

φk ≡ (1 + ikη)hk ,

ϕk ≡ ηhk ,
(5.7)

where hk(η) ≡ eikµx
µ

= e−ikη+ik·x. The product ϕk1ϕk2 is a function of k1 + k2 only,

which allowed us to write the four-point function of conformally coupled scalars as F =

s−1F̂ (u, v), where F̂ is a function of (u, v) only. The situation for massless scalars is slightly

more complicated. However, after a bit of work, we can show that

φk1φk2 = O12φk1+k2 , (5.8)

where O12 is the same operator as defined above. The relation (5.8) is the bulk reason why

F can be written in the form (5.2).

If the inflaton couples in a shift-symmetric fashion, say through the coupling (∇φ)2σ,

then its four-point functions can be related directly to that of conformally coupled scalars,

with coupling ϕ2σ, by introducing differential operators constructed out of the operators

O12 and O34. In the insert below we derive the following relation between the φ and ϕ

mode functions:

∇µφk1∇µφk2 = s2 U12(ϕk1ϕk2) , (5.9)

where we have defined the following operator

U12(·) ≡ 1

2
O12

[
1− u2

u2
∂u(u ·)

]
. (5.10)

The relation (5.9) maps bulk interactions of conformally coupled scalars to those of massless

scalars with two additional derivatives per vertex. Although we utilized particular bulk

vertices to derive U12, it is easily confirmed that U12U34 applied to any solution of the

∆ = 2 constraints solves the conformal invariance constraints for ∆ = 3. This implies that

the four-point functions of ϕ and φ are related as follows

F0 = s3U12U34 f̂(u, v) , (5.11)
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where f̂ ≡ F̂0 is any solution of the scalar ∆ = 2 equation (2.29). Equation (5.11) allows

us to bootstrap the four-point functions of massless scalars from the solutions obtained in

section 3.

Of course, this prescription is not exclusive to exchange diagrams, but also applies to

contact interactions. For instance, applying U12U34 to the contact term Ĉ0 and symmetriz-

ing, we obtain the four-point function corresponding to the bulk interaction (∂µφ)4, i.e. we

reproduce precisely equation (17) of [26].

Derivation — From (5.7), we have

gµν∇µφk1∇νφk2 = −(1− k1∂k1)(1− k2∂k2)(k1 · k2ϕk1ϕk2) , (5.12)

where we have used that the derivatives pass through the momentum operators, so that ∇µφk =

(1 − k∂k)(ikµhk), with kµ ≡ (k,k) and k1 · k2 ≡ ηµνk
µ
1 k

ν
2 . The factors of conformal time in

gµν have turned hk1hk2 into ϕk1ϕk2 . Because ϕk1ϕk2 depends on the energy of the modes

k1 and k2 only through their sum, we have ϕk1ϕk2 = h(k1 + k2). Including the action of the

derivatives on k1 · k2 ≡ −k1k2 + k1 · k2, we find

(1− k1∂k1)(1− k2∂k2)(k1 · k2 h(k1 + k2)) =
[
k1 · k2 (1− x∂x) + k1k2(k1 · k2) ∂2

x

]
h , (5.13)

which implies the result (5.9).

In the following, we will determine the corresponding operators US,m12 and US,m34 for

spin-S exchange. The action of these operators on the helicity-m components of the ∆ = 2

solutions gives the corresponding ∆ = 3 solutions, i.e.

FS =
∑
m

s4US,m12 US,m34 FS,m , (5.14)

where we have extracted a factor of s4, so that the U -operators are dimensionless. Since

these operators shift the weights (masses) of the external fields, we will call them the weight-

shifting operators.26 We will illustrate the procedure explicitly up to spin-2 exchange.

Spin-1 exchange. We begin with the example of spin-1 exchange. For concreteness, we

will consider the four-point function involving conformally coupled scalars interacting with

a spin-1 field through the minimal number of derivatives. In other words, we will study a

three-point vertex of the form Jϕασα, with the current given by

Jϕα ≡ ϕk1∇αϕ∗k2
− (k1 ↔ k2) . (5.15)

As in the scalar example, we wish to relate F1 to F1 obtained by the substitution Jϕα → Jφα ,

for a suitable choice of Jφα . Following the scalar example, the current involving massless

scalars must have two additional derivatives per vertex. We choose

Jφα ≡ ∇µφk1∇µ∇αφ∗k2
− (k1 ↔ k2) . (5.16)

26Other weight-shifting operators are defined in appendix D, which may be useful for other purposes.

Moreover, an operator that shifts the weight of the internal field was introduced in (4.58). Similar weight-

shifting operators for conformal correlators in position space have recently been discovered in [68, 98].
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As we prove in the insert below, the two currents are related as follows

Jφi ≈ U
1,1
12 J

ϕ
i , (5.17)

Jφ0 = U1,0
12 J

ϕ
0 , (5.18)

where we have introduced distinct operators for the different helicity components:

U1,1
12 (·) ≡ 1

2
O12

[
1− u2

u2
∂u(u ·)− 2

u2
(·)
]
, (5.19)

U1,0
12 (·) ≡ 1

2u
O12

[
(1− u2)∂u(·)

]
. (5.20)

Acting on the second vertex, these operators become U1,m
34 , which follow from (5.19)

and (5.20) with the substitutions u ↔ v and α ↔ β. The ≈ symbol in (5.17) means

that the relation between the currents is only true when they are contracted with the

propagator of a spin-1 particle. In other words, in (5.17), we dropped terms that are

longitudinal with respect to the momentum of the exchange particle.

Given the ∆ = 2 solution (4.26),

F1 =
1

s

[
Π̄1Π̃1,1Duv + Π̃1,0∆u

]
f̂ , (5.21)

we therefore obtain the following ∆ = 3 solution

F1 = s3
[
Π̄1Π̃1,1U

1,1
12 U

1,1
34 Duv + Π̃1,0U

1,0
12 U

1,0
34 ∆u

]
f̂ . (5.22)

It is straightforward to verify that the function F1 solves the conformal constraints, for

any solution f̂ of the scalar ∆ = 2 equation. Note that the polarization sums in (5.22) are

not acted on with the differential operators. As we will see below for spin 2, this is not

generally the case.

Derivation — First, we work out the two-index object ∇µ∇αφk. A straightforward computa-

tion yields

∇µ∇αφk = (1− k∂k)

[
−kµkα +

i

η
(kµδ

0
α + kαδ

0
µ − ηαµk)

]
hk . (5.23)

We thus find

∇µφk1∇µ∇αφ∗k2 = (1− k1∂k1)(1− k2∂k2)
[
k1 · k2

(
k2,α∂k2 − δ0

α

)
+

+ (k1,αk2 − k2,αk1)
]
ϕk1h

∗
k2 , (5.24)

where the second line vanishes for α = 0, since kn,0 = −kn. The first line can be written in

terms of ϕk1∇αϕ∗k2 , because

ϕk1∇αϕ∗k2 = −(k2,α∂k2 − δ0
α)ϕk1h

∗
k2 . (5.25)
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We therefore get

∇µφk1∇µ∇αφ∗k2 = − (1− k1∂k1)(1− k2∂k2)
[
k1 · k2 (ϕk1∇αϕ∗k2)

]
+

+ (1− k1∂k1)(1− k2∂k2)
[
(k1,αk2 − k2,αk1) ηhk1h

∗
k2

]
, (5.26)

where the second line vanishes for α = 0. This implies

Jφi ≈ −(1− k1∂k1)(1− k2∂k2) [k1 · k2 J
ϕ
i ]− k2

1(1− k2∂k2)Jϕi − k2
2(1− k1∂k1)Jϕi , (5.27)

Jφ0 = −(1− k1∂k1)(1− k2∂k2) [k1 · k2 J
ϕ
0 ] . (5.28)

To obtain the relation between the spatial components, we dropped a term proportional to

si. This is because Jφi and Jϕi are contracted with a propagator for the spinning field with

momentum si, and this contribution vanishes. We must act with the operator (5.27) on the

transverse piece of the four-point function and with the operator (5.28) on the longitudinal piece.

This is because the longitudinal part of the spatial components of the exchanged particle can

be converted into time components through the constraint equations. In other words, once we

substitute Jϕα = (k1,α− k2,α)h(k1 + k2) on the right-hand sides of (5.27) and (5.28), we obtain

two operators that act on the transverse and longitudinal pieces of the four-point function.

Spin-2 exchange. The analysis of spin-2 exchange is a bit more subtle. We wish to relate

couplings like Tϕαβ σ
αβ and Tφαβ σ

αβ , where the tensors Tϕαβ and Tφαβ are quadratic in the fields

ϕ and φ. However, the naive higher-derivative object, ∇α∇µφk1∇β∇µφk2 , is not related in

a simple way to ∇αϕk1∇βϕk2 . Since the exchanged particle is a symmetric traceless spin-2

field, we must instead contract it with a spin-2 tensor that is (spacetime) transverse and

traceless. Like for the spatial component of the spin-1 example, the equivalence between

the conformally coupled spin-2 tensor and the massless spin-2 tensor only needs to be true

up to terms that are longitudinal with respect to the exchanged momentum, i.e. terms

proportional to sisj . We are also free to discard pieces in the tensors proportional to the

metric, as these will produce traces of the exchanged field, which are zero.

As the computations are more tedious, we state the results without derivation, but

they are straightforward to check. We will consider the map between the following two

transverse tensors:

Tϕαβ ≡ ϕk1∇α∇βϕk2 − 2∇αϕk1∇βϕk2 + (k1 ↔ k2) , (5.29)

Tφαβ ≡ ∇α∇β∇µφk1∇µφk2 − 2∇α∇µφk1∇β∇µφk2 − 3∇αφk1∇βφk2 + (k1 ↔ k2) , (5.30)

where we have dropped terms proportional to gαβ . Explicitly, we have

Tφij ≈ −
[
2(k1 + k2)2 − (k1 + k2) k1 · k2 (∂k1 + ∂k2) + ∂k1∂k2(k1k2 k1 · k2)

]
Tϕij , (5.31)

Tφ0i ≈ −
[
(k2

1 + k1k2 + k2
2)− (k1k2 + k1 ·k2)

k1 + k2

2
(∂k1 + ∂k2) + (k1k2 k1 ·k2)∂k1k2

]
Tϕ0i ,

(5.32)

Tφ00 ≈ −
[
(1− k1∂k1)(1− k2∂k2) k1 · k2 −

(k1k2)2

k1 − k2
(∂k1 − ∂k2)

]
Tϕ00 , (5.33)
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where ≈ means that we dropped terms proportional to si and gαβ . Like in the spin-1 case,

the operator that relates Tφ00 and Tϕ00 acts on the longitudinal component of the four-point

function, the operator that relates Tφ0i and Tϕ0i acts on the helicity-one component, and the

operator that relates Tφij and Tϕij on the helicity-two component. The reason is that the

longitudinal parts of the spatial components of the exchanged field can always be turned

into temporal components via the constraint equations.

Acting with (5.31) and (5.32) on the top and middle helicity components of F2, we

find that the operators commute with the polarization sums, and so we can act on the

coefficient functions with

U2,2
12 (·) =

1

2
O12

[
1− u2

u2
∂u(u ·)− 4

u2
(·)
]
, (5.34)

U2,1
12 (·) =

1

2u
O12

[
(1− u2)∂u(·)− 2

u
(·)
]
. (5.35)

The operator relating Tφ00 and Tϕ00 in (5.33) acts on the longitudinal solution of the spin-2

equation, which is of the form P2(α/s)F (u) (where we suppressed the β, v dependence).

This time, however, we cannot act directly on the coefficient function and pull out the

polarization sum from the U2,0
12 operator. Using (5.33), we obtain

U2,0
12 (·) = U1,0

12 (·) +

[
α̂2

P2(α̂)
− 1 + u2

2u2

]
(·) . (5.36)

where α̂ ≡ α/s and U1,0
12 was defined in (5.20). This expression makes it manifest that the

longitudinal component vanishes in the soft limit. Taking, say k2 → 0, we have α̂→ 1 and

u→ 1, so that U1,0
12 vanishes and the two terms in the brackets cancel against each other.

The corresponding U2,m
34 operators are obtained by the substitutions u↔ v and α↔ β.

Given the solution F2 in (4.27), we then obtain

F2 = s3
[
Π̄2Π̃2,2U

2,2
12 U

2,2
34 D

2
uv + Π̄1Π̃2,1U

2,1
12 U

2,1
34 Duv(∆u − 2)

+ Π̃2,0U
2,0
12 U

2,0
34 ∆u(∆u − 2)

]
f̂ . (5.37)

This solves the constraints for ∆ = 3, if f̂ is any scalar solution of the ∆ = 2 constraint.

Note that, although the coefficient functions for the helicity-2 and 1 component do not

vanish in the soft limit, the polarization sums do. This implies that the four-point function

vanishes in the soft limit, as expected for derivatively coupled interactions.

Graviton exchange. The leading four-point function in single-field slow-roll inflation

arises from graviton exchange [99] (see also [33, 100, 101]). Equipped with our ansatz for

spin-2 exchange, we can now show how this famous result is reproduced in our formalism.

The inflationary trispectrum, denoted by Finf , consists of two parts: a contribution

from the exchange of the transverse-traceless graviton γij (GE) and a contribution from

contact terms (CT):

Finf = FGE + FCT , (5.38)
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where FGE and FCT are given by equations (2.33) and (4.1) in [99] (after stripping off the

overall factors of
∏
n k

3
n). It is useful to split the GE contribution into its connected and

disconnected parts, which we denote by FGE,c and FGE,d.27

The connected piece is conformally invariant and given by

FGE,c + FCT =
1

6

(
F2[f̂−1]− 4F0[Ĉ0]

)
+ perms , (5.39)

where F2[f̂−1] and F0[Ĉ0] were defined in (5.37) and (5.11), respectively. Note that our

spin-2 ansatz has eight derivatives acting on the scalar solution f̂−1. In order to obtain the

graviton exchange from a scalar exchange solution, we must pick f̂−1 to be a solution of the

equation for massless scalar exchange. To obtain the four-point function that arises from

the interaction ∂µφ∂νφσµν , we use as an input the function f̂−1 that solves the massless

scalar exchange equation (∆u − 2)f̂−1 = Ĉ−1 with the source satisfying ∆uĈ−1 = Ĉ0.28

The disconnected part, on the other hand, breaks the conformal symmetry in a way

that is dictated by Ward identities (see section 4.3 and ref. [33]):

FGE,d =
1

12
BOOT (k1, k2, s)BOOT (k3, k4, s) Π̄2Π̃2,2 + perms , (5.40)

where BOOT is given by (A.28) in appendix A; see also [28, 32]. Since FGE,d breaks the

conformal symmetry, it cannot be captured by a suitable choice of ∆ = 2 input function,

which was obtained as a solution of the conformal invariance equations. The coefficient

of the disconnected piece can be determined in a similar fashion as the parameter β0 was

determined for the massive exchange solutions discussed earlier; see appendix B for details.

The resulting expression for Finf agrees with equation (4.7) in [99].

General spin. In this section, we presented explicit results for the four-point functions

of massless scalars due to the exchange of particles with spin 0, 1, and 2. We showed how

transverse traceless tensors that are bilinear in φ can be written in terms of tensors that

are bilinear in ϕ. The tensors in ϕ had the minimum number of derivatives, while the

tensor in φ was slightly non-minimal, having two additional derivatives. The extension

of these results to higher-spin exchange in conceptually straightforward, but technically

cumbersome. We therefore only sketch the overall strategy for obtaining the weight-shifting

operators associated with the exchange of higher-spin particles.

The operators relating the spin-S tensors Tφµ1...µS to Tϕµ1...µS
have at most two deriva-

tives, and the coefficient functions are rational functions of (k1, k2,k1 · k2) of homogeneity

+2 under rescaling of the momenta, cf. eqs. (5.31) to (5.33). This suggests an algorithm

to determine the operators US,m12 for general spin S: first, we write general functions of

(k1, k2,k1 · k2) with the right homogeneity properties, times a differential operator that is

27By the disconnected part, we mean the piece that looks like a product of two three-point functions (see

section A.1), not the Gaussian contribution to the four-point function 〈φ2〉2.
28The solution to this exchange equation always captures the physical exchange of the graviton irrespective

of the type of contact term used as the source. Different solutions are then simply related by a shift of lower-

order contact terms. Our choice of f̂−1 is convenient because it requires the minimal number of contact terms

to capture the graviton exchange piece. Explicitly, the solution can be written as f̂−1 = 1
2
(F̂∆σ=3− F̂∆σ=2).
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de Sitter four-point function inflationary three-point function

Figure 9. Inflationary three-point functions can be derived from de Sitter four-point functions by

evaluating one of the legs on the time-dependent background.

at most second order in (k1, k2). Then, we apply such an operator to the known ∆ = 2

solution, being careful not to act with the derivatives on the transverse polarization sums

Π̄S,m. This gives a candidate solution of the constraint equations. Finally, we find the

unknown functions inside the differential operator order by order in τ , thus determining

the operators US,m12 that act on each helicity mode separately.

