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1 Introduction

The scalar O(N) symmetric theory (φiφi)2 in d = 4 − ε dimensions is extremely rich in

the number of physical phenomena that it can accommodate and describe. For instance

for N = 0 it coincides with the critical behavior of polymers (self-avoiding walks) while for

N = 1 it lies in the same universality class as liquid-vapor transitions and uniaxial magnets

(Ising). For N = 2 the theory describes the superfluid transition of liquid helium close to

the λ-point (XY ). For N = 3 it describes the critical behavior of isotropic ferromagnets

(Heisenberg). There are many more examples of critical phenomena that are described by

the scalar O(N) symmetric model and its close relatives for which the reader can find a

more complete discussion in [1]. It suffices to say that further understanding of the theory

is of great importance.

For these reasons much effort has been put into computing various renormalization

group functions in d = 4 − ε dimensions to higher and higher order in the coupling. The

three and four loop calculation [2, 3] as well as the five loop calculation [4–9] long stood as

the state-of-the-art of higher loop calculations in d = 4 − ε dimensions. But recently the

six loop calculations initiated in [10, 11] were brought to the end in [12] for general N . In

addition an impressive seven loop calculation in the special case of N = 1 has appeared [13].

These now constitute the highest loop order calculations of the renormalization group

functions which include the beta function, the field anomalous dimension and the mass

anomalous dimension.

At sufficiently small ε the one loop beta function possesses a non-trivial zero [14].

This is the Wilson-Fisher fixed point. At this fixed point anomalous dimensions and their

associated critical exponents are expressed as power series in ε. At a fixed point these

critical exponents are scheme independent physical quantities. For general N and using

the six loop calculations they can be found in analytical form to O(ε5) in the attached

Mathematica file in [12]. When combining these results with resummation techniques they
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agree well with experiments [7, 12, 15, 16]. We also note several recent complimentary

studies of scalar field theories in various dimensions [17–37].

In this work we do not attempt to extend any of the higher loop calculations. We

will instead entertain ourselves by providing explicit and closed form expressions for the

fixed point value of the coupling and any anomalous dimension or critical exponent at the

Wilson-Fisher fixed point to all orders in ε. The closed form all orders expressions are then

functions of all the coefficients of the beta function and anomalous dimension (which still

need to be calculated). The main feature of the Wilson-Fisher fixed point is the fact that

it is an expansion in the first coefficient (which is ε) of the beta function in d = 4− ε. As

we will see this allows us to use the Lagrange inversion theorem to formally find the zero

of the beta function to all orders in ε.

Given the formal power series f(x) =
∑∞

i=1 cix
i one might ask whether it is possible to

find the coefficients di in the power series g(y) =
∑∞

i=1 diy
i where f and g are each others

compositional inverses g(f(x)) = x and f(g(y)) = y. The Lagrange inversion theorem

provides a procedure for doing to this and for the first few orders one finds d1 = 1/c1,

d2 = −c2/c31, d3 = (2c22 − c1c3)/c51, etc. There is also a general closed form expression for

di at any order which is given in terms of Bell polynomials. This can be found for instance

in [38].

In our case where we study critical phenomena via the ε-expansion it will be more

convenient for us to phrase the question of power series inversion in a slightly different

but equivalent way. Instead of asking for the compositional inverse of f(x) =
∑∞

i=1 cix
i

we will ask for the zero of f̃(x) where f̃(x) ≡ −a + f(x) = −a +
∑∞

i=1 cix
i. The zero

of f̃(x) we are looking for should then be given as a power series in the first coefficient

a of f̃(x) and be written as x =
∑∞

i=1 dia
i. Of course one again finds d1 = 1/c1, d2 =

−c2/c31, d3 = (2c22 − c1c3)/c51, etc. as above. It is more natural for us to consider Lagrange

inversion in this way. Further details will follow below where we will see the coefficients

di presented in both a combinatoric and geometric language within the physical setting of

critical phenomena and the ε-expansion.

The use of Lagrange inversion of power series in physics has a beautiful history in

celestial mechanics and originates in the study of the restricted Newtonian three-body

problem. Here one has to solve a quintic equation 0 = a +
∑5

i=1 cix
i in x for three sets

of coefficients in order to find the location of the three collinear Lagrange points L1, L2

and L3. Although it is impossible to find general solutions in terms of radicals of a quintic

equation it is possible to find a single real solution which is an expansion in the coefficient

a as x =
∑∞

i=1 dia
i. One can in principle compute the coefficients di to any desired order

using the Lagrange inversion theorem. The success of the Lagrange method to find the

locations of L1, L2 and L3 is perhaps best illustrated by the fact that in the Earth-Sun

system the Solar and Heliospheric Observatory (SOHO) occupies L1 while the Wilkinson

Microwave Anisotropy Probe (WMAP) occupies L2.

