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1 Introduction

Recently, there has been active interest in the irrelevant deformation of 2D conformal field

theory obtained by turning on an irrelevant T T̄ coupling

∂

∂µ
SQFT(µ) =

∫
d2x OT T̄ , (1.1)

with OT T̄ = 1
8(TαβT

αβ−(Tαα )2) and SQFT(0) = SCFT. This deformation was introduced by

Zamolodchikov [1] and further studied by Zamolodchikov and Smirnov [2] and others [3–7]

as a non-trivial continuous family of two-dimensional quantum field theories with strongly
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coupled UV dynamics. In particular, they showed that due to special integrability prop-

erties and a remarkable factorisation formula for expectation values of the T T̄ operator,

many observables become exactly calculable in the deformed theory.

The partition function and correlation functions of the deformed theory can be formally

defined at finite coupling by integrating the flow equation

∂

∂µ

〈
O1(x1) . . .On(xn)

〉
µ

=
〈∫

d2zOT T̄ O1(x1) . . .On(xn)
〉
µ
. (1.2)

This irrelevant interaction is non-renormalizable and expected to destroy short distance

locality. Indeed, it is not clear how to use the above flow equation in practice without

running into UV divergences. Nonetheless, there are indications that the deformed CFT

defined by (1.1) represents a consistent unitary quantum theory. Besides the fact that the

deformation appears to define an integrable theory with an infinite set of conserved charges,

concrete supporting evidence for its existence as a well-controlled theory is provided by its

relationship with the Nambu-Goto (NG) string in the special case that the undeformed CFT

has central charge c = 24 [3, 4]. The goal of this paper is to generalize the equivalence

between the T T̄ theory and a Nambu-Goto theory to general values of the central charge.

Specifically, we will show that the spectrum and correlation functions of the T T̄ de-

formed theory can be mapped to those of the well defined worldsheet theory of a non-critical

string. The worldsheet is described by a free field theory of two scalar fields X+, X−, rep-

resenting the light-cone directions of the target space, coupled via the Virasoro constraints

to the unperturbed CFT, which in turn can be thought of as representing the transverse

target space directions. As we will see, the X+, X− fields will continue to behave like free

fields for general central charge c, except that the energy momentum tensor now contains

an extra term proportional to κ = c/24 − 1. Remarkably, the method for computing the

correlation functions of the non-critical string was already developed in the early days of

string theory, in the context of the study of light-cone gauge formalism for computing

string scattering amplitudes. Using a more modern BRST formalism, we also give an ex-

plicit characterization and construction of the physical states and operators in the theory.

Since the scalar fields and reparametrization ghosts are described by free field theory, our

non-critical string formulation amounts to an exact non-perturbative solution of the T T̄

deformed theory: the deformed amplitudes are obtained in a computable way from the

correlation functions of the undeformed CFT.

As a concrete example, we will compute the matrix element of a local operator Õh in

the deformed theory between two states with incoming energy and momentum (E, J) and

outgoing energy and momentum (E ′, J ′). The result takes the form of an integral over the

cross ratio of a four-point conformal block of the undeformed CFT, smeared against some

known function f(ρ)

〈E ′, J ′|Õh|E, J〉 =

∫ 1

0
dρ f(ρ)

〈
O∆′

L
(∞)O∆L

(0)Ph,pO∆R
(1)O∆′

R
(1− ρ)

〉
(1.3)

equal to a correlation function of the X+, X− theory. The calculation and the explicit form

of the function f(ρ) are described in section 5.
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This paper is organized as follows. In section 2, we introduce the worldsheet of the

non-critical string theory, and verify its consistency and its equivalence with the T T̄ de-

formed CFT at arbitrary central charge. We present an explicit dictionary between the

non-critical worldsheet theory and the CFT to 2D dilaton gravity, and write an explicit

formula for correlation functions of the X+, X− theory. In section 3, we compute the

spectrum and the thermal partition function. In section 4, we propose a definition of local

operators in the deformed theory in terms of boundary states and in section 5 we outline

the computation of the matrix elements, yielding a formal integral expression for the de-

formed OPE coefficients. We comment on the relationship with other proposed definitions

of local operators of the T T̄ deformed theory.

2 A non-perturbative definition of T T̄

In this section we introduce the non-critical string world-sheet theory and establish its

equivalence with the T T̄ deformed CFT at arbitrary central charge. As a warm-up, we

briefly review the mapping between the T T̄ theory for c = 24 and the world-sheet of the

critical string.

2.1 T T̄ at c = 24 as a critical string worldsheet

Consider a general CFT with central charge c = 24. We define its T T̄ deformed theory

by adding two free massless scalar fields X+ = X0 + X1 and X− = X1 −X0. The total

action reads

SQFT = SCFT +
1

2πµ

∫
d2z ∂̄X+∂X−. (2.1)

The light-cone scalar fields decompose into chiral halves

X+(z, z̄) = X+(z) + X̃+(z̄), X−(z, z̄) = X̃−(z) +X−(z̄). (2.2)

We assume that the spatial target space direction is compactified to a circle X1 ≡ X1 +R,

and restrict to the winding number one sector. Using radial quantization coordinates, we

impose that

X1

(
e2πiz, e−2πiz̄

)
= X1(z, z̄) + 2πR. (2.3)

In the following, we use natural units: the dimensionful coupling µ of the T T̄ theory, related

to the string tension of the critical worldsheet theory (2.1) as 1/(2πµ), is set equal to 1.

The strength of the T T̄ coupling is parametrized by means of the radius R of the spatial

circle. Taking the weak coupling limit of the T T̄ theory corresponds to sending R→∞.

We interpret the action (2.1) (supplemented by a pair of reparametrization ghosts) as

the gauge fixed action obtained from a covariant action with a dynamical 2D metric, after

going to the conformal gauge. The equations of motion thus include the Virasoro condition

that the total stress tensor of the CFT, the X fields and reparametrization ghosts must

vanish for physical states. Or equivalently, using the old covariant formalism, the equations

of motion derived from the action (2.1) are supplemented by the Virasoro conditions

− ∂X+∂X−+ TCFT = 0 , −∂̄X+∂̄X−+ T̄CFT = 0 , (2.4)
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which implement gauge invariance under conformal transformations (z, z̄) →
(x+(z), x−(z̄)).

The equivalence between the NG theory and the T T̄ deformed CFT is made most

evident by comparing the energy spectra of both theories. We postpone this discussion to

section 3. Here we briefly recall a physical argument for the equivalence [4, 8]. See also [9–

11] for related discussions. We could decide to fix the conformal invariance by choosing

worldsheet coordinates (x+, x−) such that

∂X+ = ∂̄X− = 1 . (2.5)

This temporal gauge condition identifies the worldsheet coordinates with the chiral halves

of the target space light-cone fields: X+(x+, x−) = x+ + X̃+(x−) and X−(x+, x−) =

x− + X̃−(x+). The other chiral halves are found by integrating the Virasoro constraints

∂+X
− + T CFT

++ = 0 , X−= x− +

∫ x+

dx+T CFT
++ ,

=⇒ (2.6)

∂−X
+ + T CFT

−− = 0 . X+ = x+ +

∫ x−

dx−T CFT
−− .

Equations (2.6) provide the on-shell quantum definition of the light-cone coordinates. The

fact that they are expressed in terms of the stress tensor indicates that the space-time

geometry is dynamical, and that left- and right-moving modes of the CFT are influencing

each others trajectory via a geometric shockwave interaction.

Note that the periodic boundary condition (2.3) of the target space field X1 =
1
2(X+ + X−) implies that the light-cone coordinates x± satisfy an operator valued pe-

riodic identification

(x+, x−) ' (x++ 2πR− P−, x−+ 2πR− P+) (2.7)

where

P± =

∮
dx±T CFT

±± (2.8)

denote the total CFT light-cone momenta. This periodicity condition implies that the

temporal gauge formulation of the non-critical string theory leads to a non-trivial interac-

tion between the left- and right-moving sectors: every time a right mover passes through

a left mover, it gets shifted by an amount proportional to the light-cone momentum of the

other particle. The above general description provides the first strong indication that this

interacting theory is indeed equivalent to the T T̄ deformed CFT. In particular, if one plugs

the solution to (2.4) back into the free field action (2.1) one directly reproduces the T T̄

interaction term. More detailed evidence in support of the equivalence will be given below.

2.2 Equivalence to 2D dilaton gravity

Before turning to the generalization of the Nambu-Goto formulation to the non-critical

case, it will be useful to first describe an alternative proposed definition of the T T̄ deformed

theory [12], obtained by coupling the CFT to a dilaton gravity theory with the action

S =

∫
d2z
√
g

(
ΦR +

2

µ

)
. (2.9)
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Here R denotes the Ricci scalar curvature of the dynamical metric g. The dilaton field

Φ plays the role of a Lagrange multiplier imposing the flatness condition R = 0. The

cosmological constant term, determined by µ, introduces the mass scale that sets the

strength of the T T̄ coupling. We will again choose units so that µ = 1.

In conformal gauge ds2 = e2ρdzdz̄, the action (2.9) becomes

S =
1

2

∫
d2z
(
ΦR̂− 8Φ∂∂̄ρ+ 2e2ρ

)
(2.10)

with R̂ the Ricci scalar curvature of a fixed background metric ĝ. We will often choose this

metric to be flat. The equations of motion derived from (2.10) then take the form

∂∂̄ρ = 0, −2∂∂̄Φ + e2ρ = 0 . (2.11)

We can thus choose to parametrize the space of on-shell field configurations for ρ with the

help of two chiral scalar fields X+(z) and X−(z̄) via

ds2 = e2ρ(z,z̄)dzdz̄ = ∂X+∂̄X−dzdz̄. (2.12)

These are the chiral halves of the worldsheet light-cone coordinate fields of the NG formu-

lation. The other chiral halves X̃+(z̄) and X̃−(z) parametrize the on-shell classical field

configurations of the dilaton field Φ via

Φ(z, z̄) =
1

2
X+(z)X−(z̄) + ω+(z) + ω−(z̄)

(2.13)

∂ω+ = −1

2
X̃−∂X+, ∂̄ω−= −1

2
X̃+∂̄X−.

It is not difficult to show that the above field redefinitions specify two conjugate non-chiral

scalar fields X± with the free field OPE relation (2.20).1

Applying this dictionary to the stress tensor of the dilaton gravity theory yields the

standard free scalar field stress tensor for the X± fields [13],

Tgrav = −4∂Φ∂ρ+ 2∂2Φ = −∂X+∂X−. (2.15)

Note that both stress tensors indeed have the same central charge c = 2. The combined

theory of the dilaton gravity with the CFT must satisfy the Virasoro conditions Tgrav +

TCFT = 0.