In an upcoming paper [65], we will provide a more systematic derivation of the weight-

shifting operators for general spin following a more group-theoretical approach, without

resorting to bulk kinematics. For the longitudinal component, m = 0, this analysis gives

US,012 ≡ U1,0
12 +

1

2

(
(S − 1)(S − 2)u2α̂2 − (S + 2)(S − 1)

4u2
+ α̂S

PS−1(α̂)

PS(α̂)
− 1

)
. (5.41)

As we will show in the next section, only the longitudinal part of the spin-exchange four-

point functions survives in inflationary three-point functions, so the result (5.41) will be

sufficient for that purpose.

6 Inflationary three-point functions

We have seen that tree-level correlation functions in de Sitter space are completely fixed

by symmetries and the absence of unphysical singularities. However, the time dependence

of inflation breaks scale and special conformal invariance, so it needs to be discussed how

much of this structure survives in the inflationary context. In this section, we will show

that the small breaking of the de Sitter symmetries due to the inflationary background can

be accounted for systematically. As an illustration, we will reproduce Maldacena’s famous

result for the three-point function of slow-roll inflation [17] from a simple deformation of

the de Sitter four-point function due to graviton exchange (see also [70]). We will also

provide a systematic classification of the inflationary three-point functions arising from

massive particle exchange.

6.1 Perturbed de Sitter

We assume a standard slow-roll scenario in which the breaking of the de Sitter isometries

is controlled by the slow-roll parameter

ε ≡ φ̇2

2M2
plH

2
� 1 . (6.1)
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At leading order, the four-point functions we studied above don’t feel the effects of the

weak symmetry breaking and our results therefore also apply for inflation (after mapping

the results for conformally coupled external fields to massless fields). On the other hand,

the possibilities for inflationary three-point functions that are exactly de Sitter invariant

are very limited.29 However, if the breaking of the conformal symmetry is weak, then

inflationary three-point functions can also be obtained by taking one of the legs of the de

Sitter four-point functions to have a soft momentum and a small mass [58, 70, 102] (see

figure 9). This corresponding to studying the conformal correlation function for ∆ = 3− ε,
where ε plays the role of the slow-roll parameter in the bulk. For some deformations of

the boundary theory, the perturbation to the operator dimension may be a combination

of slow-roll parameters in the bulk, not just the parameter ε defined in (6.1). This gives

us a purely boundary way of thinking about slow-roll deviations from pure de Sitter space

in the inflationary correlators.30 As we will show below, we only need to consider the soft

leg to have dimension ∆ = 3 − ε, and can keep the dimensions of the remaining fields at

∆ = 3. We will choose the last leg of the correlator to be soft, i.e. k4 → 0, and determine

the correction to the correlators in this limit at leading order in ε. This turns out to give

the leading contribution to the inflationary three-point function.

6.2 Inflationary bispectra

To obtain inflationary three-point functions from the massless de Sitter four-point functions

of section 5, we must evaluate one leg on the background. Say that we single out the fourth

leg and take k4 → 0. For massless fields interacting in a shift-symmetric fashion, this soft

limit of the four-point function will be zero. A nonzero result is only obtained if we take

into account the small inflaton mass proportional to the slow-roll parameter ε, so that the

mode function associated with the soft leg is

φk4,ε(x) =

(
(1 + ik4η) +

ε

2
log(−k4η) + · · ·

)
eik4·x . (6.2)

The four-point function will then have a nontrivial soft limit proportional to the slow-roll

parameter ε, and the ellipsis represents slow-roll corrections to the mode function that are

irrelevant in the k4 → 0 limit.

We expect only the longitudinal component of the four-point function to contribute

to the inflationary three-point function. From the bulk, it is easy to see why. The parts

of the four-point function with helicities greater than zero involve the contraction of a

polarization tensor for the exchanged particle, with intermediate momentum si, with the

external momenta. In particular, we will always have at least one contraction of the form

(k3 − k4)i εij(si). By transversality of the polarization tensor, this contraction vanishes in

29For scalar fields, a de Sitter-invariant bispectrum corresponds to a φ3 interaction in the bulk. This

interaction breaks the shift symmetry but can be naturally small in models of slow-roll inflation, α-attractors

or Starobinsky inflation [34].
30From the boundary perspective, slow-roll parameters are usually defined as deformations ei-

ther of the conformal field theory or of the conformal dimension of the operator dual to the

inflaton [17, 20, 21, 33, 103–106].
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the soft limit k4 → 0. This can be checked explicitly by setting k4 → 0, T̂ → 0 and L̂→ 0,

in the polarization sums (4.10) and (4.11).

Taking the soft limit of the longitudinal part of the four-point function,

s3 Π̃S,0U
S,0
12 U

S,0
34 ÂL, we get an inflationary three-point function of the form

B(k1, k2, k3) =
ε

2
k3

3PS(α/s)US,012 b̂S(u) + perms , (6.3)

where US,012 is given by (5.41) and we have introduced the source function

b̂S(u) ≡ lim
v→1

ÂL(u, v) =
S∏
j=1

(
∆u − (S − j)(S − j + 1)

)
f̂(u, 1) . (6.4)

We see that inflationary bispectra are determined by the v → 1 limit of the four-point

function of conformally coupled scalars in de Sitter space, f̂(u, v). In the following, we will

show that this reproduces classic results from the inflationary literature, as well as providing

an elegant way to classify all bispectra due to the exchange of particles with spin.

Scalar exchange/contact. Consider the soft limit k4 → 0 of the operator

∇µφk3∇µφk4,ε. In terms of the mode functions of conformally coupled scalars, this can be

written as

lim
k4→0

∇µφk3∇µφk4,ε =
ε

2
k2

3 lim
k4→0

(ϕk3ϕk4) . (6.5)

Letting s2U34 → (ε/2)k2
3 in the scalar exchange four-point function (5.11) and taking the

limit k4 → 0, we get

B =
ε

2
k3

3U12f̂(u, 1) + perms , (6.6)

where u = k3/k12 for v → 1.

As a concrete example, let us take the simplest contact term for the ∆ = 2 solution,

namely

f̂ = Ĉ0 =
uv

u+ v

v→1−−−−→ u

u+ 1
. (6.7)

Substituting this into (6.6), we get

B = − ε
2
k2

3

(
k3

2
− k2

1 + k1k2 + k2
2

kt
+
k1k2k3

k2
t

)
+ perms . (6.8)

Symmetrizing the momenta, we get

B ≡ − ε

4k2
t

[∑
n

k5
n +

∑
n 6=m

(2k4
nkm − 3k3

nk
2
m) +

∑
n 6=m 6=l

(k3
nkmkl − 4k2

nk
2
mkl )

]
, (6.9)

which is precisely the famous equilateral bispectrum arising from the bulk interaction

(∂µφ)4; cf. equation (14) in [102].

– 53 –



J
H
E
P
0
4
(
2
0
2
0
)
1
0
5

Massless scalar exchange. The case of massless exchange is particularly interesting.

A common diagnosis for other light fields during inflation is the appearance of local non-

Gaussianity, which is absent in single-field inflation [107]. If this source of non-Gaussianity

is generated during inflation,31 then the relevant shape comes from massless exchange.

As we now show, the bispectrum due to the exchange of a massless scalar does leave an

imprint in the squeezed limit, although the shape is not the same as the local one, even in

the squeezed limit. Substituting F̂∆σ=3, given in (4.59), into (6.6), we obtain

B =
ε

4

(
k3

3 log kt −
k2

3(k2
1 + k1k2 + k2

2 − k2
3)

kt

)
+ perms , (6.10)

where we discarded terms of the form
∑

n k
3
n log kn which are artifacts of imposing confor-

mal invariance of the answer. The logarithm can be regulated by introducing an IR cutoff.

Note that the pole in kt in (6.10) cancels after summing over permutations. Finally, the

soft behavior of the bispectrum is

lim
k3→0

B =
ε

2
k3

1 log(2k1) , (6.11)

which has a small, logarithmic deviation from the local shape. We show in appendix D

that the same three-point function is also given by a local self-interaction of the inflaton,

as long as we allow for self-interactions which break shift symmetry. In other words, this

shape can be interpreted in two different ways: either as an indication of a new massless

scalar state in the spectrum, or as a local breakdown of shift symmetry of the inflaton.

The zero mode of the inflaton (or of the extra massless scalar) has a long range effect, and

is ultimately responsible for this slow decay of the squeezed limit.

Graviton exchange. Another interesting example is the bispectrum associated with

graviton exchange in the four-point function. This is expected to lead to the three-point

function of slow-roll inflation [17, 69]. We will now show that this is indeed the case.

Consider the tensors Tφµν and Tϕµν defined in (5.30), but with the perturbed mode

function (6.2) in Tφµν . In the soft limit k4 → 0, the 00-component of the tensors are

related as

lim
k4→0

Tφ,ε00 =
ε

2
k2

3 lim
k4→0

Tϕ00 , (6.12)

where we had to adjust the trace part of Tφµν to get a precise matching with Tϕµν . Letting

s2U2,0
34 → (ε/2)k2

3 in the longitudinal part of the four-point function (5.37), and taking the

soft limit, we get

B =
ε

2
k3

3 P2(α/s)U2,0
12

(
∆u(∆u − 2)f̂(u, 1)

)
+ perms . (6.13)

To determine the bispectrum due to graviton exchange, we must substitute the scalar

solution associated with massless exchange, (∆u − 2)f̂ = Ĉ(u, v). Because the operator

31This excludes scenarios like the curvaton mechanism [108, 109], where non-Gaussianities are sourced

after inflation.
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U12 raises the number of derivatives of the effective interaction, we use the unphysical

“contact term” Ĉ−1, defined implicitly via ∆uĈ−1 = Ĉ0.32 This implies

∆u(∆u − 2)f̂ = ∆uĈ−1

= Ĉ0 =
uv

(u+ v)

v→1−−−−→ u

u+ 1
. (6.14)

Substituting this into (6.13), we obtain

B[f̂−1] =
ε

8

(
k3
t − 6

∑
n>m

knk
2
m − 4k1k2k3 +

8(
∑

n>m knkm)2

kt
+

32k1k2k3
∑

n>m knkm

k2
t

)
.

(6.15)

In section 5, we saw that the four-point function corresponding to physical graviton ex-

change involves the combination F2[f̂−1]− 4F0[Ĉ0]. This suggests that we should subtract

the contribution found in (6.8), which we denote by B(∂φ)4 . We therefore find

Binf ≡ B[f̂−1]− 4B(∂φ)4

= −3

8
ε

[ ∑
n 6=m

knk
2
m +

8

kt

∑
n>m

k2
nk

2
m − 3

∑
n

k3
n

]
. (6.16)

Up to a local contribution, this is the classic three-point function of slow-roll inflation [17].

Note that we have computed the bispectrum of inflaton fluctuations, δφ. To perform the

precise comparison with the result in [17], the bispectrum must be written in comoving

gauge, in which the scalar fluctuation is proportional to the trace of the metric, usually

referred as the comoving curvature perturbation ζ. From the boundary perspective, com-

puting correlators of the metric is equivalent to computing correlators of the trace of the

stress tensor. Since the stress tensor must satisfy a boundary Ward identity [110–112],

we must add an extra piece to the inflationary bispectrum. This extra piece in the three-

point function of ζ is proportional to Bloc ≡
∑

n k
3
n, with coefficient determined by the

tilt of the scalar power spectrum, ns − 1. It is the only non-vanishing piece of the bis-

pectrum in the squeezed limit and, from the bulk perspective, follows from consistency

conditions [17, 51, 107] that relate a long-wavelength metric fluctuation to a change of co-

ordinates. This extra contribution to the squeezed bispectrum does not generate observable

effects in the late universe [113].

Massive spin-2 exchange. Finally, the result (6.13) straightforwardly includes the bis-

pectra associated with the exchange of massive particles. We will verify this explicitly for

massive spin-2 exchange. Again, we will feed in the scalar solution f̂−1, which now satisfies

(∆u + µ2 + 1
4)f̂−1 = Ĉ−1. This implies that

∆u(∆u − 2)f̂−1 = (∆u − 2)f̂0 , (6.17)

32The term Ĉ−1 has a physical interpretation as the four-point function due to the exchange of a confor-

mally coupled scalar. Applying ∆u to it collapses its internal propagator and outputs the lowest-derivative

contact term Ĉ0.
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where f̂0 is the solution given in (3.36). Substituting this into (6.13), we get

B =
ε

2
k3

3 P2(α/s)U2,0
12

[ ∞∑
m,n=0

cmn(2m+ n+ 2)u2m+n+1
(
2m+ n− 1− (2m+ n+ 1)u2

)
− π5/2(9

4 + µ2)(1
4 + µ2)(tanhπµ− 1)

sinh(2πµ)
g2(u)

]
+ perms , (6.18)

where we have defined the function

g2(u) ≡ (eπµ − i)2

1 + 2iµ

Γ(−1
2 + iµ)

Γ(1 + iµ)

(
u

2

) 1
2

+iµ

2F1

[
1
4 + iµ

2 ,
3
4 + iµ

2

1 + iµ

∣∣∣∣∣u2

]
+ c.c. (6.19)

In the squeezed limit, only the homogeneous solution in one of the channels dominates,

and we find

lim
k3→0

B = εk3
1

[(
k3

4k1

) 3
2

+iµ

a2(µ) + c.c.

]
P2(cos θ) , (6.20)

where cos θ = k̂1 · k̂3 and

a2(µ) ≡ π(1
4 + µ2)

coshπµ

Γ(5
2 + iµ)Γ(5

2 − iµ)

128
√
π

(1 + i sinhπµ)
9
2 + iµ
1
2 + iµ

Γ(−iµ)

Γ(1
2 − iµ)

. (6.21)

The result (6.20) agrees with equation (6.142) in [58], with the Legendre polynomial indi-

cating that we are exchanging a massive spin-2 particle.33

7 Comments on phenomenology

Figure 10 shows the cross section for e+e− → hadrons as a function of the center-of-mass

energy. The different resonance peaks, such as the famous Z resonance near 100 GeV,

prove the existence of new particles and determines their properties. For example, the

position of a peak measures the mass of the particle, while its height and width probe

the lifetime of the particle and hence its couplings to lighter degrees of freedom in the

Standard Model. The angular dependence of the decay products puts constraints on the

spin of the intermediate particle. In this section, we will discuss how similar spectroscopic

information is encoded in the structure of inflationary correlators. We will also present a

new physically-motivated basis of shapes for inflationary three-point functions with weakly

broken conformal symmetry.

7.1 Cosmological collider physics

The right panel in figure 11 displays our solution for the exchange of a massive scalar

particle, F̂ (u, v), for fixed v = 0.5. We see that the signal in the collapsed limit, u → 0,

33An extra factor of µ2 + 1
4

in (6.21) compared to (6.144) in [58] is due to the fact that we have used

the solution with a higher-derivative source term as the input function. Again, the difference is given by a

contact term, and the extra prefactor can simply be absorbed in the coupling constant.
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Figure 10. Plot of R ≡ σ(e+e− → hadrons)/σ(e+e− → µ+µ−) as a function of the center-of-mass

energy (figure adapted from [114]).
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Figure 11. Left panel: shape of the Z resonance as measured by LEP. Right panel: example of

scalar exchange, u−1F̂ (u, 0.5), for external particles with ∆ = 2 and an internal particle with µ = 3.

Note that the four-point function has been rescaled by u−1 which visually enhances the effect of

the oscillations. In practice, the particle production effect will be harder to observe than the EFT

contribution.

oscillates with a frequency that is set by the mass of the exchange particle. Measuring these

oscillations is the analog of measuring the position of a resonance peak in collider physics. It

would prove the existence of new particles and determine their masses. Going away from

the squeezed limit, the particular solution will start to dominate over the homogeneous

solution. This provides a smooth contribution to the four-point function, whose shape will

also be determined by the mass of the exchange particle. This is the analog of going off

resonance and measuring the shape of the resonance peak in collider physics. Measuring

both the oscillations and the smooth shape provides an important consistency check for

the signal.
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In colliders, we begin with low-energy measurements where all interactions are pure

contact interactions. For example, at low energies the electroweak theory is approximated

by the four-point interaction of Fermi theory. In the latter case, the energy dependence

of the interaction hints at a violation of perturbative unitarity at a higher scale. This

suggests the existence of new particles (in the case of the electroweak theory, W bosons)

to improve the UV behavior of the effective theory. Going to higher energies, colliders

may start producing these particles as resonances. Predicting the shape of the resonance

is essential for extracting the detailed properties of the new particles. It also provides the

opportunity to identify additional new physics. For example, any unexplained excess in

the cross section may be due to additional particle exchanges.

In cosmology, we first expect to observe signals in the limit of relatively large momenta.

