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1 Introduction

It was observed in [1] by Gel’fand, Kapranov and Zelevinsk̆ı (GKZ) that practically all

integrals that arise in perturbative quantum field theory have the form of residuum integrals

of rational functions defined in a toric variety P∆. We will call these the GKZ period

integrals. In applications the more relevant statement is that in dimensional regularization

say in 4− 2ε dimensions the coefficients of the Laurent expansion of the Feynman integral

in ε are such period integrals [2].

The simplest GKZ integrals are related to the Griffiths residuum form [3, 4] of geo-

metric forms in the cohomology of varieties M that are algebraically embedded in the toric
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varieties. The period integrals over closed cycles are solutions to a system of linear homo-

geneous differential operators called the Picard-Fuchs differential ideal (PFDI). The main

result of GKZ is that the GKZ integrals are determined by a system of linear differential

operators, w.r.t. to their parameters, defined in [1, 5, 6] and called the GKZ system. This

is of course only true up to linear combinations of the solutions, which reflects the choice

of the homology class of the integration domain. This GKZ system can be thought as a

generalization of the hypergeometric systems.

It is related in simple cases in which M is a Calabi-Yau manifold to the PFDI as follows.

After pulling out a moduli dependent multiplicative factor — the coefficient of the unique

inner point in the Newton polyhedron — from the GKZ integrals, the geometric period

integrals that solve the PFDI are among the solutions of the modified GKZ system1[7, 8].

The application of [7, 8] shows that for many problems the PFDI is much easier obtained

from the GKZ then from the Griffiths reduction method. The latter is a generic algorithm

that produces differential relations between the periods by successive partial integrations,

while the former uses simple symmetries of the integrand reflecting symmetries in the

parameter space. More generally, the GKZ integrals can involve non necessary holomorphic

forms that are integrated over chains in M [9]. The latter are called relative periods and

fulfill an inhomogeneous system of differential operators. It turns out that the solutions of

GKZ systems can be related to periods as well as to a class of relative periods.

In this note we consider particular Feynman integrals that correspond to a class of

l-loop Feynman diagrams in two space-time dimensions with two vertices of valence l + 1,

one invariant momentum K2, and l + 1 different masses Mi for each propagator, known

as Banana diagrams. These are depicted in figure 1. By the dimensional shift relations

these integrals yield the leading terms in the dimensional regularization parameter ε in

4− 2ε dimensions [10, 11]. For these integrals2 given in (2.1) the numerator of the rational

function is trivial and the homogeneous differential system is related to the PFDI for the

closed periods of the holomorphic (l−1, 0)-form of a Calabi-Yau (l−1)-foldM . However, the

integration domain of the Feynman integral has boundaries. It turns out that the solutions

for the closed periods describe only the maximal cut integral of the Feynman amplitude.3

The latter is an important building block for the description of the physical amplitude,

which however has to be supplemented by special solutions to the inhomogeneous equations,

which correspond to the boundary contribution of the relative periods.

A fact of great importance for mirror symmetry is that Calabi-Yau manifolds are

expected to have at least one point of maximal unipotent monodromy in their moduli

space. For Calabi-Yau hypersurfaces and complete intersections in toric ambient spaces, the

location of these points can in fact be calculated purely combinatorial from triangulations of

the toric polyhedron. At such a point the local exponents for the solutions of the PFDI are

1As explained in [7, 8] the PFDI can be obtained from the modified GKZ system by factoring it from

the latter.
2Also for other Feynman graphs the appearing integrals can be related to Calabi Yau integrals as pointed

out in [12–14].
3See also [15] for a connection between maximal cut Feynman integrals and solutions to corresponding

differential equaions.

– 2 –



J
H
E
P
0
4
(
2
0
2
0
)
0
8
8

completely degenerate. A consequence is that there is an unique analytic solution, while all

other solutions are all logarithmic at this point. There is also an unique solution with the

highest power of logarithms which equals the dimension l−1 of M . Moreover, the maximal

cut integral corresponds to the unique holomorphic period and can be evaluated directly

by a residuum integral over an l-dimensional torus in P∆. All logarithmic closed periods

can be obtained by the Frobenius method. One of the technical insides of this paper is

that also the inhomogeneous solutions can be constructed at this point from symmetries of

the GKZ system and the explicit form of the GKZ integral and we show that this method4

is practical enough to calculate the full mass dependence for the three-loop amplitude and

maybe beyond.

Only for the two-loop amplitude the dependence on all three parameters has been

calculated so far5 in [18]. The knowledge of the general mass dependence is not only

important from a conceptual point but it is also required in the computation of higher loop

corrections to certain processes studied at the Large Hadron Collider, as for example in

Higgs production processes [19] the three-loop graph with two different masses is needed.

It turned out that the two-loop integral is closely related to the period integral of the

local mirror M of the non-compact Calabi-Yau three-fold W defined as total space of the

anti-canonical line bundle over the degree three del Pezzo surface S, which is P2 blown

up in three generic points. The masses are related in a simple way to the three new

Kähler parameters in the blown up geometry and the toric polyhedron representing S in

figure 3. By local mirror symmetry the toric polyhedron is also the Newton polyhedron

for the polynomial in the denominator of the GKZ integral, whose vanishing locus is a

special family of elliptic curves E , i.e. the Calabi-Yau one-fold. The period problem of the

meromorphic differential of the third kind, whose non-vanishing residua correspond to the

masses, on this elliptic curve has been solved universally for all toric del Pezzo surfaces in

terms of modular forms [20]. It contains the information of the maximal cut integral.

The elliptic curve above will be replaced by a K3 for the three-loop case and a Calabi-

Yau (l − 1)-fold for the l-loop case. This banana diagram with general mass dependencies

plays an important role in three-loop corrections to the ρ parameter where the top and

bottom quark masses are considered [21]. For the four-loop case the Calabi-Yau three-fold

takes the form of a mass deformation of the one parameter family of Barth-Nieto quintics.

Their form can be readily generalized to arbitrary dimensions as in equation (2.18) and

will be called Barth-Nieto Calabi-Yau (l− 1)-folds and describe the geometry of the l-loop

graph (2.1) for equal masses6 ξi = Mi/µ = 1 for all i, depending only on t = K2/µ2.

For the Barth-Nieto Calabi-Yau (l − 1)-folds the (l + 1)’th order Picard-Fuchs differential

operator D(l+1)
t is easily obtained. One evaluates the geometric integral (2.1) with ξi = 1

over the (l− 1)-torus T l−1 instead of σl. The latter is readily performed as it is equivalent

to an integral over an T l torus in the ambient space, which leads by a simple residue

calculation to an explicit power series $(t). D(l+1)
t can only have rational coefficients and

4See also [16, 17] for a different discussion of the GKZ system in the context of Feynman integrals with

generic mass dependencies.
5In the two-loop case the diagram is also called sunset diagram.
6Due to an additional scaling freedom we can actually set in the equal mass case all masses to unity.
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demanding that it annihilates $(t) fixes it uniquely [22]. More efficiently is the method

proposed in [23] using a decomposition of the integral in terms of Bessel functions.7

The full set of solutions to the Picard-Fuchs differential ideal and many aspects of their

monodromies and analytic continuations have been intensively studied using the GKZ sys-

tem in the context of mirror symmetry for period integrals of the holomorphic (n, 0)-form

for Calabi-Yau n-folds. For compact Calabi-Yau three-folds realized as hypersurfaces in

toric varities this was done in [7, 8, 24] and for complete intersections in toric varieties

in [25–27] Higher dimensional Calabi-Yau spaces have been studied in [28–32]. An intro-

duction and overview into these subjects can be found in [33].

Our paper is structured as follows: in section 2.1 we introduce the l-loop banana graphs

and explain their geometric interpretation. To these Feynman diagrams we associate (l−1)-

dimensional Calabi-Yau hypersurfaces. Their definition and useful properties are discussed

in section 2.2 and 2.2.1. In sections 2.2.2 to 2.2.4 we introduce the notion of periods and

relative periods on Calabi-Yau hypersurfaces and explain the GKZ method. Moreover,

we explain the restriction on the physical subslice. The extension of the GKZ system to

relative periods is developed in 2.3. This is the main part of our approach of computing

l-loop banana amplitudes. In section 3 we calculate with our approach three examples,

namely the one-, two- and three-loop banana graph. Finally, we make our conclusions in

section 4.

Note added in draft: while we were in the process of finishing this draft an interesting

paper [34] has been published about evaluating Feynman integrals and GKZ method which

seems to have some overlap with our work.

2 l-loop banana diagram in the toric approach

We give the l-loop banana diagrams a geometric interpretation enabling us to use toric

geometry to evaluate them. This geometric interpretation originates from the graph poly-

nomial representation of a Feynman diagram which is obtained after Feynman parametriza-

tion and evaluation of many Gaussian integrals.8 For the banana type diagrams in two

dimensions the exponent of the first Symanzik polynomial vanishes and the exponent of

the second Symanzik polynomial is one. This simplifies the form of these integrals a lot and

offers us a geometric interpretation familiar from string theory calculations. We regard the

denominator of the integrand as a Newton polynomial which defines a Calabi-Yau hyper-

surface. The corresponding banana diagram integral is identified with a relative period of

this Calabi-Yau hypersurface. Through the GKZ system of differential equations we con-

struct a basis of periods on the Calabi-Yau variety at the maximal unipotent monodromy

point. Extending the GKZ system to inhomogeneous differential operators we can write

down a complete set of functions parametrizing the full banana amplitude.

7They are given up to l = 5 together with a computer program that calculates them quickly for

higher l [23].
8For a review of the graph theoretical representation of Feynman diagrams we refer to [35].
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Figure 1. The l-loop banana diagram

2.1 l-loop banana diagram

The Feynman integral related to a l-loop banana diagram of a 2d QFT with the corre-

sponding interactions drawn in figure 1 is given in Feynman parametrization as

Fσl(t, ξi) =

∫
σl

µl
Pl(t, ξi;x)

=

∫
σl

µl(
t−

(∑l+1
i=1 ξ

2
i xi

)(∑l+1
i=1 x

−1
i

))∏l+1
i=1 xi

. (2.1)

Here xi are the homogeneous coordinates of Pl and the l real dimensional integration

domain σl is defined as

σl = {(x1 : . . . : xl+1) ∈ Pl|xi ∈ R with xi ≥ 0, ∀i} . (2.2)

The holomorphic l measure µl is

µl =

l+1∑
k=1

(−1)k+1xkdx1 ∧ . . . ∧ d̂xk ∧ . . . ∧ dxl+1 . (2.3)

The parameters or moduli in (2.1), t and ξ, are dimensionless: t = K2

µ2 and ξ = Mi
µ for

i = 1, . . . l + 1, where K is the external momentum, Mi are the l + 1 masses and µ is an

infrared scale.

The key observation discussed more in the next subsection is that (2.1) is the GKZ

period integral for a Calabi-Yau hypersurface in a toric ambient space.

2.2 Geometry associated to l-loop banana diagram

The zero locus of the denominator of the integral defines a singular family of (l − 1)-fold

Calabi-Yau hypersurfaces Ms as

Ms =
{
Pl(t, ξi;x) = 0|(x1 : . . . : xl+1) ∈ Pl

}
. (2.4)

Due to standard arguments, see e.g. [36], Ms is a complex Kähler manifold with trivial

canonical class K = 0, hence a Calabi-Yau space. The first fact follows by the definition of

Ms as hypersurface in projective space Pl and the second as for a homogeneous polynomial

Pl of degree deg(P ) in Pl the canonical class is given in terms of the hyperplane class H
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of Pl as [36] −K = c1(TMs) = [(l + 1) − deg(P )]H and deg(P ) = (l + 1). Note that

given the scaling of (2.3) this degree makes the integrand of (2.1) well defined under the

C∗ scaling of the homogenous coordinates defining Pl. Embedded in Pl the hypersurface

is a singular Calabi-Yau space. Due to the Batyrev construction there is a canonical

resolution of these singularities to define a smooth Calabi-Yau family, which we discuss

next following [7, 24, 26, 33]. A Calabi-Yau manifold M of complex dimension n = l − 1

has two characteristic global differential forms. Since it is Kähler it has a Kähler (1, 1)-

form ω defining its Kähler — or symplectic structure deformations space. The triviality of

the canonical class implies the existence of an unique holomorphic (n, 0)-form that plays a

crucial role in the description of the complex structure deformations space of M .