1The field redefinitions (2.12) and (2.13) are in fact directly related to the well-known bosonization rules

for the (β, γ) chiral boson system with spin (0,1). Identifying ∂X+ = γ and X̃− = β and similar for the

left movers, we can use the familiar bosonization rules

∂X+ = ηe−ϕ = e−χ−ϕ, X̃− = ∂ξeϕ = ∂χeχ+ϕ, X̃−∂X+ = ∂ϕ (2.14)

where ϕ is the bosonized βγ current, (ξ, η) are anti-commuting chiral fields with spin (0,1), and χ is the

bosonized ξη current. The dictionary (2.12)–(2.13) then follows via the identification 2ρ(z) = −χ− ϕ and

2ω+ = χ− ϕ, etc.
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2.2.1 Dilaton gravity at general central charge

Next let us consider the coupling of the dilaton gravity theory to a CFT with general

central charge c. To obtain a well-defined quantum theory, the central charge of the total

stress tensor T = Tgrav +TCFT +Tghost must add up to zero. However, when combining the

CFT with the above naive dilaton gravity theory and ghosts, we end up with a world-sheet

theory with total central charge 2 − 26 + c = c − 24. So for a CFT with c 6= 24, we must

account for the mismatch and cancel the conformal anomaly by adding a Liouville action

κSL(ρ) =
κ

2

∫
d2z
√
g R

1

�
R = −κ

∫
d2z

(
4∂ρ∂̄ρ+ R̂ρ

)
(2.16)

where κ = c
24−1. Alternatively, we can think of this action SL as part of the CFT effective

action in the dynamical background ds2 = e2ρdzdz̄. The second equality in (2.16) presents

the action in conformal gauge. Note that the Liouville action (2.16) (naively) vanishes

on-shell. However, its presence will still affect the form of the stress tensor.

Defining Ω = Φ−κρ, the total action, the equations of motion for R̂ = 0 and the stress

tensor take the form

S =
1

2

∫
d2z
(
R̂(Ω− κρ)− 8Ω∂∂̄ρ+ 2e2ρ

)
, (2.17)

∂∂̄ρ = 0, −2∂∂̄Ω + e2ρ = 0 , (2.18)

T = −4∂Ω∂ρ+ 2∂2Ω− 2κ∂2ρ . (2.19)

The stress tensor of the dilaton gravity theory now has central charge 2 − 24κ = 26 − c,
as required for consistency. Note that the new dilaton field Ω no longer transforms as an

ordinary scalar field, but the combination Φ = Ω + κρ still does.

How does this modification of the dilaton gravity theory translate to the X± scalar

field theory? The relation (2.12) between ρ and the chiral halves of X± remains in place.

The classical solution of Ω remains identical to that of Φ given in (2.13)2 and the relation

between ω± and the other chiral components of the scalar fields is also unchanged. The only

change is that the form of the stress tensor of the X± theory gets modified, as described

below.

In the following, we will choose to work with the (X+, X−) formulation, because it

makes the (target) space time symmetries (Lorentz invariance and translation invariance)

more manifest. As we will see, it will allow us to define operators that are localized within

the target space and use them to study the space-time properties of the T T̄ theory more

directly.

2.3 T T̄ as a non-critical string worldsheet

Applying the above dictionary (2.12)–(2.13) to the non-critical dilaton gravity theory de-

scribed above, we arrive at the following new description of a non-critical worldsheet theory.

2An alternative theory could be written down from the action (2.17) in terms of Φ and ρ, by using the

equation (2.13) for Φ (rather than Ω). In such a theory, see for example [14], the fields X̃+(z̄) and X̃−(z)

have a non-trivial OPE with themselves.
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The non-critical worldsheet theory consists of a general CFT coupled to two free scalar

fields X+, X− satisfying the usual free field Wick contraction rule

∂X+(z)∂X−(w) =
− 1

(z − w)2
, ∂X±(z)∂X±(w) = 0 . (2.20)

The stress energy tensor of the light-cone scalar fields takes the following form

T = − ∂X+∂X−− κ ∂2log ∂X+,
(2.21)

T̄ = − ∂̄X+∂̄X−− κ ∂̄2log ∂̄X−.

Using (2.20), it is a straightforward calculation (see appendix A) to show that this stress

tensor satisfies the standard OPE relation

T (z)T (w) =
cX/2

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
+ . . . (2.22)

with central charge cX = 2− 24κ. For our non-critical string worldsheet, we will therefore

choose

c+ cX − 26 = 0, ↔ κ =
c

24
− 1. (2.23)

The stress tensor (2.21) looks perhaps somewhat unfamiliar and unpractical, but it directly

arises by applying the free field parametrization (2.12)–(2.13) to the non-critical 2D dilaton

gravity theory defined in the previous section. As we will see, because the extra term in

the stress tensor does not have an OPE with itself, the modification behaves in a rather

well mannered way. It has appeared in previous literature [15, 16] in the context of studies

of the CGHS model [17, 18]. Indeed this model can be recast into the form (2.9) through

a Weyl transformation.

The free field property (2.20) of the scalar fields and the stress tensor (2.21) are per-

fectly compatible, and can both be derived from a well-defined worldsheet action

SX =
1

2π

∫
d2z

(
∂̄X+∂X−− κ

4
R̂ log(∂X+∂̄X−)

)
. (2.24)

The stress tensor, defined via the variation of the action with respect to worldsheet metric,

takes the non-standard form (2.21). Note that the extra term can be written as a linear

dilaton term 1
2κR̂ρ with ρ defined as the conformal factor of the flat metric e2ρ = ∂X+∂̄X−

parametrized by the light-cone scalar fields. The extra κ term in the stress tensor (2.19)

of the dilaton gravity theory maps to the extra κ term in (2.21). Indeed, we claim that

the X± theory is equivalent to the dilaton gravity theory (2.17), cf. [19]. The action (2.24)

preserves 2D Poincaré invariance in the 2D target space. In particular, we are allowed to

impose the periodicity condition (2.3).

The Weyl and conformal anomalies of the combined theory of the CFT, the X-fields

and ghosts vanish. We could use the Weyl invariance to choose a flat background metric

dŝ2 = dzdz̄ with vanishing Ricci scalar R̂ = 0 within any local region. The action (2.24)

then reduces to the standard gaussian free field action (2.1). We can therefore compute

local properties, such as the operator products, by applying the usual free field Wick
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contraction rules (2.20). Note however that, while X+(z) and X−(z̄) transform as normal

chiral scalars, the other chiral halves X̃+(z̄) and X̃−(z) have a non-standard transformation

rule under conformal transformations. The existence of Weyl invariance and the free field

Wick contractions are important ingredients to understand correlation functions in the X±

theory, to which we now turn.

2.4 Correlation functions in the X± theory

We will be interested in correlation functions in the presence of plane wave vertex operators,

eipi·X(zi,z̄i) ≡ ei(piL·X(zi)+piR·X̄(z̄i)). (2.25)

In the critical theory, these are computed by standard free field theory. The idea behind

the computation for the non-critical theory is to collect the contributions due to the con-

formal anomaly, while using a world-sheet metric that is flat everywhere, except at special

locations.

On a topologically trivial surface, the correlation functions of plane wave operators

factorize into the product of two chiral components,〈
eip1·X(z1,z̄1) . . . eipn·X(zn,z̄n)

〉
=
〈
eip1L·X(z1) . . . eipnL·X(zn)

〉〈
eip1R·X̄(z̄1) . . . eipnR·X̄(z̄n)

〉
(2.26)

Correspondingly, we introduce the light-cone coordinates
(
x+(z), x−(z̄)

)
by means of the

expectation value in the presence of n plane wave vertex operators,

∂x+(z) ≡ 〈∂X+(z)〉 = − i
2

n∑
i=1

p+
iL

z − zi
, ∂̄x−(z̄) ≡ 〈∂X−(z̄)〉 = − i

2

n∑
i=1

p−iR
z̄ − z̄i

, (2.27)

with the p+
iL and p−iR satisfying energy-momentum conservation. In the temporal gauge,

we choose these chiral expectation values as our light-cone coordinates. In the early string

theory literature, the coordinate transformation from the complex coordinate z to the

light-cone coordinates (x+, x−) is usually referred to as the Mandelstam map.

In the local flat Weyl frame, we can use a free field Wick contraction prescription to

compute the OPE of the stress tensor and a plane wave operator. This is worked out in

appendix A. The result is simple,

T (z) eip1L·X(z1) '

(
1
4p

2
1L− κ

(z − z1)2
+

∂z1
z − z1

)
eip1L·X(z1). (2.28)

This OPE relation shows that even with the modified stress tensor (2.21), the plane wave

operators continue to be well behaved primary fields but that (relative to the critical theory

with κ = 0) the conformal dimension gets shifted by −κ, from p2
L/4 to p2

L/4− κ.

As our local flat Weyl frame we choose the standard flat metric ds2 = dx+dx− in

x± coordinates. This metric takes the form ds2 = ∂x+∂̄x−dzdz̄ in (z, z̄) coordinates. The

latter metric is not well-behaved at the location of the vertex operators, since ∂x+ and ∂̄x−

diverge at z = zi. This indicates that, in the standard flat metric, each vertex operator

creates an infinite cylindrical tube. Correspondingly, there must also be interaction points
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at which the tubes split or join. These interaction points correspond to the locations where

∂x+ and ∂̄x− vanish. Their locations z = zI and z̄ = z̄I are found by solving the equations

∂x+(zI) = − i
2

n∑
i=1

p+
iL

zI − zi
= 0, ∂̄x−(z̄I) = − i

2

n∑
i=1

p−iR
z̄I − z̄i

= 0. (2.29)

In the light-cone diagrams, these are the points along the diagram where the strings inter-

act. From the equations (2.29) it is clear that there are n − 2 of such interaction points

(zI , z̄I). The index I will thus run from 1 to n− 2.