This is where the signals are strongest and the observations are most sensitive. Initially,

we would see the shape of a pure contact interaction. With increased sensitivity we may

then be able to observe a small deviation from the pure contact shape (see figure 12 in

section 7.2).34 Using the hypothesis of the exchange of a single massive particle to fit the

smooth part of the signal would then allow us to predict the amplitude and frequency of

the characteristic oscillations in the soft limit. Finding consistency between the smooth

and oscillating parts of the signal would be essential to establish the underlying physics.

Any discrepancies between the two components may be a signal of additional new physics.

7.2 Challenges and opportunities

In this paper, we have worked under the lamppost of weakly broken conformal symmetry.

This has allowed us to derive particularly clean insights into the analytic structure of in-

flationary correlators. However, it also restricts the strength of the couplings between the

inflaton and additional massive fields. This makes the observational challenge to detect

these effects enormous. To achieve larger levels of non-Gaussianity, fNL > 1, requires in-

teractions that break the conformal symmetry more strongly, as in models with a reduced

sound speed of the inflationary fluctuations [59, 115–117], or strongly coupled fluctuations,

as in some holographic models of dS/CFT [118]. While the main observational signatures

of massive particles — oscillations and a distinct angular dependence in the squeezed limit

— are preserved [59], the details of the non-Gaussian shapes will be modified.35 Having

made this important qualifier, we will nevertheless present a systematic classification of

inflationary three-point functions arising from weakly broken conformal symmetry provid-

ing a physically-motivated basis of templates in the search for primordial non-Gaussianity.

This may be viewed as an ultimate target for future generations of cosmological observa-

tions [120–122].

34In practice, it will be hard to reliably extract the precise shape of the smooth part of the signal from

large-scale structure observations because late-time nonlinearities produce non-Gaussianities of a similar

form. Although the oscillatory part of the signal is smaller, it is more distinctive and cannot be mimicked

by late-time effects.
35It is conceivable that our approach can be generalized to cases with nonlinearly conformal symmetry

or interactions constrained by the non-relativistic conformal group (see e.g. [119]). We will explore this in

future work.
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In section 6, we showed that all inflationary three-point functions arising from inter-

actions that only weakly break conformal invariance can be written as follows

B(k1, k2, k3) = ε k3
3

∑
S,n

PS(α/s)US,012

(
cS,nb̂S,n(u) + cnĈn(u, 1)

)
+ perms , (7.1)

where

b̂S,n(u) ≡
S∏
j=1

(
∆u − (S − j)(S − j + 1)

)
F̂n(u, 1) , (7.2)

with F̂n(u, v) being a solution of the de Sitter four-point function of conformally coupled

scalars induced by the tree-level exchange of a massive scalar. Using [∆u+(µ2+ 1
4)]F̂n = Ĉn

and Ĉn = ∆n
uĈ0, we can write the source function in terms of the simplest exchange solution

F̂0 and a sum over contact terms:

b̂S,n(u) = lim
v→1

[
aS,n(µ) F̂0 +

S−1∑
m=0

aS,nm(µ) Ĉm

]
, (7.3)

where the coefficients are known functions of µ, but their explicit forms won’t be needed.

After summing over permutations, the contact contributions in (7.3) can be absorbed

into the contact contributions in (7.1). Up to local terms that can be removed by field

redefinitions, the inflationary bispectrum can then be written as36

B(k1, k2, k3) = ε k3
3

∑
S

PS(α/s)US,012

(
dSF̂0(u, 1) +

∑
n

enĈn(u, 1)

)
+ perms , (7.4)

where dS and en are constants. Rather remarkably, the inflationary bispectrum arising

from arbitrary spin-exchange is completely described by the soft limit of the simplest

scalar-exchange four-point function of conformally coupled scalars, F̂0, and a series of

contact terms, Ĉn. This physically-motivated basis of shape functions is illustrated in the

left panel of figure 12. We see that the higher-order contact terms Ĉn>0 are suppressed

away from the equilateral limit u = 1, so that a parameterization in terms of just F̂0 and

Ĉ0 captures most of the bispectrum shape. In the right panel of figure 12, we display

the difference between F̂0 and Ĉ0 as a function of µ, and hence the mass of the exchange

particle. As we mentioned above, this deviation from the pure contact shape is a measure

of the mass of the exchange particle.

8 Conclusions and outlook

In this paper, we have presented a systematic study of inflationary correlation functions,

following a perspective familiar from the study of scattering amplitudes. We used sym-

metries and singularities to uniquely fix the correlators, rather than computing them from

36This basis covers all shift-symmetric contact interactions of massless scalar φ. A violation of the shift

symmetry can be interpreted either as adding local terms without derivatives in the inflaton Lagrangian,

or as an indication of an extra massless scalar in the spectrum.
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Figure 12. Left panel: comparison of the source functions b(u) as a function of u between the

scalar exchange solution (µ2 + 1
4 )F̂0 for µ = 3 and the contact terms Ĉn for n = 0, 1, 2. Right panel:

comparison between the leading contact term Ĉ0 and (µ2 + 1
4 )F̂0 for µ = 1, 2, 3.

cosmological time evolution. Remarkably, the space of correlators is completely charac-

terized by one fundamental object, the four-point function of conformally coupled scalars

arising from the exchange of a massive scalar. Solutions with massless external and spin-

ning internal fields are obtained simply through the application of suitable weight-shifting

and spin-raising operators.

Our findings pave the way towards a “cosmological bootstrap”, in which cosmological

correlation functions are determined from consistency conditions, without recourse to a

Lagrangian. It is amusing to see the central philosophical distinction between the “boot-

strap” and “Lagrangian” approaches manifest itself in this context. In the Lagrangian

method, the correlator is the result of “just a computation”, albeit in many cases an in-

credibly tedious and un-illuminating one. The bootstrap method is different — instead of

asking “what is the answer for the correlator?” it asks, “what is the question to which

the correlator is the unique answer?” This second philosophy has a number of advantages.

Most pragmatically, by construction it is easy to check whether the answer is right or

wrong, and hidden simplicities and structures in the final results are more transparent.

More deeply, the bootstrap approach is better suited to the ambitious goal of understand-

ing “time without time”. Indeed, although our formalism never makes explicit reference

to time evolution, the effects of the time-dependent background, such as the spontaneous

production of massive particles, emerge from our solutions where they are encoded in the

momentum dependence of the boundary correlators.

We have clearly only scratched the surface of a large and fascinating subject, which

holds great promise for future developments. Indeed the explosion of progress in our un-

derstanding of scattering amplitudes virtually guarantees this, since, as we have stressed

repeatedly, the scattering amplitudes are contained within the correlators. Many of the

wonderful insights into the physics of scattering amplitudes must therefore have counter-

parts in the physics of cosmological correlators.
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We close by pointing out a few obvious avenues for future exploration:

• To begin with, there are a number of points where we feel our analysis can be stream-

lined and improved. For example, our discussion of the polarization sums in cosmol-

ogy, as well as the construction of spin-raising operators, was largely carried out by

inspired guesswork; clearly the de Sitter symmetries should help to organize these

computations in a more powerful way than we have been exploiting. A similar com-

ment applies to the weight-shifting operators mapping between correlators of confor-

mally coupled and massless scalars.

• It would also be nice to apply the same philosophy to the computation of correla-

tors with external spin, especially for gravitons. Standard Lagrangian computations

for these correlators are notoriously complicated, but we expect that the bootstrap

method should yield transparent analogs of the results we have seen here for scalars.

In flat space, the bootstrap approach has been very powerful in determining the al-

lowed three- and four-point graviton amplitudes (see e.g. [39, 77]). Similarly, in de

Sitter space, the graviton three-point function is highly constrained by symmetry [24].

• Moving beyond tree level, the analytic structure of one-loop scattering amplitudes is

well-understood; for instance, in four dimensions, the final results are given as a sum

over box, triangle and bubble integrals, together with rational terms. This must have

an analog for cosmological correlators. A precise understanding of this will allow a

huge extension of “cosmological collider physics” to encompass further plausible and

potentially realistic scenarios [123–125]. For instance, if the Higgs field has a coupling

to curvature, it can pick up a mass of order the Hubble scale during inflation, and

naturally couple to the inflaton in pairs, contributing to non-Gaussianities at loop

level. The same could be true for scalar partners in supersymmetric theories that

might exist anywhere up to the inflationary scale.

• More conceptually, the constraints of causality on scattering are reflected in the

polynomial boundedness of the amplitudes in the Regge limit, where t is held fixed and

s→∞; it is important to determine the precise analog of this statement in cosmology.

For amplitudes, this has led to powerful dispersion relations, which in turn result in

nontrivial positivity constraints on the coefficients of higher-dimension operators in

the low-energy effective field theory expansion [88] (see also [126–132]). We expect

entirely analogous results to hold for cosmological correlators. In particular, we

expect the EFT expansion of the correlators to inherit interesting positivity properties

from the positivity of the scattering amplitudes that live inside them (see e.g. [133]).

• Some very early steps in identifying new combinatoric/geometric structures underly-

ing cosmological correlators, playing a roughly analogous role to amplituhedra and

generalized associahedra for scattering amplitudes, have recently appeared in [134]

with the discovery of “cosmological polytopes”, at least for the case of conformally

coupled scalars with polynomial interactions. Using the results of our paper, it would

be interesting to extend these ideas to more realistic theories of particles with general

masses and spins.
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• Finally, we have worked under the lamppost of weakly broken conformal symmetry.

This made our analysis particularly clean and precise, but also limited the strength

of the couplings between the inflaton and the additional massive particles. Obtain-

ing larger levels of non-Gaussianity, requires interactions that break the conformal

symmetry more strongly, such as in theories with a reduced sound speed for the in-

flationary fluctuations [59, 115–117, 135, 136]. It would be interesting to extend our

bootstrap methods to such examples where they would have immediate observational

relevance.
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A Conformal symmetry

In this appendix, we derive the conformal symmetry constraints on three- and four-point

functions in de Sitter space. We first review the map between the semiclassical wavefunction

of the universe and correlation functions, showing that the four-point functions contain

a connected part and a disconnected part. The latter is given by a product of three-

point functions and we present the explicit forms of the three-point functions that are

used in this work. Finally, we show explicitly that the combined action of dilatation and

special conformal transformations on the scalar four-point function leads to the conformal

invariance constraint (2.26).
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A.1 Wavefunction → correlators

The late-time wavefunction of the universe can be obtained by evaluating the on-shell

action with appropriate boundary conditions, namely φ(k, η) → φ(k) at late times and

φ ∼ e−ikη in the far past, selecting the Bunch-Davies vacuum. We write the wavefunction

for the fields φ and σ as37

Ψ[φ, σ] = exp

[ ∞∑
n+m≥2

1

m!n!

∫
d3k1 · · · d3km+n

(2π)3(m+n)
ψm,n({kl})

m∏
i=1

n∏
j=1

φ(ki)σ(km+j)

]
, (A.1)

where {kl} ≡ {k1, · · ·,km+n} denotes the set of all momenta. Expectation values of the

bulk fields are then computed as

〈φ1 · · ·φmσm+1 · · ·σm+n〉 =
1

N

∫
DφDσ φ1 · · ·φmσm+1 · · ·σm+n |Ψ[φ, σ]|2 , (A.2)

where {φn, σm} ≡ {φ(kn), σ(km)} and N is an appropriate normalization. Translation

invariance implies that the wavefunction coefficients take the form

ψm,n = 〈O1 · · ·OmΣm+1 · · ·Σm+n〉′ × (2π)3δ3(k1 + · · ·+ km+n) , (A.3)

where the prime on the expectation value indicates that the momentum-conserving delta

function has been stripped. The operators O and Σ can be interpreted as primary operators

in a dual conformal field theory, although this won’t be needed in this work. The two-point

function of Σ can be written as

〈Σi1···iS (k)Σj1···jS (−k)〉′ = Πj1···jS
i1···iS (k̂) 〈ΣS(k)ΣS(−k)〉′ , (A.4)

where Πj1···jS
i1···iS is a symmetric, traceless tensor structure.38 The two-point functions of φ

and σ are then given by

〈φ(k)φ(−k)〉′ = − 1

2Re〈O(k)O(−k)〉′ , (A.5)

〈σi1···iS (k)σj1···jS (−k)〉′ = −
Πj1···jS
i1···iS (k̂)

2Re〈ΣS(k)ΣS(−k)〉′ , (A.6)

37We are dropping a phase factor that diverges at late times but does not affect correlation functions.

We assume that σ is a generic spinning field, but sometimes suppress its indices for brevity.
38Explicitly, it is given by [58, 59]

Πi1···iS ,j1···jS (k̂) =

S∑
m=0

I+
2 (S,m)εmi1···iS (k̂)ε−mj1···jS (k̂) ,

with I+
2 (S,m) defined in (4.37). This captures the non-local part of the two-point function. Contracting

with null momenta z and z̃, the two-point function becomes

〈Σ(S)(k; z)Σ(S)(−k; z̃)〉′ = cΣ k
2∆−3[(z · k̂)(z̃ · k̂)

]S
P

(∆−S−3/2,−1/2)
S

(
1− z · z̃

(z · k̂)(z̃ · k̂)

)
+ c.c.

= cΣ k
2∆−3P

(∆−S−3/2,−1/2)
S (− cosχ) + c.c. ,

where Σ(S)(k; z) ≡ zi1 · · · ziSΣi1···iS (k3) and P
(a,b)
S is the Jacobi polynomial. We used 〈ΣS(k)ΣS(−k)〉′ =

cΣ k
2∆−3 and set z = (cosψ, sinψ, i), z̃ = (cosψ′, sinψ′,−i), k = (0, 0, k) in the second line with χ ≡ ψ−ψ′.
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with

〈O(k)O(−k)〉′ = cO k
∆O−3 , (A.7)

〈ΣS(k)ΣS(−k)〉′ = cΣ k
∆Σ−3 . (A.8)

The four-point function of φ is

〈φ(k1)φ(k2)φ(k3)φ(k4)〉′ = 〈O4〉′c + 〈O4〉′d∏4
n=1 2 Re〈O(kn)O(−kn)〉′

, (A.9)

where the connected and disconnected contributions are

〈O4〉′c ≡ 2Re〈O(k1)O(k2)O(k3)O(k4)〉′ (A.10)

〈O4〉′d ≡
2Re〈O(k1)O(k2)Σi1···iS (−s)〉′Πj1···jS

i1···is (ŝ) Re〈Σj1···jS (s)O(k3)O(k4)〉′
Re〈ΣS(s)ΣS(−s)〉′ + perms .

(A.11)

We see that the disconnected part is given by the product of two three-point functions

〈OOΣ〉. When σ is a generic massive particle, both the connected and disconnected parts

are conformally invariant, and can be obtained by solving (2.26). The normalization of

the connected part is fixed by the coupling constant, while the disconnected part is asso-

ciated with the homogeneous solutions that we are free to add. The four-point function

is then fully determined by fixing the relative coefficient between the connected and dis-

connected parts to be “1”. This provides us with a purely boundary way of fixing the

correlation function.

A.2 Three-point functions

In this section, we collect the conformal invariance conditions for different types of three-

point functions. We will focus on the three-point functions that are most relevant for

this work.

Three scalars. The three-point function of generic scalar operators depends only on the

magnitudes of the three momenta. Using the scaling symmetry, we can write this correlator

as a function of two variables

〈O1(k1)O2(k2)O3(k3)〉′ = k∆t−6
3 Ĝ(p, q) , p ≡ k1 + k2

k3
, q ≡ k1 − k2

k3
, (A.12)

where ∆t =
∑

∆n. Writing the generator of special conformal transformations as Kin ≡
kinKn, we find that the only nontrivial way to satisfy the condition

∑Kin(k∆t−6
3 Ĝ) = 0 is

by demanding

(Kn −Km)(k∆t−6
3 Ĝ) = 0 , (A.13)

for n,m ∈ {1, 2, 3}. In terms of the variables p and q, the 12-equation becomes[
(p2 − q2)∂pq + (∆+

12 − 4)(q∂p − q∂q)−∆−12(p∂p − q∂q)
]
Ĝ(p, q) = 0 , (A.14)
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where ∆±12 ≡ ∆1 ±∆2. Combining the 13- and 23-equations, we find{
(p2 − 1)∂2

p + 2pq∂pq + (q2 − 1)∂2
q + (∆t − 6)(∆+

12 −∆3 − 3)

− 2

[(
(∆+

12 − 5)p+
∆1 − 2

p+ q
+

∆2 − 2

p− q

)
∂p + p↔ q

]}
Ĝ(p, q) = 0 . (A.15)

Solutions to these equations for the special cases of interest ∆1 = ∆2 ∈ {2, 3} and ∆3 /∈
{2, 3} were obtained in [58]. In terms of the variables u = p−1 and α = qs, with s = k3,

the function Ĝ satisfies

∆1 = ∆2 = 2 :

[
∆u +

(
µ2 +

1

4

)]
Ĝ = 0 , (A.16)

∆1 = ∆2 = 3 :

[
∆̃u +

(
µ2 +

9

4

)]
G̃ = 0 , with Ĝ = O12 G̃ , (A.17)

where ∆̃u ≡ (1− u2)u2∂2
u + 4(1− u2)u∂u. The solutions to these equations take the form

of a hypergeometric function. In the limit ∆3 → {2, 3}, the hypergeometric solutions

degenerate into trivial local terms (either a constant or k3
1 + k3

2 + k3
3), and the physical

correlators satisfy anomalous conformal Ward identities, allowing for a local violation of

the dilatation constraint. The solutions for these special cases ∆3 ∈ {2, 3} typically contain

logarithms, which arise from renormalization of the correlators, and are discussed in great

detail in [137, 138].