2.2.1 Calabi-Yau hypersurfaces in toric ambient spaces

First we define a Newton polynomial P∆l
as

Pl(t, ξi;x) =: P∆l

l+1∏
i

xi . (2.5)

The exponents of each monomial of P∆l
, w.r.t. to the coordinates xi, i = 1, . . . , l+1, define

a point in a lattice Zl+1. The convex hull of all these points in the natural embedding of

Zl+1 ⊂ Rl+1 defines an l-dimensional lattice polyhedron. The dimension is reduced due

to the homogeneity of P∆l
and we denote the polyhedron9 that lies in the induced lattice

Zl ⊂ Rl by ∆l.

More concretely, picking the canonical basis ei for Λ = Zl ⊂ Rl = ΛR the l(l + 1)

vertices defined by (2.1) and (2.5) span the polytope ∆l,
10 i.e.

∆l = Conv
(
{±ei}li=1 ∪ {±(ei − ej)}1≤i<j≤l

)
. (2.6)

Note that ∆l contains beside these vertices no further integral point other then the origen

ν0 = (0, . . . , 0). Moreover, ∆l is integral and reflexive, which implies that the dual polytope

∆̂l ⊂ Λ̂R

∆̂l = {y ∈ Λ̂R|〈y, x〉 ≥ −1, ∀ x ∈ ∆l} (2.7)

is also an integral lattice polyhedron. Note that
̂̂
∆l = ∆l and concretely ∆̂l is given by

∆̂l = Conv

 l⋃
k=1

( lk )⋃
r=1

l∑
i=1

I
(k),r
i êi ∪

l⋃
k=1

( lk )⋃
r=1

l∑
i=1

(−I(k),r
i êi)

 , (2.8)

where êi is a basis of the lattice Λ̂R and the I(k),r r = 1, . . . ,
(
l
k

)
are the sets of all distinct

permutations of k ones and l − k zeros. Indeed the 2(2l − 1) points listed in (2.8) are all

integral points of ∆̂l beside the origin. For the polytope ∆l itself it means that it has

2(2l − 1) faces. From the structure of the vertices of ∆l it can be proven that there is no

9One calls P∆l the Newton polynomial of ∆l and ∆l the Newton polyhedron of P∆l .
10For l = 1, 2, 3 these polytopes are depicted in figures 2, 3 and 4.
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integral point in the facets of the dual polytope. The combinatorics of all facets of ∆̂ are

equal, in particular they all have 2l−1 vertices.

A central theorem in the toric mirror construction of Batyrev [24] says that a smooth

resolution M of Ms with trivial canonical class is given by the constraint

P∆l
=
Pl(a;x)∏p
i=0 xi

=
∑

ν(i)∈∆l

ai
∏

ν̂(k)∈∆̂l

x
〈νi,ν̂k〉
k = 0 (2.9)

in the coordinate ring xi of P∆̂l
, where νi, i = 1, . . . , p and ν̂k, i = 1, . . . , p̂ run over all

integer points in ∆l and ∆̂l respectively.11 Here I(∆l) is the number of lattice points

in ∆l and p = I(∆l) − 1. Analogous definitions apply for ∆̂l. Note that (2.9) defines

an embedding of the physical parameters t and ξi, i = 1, . . . , l + 1 into convenient but

redundant complex structure variables ai ∈ C, i = 0, . . . , l − 1. Both the physical as well

as the ai parameters are only defined up to scale. Note that we are a little cavaliar with

the notations: the coordinate rings xi, i = 1, . . . , l + 1 in the definition (2.1) and the one

xi, i = 1, . . . , p̂ in (2.9) are of course different. However, we can get the former by blowing

down the latter. This is achieved by setting a suitable subset of p̂− (l+ 1) of the latter xi
variables to one. Likewise given P∆l

in xi, i = 1, . . . , l+1 as in (2.5) and all C∗ action (2.11)

we can uniquely extend it to p̂ variables xi by requiring that the extended polynomial (or

strictly speaking the proper transform of (2.5)) is homogeneous, w.r.t. to all C∗ rescalings

in (2.11).

The space P∆l
is a l-dimensional projective toric variety that can be associated to any

reflexive lattice polyhedra ∆l given a star triangulation12 T of ∆l as

P∆l
=

Cp[x1, . . . , xp] \ ZT
(C∗)p−l

. (2.10)

Here the C∗ actions that are divided out are generated by

xi 7→ xi(µ
(k))l

(k)
i , for i = 1, . . . , p , (2.11)

where µ(k) ∈ C∗ and the l(k) vectors span the (p−l)-dimensional space of all linear relations

L = {(l∗0, l∗1, . . . , l∗p) ∈ Zp+1|l∗0ν̄0 + l∗1ν̄1 + . . .+ l∗pν̄p = 0} (2.12)

among the points

A = {ν̄0, ν̄1, . . . , ν̄p|ν̄i = (1, νi), νi ∈ ∆l ∩ Zl} . (2.13)

The triangulation13 T determine the set of generators l(k) of L and the Stanley-Reisner

ideal ZT . The latter describes loci in Cp[x1, . . . , xp], which have to be excluded so that the

11P∆l is a Laurent polynomial in which the minimal degree of the xi is −1, while Pl(a;x) = 0 is a

polynomial constraint, which also defines a smooth manifold in the coordinate ring .
12In a star triangulation all l-dimensional simplices of the triangulation covering the reflexive polyhedron

share the inner point, as one of their vertices.
13∆l defines canonically a fan Σ∆l and the definition of a smooth P∆l may require to add integer points

outside ∆l and to triangulate the fan Σ∆l . Such cases are discussed in [7, 8].

– 7 –
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orbits of the C∗ action (2.11) have a well defined dimension. Positive linear combinations of

l(k), k = 1, . . . , n span the Mori cone, which is not necessary simplicial if n > p−l. It is dual

to the Kähler cone of P∆l
and all cones corresponding to all triangulations T of Σ∆l

form

the secondary fan, see [37] for a review how to calculate the l(k) vectors and the Stanley-

Reisner ideal combinatorial from a triangulation T . This combinatorics is implemented in

the computer package SageMath [38], which calculates the possible triangulations T and

from them the generators l(k) and the Stanley Reisner ideal ZT .

The Calabi-Yau (l−1)-fold family defined as section of the canonical bundle P∆̂l
= 0 of

P∆l
is by Batryrev [24] conjectured to be the mirror manifold W = X∆̂l

of the manifold M ,

i.e. (M,W ) form a mirror pair with dual properties. A main implication of this proposal

is that the complex structure deformation space of M denoted by MCS(M) is identified

with the complexified Kähler or stringy Kähler moduli space MKCS(W )

MKCS(W ) =MCS(M) (2.14)

and vice versa. Note that the real Kähler moduli space is parametrized by the Kähler

parameters tRk =
∫
Ck ω, where ω ∈ H1,1(M) and Ck span a basis of holomorphic curves

in H1,1(M,Z). In string theory the complexification is due to the Neveu-Schwarz two-

form field b also in H1,1(M). The complex variables tk =
∫
Ck ω + ib, k = 1, . . . , h1,1(M)

parametrize locally the complexified moduli space MKCS(W ) of W .

We will next discuss the spaceMcs(M) of complex structure deformations of M . This

space is redundantly parametrized by the complex coefficients ai, i = 0, . . . , l(∆l) − 1

in (2.9). The ai are identified by l + 1 scaling relations on the coordinates of P∆̂l
and

the automorphism of P∆̂l
that leaves M invariant but acts on the parametrizations of

the polynomial constraint P (a;x). The latter one parameter families of identifications

of the deformation parameters are in an one-to-one correspondence to the points inside

codimension one faces of ∆l. Let us denote by Θj
k all faces of codimension k in ∆l labeled

by j. I(Θj
k) denotes the number of lattice points contained in Θj

k, while I ′(Θj
k) denotes

the number of lattice points that lie in the interior of Θj
k. With this notation M has

I(∆l)− (l+ 1)−
∑

j I
′(Θj

1) independent complex structure deformations. They correspond

to elements in H1(M,TM) and are unobstructed on a Calabi-Yau manifold M . The

cohomology group H1(M,TM) is related to the cohomology group H l−2,1(M) via the

contraction with the unique holomorphic (l − 1, 0)-form.

Equation (2.14) implies that in particular the complex dimensions of these spaces have

to match, i.e. h1,1(X∆̂l
) = hl−2,1(X∆l

) and h1,1(X∆l
) = hl−2,1(X∆̂l

). From theses facts it

follows that the dimensions of these important cohomology groups are given by counting

integral points in the polytops14

h1,1(X∆l
) = I(∆̂l)− (l + 1)−

∑
j

I ′(Θ̂j
1) +

∑
j

I ′(Θ̂i
2)I ′(Θi

l−2)) = 2l+1 − l − 2

hl−2,1(X∆l
) = I(∆l)− (l + 1)−

∑
i

I ′(Θi
1) +

∑
i

I ′(Θi
2)I ′(Θ̂i

l−2)) = l2 . (2.15)

14The last terms after the first equal sign in the formulas in each line of (2.15) correspond to Kähler —

or complex structure deformations, which are frozen by the toric realization of the manifolds, respectively.

Likewise the third terms are absent in our case. The last equality holds only for the polyhedra given in (2.6)

and (2.8).
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For l = 3 the Calabi-Yau manifold M will be a nine-parameter family of polarized K3

surfaces. In this case the transversal cycles in h11 are counted hT11 = I(∆l)−(l+1) = 9, i.e.

in total one has eleven transcendental and eleven algebraic two-cycles, which are counted

by hA11 = I(∆̂l)− (l + 1) = 11. For l = 4 the 16-parameter family of Calabi-Yau three-fold

has h11 = 26 and h21 = 16 and hence Euler number χ = 40. For l = 5 the Calabi-Yau

four-fold has h31 = 25, h11 = 57, h21 = 0 and χ = 540. Using an index theorem [30] one

gets h22 = 422.

Since our polytope (2.6) has only
∑

i I(Θi
l) = l(l+ 1) corners and one inner points the

manifold M has l2 complex structure deformations, which have to be eventually mapped to

our physical parameters t and ξi. Since the latter are equivalent up to scaling by µ we have

l+1 independent physical parameters. Therefore, the map to the physical parameter space

has a huge kernel for high l and special effort has to be made to specify the relevant physical

subspace ofMphys(M) ⊂Mcs(M) as described concretely in the example sections 3.1, 3.2

and 3.3.

Actual properties of the smooth canonical resolution of Ms, in particular its Kähler

cone, depend on the choice of the star triangulation T̂ of ∆̂l. However, these detailed

properties of the Kähler moduli space MKS(M) of M do not affect the complex moduli

space MCS(M) and the integral (2.1) over closed cycles, like FT l , the integral over the T l

torus. This maximal cut integral depends only on the complex structure parameters. The

blow up coordinate ring allows however a useful description of the boundary contribution

to Fσl , see [39]. Moreover, the identification (2.14) turns out to be very useful to introduce

suitable coordinates on MCS(M) to obtain solutions for the integral (2.1). Different star

triangulations T of the polyhedra ∆l correspond to different Kähler cones of the ambient

space P∆l
of W and correspond eventually15 to different Kähler cones of W . Each choice of

the Kähler cone of W , defines by mirror symmetry and the identification (2.14) canonical

so called Batyrev coordinates zi, i = 1, . . . , hl−2,1(M) = h1,1(W ) on MCS(M), at whose

origin zi = 0 for all i there is a point of maximal unipotent monodromy in MCS(M). The

coordinates zi are ratios of the coefficients ai of P∆l
given for each triangulation by

zk = (−a0)l
(k)
0

∏
i

a
l
(k)
i
i , k = 1, . . . , p− l . (2.16)

The definition of the zk eliminates the scaling relation. Since in our case we have no

codimension one points, i.e. no automorphism of P∆̂ leaving the hypersurface invariant and

further identifying the ai deformations, the zk are actual coordinates onMCS(M). In other

simple cases one can restrict in the definition of L (2.12) to linear relations of points, which

are not in codimensions one, the general case is discussed in [7, 8]. In the moduli space of

MCS(M) as parametrized by the independent ai, the zk are blow up coordinates resolving

singular loci in discriminant components of the hypersurface P∆l
= 0 inMCS(M), so that

these become in the resolved model of the complex moduli space M̂CS(M) intersection

points of normal crossing divisors Di = {zi = 0}, i = 1, . . . , hl−2,1(M).