The paper is organized as follows. In section 2 we derive the value of the Wilson-Fisher

fixed point coupling in terms of the beta function coefficients to all orders in ε and show

that it is given in terms of Bell polynomials. In section 3 we press on and discuss how the

ε-expansion of the Wilson-Fisher fixed point coupling also can be understood as a geometric
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expansion controlled by associaheda. In section 4 we discuss anomalous dimensions while

in section 5 we compute the fixed point coupling and critical exponents to O(ε7) for the

O(1) model. We conclude in section 6.

2 The Wilson-Fisher fixed point

We write the beta function of the coupling g as β(g, ε) and in d = 4 − ε dimensions it is

generally given as a formal power series expansion

β(g, ε) = −εg +

∞∑
i=1

bi−1g
i+1 = −εg + b0g

2 + b1g
3 + . . . (2.1)

where bi, i = 0, 1, . . . are the standard beta function coefficients. We are interested in the

fixed points β(g∗, ε) = 0 of the theory in d = 4 − ε dimensions. Clearly the trivial fixed

point g∗ = 0 always exists. At one loop the beta function also possesses a non-trivial fixed

point g∗ = ε
b0

. This is the Wilson-Fisher fixed point.

We will be interested in the physics of the Wilson-Fisher fixed point and how to derive

a closed form exact expression for the fixed point value of the coupling g∗ to all orders in

ε. First write the fixed point equation β(g∗, ε) = 0 we want to solve as

0 = −ε̃+

∞∑
i=1

b̃i−1g
i
∗ = −ε̃+ g∗ + b̃1g

2
∗ + b̃2g

3
∗ + . . . (2.2)

where for convenience we have chosen to normalize everything as ε̃ = ε
b0

and b̃i = bi
b0

so

that the coefficient of g∗ is unity. This is purely a matter of convenience. We want to find

the zero g∗(ε̃) which is a power series in ε̃. As already explained this is encoded in the

Lagrange inversion theorem. Finding g∗(ε̃) amounts to determining the coefficients gi in

the power series

g∗(ε̃) =

∞∑
i=1

gi−1ε̃
i = g0ε̃+ g1ε̃

2 + g2ε̃
3 + . . . (2.3)

One way to do this is to first plug the ansatz for g∗(ε̃) back into eq. (2.2) and then expand

again in ε̃ to arrive at1

0 = −ε̃+
∞∑
j=1

b̃j−1

( ∞∑
l=1

gl−1ε̃
l

)j

= (g0−1) ε̃+
(
g1+g20 b̃1

)
ε̃2+

(
g2+2g0g1b̃1+g30 b̃2

)
ε̃3+. . .+ciε̃

i+. . .

(2.4)

In order to write an explicit closed form expression for the i’th coefficient ci we need to know

what terms in the composite set of sums will contribute at O(ε̃i). If we first look at the

infinite sum
∑∞

l=1 gl−1ε̃
l then clearly only a finite number of terms g0ε̃+ g1ε̃

2 + . . .+ gk−1ε̃
k

for some k ≤ i, can eventually contribute at O(ε̃i). How large can k be until the term

gk−1ε̃
k will no longer contribute at O(ε̃i)? Once we take the finite number of terms to

1An alternative method can again be found in [38].
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the power j, the term that involves a single factor of gk−1ε̃
k and is lowest order in ε̃ is

(g0ε̃)
j−1gk−1ε̃

k. So if this is to be of order O(ε̃i) then clearly k = i − j + 1. Using the

multinomial formula we can therefore write(
g0ε̃+g1ε̃

2+. . .+gi−j ε̃
i−j+1

)j
=

∑
j1+...+ji−j+1=j

j!

j1! · · · ji−j+1!

(
gj10 · · · g

ji−j+1

i−j

)
ε̃1j1+...+(i−j+1)ji−j+1

(2.5)

where the sum is over all sequences j1, . . . , ji−j+1. Precisely for 1j1+. . .+(i−j+1)ji−j+1 = i

we pick up the term of O(ε̃i) and we can therefore read off the desired coefficient as

ci =
1

i!

i∑
j=1

j!b̃j−1Bi,j (1!g0, . . . , (i− j + 1)!gi−j) . (2.6)

We have here chosen to write the coefficient ci in terms of the Bell polynomials

Bi,j(x1, . . . , xi−j+1) =
∑

j1+...+ji−j+1=j

1j1+...+(i−j+1)ji−j+1=i

i!

j1! · · · ji−j+1!