Two scalars and one general tensor. The three-point function of two identical scalars

and one general spinning operator was derived in [58] (see also [139]). The most general

ansatz for this correlator is

〈O(k1)O(k2)Σ(S)(k3; z)〉′ = k∆t−6−S
3

S∑
m=0

γmδS−mâm(p, q) , (A.18)

where we have defined

Σ(S)(k3; z) ≡ zi1 · · · ziSΣi1···iS (k3) , γ ≡ z · (k1 − k2) , δ ≡ z · (k1 + k2) , (A.19)

with zi being a null vector, so that the trace of Σi1···iS is automatically projected out. The

special conformal generator becomes

biKi = 2(3−∆)bi∂ki − biki∂kj∂kj + 2ki∂kib
j∂kj + 2(zi∂kib

j∂zj − bizi∂kj∂zj ) , (A.20)

and the coefficients am obey the following recursive relation:

âm−1 = −m
{

[q(1− p2)∂p + p(1− q2)∂q + (2∆O + ∆Σ − 6− S)pq] âm + (m+ 1)am+1

}
(S −m+ 1)(∆Σ − 2 +m)

.

(A.21)

It can be shown that the highest-helicity components satisfy[
∆S,u +

(
µ2 +

(2S + 1)2

4

)]
âS = 0 , (A.22)[

∆̃S,u +

(
µ2 +

(3− 2S)2

4

)]
ãS = 0 , with âS = O12 ãS , (A.23)
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for ∆ = 2 and ∆ = 3, respectively, with ∆S,u and ∆̃S,u defined in (E.1) and (E.2). This

allows us to determine all lower helicity components via (A.21).

Two scalars and one conserved tensor. Of particular interest for inflation are corre-

lation functions involving the stress tensor, which are dual to correlators involving tensor

metric perturbations. In particular, the four-point function of slow-roll inflation contains

a contribution from graviton exchange. Its disconnected part includes factors of 〈OOTij〉,
which is not conformally invariant, but is constrained by Ward identities.

Momentum-space Ward identities involving stress tensors and conserved currents were

derived in [32] (see also [140–144]). For example, the transverse and traceless parts of

〈OOTij〉 satisfy

kj3〈O(k1)O(k2)Tij(k3)〉′ = ki1〈O(k1)O(−k1)〉′ + ki2〈O(k2)O(−k2)〉′ , (A.24)

〈O(k1)O(k2)Tii(k3)〉′ = −∆O

(
〈O(k2)O(−k1)〉′ + 〈O(k2)O(−k2)〉′

)
. (A.25)

This allows us to write

〈O(k1)O(k2)Tij(k3)〉′ = 〈O(k1)O(k2)tij(k3)〉′ + local , (A.26)

where tij is the transverse-traceless part and “local” denotes terms proportional to the

two-point function 〈OO〉. The transverse-traceless part is given by

〈O(k1)O(k2)tij(k3)〉′ = −2cOBOOT (k1, k2, k3)kl1k
m
2 Pij,lm(k̂3) , (A.27)

where cO is the normalization of 〈OO〉. The tensor structure Pij,lm follows from kinematics,

while BOOT is fixed by conformal symmetry. For ∆2 = ∆3 = 3, we have [28, 32]

BOOT (k1, k2, k3) = kt −
∑

n>m knkm

kt
− k1k2k3

k2
t

, (A.28)

which we used in section 5 to determine the disconnected contribution to graviton exchange.

A.3 Four-point functions

In this section, we derive the conformal symmetry constraint (2.26). We begin by collecting

some basic formulas. Differentiating a momentum vector gives

∂kin
∂kn

=
∂kn
∂kin

= k̂in ,
∂kin

∂kjn
= δij ,

∂k̂in

∂kjn
=
δij − k̂ink̂jn

kn
,

∂k̂in
∂kn

= 0 . (A.29)

The derivatives of the s, t variables are

∂s

∂ki1
=

∂s

∂ki2
=
ki12

s
,

∂s

∂ki3
=

∂s

∂ki4
= 0 ,

∂t

∂ki2
=

∂t

∂ki3
=
ki23

t
,

∂t

∂ki1
=

∂t

∂ki4
= 0 ,

(A.30)
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where kinm ≡ kin + kim. Using the chain rule, the first derivatives with respect to the

momentum vectors can be replaced by

∂

∂ki1
=
ki1
k1

∂

∂k1
+
ki12

s

∂

∂s
,

∂

∂ki3
=
ki3
k3

∂

∂k3
+
ki23

t

∂

∂t
,

∂

∂ki2
=
ki2
k2

∂

∂k2
+
ki12

s

∂

∂s
+
ki23

t

∂

∂t
,

∂

∂ki4
=
ki4
k4

∂

∂k4
.

(A.31)

Moreover, the second derivatives are

∂2

∂ki1∂k
j
1

= k̂i1k̂
j
1

∂2

∂k2
1

+
δij − k̂i1k̂j1

k1

∂

∂k1
+
ki1k

j
12 + ki12k

j
1

sk1

∂2

∂s∂k1
+
δij − ŝij

s

∂

∂s
+ ŝij

∂2

∂s2
,

∂2

∂ki2∂k
j
2

= k̂i2k̂
j
2

∂2

∂k2
2

+
δij − k̂i2k̂j2

k2

∂

∂k2
+
ki23k

j
12 + ki12k

j
23

st

∂2

∂s∂t

+
δij − ŝij

s

∂

∂s
+
ki2k

j
12 + ki12k

j
2

sk2

∂2

∂s∂k2
+ ŝij

∂2

∂s2

+
δij − t̂ij

t

∂

∂t
+
ki2k

j
23 + ki23k

j
2

tk2

∂2

∂t∂k2
+ t̂ij

∂2

∂t2
,

∂2

∂ki3∂k
j
3

= k̂i3k̂
j
3

∂2

∂k2
3

+
δij − k̂i3k̂j3

k3

∂

∂k3
+
ki3k

j
23 + ki23k

j
3

tk3

∂2

∂t∂k3
+
δij − t̂ij

t

∂

∂t
+ t̂ij

∂2

∂t2
,

∂2

∂ki4∂k
j
4

= k̂i4k̂
j
4

∂2

∂k2
4

+
δij − k̂i4k̂j4

k4

∂

∂k4
,

(A.32)

where we have defined

ŝij ≡ (ki1 + ki2)(kj1 + kj2)

s2
, t̂ij ≡ (ki2 + ki3)(kj2 + kj3)

t2
. (A.33)

Below, we write down the constraint equations arising from dilatations and SCTs.

Dilatation. Expanding (2.24) gives

0 =

[
9−

4∑
n=1

(
∆n − kin

∂

∂kin

)]
F

= (9−∆t)F + k1
∂F

∂k1
+ k2

∂F

∂k2
+ k3

∂F

∂k3
+ k4

∂F

∂k4
+ s

∂F

∂s
+ t

∂F

∂t
. (A.34)

where ∆t ≡
∑4

n=1 ∆n denotes the total conformal weight. Differentiating this with respect

to s and t gives

−∂
2F

∂s2
=

10−∆t

s

∂F

∂s
+
k1

s

∂2F

∂s∂k1
+
k2

s

∂2F

∂s∂k2
+
k3

s

∂2F

∂s∂k3
+
k4

s

∂2F

∂s∂k4
+
t

s

∂2F

∂s∂t
, (A.35)

−∂
2F

∂t2
=

10−∆t

t

∂F

∂t
+
k1

t

∂2F

∂t∂k1
+
k2

t

∂2F

∂t∂k2
+
k3

t

∂2F

∂t∂k3
+
k4

t

∂2F

∂t∂k4
+
s

t

∂2F

∂s∂t
. (A.36)

We will substitute these derivatives in our derivation of the SCT constraints.
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Linear term. We first consider the first-order term in (2.25). We have

4∑
n=1

2(∆n − 3)
∂F

∂kin
= ki1

[
2(∆1 − 3)

1

k1

∂F

∂k1
+ 2(∆12 − 6)

1

s

∂F

∂s

]
+ ki2

[
2(∆2 − 3)

1

k2

∂F

∂k2
+ 2(∆12 − 6)

1

s

∂F

∂s
+ 2(∆23 − 6)

1

t

∂F

∂t

]
+ ki3

[
2(∆3 − 3)

1

k3

∂F

∂k3
+ 2(∆23 − 6)

1

t

∂F

∂t

]
+ ki4

[
2(∆4 − 3)

1

k4

∂F

∂k4

]
, (A.37)

where ∆nm ≡ ∆n + ∆m.

Cross term. There are two second-order terms in (2.25). The cross term is given by

4∑
n=1

kjn
∂2F

∂kin∂k
j
n

= ki1

[
∂2

∂k2
1

+
s2

1 + k2
1

sk1

∂2F

∂s∂k1
+
t22
st

∂2F

∂s∂t
+
k2

s

∂2F

∂s∂k2
+
∂2F

∂s2

]
+ ki2

[
k2

1

sk1

∂2F

∂s∂k1
+
∂2F

∂s2
+
∂2F

∂k2
2

+
s2

2 + t22
st

∂2F

∂s∂t
+
s2

2 + k2
2

sk2

∂2F

∂s∂k2

+
t22 + k2

2

tk2

∂2F

∂t∂k2
+
k3

3

tk3

∂2F

∂t∂k3
+
∂2F

∂t2

]
+ ki3

[
∂2F

∂k2
3

+
t23 + k2

3

tk3

∂2F

∂t∂k3
+
s2

2

st

∂2F

∂s∂t
+
k2

t

∂2F

∂t∂k2
+
∂2F

∂t2

]
+ ki4

[
∂2F

∂k2
4

]
, (A.38)

where we have defined

s2
1 ≡ ki1(ki1 + ki2) , s2

2 ≡ ki2(ki1 + ki2) , t22 ≡ ki2(ki2 + ki3) , t23 ≡ ki3(ki2 + ki3) . (A.39)

Quadratic term. Lastly, we consider the “Laplacian” term in (2.25). This is given by

4∑
n=1

kin
∂2F

∂kjn∂k
j
n

= ki1

[
∂2F

∂k2
1

+
2

k1

∂F

∂k1
+

2s2
1

sk1

∂2F

∂s∂k1
+

2

s

∂F

∂s
+
∂2F

∂s2

]
+ ki2

[
∂2F

∂k2
2

+
2

k2

∂F

∂k2
+

2s2
2 + 2t22 + 2ki1k

i
3 − 2k2

2

st

∂2F

∂s∂t
+

2

s

∂F

∂s

+
2s2

2

sk2

∂2F

∂s∂k2
+
∂2F

∂s2
+

2

t

∂F

∂t
+

2t22
tk2

∂2F

∂t∂k2
+
∂2F

∂t2

]
+ ki3

[
∂2F

∂k2
3

+
2

k3

∂F

∂k3
+

2t23
tk3

∂2F

∂t∂k3
+

2

t

∂F

∂t
+
∂2F

∂t2

]
+ ki4

[
∂2F

∂k2
4

+
2

k4

∂F

∂k4

]
. (A.40)
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Total. We now sum over the contributions from the terms above. This gives

4∑
n=1

KinF = ki1

[
2(∆1 − 2)

k1

∂F

∂k1
+

2(∆12 − 5)

s

∂F

∂s
− ∂2F

∂k2
1

− 2k1

s

∂2F

∂s∂k1
− 2t22

st

∂2F

∂s∂t

− 2k2

s

∂2F

∂s∂k2
− ∂2F

∂s2

]
+ ki2

[
2(∆2 − 2)

k2

∂F

∂k2
+

2(∆12 − 5)

s

∂F

∂s
+

2(∆23 − 5)

t

∂F

∂t
− ∂2F

∂k2
2

− ∂2F

∂s2

− ∂2F

∂t2
− 2k1

s

∂2F

∂s∂k1
− 2k2

s

∂2F

∂s∂k2
− 2k2

t

∂2F

∂t∂k2
− 2k3

t

∂2F

∂t∂k3

+
2(kj1k

j
3 − k2

2)

st

∂2F

∂s∂t

]
+ ki3

[
2(∆3 − 2)

k3

∂F

∂k3
+

2(∆23 − 5)

t

∂F

∂t
− ∂2F

∂k2
3

− 2k3

t

∂2F

∂t∂k3
− 2s2

2

st

∂2F

∂s∂t

− 2k2

t

∂2F

∂t∂k2
− ∂2F

∂t2

]
+ ki4

[
2(∆4 − 2)

k4

∂F

∂k4
− ∂2F

∂k2
4

]
. (A.41)

Because of the asymmetric definitions of s and t in terms of the momenta kn, the result is

not manifestly symmetric under cyclic permutations. We can use momentum conservation

to bring these into a more symmetric form. Moreover, to make the resulting expression

symmetric between s and t, we use the constraints (A.35) and (A.36). As a consequence

of momentum conservation, we can drop all terms that are equal in each square brackets.

These include terms such as ∂2F/∂s2, ∂2F/∂t2 and ∂F/∂s, ∂F/∂t. The final result is of

the form (2.26) with each coefficient given by cyclic permutations of (2.27). This completes

the derivation.

B Singularity structure

In this appendix, we examine the singularities of tree-exchange four-point functions from

both the bulk and boundary perspectives. We find agreement between both computations,

providing a useful consistency check of the reasoning we advocate in the main text.

B.1 Boundary perspective

We begin by analyzing the singularities of the boundary correlator for ∆ = 2. We will

examine the series solution and the homogeneous solution separately.

Series solution. Let us analyze the leading singular behavior of the series solution (3.27)

in the limit u, v → ±1. Since we expect the solution to have a logarithmic singularity as

u, v → ±1, we look at its first derivative

∂uF̂<(u, v) =
∞∑

m,n=0

(2m+ n+ 1)cmn u
2m(u/v)n . (B.1)
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The sum over n, for general u and v, can be expressed as

∂uF̂<(u, v) =
∞∑
m=0

[
F1 −

u

v
(F2 + F3) +

u2

v2
F4

]
u2m , (B.2)

where we have defined

F1 ≡
Γ(2 + 2m)

41+m(1
4 −

iµ
2 )1+m(1

4 + iµ
2 )1+m

4F3

[
1
2 +m, 1 +m, 1

4 −
iµ
2 ,

1
4 + iµ

2
1
2 ,

5
4 +m− iµ

2 ,
5
4 +m+ iµ

2

∣∣∣∣∣ u2

v2

]
, (B.3)

F2 ≡
(2)2m

41+m(3
4 −

iµ
2 )1+m(3

4 + iµ
2 )1+m

4F3

[
1 +m, 3

2 +m, 3
4 −

iµ
2 ,

3
4 + iµ

2
1
2 ,

7
4 +m− iµ

2 ,
7
4 +m+ iµ

2

∣∣∣∣∣ u2

v2

]
, (B.4)

F3 ≡
(2m+ 1)(2)2m

41+m(3
4 −

iµ
2 )1+m(3

4 + iµ
2 )1+m

4F3

[
1 +m, 3

2 +m, 3
4 −

iµ
2 ,

3
4 + iµ

2
3
2 ,

7
4 +m− iµ

2 ,
7
4 +m+ iµ

2

∣∣∣∣∣ u2

v2

]
, (B.5)

F4 ≡
Γ(3 + 2m)

41+m(5
4 −

iµ
2 )1+m(5

4 + iµ
2 )1+m

4F3

[
3
2 +m, 2 +m, 5

4 −
iµ
2 ,

5
4 + iµ

2
3
2 ,

9
4 +m− iµ

2 ,
9
4 +m+ iµ

2

∣∣∣∣∣ u2

v2

]
. (B.6)

To see whether the series diverges or not, we look at the large m behavior of the series

coefficients. Only the terms F1 and F3 are relevant in the limit m→∞, giving

lim
m→∞

F1 =
Γ(1

4 −
iµ
2 )Γ(1

4 + iµ
2 )

2
√
π

2F1

[
1
4 −

iµ
2 ,

1
4 + iµ

2
1
2

∣∣∣∣∣ u2

v2

]
, (B.7)

lim
m→∞

F3 =
Γ(3

4 −
iµ
2 )Γ(3

4 + iµ
2 )√

π
2F1

[
3
4 −

iµ
2 ,

3
4 + iµ

2
3
2

∣∣∣∣∣ u2

v2

]
. (B.8)

Notice that the coefficient of the series (B.2) becomes m-independent in the limit m→∞;

the series thus diverges as u, v → ±1. Naively, both (B.7) and (B.8) have log(u − v)

singularities as v → u. However, it turns out that these exactly cancel, so that the limit

v → u is actually finite. Using the identity

lim
m→∞

lim
v→u

[
F1 −

u

v
(F2 + F3) +

u2

v2
F4

]
=

π

coshπµ
, (B.9)

we find

lim
u,v→±1

F̂<(u, v) = − π

2 coshπµ
log(1∓ u) . (B.10)

We notice that there is a spurious singularity as u, v → 1. However, as we will show below,

this is cancelled by the singularity of the homogeneous solution in the same limit.