The two types of degenerations of the x± coordinates correspond to curvature singu-

larities of the light-cone diagram: the locations of the vertex operators carry one unit of

positive curvature and each interaction point carries one unit of negative curvature. The

Weyl rescaling from the metric ds2 = dzdz̄ to ds2 = ∂x+∂̄x−dzdz̄ thus produces a non-

trivial Liouville action with pre-coefficient c + 2 − 26 = 24κ. Taking this Liouville action

into account will produce the correct scaling properties of the correlators of vertex opera-

tors of the X± fields. Fortunately, the relevant computation is well documented in the old

string theory literature, see for example [20, 21]. The result combines into an overal factor

M =MLMR, where

ML =

( n∏
i=1

p+
iL

)−κ( n∑
i=1

p+
iLzi

)2κ( n−2∏
I=1

∂2x+(zI)

)−κ/2
(2.30)

MR =

( n∏
i=1

p−iR

)−κ( n∑
i=1

p−iRz̄i

)2κ( n−2∏
I=1

∂̄2x−(z̄I)

)−κ/2

We refer to the original literature [20] for a detailed derivation of this result. Notice that

here we have chosen a normalization so that as κ = 0, M = 1.

By Taylor expansion and (2.29), the relation between the coordinate x+ and the smooth

coordinate z in the neighborhood of the interaction point is of the form x+ − x+(zI) ∼
(z − zI)

2. This means that the target space is a double cover of the worldsheet close

to these interaction points. This is precisely what we expect from interaction points as

strings join and split there. Thus we can think of these interaction points as the insertion

of a Zm=2 twist operator with conformal dimension (including the ghost contribution)

∆ = κ(m−1/m) = 3
2κ. Let us verify that this also follows fromML,R by counting its target

space scaling, i.e. powers of the momenta. The ∂2x+ is linear in the momentum. Collecting

the other powers inML, we find the total scaling to be 3
2κ(n−2). This is consistent with the

above interpretation of Z2 twist fields being located at each of the (n−2) interaction points.

The total correlator of vertex operators in the κ 6= 0 theory is now given by the factor

M multiplied by the free field correlator. We will denote this free field result as the κ = 0

form of the correlator. The chiral part of the correlation function of vertex operators in

the κ 6= 0 theory is thus given by

〈
eip1L·X(z1) . . . eipnL·X(zn)

〉
κ

=
〈
eip1L·X(z1) . . . eipnL·X(zn)

〉
κ=0
ML . (2.31)
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Explicitly, for n = 2, 3 this gives〈
eipL·X(z1)e−ipL·X(z2)

〉
κ

= z
−p2

L/2+2κ
12 , (2.32)

〈
eip1L·X(z1)eip2L·X(z2)eip3L·X(z3)

〉
κ

=
(
p+

1Lp
+
2Lp

+
3L

)−κ/2∏
i<j

z
piL·pjL/2+κ
ij , (2.33)

with p+
3L = −p+

1L− p
+
2L. The scaling exponents in these expressions are consistent with the

κ shift (2.28) of the scaling dimensions of the vertex operators.

We will use the above general result to define correlation functions of the T T̄ deformed

theory. Before turning to this computation, we will now first show that the theory SX
in (2.24) coupled to an arbitrary seed CFT has the same spectrum and partition function

as the T T̄ deformed theory.

3 Spectrum and partition sum

The equations of motion derived from (2.1) are supplemented by the Virasoro conditions

− ∂X+∂X−− κ ∂2 log ∂X+ + TCFT = 0 . (3.1)

The self-consistency of this constraint theory is well established for the critical theory with

κ = 0 via the no ghost theorem for the critical NG string. The key result in this proof is

the construction of the so-called DDF operators, summarized and generalized to arbitrary

central charge c in section 4.2. For our context, it demonstrates that the T T̄ deformed

CFT is a well defined quantum theory, in which all Hilbert states have positive norm. We

will use elements of the proof of the no ghost theorem later on.

While useful for establishing the equivalence with the T T̄ theory, the temporal

gauge (2.5) does not automatically give rise to a well controlled description of the quan-

tum theory. For this purpose, it is more convenient to use a covariant BRST formalism.

The action (2.1) has a nilpotent BRST symmetry and corresponding nilpotent charge

Qbrst = Q+ Q̄ with

Q =

∮
dz
(
c
(
TCFT + TX +

1

2
Tgh

))
. (3.2)

Physical states are specified by restricting the space of all states to the BRST cohomology

Qbrst|phys〉 = 0, |phys〉 ' |phys〉 + Qbrst|∗〉,[
Qbrst,Ophys

]
= 0, Ophys ' Ophys + [Qbrst, ∗],

(3.3)

defined as the BRST invariant states modulo BRST exact states. The four equa-

tions (2.1), (2.3), (2.21), (3.2) and (3.3) provide a complete non-perturbative definition

of the T T̄ deformed CFT on a cylinder.

The space of physical states takes the same form as for the critical string, with only

some minor modifications. In particular, the non-trivial BRST cohomology is found in

the Hilbert space sector with ghost number −1. Using radial quantization, the −1 ghost
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vacuum is defined by acting with the product c(0)c̄(0) of the left- and right c-ghosts on the

SL(2,R) invariant vacuum. Let O∆(z, z̄) with ∆ = (∆L,∆R) denote a CFT primary opera-

tor with left and right conformal dimension ∆L and ∆R. We can associate to O∆ a physical

state with given energy momentum p via (here |0〉 denotes the SL(2,R) invariant vacuum)∣∣∆, p〉 = c(0)c̄(0)O∆(0)eip ·X(0)
∣∣0〉, (3.4)

provided that p satisfies the usual on-shell condition such that (L0 − 1)|∆, p〉 =

(L̄0 − 1)|∆, p〉 = 0. Here L0 = LX0 + LCFT
0 , etc.

3.1 Spectrum

To obtain the physical spectrum, we need to pay attention to the precise form of the kinetic

term of the light-cone fields. In (2.1), the X action looks like that of a 2D string worldsheet

SX =
1

2π

∫
d2z (Gab +Bab)∂X

a∂̄Xb, (3.5)

in a constant target space metric Gab = ηab and anti-symmetric tensor field Bab = Bεab

with B = 1. In a general background, the chiral momentum zero modes paL,R of the scalar

fields, defined as the leading term in the mode expansion

∂Xa = − i
2

paL
z
− i√

2

∑
n 6=0

αanz
−n−1, ∂̄Xa = − i

2

paR
z̄
− i√

2

∑
n 6=0

ᾱanz̄
−n−1, (3.6)

decompose into a sum of target space momenta pa and winding zero modes wa, via

paL,R =
(
pa ± (Gab ±Bab)wb

)
. (3.7)

In our case, the time like direction X0 is non-compact, whereas the spatial direction X1

is compactified on a circle, as indicated in equation (2.3). The time-like momentum (=

energy) is therefore continuous, p0 ∈ R, and the timelike winding number vanishes, w0 = 0.

The spatial momenta and winding zero modes are both non-zero and quantized via p1 =

n/R and w1 = mR, n,m ∈ Z.
The T T̄ deformed CFT corresponds to the sector with winding number one w1 = R.

In this sector, we can parametrize the chiral momentum zero modes via

p0
L = p0

R = E +BR, p1
L =

J

R
+R, p1

R =
J

R
−R, (3.8)

with E the target space energy and J the integer (angular) momentum along the spatial

circle. Here we kept the B-field parameter B. As we will see, it is usually set equal to its

critical value B = 1.

The on-shell condition Ltot
0 − L̄tot

0 = 0 equates J with the difference of the right- and

left-moving scale dimension of the CFT primary state

∆R −∆L =
1

4
p2

1L −
1

4
p2

1R = J. (3.9)
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The other on-shell condition reads

Ltot
0 + L̄tot

0 − 2 = −1

2
p2

0 +
1

4
p2

1L +
1

4
p2

1R + ∆L + ∆R − 2κ− 2 = 0. (3.10)

Inserting the parametrization (3.8), this condition results in the following relation between

the energy E of the deformed theory and the energy E ≡ 1
R(∆L + ∆R − c

12) of the unper-

turbed CFT

− 2

(
E
2

+
BR

2

)2

+
J2

2R2
+
R2

2
+RE = 0. (3.11)

The solution to this equation coincides with the spectrum of the T T̄ deformed CFT

E = R

(
−B +

√
1 +

2E

R
+
J2

R4

)
. (3.12)

This result generalizes the known match between the spectrum of the Nambu-Goto theory

and T T̄ deformed CFT to the case of general central charge c, provided we set B = 1.3

3.2 Partition sum

Via the match of the spectrum, we are in principle assured that the thermal partition

functions of the non-critical string and the T T̄ theory both match. It is still instructive to

see how this works in practice from a functional integral perspective, cf. [19, 22]. We will

encounter several subtleties.

Consider the generalized thermal partition

Z(α, β) =
∑
n

eiαJn−β En , (3.13)

with inverse temperature β and chemical potential α for the spatial momentum Jn. We

can represent Z(α, β) as the partition function of the T T̄ deformed CFT on a Euclidean

two torus. We will parametrize the 2-torus by means of a complex coordinate x = x1 +σx0,

where we assume that the real coordinates x0 and x1 are both periodic with 2πR. Here σ

is a complex number, with real and imaginary part related to α and β via α = 2πRσ1 and

β = 2πRσ2.

It will be helpful to introduce the notation

Λ = 2πRβ = 4π2R2σ2, λ =
1

4π2R2
. (3.14)

Here Λ defines the volume of the 2-torus, and λ defines the coupling constant of the T T̄

deformation. The two are related via Λ = σ2/λ. Modular transformations of the torus act

on σ,Λ and λ via

(σ , Λ , λ )→
(
aσ + b

cσ + d
, Λ ,

λ

|cσ + d|2

)
. (3.15)

3From the non-critical string perspective, it is in fact natural to include the B-field as an additional

tunable coupling of the deformed CFT. The presence of the B-field was also emphasized in [22].
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It has been shown in [19, 23, 24] that the partition function Z(α, β), considered as a

function of the complex modulus σ and coupling constant λ

Z(σ, σ̄, λ) =
∑
n

e2πiR (σ1Jn+iσ2 En), (3.16)

satisfies the following differential equation

d

dλ
Z(σ, σ̄, λ) =

(
σ2∂σ∂σ̄ +

1

2

(
i(∂σ − ∂σ̄)− 1

σ2

)
λ∂λ

)
Z(σ, σ̄, λ). (3.17)

This exact equation follows quite directly from the flow equation (1.2) defining the T T̄

deformation. In [24] it was furthermore shown that, remarkably, this differential equa-

tion (3.17) follows uniquely from the modular invariance requirement that

Z(σ, σ̄, λ) = Z

(
aσ + b

cσ + d
,
aσ̄ + b

cσ̄ + d
,

λ

|cσ + d|2

)
. (3.18)

We will now reproduce this result from the non-critical string formulation. A similar

derivation was given previously in [19].

