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1 Introduction

The conformal bootstrap is a tool to study conformal field theories which makes use of the

associativity of the operator product expansion (OPE) to constrain the space of possible

CFTs. CFTs can be defined in terms of the operator spectrum of the theory together

with the OPE coefficients (CFT data). There have been significant advances in recent

years in the analytic domain of the conformal bootstrap, which has produced many results

especially in perturbative CFTs. Such results often involved taking certain limits in the

conformal cross-ratios. For example, the lightcone limit in Lorentzian signature where

operators become lightlike separated is dominated by operators with large spin, and it can

be shown that crossing symmetry predicts their CFT data [1–5]. Crucially, this works to

all orders in an expansion in inverse powers of the spin, in practice allowing the full CFT

data, up to low spin, to be reconstructed just from singular terms.

More recently in [6] it was shown that the CFT data for finite spin operators can be re-

constructed from an integral over the double discontinuity of the correlator. This is known

as the ‘inversion formula’ and essentially means that it is sufficient to know the singularities

of the correlator to compute the CFT data. It was inspired by scattering theory, where

combining the partial wave expansion of the scattering amplitude with the dispersion re-

lation results in the Froissart-Gribov formula [7], which gives the coefficients of the partial
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wave expansion and makes analyticity in spin manifest. Although the inversion formula is

enormously successful to compute the CFT data for finite spin operators, there are some

limitations which restrict the study of scalar operators in the spectrum. Concretely, the

derivation of the inversion formula starts with the orthogonality of conformal partial waves

and involves a deformation of the integration contour where arcs at infinity only vanish for

finite spin, invalidating the derivation for scalar exchanges. Another way to phrase this is

that one encounters a pole when attempting to analytically continue the OPE coefficients

along the Regge trajectory down to zero spin. In addition, since the inversion formula

computes the OPE coefficients, the correlator cannot be easily reconstructed in a closed

form. In the context of the Wilson-Fisher fixed point in φ4 theory the inversion formula

has been used to determine the CFT data for the leading twist operators up to a certain

order in perturbation theory [8] and the authors propose a method to continue the results

down to spin zero, which gives the expected results in this case but is outside the region

of validity of the inversion formula.

One immediate question that arises is whether it is possible to obtain an integral

formula which is not tied to finite spin but is also valid for scalars. In this paper we derive

such a relation for CFTs in order to compute the full correlator by exploiting its analytic

structure. This complements [6] as it is also valid for scalar operators and computes the

correlator directly. The main tool we are using is the dispersion relation adapted to the case

of CFTs. In the context of scattering theory the dispersion relation gives the scattering

amplitude as an integral involving only the discontinuity of the amplitude, which is given

by its imaginary part. We show that the CFT correlator can similarly be obtained as an

integral of the single discontinuity of the correlator, exploiting the analytic properties of

the OPE as well as crossing symmetry.

Although the dispersion relation is non-perturbative, it will be illustrated in the context

of perturbation theory where we have an expansion of the CFT data in terms of the

perturbative parameter. We show that the anomalous dimensions of the intermediate

operators, together with the OPE coefficients of possible operators with twist below the one

of composites of the external operators, determine the full correlator unambiguously. While

the fact that in perturbative settings the singularities are controlled only by the spectrum

was already noticeable in the large spin perturbation theory approach [4], our formula

makes it manifest that the CFT correlator is only sensitive to the operator dimensions and

not the OPE coefficients. In short, perturbative CFT is (mostly) defined by its spectrum.

Our approach is similar in spirit to [6], but there are important differences. It is clear

that the dispersion relation is less constraining than the inversion formula, given that the

double discontinuity contains less information than the single discontinuity. In particular,

the inversion formula also constraints anomalous dimensions and not only OPE coefficients.

While the full correlator and the CFT data contain the same information, it is much easier

to extract the CFT data from a correlator given in closed form than vice versa. This is

an advantage for the dispersion relation which computes directly the correlator. As to the

complexity of the involved integrals, the dispersion relation also tends to be simpler as one

integrates the discontinuity only against a single pole as opposed to the conformal block

appearing in the inversion formula. An important point to mention is that this dispersion
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relation takes into account the intermediate scalar operators without any ambiguity, when

the spectrum is fixed. At small coupling this can be thought of as an alternative way of

computing the CFT correlators with some inputs using Feynman diagrams. In particular

the set of inputs (the spectrum) can be extracted from two point correlation functions

which are simpler to compute than three or four point functions.