Homogeneous solution. Next, we describe how the nonperturbative part of the bound-

ary correlator is fixed by imposing the correct singularity structure. We start by writing

down the most general solution to the differential equation (3.11):

F̂ (u, v) =



∞∑
m,n=0

cmn u
2m+1(u/v)n + ĝ(u, v) u ≤ v ,

∞∑
m,n=0

cmn v
2m+1(v/u)n + ĥ(u, v) u ≥ v ,

(B.11)
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where the functions ĝ and ĥ contain the homogeneous solutions. Demanding F̂ to be

symmetric under the exchange u ↔ v implies ĥ(u, v) = ĝ(v, u), whereas the matching

condition gives

ĝ(u, v)− ĝ(v, u) =
π

coshπµ

(
F̂+(u)F̂−(v)− F̂−(u)F̂+(v)

)
. (B.12)

This fixes the function ĝ up to three parameters:

ĝ(u, v) =
π

2 coshπµ

{[
F̂+(u)F̂−(v)− F̂−(u)F̂+(v)

]
+ β+F̂+(u)F̂+(v)

+ β−F̂−(u)F̂−(v) + β0

[
F̂−(u)F̂+(v) + F̂+(u)F̂−(v)

]}
. (B.13)

We will fix the parameters β+, β−, β0 in turn.

Let us first comment on the analytic structure of the homogeneous solutions F̂± defined

in (3.12). The hypergeometric function that we are dealing with is of zero-balanced type,

which has logarithmic singularities at u2 = 1 and v2 = 1. Moreover, there are branch

points at u = 0 and v = 0 due to the overall non-analytic factor u1/2±iµ. On the other

hand, the functions F̂± are analytic as u, v →∞, so that a closed loop enclosing the point

at infinity (or the three branch points at u = ±1, 0) has no nontrivial monodromy. This

means that we can choose the branch cut to run along the real interval u ∈ [−1, 1].

We begin by looking at the singularities in the physical region u, v ∈ [0, 1]. Taking the

limit u→ 1, for generic v ∈ [0, 1], we get39

lim
u→1

ĝ(v, u) =
[
(β− + β0 − 1)Ĝ−(v)− (β+ + β0 + 1)Ĝ+(v)

]
log(1− u) , (B.14)

where we have shown the leading singular behavior and defined

Ĝ±(v) ≡ Γ(1
2 ± iµ)Γ(∓iµ)

4
√
π

(v
2

) 1
2
±iµ

2F1

[
1
4 ±

iµ
2 ,

3
4 ±

iµ
2

1± iµ

∣∣∣∣∣ v2

]
. (B.15)

We see that the function ĝ(u, v) has logarithmic singularities as u, v → 1 in general, but, as

we have argued, these singularities are unphysical. Removing theses singularities amounts

to choosing

β+ = −1− β0 , β− = 1− β0 . (B.16)

The same choice also removes the singularity at v = 1 for u 6= 1. For |v| < 1, there are

now two branch points at u = −1, 0; this shrinks the branch cut down to the interval

u ∈ [−1, 0]. There is, however, a singularity at u = v = 1:

lim
u,v→1

ĝ(u, v) =
π

2 coshπµ
log(1− u) . (B.17)

This singularity nicely cancels the spurious singularity of the series solution in (B.10), so

that the full solution is regular at u = v = 1. This means that the four-point function is

real-valued on the real interval u ∈ [0, 1], which implies that there is no cut there. Since all

39Note that we should be looking at ĥ(u, v) = ĝ(v, u) when u ≥ v.
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the singularities in the unphysical region come from ĝ(u, v), the Schwarz reflection principle

implies that

ĝ∗(u, v) = ĝ(u∗, v) . (B.18)

This tells us the behavior of the analytically-continued function ĝ(u, v) as we approach the

negative real interval u ∈ [−1, 0] above and below the branch cut.

As we have alluded to before, there are several ways of fixing the remaining parameter

β0. One way is by analytically continuing to the complex plane and looking at the singular-

ities in the unphysical region. The coefficients of these singularities can then be normalized

through comparison with the bulk expectation. This procedure was described in section 3.

Alternatively, we can fix the solution by correctly normalizing the disconnected part of the

four-point function in the physical region (see section A.1). To do this, we note that the

term proportional to β0 is just the product of two three-point functions:

β0
∂

∂β0
ĝ(u, v) =

iβ0 sinhπµ

2π

[
Ĝ+(u) + Ĝ−(u)

][
Ĝ+(v) + Ĝ−(v)

]
, (B.19)

where

〈O(k1)O(k2)Σ(−s)〉′ = s∆−2π√
2 coshπµ

2F1

[
1
2 − iµ, 1

2 + iµ

1

∣∣∣∣∣ u− 1

2u

]

=
s∆−2

2
√
π

[
Ĝ+(u) + Ĝ−(u)

]
. (B.20)

Up to an overall scaling, the three-point function satisfies the same equation as the ho-

mogeneous piece of the four-point function, and the first line can be obtained by solving

the equation in terms of the variable u−1, for which case it is easy to impose regularity

at u = 1. In going from the first to the second line of (B.20) we used the identities (F.1)

and (F.2). We have set the normalization of the three-point function to be 1, consistent

with the choice for our four-point function. Equation (A.11) then implies

β0

s

∂

∂β0
ĝ(u, v) =

2〈O(k1)O(k2)Σ(−s)〉′〈Σ(s)O(k3)O(k4)〉′
〈Σ(s)Σ(−s)〉′ , (B.21)

where we have restored the mass dimension of the left-hand side. Using 〈Σ(s)Σ(−s)〉′ =

s2∆−3, this fixes β0 = 1/i sinhπµ.

Finally, there is a third, hybrid way of fixing β0 by sending only one of the variables

u and v to the singularity in the unphysical region. In this limit, the four-point function

factorizes into the product of a three-point correlator and a three-particle amplitude. For

example, taking the limit u→ −1, for generic v > 0, we get

lim
u→−1

ĝ(u, v) = −2i sinhπµ
[
(β0 + 1)Ĝ+(v) + (β0 − 1)Ĝ−(v)

]
log(1 + u) . (B.22)

Comparing this to the bulk calculation in the next section, we again find β0 = 1/i sinhπµ.
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B.2 Bulk perspective

In this section, we analyze the singularities of the four-point function of conformally coupled

scalars from the bulk perspective. The standard method to compute vacuum expectation

values in a time-dependent background is the Schwinger-Keldysh or in-in formalism [17, 86]

(for recent reviews see [145–148]). In this formalism, the equal-time vacuum expectation

value of some operator Q(η) consisting of a product of quantum fields at different posi-

tions is

〈Q(η)〉 =
〈
0
∣∣[T̄ e

i
∫ η
−∞(1−iε) H

I
int(η

′) dη′]
QI(η)

[
T e
−i

∫ η
−∞(1+iε)

HI
int(η

′) dη′]∣∣0〉 , (B.23)

where T (T̄) denotes a (anti-)time ordered product, HI
int is the interaction Hamiltonian, and

the superscript I indicates that the operators are evaluated in the interaction picture. The

standard iε prescription is used to project the interacting vacuum to the free vacuum, |0〉.40

Quantization of fields in dS proceeds in a straightforward way. We decompose the free

conformally coupled field ϕ and the massive field σ in Fourier space as

ϕI(k, η) = ϕk(η)aϕ(k) +ϕ∗k(η)a†ϕ(−k) , σI(k, η) = σk(η)aσ(k) + σ∗k(η)a†σ(−k) , (B.24)

where aϕ,σ and a†ϕ,σ are the annihilation and creation operators. The mode functions are

ϕk(η) = (−Hη)
e−ikη√

2k
, (B.25)

σk(η) =
H
√
π

2
eiπ/4e−πµ/2(−η)3/2H

(1)
iµ (−kη)

η→−∞−−−−−−→ (−Hη)
e−ikη√

2k
, (B.26)

which reduce to the Bunch-Davies vacuum [149] at early times. Demanding that aϕ,σ
and a†ϕ,σ satisfy the canonical commutation relations amounts to imposing the Wronskian

normalization on the mode functions, W [ϕk(η),ϕ∗k(η)] = W [σk(η), σ∗k(η)] = iH2η2.

The expectation value (B.23) is computed by performing time integrals in an

(anti-)time-ordered manner. For this purpose, it is convenient to introduce the follow-

ing Green’s functions

G++(k, η, η′) = σk(η)σ∗k(η
′)Θ(η − η′) + σ∗k(η)σk(η

′)Θ(η′ − η) ,

G+−(k, η, η′) = σk(η)σ∗k(η
′) ,

G+−(k, η, η′) = σ∗k(η)σk(η
′) ,

G−−(k, η, η′) = σk(η)σ∗k(η
′)Θ(η′ − η) + σ∗k(η)σk(η

′)Θ(η − η′) ,

(B.27)

where ± indicates different parts of the integration contour and Θ is the Heaviside function.

The functions G±± satisfy the inhomogeneous equation

(η2∂2
η − 2η∂η + k2η2 +m2/H2)G±±(k, η, η′) = −iη2η′2δ(η − η′) , (B.28)

and a similar equation for η′, while G±∓ satisfy the corresponding the homogeneous

equation.

40In the following, we will suppress the extra iε with the understanding that the integration contours are

deformed appropriately.
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Using the above definitions, the four-point function arising from the interaction gϕ2σ

can be written as

〈ϕ1ϕ2ϕ3ϕ4〉′ =
η4

0H
8

2k1k2k3k4
F (k12, k34, s) + t- and u-channels , (B.29)

where we have introduced a small late-time cutoff η0 and defined

F ≡ F++ + F+− + F−+ + F−− , (B.30)

with

F±± = g2 (±i)(±i)
2

∫ 0

−∞

dη

η2
e±ik12η

∫ 0

−∞

dη′

η′2
e±ik34η′G±±(s, η, η′) . (B.31)

Using the equations of motion for the Green’s functions G±±, it can be shown that the

function F obeys the differential equation[
(k2

12 − s2)∂2
k12

+ 2k12∂k12 +m2 − 2
]
F =

g2

kt
, (B.32)

which, in terms of u, v and F̂ = sF , becomes[
∆u +

(
µ2 +

1

4

)]
F̂ = g2 uv

u+ v
. (B.33)

This is precisely the conformal invariance equation of the boundary correlator we have

been using extensively in the main text.

Let us now analyze the singularities of the integrals in (B.31). For convenience, we

will set H = 1 and g2 = 1. In the limit u = v → −1, the integral F̂−+ ≡ sF−+ picks up

contributions from η = η′ = −∞, and, hence, we get

lim
u,v→−1

(F̂−+ + F̂+−) =
1

4

∫ 0

−∞

dη

η
e−i(k12+s)η

∫ 0

−∞

dη′

η′
ei(k34+s)η′ + (k12 ↔ k34)

=
1

2
log(1 + u) log(1 + v) . (B.34)

This explains our normalization of the boundary correlator in (3.42). Next, consider the

integral

F̂±± = −s
2

∫ 0

−∞

dη

η2
e±ik12ησs(η)

∫ η

−∞

dη′

η′2
e±ik34η′σ∗s(η

′) + (k12 ↔ k34) . (B.35)

In the limit u, v → −1, the function F̂++ picks up contributions of the inner integral from

η′ = −∞. The upper limit of the inner integral then becomes irrelevant, so the inner and

outer integrals factorize. The latter gives a finite contribution and can be evaluated to

give the familiar cosh factor. We get the same behavior for F−− in the limit u, v → −1.

Precisely, we have

lim
u,v→−1

(F̂++ + F̂−−) = − π

2 coshπµ
log(1 + u) . (B.36)

This agrees with the behavior of (B.10) in the same limits. Some useful formulas for

deriving this result are presented in the insert at the end of the section.
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Next, let us examine the behavior of F++ near u = −1 for |v| < 1. First, notice that

the first term in (B.35) has no singularity at u = −1. This can be seen after computing the

inner integral, which is non-singular for generic v 6= ±1; the only singularity of the resulting

outer integral is then at u = −v, the usual flat-space limit. On the other hand, the inner

integral of the second term picks up a singular contribution when u = −1, rendering the

integrals in a factorized form. Evaluating the non-singular integral of the second term

then gives

lim
u→−1

F̂++ =
π

4 coshπµ
2F1

[
1
2 − iµ, 1

2 + iµ

1

∣∣∣∣∣ v + 1

2v

]
log(1 + u) . (B.37)

We see that the coefficient of the log looks almost like the three-point function (B.20) except

that it has (1+v)/2v as the argument of the hypergeometric function rather than (1−v)/2v.

In order to compare this with the boundary calculation, we use the identities (F.1) and (F.2)

to express this as

lim
u→−1

F̂++ = −i
[
eπµ Ĝ+(v) + e−πµ Ĝ−(v)

]
log(1 + u) , (B.38)

for v > 0. This accounts for half of the terms in (B.22) not proportional to β0. The

remaining terms correspond to the singular contribution from F−−. For v > 0, we have

lim
u→−1

F̂−− = i
[
e−πµ Ĝ+(v) + eπµ Ĝ−(v)

]
log(1 + u) , (B.39)

which is the complex conjugate of (B.38).

The singular behavior of F∓± near u = −1 can be obtained from the results for F±±
by the analytic continuation v → −v. This gives

lim
u→−1

F̂∓± = − π

4 coshπµ
2F1

[
1
2 − iµ, 1

2 + iµ

1

∣∣∣∣∣ v − 1

2v

]
log(1 + u) ,

= −
[
Ĝ+(v) + Ĝ−(v)

]
log(1 + u) , (B.40)

where the second line holds for v > 0. Combining everything, we find

lim
u→−1

F̂ = −2
[
(1 + i sinhπµ)G+(v) + (1− i sinhπµ)G−(v)

]
log(1 + u) . (B.41)

This agrees precisely with the boundary expression (B.22) with the choice β0 = 1/i sinhπµ.

Derivation — In this insert, we derive the analytic expression of the integral

In(a, b) ≡
∫ 0

−∞
dη (−η)n−2e−iaησb(η) =

H
√
π

2
e−πµ/2e−3iπ/4

∫ ∞
0

dxxn−
1
2 eiaxHiµ(bx) ,

(B.42)

which is a basic element of any bulk calculation involving the exchange of a massive scalar

field σ. We will do so by solving the differential equation that In satisfies. First, note that the

equation of motion of σ implies the following differential equation:[
∂2
η +

2− 2n

η
∂η +

k2η2 + (n− 1
2 )2 + µ2

η2

](
ηn−2σk(η)

)
= 0 . (B.43)
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Integrating by parts, we may replace the derivative ∂η with ∂a acting on the exponential

function. Pulling the resulting derivative operator out of the integral, we obtain[
(a2 − b2)∂2

a + 2a(1 + 2n)∂a + (n+ 1
2 )2 + µ2

]
In(a, b) = 0 . (B.44)

The solution to the differential equation that is regular at a = b is given by

In(a, b) ∝ 1

(a− b)n 2F̃1

[
1
2 − iµ, 1

2 + iµ

1− n

∣∣∣∣∣ b− a2b

]
, (B.45)

where 2F̃1(a, b, c, z) = 2F1(a, b, c, z)/Γ(c) is the regularized hypergeometric function. The nor-

malization is fixed by looking at the limit a+ b→ 0 of the bulk integral:

lim
a+b→0

In(a, b) = − H√
2b

∫ ∞
0

dxxn−1ei(a+b)x = − H√
2b
×


Γ(n)

(−i(a+ b))n
n > 0 ,

[i(a+ b)]|n|

Γ(1 + |n|) log(a+ b) n ≤ 0 .

(B.46)

This fixes the solution to be

In(a, b) = − H√
2b

π

coshπµ

1

[i(a− b)]n 2F̃1

[
1
2 − iµ, 1

2 + iµ

1− n

∣∣∣∣∣ b− a2b

]
. (B.47)

In physical cases of interest, n will be a non-negative integer. It is then more convenient to use

the alternative representation [59]

In(a, b) = − H√
2b

(
i

2b

)n
Γ( 1

2 + n− iµ)Γ( 1
2 + n+ iµ) 2F̃1

[
1
2 + n− iµ, 1

2 + n+ iµ

1 + n

∣∣∣∣∣ b− a2b

]
.

(B.48)

The hypergeometric function becomes unity when a = b, but is singular when a = −b. When

n < −1/2, the integral (B.42) diverges as ηn+1/2. In this case, the expression (B.48) computes

the finite part of the integral. In the main text, we will often drop factors of H to avoid clutter.