We need to consider the one-loop partition function of a non-critical string with target

space given by a 2-torus. We parametrize the target space torus by means of a complex

scalar field X = X1 + σX0, where we assume that the two real scalar fields X1 and X0

are both periodic with period 1. (In this subsection, we choose to absorb the period 2πR

into the target space metric.) As before, we identify Λ with the volume of the target space

torus, except that (as is standard in the treatment of string worldsheet sigma models)

we now combine it with the anti-symmetric two-form field Bµν = Bεµν into a ‘complex’

volume modulus Λ = 1
2G(1− iB) with G the ordinary geometric volume of the T 2. In this

notation, the general sigma model action (3.5) takes the form

SX =

∫
d2z

σ2

(
Λ∂X̄∂̄X + Λ̄∂X∂̄X̄

)
. (3.19)

Comparing this equation with the non-critical string worldsheet action, we see that we

need to (formally) set Λ̄ = 0, by tuning the anti-symmetric tensor to B = i.4

The computation of the one loop non-critical string partition sum is now straightfor-

ward. The string worldsheet itself is also a torus, parametrized by complex coordinates

z = ξ1 + τξ0 with the real coordinates ξ1 and ξ2 both periodic with period 1. Note that the

worldsheet 2-torus admits a flat metric dŝ2 = dzdz̄ with R̂ = 0, so we can ignore the extra κ

term in the world sheet action (2.24). The modular parameter τ of the worldsheet torus is

part of the dynamical worldsheet metric, and needs to be integrated over. The integrand is

given by the product of the partition functions of the CFT, the free scalar field X, and the

ghosts, all evaluated at a fixed value of τ . The ghost contribution simply gives the Faddeev-

Popov functional determinant det ∆FP = | det ∂|2 = |η(τ)|4. Here η(τ) =
∏
n(1− qn) with

4This further requires that we complexify the target space, so that Λ and Λ̄ become independently

tunable.

– 13 –



J
H
E
P
0
4
(
2
0
2
0
)
0
8
4

q = e2πiτ is the familiar Dedekind η-function. This ghost partition function exactly cancels

the fluctuation determinant contribution of the complex scalar field X.

The complex scalar fields X(z, z̄) represent a mapping from the worldsheet torus into

the target space torus. We will assume that this mapping has wrapping number one.

Conversely, each real scalar field X0 and X1 represents (the inverse of) a mapping of a target

space circle (the A-cycle or B-cycle of the target space torus) into the worldsheet torus.

The latter mapping is labeled by two winding numbers, which we denote by w1 = (m1, n1)

and w0 = (m0, n0), respectively. The remaining partition function thus takes the form of

a sum over winding sectors

Z(σ, σ̄, λ) =
σ2

πλ

∫
F

d2τ

τ2
2

∑
w

e−Scl(Λ,σ,τ,w) ZCFT(τ, τ̄), (3.20)

where Scl(λ, σ, w) denotes the classical action of the solution to the classical equations of

motion ∂∂̄Xcl
a = 0 of the scalar field labeled by the winding number w. This classical

solution takes the following simple form

Xcl
a (z, z̄) =

1

τ − τ̄
(
(na −maτ̄) z + (na −maτ) z̄

)
, (3.21)

which satisfy the boundary conditions

Xcl
a (z + 1, z̄ + 1) ∼ Xcl

a (z, z̄) +ma,
(3.22)

Xcl
a (z + τ, z̄ + τ̄) ∼ Xcl

a (z, z̄) + na.

Plugging this solution back into the scalar field action, it is now straightforward to show

that the sum over winding sectors reduces to∑
w

e−Scl(Λ,σ,τ,w) =
∑

n0,m0,n1,m1∈Z

′
exp

(
− Λ

τ2σ2
|n1 + n0σ −m1τ −m0στ |2

)
. (3.23)

Here the ′ indicates that the sum is restricted to the elementary winding sectors for which

gcd(n0,m0) = gcd(n1,m1) = 1, n0m1 −m0n1 = 1. (3.24)

The first restriction implies that each real scalar field Xa has winding number 1, and

the second restriction implies that the mapping from the worldsheet torus into the target

space torus has wrapping number one. Both restrictions are modular invariant, and the

full sum (3.23) defines a modular expression. We can therefore restrict the integral over τ

in (3.20) to the usual fundamental domain F = {|τ1| < 1
2 , |τ | > 1}.

Alternatively, we could choose to integrate τ over the full Poincaré upper half-plane H,

and collapse the sum over winding sectors to a single term, say, with n0 = 1 and m1 = 1.

This yields the following final result for the T T̄ partition sum [19, 22]

Z(σ, σ̄, λ) =
σ2

πλ

∫
H

d2τ

τ2
2

exp

(
− Λ

τ2σ2
|σ − τ |2

)
ZCFT(τ, τ̄)

(3.25)

=
σ2

πλ

∫
H

d2τ

τ2
2

exp

(
− 1

λτ2
|σ − τ |2

)
ZCFT(τ, τ̄).
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Note that this expression manifestly satisfies the modular invariance property (3.18): the

measure, the quantity in the exponent, and the CFT partition function are all invariant

under the simultaneous modular transformations in σ, τ and λ.

It is straighforward to verify that the integral expression (3.25) satisfies the differential

equation (3.17). Moreover, by writing ZCFT(τ, τ̄) =
∑

n e
2πiR(τ1Jn+iτ2En), the modular inte-

grals in (3.25) can be preformed exactly and it reduces to the earlier definition (3.13) of the

T T̄ partition sum with En(En, Jn) given in (3.12). It is easy to check that in the λ→ 0 limit,

Z(σ, σ̄, λ) reduces to the original CFT partition function ZCFT(σ, σ̄). Notice that a similar

expression was obtained in [22], but for the single trace version of the T T̄ deformation.

4 Physical operators

We will now turn our attention to the construction of physical operators and correlation

functions of the deformed theory. The existence of a unique notion of deformed local

operators is not self-evident, however, since the T T̄ theory is not a standard local QFT

with a UV fixed point. In particular, since the deformation breaks conformal invariance,

there is no longer a direct correspondence between states and local operators. The best

one can do is to identify a natural class of physical (i.e. BRST invariant) operators of the

deformed theory, that in the µ → 0 limit reduce to a corresponding set of local operators

in the undeformed CFT. We first discuss the physical operators that describe the on-shell

modes of local operators and the stress tensor, and then we present a proposed definition

of the off-shell modes of primary operators of the deformed theory.

4.1 On-shell operators

On-shell physical operators come in two different types. The first category are local oper-

ators of the form

O(0)
∆ (p, z, z̄) = c(z)c̄(z̄)O∆(z, z̄) eip ·X(z,z̄) (4.1)

where O∆(z, z̄) denotes a primary operator of the undeformed CFT. For simplicity we

assume that ∆L = ∆R and pL = pR. So in particular, equation (4.1) describes the on-

shell momentum mode of a local scalar operator that acts within a given winding sector of

the X± CFT. The operator (4.1) is BRST invariant provided the momentum satisfies the

on-shell condition
−p2

0 + p2
1

4
+ ∆ =

c

24
. (4.2)

A second type of physical operators are given by the integral of the corresponding (1, 1)

form over the 2D worldsheet. Typically, the (1, 1)-form operator is obtained by simply

stripping off the c-ghosts from the local form of the physical operators.5 We will denote

these operators by Vp,∆(z, z̄):

Vp,∆(z, z̄) = O∆(z, z̄) eip ·X(z,z̄). (4.3)

5More formally and generally, given any BRST invariant local operator, one obtains the corresponding

(1, 1) form version by integrating the descend equations [Q, V (1,0) ] = ∂V (0), [Q̄, V (1,1) ] = ∂̄ V (1,0), etc.
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For the above operator (4.1), the resulting integrated physical operator takes the standard

form of a momentum eigenmode of the CFT operator O∆

O(p) =

∫
d2z O∆(z, z̄) eip ·X(z,z̄) (4.4)

along the X± plane. The above construction is adequate for on-shell physical operators,

that satisfy the condition (4.2). This class is not sufficient to describe an actual local opera-

tor. In subsection 4.3, we will present a proposal for an off-shell definition of local operators.

4.2 Stress tensor

It is instructive to consider the on-shell modes of the stress tensor. They are expressed in

terms of contour integrals as follows

Ln =

∮
dz
(
∂X−+ ip+κ̂∂ log ∂X+

)
eip+X+(z,z̄), p+ =

n

R
, (4.5)

with κ̂ = κ+1/2. A similar expression holds for the right-moving modes Ln. Equation (4.5)

defines a conserved quantity, provided we work in the purely left-moving sector of the

worldsheet CFT: we have to assume that P− vanishes, so that left-moving plane waves are

periodic with period 2πR. This chiral projection effectively turns off the T T̄ interaction.

This explains why conformal symmetry is preserved within this subsector.

The operators (4.5) are a direct generalization of the well-known DDF operators of

critical string theory, first discovered by DelGuidice, Divecchia and Fubini. A key property

of the DDF operators is that they generate the Virasoro algebra

[Ln,Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0, (4.6)

with central charge c equal to that of the transverse CFT. In view of the earlier discussion

of the light-cone gauge formalism in section 2.3, this is no surprise: via the Virasoro

constraints (3.1) of the total world-sheet theory, the operators (4.5) are identified with the

Virasoro generators of the transverse CFT. This identification, and the result that (4.5)

satisfies (4.6), plays a key role in the original proof of the no ghost theorem of critical open

string theory. This classic proof is not available in our case, however, since the generators

Ln only act within the chiral subsector of the theory. But we can still rely on the modern

proof of the no ghost theorem based on BRST invariance [25] to assure ourselves that the

physical Hilbert space contains only positive norm states.