The paper is organized as follows. In section 2 we derive the CFT dispersion rela-

tion (2.20), based on an analysis of the analytic structure of conformal blocks in d dimen-

sions. Section 3 shows how the dispersion relation fixes the mean field theory correlator

from the presence of the identity operator in the OPE and explains how the anomalous

dimensions determine the correlator in a generic perturbative setting. The second example

considers N = 4 SYM theory at strong coupling, which holographically corresponds to

supergravity in AdS. This example also serves to demonstrate a formula for projecting out

leading order OPE coefficients from the single discontinuity of a correlator. We conclude

in section 5.

2 Dispersion relation for CFT

2.1 General setup

Consider the four point function of a scalar operator φ(x) of scaling dimension ∆φ

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
F (z, z)

(x1 − x3)2∆φ(x2 − x4)2∆φ
, (2.1)

where the right hand side is expressed in terms of the usual cross ratios defined by

(x1 − x2)2(x3 − x4)2

(x1 − x3)2(x2 − x4)2
= zz = u ,

(x1 − x4)2(x2 − x3)2

(x1 − x3)2(x2 − x4)2
= (1− z)(1− z) = v . (2.2)

The bootstrap equation reads

F (z, z) = F (1− z, 1− z) = (zz)−∆φ F (1/z, 1/z) . (2.3)

We will refer to the three expressions as s-, t- and u-channel respectively. The function

F (z, z) can be expanded in the (s-channel) conformal blocks

F (z, z) = (zz)−∆φ
∑
∆,`

a∆,`g
(d)
∆,`(z, z) . (2.4)

It was shown in [9] that the sum is convergent on z, z ∈ C \ [1,+∞).1

1What is less obvious is that the OPE acting on the vacuum also converges on the branch cut, in the

space of generalized functions. This was shown in [10] for d = 4 in position space. In section 4.2.2 we will

assume the convergence in cross ratio space for z approaching [1,+∞) from above or below to follow. We

thank Petr Kravchuk for pointing out the reference.
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2.2 Analytic structure of conformal blocks

Let us take a closer look at the analytic structure of the conformal blocks. The conformal

block in d dimensions was computed in [11]. It is given by

g
(d)
∆,`(z, z) = (zz)

∆−`
2 g̃

(d)
∆,`(z, z) , (2.5)

where g̃ is given for the exchange of a scalar by2

g̃
(d)
∆,0(z, z) =

∞∑
m,n=0

(
∆+∆12

2

)
m

(
∆−∆34

2

)
m

(
∆−∆12

2

)
m+n

(
∆+∆34

2

)
m+n

m!n!
(
∆ + 1− d

2

)
m

(∆)2m+n

zmzm(z + z − zz)n .

(2.6)

To derive a dispersion relation we have to analyze the domain of analyticity of this function

in z and z. To this end we rewrite (2.6) by summing over n which yields a hypergeometric

function. This in turn is written in the Euler integral representation in order to finally sum

over m. The result is

g̃
(d)
∆,0(z, z) =

Γ(∆)

Γ
(

∆−∆34
2

)
Γ
(

∆+∆34
2

) 1∫
0

dt
2F1

(
∆−∆12

2 , ∆+∆12
2 , 1− d

2 + ∆, t(1−t)zz
1−t(z+z−zz)

)
t1−

∆+∆34
2 (1− t)1−∆−∆34

2 (1− t(z + z − zz))
∆−∆12

2

.

(2.7)

Next we analyze the region of convergence of this integral. For ∆ > max(|∆12|, |∆34|) the

integrand has the following singularities

1 =
t(1− t)zz

1− t(z + z − zz)
⇔ t ∈

{
1

z
,

1

z

}
,

0 = 1− t(z + z − zz) ⇔ t =
1

1− (1− z)(1− z)
.

(2.8)

We conclude that the integral is finite and hence g̃
(d)
∆,0(z, z) is analytic when all the singu-

larities lie outside the integration region i.e. for

z, z ∈ C \ [1,+∞) with (1− z)(1− z) ∈ C \ (−∞, 0] . (2.9)

Since it will be enough to exploit analyticity in one variable, we will set z to some fixed

value between 0 and 1. In this case the domain of analyticity in z becomes

z ∈ C \ [1,+∞) . (2.10)

The g̃ for the exchange of spinning operators are given in terms of (2.6) by a recursion

relation [11] in `, hence they inherit the same analytic properties. We conclude that the

conformal blocks have the analytic structure depicted in figure 1. There is a branch cut for

z < 0 that originates from the generically non-integer power of z and another branch cut

for z > 1 from g̃. Naturally, the branch cut from the overall power is much simpler and it

is easy to compute the discontinuity

Disc
z < 0

(zz)−∆φg
(d)
∆,`(z, z) =

(
1− e2πi(∆φ−∆−`

2 )
)

(zz)−∆φg
(d)
∆,`(z, z) , (2.11)