C Aspects of the ∆ = 2 solutions

In this appendix, we express the scalar exchange solution for ∆ = 2 in the canonical

hypergeometric form and analyze its behavior in various limits.

C.1 Hypergeometric form

We first write the series solution (3.27) in terms of the Pochhammer symbol

F̂<(u, v) = u

∞∑
n,m=0

(5+2iµ
4 )n/2(5−2iµ

4 )n/2

(1
2 + n)2 + µ2

(1)m(1
2)m+n/2(1)m+n/2

(5+2iµ
4 )m+n/2(5−2iµ

4 )m+n/2

(u2)m

m!

(−2u/v)n

n!
,

(C.1)
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where (λ)n = Γ(λ+ n)/Γ(λ) and we used the following identities

(λ)n+m = (λ+m)n(λ)m , (λ)2n = 4n(λ2 )n(λ+1
2 )n . (C.2)

We then note the following properties of the summation involving of the Pochhammer

symbols with an half-integer index:

∞∑
n=0

(a)n
(λ)n/2

xn

n!
= 2F2

[
a
2 ,

1
2 + a

2
1
2 , λ

∣∣∣∣∣x2

]
+

ax

(λ)1/2
2F2

[
1
2 + a

2 , 1 + a
2

3
2 ,

1
2 + λ

∣∣∣∣∣x2

]
, (C.3)

∞∑
n=0

(λ)n/2

(a)n

xn

n!
= 1F3

[
λ

1
2 ,

a
2 ,

1
2 + a

2

∣∣∣∣∣ x2

16

]
+ (λ)1/2

x

a
1F3

[
1
2 + λ

3
2 ,

1
2 + a

2 , 1 + a
2

∣∣∣∣∣ x2

16

]
, (C.4)

which can be shown by splitting the sum into even and odd powers. A similar pattern

exists for summations involving multiple Pochhammer symbols. Finally, using

1

(1
2 + n)2 + µ2

=
i

µ(1 + 2iµ)

(1
2 + iµ)n

(3
2 + iµ)n

− i

µ(1− 2iµ)

(1
2 − iµ)n

(3
2 − iµ)n

, (C.5)

we can express the series in the canonical hypergeometric form as

F̂<(u, v) = u

∞∑
n,m=0

(
amn +

u

v
bmn + c.c.

) (u2)m

m!

(u2/v2)n

n!

=
i

µ(1 + 2iµ)
F

2|1|3
2|0|1

[
1
2 , 1

5+2iµ
4 , 5−2iµ

4

∣∣∣∣∣ 1

−

∣∣∣∣∣ 5+2iµ
4 , 5−2iµ

4 , 1
2 + iµ

3
2 + iµ

∣∣∣∣∣u2,
u2

v2

]

− i

µ(1 + 2iµ)

u

v
F

2|1|3
2|0|1

[
3
2 , 1

7+2iµ
4 , 7−2iµ

4

∣∣∣∣∣ 1

−

∣∣∣∣∣ 7+2iµ
4 , 7−2iµ

4 , 1
2 + iµ

3
2 + iµ

∣∣∣∣∣u2,
u2

v2

]
+ c.c. ,

(C.6)

where

amn ≡
(1

2)m+n(1)m+n

(5+2iµ
4 )m+n(5−2iµ

4 )m+n

i(1)m
µ(1 + 2iµ)

(5+2iµ
4 )n(5−2iµ

4 )n(1
2 + iµ)n

(3
2 + iµ)n

, (C.7)

bmn ≡
(1)m+n(3

2)m+n

(7+2iµ
4 )m+n(7−2iµ

4 )m+n

(1)m
iµ(1 + 2iµ)

(7+2iµ
4 )n(7−2iµ

4 )n(1
2 + iµ)n

(3
2 + iµ)n

. (C.8)

The generalized hypergeometric function F
a|b|c
d|e|f is known as the Kampé de Fériet function;

the first two indices a, d denote the mixed terms in the double sum.

C.2 Limiting behaviors

It turns out that the solution in the limit u� v takes a much simpler form

F̂<(u, v � u) =
1

µ2 + 1
4

3F2

[
1
2 , 1, 1

5
4 + iµ

2 ,
5
4 −

iµ
2

∣∣∣∣∣u2

]
. (C.9)

– 77 –



J
H
E
P
0
4
(
2
0
2
0
)
1
0
5

Consider the behavior of this function as we approach the singularities near u → ±1. In

our previous discussion, with |v| < 1, we had to switch from F̂< to F̂> at u = v ∈ (−1, 1),

so we didn’t encounter this singularity, but we do for |v| > 1. Using the formula for

the behavior of the generalized hypergeometric function near the boundary of the disk of

convergence (F.7), we can determine the leading singular behavior of F̂< as u → ±1 for

large v:

lim
u→±1

F̂<(u, v � u) =
Γ(1

4 −
iµ
2 )Γ(1

4 −
iµ
2 )

4
√
π

log(1∓ u) . (C.10)

Of course, this can be directly determined from the series expansion as well. Let us first

take the term with n = 0, and look at ∂uF̂<(u, v):

∞∑
m=0

(2m+ 1)!

(1
4 + µ2)(25

4 + µ2) · · · ((1
2 + 2m)2 + µ2)

u2m . (C.11)

Now, we can see why the series diverges as u→ 1: for largem, the coefficient of u2m becomes

m-independent; indeed, by again examining residues in µ, we can easily deduce that

1

2
lim
m→∞

(2m+ 1)!

(1
4 + µ2)(25

4 + µ2) · · · ((1
2 + 2m)2 + µ2)

=
Γ(1

4 −
iµ
2 )Γ(1

4 −
iµ
2 )

4
√
π

, (C.12)

reproducing the coefficient in (C.10).

Finally, we note that in the limit µ → 0, which lies on the boundary of the principal

and complementary series, the homogeneous solutions to our differential equation become

elliptic integrals:

F̂±(u) ∝ u
1
2
±iµ

2F1

[
1
4 ± iµ, 3

4 ± iµ
1± iµ

∣∣∣∣∣u2

]
µ→0−−−→ 2

π

√
u

1 + u
K

(
2u

1 + u

)
, (C.13)

where K is the complete elliptic integral of the first kind. Because the two homogeneous

solutions F̂± degenerate into a single solution for µ → 0, we must find a second linearly

independent homogeneous solution in this limit. Looking for a series solution around u = 0,

the general homogeneous solution can be written as

(A1 +A2 log u)
∞∑
n=0

rnu
1
2

+2n +A2

∞∑
n=0

r̃nu
1
2

+2n , (C.14)

with free coefficients A1, A2, and

rn ≡
3
√

2π

32

(5
4)n−1(7

4)n−1

(n!)2
, r̃n ≡ (H2n−1/2 −Hn)rn , (C.15)

where Hn is the n-th harmonic number, Hn ≡
∑n

k=1 k
−1. We see that the leading behavior

of this solution as u→ 0 is
√
u log u, as expected from our discussion in section 3.2.
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It will be convenient to take the two linearly independent homogeneous solutions to be

F̂K(u) ≡
∞∑
n=0

rnu
1
2

+2n , (C.16)

F̂G(u) ≡ 2

π2
(log 2− log u)

∞∑
n=0

rnu
1
2

+2n − 2

π2

∞∑
n=0

r̃nu
1
2

+2n , (C.17)

where F̂K is just an expansion of the complete elliptic integral around u = 0. These

solutions were normalized such that their Wronskian is given by W [F̂G, F̂K ] = 1/(1− u2).

Moreover, the coefficient for F̂G has been chosen so that it is regular at u = 1. This can

be seen from the large-n behavior of the series coefficients:

lim
n→∞

rn log 2− r̃n = O(1/n2) , (C.18)

which implies that the sum is finite at u = 1. An important feature of the function F̂G is

that it is not symmetric in u ↔ −u due to the presence of the logarithmic term. Indeed,

it is easily checked that F̂G behaves as log(1 + u) when u → −1, whilst being regular at

u = 1 by construction. Having said that, considering it as a function of u2 for a moment

would allow us to write

F̂G(u) = G2,0
2,0

[
1
2 , 1
1
4 ,

1
4

∣∣∣∣∣u2

]
, (C.19)

where Gm,np,q is the Meijer G-function. However, this representation cannot be extended

beyond the physical interval u ∈ [0, 1]. We will therefore find it more useful to use the

series representation of the solutions (C.16) and (C.17) for analyzing singularities.

The particular solution we obtained for generic µ in section 3.2 does not have a sin-

gularity at µ = 0, so the limit µ→ 0 is perfectly well defined. The procedure of fixing the

homogeneous solutions is the same as for general values of µ. Our Wronskian normalization

implies that the matching condition is given by

F̂<(u, v)− F̂>(u, v) = π
(
F̂G(u)F̂K(v)− F̂K(u)F̂G(v)

)
. (C.20)

The most general solution that is symmetric in u↔ v is then

F̂ (u, v) = F̂<(u, v) +
π

2

{[
F̂K(u)F̂G(v)− F̂K(v)F̂G(u)

]
+ βK F̂K(u)F̂K(v)

+ βGF̂G(u)F̂G(v) + βKG
[
F̂K(u)F̂G(v) + F̂K(v)F̂G(u)

]}
. (C.21)

Demanding the absence of a folded singularity at u = 1 now uniquely fixes βK = 0 and

βKG = 1. The remaining parameter βG is again fixed by going to the factorization channel

lim
u,v→−1

F̂ (u, v) =
βG
2π

log(1 + u) log(1 + v) . (C.22)

Fixing the coefficient to be 1
2 , as before, we get βG = π. The leading behavior of this

solution in the collapsed limit is then

lim
u,v→0

F̂ (u, v) =
√
uv log u log v . (C.23)

This agrees with the leading behavior of the result (3.45) as µ→ 0.
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D Details of the ∆ = 3 solutions

In this appendix, we present important technical details of the ∆ = 3 solutions of section 5.

We begin by analyzing the conformal constraint equations for the four-point functions of

massless scalar fields in de Sitter space. This is the case that is most relevant to infla-

tion. The analysis of these equations is very similar to that performed in section 3, but

some details are different. We pay particular attention to interactions that break the shift

symmetry of the inflaton and therefore locally violate the dilatation constraint. After clas-

sifying the possible contact terms in section D.1, we derive the solution for scalar exchange

in section D.2. In section D.3, we confirm that the flat-space limit of the solution has

the expected singularity. Finally, in section D.4, we derive the inflationary three-point

functions due to scalar exchange using only the boundary perspective.

D.1 Contact interactions

The simplest solution of the conformal invariance equations doesn’t depend on s. Writing

F = O12O34h(k12, k34) , (D.1)

the (D1 −D3)F = 0 constraint takes the form[(
∂2
k12
− 2

k12
∂k12

)
−
(
∂2
k34
− 2

k34
∂k34

)]
h = 0 . (D.2)

By the same logic as in (5.2), this equation is solved by

h(k12, k34) =

(
1− k12k34

kt
∂kt

)
h̃(kt) , (D.3)

where the function h̃(kt) will be fixed by its scaling dimension. The function h̃ has mass

dimension +3, so the simplest choice is h̃ = k3
t . This leads to h = (k1 + k2)3 + (k3 + k4)3,

and hence

Floc = O12O34

[
(k1 + k2)3 + (k3 + k4)3

]
=

4∑
n=1

k3
n , (D.4)

which corresponds to local non-Gaussianity. As we explained in section 5, the solution (D.4)

is somewhat trivial as it arising from a zero mode of the operator enforcing conformal

invariance. Indeed local non-Gaussianity doesn’t contain a nontrivial dependence on any

sum of the momenta kn, and can be removed by a field redefinition.

The reason we haven’t found a more nontrivial solution is that the choice h̃ = k3
t

determined by scale invariance was too restrictive. The simplest nontrivial solution follows

from the ansatz

h̃ = −1

3
k3
t log kt , (D.5)

where the factor of −1/3 was introduced for later convenience. This solution mildly breaks

the scaling symmetry by local terms of the form above. To capture this we should have

allowed for local terms on the right-hand side of (2.24). When transformed to position
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space these terms become delta functions which only have support at coincident points.

This ansatz for g leads to the four-point function C0 corresponding to a φ4 interaction in

the bulk, which indeed has a logarithmic infrared singularity. Substituting (D.5) into (D.3)

and (D.1), the four-point function is given by C0 = s3O12O34 Ĉ0 with

Ĉ0(u, v) ≡ 1

3

[(
1

u3
+

1

v3

)
log

(
uv

u+ v

)
+

(
1

u
+

1

v

)
1

uv

]
, (D.6)

where the argument of the logarithm was made dimensionless by introducing of the mo-

mentum s as an IR cutoff. Strictly speaking, one should use a late-time cutoff to make the

logarithm dimensionless, but we will ignore this subtlety for now.

Higher-derivative contact interactions give us rational functions, which depend non-

trivially on s. We don’t expect the higher contact terms to have a logarithmic dependence

on the momenta, so it is now easier to solve for the dimensionless function F̂c. The simplest

rational solution of (5.5) with a pole as kt → 0, or u+ v → 0, is

Ĉ1(u, v) ≡ u2 + v2 + uv − 1

uv(u+ v)
. (D.7)

Higher-order contact interactions, corresponding to higher-order poles in kt, are generated

by applying ∆̃u to this result, i.e. Ĉn = ∆̃n−1
u Ĉ1. Acting with ∆̃u on Ĉ0, however, we obtain

∆̃uĈ0 = Ĉ1 −
1

u3
, (D.8)

where the extra local term arises from the logarithmic term in Ĉ0. This is because ∆̃u

is a combination of dilatation and special conformal transformations, and the dilatation

operator doesn’t quite annihilate Ĉ0. However, as we have discussed above, the term 1/u3

is local and can be removed by a field redefinition. In summary, the most general contact

interactions are of the form

F̂c(u, v) = c0 Ĉ0(u, v) +

∞∑
n=1

cn∆̃n−1
u Ĉ1(u, v) . (D.9)

As before, the solution is symmetric in u ↔ v. Notice that, starting from Ĉ2, all contact

interactions vanish in the soft limit k4 → 0 (or v → 1), because the massless scalar has

vanishing gradients in the soft limit and is coupled in a shift-symmetric fashion.41 In fact,

even Ĉ1 trivializes into a local term in this limit. The only contact interactions that do not

vanish in the soft limit are local non-Gaussianity and Ĉ0.

In the flat-space limit, kt → 0, the physical contact terms, Cn ≡ s3O12O34 Ĉn, satisfy

lim
kt→0

Cn∏
m km

= (2n)!
snflat

k2n+1
t

. (D.10)

This is the same as (3.8), after taking into account the factor of Πmkm arising from the

different normalization of the mode functions of massless scalars, φ ∝ k−1(1 + ikη)e−ikη,
and conformally coupled scalars, ϕ ∝ ηe−ikη.

41We will show in the next section that the shift-symmetric solutions to the ∆ = 3 equation can also be

obtained directly from solutions of the ∆ = 2 equation.
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D.2 Tree-level exchange

As before, tree exchange corresponds to an inhomogeneous equation, whose source term is

given by one of the contact interactions:[
∆̃u + M̃2

]
F̂n = (−1)n Ĉn , (D.11)

where M̃2 ≡ µ2 + 9
4 . Again, the solutions F̂n associated with the different contact interac-

tions Ĉn are related to each other by a recursive relation:

F̂n+1 = M̃2F̂n − Ĉn +
1

M̃2

1

u3
δn0 . (D.12)

This shows that all solutions can be inferred from the simplest exchange solution F̂1 and

knowledge of the contact terms Ĉn. We will therefore solve for F̂1 explicitly, and then use

the above relationship to infer F̂n.

The homogeneous solutions of (D.11) are

F̂±(u) =
1

4µ2

(
iu

2µ

)− 3
2
±iµ

2F1

[
−3

4 ±
iµ
2 ,

3
4 ±

iµ
2

1± iµ

∣∣∣∣∣u2

]
, (D.13)

for which the Wronskian is W (F̂+, F̂−) = 1/u4. In the limit u→ 1, these solutions become

lim
u→1
F̂±(u) = α̃±(1− u) log(1− u) , α̃± ≡

1

2µ2

(
i

2µ

)− 3
2
±iµ Γ(1± iµ)

Γ(3
4 ±

iµ
2 )Γ(−3

4 ±
iµ
2 )

.

(D.14)

This is similar to the behavior of the homogeneous solutions (3.13) for ∆ = 2, but this time

the leading singularity is given by (1 − u) log(1 − u). The expected log(1 − u) singularity

is reproduced for the physical four-point function once we act on this solution with the

operator O12.