4.3 Off-shell operators

In this section, we will aim for the more ambitious goal of defining off-shell modes of local

operators. In particular, we would like to be able to consider correlation functions of CFT

operators placed at arbitrary locations on the light-cone cylinder. We thus need to associate

physical operators with arbitrary light-cone momenta to each CFT operator Oh,h̄.

There are different ways to look for such off-shell operators. Schematically, we should

look for physical operators of the form

cc̄O∆ (∂X+)1−j (∂̄X−)1−j̄ eip ·X + . . . (4.7)
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where j and j̄ are determined via the on-shell condition

j = ∆L +
1

4
p2
L − κ, j̄ = ∆R +

1

4
p2
R − κ . (4.8)

The . . . indicate extra terms needed to account for the effect of normal ordering subtrac-

tions, that correct for anomalous OPE contributions between the ∂X+ and ∂̄X− factors

and the plane wave factor. In string theory, one typically sidesteps these normal ordering is-

sues by restricting to on-shell vertex operators with j = j̄ = 1. Equation (4.8) then reduces

to the usual mass-shell restriction on the momenta. The normal ordering subtleties reflect

the fact that the string worldsheet is a non-local gravitational system, and the light-cone

coordinates X+ and X− are non-commuting operators that obey a Heisenberg uncertainty

relation.

Here we will instead follow a more determined approach by drawing on lessons from

string theory. A local space-time operator in string theory pins the string worldsheet to a

given target space location. The best example of such a local operator is a D-instanton.

Inspired by this analogy, and generalizing to include unoriented string worldsheets, we can

introduce two types of position eigenmodes of local space-time operators as the operators

that create boundary states solving the following infinite set of conditions6

Ôh(x)|0〉 = ||h, x〉〉, (Ln− L̄−n)||h, x〉〉 = (α±n − ᾱ±−n)||h, x〉〉 = 0 (4.9)

Õh(x)|0〉 = ||h, x〉〉⊗, (Ln− L̃−n)||h, x〉〉⊗ = (α±n + α̃±−n)||h, x〉〉⊗ = 0 (4.10)

with L̃n = (−)nL̄n and α̃±n = (−)nᾱ±n . The states ||h, x〉〉 and ||h, x〉〉⊗ are generalized

Ishibashi boundary states of the total worldsheet CFT, built by acting with all possible

symmetry generators of the total CFT (defined as the chiral algebra generated by the

Virasoro generators and the oscillator modes of X+(z) and X−(z̄)) on the primary state

|h〉cft|x〉X |0〉gh, with |x〉X the ground state with given target space position

x̂±|x〉X = x±|x〉X , (4.11)

with x̂± the constant zero mode of X±. The operators Ôh(x) and Õh(x) create a finite

size hole or cross cap, respectively, and thereby add three worldsheet moduli: a position

(z, z̄) and a scale parameter y. The mass-shell operator L0 + L̄0−2 does not annihilate the

boundary state, but acts by changing the scale parameter. Physical correlation functions

are defined by the integral over all moduli, including the location and size of the hole

or cross-cap. We can introduce momentum eigenstates |p〉
X

in the X± theory by Fourier

transforming the position eigenstates:

|p〉
X

=

∫
d2x eip·x |x〉

X
. (4.12)

This allows us to give the cross-cap state momentum.

6Here Ln = Lcft
n +L

X
n +Lgh

n denotes the total Virasoro generator and α± the oscillators of the light-cone

scalar fields X±.
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4.4 Flow equation for local operators

In recent work [26], Cardy studied the µ dependence of correlation functions of local op-

erators in the T T̄ deformed theory and showed that this dependence can be captured by

a flow equation, expressed in terms of line integrals of energy momentum tensors. In this

subsection, we will present a schematic derivation of this flow equation starting from our

definition of local operators. As in [26], we will consider correlation functions on the in-

finite plane (or equivalently, we will omit terms in the flow equation that describe the µ

dependence of the initial and final state).

Let us consider an arbitrary n-point correlation function of operators O(xi) in the T T̄

deformed theory on the plane. The local operators create circular boundaries of cross caps.

With some abuse of terminology, we will refer to these holes or cross caps as ‘punctures’,

even though they in fact have a finite size. We would like to study how such correlators

change upon changing µ, which we do by taking a µ derivative of the correlator in the

deformed theory. The µ dependent piece in the action (2.1) of the deformed theory is

Sµ = 1
2πµ

∫
d2z ∂̄X+∂X−. Differentiating with respect to µ brings down an insertion of the

free action of the X± fields

∂

∂µ

〈∏
i

O(xi)
〉

= − 1

2π

〈 ∫
d2z ∂̄X+∂X−

∏
i

O(xi)
〉
, (4.13)

where on the right-hand side we again took natural units µ = 1.

On-shell, away from the insertions of local operators, the light-cone scalar fields X± are

harmonic functions of (z, z̄). This allows us to simplify this expression further, by making

use of the Riemann bilinear identity to write the surface integral over the punctured plane

as a sum of product integrals over its cycles∫
d2z ∂̄X+∂X− =

n∑
j=1

(∫
Aj

∂̄X+

∫
Bj

∂X− −
∫
Bj

∂̄X+

∫
Aj

∂X−

)
, (4.14)

with A and B a canonical basis of cycles, with required unit intersection #(Ai, Bj) = δij
and #(Ai, Aj) = #(Bi, Bj) = 0. For the plane with n punctures (i.e. holes or cross caps),

the A cycles are loops surrounding the punctures and the corresponding B-cycle is a line

running from the puncture to a reference point P , see figure 1.7

Next we note that the contour integral over the A-cycle can be easily evaluated to

1

2π

∮
Ai

∂̄X+ O(xi) = −∂−O(xi),
1

2π

∮
Ai

∂X− O(xi) = ∂+O(xi). (4.15)

This equation is compatible with the Virasoro relation, which expresses the light-cone

coordinate fields in terms of the energy-momentum tensor of the transverse CFT. Similarly,

we can use the Virasoro condition to express the B-cycle line integral as∫
Bi

∂̄X+ =

∫ xi

dx− T−−,

∫
Bi

∂X− =

∫ xi

dx+ T++. (4.16)

7Finite size holes or cross caps do not have a unique location. Due to the special boundary conditions

on the X±-fields at the holes or cross caps, one can choose the B-cycle to end at any point on the circle

(z − zi)(z̄ − z̄i) = y2
i .
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Figure 1. The A- and B-cycles of the n punctured z-plane. The A-cycles go around the punctures,

whereas the B-cycles go from an intersection to a reference point P , indicated in blue.

Here the upper limit xi is meant as a symbolic notation, indicating that the integral is

ending on the finite size ‘puncture’ associated with the local operator O(xi). Within our

formalism, this is the most concrete definition of the line integral of the energy-momentum

tensor up to the location xi of the operator. Note in particular that the B-cycle integral

on the left-hand side does not need to be regularized: our formalism provides an automatic

UV regulator, and does not require the introduction of any other UV scales except for the

T T̄ coupling µ itself.

As noted earlier, both equations in (4.16) strictly only hold if the other component of

the energy-momentum tensor vanishes, since otherwise the lightcone coordinate x± used

inside the line-integral no longer behaves classically. From the point of view of the world-

sheet, equations (4.16) are valid and combining it with (4.15), we can write

− 1

2π

(∫
Ai

∂̄X+

∫
Bi

∂X−−
∫
Bi

∂̄X+

∫
Ai

∂X−
)
O(xi) =

∫ xi(
dx+ T−−∂− + dx− T−−∂+

)
O(xi)

= εabεcd
∫ xi

dxa Tbc(x) ∂dO(xi) . (4.17)

In the second equality we used the fact that the energy momentum tensor of the CFT

is traceless. Going beyond the linearized approximation would involve iterating the flow

equation and include the backreaction of the energy momentum on the coordinate sys-

tem. This integration procedure amounts to expressing everything in terms of target space

coordinates X±. In [26] it was argued that the second form of the equation (4.17) then re-

mains true in the full non-linear theory, leading to the general flow equation for correlation

functions in the deformed theory

∂

∂µ

〈∏
i

O(Xi)
〉

=

n∑
i=1

〈(
εabεcd

∫ Xi

dXa Tbc(X) ∂dO(Xi)

) ∏
j 6=i

O(Xj)
〉
. (4.18)

5 Three-point function

In this subsection we will describe the computation of the matrix element of a local operator

between a given in- and out-state. This calculation can be viewed as the first determination
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of the T T̄ deformation of the OPE coefficient. As before, we place the T T̄ theory on a

cylinder with circumference 2πR, parametrized by coordinates (x0, x1) with 0≤x1<2πR.

We will choose natural units |µ| = 1. Turning off µ amounts to sending the radius R→∞.

Let |E, J〉 denote a state with energy E and momentum J . We set out to calculate the

3-point function of the deformed theory as a function of R2

〈E ′, J ′|Õh(t, φ)|E, J〉 = c123(R2) e−itηeiφ` (5.1)

with t = x0/R, φ = x1/R, η = E ′− E and ` = J ′−J ∈ Z. In the limit R2 →∞, this 3-point

function approaches the CFT answer

〈∆′, J ′|Oh(t, φ)|∆, J〉 = c123 e
−itωeiφ` (5.2)

where ω = ∆′−∆ equals the difference between the conformal dimensions of the initial and

final state, and c123 denotes the OPE coefficient of the undeformed CFT. Without loss of

generality, we will from now on place the operator at the special location t = 0 and φ = 0.

The three point function then reduces to the T T̄ deformed OPE coefficient

c123(R2) = 〈E ′, J ′|Õh(0)|E, J〉 (5.3)

where Õh(0) is the cross cap operator placed at the origin (t, φ) = (0, 0).