(x1
1!

)j1
· · ·
(

xi−j+1

(i− j + 1)!

)ji−j+1

.

(2.7)

For completeness we note that it is also possible to find the coefficient by using the Faà

di Bruno formula for the i’th derivative of a composite function. However the above

derivation is quite straightforward and perhaps not everyone is familiar with the Faà di

Bruno formula.2 Also for a discussion on Bell polynomials we refer the reader to [39].

Bell polynomials are well known in combinatorics. They give a way to encode, in a

polynomial, the partitioning of a set into non-empty, non-overlapping subsets. Assume we

have a set of i elements that we want to partition into j non-empty, non-overlapping subsets.

Each subset in the partition will contain some number of original elements k, which can

be any k = 1, . . . , i− j + 1. If there are l such subsets and this specific partitioning can be

done in m ways then this is encoded as mxlk in the Bell polynomial Bi,j(x1, . . . , xi−j+1).
3

The fact that the coefficients ci are combinatorial in the b̃i’s and gi’s should of course

not come as a surprise since they are the i’th derivative of a composite function. Now

it is important to realize that the expansion in eq. (2.4) should hold for varying ε̃ so we

can equate coefficients order by order in ε̃. The coefficient of ε̃ allows to solve for g0, the

coefficient of ε̃2 allows to solve for g1 (already knowing g0) and the coefficient of ε̃3 allows to

solve for g2 (already knowing g0 and g1). This can be done order by order to any order. In

2The Faà di Bruno formula is

di

dxi
f(h(x)) =

i∑
j=1

f (j)(h(x))Bi,j

(
h′(x), h′′(x), . . . , h(i−j+1)(x)

)
.

3An example: take a set with i = 5 elements {a, b, c, d, e} that we want to partition into j = 3 subsets.

First this can be done as {{a, b}, {c, d}, {e}} where l = 1 subsets contain k = 1 elements and l = 2 subsets

contain k = 2 elements. This partitioning can be done in m = 15 different ways. The partitioning into

three subsets can also be done as {{a, b, c}, {d}, {e}} where l = 2 subsets contain k = 1 elements and l = 1

subsets contain k = 3 elements. This partitioning can be done in m = 10 different ways. All this is precisely

encoded in the Bell polynomial B5,3(x1, x2, x3) = 15x1x
2
2 + 10x2

1x3.
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general the coefficient ci of ε̃i depends on g0 . . . , gi−1 and is linear in gi−1 so one can always

solve for it (already knowing g1, . . . , gi−2). It is linear in gi−1 since the Bell polynomials

satisfy the following identity Bi,1(1!g0, . . . , i!gi−1) = i!gi−1 which comes about in the j = 1

term in the sum in ci. Order by order we then find

g0 = 1 (2.8)

g1 = −b̃1 (2.9)

g2 = 2b̃21 − b̃2 (2.10)

g3 = −5b̃31 + 5b̃1b̃2 − b̃3 (2.11)

g4 = 14b̃41 − 21b̃21b̃2 + 3b̃22 + 6b̃1b̃3 − b̃4 (2.12)

...

gi−1 =
1

i!

i−1∑
j=1

(−1)j ĩBi−1,j

(
1!b̃1, . . . , (i− j)!b̃i−j

)
(2.13)

where ĩ = i(i+ 1) · · · (i+ j − 1). This gives us every coefficient gi−1 and hence the value of

the fixed point coupling to all orders in ε in terms of the beta function coefficients

g∗(ε) =
∞∑
i=1

gi−1

(
ε

b0

)i
, gi−1 =

1

i!

i−1∑
j=1

(−1)j ĩBi−1,j

(
1!b1
b0

, . . . ,
(i−j)!bi−j

b0

)
, g0 = 1 .

(2.14)

This is a very concise and compact formula for the fixed point value to all orders in ε and

is combinatoric in the sense that it is given in terms of the Bell polynomials.

Note that for a given i the coefficient gi−1 depends on the i loop beta function coef-

ficients b0, . . . , bi−1 only and does not receive corrections from higher orders. So for the

scalar O(N) symmetric model where the beta function is known to six loops [11] we can

calculate the first six coefficients gi, i = 0, . . . , 5. Upon insertion of the six loop beta func-

tion coefficients into gi, i = 0, . . . , 5 we find complete agreement with the reported results

in the Mathematica file accompanying [11]. This is a check of our formal manipulations.