Using the contact term Ĉ1 as the source, the exchange solution F̂1 satisfies[
u2(1− u2)∂2

u + 4u(1− u2)∂u +

(
µ2 +

9

4

)]
F̂1 =

1− (u2 + v2 + uv)

uv(u+ v)
. (D.15)

As discussed in section 3.2, the series expansion of F̂1,<(u, v) is uniquely fixed once we

demand analyticity at the origin, since the homogeneous solutions have branch points at

u = 0. This time, however, the solution will be meromorphic in u, having a single pole

rather than being analytic at u = 0. We therefore consider the following ansatz

F̂1,<(u, v) =

∞∑
m,n=0

dmn u
2m−3(u/v)n . (D.16)

This form of the series solution is motivated by the series expansion of the source term

in (D.15). The coefficients dmn are given by

dmn =


n− 1

2m+ n− 3

1
4 + µ2

(n− 3
2)2 + µ2

cm−1,n m 6= 0, n 6= 1 ,

c0,n−2 m = 0, n 6= {0, 1} ,

0 otherwise ,

(D.17)
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where the coefficients cmn are the same as in (3.24):

cmn =
(−1)n(n+ 1)(n+ 2) · · · (n+ 2m)

[(n+ 1
2)2 + µ2][(n+ 5

2)2 + µ2] · · · [(n+ 1
2 + 2m)2 + µ2]

. (D.18)

We see that the series has a simple pole at u = 0, but no higher-order poles or branch

cuts. As before, the solution which is meromorphic around u = ∞, denoted F̂1,>(u, v),

can be obtained by demanding symmetry under the exchange of u and v, so that

F̂1,>(u, v) = F̂1,<(v, u).

Once again, the difference between these particular solutions gives a homogeneous

solution, so we can write

F̂1,<(u, v)− F̂1,>(u, v) =
∑
±
A±(v;µ)F̂±(u) . (D.19)

Evaluating this at u = v gives A±(v;µ) = ∓ ã(v;µ)F̂∓(v), for some function a(v;µ).

Matching the u-derivative at u = v fixes the function in terms of the Wronskian of the

homogeneous solutions, namely(
∂uF̂1,< − ∂uF̂1,>

)∣∣∣
u→v

= ã(v;µ)
(
F̂+(v)F̂ ′−(v)− F̂ ′+(v)F̂−(v)

)
=
ã(v;µ)

v4
. (D.20)

It remains to evaluate the left-hand side(
∂uF̂1,< − ∂uF̂1,>

)∣∣∣
u→v

=

∞∑
m,n=0

(2m+ 2n− 3)dmnv
2m−4 . (D.21)

Somewhat remarkably, the sum over n for all m 6= 0 is zero, while, for m = 0, we get

∞∑
n=0

(2n− 3)d0n =
π

coshπµ
. (D.22)

This allows us to fix ã(v;µ) = π/ coshπµ independent of v, i.e. we have the same matching

condition as in the ∆ = 2 case:

F̂1,<(u, v)− F̂1,>(u, v) =
π

coshπµ

(
F̂+(u)F̂−(v)− F̂−(u)F̂+(v)

)
≡ F̂h . (D.23)

The solution of the differential equation which is meromorphic around u = 0 therefore is

F̂1,<(u, v) =



∞∑
m,n=0

dmn u
2m−3(u/v)n u ≤ v ,

∞∑
m,n=0

dmn v
2m−3(v/u)n + F̂h(v, u) u ≥ v .

(D.24)

As before, the physical four-point function is obtained after symmetrizing u and v, and

removing unphysical singularities. We first write the most general homogeneous solution

in terms of F̂± as in (3.39), and then demand the absence of the singularity at u = 1.

This again fixes the coefficients to be β± = −(β0 ± 1)α̃∓/α̃±. To determine the remaining
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parameter β0, we look at the singular behavior in the limit u = v → −1. Isolating the

physically relevant term, we obtain

lim
u,v→−1

F̂1(u, v) =
iβ0(µ2 + 9

4)

2
sinhπµ (1 + u)(1 + v) log(1 + u) log(1 + v) . (D.25)

This is similar to the result in (3.42). The extra factors of (1 + u)(1 + v) are present

in F̂1, but disappear in the physical four-point function F1 upon the action of O12O34.

To understand the appearance of the prefactor µ2 + 9
4 , recall that we are solving for the

four-point function F̂1 with Ĉ1 as the source term. This is related to the solution F̂0 with

the source term Ĉ0 by F̂1 = (µ2 + 9
4)F̂0 + · · · , cf. (D.12). Since we have implicitly set the

coupling constant for the contact term Ĉ0 to be unity, we expect the solution F̂1 to have an

overall factor of µ2 + 9
4 . The correct normalization of the singularity in the limit u, v → −1

therefore requires β0 = 1/i sinhπµ. As a consistency check, we look at the non-analytic

contribution to the collapsed limit:

lim
u,v→0

O12O34F̂1(u, v) =
1

512π

(uv
4

)− 3
2

+iµ
(1 + i sinhπµ)

× (3
2 + iµ)2(5

2 + iµ)2Γ(1
2 + iµ)2Γ(−iµ)2

µ2 + 9
4

+ c.c. , (D.26)

which agrees with equation (5.104) in [58].

D.3 Flat-space limit

To analyze the flat-space limit, it is convenient to look at the conformal invariance equation

with the source term given by (D.6):[
u2(1− u2)∂2

u + 4u(1− u2)∂u +

(
µ2 +

9

4

)]
F̂0 =

u+ v

3(uv)2
− u

3 + v3

3(uv)3
log

(
u+ v

uv

)
. (D.27)

In the limit u→ −v, the leading singularity is

lim
u→−v

∂2F̂0

∂u2
=

(u+ v)

v6(1− v2)
log(u+ v) ⇒ lim

u→−v
F̂0 =

1

6

(u+ v)3

v6(1− v2)
log(u+ v) . (D.28)

For the physical correlator, this implies

lim
kt→0

F0∏
m km

= lim
kt→0

s3O12O34F̂0∏
m km

=
1

sflat
kt log kt . (D.29)

We see that the coefficient of the kt log kt singularity is again given by the high-energy limit

of the flat-space amplitude, Aflat = 1/sflat. Moreover, equation (D.28) implies that Aflat

can be related to the discontinuity of the third derivative of F̂0:

Aflat =
v8

s2
lim
u→−v

Disc[F̂ ′′′0 ]

2πi
. (D.30)

As before, we would like to relate this to the discontinuity of the homogeneous solution in

the same limit.
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We first recall that F̂0 and F̂1 are related, up to a local term, by

F̂1 = M̃2F̂0 − Ĉ0 . (D.31)

The non-analytic behavior of Ĉ0 in the limit u→ −v is

lim
u→−v

Ĉ0 =

(
u+ v

v4
+

2(u+ v)2

v5
+

10(u+ v)3

3v6
+ · · ·

)
log(u+ v) + · · · . (D.32)

As before, we will use the matching condition (D.23) to relate the discontinuities of F̂0 and

Ĉ0 to that of F̂h(u, v). We expect the homogeneous solution to have discontinuities at every

derivative in u, but only the discontinuity in the third derivative is related to the pole in

the flat-space amplitude. The discontinuities in the first and second derivatives are related

to Ĉ0, which contributes a constant term in the flat-space limit (D.10). Using (D.31), we

can write (D.30) as

Aflat =
v8

s2

1

M̃2
lim
u→−v

Disc[F̂ ′′′1 ] + Disc[Ĉ ′′′0 ]

2πi
. (D.33)

The discontinuity of F̂ ′′′1 can be related to that of F̂ ′′′h via the matching condition (D.23),

while that of Ĉ ′′′0 can be extracted from (D.32). This leads us to

Aflat =
v8

s2

1

M̃2

(
lim
u→−v

Disc[F̂ ′′′h ]

2πi
+

20

v6

)
. (D.34)

Using the differential equation, we get

F̂ ′′′± =

(
20

u2
− M̃2

u2(1− u2)

)
F̂ ′± −

2M̃2(4u2 − 3)

u3(1− u2)2
F̂± , (D.35)

which implies that the discontinuity of the third derivative of F̂h can be related to the

Wronskian of the homogeneous solution:

lim
u→−v

Disc[F̂ ′′′h (u, v)]

2πi
=

π

coshπµ
lim
u→−v

Disc[F̂ ′′′+ (u)F̂−(v)− F̂ ′′′− (u)F̂+(v)]

2πi

=

(
20

v2
− M̃2

v2(1− v2)

)
W [F̂−, F̂+]

=
M̃2

v6(1− v2)
− 20

v6
. (D.36)

We therefore get

Aflat =
v2

s2

1

1− v2
=

1

sflat
, (D.37)

as expected.
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D.4 Inflationary bispectra

In section 6, we used bulk arguments to find a prescription to obtain the three-point

functions from the ∆ = 2 de Sitter four-point functions. We will now show that the same

results can be obtained purely from the boundary perspective by analyzing the constraint

equations. For concreteness, we will restrict the presentation to scalar exchange.

Consider the de Sitter four-point function for ∆4 = 3− ε and ∆n = 3, n 6= 4, and write

it as

F = F̄ + ε I + · · · , (D.38)

where F̄ is the four-point function for ∆ = 3 and I is its (slow-roll) correction for ε 6= 0.

For derivatively-coupled interactions, the k4 → 0 limit of F̄ is trivial, so the interesting

part of the inflationary three-point function is given by42

B = ε lim
k4→0

I + perms . (D.39)

As we will see, I will be determined by the properties of F away from the soft limit. For

scalar exchange, the four-point function is independent of t and the conformal symmetry

constraints (Dm −Dn)F = 0, with Dm = D̄m + εdm, at order ε, become

(D̄1 − D̄2) I = 0 , (D.40)

(D̄1 − D̄3) I =
1

s
∂sF , (D.41)

(D̄1 − D̄4) I =
1

s
∂sF +

2

k4
∂k4F . (D.42)

All other equations are linearly dependent on these equations.

Equation (D.40) is solved by the ansatz43

I = O12 b(k12, k3, k4, s) . (D.43)

To determine the function b in the soft limit k4 → 0, we only need to solve equation (D.41).

To see this, we note that the small k4 expansion of I can be written as I = I0 +k2
4 I1 + · · · ,

where the absence of a term linear in k4 follows from k−1
4 ∂k4F having no pole in k4.

Equations (D.41) and (D.42) determine I0 and I1, respectively. In the soft limit k4 → 0,

we therefore only need to solve equation (D.41).

To analyze (D.41), we must find s−1∂sF and evaluate it in the limit k4 → 0 (and hence

s→ k3). A quick calculation gives

lim
k4→0

1

s
∂sF = k3O12 lim

v→1

[
3F̂(u, v) + v∂vF̂(u, v)

]
, (D.44)

42Recall that this is just the s-channel contribution. The full inflationary three-point function should

include the t- and u-channel contributions. We add these by symmetrizing the final answer in the momenta

k1, k2, k3.
43Notice that the source function b in (D.43) is strictly speaking not the same as that used in section 6.

We will choose to use the same symbol, however, to highlight that it plays the same role of generating the

inflationary bispectrum.
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where we have used that ∂uF̂ = 0 in the limit v → 1. We can also discard the F̂(u, 1)

term, as it will always be proportional to a zero mode of ∆̃u and can therefore be removed

by the addition of a suitable local term. The differential operator on the left-hand side

of (D.41), (D1 − D3) I, can be analyzed in the same way as in our discussion of the de

Sitter four-point function with ∆ = 3. In particular, we write

lim
k4→0

I = k3
3 O12 b̂(k3/k12) . (D.45)

This ansatz is compatible with the momentum dependence of the source term, so we can

discard the s dependence in the Dn’s. Moreover, by scaling, we can pull out the factor of

k3
3 and make b̂ dimensionless, with functional dependence on the ratio of momenta. We

will write u ≡ k3/k12, but it is important to keep in mind that there is no s dependence in

limk4→0 I. We then get

(D1 −D3) lim
k4→0

I = −k3O12

[
u2(1− u2)∂2

u + 4u(1− u2)∂u
]
b̂

≡ −k3O12∆̃u b̂ , (D.46)

where ∆̃u is the same operator as before, although u has nothing to do with s anymore.

Finally, comparing (D.46) and (D.44), we get

∆̃u b̂ = − lim
v→1

∂vF̂(u, v) . (D.47)

We see that the momentum dependence of the inflationary three-point function is deter-

mined by the differential operator ∆̃u, with a source term given by the v → 1 limit of

the de Sitter four-point function. This equation is valid for functions F̂ corresponding

to contact terms and exchange diagrams. Our task now is to solve this equation for the

various possible sources in de Sitter.

Contact interactions. We begin by considering contact terms as sources in (D.47):

∆̃ub̂c,n = −∂vĈn(u, 1) , (D.48)

where we have introduced the subscript n in b̂c,n to label the solutions corresponding to

the different contact terms Ĉn. We note that, except for the non-derivatively coupled Ĉ0,

all Ĉn’s will have trivial soft limits. In particular, Ĉ1(u, 1) = 1 and Ĉn>1(u, 1) = 0.

The analysis for the first contact term Ĉ1 is a bit tricky due to the appearance of a

logarithm in the answer for the inflationary three-point function. We will therefore treat it

separately, starting from the ansatz (D.43) and the constraint equation (D.41). Evaluating

the s-derivative of Ĉ1 in the soft limit, we obtain

lim
k4→0

1

s
∂sC1 = O12

[
2

(
k3 +

k2
12

k12 + k3

)]
. (D.49)

The operator D̄3 commutes with O12, while for D̄1 we have

D̄1O12 bc,1 = O12

(
∂2
k12
− 2

k12
∂k12

)
bc,1 . (D.50)
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Finally, we must therefore solve[(
∂2
k12
− 2

k12
∂k12

)
−
(
∂2
k3
− 2

k3
∂k3

)]
bc,1 = −2

(
k3 +

k2
12

k12 + k3

)
. (D.51)

The solution can be written in the form

bc,1 = −k12k
2
3 + k3

3 log(k12 + k3) +Ak3
3 +Bk3

12 , (D.52)

and the corresponding inflationary bispectrum is

Bc,1(k1, k2, k3) = ε

[
Ak3

3 +B(k3
1 + k3

2)− (k1 + k2)k2
3 + k3

3 log kt +
k1k2k

2
3

kt

]
+ perms .

(D.53)

Summing over permutations, the pole in kt disappears, and we get a milder log kt sin-

gularity. This is reminiscent of the fact that the second contact term of the de Sitter

four-point function is equivalent to the first contact term, after summing over the per-

mutations of all legs. Finally, the appearance of the log term is what prevents us from

using the ansatz (D.45) in a straightforward fashion. A naive use of this ansatz would lead

to a solution for b̂c,1(u) with a spurious singularity at k12 = k3. Finally, the three-point

function (D.53) matches the result for the bulk interaction (∂µφ)2φ2, after replacing one

of the derivatively coupled legs with ˙̄φ.44

Next, we consider

∆̃ub̂c,2 = ∂vĈ2(u, 1)

=
4(u− 1)(1 + 3u+ u2)

u(1 + u2)
. (D.54)

It is easily verified that this equation is solved by

b̂c,2 = − 2

u(1 + u)
+ Z(u) , (D.55)

where Z(u) = A + B/u3 is the zero mode of the operator ∆̃u. Acting with O12 on Z(u)

leads to the local non-Gaussianity Bloc = Ak3
3 + B(k3

1 + k3
2). The inflationary three-point

function for n = 2 is

Bc,2 = ε

[
Ak3

3 +B(k3
1 + k3

2)− 2k2
3

(
k2

1 + k1k2 + k2
2

kt
− k1k2k3

k2
t

)]
+ perms . (D.56)

This time, symmetrization will not remove the pole. Notice that the highest-order pole is

second order rather than cubic, so the singularity structure of the inflationary contact term

is milder than its de Sitter counterpart. From the bulk perspective, Bc,2 is obtained from

the higher-derivative interaction (∂µφ)4 and evaluating the one of the derivative legs on the

background solution. Upon fixing A = −1 − 2B and symmetrizing the momenta, (D.56)

44One must choose specific values of A and B to match the bulk calculation, but as we have argued these

values can be adjusted by field redefinitions.
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indeed reproduces the three-point function associated with (∂µφ)4; i.e. we obtain precisely

equation (14) in [102].

Since Ĉn>2 = ∆̃n−2
u Ĉ2, the general solution for n > 2 can be written as

b̂c,n = ∆̃n−2
u b̂c,2 + Z(u) . (D.57)

This concludes our analysis of inflationary three-point functions of the contact type.

Exchange diagrams. The discussion of exchange diagrams turns out to be even simpler.