2We allow for four different external scalar operators with ∆ij = ∆i − ∆j for a moment because the

recursion relation which computes spinning blocks shifts these variables.
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z

z

1

z
∆−`

2 g̃(z)

Figure 1. Analytic structure of g
(d)
∆,`(z, z) and factors contributing to branch cuts.

where the discontinuity is defined as

Disc
z

f(z) ≡ lim
α→0+

f(z + iα)− f(z − iα) . (2.12)

For later reference we also note down the conformal blocks for the case d = 4

g
(4)
∆,`(z, z) =

zz

z − z

(
k∆+`

2
(z)k∆−`−2

2
(z)− k∆−`−2

2
(z)k∆+`

2
(z)
)
, (2.13)

where

kβ(z) = zβ2F1 (β, β, 2β, z) . (2.14)

2.3 Dispersion relation

The term dispersion relation in the context of QFT is usually used for a relation expressing

scattering amplitudes in terms of their imaginary part. Here we mean the same mathe-

matical relation applied to CFT correlation functions. The idea is simply to introduce a

pole at a generic point z′ and write the correlator as the residue of this pole

F (z, z) =
1

2πi

∮
z

dz′
1

z′ − z
F (z′, z) . (2.15)

Next the contour can be deformed as illustrated in figure 2. The analytic properties of the

correlator follow from the analytic properties of the conformal blocks through the s-channel

OPE (2.4) where it converges. For the region z′ > 1 the t-channel OPE can be used. As a

result the contour can be deformed to wrap around the branch cuts on the real axis. To

determine the contribution from the arcs at infinity we have to look at the Laurent series

of F (z, z) at z =∞ which is given by the u-channel OPE3

F (z, z) =
∑
∆,`

a∆,`g
(d)
∆,`(1/z, 1/z) . (2.16)

3Note that our choice 0 < z < 1 lies on the u-channel branch cut, i.e. on the boundary of the region of

convergence of the u-channel OPE for both arcs in z. If z had an imaginary part, one of the arcs in z would

lie outside of the region of convergence since the analytic continuation from the Euclidean configuration

z = z∗ would cross the branch cut. This was pointed out in [12], which appeared after the initial version

of this work. [12] showed that the OPE converges in the sense of distributions on the boundary of the

region of convergence, which can be used here. In perturbative examples as the ones considered below, the

contribution of the arcs can be computed explicitly and is under control.
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z z 1

z′

Figure 2. Contour deformation determining the dispersion relation.

Due to the overall factor of z
∆−`

2 in the conformal block (2.5), only primaries with ∆−` ≤ 0

can contribute to the arc at infinity. For unitary theories and d > 2 the only such operator

is the identity and its arc contribution is simply 1. We end up with the following dispersion

relation, expressing the correlator in terms of its discontinuity

F (z, z) = 1 +
1

2πi

 0∫
−∞

dz′ +

∞∫
1

dz′

 1

z′ − z
Disc
z′

F (z′, z) . (2.17)

We just saw in section 2.2 that the discontinuity of the conformal block at z < 0 is

dramatically simpler than the one at z > 1. Luckily, when it comes to correlators we

can use crossing symmetry (2.3) to express the complicated discontinuity in terms of the

simple one

Disc
z > 1

F (z, z) = −Disc
z < 0

F (1− z, 1− z)
∣∣∣z→1−z
z→1−z

= −Disc
z < 0

F (z, z)
∣∣∣z→1−z
z→1−z

. (2.18)

This can be used to rewrite the integral over the branch cut on the positive real axis

∞∫
1

dz′
1

z′ − z
Disc
z′

F (z′, z) =

0∫
−∞

dz′
1

z′ − (1− z)
Disc
z′

F (z′, 1− z) , (2.19)

immediately leading to a simplified version of the dispersion relation where we integrate

only over one branch cut

F (z, z) = 1 +

 1

2πi

0∫
−∞

dz′
1

z′ − z
Disc
z′

F (z′, z) + (z, z)→ (1− z, 1− z)

 . (2.20)
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3 Computing correlators

Let us now put the dispersion relation to use and compute some correlators. We begin by

showing how the presence of the identity operator in the OPE leads to the familiar mean

field theory correlator. Then we discuss how to compute correlators in situations that allow

for an expansion in a small parameter.