It will be convenient to define the in- and out Hilbert space using radial quantization

around two (initially) arbitrarily chosen points z1 and z2. According to (3.4), we can write

the initial and final state as follows

|E, J〉 = eik1·X(z1,z̄1)O(z1, z̄1)c(z1)c̄(z̄1) |0〉
(5.4)

〈E ′, J ′| = 〈0|c(z2)c̄(z̄2)eik1·X(z2,z̄2)O(z2, z̄2)

where the four chiral space-time momenta ki are given by

kµ1 = pµ1L =

(
E ′ −R, J

′

R
−R

)
, −kµ4 = pµ1R =

(
E ′ −R, J

′

R
+R

)
(5.5)

−kµ2 = pµ2L =

(
E −R, J

R
−R

)
, kµ3 = pµ2R =

(
E −R, J

R
+R

)
. (5.6)

Here, for later application, we have chosen the holographic sign µ = −1 of the T T̄ coupling.

This holographic sign corresponds to a negative string tension of the worldsheet theory.

The computation follows a familiar set of steps. For concreteness, we describe here

the computation for the cross cap boundary state. As indicated in figure 1, the cylinder

with a cross cap insertion can be unfolded into a doubled geometry, called the Schottky

double, consisting of two cylinders connected by a tube. The original cross cap geometry is

obtained by modding out an orientation reversing Z2 identification. The doubled geometry

has one real complex structure modulus, which can be identified with the real cross ratio

ρ of the four punctured sphere with a Z2 involution.

The effect of the cross cap operator Õh at worldsheet location (z, z̄) on an opera-

tor O(z1, z̄1) is to place a virtual, chiral copy at the mirror side of the Schottky double,
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k1

k2 k3

k4

h

e , J

e , J’,

Oh
~

Figure 2. The local operator Õh in the deformed theory creates a finite size cross cap. The matrix

element between energy-momentum eigenstates can be computed by mapping to the Schottky dou-

ble. The energy and momentum are encoded via four target space momenta given in equation (5.5).

O(z1, z̄1) → O∆L
(z1) O∆R

(z′1), with z′1 = z − y2

z̄1−z̄ as prescribed by the cross cap identi-

fication. At this point we can make use of the Mobius invariance to fix three of the four

positions to z1 → ∞,8 z2 → 0 and z′2 → 1 and z′1 = z. We are left with one integral over

the unfixed position z

〈E ′, J ′|Õh|E, J〉 = (5.7)

=

∫ 0

1
dz
〈
eik1X(∞)eik2X(0)eik3X(1)eik4X(z)

〉 〈
O∆′

L
(∞)O∆L

(0)Ph,pO∆R
(1)O∆′

R
(z)
〉
.

Here Ph,p is the projection operator onto the chiral sector spanned by all descendents (de-

fined as the states obtained by acting with Virasoro generators and free field X oscillators)

of the primary state |h〉|p〉 with conformal dimension h and momentum p. Converting to

an integral over the real modulus ρ ≡ z12z34
z14z32

= y2

zz̄+y2 of the Schottky double geometry, we

finally obtain

〈E ′, J ′|Õh|E, J〉 =

∫ 1

0
dρ f(ρ)

〈
O∆′

L
(∞)O∆L

(0)Ph,pO∆R
(1)O∆′

R
(1− ρ)

〉
(5.8)

with f(ρ) the vertex operator correlation function computed using the techniques outlined

in section 2.4. Using the free field answer combined with the general expression (2.30) for

the κ dependent conformal anomaly contribution, we find that the T T̄ deformed correlation

function is obtained by integrating a CFT conformal block over a dressing kernel

f(ρ) =
1

(k+
1 k

+
2 k

+
3 k

+
4 )κ/2

(
ρ2(1−ρ)2

(k+
2 ρ−k

+
3 (1−ρ)+k+

4 )2 +4k+
3 k

+
4 (1−ρ)

)κ/2
ρ−

1
2
k3·k4(1−ρ)−

1
2
k2·k4 .

(5.9)

8The factor M in (2.30) is crucial here to ensure that there is no divergence as we take z1 →∞.
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Figure 3. Plot of normalized smearing function f(ρ) in the limit of large R and ∆ for decreasing

values of R (decreasing shade of blue).

5.1 Check of holographic dictionary

In the proposal of [4], turning on the T T̄ coupling with µ < 0 amounts to moving the CFT

into the bulk (see also [7, 27–30]). In this case, it indeed is most natural to choose the cross-

cap definition of the local operator. According to [31–33] we can interpret a global cross-cap

state with some finite size as the HKLL representation of a local bulk field placed at a finite

radial location in the AdS bulk. In [32, 34] it was proposed that the gravitationally dressed

operators are naturally given by the full cross-cap Ishibashi state. This leads us to suspect

that the given prescription for the deformed correlation function can be used as a non-trivial

test of the holographic interpretation of the T T̄ deformation in [4].

Let y be the radial AdS3 coordinate in the Poincaré patch

ds2 =
dy2 + dzdz̄

y2
. (5.10)

As pointed out in [31–33], global conformal transformations that commute with the cross-

cap identification

x− z = − y2

x̄− z̄
(5.11)

map to space-time isometries that leave the corresponding bulk point (y, z, z̄) in invariant.

Note, however, that in our context the size of the cross-cap is not fixed, but represents a

modulus that we should integrate over.

Intuitively, we expect that for large R2, or equivalently, for small T T̄ coupling, the

dressing factor is a sharply peaked function with a maximum ρc(R
2) that approaches ρc → 0

as R2 →∞. This behavior ensures the correspondence with the undeformed theory.

Here we will perform a quantitative check of this physical expectation in the regime

where the initial and final states have energy E � c
12R . For simplicity, we will also set the

angular momentum J = J ′ = 0. In this regime and for large R, the exponents of ρ and
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(1− ρ) in the dressing prefactor f(ρ) in (5.8) take the approximate values

−1

2
k3 · k4 =

1

2
R(E + E ′)− 1

2
EE ′ −→

R large
M (5.12)

−1

2
k2 · k4 + κ = R2− 1

2
R(E + E ′)+

1

2
EE ′ + κ −→

R large
R2 −M (5.13)

with M ' RE ' RE ′. Hence we see that for large R2, f(ρ) is indeed a sharply peaked

function with a maximum at

ρc '
M

R2
. (5.14)

This is illustrated in figure 3, where the leading R behavior of the smearing function f(ρ)

is plotted.

Let us compare this with the proposed holographic dictionary [4]. The bulk space time

dual to the state with mass M is described by the BTZ black hole metric

ds2 = −
(
r2 − r2

+

)
dt2 +

dr2

r2 − r2
+

+ r2dφ2 (5.15)

with r2
+ = 8GNM = 12M

c . On the CFT side, we note that at large central charge c, a CFT

amplitude of heavy operators selects a special ‘uniformizing’ coordinate system (Z, Z̄),

such that the expectation value of the stress tensor vanishes: 〈T (Z)〉 = 〈T̄ (Z̄)〉 = 0. Such

a coordinate system always exists, thanks to the anomalous transformation rule of T (z).

The behavior 〈T (z)〉 = ∆/z2 near a heavy operator with dimension ∆ is uniformized by

Z(z) = zir+ with r2
+ =

24∆

c
− 1 =

12M

c
. (5.16)

The (Z, Z̄) coordinates are multivalued: under z → e2πiz, they undergo a monodromy

specified by the same hyperbolic SL(2,R) elements that characterize the corresponding

BTZ geometry.

The above observations combined indicate that the cross ratio ρ of the Schottky double

geometry must be identified with the radial holographic coordinate r via

ρ =
r2

+

r2
. (5.17)

Combining this with equations (5.14) and (5.16), we find that the location ρ = ρc of the

peak in the smearing f(ρ) corresponds to the radial bulk location

r2
c =

r2
+

ρc
' 12R2

c
. (5.18)

This precisely matches with the proposed holographic dictionary put forward in [4].

It is perhaps tempting to make use of a saddle point approximation of the integral

in (5.8) to conclude that the deformed correlation function is approximated by the un-

deformed correlation function evaluated at the cut-off radial location ρ = ρc. This does

not quite work out, however, because the conformal block itself also has a steep depen-

dence on ρ near ρ = 0. The small ρ behavior of the combined integrand is governed by
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the lightest state that propagates through the intermediate channel, i.e. the small bridge

that connects the two sides of the Schottky double. This state has total scale dimension

L0 = h + (k1 + k2)2 = h − (E − E ′)2. So at small ρ, the integral behaves as
∫
dρ ρL0−1 =∫

dρ ρh−(E − E′)2−1. Note that the ρ integral converges as long as h > (E − E ′)2. In the other

regime h < (E − E ′)2, the amplitude needs to be defined via analytic continuation.

6 Discussion

In this paper we have given a proposal for a non-perturbative definition of a T T̄ deformed

field theory. Our proposal entails the coupling of the original CFT to a two dimensional

non-critical string theory worldsheet in such a way that the total central charge of the

worldsheet theory vanishes. This allows for a rigid definition of the Hilbert space in terms

of the BRST cohomology. In section 3, we showed that the spectrum and thermal partition

function obtained using our formalism indeed matches with the one expected from known

results in the unit winding sector. Most importantly, our proposal gives a recipe for how

to construct local operators of which we have studied two types either using cross-caps

or D-branes. We used these local operators to construct correlation functions and find a

flow equation for them. In section 5 we computed a three-point function in the deformed

theory and compared to the holographic interpretation of the T T̄ deformation. There are

of course many unanswered questions and interesting future directions.

Open strings? In the cross-cap computation in section 5 the worldsheet is the twice

punctured real projective plane, which does not have any boundaries. Hence from the non-

critical string perspective, only closed strings scatter in this process. When we consider

normal Ishibashi states, the geometric identification of the coordinates does have fixed

points, resulting in a true boundary of the string worldsheet. This signals the presence

of open strings that can end on that boundary. Indeed, as mentioned in the text, such

boundary states would be D-instantons. A simple observable involving this particular

boundary condition is the cylinder amplitude, the D-instanton two-point function. In the

closed string picture, this would be a closed string emitted and absorbed by a D-instanton.

For a general Ishibashi boundary state, this amplitude takes the form

A(x1, x2) =
1

N 2
D(−1)

∫ ∞
0

dl

4π2l
e−

1
4πl

(x1−x2)2
χh(2il) (6.1)

with χh(2il) = 〈h|e−2πl(LCFT
0 +L̄CFT

0 −(c+c̄)/24)|h〉. These amplitudes do a priori not cor-

respond to anything known in the undeformed theory, but are valid observables in the

deformed theory. It would be interesting to study these new types of observables in more

detail.

