
J
H
E
P
0
4
(
2
0
2
0
)
0
6
1

Published for SISSA by Springer

Received: January 21, 2020

Accepted: March 10, 2020

Published: April 9, 2020

A tale of three — tensionless strings and vacuum

structure

Arjun Bagchi,a Aritra Banerjee,b Shankhadeep Chakrabortty,c Sudipta Duttaa and

Pulastya Parekha,d

aDepartment of Physics, Indian Institute of Technology — Kanpur,

Kanpur 208016, India
bAsia Pacific Center for Theoretical Physics,

Postech, Pohang 37673, Korea
cDepartment of Physics, Indian Institute of Technology Ropar,

Rupnagar, Punjab 140001, India
dCentro de Estudios Cient́ıficos (CECs),

Av. Arturo Prat 514, Valdivia, Chile

E-mail: abagchi@iitk.ac.in, aritra.banerjee@apctp.org,

s.chakrabortty@iitrpr.ac.in, dsudipta@iitk.ac.in, parekh@cecs.cl

Abstract: Within the premise of canonical quantisation, we re-examine the quantum

structure of bosonic tensionless string theory. In the classical theory, the worldsheet metric

degenerates and the Bondi-Metnzer-Sachs (BMS) algebra arises as the residual symmetries

on fixing the tensionless equivalent of the conformal gauge. In the quantum regime, we

find, on careful examination, that there are multiple ways to impose constraints to restrict

the physical Hilbert space, which in turn lead to three distinct choices of tensionless vacua.

We analyse these vacua in detail, commenting on various aspects like the central charges

and the spectrum around each of them.

Keywords: Bosonic Strings, Conformal and W Symmetry, Higher Spin Symmetry

ArXiv ePrint: 2001.00354

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP04(2020)061

mailto:abagchi@iitk.ac.in
mailto:aritra.banerjee@apctp.org
mailto:s.chakrabortty@iitrpr.ac.in
mailto:dsudipta@iitk.ac.in
mailto:parekh@cecs.cl
https://arxiv.org/abs/2001.00354
https://doi.org/10.1007/JHEP04(2020)061


J
H
E
P
0
4
(
2
0
2
0
)
0
6
1

Contents

1 Introduction 2

2 Algebraic preliminaries 5

2.1 The Virasoro algebra 5

2.2 Taking limits on Virasoro 6

2.3 Representation theory of BMS algebra 7

3 Back to school: quantum bosonic tensile string 10

3.1 The “usual” string 10

3.2 The “flipped” string 13

4 The classical tensionless story 14

5 Imposing quantum constraints 19

6 The oscillator vacuum 22

6.1 Action of constraints 23

6.2 Imposing physical conditions 25

6.3 Analysis of the physical spectrum 26

6.4 Critical dimensions? 30

7 The induced vacuum 31

7.1 The vacuum from the limit 31

7.2 Emergence of open string 33

7.3 Comments on the spectrum 33

8 The flipped vacuum 35

8.1 Physical states 37

8.2 Null states 38

8.3 Taking limit from parent states 40

9 Conclusions 41

A Other constraint conditions 43

B Central charges: explicit calculations 46

B.1 The tensile vanilla vacuum 47

B.2 Tensile flipped vacuum 48

B.3 Tensionless oscillator vacuum 48

B.4 Tensionless induced vacuum 49

B.5 Tensionless flipped vacuum 49

– 1 –



J
H
E
P
0
4
(
2
0
2
0
)
0
6
1

1 Introduction

All fundamental theories of Nature are inherently quantum mechanical. Classical physics,

which rules most of our day-to-day experiences, emerges out of a classical or ~→ 0 limit of

quantum mechanics. It is thus conceivable that several different quantum mechanical sys-

tems have the same classical structure, or put differently, depending on how one quantises

a classical system, the resulting quantum theories can be very different. We will see this

phenomenon played out in the context of the theory of tensionless strings in this paper.

A Tale of Three is thus the story of the emergence of three different quantum tensionless

string theories from a single classical closed bosonic tensionless theory.

The classical picture of tensionless strings. String theory has been, by far, the most

successful framework to understand the quantum theory of gravity. The fundamental object

in string theory is one dimensional spatially extended relativistic string characterized by

its tension (T )

T =
1

2πα′
. (1.1)

Here α′ is square of the length of fundamental string. Since the tension of fundamental

string is the only free parameter in non-interacting string theory, it is of interest to explore

the two diametrically opposite limits of the theory governed by the string tension. The

T →∞ limit has been widely explored and this is where the fundamental string reduces to

a point particle and we recover known physics. This limit gives us low energy supergravity

and a door to physics governed by ordinary quantum field theory. The opposite limit, viz.

T → 0, has been the source of much intrigue ever since its first exploration by Schild [1].

This tensionless limit is expected to probe the very highly energetic sector of the theory,

where as opposed to the point-particle limit, the stringy nature of string theory becomes

manifest. The hope is that this may provide a better understanding of the fundamental

structure of the string theory.

Our study of tensionless string is based on two different approaches, which we call the

intrinsic approach, following [2], and the limiting approach [3, 4]. The intrinsic approach

perceives the tensionless string as a fundamental object. The metric on the worldsheet

of tensionless string turns out to be degenerate and hence the tensionless string is also

the string equivalent of a massless point particle, i.e. a null string. The classical analysis

of tensionless string is governed by a worldsheet action that naturally incorporates this

degenerate metric structure and remains invariant under worldsheet diffeomorphism [2].

The diffeomorphism invariance is a gauge symmetry on the worldsheet and it can only be

partially fixed in a way that is analogous to choosing the conformal gauge in the tensile

theory. Again, similar to the tensile theory, the gauge-fixed tensionless action still remains

invariant under a residual gauge symmetry structure on the worldsheet. Interestingly, in-

stead of two copies of the Virasoro algebra in the tensile case, now the generators of this

residual gauge symmetry close to form the three dimensional Bondi-Metzner-Sachs algebra

(BMS3). The very first example of the BMS algebra that appeared in the literature is in

fact BMS4 which was originally proposed as the asymptotic symmetry algebra of the 4d

– 2 –



J
H
E
P
0
4
(
2
0
2
0
)
0
6
1

Minkowski spacetime [5, 6]. Starting from the BMS invariant gauge fixed action of ten-

sionless strings, one can systematically work out the equation of motion, mode expansions

and constraint analysis of the theory [2, 4].

On the other hand, in the limiting approach of tensionless analysis, we begin with the

usual tensile string theory and argue that the tensionless limit is one where the fundamental

string becomes very long and floppy. In terms of worldsheet coordinates {τ, σ} of a closed

bosonic string, this is the scaling {τ → ετ, σ → σ} with the scaling parameter ε → 0 [3].

This can also be viewed as an infinite boost which makes the worldsheet null. The limit

described above sets the velocity of light on the worldsheet to be zero [7]. The results

obtained in the intrinsic analysis of tensionless string can be recovered by taking this ultra-

relativistic limit on worldsheet of closed bosonic tensile strings [4]. Specifically, scaling the

residual symmetry algebra in the closed bosonic tensile theory, viz. the 2d conformal alge-

bra, we get the BMS3 algebra. This, as we just mentioned above, is the residual symmetry

algebra as obtained in the intrinsic analysis of tensionless string theory. Such comparison

between intrinsic analysis and limiting approach can also be extended to supersymmetric

theory. It has been shown, two distinct ultra-relativistic scalings on N = (1, 1), 2d super

conformal algebra as the residual symmetry algebra of the tensile closed superstring theory,

give rise to both homogeneous and inhomogeneous versions of super BMS3 algebra [8–10].

Interestingly, instead of taking the ultra-relativistic limit, if we consider a non-

relativistic limit on the residual symmetry algebra in tensile closed bosonic string theory

by defining a scaling τ → τ, σ → εσ and then sending the scaling parameter ε → 0, we

again get the BMS3 algebra [3]. However, it is yet to be fully understood how to invent an

exhaustive intrinsic analysis that begins with a fundamental action and perfectly fits with

the limiting picture appearing from the non-relativistic limit in the usual tensile case.

Quantum tensionless strings. We now understand the classical theory of the tension-

less strings reasonably well. We will review the construction in section 4. The question we

attempt to answer in this paper is how we should go about quantising this theory. Before

focusing on the details of this paper, let us briefly mention why this may be of interest.

It has been investigated long back that in a very high energetic regime of the pertur-

bative quantum tensile string theory, the scattering amplitudes starts behaving in way so

that together they satisfy infinite number of linear relations among themselves and that

indicates the emergence of a symmetry structure which is expected to be much larger than

the existing symmetries of the usual tensile string theory. An appropriate realisation of

such a high energetic sector of string theory was speculated to be the tensionless limit in

the theory [11–13].

The strange behaviour of perturbative degrees of freedom of string theory at extreme

conditions is manifested in another occasion as we approach a very high temperature known

as Hagedorn temperature TH [14, 15], where the string partition function diverges. Near

this extreme temperature, string theory is best described by its tensionless limit as the

effective tension of the fundamental string gradually approaches zero [16, 17]. It has been

speculated [18] that beyond the Hagedorn temperature, string theory undergoes a phase

transition and the fundamental degrees of freedom in the new phase of the theory is very

different from the usual perturbative degrees of freedom.