To see how the presence of the identity in the OPE generates the correlator, consider

the s-channel identity
1

(zz)∆φ
. (3.1)

Its discontinuity is

Disc
z < 0

(zz)−∆φ = (1− e2πi∆φ)(zz)−∆φ . (3.2)

In order to use the dispersion relation we need the integral

0∫
−∞

dz′
(z′)−∆φ

z′ − z
= 2πi

z−∆φ

1− e2πi∆φ
, 0 < ∆φ < 1 , (3.3)

and hence the dispersion relation (2.20) yields the familiar mean field theory correlator

FMF(z, z) = 1 +
1

(zz)∆φ
+

1

((1− z)(1− z))∆φ
. (3.4)

It is interesting to note that the argument can be also repeated separately for the case

∆φ ∈ N when the prefactor in (3.2) vanishes. In this case the discontinuity is a delta

function

Disc
z

(zz)−∆φ = z−∆φ
2πi(−1)∆φ

(∆φ − 1)!
∂

∆φ−1
z δ(z) , (3.5)

and the dispersion relation yields the same result. Here we used that the discontinuity of

a simple pole is given by

Disc
1

z
= −2πiδ(z) , (3.6)

as can be seen by integrating against a test function∫ ∞
−∞

dz f(z) Disc
1

z
= lim

α→0+

∫ ∞
−∞

dz f(z)

(
1

z + iα
− 1

z − iα

)
= −2πif(0) , (3.7)

where we commuted limit and integral to arrive at the result. The discontinuities of higher

poles are obtained by acting with derivatives on (3.6). To conclude this section, let us cite

the decomposition of the correlator (3.4) into conformal blocks

FMF(z, z) =
1

(zz)∆φ

1 +

∞∑
n=0

∞∑
`=0
even

aMF
n,` g

(d)
2∆φ+2n+`,`(z, z)

 , (3.8)

with the coefficients [13]

aMF
n,` =

(1 + (−1)`)
(
∆φ − d

2 + 1
)2
n

(∆φ)2
n+`

`!n!
(
`+ d

2

)
n

(2∆φ + n− d+ 1)n(2∆φ + 2n+ `− 1)`
(
2∆φ + n+ `− d

2

)
n

. (3.9)
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3.1 Perturbative correlators

Next let us discuss correlators that depend on a small parameter ε. For concreteness

we discuss expansions around the mean field theory correlator discussed in the previous

section. That means that both the anomalous dimensions and the OPE coefficients will

receive corrections proportional to ε

∆n,` = 2∆φ + 2n+ `+ εγ
(1)
n,` + ε2γ

(2)
n,` +O(ε3) ,

an,` = aMF
n,` + εa

(1)
n,` + ε2a

(2)
n,` +O(ε3) ,

(3.10)

which leads to a correction of the correlator

F (z, z) = FMF(z, z) + εF (1)(z, z) + ε2F (2)(z, z) +O(ε3) . (3.11)

The leading contribution is given by

F (1)(z, z) = (zz)−∆φ

∞∑
n=0

∞∑
`=0
even

(
a

(1)
n,` + a

(0)
n,`γ

(1)
n,`∂ε

)
g

(d)
2∆φ+2n+`,`(z, z) , (3.12)

however one sees from (2.11) that the discontinuity at z < 0 does not depend on a
(1)
n,`

Disc
z < 0

F (1)(z, z) = πi(zz)−∆φ

∞∑
n=0

∞∑
`=0
even

a
(0)
n,`γ

(1)
n,` g

(d)
2∆φ+2n+`,`(z, z) . (3.13)

By comparing to (3.12) one sees that the only contribution to this discontinuity is generated

when the derivative in ε acts on powers of z, i.e. ∂εz
ε
2 = 1

2 log(z)z
ε
2 . Note that if there

are operators with bare dimension ∆ − ` = 2∆φ − n, n = 1, 2, . . ., there are further delta

function singularities like the one from the identity. This is not the case in the current

setup, but it will be in the example of section 4.2. Since the discontinuity (3.13) determines

the correlator via the dispersion relation (2.20), it follows that the four-point function and

hence the OPE coefficients a
(1)
n,` are entirely defined by the spectrum of the CFT and OPE

coefficients of possible operators with twist below 2∆φ! This statement holds generically

in situations where a small parameter is present and makes manifest the fact that the

spectrum together with crossing symmetry is enough to specify the CFT. For higher orders

in the perturbation the OPE coefficients of the previous order become an input at the next

order and determine the new OPE coefficients.

4 Applications

4.1 Wilson-Fisher model

To study a concrete example, we will now consider the correlator 〈φφφφ〉 in φ4 theory at the

Wilson-Fisher fixed point in an ε-expansion. This model has recently been studied using

the Lorentzian inversion formula [8] and serves well to illustrate the difference between

the two methods. To start with, being based on the double discontinuity the Lorentzian

– 8 –
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inversion formula can generally reach one order higher in the expansion with similar input.