Towards entanglement entropy in string theory. Given that we have shown an

equivalence between non-critical string theory and a T T̄ deformed conformal field theory, it

would be interesting to study entanglement entropy in this context. Entanglement entropy

is usually computed using the replica trick, which, from our perspective, would mean a

replica trick on the worldsheet. As a result of the coordinate transformation from the
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worldsheet to the target space, this will also result in a replicated target space geometry.

Ideally, this computation should yield a finite entanglement entropy, similar to what we

saw happening to the three-point function in section 5. A particularly interesting question

is whether, due to the restriction to the winding one sector and hence the absence of

T -duality, how and if the conical singularity in target space gets resolved or not.

A new non-critical string theory? The non-critical string theory we proposed as

a non-perturbative description of the T T̄ deformed theory is also interesting in its own

right. Our theory can be seen as a 2D version of the Polchinski-Strominger non-critical

string [35], which like ours is a Lorentz-invariant non-linear theory. A special property

of the 2D theory is that the non-linear terms can be simply incorporated via an overall

measure factor (2.30). This fact was known already in the old string theory literature [21].

This old formulation of non-critical string theory should be contrasted with the (recently

more standard) formulation of non-critical string theory with a linear dilaton background,

such as discussed e.g. in [36]. The linear dilaton background breaks Lorentz invariance

along the light-cone directions, and thus looks different from ours. The two formulations

are related, however, via the field redefinition presented in section 2. This field redefinition

can be seen as a reinterpretation of how the target space geometry is encoded inside the

linear dilaton theory. It would be worthwhile to study this mapping between the two

different formulations of non-critical string theory in more detail.

Generalization to T T̄ deformed massive QFTs. In this paper we restricted our

discussion to T T̄ deformed conformal field theories. It is in principle straightforward to

generalize the discussion to massive QFTs. As an example, consider a relevant deforma-

tion of a CFT obtained by turning on an interaction term g
∫
d2zO(z, z̄). The proper

gravitationally dressed version of this deformation takes the form

g

∫
d2z O(z, z̄)(∂X+(z))1−h(∂̄X−(z̄))1−h̄ .

By construction, this gravitationally dressed deformation is an exactly marginal deforma-

tion of the combined matter and gravity theory. Turning on the coupling g this preserves

the physical state conditions that define the T T̄ deformed QFT, at least to linearized order.

Going to higher order or to fully turn on the massive deformation is still a non-trivial techni-

cal challenge. It would be interesting to explore these massive deformations in more detail.

JT gravity and other Planck branes. It is natural to ask if our construction can be

generalized to define a modified T T̄ deformed theory by coupling the CFT to the JT grav-

ity action with non-zero cosmological constant. Unlike our X± theory and the flat dilaton

gravity model, JT gravity is a truly non-linear theory, albeit one without local degrees of

freedom. So it should still be possible to choose an analogue of the time-like gauge and use

the uniformizing AdS2 coordinate system as worldsheet coordinates. The effective theory in

this gauge will look like a CFT with a non-linear generalization of a T T̄ deformation. More-

over, it seems natural to assume that this deformed CFT will have an intrinsic UV cut-off.
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By applying the holographic mapping, this coupled CFT+JT gravity system can be

given an effective description in terms of a compactified AdS3 space-time, with the asymp-

totic region replaced by an effective Planck brane. This exact type of situation was recently

used in [37] to study the dynamics of quantum extremal surfaces in 2D CFT coupled to JT

gravity. From the 3D perspective, the appearance of JT gravity is an example of the RS

scenario [38], i.e. the localization mechanism by which a radial cutoff leads to dynamical

gravity along the Planck brane. Conversely, this dictionary provides additional support

for the proposed holographic interpretation of the T T̄ deformations and its non-linear JT

gravity generalization.

Another context where a coupled CFT+JT theory was obtained from integrating out

UV degrees of freedom is provided in the work in [39, 40]. Namely, it was found that

entanglement degrees of freedom of the CFT could be treated as a collective mode of

the CFT, described by an effective CFT+JT action. It would be interesting to better

understand the connection to T T̄ in that setting as well.
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A OPE’s with T

In this appendix we outline the computation of OPE’s involving the κ-dependent stress

tensor (2.21).

A.1 OPE between stress tensors

Using the standard Wick contraction rule (2.20) one finds that the contribution to T (z)T (w)

proportional to κ takes the form

κ

{
∂2
z

(
log
(
∂X+(z)

)
∂X−(w)

)
∂X+(w) + ∂X+(z) ∂2

w

(
∂X−(z)log ∂X+(w)

)}
(A.1)

= −κ
{
∂2
z

(
1

∂X+(z)

1

(z − w)2

)
∂X+(w) + ∂X+(z) ∂2

w

(
1

∂X+(w)

1

(z − w)2

)}
.

In the second line we used the chain rule to evaluate the contraction between the logarithm

of ∂X± and ∂X∓. It remains to perform a Laurent series expansion around z = w of this

expression, which gives

− 12κ

(z − w)4
− 2κ ∂2 log ∂X+(w)

(z − w)2
− κ ∂3 log ∂X+(w)

z − w
+ · · · (A.2)

as required to find the result in (2.22).
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A.2 OPE between stress tensor and plane wave operator

Here we give some details of the computation of the OPE between the modified stress

tensor (2.21) and plane wave operators. In fact, we can make a more general statement.

Let us consider the OPE between F(∂X(z)) and eipX(w). Without loss of generality we

omitted the index structure on X and p here. The contraction of X with itself is

X(z)X(w) = − log(z − w) . (A.3)

Let us write F(∂X(z)) as a power series in ∂X. The OPE we are then interested in is

: (∂X(z))n :: eipX(w) : ∼
n∑
k=1

(
n

k

)
(ip)k

(z − w)k
(∂X(z))n−keipX(w)

(A.4)

=

[(
ip

z − w
+ ∂X(z)

)n
− (∂X(z))n

]
eipX(w) .

Hence,

: F(∂X(z)) :: eipX(w) :∼
[
F
(

ip

z − w
+ ∂X(z)

)
−F(∂X(z))

]
eipX(w). (A.5)

Now we should expand the ∂X around z = w to get the final form of the OPE. It is clear

that many derivatives of X at z = w can appear in that way and so to make things concrete,

let us apply it to our situation in which the non-trivial OPE is with F = −κ∂2 log(∂X(z)).

Expanding around z = w then gives

− κ : ∂2 log(∂X(z)) :: eipX(w) :∼ − κ

(z − w)2
+ (regular), (A.6)

which shows indeed that the κ correction to the stress tensor gives rise to a shift in the con-

formal dimension by −κ. It is interesting to note that stress tensors with a correction pro-

portional to the Schwarzian derivative of X as appeared in the literature before [14] do not

give rise to this shift. In fact, the OPE of the plane waves with such a correction is regular.
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[3] A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, T T̄ -deformed 2D quantum field theories,

JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].

[4] L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with T T̄ , JHEP 04

(2018) 010 [arXiv:1611.03470] [INSPIRE].

– 27 –

https://creativecommons.org/licenses/by/4.0/
https://arxiv.org/abs/hep-th/0401146
https://inspirehep.net/search?p=find+EPRINT+hep-th/0401146
https://doi.org/10.1016/j.nuclphysb.2016.12.014
https://doi.org/10.1016/j.nuclphysb.2016.12.014
https://arxiv.org/abs/1608.05499
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.05499
https://doi.org/10.1007/JHEP10(2016)112
https://arxiv.org/abs/1608.05534
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.05534
https://doi.org/10.1007/JHEP04(2018)010
https://doi.org/10.1007/JHEP04(2018)010
https://arxiv.org/abs/1611.03470
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.03470


J
H
E
P
0
4
(
2
0
2
0
)
0
8
4

[5] S. Dubovsky, V. Gorbenko and M. Mirbabayi, Asymptotic fragility, near AdS2 holography

and T T̄ , JHEP 09 (2017) 136 [arXiv:1706.06604] [INSPIRE].

[6] A. Giveon, N. Itzhaki and D. Kutasov, T T̄ and LST, JHEP 07 (2017) 122

[arXiv:1701.05576] [INSPIRE].

[7] P. Kraus, J. Liu and D. Marolf, Cutoff AdS3 versus the T T̄ deformation, JHEP 07 (2018)

027 [arXiv:1801.02714] [INSPIRE].

[8] P. Goddard, J. Goldstone, C. Rebbi and C.B. Thorn, Quantum dynamics of a massless

relativistic string, Nucl. Phys. B 56 (1973) 109 [INSPIRE].

[9] M. Baggio and A. Sfondrini, Strings on NS-NS backgrounds as integrable deformations, Phys.

Rev. D 98 (2018) 021902 [arXiv:1804.01998] [INSPIRE].

[10] S. Frolov, T T̄ deformation and the light-cone gauge, arXiv:1905.07946 [INSPIRE].

[11] A. Sfondrini and S.J. van Tongeren, T T̄ deformations as TsT transformations, Phys. Rev. D

101 (2020) 066022 [arXiv:1908.09299] [INSPIRE].

[12] S. Dubovsky, V. Gorbenko and M. Mirbabayi, Asymptotic fragility, near AdS2 holography

and T T̄ , JHEP 09 (2017) 136 [arXiv:1706.06604] [INSPIRE].

[13] E.P. Verlinde and H.L. Verlinde, A unitary S matrix and 2D black hole formation and

evaporation, Nucl. Phys. B 406 (1993) 43 [hep-th/9302022] [INSPIRE].

[14] Y. Baba, N. Ishibashi and K. Murakami, Light-cone gauge string field theory in noncritical

dimensions, JHEP 12 (2009) 010 [arXiv:0909.4675] [INSPIRE].

[15] K. Schoutens, H.L. Verlinde and E.P. Verlinde, Quantum black hole evaporation, Phys. Rev.

D 48 (1993) 2670 [hep-th/9304128] [INSPIRE].

[16] T.D. Chung and H.L. Verlinde, Dynamical moving mirrors and black holes, Nucl. Phys. B

418 (1994) 305 [hep-th/9311007] [INSPIRE].

[17] C.G. Callan Jr., S.B. Giddings, J.A. Harvey and A. Strominger, Evanescent black holes,

Phys. Rev. D 45 (1992) R1005 [hep-th/9111056] [INSPIRE].