Of particular significance in the geometric toric construction of the differentials on M

is the coefficient a0 of the monomial
∏l+1
i xi in P (t, ξ;x) corresponding to the inner point

15If all curves that bound the Kähler cone of P∆l descend to the hypersurface W .
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in ∆l, which is given in the physical parameters by

u := a0 = t−
l+1∑
i=1

ξ2
i . (2.17)

The families that are just parametrized by u with the coefficients of all other points

set to one, i.e. in particular ξ2 = 1 for all i = 1, . . . , l + 1 is particularly symmetric. For

l = 4, i.e. Calabi-Yau three-folds, the family is known as the Barth-Nieto quintic. The

form of this family is conveniently given by a complete intersection in Pl+1 that can be

readily generalized to the ones

l+2∑
i=1

xi = 0 and

l+1∑
i=1

1

xi
+

1

uxl+2
= 0 . (2.18)

By solving for xl+2 and homogenizing one gets P∆l
= 0 in the equal mass case parametrized

by u and for equal masses ξ2
i = 1 for all i = 1, . . . , l + 1.

2.2.2 Period integrals on M and maximal cut amplitude

For the discussion of the period integrals, which are very close to the integral of inter-

est (2.1), we start with a residue definition of the holomorphic (n, 0)-form Ω of the Calabi-

Yau manifold M of complex dimension n = l − 1 defined as hypersurface in a toric ambi-

ent space

Ω =

∮
γ

a0µl
Pl(a;x)

, (2.19)

where γ encircles the locus Pl = 0 in the toric ambient space and µl was defined in (2.3).

Given a basis Γi of the cycles in the middle dimensional homology Hn(M,Z) we can define

closed string period integrals

Π(Γ) =

∫
Γ

Ω . (2.20)

The closed string periods are directly relevant as one of them describes the maximal cut

integral. Moreover, by the local Torelli theorem hn−1,1 of them can serve as projective

coordinates of MCS and by Griffiths transversality the periods fulfill differential relations

for odd n > 1, algebraic relations for n = 2 and algebraic as well as differential relations

for even n > 2.

At the point of maximal unipotent monodromy that is specified as the origin of the

Batyrev coordinates zi, i = 1, . . . h from (2.16), which are simply defined by the Mori

cone l(k) vectors of the mirror W , the Picard-Fuchs differential ideal is maximally degen-

erate. This point is a point of maximal unipotent monodromy or short MUM-point. As

a consequence that near the MUM-point there is exactly one holomorphic period, and for

k = 1, . . . , n there are hn−k,khor periods whose leading multi-degree in log(zi), i = 1, . . . , hn−1,1

is of order k. For Calabi-Yau n-folds with n > 2 the full cohomology groups Hn,0, Hn−1,1

are horizontal. By complex conjugation this holds also for H1,n−1 and H0,n. In particular,

for Calabi-Yau three-folds the whole middle cohomology is horizontal. Beside this general

structure an additional bonus in the case of Calabi-Yau spaces given by hypersurfaces in
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toric ambient spaces is that there is a n-cycle with the topology of a n-torus Tn ∈ Hn(M,Z)

which yields that holomorphic period $ := Π(Tn) explicitly. With the definitions (2.19)

and (2.20) this integral yields an (n + 1)-times iterated residue integral over an Tn+1 in

the ambient space, that can be readily evaluated in terms of the l(k) vectors as

$ =

∮
|x1|=0

dx1

2πi
. . .

∮
|xn+1|=0

dxn+1

2πi

a0

Pl(a;x)
=
∑
{k}

Γ
(
−
∑h

α=1 l
(α)
0 kα + 1

)
∏p
l=1 Γ

(∑h
α=1 l

(α)
l kα + 1

) h∏
α=1

zkαα .

(2.21)

Here we use the coordinate ring x as in (2.1) and set xn+2 = 1. In the tuple {k} =

{k1, . . . , kh} each ki runs over non negative integers ki ∈ N0 and p is defined in (2.12).

Note that by definition the sum of the integer entries in each l(k) is zero, therefore they

have negative entries. For hypersurfaces and complete intersections the l
(k)
0 entry is non-

positive l
(k)
0 ≤ 0 for all k. However, for i > 0 the l

(k)
i can have either sign. Poles of the

Γ-function at negative integers in the denominator make the summand vanishing. This

effectively restricts the range of the {k1, . . . , kh} to a positive cone

h∑
α=1

l
(α)
j kα ≥ 0 . (2.22)

Restricting to the physical slice, i.e. to z(t, ξi) of the l-loop graph, means to parametrize

the ai, i = 0, . . . , h = l2 by the physical variables t, ξi. Due to the definition of (2.16) one

can find a splitting of the set of indices {α1, . . . , αh} into {α1, . . . , αl+1} and {αl+2, . . . , αh}
so that the variables {zαl+2

, . . . , zαh} are either set to constant values or identified with

the variables zαj (t, ξ), i = 1, . . . , l + 1. A key observation in the examples is that the

range (2.22) is such that the contribution from the summation over the kαj , j = l+ 2, . . . h

to each monomial
∏l+1
i=1 z

ki
αi is finite. This implies in that (2.21) can also be given non-

redundantly in l + 1 physical parameters zαj (t, ξ), i = 1, . . . , l + 1 exactly to arbitrary

order. The range (2.22) and (2.21) can also be calculated directly as follows: expanding in

the integrand a0/Pl(x, a) = [1/
∏
i xi] [1/(1− 1/a0(. . .))] the second factor as a geometric

series and noticing that only the constant terms of it contribute to the integral yields the

result. Applying this to the Pl in (2.1) yields the all (l = n+ 1)-loop maximal cut integrals

FT l(t, ξi) =
$ (z(t, ξi))

t−
∑l+1

i=1 ξ
2
i

(2.23)

as an exact series expansion with finite radius of convergence for regions in the physical

parameters in which zk(t, ξi) are all small.

In principal, one can analytically continue this to all regions in the physical parameter

space. This task can greatly aided if one knows the Picard differential ideal that annihilates

$ and all other periods. The derivation of the latter will be discussed in the next section.

It certainly helps if one knows all other periods near zk = 0. Because of the structure of

the logarithmic solutions at the MUM-point these can by easily given by the Frobenius

method. This is done by introducing h auxiliary deformation parameters ρα in

$(z, ρ) =
∑
{k}

c(k, ρ)zk+ρ , (2.24)
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where zk+ρ :=
∏h
α=1 z

kα+ρα
α and

c(k, ρ) =
Γ
(
−
∑h

α=1 l
(α)
0 (kα + ρα) + 1

)
∏p
l=1 Γ

(∑h
α=1 l

(α)
l (kα + ρα + 1

) . (2.25)

With this definition $(z) = $(z, ρ)|ρ=0 the hn−1,1 linear logarithmic solutions are given by

Π(Γα) = [(1/(2πi)∂ρα$(z, ρ)]|ρ=0 = 1/(2πi)Π(Tn) log(zα) +O(z) . (2.26)

It can be shown that Γα ∈ Hm(M,Z). All other solutions corresponding to the rest of the

cycles Γβ ∈ Hn(M,Z) are of order 2 ≤ k ≤ n in the logarithms and of the form

Π(Γβ) = [cα1...αk
β ∂ρα1

. . . ∂ραk$(z, ρ)]|ρ=0 , (2.27)

where the tensors cα1...αk
β contain transcendental numbers fixed by the Γ̂-class conjecture

and classical intersection theory on W , see [33] for a review.

2.2.3 GKZ systems and Picard Fuchs differential ideal

Gel’fand, Kapranov and Zelevinsk̆ı [5] investigated integrals of the from

FGKZ
σ =

∫
σ

r∏
i=1

P (x1, . . . , xk)
αixβ1

1 · · ·x
βk
k dx1 · · · dxk , (2.28)

which can be specialized to (2.1), which is in turn similiar to (2.21), even though in (2.21)

we took the integration domain to be a closed cycle Tn+1, while [5] just speek of cycles σ.

In (2.1) σ is a closed cycle only for the maximal cut case which leads to (2.21), oth-

erwise σ is a chain. In this case the corresponding differential ideal, which is fulfilled

by the integral (2.28) is inhomogeneous. The GKZ integrals can be viewed as system-

atic multivariable generalization of the Euler integral 2F1(a, b, c; z) =
∑∞

n=0
(a)n(b)n
n!(c)n

=
Γ(c)

Γ(b)Γ(b−c)
∫ 1

0 t
(b−1)(1− t)(b−c−1)(1− zt)−a, which solves Gauss hypergeometric systems and

$ as a specially simple generalized multivariable hypergeometric series.

As mentioned at the end of the introduction to subsection (2.2) at least for integer

exponents the requirement that these higher dimensional integrals are well defined under

the scaling symmetries of the parameters, that appear in physical Feynman integrals, is

equivalent to the vanishing of the first Chern class and hence these Feynman integrals with

r = 1, α1 = −1 = −n1 are closely related to period integrals over the holomorphic (n, 0)-

form in the cohomology group Hn,0 of the Calabi-Yau manifolds M defined as hypersurfaces

in toric varieties [7, 8, 40]. The same argument relates integrals with r > 1 and αi = −1 =

−ni to complete intersection Calabi-Yau spaces [25–27].

More general integrals are related to the former by taking derivatives w.r.t. to the

independent complex moduli parameters say a. In particular, such derivatives change the

Hodge type of the integrand as follows. Let F p(M) =
⊕

l≥pH
l,n−l(M) a Hodge filtration

Hn = F 0 ⊃ F 1 ⊃ . . . ⊃ (Fn = Hn,0) ⊃ Fn+1 = 0, then Hp,q(M) = F p(M) ∩ F q(M), and
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the F p(M) can be extended to holomorphic bundles Fp(M) over the complex family M

over MCS(M), with

∂kaFn(M) ∈ Fn−k(M) . (2.29)

Since the bundles Fp(M) are of finite rank, there will be differential relations among finite

derivatives w.r.t. to the moduli, which implies that the period integrals over closed cycles

are annihilated by finite order linear differential operators Dk, where the derivations are

w.r.t. the moduli and the coefficients are rational functions in the moduli. In particular, one

can specify a differential ideal, called the Picard-Fuchs differential ideal, Dk, k = 1, . . . , d

that determines the periods as finite linear combination of its system of solutions.

One key tool to find the differential relations between these integrals is the Griffiths

reduction method, which relies on the following partial integration formula, that is valid

up to exact terms, i.e. holds under the integration over closed cycles [9]∑
k 6=j

nk
nj − 1

Pj
Pk

Q∂xiPk∏r
l=1 P

nl
l

µ =
1

nj − 1

Pj∂xiQ∏r
l=1 P

nl
l

µ− Q∂xiPj∏r
l=1 P

nl
l

µ , (2.30)

where Q(x) are polynomials of the appropriate degree to ensure the scale invariances and

µ is straightforward generalization of the measure (2.3). Such Q(x) arise automatically,

when partial derivative w.r.t. the moduli are taken. Using these equations and Gröber

basis calculus one can reduce higher derivatives w.r.t. to the moduli to lower ones and find

eventually the complete differential ideal. These relations between rational functions are

also used in the literature not only to compute differential equations for Feynman integrals

but also for finding so called master integrals. If these master integrals are known with the

partial integration relations (2.30) the whole Feynman integral is evaluated. For a review

on master integrals in Feynman graph computation we refer to [41].

However, this method is computationally very expensive in multi moduli cases. There-

fore, we employ as far as possible a different derivation of differential relations which follow

from scaling symmetries that follow from the combinatorics of the Newton polytope, known

as GKZ differential system. For this purpose we define

Ω̂ =

∮
γ

µl
Pl(a;x)

and Π̂σ =

∫
σ

µl
Pl(a;x)

. (2.31)

Now each linear relation among the points in the Newton polytope as expressed by

the l(k)-vectors, k = 1, . . . , l2 yields a differential operator Dl(k) in the redundant moduli

a. Moreover, the infinitesimal invariance under the (C∗)n+2 scaling relations yields further

differential operators Zj , j = 1, . . . , n + 2. Together they constitute an resonant GKZ

system [1, 6]:

D̂l(k)Π̂σ =

 ∏
l
(k)
i >0

(
∂

∂ai

)l(k)
i

−
∏
l
(k)
i <0

(
∂

∂ai

)−l(k)
i

 Π̂σ = 0 and (2.32)

ZjΠ̂σ =

(
p∑
i=0

ν̄i,jθai − βj

)
Π̂σ = 0 (2.33)
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with β = (−1, 0, . . . , 0) ∈ Rn+2 for the hypersurface case and θa = a∂a, in the form that

applies to the integrals in Calabi-Yau hypersurfaces in toric varieties [7, 24], for which

the integration domain σ is also scale invariant. In this case we can use the relations

ZjΠ̂σ = 0 to eliminate the ai in favour of the scale invariant zi defined in (2.16) using

ai∂ai =
∑l2

k=1 l
(k)
i zk∂zk and by the commutation relation [θa, a

r] = rar applied previously

to a0 we obtain operators Dl(k)(z) that annihilate Π(Γ). As it turns out these operators do

not determine the Π(Γ) as they admit further solutions [7]. To obtain the actual Picard-

Fuchs differential ideal one can factorize the Dl(k)(z) and disregard trivial factors that allow

for additional solutions which have the wrong asymptotic to be periods [7, 25]. In practice

the most efficient way to get the Picard-Fuchs differential ideal is often to make an ansatz

for additional minimal order differential operators that annihilate (2.21) and check that the

total system of differential operators allows no additional solutions then the ones specified

in (2.26) and (2.27).