With the discontinuity one has to analyze all terms containing log(z) whereas the double

discontinuity extracts log2(z) and higher powers of logarithms. On the other hand, the

dispersion relation yields closed expressions for the correlator, compared with the inversion

formula which computes OPE coefficients. Summing the OPE to obtain the correlator

from CFT data is generically hard and we are not aware that it has been done for the

example at hand. Furthermore, in [8] the correct OPE coefficients of scalars have been

obtained by performing an analytic continuation around a pole in `, but it is not clear to

what extent this was justified given that the Lorentzian inversion formula cannot be safely

used for scalars. Another distinction between the two methods is that the derivation of the

Lorentzian inversion formula relies on the Regge behavior of correlators, which is expected

for non-perturbative correlators but does not have to persist in perturbative expansions.

The effect is that the minimal spin for which the inversion formula is valid can be higher

than 2 in perturbation theory. This is in contrast to our dispersion relation which does not

probe the Regge limit and relies instead only on the OPE to determine possible singularities.

Since the OPE is compatible with perturbative expansions of the CFT data, the validity

of the dispersion relation for all spins is not affected by perturbation theory.

We will perform the ε expansion where both the CFT data and the dimension

d = 4− ε , (4.1)

depend on the expansion parameter. The starting point is the mean field theory correla-

tor (3.4) where we insert the appropriate external dimension

∆φ = 1− 1

2
ε+

1

108
ε2 +O(ε3) . (4.2)

The OPE coefficients (3.9) with n 6= 0 vanish up to O(ε)

aMF
n,` =

(1 + (−1)`)(∆φ)2
`

`!(2∆φ + `− 1)`
δn,0 +O(ε2) , (4.3)

which means that at leading order only the identity and the double trace operators of twist

approximately two appear in the OPE

φ× φ = 1 + φ∂`φ+O(ε) . (4.4)

In the following we will omit the index n of an,` and ∆n,` whenever it is zero. The only

missing ingredient to compute the discontinuity (3.13) are the dimensions of these operators

(see for instance [14])

∆0 = 2∆φ +
1

3
ε+

8

81
ε2 +O(ε3) ,

∆` = 2∆φ + `− 1

9`(`+ 1)
ε2 +O(ε3) , ` > 0.

(4.5)

Since the spinning operators have no anomalous dimension at order ε, the only operator

contributing to the discontinuity is φ2

Disc
z < 0

F (1)(z, z) =
2

3
πi(zz)−1g2,0(z, z) =

2

3
πi

log(1− z)− log(1− z)

z − z
. (4.6)
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Moreover, there are no operators in the s-channel OPE apart from the identity that con-

tribute to poles at z = 0. Since the contribution of the identity is fully accounted for by

the mean field theory correlator, there will be no further delta function singularities. Using

the dispersion relation (2.20) (without the 1 which only contributes at O(ε0)) we find

F (1)(z, z) =
1

3(z − z)

(
log(zz) log

(
1− z
1− z

)
− 2Li2(z) + 2Li2(z)

)
. (4.7)

Now we can expand this result into conformal blocks and find that only the OPE coefficient

of φ2 is corrected

a
(1)
n,` = −2

3
δn,0δ`,0 . (4.8)

To compute the correlator at the next order we simply expand the correlator in ε and keep

only the terms containing a log(zz)

F (z, z) = a0

(
1

2
(γ

(1)
0 ε+ γ

(2)
0 ε2) log(zz)(1 + ε∂ε) +

1

8
(γ

(1)
0 )2ε2 log(zz)2

)
g̃

(4−ε)
∆0,0

(z, z)

+

∞∑
`=2
even

1

2
a`γ

(2)
` ε2 log(zz)g̃

(4−ε)
∆`,`

(z, z) + continuous at z < 0 .
(4.9)

The discontinuity at second order in ε follows straightforwardly to be

Disc
z < 0

F (2)(z, z) = πi

(
a

(1)
0 γ

(1)
0 + aMF

0 γ
(2)
0 +

1

2
aMF

0 (γ
(1)
0 )2 log(−zz) + aMF

0 γ
(1)
0 ∂ε

)
g̃

(4)
2,0(z, z)

+ 2πi

∞∑
`=2
even

Γ(`+ 1)2

Γ(2`+ 1)
γ

(2)
` g̃

(4)
2+`,`(z, z) . (4.10)

The sum in the second line can be done using that the conformal blocks for twist two

operators in four dimensions (2.13) simplify

g̃
(4)
2+`,`(z, z) =

k`+1(z)− k`+1(z)

z − z
, (4.11)

and4

∞∑
`=2
even

Γ(`+ 1)2

Γ(2`+ 1)`(`+ 1)
k`+1(z) = log(1− z) +

1

4
log(1− z)2 + Li2(z) . (4.12)

The most complicated part of the discontinuity comes from the expansion of the conformal

block, which has to be done using the expression for general dimensions in (2.6)5

∂εg̃
(4)
2,0(z, z) =

1

z−z

(
2

3
(Li2(z)−Li2(z))+

1

2

(
Li2

(
z

z

)
−Li2

(z
z

)
+Li2

(
z(1−z)

z(1−z)

)
−Li2

(
z(1−z)

z(1−z)

))
+

1

2
log

(
1−z
1−z

)(
4

3
−log(z−z)−log(z−z)+log(zz)+

1

2
log((1−z)(1−z))

))
. (4.13)

4Use the integral representation 2F1 (a, b, c, z) = Γ(c)
Γ(b)Γ(c−b)

1∫
0

dt tb−1(1−t)c−b−1(1−tz)−a in order to sum.

