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1 Introduction

It has been argued that pure gauge theories with a θ term contain intriguing nonpertur-

bative aspects. Possible phase transition in the two-dimensional (2D) pure U(N) gauge

theory was investigated at θ = 0 in the large N limit by Gross and Witten thirty years

ago [1] and Seiberg discussed that it has a phase transition at θ = π in the strong coupling

limit [2]. Later Witten showed that the four-dimensional (4D) pure Yang-Mills theory

yields the spontaneous CP violation at θ = π in the large N limit [3]. Recently this non-

trivial phenomena was also predicted based on the argument of the anomaly matching

between the CP symmetry and the center symmetry [4]. Up to now, unfortunately, the

numerical study with the lattice formulation has not been an efficient tool to investigate

these nonperturbative phenomena. The reason is that the lattice numerical methods are

based on the Monte Carlo algorithm so that they suffer from the sign problem caused by

the introduction of the θ term.

In 2007 the tensor renormalization group (TRG) was proposed by Levin and Nave to

study 2D classical spin models [5]. They pointed out that the TRG method does not suffer

from the sign problem in principle. This is a fascinating feature to attract the attention

of the elementary particle physicists, who have been struggling with the sign problem to

investigate the finite density QCD, the strong CP problem, the lattice supersymmetry and

so on. In past several years exploratory numerical studies were performed by applying

the TRG method to the quantum field theories in the path-integral formalism [6–19]. The

authors and their collaborators have confirmed that the TRG method is free from the sign

problem by successfully demonstrating the phase structure predicted by Coleman [20] for
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the one-flavor Schwinger model with the θ term employing the Wilson fermion formula-

tion [8]1 and the Bose condensation accompanied with the Silver Blaze phenomena in the

2D complex scalar φ4 theory at the finite density [19].

In this article we apply the TRG method to the 2D pure U(1) lattice gauge theory with

a θ term. Since this is the simplest pure lattice gauge theory with a θ term and the analytical

result for the partition function is already known [22], it is a good test case for the TRG

method to check the feasibility to investigate the nonperturbative properties of the lattice

gauge theories with a θ term. In the previous studies of Schwinger model with and without

the θ term [7–9], we employed the character expansion method to construct the tensor

network representation following the proposal in ref. [23]. In this work, however, we use

the Gauss quadrature method with some improvement to discretize the phase in the U(1)

link variable. This is motivated by the success of the Gauss quadrature method to discretize

the continuous degree of freedom in the TRG studies of the scalar field theories [16, 19].

This paper is organized as follows. In section 2 we explain the TRG method with the

use of the Gauss quadrature to calculate the partition function of the 2D pure U(1) gauge

theory. Numerical results for the phase transition at θ = π are presented in section 3, where

our results are compared with the exact ones which are analytically obtained. Section 4 is

devoted to summary and outlook.

2 Tensor renormalization group algorithm

2.1 2D pure U(1) lattice gauge theory with a θ term

The Euclidean action of the two-dimensional pure U(1) lattice gauge theory with a θ term

is defined by

S = −β
∑
x

cos px − iθQ, (2.1)

px = ϕx,1 + ϕx+1̂,2 − ϕx+2̂,1 − ϕx,2, (2.2)

Q =
1

2π

∑
x

qx, qx = px mod 2π, (2.3)

where ϕx,µ ∈ [−π, π] is the phase of U(1) link variable at site x in µ direction. The range

of qx is [−π, π] and it can be expressed as follows by introducing an integer nx:

qx = px + 2πnx, nx ∈ {−2,−1, 0, 1, 2}. (2.4)

For the periodic boundary condition, the topological charge Q becomes an integer:

Q =
∑
x

( px
2π

+ nx

)
=
∑
x

nx (2.5)

The tensor may be given with continuous indices,

T (ϕx,1, ϕx+1̂,2, ϕx+2̂,1, ϕx,2) = exp

(
β cos px + i

θ

2π
qx

)
. (2.6)

1See ref. [21] for recent studies of the Schwinger model with the θ term in the Hamiltonian formalism.
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The partition function is represented as

Z =

(∏
x,µ

∫ π

−π

dϕx,µ
2π

)∏
x

T (ϕx,1, ϕx+1̂,2, ϕx+2̂,1, ϕx,2). (2.7)