One of our main results is that we give the general strategy to derive the Picard-Fuchs

differential ideal in the physical parameters zi(t, ξ), i = 1, . . . , l + 1 and give it explicitly

for one, two and three loops in equations (3.5), (3.25) and in (A.1)–(A.4) for the three-

loop banana graph. These operators determine the maximal cut integral everywhere in the

parameter space. By applying these operators to the geometrical chain integral

Πσl =

∫
σl

a0µl
Pl(a;x)

(2.34)

and integrating explicitly over the boundary of the chain we can find the inhomogeneous

differential equations and the corresponding special solutions describing the full l-loop

banana graphs explicitly up to three loops.

Let us end this section with some remarks on additional structures for the periods of

Calabi-Yau n-folds, which are relevant to understand the differential ideal that determines

the maximal cut integral better. For a given basis of transcendental n-cycles Γi ∈ Hn(M,Z)

one can find dual elements γj ∈ Hn
hor(M,C) so that

∫
Γi
γj = δji and expand the holomorphic

(n, 0)-form Ω =
∑

i Π(Γi)γ
i. Let us define for each set A of indices of order r the order r

differential operator ∂rA := ∂za1
. . . ∂zar . Then by (2.29) and consideration of type one gets

the transversality conditions [42]∫
M

Ω ∧ ∂rAΩ = Π(Γi)Σ
ij∂rAΠ(Γj) =

 0 if r < n

CA(z) if r = n ,
(2.35)

where CA are rational functions in the zi, known as Yukawa couplings for n = 3. The form

Σij =
∫
M γi ∧ γj is integer and symmetric for n even and antisymmetric for n odd. In

the latter case one can chose a symplectic basis for the γi. For the K3 or more generally

n ≥ 2 and n even it implies that the solutions to the Picard-Fuchs differential ideal fulfill

nontrivial quadratic relations

Π(Γi)Σ
ijΠ(Γj) = 0 and Π(Γi)Σ

ij∂zkΠ(Γj) = 0 , for all k . (2.36)

We will discuss the consequences at the level of the differential operator more in sec-

tion 3.3.3. For n = 3 it implies special geometry, see [33] for a review.
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2.2.4 Geometrical and physical periods

The physical moduli space of the banana Feynman diagrams is parametrized by the l + 2

parameters (t, ξ1, ξ2, . . . , ξl+1), where additionally one of these can be scaled away. As

mentioned, compared to the moduli space parametrized by all Batyrev coordinates zi the

physical moduli space is much smaller. In the following we explain how one can make a

restriction onto the physical moduli space.

Besides this restriction there is another difficulty we have to mention. For the descrip-

tion of the large moduli space through the Batyrev coordinates zi it is crucial to have a

minimal number of Mori cone generators. They are determined from the triangulation T
of the polytope16 ∆l. There are only finitely many fine and star-triangulations such that

it is not directly clear that there exists a triangulation which yield l2 Mori cone genera-

tors. Actually, for the sunset graph this is the case. In such a situation one starts with

a triangulation yielding a non-minimal number of Mori cone generators. We claim that

one can still take out l2 l-vectors describing the Feynman graph geometry appropriately.

The choice of l2 vectors is neither arbitrary nor unique but we can give some criteria17 for

choosing them correctly. Different proper selections of l-vectors should at the end yield the

same results for the Feynman graph.

First of all the l2 vectors should be all linear independent over the real numbers.

Secondly, we want l + 1 l-vectors having a non-vanishing entry for the inner point which

are important in the physical limit. Furthermore, we want that in the i-th components

of all l-vectors there is at least a positive entry. This should be true for all components i

without the one for the inner point. From the last condition we hope that it guarantees

that the structure of solutions is as we explained in section 2.2.2. This one can check by

analyzing that the GKZ operators defined in (2.33) do indeed annihilate the Frobenius

solutions with positive powers (2.24).

We think that these conditions give a strategy to take out the required l2 mori cone

generators. For the sunset graph we have to follow this strategy and we give the results

in section 3.2. Although there exist fine and star-triangulations with nine l-vectors for the

three-loop banana diagram, we nevertheless applied our criteria on a non-simplicial cone.

Also in the three-loop case the criteria select a proper set of nine l-vectors yielding the same

results as presented in section 3.3 computed from a triangulation with minimal number of

mori cone generators.

Now the restriction onto the physical moduli space starts with using the inequali-

ties (2.22) such that the holomorphic solution (2.21) is evaluated exactly in the physical

relevant Batyrev coordinates. Having found this period on the physical slice we search for

operators annihilating it such that the set of common solutions to these operators form

a basis of the periods on the physical slice. This finally yields a basis of periods on the

physical moduli space. It is quite hard to give a universal description of these operators.

In general they form a differential operator ideal of linear, homogeneous differential oper-

16For l = 3 one can easily get all 26 star triangulations but for l = 4 there is an extremely large number

of different star triangulations, which we have estimated to be 620. Listing all of them cannot be done by

a desktop computer.
17We do not claim that these criteria are necessary or sufficient.
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ators and their explicit form as for example their degree depend on the representation of

the ideal. For our discussion we write down an ansatz for a differential operator in terms

of logarithmic derivatives of the remaining Batyrev coordinates. Thereby, we start with

second order operators with polynomial coefficients which we make of smallest degree as

possible. Typically, this ansatz yields a large number of possible operators from which we

have to take a generating set of the differential ideal. From cohomology arguments we

expect as many single logarithmic solutions as the number of interesting physical parame-

ters, which strongly depends on the concrete banana diagram. Therefore, we take as many

operators until their number of logarithmic solutions fits to the cohomological prediction.

If the resulting solutions do still not satisfy all expectations, e.g. the number of higher

logarithmic solutions, one has to extend the set of operators with higher degree ones until

all expected solutions are determined. In this way one finds a generating set of operators

for the differential ideal describing the physical periods. This part of our method depends

strongly on the given form of the physical holomorphic period which is why we refer to

our examples. We only remark that later it is crucial that the operators and the physical

solutions are expressed in the remaining physical Batyrev coordinates.

2.3 The complete banana diagram and inhomogeneous differential equations

So far, we have found a complete differential ideal with solutions spanning a basis of the

physical periods. Or said differently, these functions after dividing by the inner point

describe the maximal cut integral FT l . Now we extend our method to find the missing

functions which complete the function space for the full banana Feynman diagram Fσl .
By function space we mean a set of functions which suitably combined yield the complete

banana Feynman integral (2.1). It turns out that for the banana graphs there is only a

single additional function we have to compute.

Basically, we extend the homogeneous differential ideal to a set of inhomogeneous

differential operators such that its solutions describe the full Feynman graph. These inho-

mogeneities are found from the appropriate homogeneous operator by the following process:

we let an operator directly act on the geometric differential, which is given as the integrand

of (2.34), and perform then the integration over the domain σl. In this way we obtain for

every homogeneous operator a corresponding inhomogeneous one.

For this task the original parametrization of the differential is changed to the Batyrev

coordinates (2.16). This has a major advantage in the following. After applying the

operators on the differential we can integrate over the simplex σl. In contrast to a period

integral the integration range of the complete Feynman graph is not closed and such we get

non zero after integration. Unfortunately, these integrals can not be carried out analytically

with generic parameters. But they can be performed easily numerically. The advantage

of including the inner point and using the Batyrev coordinates is now that the numerical

results can simply be guessed. We claim that for the l-loop banana integrals they are only

given as linear combinations of logarithms in the Batyrev coordinates. In our calculated

examples given in section 3 we could always guess the inhomogeneities yielding a full set

of inhomogeneous operators.
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In the literature there are already some methods known for computing relative periods

in a way that homogeneous differential equations describing usual periods are extended to

inhomogeneous ones. For examples in [43] a method for general toric varieties is explained

how to extend the GKZ method to relative periods. The key point for this method is

the l-vector description of the variety and its relative cohomology. The l-loop banana

diagrams are not entirely described through l-vectors and therefore this method can not

be applied. Moreover, there is the Dwork-Griffith reduction to obtain the homogeneous

differential equations which then can analogously be extended to inhomogeneous ones as

in our method [18]. Although Dwork-Griffith reduction can in principle be applied in

any situation as explained before, for computational reasons only the sunset graph can

explicitly be done. Compared with known methods our strategy uses the structure of the

l-loop banana diagrams more efficiently and produces results also for high loop orders.

Having found the inhomogeneous operators its solutions are given by the solutions of

the homogeneous operators together with a single special solution of the inhomogeneous

system. A special solution is found by an ansatz which has a similar logarithmic structure as

the homogeneous solutions. Only the power of the highest appearing logarithm is increased

by one compared to the other solutions. This closes the set of functions describing the l-loop

banana Feynman graph.

Our method gives a relatively small set of functions necessary to compute the banana

graphs. For example, with numerical computations the correct linear combination of these

functions evaluating to the Feynman graph can be fixed. We exemplify this on the sunset

graph in section 3.2.3. Moreover, a detailed analysis of the analytic structure of these

functions based on the inhomogeneous differential equations can be elaborated and produce

new insights of the Feynman graph, for instance branch cuts or singularities representing

particle productions.

3 Examples

In this section we explain our method by means of three different examples, the one-, two-

and three-loop banana diagram. This demonstrates how our general method is applied on

explicit Feynman integrals and moreover shows the power of our method. For the reader

the difficulty of our examples increases with the loop order and new appearing issues are

highlighted and discussed case by case.

3.1 Example 1: the bubble graph

As the first example we discuss the one-loop banana diagram which is also called the bubble

graph. This Feynman diagram can also be calculated directly with usual Feynman graph

techniques [44]. Nevertheless, we will use for pedagogical reasons the bubble graph to

introduce our method.

In our conventions the bubble integral is defined as

Fσ1(t, ξ1, ξ2) =

∫
x,y≥0

xdy − ydx

xy
(
t− (ξ2

1x+ ξ2y2)( 1
x + 1

y )
) = −ξ1ξ2

∫
x,y≥0

xdy − ydx

x2 + uxy + y2
, (3.1)

where in the second line the coordinates are rescaled and u =
ξ2
1+ξ2

2−t
ξ1ξ2

is introduced.
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Figure 2. The toric diagram for the bubble graph.

Following our method we associate to the bubble graph (3.1) the polynomial constrain

P1 = x2 + uxy + y2 (3.2)

in projective space P. For generic values of the parameter u this defines two different points

in P. It looks a bit artificial but we can give a toric description of this algebraic variety

consisting of two points. We take the Newton polytope of (3.2) which is shown in figure 2.

It has a single l-vector and Batyrev coordinate

l = (−2; 1, 1) and z =
1

u2
. (3.3)

As explained in section 2 we expect two functions spanning the function space of the

bubble graph. One is coming from the maximal cut integral and the other one is a special

solution of the inhomogeneous differential equation corresponding to the bubble graph.

Furthermore, there is only a single true parameter for which we take naturally the Batyrev

coordinate z from (3.3).

The holomorphic period can be computed directly from the integral or from the l-

vector (3.3)

$ =
1

2πi

∫
S1

xdy − ydx√
z(x2 + y2) + xy

= − 1

2πi

∫
S1

1

1 +
√
z(v + 1

v )

dv

v

= − 1

2πi

∫
S1

∞∑
n=0

n∑
m=0

(−1)n
(
n

m

)
zn/2v2m−ndv

v
= −

∞∑
n=0

(2n)!

(n!)2
zn = − 1√

1− 4z
, (3.4)

where we have introduced the variable v = x
y . Moreover, $ satisfies the first order differ-

ential equation

D$ = (1− 4z)θ$ − 2z$ = 0 (3.5)

with the logarithmic derivative θ = z∂z.