5Expand the integrand of (2.7) in ε (for instance using HypExp [15, 16]) before doing the integral.
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Inserting the discontinuity into the dispersion relation one can do the integral and finds

the correlator6

F (2)(z, z) =
1

z−z

[
− 1

12
log
(z
z

)
log2

(
1−z
1−z

)
− 1

12
log2((1−z)(1−z))log

(z
z

)
+log

(
1−z
1−z

)(
10

81
log (zz)+

1

12
log2

(z
z

)
− 1

36
log2(zz)−1

9
log((1−z)(1−z))log(zz)

)
− 1

18
(Li2(z)−Li2(z))

(
4 log((1−z)z)+4 log((1−z)z)−40

9

)
(4.14)

+
1

3

((
Li2

(
z−z
z−1

)
+

1

4
log2

(
1−z
1−z

))
log(zz)−

(
Li2

(
z−z
z

)
+

1

4
log2

(z
z

))
log((1−z)(1−z))

)
+

1

3

(
Li3

(
z−z
z

)
−Li3

(
z−z
z

)
+Li3

(
z−z
z−1

)
−Li3

(
z−z
z−1

)
+Li3

(
z−z
z(1−z)

)
−Li3

(
z−z
z(1−z)

))]
.

The first consistency check is that this correlator satisfies

F (2)(z, z) = F (2)(z, z) , (4.15)

a condition that is only satisfied because we input the spectrum of the CFT. If we let γ
(1)
0

unspecified and introduce a parameter γ
(1)
` → αγ

(1)
` , we find that (4.15) has two solutions

corresponding to the Wilson-Fisher model and mean field theory. γ
(2)
0 is not constrained

in this way because it multiplies a function of the form (4.7) which satisfies (4.15) by itself.

One can also expand in small z and z and find agreement with the known corrections to

the OPE coefficients [14]7

a
(2)
` =

(1 + (−1)`)Γ(`+ 1)2

Γ(2`+ 1)

`(`+ 1)(H2` −H`−1)− 1

9`2(`+ 1)2
, (4.16)

and [8]

aMF
n,` + ε2a

(2)
n,` =


(1+(−1)`)Γ(`+2)2

Γ(2`+3)
`2+3`+8

24(`+1)(`+2)

(
ε
3

)2
+O(ε3) , n = 1 ,

O(ε4) , n > 1 .
(4.17)

4.2 Holographic supergravity

In order to give another example of applying the dispersion relation we will here apply

it to compute the unprotected part of the reduced correlator H(z, z) for the correlator

〈O2O2O2O2〉 in N = 4 SYM theory at strong coupling, which holographically corresponds

to the four graviton amplitude in AdS supergravity. While there is a vast literature on

the topic, we recommend the beginning of [18] for a review of the setup and the definition

of the reduced correlator. From the usual bootstrap equation of the full correlator, the

reduced correlator inherits the crossing equation

H(z, z)−H free(z, z) = H(1− z, 1− z)−H free(1− z, 1− z)

= (zz)−4
(
H(1/z, 1/z)−H free(1/z, 1/z)

)
,

(4.18)

6The most convenient way to do the integral seems to be to use the Maple package HyperInt [17].
7The expansion in small z, z truncates the OPE sum over spin. The blocks for exchange of spinning

operators in d dimensions are given as a power series by the recursion relation of [11].
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where

H free(z, z) =
1

u2

(
1 +

1

v2
+

1

c

1

v

)
, (4.19)

is the reduced correlator of the free theory. Moreover, it follows from the superconformal

block expansion that H(z, z) has the following expansion into the usual conformal blocks

H(z, z) = (zz)−4
∑
∆,`

a∆,` g
(4)
4+∆,`(z, z) , (4.20)

where the spectrum is given in an expansion around large central charge c

∆n,` = 2n+ `+
1

c
γn,` +O(c−2) . (4.21)

Our final ingredient is that the operators with n = 0, 1 belong to short multiplets which

are protected by supersymmetry. That means that their contribution does not receive

perturbative corrections and can be computed once and for all

Hshort(z, z) = (zz)−4
1∑

n=0

∞∑
`=0
even

an,` g
(4)
4+2n+`,`(z, z) = (zz)−2Gshort(z, z) , (4.22)

with Gshort as given in [19]. The goal of the following section is to derive the leading and

subleading reduced correlator

H(z, z) = H(0)(z, z) +
1

c
H(1)(z, z) = Hshort(z, z) + (zz)−4

∞∑
n=2

∞∑
`=0
even

an,` g
(4)
∆n,`,`

(z, z) , (4.23)

using as input only the anomalous dimensions and Hshort, which contributes delta functions

to the discontinuity due to its poles at z = 0.