[18] J.G. Russo, L. Susskind and L. Thorlacius, The endpoint of Hawking radiation, Phys. Rev. D

46 (1992) 3444 [hep-th/9206070] [INSPIRE].

[19] S. Dubovsky, V. Gorbenko and G. Hernández-Chifflet, T T̄ partition function from topological

gravity, JHEP 09 (2018) 158 [arXiv:1805.07386] [INSPIRE].

[20] S. Mandelstam, The interacting string picture and functional integration, in Workshop on

Unified String Theories, Santa Barbara, CA, U.S.A., 29 July–16 August 1985, pg. 46

[INSPIRE].

[21] M. Green, M. Green, J. Schwarz and E. Witten, Superstring theory: volume 2, loop

amplitudes, anomalies and phenomenology, Cambridge Monographs on Mathematical

Physics, Cambridge University Press, Cambridge, U.K. (1988).

[22] A. Hashimoto and D. Kutasov, T T̄ , JT̄ , T J̄ partition sums from string theory, JHEP 02

(2020) 080 [arXiv:1907.07221] [INSPIRE].

[23] J. Cardy, The T T̄ deformation of quantum field theory as random geometry, JHEP 10

(2018) 186 [arXiv:1801.06895] [INSPIRE].

[24] O. Aharony, S. Datta, A. Giveon, Y. Jiang and D. Kutasov, Modular invariance and

uniqueness of T T̄ deformed CFT, JHEP 01 (2019) 086 [arXiv:1808.02492] [INSPIRE].

– 28 –

https://doi.org/10.1007/JHEP09(2017)136
https://arxiv.org/abs/1706.06604
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.06604
https://doi.org/10.1007/JHEP07(2017)122
https://arxiv.org/abs/1701.05576
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.05576
https://doi.org/10.1007/JHEP07(2018)027
https://doi.org/10.1007/JHEP07(2018)027
https://arxiv.org/abs/1801.02714
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.02714
https://doi.org/10.1016/0550-3213(73)90223-X
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B56,109%22
https://doi.org/10.1103/PhysRevD.98.021902
https://doi.org/10.1103/PhysRevD.98.021902
https://arxiv.org/abs/1804.01998
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.01998
https://arxiv.org/abs/1905.07946
https://inspirehep.net/search?p=find+EPRINT+arXiv:1905.07946
https://doi.org/10.1103/PhysRevD.101.066022
https://doi.org/10.1103/PhysRevD.101.066022
https://arxiv.org/abs/1908.09299
https://inspirehep.net/search?p=find+EPRINT+arXiv:1908.09299
https://doi.org/10.1007/JHEP09(2017)136
https://arxiv.org/abs/1706.06604
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.06604
https://doi.org/10.1016/0550-3213(93)90160-Q
https://arxiv.org/abs/hep-th/9302022
https://inspirehep.net/search?p=find+EPRINT+hep-th/9302022
https://doi.org/10.1088/1126-6708/2009/12/010
https://arxiv.org/abs/0909.4675
https://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4675
https://doi.org/10.1103/PhysRevD.48.2670
https://doi.org/10.1103/PhysRevD.48.2670
https://arxiv.org/abs/hep-th/9304128
https://inspirehep.net/search?p=find+EPRINT+hep-th/9304128
https://doi.org/10.1016/0550-3213(94)90249-6
https://doi.org/10.1016/0550-3213(94)90249-6
https://arxiv.org/abs/hep-th/9311007
https://inspirehep.net/search?p=find+EPRINT+hep-th/9311007
https://doi.org/10.1103/PhysRevD.45.R1005
https://arxiv.org/abs/hep-th/9111056
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D45,R1005%22
https://doi.org/10.1103/PhysRevD.46.3444
https://doi.org/10.1103/PhysRevD.46.3444
https://arxiv.org/abs/hep-th/9206070
https://inspirehep.net/search?p=find+EPRINT+hep-th/9206070
https://doi.org/10.1007/JHEP09(2018)158
https://arxiv.org/abs/1805.07386
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.07386
https://inspirehep.net/search?p=find+recid+218317
https://doi.org/10.1007/JHEP02(2020)080
https://doi.org/10.1007/JHEP02(2020)080
https://arxiv.org/abs/1907.07221
https://inspirehep.net/search?p=find+EPRINT+arXiv:1907.07221
https://doi.org/10.1007/JHEP10(2018)186
https://doi.org/10.1007/JHEP10(2018)186
https://arxiv.org/abs/1801.06895
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.06895
https://doi.org/10.1007/JHEP01(2019)086
https://arxiv.org/abs/1808.02492
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.02492


J
H
E
P
0
4
(
2
0
2
0
)
0
8
4

[25] M. Spiegelglas, Q BRST cohomology: a mechanism for getting rid of negative norm states,

with an application to the bosonic string, Nucl. Phys. B 283 (1987) 205 [INSPIRE].

[26] J. Cardy, T T̄ deformation of correlation functions, JHEP 12 (2019) 160

[arXiv:1907.03394] [INSPIRE].

[27] T. Hartman, J. Kruthoff, E. Shaghoulian and A. Tajdini, Holography at finite cutoff with a

T 2 deformation, JHEP 03 (2019) 004 [arXiv:1807.11401] [INSPIRE].

[28] M. Taylor, TT deformations in general dimensions, arXiv:1805.10287 [INSPIRE].

[29] M. Guica and R. Monten, T T̄ and the mirage of a bulk cutoff, arXiv:1906.11251 [INSPIRE].

[30] D.J. Gross, J. Kruthoff, A. Rolph and E. Shaghoulian, T T̄ in AdS2 and quantum mechanics,

Phys. Rev. D 101 (2020) 026011 [arXiv:1907.04873] [INSPIRE].

[31] Y. Nakayama and H. Ooguri, Bulk local states and crosscaps in holographic CFT, JHEP 10

(2016) 085 [arXiv:1605.00334] [INSPIRE].

[32] H. Verlinde, Poking holes in AdS/CFT: bulk fields from boundary states, arXiv:1505.05069

[INSPIRE].

[33] M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi and K. Watanabe, Continuous multiscale

entanglement renormalization ansatz as holographic surface-state correspondence, Phys. Rev.

Lett. 115 (2015) 171602 [arXiv:1506.01353] [INSPIRE].

[34] A. Lewkowycz, G.J. Turiaci and H. Verlinde, A CFT perspective on gravitational dressing

and bulk locality, JHEP 01 (2017) 004 [arXiv:1608.08977] [INSPIRE].

[35] J. Polchinski and A. Strominger, Effective string theory, Phys. Rev. Lett. 67 (1991) 1681

[INSPIRE].

[36] M. Dodelson, E. Silverstein and G. Torroba, Varying dilaton as a tracer of classical string

interactions, Phys. Rev. D 96 (2017) 066011 [arXiv:1704.02625] [INSPIRE].

[37] A. Almheiri, R. Mahajan, J. Maldacena and Y. Zhao, The Page curve of Hawking radiation

from semiclassical geometry, JHEP 03 (2020) 149 [arXiv:1908.10996] [INSPIRE].

[38] L. Randall and R. Sundrum, A large mass hierarchy from a small extra dimension, Phys.

Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

[39] N. Callebaut and H. Verlinde, Entanglement dynamics in 2D CFT with boundary: entropic

origin of JT gravity and Schwarzian QM, JHEP 05 (2019) 045 [arXiv:1808.05583]

[INSPIRE].

[40] N. Callebaut, The gravitational dynamics of kinematic space, JHEP 02 (2019) 153

[arXiv:1808.10431] [INSPIRE].

– 29 –

https://doi.org/10.1016/0550-3213(87)90269-0
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B283,205%22
https://doi.org/10.1007/JHEP12(2019)160
https://arxiv.org/abs/1907.03394
https://inspirehep.net/search?p=find+EPRINT+arXiv:1907.03394
https://doi.org/10.1007/JHEP03(2019)004
https://arxiv.org/abs/1807.11401
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.11401
https://arxiv.org/abs/1805.10287
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.10287
https://arxiv.org/abs/1906.11251
https://inspirehep.net/search?p=find+EPRINT+arXiv:1906.11251
https://doi.org/10.1103/PhysRevD.101.026011
https://arxiv.org/abs/1907.04873
https://inspirehep.net/search?p=find+EPRINT+arXiv:1907.04873
https://doi.org/10.1007/JHEP10(2016)085
https://doi.org/10.1007/JHEP10(2016)085
https://arxiv.org/abs/1605.00334
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.00334
https://arxiv.org/abs/1505.05069
https://inspirehep.net/search?p=find+EPRINT+arXiv:1505.05069
https://doi.org/10.1103/PhysRevLett.115.171602
https://doi.org/10.1103/PhysRevLett.115.171602
https://arxiv.org/abs/1506.01353
https://inspirehep.net/search?p=find+EPRINT+arXiv:1506.01353
https://doi.org/10.1007/JHEP01(2017)004
https://arxiv.org/abs/1608.08977
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.08977
https://doi.org/10.1103/PhysRevLett.67.1681
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,67,1681%22
https://doi.org/10.1103/PhysRevD.96.066011
https://arxiv.org/abs/1704.02625
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.02625
https://doi.org/10.1007/JHEP03(2020)149
https://arxiv.org/abs/1908.10996
https://inspirehep.net/search?p=find+EPRINT+arXiv:1908.10996
https://doi.org/10.1103/PhysRevLett.83.3370
https://doi.org/10.1103/PhysRevLett.83.3370
https://arxiv.org/abs/hep-ph/9905221
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9905221
https://doi.org/10.1007/JHEP05(2019)045
https://arxiv.org/abs/1808.05583
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.05583
https://doi.org/10.1007/JHEP02(2019)153
https://arxiv.org/abs/1808.10431
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.10431

	Introduction
	A non-perturbative definition of T barT
	T barT at c=24 as a critical string worldsheet
	Equivalence to 2D dilaton gravity
	Dilaton gravity at general central charge

	T barT as a non-critical string worldsheet
	Correlation functions in the X**(pm) theory

	Spectrum and partition sum
	Spectrum
	Partition sum

	Physical operators
	On-shell operators
	Stress tensor
	Off-shell operators
	Flow equation for local operators

	Three-point function
	Check of holographic dictionary

	Discussion
	OPE's with T
	OPE between stress tensors
	OPE between stress tensor and plane wave operator