Now we apply the operator D from (3.5) on the integrand of the geometrical chain

integral (2.34) containing the inner point of the polytope u expressed through the Batyrev

coordinate z. At the end we relate this expression to the bubble graph simply by dividing

through the inner point. Fortunately, the integral in the bubble case can be computed

analytically

DΠσ1 = D
∫
x,y≥0

u
xdy − ydx

x2 + uxy + y2
=

∫
x,y≥0

D xdy − ydx√
z(x2 + y2) + xy

= 1 . (3.6)

This extends the homogeneous differential equation (3.5) to an inhomogeneous one

(1− 4z)θ Πσ1(z)− 2z Πσ1(z) = 1 . (3.7)
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A special solution to this inhomogeneous differential equation is given by

$S = $ log(z) + 2z + 7z2 +
74

3
z3 +

533

3
z4 + · · · . (3.8)

Then the general solution to the inhomogeneous differential equation (3.7) is given

by Πσ1 = $S + λ$ with λ ∈ C. We can relate this solution to the bubble graph by

dividing with the inner point u and rescaling it by −ξ1ξ2. The parameter λ can be fixed by

calculating the bubble graph (3.1) at a special point in moduli space, for example u = 1.

In the literature [45] the l-loop banana diagrams were analyzed in the equal mass case,

i.e. ξi = 1 for i = 1, . . . l + 1. The one-loop bubble diagram satisfies the inhomogeneous

first order equation

t(t− 4)f ′1(t) + (t− 2)f1(t) = −2! . (3.9)

After dividing Πσ1 by the inner point this is exactly the differential equation it satisfies.

3.2 Example 2: the sunset graph

Our second example deals with the two-loop Banana diagram also known as the sunset

graph. A different discussion of the sunset graph is given in [18] from which we adopt parts

of our notation.

The sunset Feynman graph is defined by

Fσ2(t, ξ1, ξ2, ξ3) =

∫
σ2

µ2

P2(t, ξ1, ξ2, ξ3;x)
=

∫
σ2

xdy ∧ dz − ydx ∧ dz + zdx ∧ dy

xyz
(
t− (ξ2

1x+ ξ2
2y + ξ2

3z)( 1
x + 1

y + 1
z )
) ,

(3.10)

with the integration domain defined in (2.2). It can be interpreted as a relative period on

an elliptic curve defined by the polynomial constraint

P2 = txyz − ξ2
1x

2y − ξ2
1x

2z − ξ2
1xyz − ξ2

2xy
2 − ξ2

2xyz − ξ2
2y

2z − ξ2
3xyz − ξ2

3xz
2 − ξ2

3yz
2

(3.11)

in an ambient space given by two-dimensional projective space P2 as explained in sec-

tion 2.2. Our approach is strongly based on this geometric interpretation. For convenience

we rescale the coordinates and introduce a simpler parametrization of the elliptic curve.

The polynomial is then given as

P2 = xy2 + yz2 + x2z +m1xz
2 +m2x

2y +m3y
2z + uxyz . (3.12)

We notice that the polynomial (3.12) describes the blow up of P2 in three points which

we call in the following EB3. In [20] a nice analysis of the different blow ups of P2 is carried

out from which we can extract same information for the toric description. In figure 3 the

polyhedron corresponding to (3.12) is shown. The polyhedron’s vertices are given by

ν2 = {(0,−1), (1, 0), (1, 1), (0, 1), (−1, 0), (−1,−1), (0, 0)} . (3.13)

– 19 –



J
H
E
P
0
4
(
2
0
2
0
)
0
8
8

um1

m2

m3

Figure 3. Toric diagram for the sunset graph.

The corresponding Mori cone generators are given by

l̃1 = (1,−1, 1, 0, 0, 0,−1) , l̃2 = (0, 1,−1, 1, 0, 0,−1)

l̃3 = (0, 0, 1,−1, 1, 0,−1) , l̃4 = (0, 0, 0, 1,−1, 1,−1)

l̃5 = (1, 0, 0, 0, 1,−1,−1) , l̃6 = (−1, 1, 0, 0, 0, 1,−1) (3.14)

generating a non-simplicial cone. From the general discussion in section 2.2.4 we only

need four independent l-vectors and also that in all columns of (3.14) except the one

corresponding to the inner point there is at least one positive entry. This does still not

yield a distinct choice of four l-vectors but all of them can be used. We take for our

collection of four l-vectors the ones which restrict to the Mori cone generators of the cubic

in P2 and the other blow ups of P2 in one and two points. So we take in the following the

four l-vectors

l1 = l̃1 , l2 = l̃2 , l3 = l̃3 and l4 = l̃4 . (3.15)

Toric geometry singles out a natural choice of parametrization of the algebraic variety

given by the Batyrev coordinates (2.16). These parameters are related to the ones in (3.11)

and (3.12) by

z1 = −m2m3

u
= − ξ2

1

ξ2
1 + ξ2

2 + ξ2
3 − t

, z2 = − 1

um3
= − ξ2

3

ξ2
1 + ξ2

2 + ξ2
3 − t

z3 = −m1m3

u
= − ξ2

2

ξ2
1 + ξ2

2 + ξ2
3 − t

, z4 = − 1

um1
= − ξ2

1

ξ2
1 + ξ2

2 + ξ2
3 − t

. (3.16)

Upon collecting the main toric information of our problem we can start with our

strategy. The first part of our strategy will be the computation of the periods corresponding

to the maximal cut integral.

Let us note here in passing that in the elliptic curve case it is not necessary to solve

any differential equation to obtain the period integrals and hence the mass dependence of

the maximal cut integral. The periods are completely determined by modular functions as

follows from [20]: we can bring the constraint P2 = 0 (3.12) defining the elliptic curve into

Weierstrass form y2 = 4x3 − xg2(u,m) − g3(u,m). This defines the modular parameter

τ(u,m) from the definition of the Hauptmodul j of PSL(2,Z) as

1728g3
2(u,m)

g3
2(u,m)− 27g2

3(u,m)
= j =

1

q
+ 744 + 192688q + 21493760q2 +O(q3) , (3.17)
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where q = exp(2πiτ). Then the period
∫
a Ω/u which yields the maximal cut integral is

given in terms of the Eisenstein series as

∂ut(u) =

∫
a

Ω =

√
E4(τ(u,m))g3(u,m)

E6(τ(u,m))g2(u,m)
. (3.18)

Moreover, the dual period
∫
b Ω can be obtained by special geometry of non-compact three-

folds as ∂t
∫
b Ω = − 1

2πiτ(u,m)) = ∂2
t F (t), where F is the prepotential that features in local

mirror symmetry as generating function for the genus zero BPS invariants nβ0 , which is

given by

F (Q) = −c
ijk

3!
titjtk +

cij

2
titj + citi + c

∑
β∈H2(W,Z)

nβ0 Li3(Qβ) . (3.19)

Here ti are the flat coordinates, Qi = exp(ti/2πi) and the c∗ are classical intersection

numbers on the mirror W . In [20] the Kähler classes ti for i = 1, . . . , 4 of the mirror

have been identified. These are linearly related to the Batyrev coordinates (3.16). With

Qi = exp(ti/2πi) they relate to the physical parameters as

Q = (Q1Q2Q3Q4)
1
3 , m1 =

(Q1Q3Q4)
1
3

Q
2
3
2

, m2 =
(Q1Q2Q4)

1
3

Q
2
3
3

, m3 =
(Q1Q2Q3)

1
3

Q
2
3
4

.

(3.20)

This allows to relate the full integer genus zero BPS expansion nβ0 in the four Kähler

parameters [20]

F = cl.+ L0,0,0,1 + L1,0,0,1 − 2L1,0,1,1 + 3L1,1,1,1 + 3L2,1,1,1 − 4L2,1,1,2 + 5L2,1,2,2

−6L2,2,2,2 + 5L3,1,2,2 − 6L3,1,2,3 + 7L3,1,3,3 − 36L3,2,2,2 + 35L3,2,2,3 − 32L3,2,3,3

+27L3,3,3,3 + 7L4,1,3,3 − 8L4,1,3,4 + 9L4,1,4,4 − 6L4,2,2,2 + 35L4,2,2,3

−32L4,2,2,4 − 160L4,2,3,3 + 135L4,2,3,4 − 110L4,2,4,4 + 531L4,3,3,3

−400L4,3,3,4 + 286L4,3,4,4 − 192L4,4,4,4 + Symijk(La,i,j,k) + · · ·
(3.21)

to the full set of physical parameters. Here Lβ := Li3(
∏4
i=1Q

βi
i ). In [39] BPS invariants

are given for the projective parametrization nijk. The relation to the geometrical BPS

invariants is
∑

a n
aijk
0 = nijk. It is clear from (3.20) and the symmetries of the polytop that

the last formula is symmetric in the ijk indices. Moreover, the one parameter specialization

also noted in [39] is given by nd =
∑

a,i+j+k=d n
aijk
0 . While we think that in the elliptic

two-loop case this relation of the BPS expansion to the Feynman graph is remarkable but

not very useful, it becomes more useful for the higher loop banana graphs as we explain in

section 3.3.3.

3.2.1 The sunset maximal cut integral

The maximal cut integral of the sunset graph FT 2(t, ξ1, ξ2, ξ3) is defined by replacing the

simplex σ2 by a torus T 2. Instead of focusing on the maximal cut Feynman graph we

rather deal with the related geometrical period which includes additionally the inner point

u of the toric diagram. The expression

Π(T 2)(u,m1,m2,m3) =

∫
T 2

u
xdy ∧ dz − ydx ∧ dz + zdx ∧ dy

xy2 + yz2 + x2z +m1xz2 +m2x2y +m3y2z + uxyz
(3.22)
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describes a “usual” period on the elliptic curve EB3 and it is easily related to the maximal

cut integral FT 2 by dividing with u. At the point of maximal unipotent monodromy

the geometrical period Π(T 2) = $ is given by a single holomorphic power series (2.21).

Evaluating the period (3.22) at a generic point in moduli space requires the knowledge

of a period basis. Such a period basis can be found as follows: homology theory of a

generic elliptic curve tells us that there exists only a pair of one-cycles, i.e. H2(T 2) = Z2.

So if we take the (1, 0)-form a0µ2

P2
with a0 the inner point of the polytope and P2 the

hypersurface constraint defining the elliptic curve there are only two independent periods.

Here it is important to remark that for elliptic curves this statement is independent of the

parametrization, in particular, independent of the number of moduli. For the geometrical

period Π(T 2) and therefore also for the maximal cut integral FT 2 this means that there

are two independent functions which linearly combined yield (3.22) at a generic point in

moduli space.

In our toric analysis it is convenient to use the Batyrev parameters defined in (3.16).

Later we will see that the usage of this particular choice of parametrization enables us to

fully determine the sunset graph. Moreover, it simplifies many of the subsequent results.

From the Mori cone generators (3.15) one can directly write down the holomorphic

period at the point of maximal unipotent monodromy given by

$(z) =
∑
m≥0

Γ (1 +m1 +m2 +m3 +m4)

Γ (1 +m1) Γ (1−m1 +m2) Γ (1 +m1 −m2 +m3) Γ (1 +m3 −m4)

· 1

Γ (1 +m4) Γ (1 +m2 −m3 +m4)
zm1

1 zm2
2 zm3

3 zm4
4 (3.23)

with the abbreviations z = (z1, z2, z3, z4) and m = (m1,m2,m3,m4). This is the most

generic four-parameter holomorphic period of EB3. The geometrical period (3.22) has one

less parameter since one-parameter can be scaled away. Therefore, we have to specialize

the four-parameter solution (3.23) to a three-parameter one. We remark that from (3.16)

the parameters z1 and z4 have the same value if expressed in the physical parameters. This

means that the four-parameter solution (3.23) specialized on the subslice with z1 = z4

corresponds to the holomorphic solution of the geometrical period (3.22) at the maximal

unipotent monodromy point.