3 The ε-expansion as a geometric expansion: associahedra

It was expected that the ε-expansion of the Wilson-Fisher coupling order by order is some

combinatorial function of the beta function coefficients. However it has only very recently

become clear to the mathematicians [40–42] that Lagrange inversion also has a geometric

interpretation. In fact instead of viewing the arrangement of the beta function coeffi-

cients at each order in ε as a combinatorial exercise we can see it as being controlled

by a specific polytope known as an associahedron. We note that recently the associahe-

dron also has found its way into other branches of theoretical physics including scattering

amplitudes [43, 44].

There are many ways to realize an associahedron [40, 41, 45–47] (see [48] for an intro-

duction). We will define the associahedron Ki as a convex polytope of dimension i − 2.
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(ab )

(ab )c a(bc)

(a) K2 (point) and K3 (line).

((ab )c )d

(ab )(cd)

a(b (cd))

a((bc)d)(a(bc))d

(b) K4 (pentagon).

a((b (cd))e)

a(((bc)d)e)

a((bc)(de))

(a(bc))(de)

((ab )c )(de)

(((ab )c )d)e

((ab )(cd))e

(a(b (cd)))e

((a(bc))d) (a((bc)d))e
a((b (cd))e)

a(((bc)d)e)

a((bc)(de))

(a(bc))(de)

((ab )c )(de)

(((ab )c )d)e

((ab )(cd))e

(a(b (cd)))e

(ab )(c (de)) a(b ((cd)e))

a(b (c (de)))

(ab )((cd)e)

(c) Front and back of K5.

Figure 1. The associahedra K2, K3, K4 and K5.

If we have a string of i elements then each vertex corresponds to inserting parentheses

in this string and each edge corresponds to using the associativity rule for replacing the

parentheses a single time. We now construct the first few associahedra with i = 1, . . . , 5.

In figure 1a–1c we show the zero, one, two and three dimensional associahedra K2, K3, K4

and K5.

• If i = 1 the associahedron K1 is defined to be the empty set.

• If i = 2 there is only one way to put a set of parentheses in the string of i = 2

elements (ab). So the zero dimensional associahedron K2 is a point.

• If i = 3 there are two ways to put the parentheses in the string of i = 3 elements

(ab)c and a(bc). So there are two vertices and the one dimensional associahedron K3

is a line.

• If i = 4 there are five different ways to put the parentheses in the string of i = 4

elements ((ab)c)d, (ab)(cd), a(b(cd)), a((bc)d) and (a(bc))d. So there are five vertices

and the two dimensional associahedron K4 is the pentagon.

• If i = 5 there are fourteen ways to put the parentheses in the string of i = 5 elements

((ab)(cd))e, (ab)((cd)e), ((ab)c)(de), (ab)(c(de)), (a(bc))(de), a((bc)(de)), ((a(bc))d)e,

(a((bc)d))e, a(((bc)d)e), a((b(cd))e), a(b((cd)e)), (a(b(cd)))e, (((ab)c)d)e, a(b(c(de))).
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i\j 0 1 2 3 4

1 — — — — —

2 1 — — — —

3 2 1 — — —

4 5 5 1 — —

5 14 21 9 1 —

6 42 84 56 14 1

Table 1. Number triangle showing the number of j-dimensional faces T (i, j) of the associahe-

dron Ki.

So there are fourteen vertices and the three dimensional associahedron K5 is com-

posed of six pentagons and three squares.

A few facts about the associahedron are relevant for us. Details can be found in [40, 41,

45–48]. The associahedron Ki of dimension i− 2 have faces of dimension j with j ≤ i− 2.

There is of course only one face of dimension j = i − 2 which is the associahedron itself.

The number of j-dimensional faces with j ≤ i− 3 of the associahedron Ki is [49]

T (i, j) =
1

i− j − 1

(
i− 2

i− j − 2

)(
2i− j − 2

i− j − 2

)
. (3.1)

In the number triangle in table 1 we show the number of faces of different dimensions for

the first few associahedra. Specifically the number of vertices T (i, 0) = 1
i

(
2i−2
i−1
)

is known as

the (i− 1)’th Catalan number and is the leftmost column in the number triangle. Finally

we need that Cartesian products of lower dimensional associahedra F = Ki1 × · · · ×Kim

are isomorphic to the faces of the associahedron Ki. This also includes the faces which

are not themselves an associahedron such as the three squares in K5 which are isomorphic

to K3 ×K3.