– 3 –
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Also, unlike the case of usual perturbative description of tensile theory, a precise bound

on the critical dimension of string theory at the zero tension limit is yet to be fully un-

derstood.1 Therefore a better understanding of quantum theory of free tensionless strings

from first principles is essential to address all these intriguing issues of string theory at this

extreme limit.

Our present work. In this paper, we address the problem of quantisation of the classical

closed bosonic tensionless string theory. We will confine ourselves to the domain of canon-

ical quantisation and will discover that there are multiple quantum mechanical theories

that emerge from the same classical tensionless theory.

The analysis of constraints is the principle factor in determining the quantum structure

of the tensionless string theory. In the present work, we start with classical constraints

arising from the non vanishing component of energy momentum (EM) tensor present in

the gauge-fixed version of the intrinsic, tensionless string theory. For all of our subsequent

analyses, we use the same set of classical constraints expressed in terms of the Fourier

modes of the EM tensor. Now, once the theory is quantized, we need to impose the quantum

version of those constraints on each state that belongs of the tensionless Hilbert space. The

imposition of quantum constraints is realised as the vanishing of the matrix elements of the

Fourier mode of EM tensor, with respect to the all possible states in tensionless Hilbert

space. We will call this way of imposing quantum constraints the sandwich conditions.

In this work, we look for all possible consistent ways to implement such the quantum

sandwich conditions on the intrinsic tensionless theory. Starting from a unique classical

action as well as the underlying classical symmetry algebra, we show that there are nine in-

equivalent ways to implement the sandwich conditions in the intrinsic analysis of quantum

tensionless strings. However, by analyzing the compatibility between the implementation

of those conditions and the underlying quantised version of the symmetry algebra we can

rule out some such possibilities. Ultimately, we are left with three inequivalent cases and

interestingly they correspond to three distinct tensionless vacua and hence three very dif-

ferent quantum theories. One of the vacua is the so-called induced vacuum, the vacuum of

the induced representation of the underlying BMS algebra. This also follows from the ultra-

relativistic limit of the string worldsheet and has intriguing features like the emergence of

a long open string, as was recently described in [24]. Another vacuum, which we call the

flipped vacuum, leads to the bosonic version of the Ambitwistor string theory. Connections

between ambitwistor strings and the tensionless limit have been discussed recently in [25].

The third vacuum, which we name the Oscillator vacuum, is completely new and contains

intriguing hints of a huge underlying gauge symmetry, massless higher spins, as well as a

massive sector. We go on to describe these three vacua and their properties in some detail

in the rest of this paper.

The organization of this paper is as follows: in section 2, we remind the reader about

BMS3 algebra, how it appears as different contractions of the 2D Virasoro algebra and

related representation theory. In section 3, we review some classical and quantum aspects

1There are a variety of answers in the literature, many of which apparently contradict each other, for

example see [19–23].
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of tensile closed bosonic string theory which we consider very relevant for all subsequent

sections of the paper. In section 4, we present an extensive discussion on the classical

tensionless string, both from the point of views of intrinsic picture and the limiting side.

Section 5 plays the pivotal role in this paper as because it explains how we impose the

quantum constraints on the states in quantum tensionless string and also how the im-

plementation of such quantum constraints leads to different inequivalent descriptions of

quantum tensionless string. The next three sections are dedicated to the discussions of the

three inequivalent vacua in some detail. We end with some conclusions and future direc-

tions. There are a couple of appendices the first of which deals with the inconsistent cases

of imposition of quantum constraints. The other one details the computation of central

charges in the various vacua.

2 Algebraic preliminaries

2.1 The Virasoro algebra

It is well known that in two dimensions the conformal algebra is infinite dimensional and

consists of two copies of the Virasoro algebra. On a complex plane mapped by z and z̄

coordinates, the generators of the infinite set of transformations are written as

Ln = zn+1∂z; L̄n = z̄n+1∂z̄. (2.1)

They generate two copies of the Virasoro algebra:

[Lm,Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0,

[Lm, L̄n] = 0,

[L̄m, L̄n] = (m− n)L̄m+n +
c̄

12
m(m2 − 1)δm+n,0. (2.2)

The classical algebra is given without the central charges c and c̄. The central terms arise

due to quantum anomalies and ordering ambiguities. The form m(m2−1)δm+n,0 is obtained

by imposing Jacobi identities.

Highest weight representations of the Virasoro algebra. The two dimensional

Virasoro algebra can be realised on a state space that is spanned by the eigenstates of L0

and L̄0 operators, with eigenvalues h and h̄:

L0|h, h̄〉 = h|h, h̄〉; L̄0|h, h̄〉 = h̄|h, h̄〉, (2.3)

The commutation relations (2.2) gives us

L0Ln|h, h̄〉 = (h− n)Ln|h, h̄〉; L̄0L̄n|h, h̄〉 = (h̄− n)L̄n|h, h̄〉. (2.4)

This tells us that the Ln and L̄n reduces the corresponding weight by n. Now, if we demand

that there exists a state |h, h̄〉 which is annihilated by the positive modes of the generators:

Ln|h, h̄〉 = L̄n|h, h̄〉 = 0 (n > 0), (2.5)

– 5 –
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we obtain a spectrum that is bounded from below. Therefore we define |h, h̄〉 as the

primary state, and from this state the descendants are given by the action of the negative

modes L−n or L̄−n (for n > 0). The primary state together with its descendants form

the highest weight representation of the algebra. The residual worldsheet symmetries of

bosonic tensile closed strings generate two copies of the Virasoro algebra, and the physical

states are usually classified using the highest weight representations.

An automorphism. Curiously, there could be other representations of the Virasoro

algebra. The two dimensional algebra can be seen to admit an automorphism [26] given by

L̄n → L̄′n = −L̄−n. (2.6)

If we start from the Virasoro generators and perform the above transformation in the anti-

holomorphic sector, keeping the holomorphic ones preserved, the algebra remains preserved.

The existence of this automorphism means there is a ‘flip’ between the raising and lowering

operators in one sector of the theory. If one also considers the centrally extended version,

the algebra will again remain invariant under above transformations provided we have,

c̄→ c̄′ = −c̄. (2.7)

Under this automorphism, the highest weight representation in the anti-holomorphic sector

becomes a lowest weight representation. This is given by h̄→ h̄′ = −h̄. One can still define

states, which are given by

Ln|h, h̄〉 = L̄−n|h, h̄〉 = 0 ∀ n > 0, (2.8a)

(L0 − h)|h, h̄〉 = (−L̄0 + h̄)|h, h̄〉 = 0. (2.8b)

We can call this as the “flipped” representation. The fact that there exists a string theory

where worldsheet symmetries correspond to Virasoro algebra, but the physical states are

defined in the above way, makes this representation interesting. We will come back to this

theory in the next section.

2.2 Taking limits on Virasoro

Non-relativistic algebras arise from contraction of relativistic ones at the level of generators.

An Inönü-Wigner contraction of the D dimensional relativistic conformal algebra results

in a finite dimensional Galilean Conformal Algebra (GCA) [27]. The contraction of the

conformal algebra (2.2) can be achieved in two ways: either by considering a non-relativistic

(NR) limit, or an ultra-relativistic (UR) limit on the generators. In two dimensions, the

2D GCA is known to be isomorphic to the Bondi-Metzner-Sachs (BMS) algebra in 3D.

This is also known as the BMS3/GCA2 correspondence [28]. Given that the 2D GCA is a

contraction of the Virasoro algebra, this means that the symmetry structure of flat space

could be understood as a limit of the symmetry structure of AdS3 space [7, 29]. This

naturally provided support for the idea that flat holography could indeed be understood

as a limit of usual AdS3/CFT2.

– 6 –
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Unlike in the case of the conformal algebra, the GCA can be given an infinite dimen-

sional lift even for D ≥ 2. This striking feature of GCA has been extensively studied

in non-relativistic field theories such as Galilean electrodynamics [30] and later in non-

relativistic versions of Yang-Mills theories [31, 32]. We get the same number of generators

that obey the GCA. As it happens to be, in the case of string worldsheet theory, the two

possible contractions are physically very intriguing. In the NR case, the worldsheet speed

of light is scaled to infinity: c → ∞, while in the UR case, the speed of light is scaled to

zero. Since we are interested in the case of 2D, both these contractions generate the same

algebra at the classical level [33, 34].