This subslice is not as problematic as for the higher loop banana graphs because the

sum over m4 still contains a parameter, here z1. But still we can use the Γ-functions

in (3.23) to bound the summation over the index m4 by m3 −m4 ≥ 0. We obtain for the

first few orders

$(z1, z2, z3) = 1 + 2z1z2 + 2z1z3 + 2z2z3 + 12z1z2z3

+ 6z2
1z

2
2 + 24z2

1z2z3 + 24z1z
2
2z3 + 6z2

1z
2
3 + 24z1z2z

2
3 + 6z2

2z
2
3 + · · · . (3.24)

Now our strategy is as follows: we compute the holomorphic solution to high order

such that we can find a set of differential operators annihilating it. This set of differential

operators has to be complete in a sense that its solutions form a basis of period integrals

on the elliptic curve EB3. Therefore, a suitable ansatz for these operators is crucial. Again
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homology theory of the elliptic curve tells us what kind of solutions we expect and so the

rare form of the operators. For EB3 only two solutions exist. At the point of maximal

unipotent monodromy the analytic structure of them is also known. One is a holomorphic

function in the parameters and the other contains single logarithms of the parameters. For

the differential operator ideal this implies that we are searching for first order operators

in the parameters (z1, z2, z3). Having found the first few operators one has to increase the

number of operators until they are enough to fully determine the two different periods. As

a possible generating set of the ideal we find

D1 = θ1 − θ2 + z2 (θ1 − θ2 + θ3 + 2z3 (θ1 + θ2 + θ3 + 1))

− z1 (−θ1 + θ2 + θ3 + 2z3 (θ1 + θ2 + θ3 + 1))

D2 = θ2 − θ3 + z3 (θ1 + θ2 − θ3)− z2 (θ1 − θ2 + θ3)− 2z1 (z2 − z3) (θ1 + θ2 + θ3 + 1)

D3 = (θ1 − θ2) (θ1 + θ2 − θ3) + z1 (θ1 − θ2 − θ3) (θ1 + θ2 + θ3 + 1)

+ z2 (θ1 − θ2 + θ3) (θ1 + θ2 + θ3 + 1) (3.25)

with θi = zi∂zi for i = 1, 2, 3. The missing period is then given by

Π(Γ1)(z1, z2, z3) = $ (log(z1) + log(z2) + log(z3)) + Σ1 (3.26)

with

Σ1 = z1 + z2 + z3 −
z2

1

2
+ 7z1z2 + 7z1z3 −

z2
2

2
+ 7z2z3 −

z2
3

2

+
z3

1

3
+ 3z2

1z2 + 3z2
1z3 + 3z1z

2
2 + 3z1z

2
3 + 48z1z2z3 +

z3
2

3
+
z3

3

3

+ 3z2z
2
3 + 3z2

2z3 + · · · . (3.27)

These two solutions (3.24) and (3.26) form a basis of the periods for the elliptic curve EB3.

Using the relations (3.16) we can divide by the inner point and transform this basis to

the necessary point in moduli space such that they can be linearly combined to yield the

maximal cut integral FT 2 .

In the next section we extend the differential operator ideal (3.25) such that it governs

all functions describing the full geometrical sunset Feynman graph Πσ2 . By dividing with

the inner point we can transfer these results to the actual Feynman integral (3.10).

3.2.2 Extension to inhomogeneous differential operators

As explained in section 2.3 we find as the first step the inhomogeneities of the opera-

tors (3.25). Again we use the Batyrev coordinates (z1, z2, z3) which is crucial for the

applicability of our method. We apply the operators (3.25) on the geometrical differential
uµ2

P2
and integrate afterwards over the two-dimensional simplex σ2. These chain integrals

can not in general be computed analytically with generic parameters but numerical evalu-

ations of these integrals for fixed values of the parameters are possible. Now the advantage

of the Batyrev coordinates is that we can guess the exact values of the numerical results.
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We claim that the differential operator ideal only produces simple logarithmic expressions

in the Batyrev coordinates (z1, z2, z3). For (3.25) we find the following inhomogeneities18

D1Πσ2 = − log(z2) + log(z3)

D2Πσ2 = − log(z1) + log(z2)

D3Πσ2 = 0 . (3.28)

We think that in another parametrization, for instance the physical parameters

(t, ξ1, ξ2, ξ3), and without the inner point these integrals can neither be computed an-

alytically nor their numerical values can be guessed. Only the geometrical differential

in the special parametrization with the Batyrev parameters guarantees the feasibility of

our method.

Having found the complete set of inhomogeneous differential operators their solutions

can be computed easily. One has to extend the solutions of the homogeneous system (3.25)

by a special solution satisfying (3.28). As an ansatz for this solution we increase the power

of logarithms in (z1, z2, z3) up to two. Then we find as a possible choice of special solution

$S(z1, z2, z3) = (log(z1) log(z2) + log(z1) log(z3) + log(z2) log(z3))$0 + 2 log(z1)

+ 2 log(z2) + 2 log(z3) + 2z1 log(z1) + 2z2 log(z2) + 2z3 log(z3)

− z2
1

2
+ 10z1z2 −

z2
2

2
+ 10z1z3 −

z2
3

2
− z2

1 log(z1) + 10z1z2 log(z1)

+ 10z1z3 log(z1) + 6z2z3 log(z1) + 10z1z2 log(z2)− z2
2 log(z2)

+ 6z1z3 log(z2) + 10z2z3 log(z2) + 6z1z3 log(z3)

+ 10z1z3 log(z3) + 10z2z3 log(z3)− z2
3 log(z3) + · · · . (3.29)

The general solution is then a linear combination of the form Πσ2 = $S+λ0$+λ1Π(Γ1)

with λ0, λ1 ∈ C. We can express Πσ2 through the physical parameters (t, ξ1, ξ2, ξ3) and

divide it by the inner point to find the full sunset Feynman graph Fσ2 (3.10).

3.2.3 Comparison with the equal mass case and other known results

Many results about the sunset graph are already known in the literature [35, 46]. In

particular, the equal mass case meaning ξi = 1 for i = 1, 2, 3 was analyzed many times. In

this case, the maximal cut integral is up to a factor of u = t − 3 (2.17) the holomorphic

period of the Barth-Nieto elliptic curve that can be represented as in (2.18). The equal

mass sunset graph has to satisfy an inhomogeneous second order differential equation [45]

in the momentum variable t

t(t− 1)(t− 9)f ′′2 (t) + (3t2 − 20t+ 9)f ′2(t) + (t− 3)f2(t) = −3! . (3.30)

18We checked this numerically up to more than 15 digits and for different values of the variables zi for

i = 1, 2, 3.
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Πσ2
= λS$S + λ0$0 + λ1Π(Γ1) λS λ0 λ1

order 5 0.9998 −29.6275 + 42.7536i −13.6122− 18.8466i

order 10 1.0000 −29.6088 + 42.7407i −13.6048− 18.8496i

order 5 1.0004 + 0.0007i 70.0913 + 109.3340i −34.7859− 18.8389i

order 10 1.0004 + 0.0007i 70.0913 + 109.3340i −34.7859− 18.8389i

Table 1. Linear combination of solutions for the sunset graph. In the first two rows are the values

for our solutions whereas the last two give the ones for the solutions from [18].

Our three-parameter solutions (3.24), (3.26) and (3.29) break down in the equal mass

case19 to the solutions of (3.30). This shows that they reproduces the well established

equal mass results.

For the sunset graph a second test is possible since in [18] an inhomogeneous differential

equation in all physical parameters is given which the sunset graph has to satisfy. Here

we notice that our holomorphic and single logarithmic solutions expressed in the physical

parameters fulfill this equation. The special solution (3.29) does not. A direct comparison

between our special solution and the solutions to the inhomogeneous differential equation

in [18] shows that the discrepancy between them is only in the terms having no logarithm

in the variable s = 1/t. Such a small difference can be a result of a typo in the polynomials

given in [18] but a general mistake in their derivation of the inhomogeneous differential

equation can not be excluded.

To demonstrate the correctness of our solutions we made some numerical checks. We

evaluated the sunset Feynman graph (3.10) at three different points20 to fix the linear

combination of our three solutions.21 Having found the right combination of solutions given

in table 1 we checked for further values of the parameters and compare the precision for

different expansion orders of $,Π(Γ1) and $S . Our results are listed in table 2. Notice,

that it is important that the value of one ξi is fixed since there are only three physical

degrees of freedom after rescaling. We choose ξ3 to be fixed. With increasing expansion

order our solutions fit better and better to the sunset graph which we could not observe

for the solutions of [18]. Moreover, the factor λS of the special solution $S tends to the

value one as expected.

3.3 Example 3: the three-loop banana graph

As our last and most complicated example we demonstrate the applicability of our approach

for the three-loop banana diagram

Fσ3(t, ξ1, ξ2, ξ3, ξ4)

=

∫
σ3

xdy ∧ dz ∧ dw − ydx ∧ dz ∧ dw + zdx ∧ dy ∧ dw − wdx ∧ dy ∧ dz

xyzw
(
t− (ξ2

1x+ ξ2
2y + ξ2

3z + ξ2
4w)( 1

x + 1
y + 1

z + 1
w )
) . (3.31)

19Notice that before one can apply the differential equation (3.30) on our solutions they have to be

transformed at the same point in moduli space, which is here t 7→ 1
t
.

20We took for the three points the values (s, ξ1, ξ2, ξ3) = (s1 + i/10, 1/10, 1/20, 1/30), for s1 = 1/10, s2 =

1/20 and s3 = 1/30.
21We fixed our basis of solutions such that the holomorphic solution starts with one and the constant

piece in the single logarithmic solution is zero. Moreover, we fixed the special solution by requiring that

the constant term and the constant term multiplied by log s is vanishing.
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s, ξ1, ξ2, ξ3, order 5 order 10 order 5 order 10

1/27 + i/20, 1/10, 1/20, 1/30 9 · 10−5 5 · 10−9 2 · 10−4 2 · 10−4

1/21+i/10, 1/10, 1/50, 1/30 4 · 10−4 6 · 10−9 30 30

1/24+i/10, 1/10+i/15,1/20,1/30 6 · 10−4 5 · 10−9 22 22

Table 2. The table shows how precise the relative periods combined as listed in table 1 describe the

Feynman graph. We show the absolute value of the difference between the numerical computation of

the sunset graph and the evaluation of the linear combination of solutions. Increasing the expansion

order increases the precision of our results given as the second and third column. The last columns

give the results from [18] which do not increase their precision.

Figure 4. Toric diagram for the three-loop banana graph

The three-loop banana Feynman graph (3.31) can again be interpreted as a relative period

now on a K3 surface. This K3 surface is defined by the constraint P3 from the denominator

in (3.31). After a rescaling of the coordinates we obtain

P3 = x2yz + xyw2 + xzw2 + yzw2 +m1xy
2w +m2x

2zw +m3yz
2w +m4x

2yw

+m5xz
2w +m6y

2zw +m7xy
2z +m8xyz

2 + uxyzw . (3.32)

The polytope P∆3 corresponding to the banana graph together with a triangulation is

shown in figure 4. Its vertices are given by

ν3 ={(−1, 1, 0), (1, 0, 0), (0,−1, 1), (0, 0, 1), (1,−1, 0), (1, 0,−1), (0, 0,−1), (−1, 0, 1),

(0,−1, 0), (−1, 0, 0), (0, 1, 0), (0, 1,−1), (0, 0, 0)} . (3.33)

Furthermore, the Mori cone generators corresponding to the triangulation drawn in the

polytope in figure 4 are given by

l1 = (0, 0,−1, 0, 1, 0, 0, 1, 0, 0, 0, 0,−1) , l2 = (0,−1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0,−1)

l3 = (0,−1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,−1) , l4 = (0, 0,−1, 1, 0, 0, 0, 0, 1, 0, 0, 0,−1)

l5 = (−1, 0, 0,−1, 0, 0, 0, 1, 0, 0, 1, 0, 0) , l6 = (0, 0, 0, 0,−1, 1,−1, 0, 1, 0, 0, 0, 0)
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l7 = (0, 0, 1, 0, 0, 0, 0,−1,−1, 1, 0, 0, 0) , l8 = (0, 1, 0, 0, 0,−1, 0, 0, 0, 0,−1, 1, 0)

l9 = (1, 0, 0, 0, 0, 0, 1, 0, 0,−1, 0,−1, 0) . (3.34)

They form a simplicial Mori cone generated by 32 vectors. For the subsequent discussion

we need the Batyrev coordinates together with their relations to the physical paramters

z1 = −m2m3

m5u
= − ξ2

1

ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4 − t
, z5 =

m3m7

m6m8
= 1

z2 = −m2m7

u
= − ξ2

2

ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4 − t
, z6 =

m4

m2
= 1

z3 = −m4m8

u
= − ξ2

3

ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4 − t
, z7 =

m5

m3
= 1

z4 = − m8

m5u
= − ξ2

4

ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4 − t
, z8 =

m1

m4m7
= 1

z9 =
m6

m1
= 1 . (3.35)

Having defined the most important information about the three-loop banana graph we

want to find a set of functions describing it. We follow our general strategy but there are

some subtleties which have not popped up for the sunset graph.

3.3.1 Maximal cut integral

As before, the maximal cut integral FT 3(t, ξ1, ξ2, ξ3, ξ4) is related through the inner point

to the K3 period integral

Π(T 3)(u,m1,m2,m3,m4) =

∫
T 3

uµ3

P3
. (3.36)

We want to compute a basis for the periods on the K3 surface. Cohomology theory of the

K3 surface can tell us again how many independent periods we expect. Differently as for

elliptic curves the number of independent two-cycles depends on the number of moduli. For

a r parameter model we expect r+2 independent two-cycles and similarly r+2 independent

periods. Moreover, the analytic structure of these periods can be specified further. There

is exactly one holomorphic and one double logarithmic period on the K3. The remaining

r periods are single logarithmic ones.