2.2 Gauss-Legendre quadrature method

In order to obtain a finite dimensional tensor network, we discretize all the integrals in

eq. (2.7) using a numerical quadrature. In general, an integral of a function f(ϕ) can be

evaluated by ∫
dϕf(ϕ) ≈

K∑
α=1

wαf
(
ϕ(α)

)
(2.8)

where ϕ(α) and wα are the α-th node of the K-th polynomial and the associated weight,

respectively. In this work, we use the Gauss-Legendre quadrature for discretization. The

discretized local tensor can be expressed as

Tijkl =

√
wiwjwkwl

(2π)2
T
(
ϕ(i), ϕ(j), ϕ(k), ϕ(l)

)
, (2.9)

and we get a finite dimensional tensor network

Z ≈
∑
{α}

∏
x

Tαx,1αx+1̂,2αx+2̂αx,2 , (2.10)

where {α} represents a set of indices associated with the Gauss-Legendre quadrature.2

2.3 Improved method

We have developed further improvement for the above method. In the singular value

decomposition (SVD) procedure to prepare the initial tensor before starting the iterative

TRG steps [12, 16, 19], we employ the following eigenvalue decomposition:

Mijkl =

√
wiwjwkwl

(2π)4

∫ π

−π
dϕ1dϕ2T

(
ϕ(i), ϕ(j), ϕ1, ϕ2

)
T ∗
(
ϕ(k), ϕ(l), ϕ1, ϕ2

)
, (2.11)

which is essentially equivalent to

Mijkl = lim
K′→∞

K′∑
m,n=1

TijmnT
∗
klmn. (2.12)

This procedure is expected to reduce the discretization errors in Mijkl.

To evaluate eq. (2.11), we use the character expansion [24, 25]:

T (ϕ1, ϕ2, ϕ3, ϕ4) =
∞∑

m,n=−∞
ein(ϕ1+ϕ2−ϕ3−ϕ4)Im(β)Jn−m(θ) (2.13)

2Application of the plain Gauss-Legendre quadrature method to this model was originally proposed by

Yuya Shimizu.
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where Im(β) is the m-th order modified Bessel function of the first kind and

Jn(θ) = (−1)n
2

θ + 2πn
sin

(
θ

2

)
. (2.14)

Then, eq. (2.11) is rewritten as

Mijkl =

√
wiwjwkwl

(2π)4

∞∑
n=−∞

ein(ϕ
(i)+ϕ(j)−ϕ(k)−ϕ(l))

 ∞∑
m,m′=−∞

Im(β)Im′(β)Jn−m(θ)Jn−m′(θ)

 .
(2.15)

In the practical calculation, the sums of n,m and m′ can be truncated when the con-

tributions of the terms are small enough. In this work we discard the contributions of

Im,m′/I0 < 10−12 or Jn−m,n−m′/J0 < 10−12.

3 Numerical analysis

3.1 Setup

The partition function of eq. (2.7) is evaluated with the TRG method at β =0.0 and 10.0

as a function of θ on a V = L × L lattice, where L is enlarged up to 1024. We choose

K = 32 for the polynomial order of the Gauss-Legendre quadrature in eq. (2.8). The

SVD procedure in the TRG method is truncated with D = 32. We have checked that

these choices of D and K provide us sufficiently converged results for all the parameter

sets employed in this work. Since the scaling factor of the TRG method is
√

2, allowed

lattice sizes for the partition function are L =
√

2, 2, 2
√

2, · · · , 512
√

2, 1024. The periodic

boundary condition is employed in both directions so that the topological charge Q is

quantized to be an integer.

3.2 Free energy

The analytic result for the partition function of eq. (2.7) is given by [22]:

Zanalytic =
∞∑

Q=−∞
(zP(θ + 2πQ, β))V , (3.1)

zP(θ, β) =

∫ π

−π

dϕP

2π
exp

(
β cosϕP + i

θ

2π
ϕP

)
, (3.2)

where zP(θ, β) denotes the one-plaquette partition function with ϕP ∈ [−π, π]. In figure 1

we plot the magnitude of the relative error for the free energy defined by

δf =
| lnZanalytic − lnZ(K,D = 32)|

| lnZanalytic|
(3.3)

at θ = π on a 1024 × 1024 lattice. There are a couple of important points to be noted.

Firstly, the deviation quickly diminishes as K increases even at θ = π, around which the

Monte Carlo approaches do not work effectively due to large statistical errors [26]. Secondly,
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Figure 1. Relative error of free energy as a function of K with D = 32 on a 1024 × 1024 lattice.