In the NR limit, the generators of the new algebra are related to the conformal ones

by the following scaling

Ln = Ln + L̄n; Mn = ε(Ln − L̄n), ε→ 0 (2.9)

The commutators between the generators can be worked out and it can be found that this

generates the algebra,

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n)δn+m,0,

[Mn,Mm] = 0,

[Ln,Mm] = (n−m)Mn+m +
cM
12

(n3 − n)δn+m,0. (2.10)

In the above Ln are the generators of diffeomorphisms of the circle at the null infinity

(super-rotations) and Mn are the generators of super-translations. Classically the algebra

is without the central extension. However, if one were to have central charges, they would

be related to the Virasoro central charges by

cL = c+ c̄; cM = ε(c− c̄). (2.11)

When the original CFT has c = c̄, then the central charge goes to cM = 0. On the other

hand, the UR contraction is achieved by performing the following scaling on the cylinder:

Ln = Ln − L̄−n; Mn = ε(Ln + L̄−n), ε→ 0 (2.12)

Notice here the mixing between positive and negative modes during the contraction, which

is particular to the UR case. It can be checked that this too generates the BMS3 alge-

bra (2.10). In the UR limit the central charges are related by

cL = c− c̄; cM = ε(c+ c̄). (2.13)

Thus, if we are interested in the limit of a field theory having c = c̄, it must have vanishing

cL. We also note that to keep cM finite, we would need to scale c, c̄ to be infinitely large.

2.3 Representation theory of BMS algebra

Intrinsically speaking, the Bondi-Metzner-Sachs (BMS) group is a vital toolkit in under-

standing holography in asymptotically flat spacetimes. Borrowing wisdom from conven-

tional AdS/CFT, the 2D field theory dual to 3D flat space should live on the null boundary

– 7 –
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and inherit the BMS symmetries. This line of inquiry has led to recent successes [7, 28, 35–

40] in flat holography. The fact that BMS3 symmetry arises as the worldsheet symmetry

of tensionless strings, is indeed remarkable in this sense. One could take advantage of the

known machinery of BMS representations to formulate such tensionless worldsheet theories.

Highest weight representations. Let us take a look at the highest weight represen-

tations of the BMS3 Algebra (2.10). Keeping in with the Virasoro case, we will label the

states with the eigenvalues of L0, which we will call hL. Since [L0,M0] = 0, this means

that these states can be further labeled by hM , the eigenvalue of M0. Therefore

L0|hL, hM 〉 = hL|hL, hM 〉 (2.14a)

M0|hL, hM 〉 = hM |hL, hM 〉. (2.14b)

Using the commutators of the BMS algebra, we get the following relations

L0Ln|hL, hM 〉 = (hL − n)Ln|hL, hM 〉 (2.15a)

L0Mn|hL, hM 〉 = (hL − n)Mn|hL, hM 〉. (2.15b)

We observe that L−n or M−n raises the weight hL by n. We can give the notion of a

primary state to |hL, hM 〉 in a theory where the value of hL is bounded from below. This

is achieved by demanding the following conditions

Ln|hL, hM 〉 = Mn|hL, hM 〉 = 0 (n > 0). (2.16)

Starting from the primary state |hL, hM 〉 we can build up a tower of states by the action

of L−n and M−n with n > 0. These are the descendants of the primary, therefore giving a

representation of BMS3.

Induced representations. Let us consider a particular state |M, s〉 in the Hilbert space

which satisfies:

M0|M, s〉 = M |M, s〉, L0|M, s〉 = s|M, s〉; Mn|M, s〉 = 0, ∀n 6= 0. (2.17)

This defines a one dimensional representation of the sub-algebra of BMS3 spanned by

{L0,Mn, cL, cM}. This can be used to define an induced BMS module with basis vectors

|Ψ〉 = Ln1Ln2 . . . Lnk
|M, s〉. (2.18)

Here n1 ≥ n2 ≥ . . . ≥ nk are integers which can be both positive or negative. These

induced BMS representations have been studied recently [41–43]. An important class of

representations for the BMS3 algebra is the so-called massive modules [43].

Mapping of representations. Lastly, we have to take a closer look at the mapping

between the Virasoro and BMS generators under the NR and UR limits as given in equa-

tions (2.9) and (2.12). We observed earlier that unlike the NR limit, there is a mixing

– 8 –
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Figure 1. Mapping of different representations in the singular limits.

of positive and negative modes of Virasoro generators in the UR limit. This becomes an

important fact while mapping the representations. The NR limit on (2.5) results in(
Ln +

1

ε
Mn

)
|h, h̄〉 =

(
Ln −

1

ε
Mn

)
|h, h̄〉 = 0, n > 0, (2.19)

which can be reduced to (2.16) by identifying |h, h̄〉 = |hL, hM 〉. Therefore, we observe

that the highest weight states of Virasoro map to highest weight states of BMS in the NR

limit. However, in case of the UR limit, the Virasoro highest weight representations map

to induced representations of BMS. The UR limit on (2.5) can be seen to translate into(
Ln +

1

ε
Mn

)
|h, h̄〉 =

(
L−n −

1

ε
M−n

)
|h, h̄〉 = 0, n > 0. (2.20)

If we assume that the Virasoro highest weight state |h, h̄〉 in the limit ε → 0 maps the

following way

lim
ε→0
|h, h̄〉 = |M, s〉, (2.21)

then the conditions (2.3), (2.4) automatically give rise to (2.17) along with the identification

M = ε
2(h + h̄) and s = 1

2(h − h̄). These conditions are nothing but that of induced

representations as described earlier. When we study the induced vacuum of the tensionless

string in section 7 we will see how these induced representations play a big role in its

formulation.

The other intriguing take home message here is the fate of flipped representations,

as discussed in (2.8), under such contractions. The reader may already notice that the

NR and UR contractions are related to each other via the automorphism (2.6). One can

show that the UR limit of such a flipped representation effectively acts as the NR limit

on the theory. In the recent work [44] we elucidated more on this issue, and explored its

consequences. It comes as no surprise that a limit from a string theory based on the flipped

representations would give rise to BMS3 worldsheet symmetries and primaries of Virasoro

would naturally map to primaries of BMS3 as in (2.19).

– 9 –
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All in all, there is a web of relations between the representation theories of 2D conformal

algebras and the GCA2/BMS3 that arises in the limit. Such a web may be summarised by

figure 1, which will be crucial to our discussion throughout this work.

3 Back to school: quantum bosonic tensile string

3.1 The “usual” string

In this section we are going to quickly review the classical and quantum aspects of closed

bosonic tensile string theory. The classical dynamics of tensile bosonic string is governed

by the Polyakov action,

S = −T
2

∫
d2ξ
√
−ggαβ∂αXµ(τ, σ)∂βX

ν(τ, σ)ηµν , (3.1)

where T is the string tension, gab is the intrinsic metric on the worldsheet spanned by

the coordinates ξα = (τ, σ) and Xµ(τ, σ) is the embedding of the worldsheet in the back-

ground spacetime R1,d−1. The Polyakov action is preserved under symmetries on the

world sheet, e.g, the reparameterization invariance ξα → ξ′α(ξ), and the Weyl invariance

gαβ → eφ(τ,σ)gαβ . The equations of motion with respect to Xµ(τ, σ) and gαβ , derived from

the action (3.1), are as follows,

∂α(
√
−ggαβ∂βXµ) = 0, Tαβ = ∂αX

µ∂βXµ −
1

2
gαβg

α′β′∂α′X
µ∂β′Xµ = 0, (3.2)

where Tαβ is the worldsheet energy momentum tensor. By exploiting the freedom of repa-

rameterization invariance and the Weyl invariance one can suitably choose conformal gauge,

by setting gαβ = ηαβ . As a consequence, Tαβ = 0 becomes purely classical constraint equa-

tion. In this gauge, the form of equations of motion and constraints in terms of worldsheet

lightcone coordinates (σ± = τ ± σ) simplifies as,

∂+∂−X
µ = 0; T++ = (∂+X)2 = 0; T−− = (∂−X)2 = 0. (3.3)

The mode expansion compatible with the periodic boundary condition of closed bosonic

string theory, Xµ(τ, σ + 2π) = Xµ(τ, σ), turns out to be,

Xµ(τ, σ) = xµ + 2

√
α′

2
αµ0τ + i

√
α′

2

∑
n

1

n

[
αµne

−in(τ+σ) + α̃µne
−in(τ−σ)

]
, (3.4)

where αµn(α̃µn) are the left (right) moving classical oscillators, and xµ is the position of

centre of mass for closed bosonic string. The reality condition on Xµ(τ, σ) is manifested

as (αµn)† = αµ−n and (α̃µn)† = α̃µ−n. The zero modes are related to the momentum (kµ) by

αµ0 = α̃µ0 =
√

α′

2 k
µ. Re-expressing the classical constraints in terms of the Fourier modes

of the non vanishing components of energy momentum tensor,

T++ = 2α′
∑
n

Ln e−inσ
+
, T−− = 2α′

∑
n

L̄n e−inσ
−
, (3.5)
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the constraint equation takes simplified form,

Ln = 0, L̄n = 0 ∀ n. (3.6)

Ln, L̄n are given in terms of oscillators by

Ln =
1

2

∑
m

α−m · αm+n, L̄n =
1

2

∑
m

α̃−m · α̃m+n ∀ n, (3.7)

where the sum is over all integers. In conformal gauge, the worldsheet theory can be inter-

preted as a conformal field theory of D independent scalars, Xµ(ξ) in two dimensional flat

spacetime. Following the standard field theoretic technics, one can quantize the worldsheet

theory by defining a tensile vacuum. The canonical commutation relations among the

oscillator modes are given as:

[αµm, α
ν
n] = mδm+nη

µν , [α̃µm, α̃
ν
n] = mδm+nη

µν , [αµm, α̃
ν
n] = 0. (3.8)

The Hilbert space is built by acting the creation operators αµ−n, α̃µ−n (n > 0) on the tensile

vacuum |0, kµ〉α defined in the following way,

αµn|0, kµ〉α = α̃µn|0, kµ〉α = 0, ∀ n > 0. (3.9)

A tower of excited states can be built up over the vacuum and all of them including

the tensile vacuum have well-defined energy(mass). Finally one needs to impose a stronger

version of quantum constraint as the physical state condition on the elements of the Hilbert

space of the theory.