Having introduced the associahedra we now turn to how they control the ε-expansion

of the value of the coupling at the Wilson-Fisher fixed point. To each coefficient gi−1 of

the Wilson-Fisher fixed point coupling we associate the associahedron Ki. We will present

the general result for any i and then motivate it by looking at a number of examples. The

calculation of the coefficient gi−1 is controlled by the associahedron Ki and is [40–42]

gi−1 =
∑

F face of Ki

(−1)i+1−dimF b̃F (3.2)

where b̃F = b̃i1−1 · · · b̃im−1 for each face F = Ki1×· · ·×Kim with i1+ . . .+im−m = i−1 of

the associahedron Ki. The sum is over all faces of the associahedron. In this way the facial

structure of the associahedra controls the ε-expansion of the coupling at the Wilson-Fisher

fixed point. Consider now the first few examples so we can obtain a better feel for how it

works.

• If i = 1 the associahedron K1 is the empty set and for this, by definition, we

choose g0 = 1.

– 7 –
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• If i = 2 the associahedron K2 has a single face shaped like F = K2 and is a point of

dimension dimF = 0. The associated coefficient is

g1 = (−1)i+1−dimF b̃2−1 = −b̃1 (3.3)

• If i = 3 the associahedron K3 has two faces shaped like F1 = K2 × K2 which are

points and each of dimension dimF1 = 0, and a single face shaped like F2 = K3

which is a line and is of dimension dimF2 = 1. The associated coefficient is

g2 = 2(−1)i+1−dimF1 b̃2−1b̃2−1 + (−1)i+1−dimF2 b̃3−1 = 2b̃21 − b̃2 (3.4)

• If i = 4 the associahedron K4 has five faces shaped like F1 = K2 ×K2 ×K2 which

are points and each of dimension dimF1 = 0, five faces shaped like F2 = K2 × K3

which are lines and each of dimension dimF2 = 1 and one face shaped like F3 = K4

and of dimension dimF3 = 2. The associated coefficient is

g3 = 5(−1)i+1−dimF1 b̃2−1b̃2−1b̃2−1 + 5(−1)i+1−dimF2 b̃2−1b̃3−1 + (−1)i+1−dimF3 b̃4−1

= −5b̃31 + 5b̃1b̃2 − b̃3 (3.5)

• If i = 5 the associahedron K5 has fourteen faces shaped like F1 = K2×K2×K2×K2

which are points and of dimension dimF1 = 0, twenty one faces shaped like F2 =

K2 ×K2 ×K3 which are lines and of dimension dimF2 = 1, three faces shaped like

F3 = K3 ×K3 which are squares and of dimension dimF3 = 2, six faces shaped like

F4 = K2×K4 which are pentagons and of dimension dimF4 = 2 and one face shaped

like F5 = K5 which is of dimension dimF5 = 3. The associated coefficient is found

by the rule

g4 = 14(−1)i+1−dimF1 b̃2−1b̃2−1b̃2−1b̃2−1 + 21(−1)i+1−dimF2 b̃2−1b̃2−1b̃3−1

+3(−1)i+1−dimF3 b̃3−1b̃3−1 + 6(−1)i+1−dimF4 b̃2−1b̃4−1 + (−1)i+1−dimF5 b̃5−1

= 14b̃41 − 21b̃21b̃2 + 3b̃22 + 6b̃1b̃3 − b̃4 (3.6)

In all cases is there complete agreement with our combinatorial eq.’s (2.8)–(2.12). Note

that for each i the sum of the indices of the beta function coefficients in gi−1 add to i− 1.

This is a result of the condition i1 + . . .+ im −m = i− 1.

What we have arrived at is a simple and stunningly beautiful closed form expression

for the coupling at the Wilson-fisher fixed point to all orders in ε. It is dictated by the

geometry of the associahedra and at each order in ε is uniquely related to its facial structure

g∗(ε) =
∞∑
i=1

gi−1

(
ε

b0

)i
, gi−1 =

∑
F face of Ki

1

bm0
(−1)i+1−dimF bi1−1 · · · bim−1 (3.7)

for each of its faces F = Ki1 × · · · ×Kim .

– 8 –
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4 Anomalous dimensions and critical exponents

Although the Wilson-Fisher fixed point coupling g∗ is scheme dependent, anomalous di-

mensions and critical exponents at the fixed point are not. They are scheme independent

physical quantities charaterizing the system.