The starting point of our method is the holomorphic period expressed through the

Batyrev parameters which are much more as the physical parameters. From (3.35) five

Batyrev parameters are set to one after identification with the physical parameters. The

remaining four coordinates (z1, z2, z3, z4) are related to the physical parameters and are

such the only ones important in the following. From the Mori cone generators it is always

possible to write down the general form of the holomorphic period but in all nine Batyrev

parameters. We can expand this holomorphic solution in the “unphysical” parameters

(z5, z6, z7, z8, z9) exactly and set them afterwards to one. This yields the holomorphic

solution in the physically relevant four parameters. To insure that our expansion is exact

in the unphysical parameters we use the particular form of the holomorphic periods in
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terms of Γ-functions. Since the numerator does never diverge for positive values of the

index parameters mi, i = 1, . . . 9 the Γ-functions in the denominator give bounds on the

index parameters mi. Concretely we obtain

$(z1, z2, z3, z4) =
∑
M

Γ (1 +m1 +m2 +m3 +m4)

Γ (1 +m3 +m4 −m5) Γ (1 +m1 +m2 −m6) Γ (1 +m1 +m5 −m7) Γ (1 +m4 +m6 −m7)

· zm2
2 zm3

3 zm4
4 zm5

5

Γ (1−m1 −m4 +m7) Γ (1 +m2 +m5 −m8) Γ (1 +m3 +m6 −m8) Γ (1−m2 −m3 +m8)

· 1

Γ (1 +m7 −m9) Γ (1 +m8 −m9) Γ (1−m5 +m9) Γ (1−m6 +m9)
(3.37)

with the summation range given by

M = {0 ≤ m1 ≤ ∞, 0 ≤ m2 ≤ ∞, 0 ≤ m3 ≤ ∞, 0 ≤ m4 ≤ ∞, 0 ≤ m5 ≤ m3 +m4,

m2 +m3 ≤ m8 ≤ m2 +m5, 0 ≤ m6 ≤ m1 +m2, m1 +m4 ≤ m7 ≤ m1 +m5,

m6 ≤ m9 ≤ m7} . (3.38)

We find

$(z1, z2, z3, z4) = 1 + 2 (z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4)

+ 12 (z1z2z3 + z1z2z4 + z1z3z4 + z2z3z4) + · · · . (3.39)

Then our strategy is the same as before. We expand the holomorphic solution (3.39) high

enough that we can find a set of operators annihilating it. This time we are looking for

second order operators in such a way that their solutions are given by a single holomorphic

and a single double logarithmic solution and further four single logarithmic solutions. As

a choice we take the operators D1, . . . ,D4 as generators for the differential operator ideal.

They are listed in appendix A. Then a period basis is given by four single logarithmic

solutions

Π(Γ1
1) = $ log(z1) + Σ1

1

Π(Γ2
1) = $ log(z2) + Σ2

1

Π(Γ3
1) = $ log(z3) + Σ3

1

Π(Γ4
1) = $ log(z4) + Σ4

1 , (3.40)

with

Σ1
1 = −z1 + z2 + z3 + z4 +

z2
1

2
+ z1z2 + z1z3 + z1z4 −

z2
2

2
+ z2z3 + 5z2z4 −

z2
3

2
+ 5z3z4

− z2
4

2
− z3

1

3
− 3z2

1z2 − 3z2
1z3 − 3z2

1z4 + 3z1z
2
2 + 3z1z

2
3 + 3z1z

2
4

+ 16z1z2z3 + 16z1z2z4 + 16z1z3z4 +
z3

2

3
+ 3z2

2z3 + 3z2
2z4 + 3z2z

2
3 + 3z2z

2
4

+ 52z2z3z4 +
z3

3

3
+ 3z2

3z4 + 3z3z
2
4 +

z3
4

3
+ · · · . (3.41)
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The other Σi
1 for i = 2, 3, 4 are given as permutations, namely Σ2

1 = Σ1
1(z1 ↔ z2), Σ3

1 =

Σ1
1(z1 ↔ z3) and Σ4

1 = Σ1
1(z1 ↔ z4). Additionally, there is a double logarithmic solution

Π(Γ2) = $ [log(z1) log(z2) + log(z1) log(z3) + log(z1) log(z4) + log(z2) log(z3)

+ log(z2) log(z4) + log(z3) log(z4)] +
(
Σ2

1 + Σ3
1 + Σ4

1

)
log(z1)

+
(
Σ1

1 + Σ3
1 + Σ4

1

)
log(z2) +

(
Σ1

1 + Σ2
1 + Σ4

1

)
log(z3)

+
(
Σ1

1 + Σ2
1 + Σ3

1

)
log(z4) + Σ2 (3.42)

with

Σ2 = 4 (z1z2 + z3z2 + z4z2 + z1z3 + z1z4 + z3z4) + 6
(
2z2

1z2 + 2z2
1z3 + 2z2

1z4 + 2z1z
2
2

+2z1z
2
3 + 2z1z

2
4 + 11z2z3z1 + 11z1z2z4 + 11z1z3z4 + 2z2z

2
3

+2z2z
2
4 + 2z3z

2
4 + 2z2

2z3 + 2z2
2z4 + 2z2

3z4 + 11z2z3z4

)
+ · · · . (3.43)

Together with the holomorphic period (3.39) this completes the period basis.

There is another very compact way of expressing the double logarithmic solution. We

define the so called mirror maps

ti =
Π(Γi1)

2πi$
for i = 1, . . . , 4 . (3.44)

Now we can express the double logarithmic solution Π(Γ2) in terms of the mirror maps ti
for i = 1, . . . , 4. For this one has to solve equation (3.44) for the variables zi and plug it

into Π(Γ2). One obtains

Π(Γ2) = $(t1t2 + t1t3 + t1t4 + t2t3 + t2t4 + t3t4) , (3.45)

which is so simple since on a K3 surface there are no instanton corrections, see also the

discussion in section 3.3.3.

Again after dividing by the inner point and a transformation into the physical pa-

rameters (3.35) these six basis solutions can be linearly combined to give the maximal cut

integral FT 3 at all points in moduli space.

3.3.2 Extension to inhomogeneous differential operators

For the full three-loop banana graph we have to extend the differential operator ideal to an

inhomogeneous set of operators. We find these inhomogeneities again when we apply the

homogeneous system D1, . . . ,D4 on the geometrical differential uµ3

P3
and perform afterwards

an integration over the simplex σ3. These integrals can only be performed numerically in

all four Batyrev coordinates, but fortunately we can guess their exact values. They are22

D1Πσ3 = 0

D2Πσ3 = 5 log(z1)− 5 log(z2)

22Also here we checked this numerically up to more than 15 digits and for different values of the variables

zi for i = 1, 2, 3.
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D3Πσ3 = log(z1) + log(z2) + log(z3)− 3 log(z4)

D4Πσ3 = −5 log(z3) + 5 log(z4) . (3.46)

These inhomogeneous differential equations describe all the functions appearing in

the Feynman graph (3.31). The missing special solution can be computed with a triple

logarithmic ansatz. For example we can take the following function

$S =−$ [log (z1) log (z2) log (z3) + log (z1) log (z3) log (z4)

+ log (z1) log (z3) log (z4) + log (z2) log (z3) log (z4)]

− 2 [(z1 + z2) (log(z1) + log(z2)) + (z1 + z3) (log(z1) + log(z3))

+ (z1 + z4) (log(z1) + log(z4)) + (z2 + z3) (log(z2) + log(z3))

+(z2 + z4) (log(z2) + log(z4)) + (z3 + z4) (log(z2) + log(z4))]

+ 2 [(−3z1 + z2 + z3 + z4) log(z1) + (z1 − 3z2 + z3 + z4) log(z2)

+(z1 + z2 − 3z3 + z4) log(z3) + (z1 + z2 + z3 − 3z4) log(z4)]

+ 12(z1 + z2 + z3 + z4) + · · · . (3.47)

Again, the general solution is then a linear combination of the form Πσ3 = $S +λ0$+∑4
i=1 λ

i
1Π(Γi1) + λ2Π(Γ2) with λ0, λ

i
1, λ2 ∈ C for i = 1, 2, 3, 4. We can express Πσ3 through

the physical parameters (t, ξ1, ξ2, ξ3, ξ4) and divide it by the inner point to yield the full

three-loop banana Feynman graph (3.31).

3.3.3 The equal mass case and general properties of the ideal of differential

operators

For the three-loop banana graph not too many results are known in the literature.23 In
the equal mass case there is an inhomogeneous differential equation

t2(t− 4)(t− 16)f ′′′3 (t) + (6t3 − 90t2 + 192t)f ′′3 (t) + (7t2 − 68t+ 64)f ′3(t) + (t− 4)f3(t) = −4!

(3.48)

computed in [45]. Restricting our solutions (3.39), (3.40), (3.42) and (3.47) to the equal

mass case, dividing by the inner point and transform them to the point at infinity in moduli

space they satisfy equation (3.48) showing consistency in this limit.

Let us make some general remarks on the properties of the homogeneous part of the

differential operators for periods on K3. We first highlight the structure, which is related

to the vanishing string world sheet instantons or unreduced Gromov-Witten invariants on

K3 manifolds [48, 49], which is expected to hold more generally for hyperkähler manifolds.

This together with (2.35) for n = 2 and r = 0, 1 implies a structure for the solutions

which is reflected also in the classical W invariants of the homogeneous operator DK3 in

DK3f(t) = −4! of (3.48) that determines the Feynman graph. To explore the consequences

of the vanishing instantons we have to transform the operator for the periods
∫

Γ Ω with

Ω as in (2.19) to the point of maximal unipotent monodromy, where the instantons are

calculated by mirror symmetry in the B-model. That amounts to change the variable from

23For a discussion on the maximal cut integral in the equal mass case we refere to [47].

– 30 –



J
H
E
P
0
4
(
2
0
2
0
)
0
8
8

t to z = −1/u by (2.17) and change the dependent function to f(z) = f3(z)/z which yields

the operator

[θ3+2zθ(1+3θ+2θ2)−16z2(6+θ(16+15θ+5θ2)+96z3(6+θ(13+9θ+2θ2))]f(z) = 0 . (3.49)

At z = 0 the unique holomorphic solution is $ = Π(T 2) = 1 + 12z2 − 48z3 +O(z3), while

the single logarithmic solution starts with Π(Γ1) = 1
2πi [$ log(z)− 2z+ 17z2 +O(z3)]. The

mirror map is defined as τ(z) = Π(Γ1)/Π(T 2) and with q = exp(2πiτ) one realises that its

inverse is

1

z(q)
=

1

q
− 2 + 15q − 32q2 + 87q3 − 192q4 + 343q5 − 672q6 + 1290q7 +O(q8) . (3.50)

This was identified24 as 1/z(q) =
(
η(τ)η(3τ)
η(2τ)η(6τ)

)6
+ 4 the total modular invariant or Haupt-

modul of the group Γ0(6)+3 [22]. Such identifications have been made for many one-

parameter K3 families [50] based on tables for invariants of Hauptmodules for modular

groups that features in the monstrous moonshine conjecture [51].

Let Π(Γ2) be the double logarithmic solution. Because mirror symmetry maps the

period vector ΠT = (Π(T 2),Π(Γ1),Π(Γ2)) to the central charges of branes in integer vertical

classes (H00, H
vert
11 , H22) of the mirror K3, we can calculate Σij on the mirror and infer that

the n = 2 and r = 0 relation in (2.35) reads 2Π(T 2)Π(Γ2) + mΠ(Γ1)2 = 0, where m is

the self intersection of the primitive holomorphic curve spanning Hvert
11 (M,Z). One finds

that the period vector can be written as ΠT = Π(T 2)(1, τ,−m
2 τ

2). There is also a modular

parametrization of Π(T 2) namely zΠ(T 2) = (η(2τ)η(6τ))4

(η(τ)η(3τ))2 is the square of periods of a family

of elliptic curves associated to Γ1(6). The term m
2 encodes the classical intersection of the

mirror K3 and the absence of qn terms indicates the vanishing of all instanton corrections.