〈phys|Tαβ |phys′〉 = 0 (3.10)

For closed bosonic string, the above quantum constraint (3.10) further modifies to,

〈phys′|Ln|phys〉 = 〈phys′|L̄n|phys〉 = 0, ∀ n (3.11)

The implementation of the stronger version of the quantum constraint (3.11) gives rise to

the right hand action of operators Ln, L̄n on the physical states.

Ln|phys〉 = L̄n|phys〉 = 0, ∀ n > 0,

(L0 − a)|phys〉 = 0, (L̄0 − ā)|phys〉 = 0, (3.12)

where a and ā are the normal ordering constants. Due to the non trivial commutators

between the creation and annihilation oscillators, we need to normal order L0 and L̄0 in

the above equations, where would have a and ā as normal ordering ambiguities. Explicitly,

the normal ordered operators are

L0 =
1

2
α2

0 +
∑
m>0

α−m · αm =
1

4
α′k2 +NL, (3.13a)

L̄0 =
1

2
α̃2

0 +
∑
m>0

α̃−m · αm =
1

4
α′k2 +NR. (3.13b)
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NL and NR counts the number of left and right modes in the states. The zeroth mode

is related to kµ, the momentum of the string, and α′ = 1
2πT . Ln and L̄n close under two

independent copies of centrally extended Virasoro algebra (2.2).

The implementation of constraints in (3.12) naturally furnishes the highest weight

representation of Virasoro algebra. The form of this algebra and the values of the charges

can be calculated by applying the Jacobi identities worked out in appendix B. For the

vacuum |0〉α one finds the central charges to be

c = c̄ = D. (3.14)

The closed string Hilbert space satisfying (3.12) still suffers from having negative norm

states in the spectrum. It turns out that only for particular values of these parameters

a, ā and D, we can remove the negative norm states from the Hilbert space. Considering

vacuum |0, kµ〉α as a physical state one can show a = ā. Further, by considering the first

excited state as a physical state, one can show it always comes with non-negative norm

only when a follows an inequality a ≤ 1 . From the physical state analysis with higher

excited states we will not get any new condition on a.

To inspect the bound on D for removing negative norms we need to consider spurious

states |φ〉 in the spectrum. These are special states orthogonal to the physical states:

〈phys|φ〉 = 0. They are attributed with the properties:

(L0 − a)|φ〉 = 0, (L̄0 − a)|φ〉 = 0. (3.15)

Since these are orthogonal to physical states, they can always be written as:

|φ〉 ∼
∑
n>0

L−n|χn〉 or
∑
n>0

L̄−n|χn〉 (3.16)

The conditions (3.15) for spurious states translates to

L0|χn〉 = L̄0|χn〉 = (a− n)|χn〉 (3.17)

Any spurious state can be broken down in terms of L−1, L̄−1 or L−2, L̄−2 since L−3 ∼
[L−1,L−2] etc. At level one, we can have a spurious state of the form:

|φ1〉 = L−1L̄−1|χ1〉. (3.18)

A most general level two spurious state will be of the form:

|φ2〉 = (L−2L̄−2 + b1L−1L−1L̄−2 + b2L−2L̄−1L̄−1 + b3L−1L−1L̄−1L̄−1)|χ2〉, (3.19)

where the bi’s are constants. If we demand that the states |φ1〉 and |φ2〉 are spurious

and physical simultaneously, then we will have such states with zero norm, since they

are perpendicular to themselves. That amounts to imposing the following conditions and

equations on |φ1〉 and |φ2〉:

L0|χ1〉 = L̄0|χ1〉 = (a− 1)|χ1〉, L0|χ2〉 = L̄0|χ2〉 = (a− 2)|χ2〉,
L1|φ1〉 = L̄1|φ1〉 = 0, L2|φ1〉 = L̄2|φ1〉 = 0. (3.20)
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If we use the Virasoro algebra with central term along with above conditions we find that

a = 1, b1 = b2 = 3
2 , b3 = 9

4 and D = 26 form a set of conditions to ensure |φ2〉 is a null

state. We can further check that physical state with negative norm is possible for D > 26.

However, the physical spectrum becomes free of such negative norm state for a = 1, D = 26

and a ≤ 1, D ≤ 25. It is beyond the scope of free theory to ascertain that the ghost free

theory must live in D = 26 dimensions. These ideas and details are well known, but will

be absolutely necessary to keep in mind as we go forward to tensionless vacua, where the

relevant physical conditions work quite non-trivially.

3.2 The “flipped” string

Here we move on towards briefly discussing the salient features of the quantum theory

that follows from the choice of a flipped vacuum as we described in connection to flipped

representations of the Virasoro algebra (2.8). This will help us to understand the highest

weight representations of the states in the tensionless limit, which we are going to consider

in section 8. Let us start by defining a twisted string vacuum by

αn|0〉A = α̃−n|0〉A = 0 ∀ n > 0. (3.21)

Then the analysis outlined in the previous section follows. Here we are only going to

mention the deviation from the usual case and their consequences. As seen from (2.6), the

constraint L̄n picks up a sign in this case. Since the creation and annihilation operators are

interchanged in one sector, the ordering of L̄0 has to be adjusted accordingly. Therefore

the zero modes of the Virasoro constraints (3.13) are now given by

L0 =
1

4
α′p2 +NL, (3.22a)

L̄0 = −1

4
α′p2 +NR. (3.22b)

where the definition of the number operator also changes: NR =
∑

m>0 α̃m · α̃−m. The

constraint condition is imposed on the physical states by the familiar condition on matrix

elements,

〈phys′|Ln|phys〉 = 〈phys′|L̄n|phys〉 = 0, ∀ n. (3.23)

The creation and annihilation modes of L̄ are now flipped as well. So we realise this

condition by considering the same ones as in (2.8),

Ln|phys〉 = L̄−n|phys〉 = 0, ∀ n > 0,

(L0 − a)|phys〉 = 0, (L̄0 − ā)|phys〉 = 0. (3.24)

This is in fact a combination of the highest weight representation in the holomorphic sector

and the lowest weight representation in the anti-holomorphic sector. This is our very first

encounter with unusual ways of describing physical states in a theory of string worldsheet.

Adding and subtracting the equations in (3.24) gives us[
1

2
α′p2 +NL −NR

]
|phys〉 = 0, (3.25a)

(NL +NR − 2a)|phys〉 = 0. (3.25b)
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For a = 1, this tells us that instead of getting the level matching condition, we get a

spectrum restricted at NL +NR = 2. The mass formula on the other hand becomes

m2|phys〉 =
2

α′
(NL −NR)|phys〉. (3.26)

The allowed states are therefore given by the values

(NL, NR) = (1, 1), (2, 0), (0, 2), (3.27)

with the mass squared being 0, 4
α′ and− 4

α′ respectively. The spectrum consists of a massless

tensor, and two vector bosons which are massive and tachyonic. These states turn out to

be useful for computing amplitudes of massless sectors. These twisted string theories have

been introduced in [45] and more recently illustrated in detail in [46, 47].

One must note here that the tensile spectrum itself is quite subtle in this case. Partic-

ularly speaking, the massless (1, 1) state ξµνα
µ
−1α

ν
+1|0〉 gives rise to negative norm, where

ξµν is a polarisation tensor. It was argued in [46] that to make the massless sector physical,

one has to consider that the vacuum has negative norm |||0〉A|| < 0. This state is often

dubbed as “gravity” sector of the string spectrum as it contains symmetric, anti-symmetric

and trace (scalar) excitations. But in reality one can show the anti-symmetric excitation

has zero norm, which is quite different from the usual string case. This abundance of extra

null states in the parent theory will also cause peculiarities in the daughter tensionless

theory, which we will discuss in later sections.

Null states in the flipped theory. For completeness, we dabble with the spurious

state analysis in the flipped parent theory. Since, the holomorphic sector remains same as

in the usual tensile theory, we can write the left moving null state at level two as,

|χL〉 = (L−2 + ηL−1L−1) |φ〉, (3.28)

With η = −3
2 . The antiholomorphic sector is more subtle here and we in this case demand

the following to identify a null state,

L̄−1

(
L̄2 + ηL̄1L̄1

)
|φ〉 = 0. (3.29)

Keeping in with the flipped nature of the theory, we can write η = 3
2 , i.e. η = −η. So, we

have the following form for the antiholomorphic null state,

|χR〉 =
(
L̄2 + ηL̄1L̄1

)
|φ〉. (3.30)

These will be important when we describe null states in the tensionless version of these

flipped strings.