We write the anomalous dimension of some operator in the theory as γ(g). For instance

it could be the anomalous dimension of the field φ, the anomalous dimension of the mass

or the anomalous dimension of some composite operator (φiφi)r for some integer r. In

general the anomalous dimension is written in terms of the formal power series

γ(g) =

∞∑
i=1

γig
i = γ1g + γ2g

2 + γ3g
3 + . . . (4.1)

At the Wilson-Fisher fixed point we find to all orders in ε

γ(ε) =

∞∑
j=1

γj

( ∞∑
k=1

gk−1

(
ε

b0

)k
)j

= γ1
ε

b0
+(g1γ1+γ2)

(
ε

b0

)2

+(g2γ1+2g1γ2+γ3)

(
ε

b0

)3

+. . .

=

∞∑
i=1

ki

(
ε

b0

)i

, ki =
1

i!

i∑
j=1

j!γjBi,j (1!g0, . . . , (i−j+1)!gi−j) (4.2)

where we have found the i’th coefficient ki by the same method that led us to eq. (2.6) and

the gi−1’s are given either by the combinatoric expression eq. (2.13) or by the geometric

expression eq. (3.2). This constitutes an exact closed form expression for the anomalous

dimension of any operator at the Wilson-Fisher fixed point.

Note that at any order i the coefficient ki only depends on the i loop beta function

coefficients (via gi−1), and the coefficients of the i loop anomalous dimension. It does not

receive corrections from higher orders and is exact to this order. Again for the scalar O(N)

symmetric model using the six loop beta function, six loop field anomalous dimension

γφ and six loop mass anomalous dimension γm2 computed in [11] we can compute the

correction to scaling ω(ε) = β′(g∗(ε), ε) and the two critical exponents η(ε) = 2γφ(g∗(ε))

and ν(ε) = [2 + γm2(g∗(ε))]
−1 at the Wilson-Fisher fixed point to O(ε6). We find complete

agreement with the results reported in the Mathematica file accompanying [11]. The same

holds true for the additional critical exponents α, β, γ and δ related to η and ν through

the scaling relations γ = ν(2− η), (4− ε)ν = 2− α, βδ = β + γ and α+ 2β + γ = 2. This

is a final confirmation of our formal results.

5 Scalar O(1) symmetric model to O(ε7)

We now use our general results to explicitly provide the value of the Wilson-Fisher fixed

point coupling and critical exponents for the O(1) model to O(ε7). To our knowledge these

results have still not appeared in the literature. The beta function and anomalous dimen-

sions have been calculated to seven loops in [13] so we can convert theses computations

into a prediction of the Wilson-Fisher fixed point coupling and all the critical exponents

to O(ε7). Our results in this section require only little effort to arrive at and has only been

– 9 –
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made possible due to the extraordinary computations to six loops in [11] and seven loops

in [13]. Using eq. (2.14) and eq. (4.2) they are

g∗(ε) =
1

3
ε+

17

81
ε2+

(
709

17496
− 4

27
ζ(3)

)
ε3+

(
10909

944784
−106

729
ζ(3)− 2

27
ζ(4)+

40

81
ζ(5)

)
ε4

+

(
− 321451

408146688
− 11221

104976
ζ(3)+

11

81
ζ(3)2− 443

5832
ζ(4)+

373

729
ζ(5)+

25

54
ζ(6)−49

27
ζ(7)

)
ε5

+

(
32174329

9183300480
− 18707

7085880
ζ(3)+

22429

32805
ζ(3)2+

256

729
ζ(3)3+

5776

6075
ζ(3, 5)− 19243

314928
ζ(4)

+
38

243
ζ(3)ζ(4)+

448

729
ζ(3)ζ(5)+

63481

590490
ζ(5)+

1117

2187
ζ(6)−7946

3645
ζ(7)−88181

18225
ζ(8)

+
46112

6561
ζ(9)

)
ε6+

(
1661059517

991796451840
+

45106

286446699
π10− 7383787

95659380
ζ(3)− 221281

1180980
ζ(3)2

+
19696

19683
ζ(3)3+

20425591

8266860000
π8+

58

54675
π8ζ(3)−161678

164025
ζ(3, 5)−112

27
ζ(3)ζ(3, 5)

−1599413

1417176
ζ(4)−1156

6561
ζ(3)ζ(4)+

16

243
ζ(4)2

129631

33067440
π6+

1010

413343
π6ζ(3)− 6227

229635
π6ζ(5)