K is the polynomial order of the Gauss-Legendre quadrature in eq. (2.8).

our method yields more precise results than the plain Gauss-Legendre quadrature method

at any value of K. Thirdly, our choice of a parameter set of (D,K) = (32, 32) yields

δf < 10−12, which means that the free energy is determined at sufficiently high precision.

Hereafter we present the results obtained with (D,K) = (32, 32).

3.3 Topological charge density

The expectation value of the topological charge 〈Q〉 at β = 10.0 is obtained by the numerical

derivative of the free energy with respect to θ:

〈Q〉 = −i∂ lnZ

∂θ
. (3.4)

In figure 2 we show the volume dependence of 〈Q〉/V around θ = π, where the analytic

calculation predicts the first order phase transition at any value of β [22]. We observe that

a finite discontinuity emerges with mutual crossings of curves between different volumes at

θ = π as the lattice size L is increased. This feature indicates there is a first order phase

transition at θ = π.

It may be interesting to calculate the topological charge density in the strong coupling

limit β = 0.0, whose analytical result was obtained by Seiberg in the infinite volume

limit [2]:

〈Q〉
V

∣∣∣∣
β=0

= −i
(

1

2
cot

(
θ

2

)
− 1

θ

)
. (3.5)

Figure 3 compares the numerical result at β = 0.0 with the analytic expression of eq. (3.5).

The discrepancy found around θ = π with small lattice size of L = 4 essentially vanishes

once we increase the lattice size up to L = 64.
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Figure 2. Topological charge density with 8 ≤ L ≤ 256 as a function of θ at β = 10.0.

0.0 0.2 0.4 0.6 0.8 1.0
 θ/π

0.0

0.2

0.4

0.6

0.8

1.0

−i
 π

<Q
>/

V

L=4
L=8
L=64
analytic result

Figure 3. Topological charge density with 4 ≤ L ≤ 64 as a function of θ at β = 0.0. Solid curve

denotes the analytic result of eq. (3.5) obtained in the infinite volume limit.

3.4 Topological susceptibility

We investigate the properties of the phase transition by applying the finite size scaling

analysis to the topological susceptibility:

χ(L) = − 1

V

∂2 lnZ

∂θ2
. (3.6)

Figure 4 shows the topological susceptibility as a function of θ for various lattice sizes.

The peak structure is observed and its height χmax(L) grows as L increases. In order to

determine the peak position θc(L) and the peak height χmax(L) at each L, we employ the

quadratic approximation of the topological susceptibility around the peak position:

χ(L) ∼ χmax(L) +R (θ − θc(L))2 (3.7)

with R a constant.

We expect that the peak height scales with L as

χmax(L) ∝ Lγ/ν , (3.8)
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Figure 4. Topological susceptibility χ(L) as a function of θ with 16 ≤ L ≤ 512.
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Figure 5. Peak height of topological susceptibility χmax(L) as a function of L. Solid curve denotes

the fit result.

where γ and ν are the critical exponents. The L dependence of the peak height χmax(L) is

plotted in figure 5. The solid curve represents the fit result obtained with the fit function

of χmax(L) = A+ BLγ/ν choosing the fit range of 128 ≤ L ≤ 1024. The results for the fit

parameters are given by A = −3(2) × 10−3, B = 7.12(8) × 10−5 and γ/ν = 1.998(2). The

value of the exponent γ/ν = 1.998(2) is consistent with two, which is the expected critical

exponent in the first-order phase transition in the two-dimensional system.

– 7 –



J
H
E
P
0
4
(
2
0
2
0
)
0
8
9

4 Summary and outlook

We have applied the TRG method to study the 2D pure U(1) gauge theory with a θ term.

The continuous degrees of freedom are discretized with the Gauss quadrature method. We

have confirmed that this model has a first-order phase transition at θ = π as predicted

from the analytical calculation. The successful analysis of the model demonstrates an effec-

tiveness of the Gauss quadrature approach to the gauge theories. It should be interesting

to apply the TRG-based methods with the Gauss quadrature to higher dimensional gauge

theories with θ term which have been hardly investigated by the Monte Carlo approach

because of the sign problem. Another interesting research direction is to include fermionic

degrees of freedom following the Grassmann TRG method developed in ref. [7]. This is a

necessary ingredient toward investigation of the phase structure of QCD at finite density.
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