4 The classical tensionless story

The massless limit on the point-particle action projects one to null geodesics on the back-

ground spacetime. So the metric of the worldline of the massless point particle is degen-

erate. In a very similar way, the tensionless limit of string theory, projects the string onto
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null worldsheets. This can be seen explicitly by working in the Hamiltonian framework

and then writing a phase-space action where one systematically takes the tension to zero,

following the seminal analysis of [2]. When one identifies the metric by comparing with the

Polyakov action (3.1), one finds that the determinant of gαβ is zero. One can replace this

degenerate metric density T
√
−ggαβ by a rank one matrix that can be written as V αV β

where V α is a vector density. The action in the T → 0 limit, which we will refer to as the

ILST action after the authors [2], becomes

S =

∫
d2ξ V αV β∂αX

m∂βX
nηmn. (4.1)

At this point, we can forget where the action (4.1) came from and treat it as the start-

ing point of a theory of fundamentally tensionless strings. We will call this the intrinsic

framework for this theory. The equations of motion as derived from (4.1) are:

∂α(V αV β∂βX
µ) = 0, V βγαβ = 0. (4.2)

where γαβ = ∂αX
m∂βX

nηmn is the induced metric on the worldsheet. The second equation

in (4.2) indicates that γαβ is degenerate [2].

Symmetries of the worldsheet. Under a diffeomorphism ξα → ξα + εα, the vector

density V α transforms as:

δV α = −V β∂βε
α + εβ∂βV

α +
1

2
(∂βε

β)V α. (4.3)

The action of the tensionless string is invariant under these worldsheet diffeomorphisms

and hence we will fix a gauge:

V α = (1, 0). (4.4)

There is a residual symmetry that is left over after this gauge fixing. The form of εα which

leaves the gauge fixed action invariant is

εα = {f ′(σ)τ + g(σ), f(σ)}. (4.5)

For a function F (ξa), the effect of such a transformation is given by:

δF = [f ′(σ)τ∂τ + f(σ)∂σ + g(σ)∂τ ]F = [L(f) +M(g)]F. (4.6)

Thus the generators of this residual gauge symmetry can be defined as:

L(f) = f ′(σ)τ∂τ + f(σ)∂σ =
∑
n

ane
inσ(∂σ + inτ∂τ ) = −i

∑
n

anLn, (4.7a)

M(g) = g(σ)∂τ =
∑
n

bne
inσ∂τ = −i

∑
n

bnMn (4.7b)

where f =
∑
ane

inσ, g =
∑
bne

inσ have been expanded in Fourier modes. The algebra of

the modes:

[Lm, Ln] = (m− n)Lm+n, [Lm,Mn] = (m− n)Mm+n, [Mm,Mn] = 0. (4.8)

This is indeed the classical part of BMS3 algebra (2.10), which replaces the two copies

of the Virasoro algebra on the tensile worldsheet as the residual gauge symmetry in the

tensionless limit of bosonic string theory.
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Energy-momentum tensor. We consider an infinitesimal transformation of (4.1):

ξα → ξ′α = ξα + δξα. The Noether current is given by Jα = Tαβδξ
β . The energy mo-

mentum (EM) tensor constructed from the above:

Tαβ = V αV ρ∂ρX
µ∂βXµ −

1

2
V λV ρ∂λX

µ∂ρXµδ
α
β . (4.9)

In the gauge V α = (1, 0), δξα = (f ′τ + g, f) and the non-trivial components of Tαβ are

T 0
1 = Ẋ ·X ′ ≡ T1(σ, τ), T 0

0 = −T 1
1 =

1

2
Ẋ2 ≡ T2(σ, τ). (4.10)

The Noether current associated with the above transformation is:

Q =

∫
dσJ0 =

∫
dσ
[
T1f + T2(f ′τ + g)

]
. (4.11)

Expanding f and g in fourier modes as before we get:

Q =
∑
n

an

∫
dσ (T1 + inτT2)einσ +

∑
n

bn

∫
dσ T2e

inσ =
∑
n

anLn +
∑
n

bnMn. (4.12)

Thus we have:

Ln =

∫
dσ(T1 + inτT2)einσ, Mn =

∫
dσ T2 e

inσ. (4.13)

We can invert this relation to find

T1(σ, τ) =
1

2π

∑
n

(Ln − inτMn)e−inσ, T2(σ, τ) =
1

2π

∑
n

Mne
−inσ. (4.14)

These relations define the EM tensor for the underlying 2d field theory.

Mode expansions. The equation of motion (4.2) in the (4.4) gauge assume a particularly

simple form:

Ẍµ = 0. (4.15)

The equations corresponding to V α, which are of course the two components of the energy

momentum tensor that we have introduced above, become constraints:

Ẋ ·X ′ = 0 = T1, Ẋ2 = 0 = T2. (4.16)

So the classical tensionless bosonic string is a system governed by the equation of mo-

tion (4.15) subject to the constraints (4.16). Subject to closed string boundary conditions

Xµ(τ, σ) = Xµ(τ, σ + 2π), the above EOM is solved by the following mode expansion:

Xµ(σ, τ) = xµ +

√
c′

2
Bµ

0 τ +

√
c′

2

∑
n 6=0

i

n
(Aµn − inτBµ

n) e−inσ. (4.17)

Using the mode expansion above on the equations of the constraints, and equating with

the expansion of the EM tensor derived in (4.14), we find:

Ln =
1

2

∑
m

A−m ·Bm+n, Mn =
1

2

∑
m

B−m ·Bm+n. (4.18)
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Let’s look at the algebra of these modes. The Possion brackets between X and P require

{Aµm, Aνn}P.B. = {Bµ
m, B

ν
n}P.B. = 0, {Aµm, Bν

n}P.B. = −2imδm+nη
µν . (4.19)

It is important to stress that this is not the algebra of harmonic oscillator modes. The

algebra of {A,B} modes can be used to calculate those of Ln,Mn. This, as expected, leads

to the BMS algebra (4.8) (upon quantisation). If we insist on a harmonic oscillator algebra,

we need to define new modes C, C̃:

Cµn =
1

2
(Aµn +Bµ

n), C̃µn =
1

2
(−Aµ−n +Bµ

−n). (4.20)

Now, the Poisson brackets take the canonical form:

{Cµn , Cνm} = −inδn+m,0 η
µν , {C̃µn , C̃νm} = −inδn+m,0 η

µν , {Cµn , C̃νm} = 0. (4.21)

This algebra is clearly of the same form as in the usual tensile bosonic string oscillators

(α, α̃). In this tensionless oscillator basis, we can alternatively write the mode expan-

sion (4.17) which solves the equation of motion as

Xµ(τ, σ) = xµ + 2

√
c′

2
Cµ0 τ + i

√
c′

2

∑
n 6=0

1

n

[
(Cµn − C̃

µ
−n)− inτ(Cµn + C̃µ−n)

]
e−inσ. (4.22)

It would be instructive to split this in the following way:

Xµ
“L′′ =

xµ

2
+

√
c′

2
Cµ0 τ + i

√
c′

2

∑
n 6=0

1

n
[Cµn − inτCµn ]e−inσ (4.23a)

Xµ
“R′′ =

xµ

2
+

√
c′

2
C̃µ0 τ + i

√
c′

2

∑
n 6=0

1

n
[C̃µn − inτC̃µn ]einσ. (4.23b)

In the above, the zeroth mode of the oscillators are related to the string momentum:

Cµ0 = C̃µ0 =
√

c′

2 k
µ. These structures imply that C oscillators count the number of “left”

modes and C̃ oscillators count the number of “right” modes, so that the original left-right

splitting in the tensile string has a similar tensionless analogue.

The ultra-relativistic limit. The tensionless limit is a limit where the length of the

fundamental string goes to infinity. This can be viewed in terms of a limit on the co-

ordinates of the worldsheet: σ →∞ keeping τ fixed. Since we wish to impose closed string

boundary conditions, it is easier to work with an equivalent limit

σ → σ, τ → ετ, ε→ 0. (4.24)

This is an ultra-relativistic (UR) limit on the worldsheet,2 as mentioned in the introduction,

where the worldsheet speed of light goes to zero. The residual symmetry algebra on the

2The NR limit on the worldsheet can similarly be expressed as

σ → εσ, τ → τ, ε→ 0. (4.25)

See [4] for more details on this limit.
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worldsheet of the tensile bosonic closed string is given by two copies of the Virasoro algebra.

The symmetry in the tensionless limit manifests itself exactly as the UR contraction of the

Virasoro generators (2.12),

Ln = Ln − L̄−n, Mn = ε(Ln + L̄−n). (4.26)

Starting with the Virasoro generators at the level of the algebra, the above UR limit on

the two copies of the Virasoro results in the quantum version of the BMS3 (with central

terms turned on) as described in (2.10).

In terms of the mode expansions of the string, one can compare the tensile (3.4) and

the tensionless expansions (4.17) to easily come up with

Aµn =
1√
ε

(
αµn − α̃

µ
−n
)
, Bµ

n =
√
ε
(
αµn + α̃µ−n

)
. (4.27)

Here αn and α̃n are of course the modes of the usual tensile closed bosonic string. The

relation (4.27) also independently follows from the previous equations (4.18) and (4.26).