To solve equation (D.47), we now consider the following ansatz

b̂ = − 1

M2

(
∂vF̂(u, 1)− b̂c(u)

)
, (D.58)

where b̂c(u) is (for now) an arbitrary function. Substituting (D.58) into the left-hand side

of (D.47), we get

∆̃ub̂ = − 1

M2
∆̃u

(
∂vF̂(u, 1)− b̂c(u)

)
=

1

M2

(
M2∂vF̂ − ∂vĈ + ∆̃ub̂c

)
= ∂vF̂ −

1

M2

(
∂vĈ − ∆̃ub̂c

)
, (D.59)

where we have used that F̂ (and hence ∂vF̂) satisfies (D.11). We see that (D.58)

solves (D.47) if the function b̂c obeys

∆̃ub̂c = ∂vĈ(u, 1) . (D.60)

This is nothing but the equation we solved above; i.e. the function b̂c describes a contact

inflationary three-point function. This means that we are done. The total inflationary

three-point function will be given by

Bn = ε k3
3 O12 b̂n(k3/k12) + perms , (D.61)

where we restored the index n and defined the source function

b̂n(u) = − 1

µ2 + 9
4

(
∂vF̂n(u, 1)− b̂c,n(u)

)
. (D.62)

As a consistency check, we compare the squeezed limit of our result to the known result

in the literature; cf. section 6.1 in [58]. For concreteness, let us specialize to the case of b̂1.

The derivative of the corresponding four-point function F̂1 can be written in the form

∂vF̂1(u, 1) =

∞∑
n=0

anu
n−1 +

π

2 coshπµ

(
A+F̃+(u) +A−F̃−(u)

)
, (D.63)

where

A± =

(
3

2
± iµ

)√
π(1∓ β0)

Γ
(

1
2 ± iµ

)
Γ (1± iµ)

(
i

µ

)− 1
2
∓iµ

. (D.64)

The coefficients an of the particular solution could either be written in terms of the coeffi-

cients dmn of the solution (D.16), or determined directly by solving the differential equation

again, this time for ∂vF̂1(u, 1). Having said that, since the squeezed limit is dominated by

the homogeneous solution, we won’t need the precise form of the particular solution for our

consistency check. Acting with O12 on (D.63), we indeed obtain the same squeezed limit

as equation (6.131) of [58].
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E Weight-shifting operators

In this appendix, we introduce a web of relations between the ∆ = 2 and ∆ = 3 solutions

(see figure 13). Through this web, we will show that most solutions of the ∆ = 3 constraint

equations can be obtained directly from solutions of the ∆ = 2 equations, a fact we use

extensively in the main text. This provides a powerful way of bootstrapping the ∆ = 3

solutions from the ∆ = 2 solutions.

For notational clarity, we will use the following definitions

∆S,u ≡ (1− u2)u2∂2
u − 2(u2 + S)u∂u , (E.1)

∆̃S,u ≡ (1− u2)u2∂2
u − 2(2u2 + S − 2)u∂u , (E.2)

which denote the differential operators for ∆ = 2 (without tilde) and ∆ = 3 (with tilde)

respectively. We have not introduced a separate ansatz for the spinning ∆ = 3 solutions,

but we will always refer to its top helicity component. If we write FS = s3Π̄SΠ̃S,SÂS,S +

· · · , then ÂS,S will satisfy the formulas we present below. For ∆ = 3, the lower-helicity

components become more complicated, and we rely on the bootstrap operators determined

in section 5. The coefficient functions satisfy

(∆m,u −∆m,v)ÂS,m = 0 , (E.3)

(∆̃S,u − ∆̃S,v)ÂS,S = 0 , (E.4)

for ∆ = 2 and ∆ = 3, respectively. Notice that the ∆m,u operators act in the same way

on all helicity-m components of the ∆ = 2 solutions, regardless of the total spin S. This is

not the case for ∆ = 3 coefficient functions.

• For ∆ = 2, we define the following spin-raising and spin-lowering operators

Duv ≡ (uv)2∂u∂v , (E.5)

Euv ≡ rS−1Duv(r
−S · ) , with r ≡ u2

1− u2

v2

1− v2
, (E.6)

These operators raise/lower the spin of the solution by one unit:

ÂS+1 = DuvÂS , (E.7)

ÂS−1 = EuvÂS = rS−1Duv(r
−SÂS) . (E.8)

In section 4, we used Duv to build the spin-S solution from the scalar solution. Notice

that we did not specify the total spin of the solution, just the helicity, as the constraint

equations are the same for a given helicity, regardless of the total spin.

• The operator

Luv ≡ ∂u∂v(uv ·) (E.9)

takes the spin-S, ∆ = 2 solution to the spin-(S + 2), ∆ = 3 solution.
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Figure 13. Illustration of the web of relations between ∆ = 2 and ∆ = 3 solutions corresponding

to the exchange of particles with spin S. Only the operators Duv, Guv, Luv, and Kuv maintain the

number of derivatives of the solution (from the bulk point of view), while Euv and Huv increase the

number of derivatives.

• For ∆ = 3, the operator

Kuv ≡ (uv)2(4u∂u + u2∂2
u)(4v∂v + v2∂2

v) (E.10)

raises the spin of the solution by two units.

• For S = 0, the operators

Guv ≡ (uv)3∂u∂v , (E.11)

Huv ≡ r−1∂u∂v(uv · ) , (E.12)

relate the scalar solutions for ∆ = 2 and ∆ = 3:

F̂ = GuvF̂ , (E.13)

F̂ = HuvF̂ . (E.14)

Given a solution for the massless scalar equation, we can obtain a solution for the

conformally coupled scalar by applying (E.13), and vice versa for (E.14). Of course,
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the function F̂ in (E.13) and (E.14) are not related to each other. Namely, applying

the equations twice, we do not get the original F̂ we started with. Instead, we get

GuvHuvF̂ = (∆u − 2)(∆v − 2)F̂ , (E.15)

HuvGuvF̂ = ∆̃u∆̃vF̂ . (E.16)

Finally, it turns out that the formula

F̂S = GuvF̂S (E.17)

is valid for any spin. However, the map from ∆ = 2 to ∆ = 3 is not the same.

We have not found a use for all of the relations presented in figure 13. Moreover, we don’t

claim that the set of displayed relations is complete. In fact, we suspect that it is not.

F Useful identities

In this appendix, we collect some useful identities of the (generalized) hypergeometric

function. The following formulas relate hypergeometric functions at different values of the

argument [150]:

2F1

[
a, b
a+b+1

2

∣∣∣∣ z] =
Γ(1

2)Γ(a+b+1
2 )

Γ(a+1
2 )Γ( b+1

2 )
2F1

[ a
2 ,

b
2

1
2

∣∣∣∣ (1− 2z)2

]
+ (1− 2z)

Γ(−1
2)Γ(a+b+1

2 )

Γ(a2 )Γ( b2)
2F1

[ a+1
2 , b+1

2
3
2

∣∣∣∣ (1− 2z)2

]
, (F.1)

2F1

[
a, b

c

∣∣∣∣ z] =
1

(−z)a
Γ(b− a)Γ(c)

Γ(b)Γ(c− a)
2F1

[
a, a− c+ 1

a− b+ 1

∣∣∣∣ 1

z

]
+

1

(−z)b
Γ(a− b)Γ(c)

Γ(a)Γ(c− b)2F1

[
b, b− c+ 1

−a+ b+ 1

∣∣∣∣ 1

z

]
. (F.2)

These two transformation formulas can be combined to express the hypergeometric function

with the argument (u ± 1)/2u in terms of that of u2. One needs to be a bit careful in

manipulating these formulas for complex parameters a and b due to the presence of the

factors (−z)−a and (−z)−b.
The series expansion of the hypergeometric function around z = 0 has a radius of

convergence of 1. The behavior of the hypergeometric function near z = 1 is

lim
z→1

2F1

[
a, b

c

∣∣∣∣ z] =



Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) Re(a+ b− c) < 0 , c /∈ Z− ,

− log(1− z) +R(a, b)

B(a, b)
+O(1) Re(a+ b− c) = 0 ,

(1− z)c−a−b 2F1

[
c− a, c− b

c

∣∣∣∣ z] Re(a+ b− c) > 0 ,

(F.3)
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where Z− = {0,−1,−2, · · · },

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
, ψ(x) =

Γ′(x)

Γ(x)
, (F.4)

are the beta function and the digamma function, respectively, and R(a, b) ≡ ψ(a) +ψ(b) +

2γE , with γE the Euler-Mascheroni constant. The special case Re(a + b − c) = 0 is

of particular interest due to the presence of a logarithmic singularity. Hypergeometric

functions with this property are called zero-balanced, and have a branch point at z = 1. As

we have seen, all solutions of the conformal invariance equation turn out to be of this type.

Similarly, the near z = 1 behavior of the generalized hypergeometric function

p+1Fp

[
a1, · · · , ap+1

b1, · · · , bp

∣∣∣∣ z] =
∞∑
n=0

(a1)n · · · (ap+1)n
(b1)n · · · (bp)n

zn

n!
, (F.5)

is characterized by the parameter

ω =

p∑
j=1

bj −
p+1∑
j=1

aj . (F.6)

The series converges absolutely at |z| = 1 when Re(ω) > 0 and diverges otherwise. We will

be particularly interested in the zero-balanced case, for which ω = 0. Its behavior near

z = 1 is given by [151]

lim
z→1

p+1Fp

[
a1, · · · , ap+1

b1, · · · , bp

∣∣∣∣ z] = − Γ(b1) · · ·Γ(bp)

Γ(a1) · · ·Γ(ap+1)

[
log(1− z) +R(a, b)

]
+ · · · , (F.7)

where the ellipsis denotes a finite remainder.

G Notation and conventions

Symbol Meaning Reference

pµ Four-momentum Section 2.1

s Mandelstam variable, s ≡ −(p1 + p2)2 Section 2.1

t Mandelstam variable, t ≡ −(p2 + p3)2 Section 2.1

u Mandelstam variable, u ≡ −(p2 + p4)2 Section 2.1

A4 Four-particle amplitude Section 2.1

Aλ3 Three-particle amplitude Section 2.1

m Mass of external particle Section 2.1

M Mass of exchange particle Section 2.1

S Spin of exchange particle Section 2.1

λ Helicity of exchange particle Section 2.1

g Coupling contant Section 2.1

σ Generic bulk scalar field Section 2.2

ϕ Conformally-coupled scalar field Section 3

φ Massless scalar field Section 5
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Symbol Meaning Reference

ϕ Boundary value of ϕ (∆ = 2) Section 2.2

φ Boundary value of φ (∆ = 3) Section 2.2

H Hubble parameter, H ≡ ȧ/a Section 2.2

η Conformal time, dη ≡ dt/a(t) Section 2.2

D Dilatation operator Eq. (2.12)

Ki Special conformal transformation operator Eq. (2.13)

µ Mass parameter, µ2 ≡ m2 − 9
4 Eq. (2.15)

∆ Scaling dimension (conformal weight), ∆ ≡ 3
2 ± iµ Eq. (2.15)

∆t Total conformal weight, ∆t ≡
∑
n ∆n Section 2.2

M Mass parameter (for ∆ = 2), M2 ≡ µ2 + 1
4 Section 2.2

k Three-momentum Section 2.2

ki Spatial component of k Section 2.2

kn Momentum of the n-th leg Section 2.2

kn Magnitude of kn, kn ≡ |kn| Section 2.2

kt Total energy, kt ≡
∑
n kn Section 2.2

s Exchange momentum, s ≡ |k1 + k2| Section 2.2

t Exchange momentum, t ≡ |k2 + k3| Section 2.2

knm Sum of kn and km, knm ≡ kn + km Section 2.2

u Ratio of s and k12, u ≡ s/k12 Eq. (2.23)

v Ratio of s and k34, v ≡ s/k34 Eq. (2.23)

Ψ Wavefunction of the universe Eq. (A.1)

B Scalar three-point function Eq. (2.21)

F Scalar four-point function Eq. (2.22)

F̂ Dimensionless four-point function, F̂ ≡ s9−∆tF Section 2.2

Dn Differential operator Eq. (2.27)

Dnm Difference of Dn and Dm, Dnm ≡ Dn −Dm Section 2.2

∆u Differential operator (for ∆ = 2) Eq. (2.30)

Fc Contact four-point function Section 2.2

C General contact term Section 2.2

Ĉ0 Lowest-order contact term, Ĉ0 ≡ uv/(u+ v) Eq. (2.31)

Ĉn n-th order contact term, Cn ≡ ∆n
uC0 Eq. (2.32)

G Bulk-to-bulk propagator Eq. (2.39)

F±± In-in integral Eq. (B.31)

G±± In-in propagators Eq. (B.27)

Aflat Flat-space scattering amplitude Section 2.2

sflat Mandelstam variable, sflat ≡ −(p1 + p2)2 Section 2.2

tflat Mandelstam variable, tflat ≡ −(p2 + p3)2 Section 2.2

F̂± Homogeneous solutions Eq. (3.12)

F̂h Matched homogeneous solution Eq. (3.58)
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Symbol Meaning Reference

F̂K Homogeneous solution for µ = 0 Eq. (C.16)

F̂G Homogeneous solution for µ = 0 Eq. (C.17)

F̂< Series solution around u = 0 Eq. (3.23)

F̂> Series solution around u =∞, F̂>(u, v) = F̂<(v, u) Section 3.2

F̂n n-th order exchange solution Eq. (3.48)

m Helicity of exchange particle Section 4.1

FS Four-point function from spin-S exchange Eq. (4.4)

AS,m Coefficient function of FS Eq. (4.4)

x Sum of k1 and k2, x ≡ k1 + k2 Eq. (4.1)

y Sum of k3 and k4, y ≡ k3 + k4 Eq. (4.1)

α Difference of k1 and k2, α ≡ k1 − k2 Eq. (4.2)

β Difference of k3 and k4, β ≡ k3 − k4 Eq. (4.2)

τ Angular variable Eq. (4.2)

T̂ Angular variable Eq. (4.10)

L̂ Angular variable Eq. (4.11)

Pij Spin-1 projection tensor Eq. (4.6)

P
ij ···jS
i1···iS Spin-S projection tensor Eq. (4.7)

ε̄λi1···iS Transverse polarization tensor Section 4.1

ε̃i1···iS Longitudinal polarization tensor Section 4.1

Π̄m Transverse polarization sum Eq. (4.12)

Π̃S,m Longitudial polarization sum Eq. (4.15)

∆m,u Differential operator (for helicity m) Eq. (4.20)

Duv Spin-raising operator, Duv ≡ (uv)2∂u∂v Eq. (4.21)

Euv Spin-lowering operator Eq. (E.6)

Luv Spin-raising operator Eq. (E.9)

Kuv Spin-raising operator Eq. (E.10)

f Scalar exchange solution for ∆ = 2, f ≡ FS=0 Section 4.2

σ Exchange particle Section 4.3

Mσ Mass of exchange particle Section 4.3

∆σ Scaling dimension of exchange field Eq. (4.53)

M̃ Mass parameter (for ∆ = 3), M̃2 ≡ µ2 + 9
4 Section D

F Scalar four-point function for ∆ = 3 Section 5

F̂ Dimensionless four-point function for ∆ = 3, F̂ = s−3F Section D

F̂± Homogeneous solutions for ∆ = 3 Eq. (D.13)

F̂< Series solution around u = 0 Eq. (D.24)

F̂> Series solution around u =∞ Section D

I Slow-roll correction to F Eq. (D.38)

FS Spin-S exchange solution for ∆ = 3 Section 5

C Contact term for ∆ = 3 Section 5
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Symbol Meaning Reference

O12 Differential operator Eq. (5.3)

∆̃u Differential operator (for ∆ = 3) Eq. (5.6)

U12 Weight-shifting operator Eq. (5.10)

US,m12 Weight-shifting operator (for helicity m) Eq. (5.14)

Guv Weight-shifting operator Eq. (E.11)

Huv Weight-shifting operator Eq. (E.12)

Jϕα Spin-1 current for ϕ Eq. (5.15)

Jφα Spin-1 current for φ Eq. (5.16)

Tϕαβ Spin-2 tensor for ϕ Eq. (5.29)

Tφαβ Spin-2 tensor for φ Eq. (5.30)

Finf Inflationary trispectrum Eq. (5.38)

FGE Graviton exchange part of Finf Section 5.2

FCT Contact part of Finf Section 5.2

FGE,c Connected part of FGE Eq. (5.39)

FGE,d Disconnected part of FGE Eq. (5.40)

Floc Local trispectrum, Floc ≡
∑
n k

3
n Eq. (D.4)

ε Slow-roll parameter Eq. (6.1)

Binf Bispectrum of slow-roll inflation Eq. (6.16)

bS Source function of the inflationary bispectrum Eq. (6.4)

Bloc Local bispectrum, Bloc ≡
∑
n k

3
n Eq. (6.2)

PS Legendre polynomial of order S Ref. [152]

PmS Associated Legendre polynomial Ref. [152]

Pd,S Gegenbauer polynomial Ref. [152]

aFb Generalized hypergeometric function Ref. [152]

F
a|b|c
d|e|f Kampé de Fériet function Ref. [152]

Ga,bc,d Meijer G-function Ref. [152]

Γ Gamma function Ref. [152]

(·)n Pochhammer symbol Ref. [152]

Li2 Dilogarithm Ref. [152]

γE Euler-Mascheroni constant Ref. [152]

Θ Heaviside function Ref. [152]

H
(1)
iµ Hankel function of the first kind Ref. [152]

K Complete elliptic integral of the first kind Ref. [152]

Hn n-th harmonic number Ref. [152]

W Wronskian Ref. [152]
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