The classical theory see e.g. [52] that goes back to Hermann Schwarz, that was applied

already to the one-parameter K3 in [53], relates the latter fact to the vanishing of the W3

invariant of the K3 operator written generically as

Df = f ′′′ + 3p(v)f ′′ + 3q(v)f ′ + r(v)f = 0 . (3.51)

By a change of the dependent function g(v) = f(v) exp(
∫
pdv) one eliminates the second

derivative

g′′′ + 3Q(v)g′ +R(v)g = 0 (3.52)

with R = r− 3pq+ 2p3 − p′′ and Q = q− p2 − p′. Here Q is an invariant of the differential

equation, which can be used to introduce a new variable τ , determined as a solution of the

Schwarzian equation

{τ, v} =
3

2
Q . (3.53)

24Today such identifications of the group and the η quotient for a wide class of groups are given by the

Webpage of the “On-line Encylopedia of Integer Sequences” at www//oeis.org given enough coefficients of

series as in (3.50).
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If the second invariant W3 = R − 3
2Q
′ = 0 vanishes, the function h = dτ

dv g satisfies the

differential equation25

d3

d3τ
h(τ) = 0 (3.54)

with the solution space C ⊕ τC ⊕ τ2C. Schwarz theory determines also the second order

linear differential equation

Df = f′′ + 2q(v)f′ + qf(v) = 0 , (3.55)

whose ratio of solutions τ = f1/f2 fulfills (3.53) and which has the property D = Sym2(D),

which means that the solutions to Df = 0 are f21, f1f2, f
2
2. It can be found by inverting the

following steps: after the trivial observation that g = fe
∫
pdv fulfills g′′ + Qg = 0, where

Q = q − p2 − p′, Schwarz noted that with {τ, v} = 2Q defining h =
√

dτ
dvg the function h

fulfills d2

dτ2h(τ) = 0 and hence has solution space C⊕ τC.

If Q = 3
4Q then the two τ(v) above are identified. Obviously, the solutions h and g are

a symmetric square of the solutions h and g respectively and one can arrange p so that also

the solutions f are a symmetric square of the ones of f. Verrill [22] gives this second order

equation for (3.48)26 and [46] relates this by changes of the dependent and the independent

variable to the differential equation for the equal mass sunset graph (3.30).

Four our solutions of the three-loop banana graph with general masses the analogous

structures are the equations (2.36). The first equation together with the vanishing of the

genus one worldsheet instantons on K3 [48, 49], implies the simple form in (3.45). The

coefficients of the double logarithmic terms are fixed by the intersection theory of the dual

curve classes on the mirror K3. The second equation (2.36) becomes more powerful in the

multi moduli case and restricts the structure of the solutions as well as the differential

ideal in (A.1)–(A.4). One of the strongest hints that automorphic forms also gover the

maximal cut graph as solution to (A.1)–(A.4) is the mirror map. The analog of (3.50)

given as the multi parameter inversion of (3.40) leads to 1/zi(q1, . . . , q4) for i = 1, . . . , 4,

which have also integer expansions in the qi = exp(2πiti), where ti = Π(Γi1)/(2πi$) are

the Kähler parameters of the mirror K3. The natural candidate for these automorphic

forms are Borcherds lifts of the type discussed in [54] and applied to lattice polarized K3

as in [55, 56]. As can be seen from the last two papers the automorphic forms are written

naturally in terms of the Kähler parameters ti of the mirror. The relations to the physical

parameters are given by the mirror map defined by (3.40) and by (3.35).

Finally, let us comment on the higher loop Banana graphs. For example the analog

of the differential operator (3.49) at suitable large volume coordinates derives analogously

from the n = 5 entry of table 1 in [45] as (3.49) from (3.48). It also appears in the Web

database explained in [57, 58] as AESZ34 and is given by

D = θ4 − z(35θ4 + 70θ3 + 63θ2 + 28θ + 5) + z2(θ + 1)2(259θ2 + 518θ + 285)

− 225z3(θ + 1)2(θ + 2)2 . (3.56)

25To prove this one uses the property {x, y} = −
(
dx
dy

)2

{y, x}.
26Here λ is related to t in (3.48) by λ = t− 4.
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One advantage of the solutions at the MUM point is that because of the log structure, in

case a factorization of the solutions exist, the analytic solution $ must be a pure power

of solutions of the lower system.27 If one tries to factorize in this way it will not work.

The reason can be again understood from (2.35), see [33] for a review. Special geome-

try implies that the solutions will be ΠT = Π(T 3)(1, τ, 10
2 τ

2 + O(q),−10
6 τ

3 + O(q)) and

that Π3 = −∂tΠ4. The reason that this cannot be a symmetric cube are the genus zero

world sheet instantons encoded in the higher series in q. For this geometry of the one-

parameter family of Barth-Nieto quintics they are not vanishing to all degrees. Subtract-

ing the multi-covering contributions the first n
(0)
d ∈ Z are given for degree d = 1, . . . , 7

by 24, 48, 224, 1248, 8400, 62816, 516336. Despite the integer structures in the n
(0)
d and the

mirror map 1/z = 1/q+ 8 + 28q+ 104q2 + 654q3 +O(q4) it will be much more complicated

to give closed automorphic expressions for the equal mass four-loop graph then for the

general mass three-loop graph.

There are however interesting relations of the periods to modular forms of Γ0(N) and

algebraic extensions at the rank two attractor points that (3.56) as studied in [59]. At

these points the numerator of the Hasse Weil factorises and the exact values of maximal

cut integral are given by L-function values of holomorphic Hecke Eigenforms forms of

weight two and four of Γ0(N) [59] or extensions and the quasi-periods of the corresponding

meromorphic forms [60, 61].

4 Conclusions and outlook

The geometric interpretation relating Feynman integrals to Calabi-Yau chain integrals leads

to powerful new calculational methods. In particular, the resonant GKZ differential system

that was used in the context of mirror symmetry to the period integrals of Calabi-Yau hy-

persurfaces in toric varities [7, 8, 24] yields straightforwardly to the maximal cut integral at

the point of maximal unipotent monodromy. The advantage of the GKZ differential system

is that it uses the symmetries of the Newton polytopes associated to the banana graphs

most efficiently. Its disadvantage, namely that it has more solutions and more variables

than the actual Calabi-Yau and Feynman integrals, can be overcome using methods from

the mirror symmetry application of the GKZ system [7, 8, 24]. The latter allows us to

derive the complete homogeneous Picard-Fuchs differential ideal in the physical parame-

ters. The solutions to this differential ideal characterizes the analytic form of the maximal

cut integral everywhere in the physical parameter space. The use of the symmetries in

this approach turns out to be more efficient than the multi parameter Griffiths reduction

method, which gives differential relations between different integrals. Similar differential

relations between master integrals for different classes of Feynman graphs appeared in the

physics literature in [62–64].

Moreover, at the point of maximal unipotent monodromy we could determine the

inhomogeneity by integrating directly the geometrical chain integral after applying the

generators of the homogeneous Picard-Fuchs differential ideal to its integrand. The form

27The easiest way to find the operator (3.55) on a computer might be indeed to take the square root of

the unique holomorphic solution $ and search for a second order operator that annihilates it.
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of the corresponding inhomogeneities turn out to be very simply. This allows us to find

an inhomogeneous solution and express for the first time the full mass dependence of the

three-loop banana graph analytically. The result is related to the chain integrals that

appear in the calculation of open topological string amplitudes.

The GKZ integrals and Feynman integrals can have more general rational functions as

integrand than the simple one that is realized for the Banana graph. The scaling invari-

ance that occur in Feynman integrals, lead however typically to GKZ systems related to

Calabi-Yau geometries. However, their desingularizations can have much more complicated

realizations as the hypersurfaces in toric varieties that feature in this paper. For instance,

complete intersections in toric varities or even more exotic cases as Paffian Calabi-Yau

spaces in Grassmanians or flag manifolds are conceivable at least in special slices of the

moduli space. Nevertheless, we expect that many aspects of the general approach outlined

in this paper should apply. In particular, the GKZ system has been applied to the com-

plete intersection three-fold case in [25–27] and to higher dimensional Calabi-Yau manifolds

in [28–31]. Recently, progress has been made concerning the more exotic realizations of

Calabi-Yau spaces in the (2, 2) supersymmetric 2d gauge linear σ model approach with

non-abelian gauge groups. For example in [32, 65] the Picard-Fuchs operators for such

geometries have been obtained using localization techniques.

Moreover, there are important universal properties that govern the Calabi-Yau peri-

ods completely independent of their geometrical realization. In particular, there are the

transversality identities (2.29) which have fundamental consequences on the period geome-

try of Calabi-Yau manifolds, which are very different in even and odd dimensions. Together

with some likewise universal properties about the integrality of the mirror map as well as

the integrality of instantons and vanishing theorems for the latter, it strongly restricts the

classes of automorphic functions that can encode the Feynman integrals.

Our main result is the calculation of the three-loop graph. Let us shortly comment

on the possibility to extend our methods to the four loop banana graph: it is possible to

find the analogs of (3.3), (3.16) and (3.35) as well as of the differential ideals (3.5), (3.25),

and (A.1) – (A.4) for the four-loop graph. Also the inhomogeneous terms (3.7), (3.28)

and (3.46) are expected to generalize. With some efforts to code the recursions that follow

form the analog of (A.1) – (A.4) as well as (3.47) efficiently, it should be possible to find

fast convergent expressions for the four-loop general mass case, just as it is possible for the

three-loop case.
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A Differential operator ideal of the banana graph

Here we list a generating set of differential operators which describes the three-loop banana

graph in all four physically important Batyrev coordinates.

D1 = (θ1 − θ2) (θ3 − θ4)

+ z1(θ3 − θ4)(θ1 − θ2 − θ3 − θ4) + z2(θ3 − θ4)(θ1 − θ2 + θ3 + θ4)

− 2(z1 − z2) (z3(θ3 + 1)− z4(θ4 + 1)) (θ1 + θ2 + θ3 + θ4 + 1) (A.1)

D2 = 5(θ1 − θ2)θ4 − 6θ2
2

+ z1

(
2θ2

1 − 8θ1θ2 + 6θ2
2 − 6θ2

3 − 11θ2
4 + 4 (θ1 + θ2) θ3 + (9θ1 − θ2 − 13θ3) θ4

)
+ z2

(
17θ2

4 + (13θ1 − 9θ2 + 25θ3 + 6) θ4 − 2 (θ2 − θ3) (4θ2 + 6θ3 + 3)

+ θ1 (8θ2 + 8θ3 + 6)
)

+ 2
[
5z3z4(θ2 − θ1) + z2

1(θ1 − θ2 − θ3 − θ4)

+z2
2(θ1 − θ2 + θ3 + θ4) + z1z4(3θ1 + 3θ2 − 2θ3 − 8θ4 − 5)

+z1z3(3 (θ1 + θ2 − θ3)− 2θ4) + 3z1z2(−θ1 + 3θ2 + θ3 + θ4 + 2)

+z2z3(6θ3 + 5θ4 + 6) + z2z4(5θ3 + 11θ4 + 11)] (θ1 + θ2 + θ3 + θ4 + 1) (A.2)

D3 = −3θ2
2 − 2θ2θ4 + θ1 (3θ2 − 2θ4) + θ4 (θ3 + θ4)

− 3z1θ2 (−θ1 + θ2 + θ3)− z1θ4(2θ1 + θ2 − 2θ3)− z3θ4(θ1 + θ2 − θ3) + (2z1 − z3)θ2
4

− z4 (θ1 + θ2 + θ3 − θ4) (θ4 + 1) + z2 (θ1 − θ2 + θ3 + θ4) (3θ2 + 8θ4 + 3)

+ 2 [−2z3z4(θ4 + 1) + z1z4 − 3z1z3θ2 + z1(z3 + z4)θ4 + z2z3(3θ2 + 4θ4 + 3)

+4z2z4 + 4z2(z1 + z4)θ4] (θ1 + θ2 + θ3 + θ4 + 1) (A.3)

D4 = −θ2 (θ2 + 5θ3 − 5θ4)

+ z1(2θ2
1 − (3θ2 + θ3 − 4θ4) θ1 + θ2

2 − θ2
3 − 6θ2

4 + 4θ2θ3 − (θ2 + 3θ3) θ4)

+ 5z4 (θ1 − θ2 − θ3) (θ1 + θ2 + θ3 − θ4) + 5z3θ4 (θ1 + θ2 − θ3 + θ4)

+ z2

[
−3θ2

2 + (−14θ3 + 11θ4 − 1) θ2 + 17θ2
3 − 8θ2

4 + θ3

+θ1 (3θ2 + 13θ3 − 12θ4 + 1) + 5θ3θ4 + θ4]

+
[
2z2

1(θ1 − θ2 − θ3 − θ4) + z1z4(11θ1 − 9θ2 + θ3 − 11θ4)

+z1z2(−θ1 + 3θ2 + 11θ3 − 9θ4 + 2) + z1z3(θ1 + 11θ2 − θ3 + θ4)

+2z2z3(−5θ2 + 11θ3 − 5θ4 + 6) + 2z2z4(5θ3 − 4θ4 − 4) + 10z3z4(θ4 − θ3)

+2z2
2(θ1 − θ2 + θ3 + θ4)

]
(θ1 + θ2 + θ3 + θ4 + 1) (A.4)
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