However, talking in terms of C oscillators is much more instructive since we can define

those in terms of the tensile ones by means of Bogoliubov transformations:

Cµn(ε) = cosh θ αµn + sinh θ α̃µ−n, C̃µn(ε) = sinh θ αµ−n + cosh θ α̃µn, (4.28)

where the relation between θ and ε can be easily read off:

cosh θ =
1

2

(√
ε+

1√
ε

)
, sinh θ =

1

2

(√
ε− 1√

ε

)
. (4.29)

It is clear that at ε = 1, the set of oscillators {C(ε), C̃(ε)} become the tensile α modes,

and in the other extreme ε→ 0 takes them to the tensionless oscillators which we defined

earlier in (4.20). Hence the flow in ε from 1 to 0 takes one systematically from tensile to

tensionless strings.

The UR limit also works on the EM tensors of the field theory in question. We can

start with a relativistic CFT in 2 dimensions with EM tensors T (z) and T̄ (z̄) and transform

this from the plane to the cylinder:

Tcyl(ω) = z2T (z)− c

24
=
∑
n

Lne−inω −
c

24
(4.30)

where the central term comes from the piece in the transformation involving the Schwarzian

derivative. There is a similar expression for T̄cyl(ω̄). We obtain the BMS versions of the

EM tensors on taking the following linear combinations:

T1(σ, τ) = Tcyl(ω)− T̄cyl(ω̄) =
∑
n

(Ln − inτMn)e−inσ − cL
24
, (4.31a)

T2(σ, τ) = ε(Tcyl(ω) + T̄cyl(ω̄)) =
∑
n

Mne
−inσ − cM

24
. (4.31b)

We can see that (4.14) is the version of the above equations without the central terms.
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5 Imposing quantum constraints

Previously we have discussed the classical aspects of tensionless strings in some detail. In

this section we are going to focus on the quantum aspects of it. We have explored the

oscillator construction of the bosonic tensionless string and seen how the constraints can

be expressed in terms of the oscillators. We have also looked at how the oscillators and

constraints map to their tensile analogues. It is while quantising the string when we start

to see interesting developments. Similar to the tensile case, we look at the method of

covariant quantisation, where the oscillators are used to define a vacuum. We then build

a Hilbert space from the vacuum. Applying the constraints on the Hilbert space gives us

the physical string spectrum and its properties. Here, we shall see how we think out of

the box to look at possible ways of imposing the constraints in the tensionless case. We

narrow down the possibilities to three distinct cases and discuss their unique features in

the succeeding sections.

The principal philosophy of the paper. Let us consider that we have one generic

constraint Fn which is hermitian by definition (F †n = F−n). Classically we impose the

constraint by simply saying Fn = 0, ∀ n ∈ Z. When we quantise the system, we use the

quantum version of such constraints to restrict the Hilbert space to filter out the physical

spectrum. The most general way to impose this condition is demanding all the matrix

elements of the constraint acting on physical states vanish, i.e.

〈phys′|Fn|phys〉 = 0 (n ∈ Z). (5.1)

In the rest of the paper, we will refer to this condition as a “sandwich” condition. For

tensile string case, these constraints are left and right Virasoro generators: Fn = (Ln, L̄n).

Remember that in section 3.2 we have studied two consistent ways to impose the constraint

condition consistently on a worldsheet, the first one being the conventional method of

Virasoro highest weight representations:

Ln|phys〉 = L̄n|phys〉 = 0 (n > 0). (5.2)

It should be noted that the sandwich conditions here work via the right handed action of

the constraints. The other method is the case of the “flipped” vacuum where half of the

conditions are that of the lowest weight,

Ln|phys〉 = L̄−n|phys〉 = 0 (n > 0). (5.3)

Notice in the case above, the anti-holomorphic constraints actually impose a left handed

action to satisfy the sandwich condition.

For the tensionless case, the emergence of BMS3 algebra makes the matters more

conceptually difficult as there could be more possibilities to consistently define the string

vacuum and physical states. We will see that this general sandwich condition, together

with the property of hermiticity can be broken down into three distinct cases:

1. Fn|phys〉 = 0 (n > 0), (5.4a)

2. Fn|phys〉 = 0 (n 6= 0), (5.4b)

3. Fn|phys〉 6= 0, but 〈phys′|Fn|phys〉 = 0. (5.4c)
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Zero modes are not included here since one can always have an ordering ambiguity in those

modes for which we need to consider F0 =: F0 : −aF in the above classification. The most

comfortable and nice way is the first case because the physical states fall into the highest

weight representation of the algebra (case 1), which is often the usual norm to study a

quantum string theory with.

In the case of the BMS3 algebra things are not that simple, and one needs to consider

all the cases to understand the associated string spectrum. Here we have Fn = (Ln,Mn)

for which the above classification of conditions are possible. It seems that we could have

nine possible combinations in total through which we can impose the constraint on the

states. These are depicted below:

Lm|phys〉 = 0, (m > 0),


Mn|phys〉 = 0, (n > 0)

Mn|phys〉 = 0, (n 6= 0)

Mn|phys〉 6= 0, (∀ n)

 ; (5.5a)

Lm|phys〉 = 0, (m 6= 0),


Mn|phys〉 = 0, (n > 0)

Mn|phys〉 = 0, (n 6= 0)

Mn|phys〉 6= 0, (∀ n)

 ; (5.5b)

Lm|phys〉 6= 0, (∀ m),


Mn|phys〉 = 0, (n > 0)

Mn|phys〉 = 0, (n 6= 0)

Mn|phys〉 6= 0, (∀ n)

 . (5.5c)

We must keep in mind that all of the above conditions give back the sandwich condi-

tion (5.1). We are going to discuss how choosing different vacuum configurations amounts

to having the corresponding imposition of constraints. Let us remind the reader the relation

of the constraints with the modes

Ln =
1

2

∑
m

A−m ·Bm+n, Mn =
1

2

∑
m

B−m ·Bm+n. (5.6)

Reading off from (4.19) we write the following commutator brackets

[Aµm, A
ν
n] = [Bµ

m, B
ν
n] = 0, [Aµm, B

ν
n] = 2mδm+nη

µν . (5.7)

Evidently, using these brackets one also arrives at the same constraint algebra as in (2.10).

This particular construction is crucial for the constraint algebra to close. To impose the

physical conditions on the Hilbert space we are going to make an assumption: the vacuum

state must be a physical state with respect to the constraints, at least for n 6= 0 i.e.

〈0|Ln|0〉 = 〈0|Mn|0〉 = 0, (n 6= 0). This is a strong condition since it accounts for any

arbitrary n. For n = 0, the ordering ambiguity plays a role in restricting the physical

spectrum and we shall address this in more detail once we discuss each of the cases.

Since both the constraints contain the oscillator Bn, we are going to impose the con-

straints starting with this oscillator and then derive the set of conditions on the vacuum

for both An and Bn modes. First, let us see how we can define the vacuum state in the
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Label Constraint Oscillator Condition Vacuum

(1,1) Lm|ϕ〉= 0,Mn|ϕ〉= 0 Am|0〉= 0,Bn|0〉= 0 m> 0,n> 0 Flipped: |0〉A
(1,2) Lm|ϕ〉= 0,Mn|ϕ〉= 0 Am|0〉= 0,Bn|0〉= 0 m> 0,n 6= 0 Inconsistent

(1,3) Lm|ϕ〉= 0,Mn|ϕ〉 6= 0 Am|0〉= 0,Bn|0〉 6= 0 m> 0,n∈Z Inconsistent

(2,1) Lm|ϕ〉= 0,Mn|ϕ〉= 0 Am|0〉= 0,Bn|0〉 6= 0 m 6= 0,n> 0 Inconsistent

(2,2) Lm|ϕ〉= 0,Mn|ϕ〉= 0 Am|0〉= 0,Bn|0〉= 0 m 6= 0,n 6= 0 Induced: |0,0µ〉I
(2,3) Lm|ϕ〉= 0,Mn|ϕ〉 6= 0 Am|0〉= 0,Bn|0〉 6= 0 m 6= 0,n∈Z Inconsistent

(3,1) Lm|ϕ〉 6= 0,Mn|ϕ〉= 0 Am|0〉 6= 0,Bn|0〉= 0 m∈Z,n> 0 Inconsistent

(3,2) Lm|ϕ〉 6= 0,Mn|ϕ〉= 0 Am|0〉 6= 0,Bn|0〉= 0 m∈Z,n 6= 0 Induced: |0,kµ〉I
(3,3) Lm|ϕ〉 6= 0,Mn|ϕ〉 6= 0 Am|0〉 6= 0,Bn|0〉 6= 0 m∈Z,n∈Z Oscillator: |0〉C

Table 1. Quantum constraints on a physical state |ϕ〉 leading to different vacua.

theory consequently from the set of conditions given in (5.4), if we are given one set of

oscillators Bn,

1. Bn|0〉 = 0 (n > 0), (5.8a)

2. Bn|0〉 = 0 (n 6= 0), (5.8b)

3. Bn|0〉 6= 0, but 〈0|Bn|0〉 = 0 (n 6= 0). (5.8c)

Out of the above three cases, imposing the third one is a bit tricky, but surprisingly it

appears that we can interpret this last condition in (5.8) by redefining the modes in terms

of linear combinations Bn = Cn+C̃−n of two oscillators (4.20), where the positive modes of

Cn and C̃n annihilate the associated vacuum. We can immediately see that the harmonic

oscillator basis of the tensionless string modes (4.20) is naturally useful in this sense.