+
10590889

85030560
ζ(5)−163879

19683
ζ(3)ζ(5)−1735

243
ζ(3)2ζ(5)−640

729
ζ(4)ζ(5)+

5030

567
ζ(5)2

+
12454

1215
ζ(5, 3, 3)−423301

118098
ζ(6)−400

243
ζ(3)ζ(6)+

569957

393660
ζ(7)+

49

1458
ζ(3)ζ(7)+

316009

25194240
π4

+
4453

393660
π4ζ(3)+

16

2187
π4ζ(3)2− 613

32805
π4ζ(5)+

6227

18225
π4ζ(7)− 940

5103
ζ(7, 3)

−11992616

492075
ζ(8)+

1347170

177147
ζ(9)+

6227

81
π2ζ(9)− 8

2187
P7,11−

651319

810
ζ(11)

)
ε7 (5.1)

ω(ε) = ε−17

27
ε2+

(
1603

2916
+

8

9
ζ(3)

)
ε3+

(
−178417

314928
−158

243
ζ(3)+

2

3
ζ(4)−40

9
ζ(5)

)
ε4

+

(
20734249

34012224
+

12349

8748
ζ(3)−4

9
ζ(3)2− 79

162
ζ(4)+

2324

729
ζ(5)−50

9
ζ(6)+

196

9
ζ(7)

)
ε5

+

(
− 853678429

1224440064
−6886777

2834352
ζ(3)−16904

2187
ζ(3)2−1280

243
ζ(3)3−5776

405
ζ(3, 5)+

12349

11664
ζ(4)

−2

3
ζ(3)ζ(4)−95713

39336
ζ(5)−4960

243
ζ(3)ζ(5)+

5405

1458
ζ(6)−961

81
ζ(7)+

88181

1215
ζ(8)

−230560

2187
ζ(9)

)
ε6+

(
99202757785

132239526912
− 316009

1399680
π4− 129631

1837080
π6− 20425591

459270000
π8

− 90212

31827411
π10ζ(11)+

480656027

102036672
ζ(3)− 4453

21870
π4ζ(3)− 2020

45927
π6ζ(3)− 116

6075
π8ζ(3)

+
1737593

78732
ζ(3)2− 32

243
π4ζ(3)2−64312

6561
ζ(3)2+

508228

10935
ζ(3, 5)+

224

3
ζ(3)ζ(3, 5)+

34951705

1889568
ζ(4)

+
4907

729
ζ(3)ζ(4)−16

27
ζ(4)2+

198223

314928
ζ(5)+

1226

3645
π4ζ(5)+

12454

25515
π6ζ(5)+

385046

2187
ζ(3)ζ(5)
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+
3470

27
ζ(3)2ζ(5)+

640

81
ζ(4)ζ(5)−226820

1701
ζ(5)2−24908

135
ζ(5, 3, 3)+

10053541

157464
ζ(6)

+
1300

81
ζ(3)ζ(6)−755965

26244
ζ(7)−12454

2025
π4ζ(7)+

1421

27
ζ(3)ζ(7)+

1880

567
ζ(7, 3)

+
47970464

164025
ζ(8)+

4459444

59049
ζ(9)−12454

9
π2ζ(9)+

16

243
P7,11

)
ε7 (5.2)

η(ε) =
1

54
ε2+

109

5832
ε3+

(
7217

629856
− 4

243
ζ(3)

)
ε4+

(
321511

68024448
− 329

17496
ζ(3)− 1

84
ζ(4)+

40

729
ζ(5)

)
ε5

(
46425175

264479053824
− 4247

25194240
π4− 71

1180980
π6− 2063

229635000
π8− 1978411

204073344
ζ(3)

− 1

21870
π4ζ(3)+

10027

157464
ζ(3)2+

256

6561
ζ(3)3+

244

2187
ζ(3, 5)+

11969

3779136
ζ(4)+

22

729
ζ(3)ζ(4)

+
59917

1889568
ζ(5)+

50

729
ζ(3)ζ(5)+

42397

314928
ζ(6)− 3707

17496
ζ(7)− 88181

164025
ζ(8)+

46112

59049
ζ(9)

)
ε7

(5.3)

ν(ε) =
1

2
+

1

12
ε+

7

162
ε2+

(
1783

69984
− 1

27
ζ(3)

)
ε3+

(
92969

7558272
− 191

5832
ζ(3)− 1

36
ζ(4)+

10

81
ζ(5)

)
ε4

+

(
4349263

816293376
− 6323

209952
ζ(3)+

2

81
ζ(3)2− 191

7776
ζ(4)+

74

729
ζ(5)+

25

162
ζ(6)− 49

108
ζ(7)

)
ε5

(
65712521

29386561536
− 58565

2519424
ζ(3)+

2807

26244
ζ(3)2+

64

729
ζ(3)3+

61

243
ζ(3, 5)− 6323

279936
ζ(4)