We will have to take into account that the presence of H free in the crossing equa-

tion (4.18) leads to an extra contribution in the dispersion relation. Repeating the argu-

ment of section 2.3, the discontinuity at z > 1 is now given by

Disc
z > 1

H(z, z) = −Disc
z < 0

(
H(z, z)−H free(z, z) +H free(1− z, 1− z)

) ∣∣∣z→1−z
z→1−z

, (4.24)

and the additional terms integrate to

h(z, z) =
1

2πi

0∫
−∞

dz′

z′ − (1− z)
Disc
z′

(
−H free(z′, 1− z) +H free(1− z′, z)

)

=
−1

((1− z)(1− z))2
+

1

c

1− z − 3z + 2zz

((1− z)(1− z)z)2
.

(4.25)

One checks from the u-channel OPE that the contribution from the arc at infinity vanishes

for all exchanged operators and is left with the following dispersion relation for the case

at hand

H(z, z) = h(z, z) +

 1

2πi

0∫
−∞

dz′
1

z′ − z
Disc
z′

H(z′, z) + (z, z)→ (1− z, 1− z)

 . (4.26)
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4.2.1 Leading order

At order c0 the discontinuity vanishes for z < 0 due to (2.11) and hence is located only at

z = 0 in the form of delta functions. From the OPE (4.23) we see that poles at z = 0 can

only occur in Hshort, which has the small z expansion

H
(0)
short(z, z) =

2− 2z + z2

(1− z)2z2z2
+

2

(1− z)2z2z
+O(z0) , (4.27)

and hence

Disc
z≤ 0

H(0)(z, z) = Disc
z≤ 0

H
(0)
short(z, z) = 2πi

(
2− 2z + z2

(1− z)2z2 δ
′(z)− 2

(1− z)2z2 δ(z)

)
. (4.28)

Inserting this into the dispersion relation (4.26) we obtain as expected

H(0)(z, z) =
1

u2

(
1 +

1

v2

)
. (4.29)

4.2.2 Projecting out OPE coefficients

We use this opportunity to show a neat trick to quickly expand correlators for integer

spectra into conformal blocks. Note that for some integer parameter n the discontinuity

at z > 1 of the function kn(z) which appears in the definition of conformal blocks in

d = 1, 2, 4, 6, . . . dimensions is given by Legendre polynomials Pn(x)

Disc
z≥ 1

kn(z) = 2πi rnPn−1

(
2− z
z

)
, n ∈ Z+ , rn =

Γ(2n)

Γ(n)2
. (4.30)

Applying this twice to the conformal blocks appearing in

(zz)4H(0)(z, z) =

∞∑
n=0

∞∑
`=0
even

a
(0)
n,` g

(4)
4+2n+`,`(z, z) , (4.31)

one can also turn these blocks into orthogonal polynomials

Disc
z≥ 1

Disc
z≥ 1

gd=4
4+2n+`,`(z, z) = (2πi)2rn+1rn+`+2

zz

z − z
P−n,`

(
2− z
z

,
2− z
z

)
, (4.32)

where we defined P−n,` as the antisymmetric two variable Legendre polynomial

P−n,`(x, x) = Pn+`+1(x)Pn(x)− Pn(x)Pn+`+1(x) , n, ` = 0, 1, 2, . . . . (4.33)

Using the orthogonality relation for ordinary Legendre polynomials, one finds that also the

new polynomials obey an orthogonality relation∫ 1

−1
dx

∫ 1

−1
dxP−n,`(x, x)P−n′,`′(x, x) =

8 δnn′δ``′

(2n+ 1)(2(n+ `+ 1) + 1)
. (4.34)

They form a basis for the antisymmetric two variable polynomials and have the properties

P−n,`(x, x) = −P−n,`(x, x) , P−n,`(−x,−x) = (−1)`P−n,`(x, x) . (4.35)

– 13 –



J
H
E
P
0
4
(
2
0
2
0
)
0
9
2

Given the discontinuity

Disc
z

Disc
z

(zz)4H(0)(z, z) = (2πi)2
(
∂ 1
z
δ(1/z)∂ 1

z
δ(1/z) + (zz)2∂zδ(1− z)∂zδ(1− z)