Consequently, from (5.8) we can derive nine sub-cases, if we apply the same scenarios for

An oscillators. These nine cases are connected to the nine possible combinations of Ln,

Mn given in (5.5). This connection is illustrated in table 1 below.

In the table mentioned, the different implementations are labeled by (l,m) where de-

noting the type of condition listed in (5.4) or (5.8). The highest weight representations are

be labeled by (1, 1). However as mentioned in the table, most of the nine combinations

gives us inconsistencies or redundancies, since the two constraints are not completely ar-

bitrary but are related through the structure of BMS algebra. A detailed calculation of

why the other constraints do not hold is carried out in appendix A. We list the three main

interesting cases for imposing the physical conditions:

i. Ln|phys〉 = Mn|phys〉 = 0 (n > 0), (5.9a)

ii. Ln|phys〉 6= 0, Mn|phys〉 = 0 (n 6= 0), (5.9b)

iii. Ln|phys〉 6= 0, Mn|phys〉 6= 0. (5.9c)

Reading off from the table, these gives us the three distinct vacua (cases (3,3),(3,2) and

(1,1)) which we name as the oscillator, induced and flipped vacua. Case (2,2) is also a valid
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choice and turns out to be a special case of the induced vacuum where the momentum is

zero. Now, in what follows, we delve into a detailed discussion for each of these vacua.

6 The oscillator vacuum

We begin by considering the tensionless string action (4.1) as fundamental. This means

that we will attempt to quantize the theory defined by this action without recourse to any

parent theory. The equation of motion (4.2) in the V α = (1, 0) gauge, as seen before, is

solved by the mode expansion (4.17). There the oscillator modes (A,B), as stressed before,

don’t follow a harmonic oscillator algebra, but instead the commutation relations (4.19).

To work in a familar oscillator basis we shall work with the C oscillators. Upon canonical

quantization, the Poisson brackets (4.21) transform to

[Cµm, C
ν
n] = [C̃µm, C̃

ν
n] = mηµνδm+n. (6.1)

The oscillator vacuum |0〉c is defined by the following

Cµn |0〉c = C̃µn |0〉c = 0 ∀ n > 0. (6.2)

We call this vacuum the oscillator vacuum since the definition exactly mirrors that of a

tensile string vacuum.

The Hilbert space: a first look. In the following discussion, we would however be

more interested to account for the string states in a more intrinsic way. The relations (6.1)

allows us to create states by acting negative modes of C and C̃ on the vacuum. Thus a

Hilbert space can be constructed in the following way:

Level 0 : |0, kµ〉c
Level 1 : Cµ−1|0, k

µ〉c; C̃µ−1|0, k
µ〉c

Level 2 : Cµ−2|0, k
µ〉c; Cµ−1C

ν
−1|0, kµ〉c;

Cµ−1C̃
ν
−1|0, kµ〉c; C̃µ−1C̃

ν
−1|0, kµ〉c; C̃µ−2|0, k

µ〉c
. . . . . . . . . . . . . . . . . . . . . . . . . . .

Level n : Cµ−n|0, kµ〉c; Cµ−1C
ν
−n+1|0, kµ〉c; . . . C̃µ−n|0, kµ〉c. (6.3)

A generic state |ψ〉 with level (r+s) is constructed as

|ψ〉 = |r,s〉 =
∑
j

ρj �
[(
C

(a1)
−m1

. . . C
(ap)
−mp

)(
C̃

(b1)
−n1

. . . C̃
(bq)
−nq

)]
j
|0, kµ〉c, (6.4)

where (ai) and (bi) denote the power of the C−mi and C−nj oscillators. Spacetime indices

have been suppressed in the above for simplicity.

r =

p∑
i=1

aimi, s =

q∑
i=1

bini, (r, s ≥ 0) (6.5)
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count the total number of C and C̃ modes respectively. In (6.4), ρj are polarisation tensors

with the appropriate index structure. It is easy to see that this state has mass squared

equal to −k2.

Let us now consider the inner products of the states in the Hilbert space. Firstly, we

consider the vacuum to be normalised i.e.

〈0, kµ|0, k′µ〉 = δkk′ . (6.6)

Also, the excited states at different levels are orthogonal to each other. An obvious fact

arising from the orthogonality condition is that the inner product between a level matched

state and a non-level matched state is zero. This will be important later in our analysis. We

will now focus on the implementation of worldsheet constraints to understand the physical

states in the Hilbert space.

6.1 Action of constraints

Now we analyse in detail the action of constraints. To write the constraints, we use the

definition in (4.20) and put in them back into (4.18). The constraints then can be expressed

in terms of the C oscillators

Ln =
1

2

∑
m

[
C−m · Cm+n − C̃−m · C̃m−n

]
, (6.7a)

Mn =
1

2

∑
m

[
C−m · Cm+n + C̃−m · C̃m−n + 2C−m · C̃−m−n

]
. (6.7b)

For n 6= 0 this can be expressed in terms of new operators Jn, J̄n and Kn such that:

Ln = Jn − J̄−n, Mn = Jn + J̄−n + 2Kn. (6.8)

where we define the new operators as,

Jn =
1

2

∑
m

C−m · Cm+n, J̄n =
1

2

∑
m

C̃−m · C̃m+n, Kn =
1

2

∑
m

C−m · C̃−m−n. (6.9)

For the normal ordered zero modes, it is more convenient to write them as

L0 = N − N̄ , M0 = c′k2 +N + N̄ +X +X†, (6.10)

where,

N =
∑
m>0

C−m · Cm; N̄ =
∑
m>0

C̃−m · C̃m; X =
∑
m>0

Cm · C̃m. (6.11)

Here N and Ñ are the number operators for either set of oscillators, while X is a sum

of annihilation operators that couples the two sets. Action-wise, we see that the number

operators in M0 are pieces that give an eigenvalue when it acts on the states, i.e. a diagonal

part, which we denote as H0. There is the other coupled piece that instead gives rise to a

bunch of other states on action, we call that as Y0.

M0 = H0 + Y0, where H0 = c′k2 +N + Ñ , Y0 = X +X†. (6.12)

The constraint algebra can be checked to be the BMS algebra (2.10).
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We now wish to find the central extensions of the BMS3 in this vacuum. By considering

Jacobi identities and the inner product of commutators [L2, L−2] and [L2,M−2] between the

vacuum with zero momentum |0, 0µ〉c, the values of the central charges can be calculated

explicitly in terms of the spacetime dimensions D (See B.3). We find these charges to be

cL = 0 and cM = 2D. (6.13)

Let us now consider the action of the constraint operators on a general state |r,s〉, where

in general both levels do not have to be same. Jn lowers the level of C oscillators by n

unless it becomes zero. J̄n does the same thing for C̃ oscillators,

Jn|r,s〉 = |r-n,s〉, J̄n|r,s〉 = |r,s-n〉 ∀ n 6= 0. (6.14)

The action of Kn on |r,s〉 affects both levels of the state and is given by the following:

Kn|r,s〉 =
∑
m

|r-m+n,s-m〉+
∑
m

|r+m,s+m+n〉 ∀ n > 0, (6.15a)

=
∑
m

|r-m,s-m+n〉+
∑
m

|r+m+n,s+m〉 ∀ n < 0. (6.15b)

We can collect these expressions to obtain the combined operation of Ln and Mn’s on the

state |r,s〉:

Ln|r,s〉 = |r-n,s〉−|r,s+n〉 (n 6= 0), (6.16a)

Mn|r,s〉 = |r-n,s〉+ |r,s+n〉+
∑
m>0

[
|r-m+n,s-m〉+ |r+m,s+m+n〉

]
(n> 0)

= |r-n,s〉+ |r,s+n〉+
∑
m>0

[
|r-m,s-m-n〉+ |r+m-n,s+m〉

]
(n< 0). (6.16b)

The action of zero modes can also be calculated quite easily:

L0|r,s〉 = (r − s)|r,s〉, (6.17a)

M0|r,s〉 = (c′k2 + r + s)|r,s〉+
∑
m>0

[
|r-m,s-m〉+ |r+m,s+m〉

]
. (6.17b)

The most important point to note is that if we start with a level matched state |φr〉 = |r,r〉,
then the action of Ln or Mn on |φr〉 will give us combinations of a number of states

∼
∑

m |am,bm〉 that are not level matched at all (am 6= bm).