+
1

27
ζ(3)ζ(4)+

132893

1889568
ζ(5)+

184

729
ζ(3)ζ(5)+

1615

11664
ζ(6)− 4255

11664
ζ(7)−16337

11664
ζ(8)

+
11528

6561
ζ(9)

)
ε6+

(
3466530079

3173748645888
+

312061

100776960
π4+

463493

396809280
π6+

7085207

11022480000
π8

+
22553

477411165
π10−651319

3240
ζ(11)− 53182423

2448880128
ζ(3)+

35

11664
π4ζ(3)+

79

91854
π6ζ(3)

+
29

109350
π8ζ(3)+

244339

3779136
ζ(3)2+

8

3645
π4ζ(3)2+

3991

19683
ζ(3)3− 13633

131220
ζ(3, 5)

−28

27
ζ(3)ζ(3, 5)− 47

5103
ζ(3, 7)−248687

839808
ζ(4)− 959

8748
ζ(3)ζ(4)+

2

81
ζ(4)2+

3664579

68024448
ζ(5)

− 1393

262440
π4ζ(5)− 6227

918540
π6ζ(5)−23827

19683
ζ(3)ζ(5)−1735

972
ζ(3)2ζ(5)−200

729
ζ(4)ζ(5)

+
26008

15309
ζ(5)2+

6227

2430
ζ(5, 3, 3)−3800527

3779136
ζ(6)− 725

1458
ζ(3)ζ(6)− 1951

157464
ζ(7)+

6227

72900
π4ζ(7)

− 35

972
ζ(3)ζ(7)− 235

5103
ζ(7, 3)−52036931

7873200
ζ(8)+

2654189

2834352
ζ(9)+

6227

324
− 2

2187
P7,11

)
ε7 (5.4)

where

ζ(k) =
∑
n=1

1

nk
, ζ(ki, . . . , k1)

∑
ni>...>n1≥1

1

nkii · · ·n
k1
1

(5.5)
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and P7,11 was calculated in [50]. Numerically it is P7,11 = 200.357566 . . . . We also evaluate

the fixed point coupling and critical exponents numerically. They are

g∗(ε) = 0.333333ε+0.209877ε2−0.137559ε3+0.268653ε4−0.843685ε5+3.15437ε6

−13.4831ε7 (5.6)

ω(ε) = ε−0.62963ε2+1.61822ε3−5.23514ε4+20.7498ε5−93.1113ε6+458.742ε7 (5.7)

η(ε) = 0.0185185ε2+0.01869ε3−0.00832877ε4+0.0256565ε5−0.0812726ε6+0.314749ε7

(5.8)

ν(ε) = 0.5+0.083333ε+0.0432099ε2−0.0190434ε3+0.0708838ε4−0.217018ε5+0.829313ε6

−3.57525ε7 . (5.9)

6 Discussion

In this work we have used Lagrange inversion to derive the exact form of the Wilson-Fisher

fixed point coupling and critical exponents in the ε-expansion in terms of the coefficients of

the appropriate renormalization group functions. We have also argued that the ε-expansion

of the Wilson-Fisher fixed point coupling can be viewed in a geometric sense and is con-

trolled by the associahedra.

Although we explicitly discussed the scalar O(n) symmetric model in d = 4− ε dimen-

sions in the introduction our analysis is certainly not restricted to this set of theories. In

fact in the above derivations it could be any theory with a single coupling and for which

b0 > 0 so that the Wilson-Fisher fixed point appears for d < 4, (ε > 0). One could also

imagine extending our analysis to multiple couplings. Also for theories for which b0 < 0

one could perform similar studies as above for d > 4, (ε < 0). In this way we envision

many new projects worth investigating. We should mention that our analysis is indepen-

dent of whether the various different renormalization group functions have a finite radius

of convergence or are asymptotic. This is irrelevant to the Lagrange inversion procedure

as given here order by order.

One of our original hopes was that in deriving a closed form expression order by

order for the Wilson-Fisher fixed point coupling we would gain further insight into the

asymptotic nature of the expansion. Whether we view the expansion as combinatoric in

terms of Bell polynomials or as geometric in terms of the facial structure of associahedra

this hope however has unfortunately not been fulfilled. Nevertheless we believe that our

results are useful since one at least has an understanding of how the various beta function

coefficients enter at a given order for example.

Finally we used our general results to compute the Wilson-Fisher fixed point coupling

and the associated critical exponents to O(ε7) for the O(1) model. We also gave the

numerical values.
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