)
,

(4.36)

we can directly compute all the OPE coefficients

a
(0)
n,` =

(2n+1)(2(n+`+1)+1)

2(2πi)2rn+1rn+`+2

∞∫
1

dz

z2

∞∫
1

dz

z2

z−z
zz

P−n,`

(
2−z
z
,
2−z
z

)
Disc
z

Disc
z

(zz)4H(0)(z, z)

=
2(1+(−1)`)(2n+1)(2(n+`+1)+1)

rn+1rn+`+2
∂xP

−
n,` (x, x)

∣∣∣
x=x=1

(4.37)

=
(1+(−1)`)(2n+1)(2(n+`+1)+1)(`+1)(`+2n+2)

rn+1rn+`+2
.

Unfortunately this trick is less useful at higher orders in the expansion, because then one

needs to compute and subtract the term in (3.12) which contains the anomalous dimensions

before one can use the projection formula to compute a
(1)
n,`.

4.2.3 Next-to-leading order

Let us now consider the correlator at order c−1. The anomalous dimensions for this corre-

lator are known to be [20]

γn,` = −(n− 1)n(n+ 1)(n+ 2)

(`+ 1)(`+ 2n+ 2)
. (4.38)

The discontinuity for negative z is given by (3.13)

Disc
z < 0

H(1)(z, z) = πi(zz)−4
∞∑
n=2

∞∑
`=0
even

a
(0)
n,`γn,` g

(4)
4+2n+`,`(z, z) . (4.39)

While it is hard to do the sums in (4.39), one can check that with a
(0)
n,` as in (4.37) the

power series in z, z agrees with8

Disc
z < 0

H(1)(z, z) = −Disc
z < 0

D̄2422(z, z)

=
8πi

(z−z)7

(
3
(
2(z3z+z3z+z2+z2)−z3−z3+6(z2z2+zz)−9(z2z+z2z)

)
log

(
1−z
1−z

)
+

1

2(z−1)(z−1)

(
(1−z)z5−(1−z)z5−28(z4z2−z4z2)+39(z4z−z4z)−12(z4−z4)

+58(z3z2−z3z2)−66(z3z−z3z)+12(z3−z3)+24(z2z−zz2)
))

. (4.40)

However, in this case this is not the full discontinuity. Similar to the leading order, there

are poles at z = 0 from the protected operators

H
(1)
short(z, z) =

1

(1− z)z2z2
− 2(z + log(1− z))

z4z
+O(z0) , (4.41)

8Note that D̄2422(z, z) = ∂u∂v(1 + u∂u + v∂v)
log(zz) log( 1−z

1−z )+2Li2(z)−2Li2(z)

z−z .
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causing the discontinuity

Disc
z≤ 0

H
(1)
short(z, z) = 2πi

(
1

(1− z)z2 δ
′(z) +

2(z + log(1− z))

z4 δ(z)

)
. (4.42)

Inserting the two contributions (4.40) and (4.42) to the discontinuity into the dispersion

relation we compute the correct correlator [21, 22]

H(1)(z, z) =
1

u2v
− D̄2422(z, z) , (4.43)

from which the OPE coefficients a
(1)
n,` can be extracted.

5 Summary and outlook

In this paper we have shown how to reconstruct four point correlators in generic number of

dimensions from their discontinuity, which in perturbative settings is essentially determined

by the spectrum of the theory. One of the main advantages of this method is that it allows

us to compute the correlator without ambiguities, when the spectrum is specified.

The method is general and can be applied to any CFT, in particular it would be

very interesting to apply it to non-perturbative CFTs. Another idea is to use it for CFTs

with boundaries or more general defects, for which Lorentzian inversion formulas have

been derived in [23, 24]. In spirit the present work is very similar to [25], which could be

reformulated in terms of a dispersion relation as well.

One could also explore the connection of this framework to the analytic functional

approach [26–28]. In the latter it is possible to extract the CFT data by constructing

certain analytic functionals, named extremal functionals. Our section 4.2.2 could be refor-

mulated in terms of functionals that extract the OPE coefficients from the discontinuity

of a correlator in four dimensions, however these functionals have single poles, compared

to the double poles of extremal functionals which can extract also the anomalous dimen-

sions. Maybe our discussion can be useful for the construction of the full non-perturbative

extremal functionals in 4D.

We conclude by mentioning another promising and interesting direction which is related

to the Polyakov-Mellin bootstrap approach. It has been shown that there are ambiguities

in this method which are due to the presence of contact terms which are not fixed by the

Mellin bootstrap ansatz. Some progress in this direction has been made in [29]. We believe

that our formulation could shed light on how to deal with and eventually remove such

ambiguities. We hope to report on this problem in the near future.
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