Let us pause to emphasise the importance of the above calculation. It clearly shows

that the right hand action of constraints on a state isn’t enough to probe this theory, even

if the oscillator structure is preserved. Secondly, from an operator formalism point of view

that when the constraint operators act on a physical state, they spew out an accumulation

of infinite number of unphysical excitations. Interestingly, these unphysical excitations

stem out from the C, C̃ coupled term in the Hamiltonian of the theory. One may speculate

that at the worldsheet level, the coupling of these oscillators themselves are unphysical as in

some sense they are causally disconnected, leading to the non-trivial structure of physical

constraints on the string. However, we will leave such ideas for discussion elsewhere, and

impose the generalized physical conditions to find more about the spectrum.
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6.2 Imposing physical conditions

As we have stressed in Sec 3, the quantum imposition of constraints lead us to the sandwich

conditions (5.1). However L0 and M0 have normal ordering ambiguities, so the general

physical state conditions are generalised to:

〈phys′|(Ln − aLδn,0)|phys〉 = 0, 〈phys′|(Mn − aMδn,0)|phys〉 = 0. (6.18)

The standard way of imposing the constraints by imposing the highest weight conditions

does not work in this case. This can be seen by looking at the eqns (6.7). In Mn there

is the presence of the operator Kn, which acting on physical states creates an infinite

tower of excited states. We also see that Ln or Mn with n > 0 does not annihilate the

vacuum (6.16). It is easy to see that if we demand the right hand action of Ln or Mn on

the vacuum |0〉C gives zero, it would give us a trivial result that all higher excitations on

the vacuum will be zero. In order to obtain non-trivial states on this vacuum, one has to

take the sandwich conditions (6.18) as guiding principle to find physical states. Let us see

how this is applicable for the following situations:

Case I: the vacuum. Let us first consider |phys〉 = |phys′〉 = |0, kµ0 〉c. It is easy to

check that the physical conditions are trivially satisfied for n 6= 0. For the zero modes we

get

c〈0, kµ0 |L0|0, kµ0 〉c = N − N̄ = aL = 0, c〈0, kµ0 |M0|0, kµ0 〉c = c′k2
0 = aM . (6.19)

We see that the vacuum |0, kµ0 〉c is a physical state with the mass shell condition being

m2 = −aM
c′ , provided we have aL = 0 since N = N̄ = 0.

Case II: level matched states. Now let us take another state |Φ〉 = |r,r〉. Then the

action of Ln is given by

Ln|r,r〉 = |s−, r〉 − |r, s+〉. (6.20)

where s± = r ± n. Curiously, the resultant state is clearly a non-level matched state for

n 6= 0. The same can be checked for the action of Mn. The inner product of this state

with any other level matched state will be zero because of orthogonality. This gives us the

following relations

〈r,r|Ln|s,s〉 = 0, 〈r,r|Mn|s,s〉 = 0. (6.21)

Recalling (6.17), the L0 condition simply gives us L0|r,r〉 = 0, while for action of M0 we

can write

M0|r,r〉 = (c′k2 + 2r)|r,r〉+
∑
m 6=0

|r+m,r+m〉. (6.22)

As we explained before, the resultant sum of states are still individually level matched.

Now let us consider the inner product with another level matched state |s,s〉,

〈s,s|M0|r,r〉 = (c′k2 + 2r)〈s,s|r,r〉+
∑
m 6=0

〈s,s|r+m,r+m〉 = aM 〈s,s|r,r〉 (6.23)
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If r = s then only the first term survives, else for s = r ±m, the equivalent term inside

the summation will survive. We will proceed to find out the mass shell condition for these

states soon. We see from above that all level matched states |Φ〉 obey the conditions:

〈Φ′|Ln|Φ〉 = 0, 〈Φ′|Mn|Φ〉 = aMδn,0〈Φ′|Φ〉. (6.24)

The above relations are exactly the physical state conditions (6.18) with aL = 0. This

nicely realises our framework for imposing the constraint conditions.

Case III: non level matched states. Let |Φ〉 = |r,s〉 such that r−n = r′ and s+n = s′

(r, s > 0 and n 6= 0). Then Ln acting on |r,s〉 gives:

Ln|r,s〉 = |r-n,s〉 − |r,s+n〉
= |r′, s〉 − |r, s′〉 (6.25)

Then clearly we can find the following inner products:

〈r′, s|Ln|r,s〉 = 〈r′, s|r′, s〉 6= 0, (6.26a)

〈r, s′|Ln|r,s〉 = −〈r, s′|r, s′〉 6= 0, (6.26b)

which violate physical state conditions. Using (6.16) similar relations can be derived for

Mn s with n 6= 0. We can then say, there will be at least one value of n where the physical

conditions (6.18) are violated for a non level matched state. Furthermore, the action of L0

will give us

L0|r,s〉 = (r − s)|r,s〉 6= 0. (6.27)

For non level matched states to be physical, it would mean that the ambiguity aL = r−s is

not a fixed number, and since aL 6= 0, the vacuum is not a physical state. We will demand

for the theories which we will analyse, the respective vacua would be a physical state. This

is a demand that is justified by looking at usual bosonic string theory.3 Therefore, we

conclude from the above discussion that only level matched states can be physical states of

the tensionless string defined on the oscillator vacuum.

6.3 Analysis of the physical spectrum

We have seen that the level matched states trivially satisfy the Ln, Mn (n 6= 0) and L0

conditions. The M0 condition, on the other hand, help us to understand the mass spectrum

of the physical states. In this section we are going to see how we get a massive spectrum

and another massless spectrum of states by carefully analysing the constraints. Our focus

is, of course, on level matched states from now on, as these are the only physical ones.

3One could obviously argue that for superstring theories, the GSO projection projects out the negative

mass vacuum. But this is a condition that is imposed on top of the usual Super-Virasoro constraints.
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I. Massive states. Let us take a closer look at the M0 condition for physical states.

From (6.12), we can split M0 into “good” (number operators) and “bad” (coupled mode)

parts:

〈phys′|M0|phys〉 = aM 〈phys′|phys〉, (6.28a)

=⇒ 〈phys′|H0|phys〉+ 〈phys′|Y0|phys〉 = aM 〈phys′|phys〉. (6.28b)

Now, the action of Y0 acting on the level matched physical state is given by the last term

of (6.17). Using the result, it can be checked that

〈n,n|Y0|n,n〉 = 0 (6.29)

due to a mismatch of levels on both sides. On the other case, where the states are of

different levels n′ 6= n,

〈n′,n′|Y0|n,n〉 ∼ δkk′ . (6.30)

This is equal to zero only if the momentum of different levels are not equal. We will now

carefully analyse this condition. At first we address the case where k 6= k′. In the next

subsection, we will look at k = k′, which would lead to massless states. For these states

where k 6= k′, we can reduce the M0 condition to just the sandwich action of H0,

〈n′,n′|H0|n,n〉 = aM 〈n′,n′|n,n〉. (6.31)

Since H0 is a “good” operator with well defined eigenvalues and eigenvectors, we can safely

impose the right-action on the states:

H0|n,n〉 = aM |n,n〉. (6.32)

The case where k = k′, is discussed in the next section. Using the form of H0 from (6.12),

this condition allows us to define the mass of these states in terms of the ambiguity aM ,

m2|n,n〉 =
1

c′
(2n− aM )|n,n〉. (6.33)

As discussed above, other than the M0 constraint, the other conditions doesn’t really give

us any new information regarding the states, just that these states have to be level matched.

We have also seen that the simple right hand side action of the constraints on the states

doesn’t work. We shall see how we can impose the constraint in its sandwich form but

with a minor additional assumption, which will help us to get meaningful physical states

in the Hilbert space. Let us consider the Ln condition first. If we recall (6.8), we can write

〈phys′|Ln|phys〉 = 〈phys′|Jn|phys〉 − 〈phys′|J̄−n|phys〉 = 0 ∀ n 6= 0. (6.34)

If we choose |phys′〉 as the physical vacuum, then from the form of Jn’s make sure that

this condition reduces to

〈0, kµ0 |Jn|phys〉 = 〈0, kµ0 |J̄n|phys〉 = 0 ∀ n > 0. (6.35)
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The Mn condition also gives the same result. Also, if we take a level matched state

|Φ〉 = |m,m〉, then Jn|m,m〉 is trivially zero for n > m. For n ≤ m, we cannot deduce

any meaningful condition, as whatever state forms on the right hand side, is orthogonal to

the vacuum. Let us see what happens if we put a restriction on the states in terms of right

hand actions:

Jn|phys〉 = J̄n|phys〉 = 0 ∀ n > 0. (6.36)

The sandwich condition is then satisfied by the following way:

〈phys′|Ln|phys〉 = 〈phys′|
−−−−−→
Jn|phys〉 − 〈

←−−−−−−−
phys′|J̄−n|phys〉 = 0 ∀ n > 0,

= 〈
←−−−−−−
phys′|Jn|phys〉 − 〈phys′|

−−−−−−→
J̄−n|phys〉 = 0 ∀ n < 0, (6.37)

while Ln|Φ〉 is not necessarily zero. It is interesting to notice the similarity of Jn and J̄n
to the Virasoro constraints Ln and L̄n in the tensile string theory and it apparently feels

like we are going back to two copies of Virasoro. However that is not quite the case here,

since the action of zero modes are defined in a different way (6.10).

Let us illustrate an example by considering the state |1,1〉 = ρµνC
µ
−1C̃

ν
−1|0, kµ〉c. By

demanding J1|1,1〉 = J̄1|1,1〉 = 0, we would obtain kµρµν = kνρµν = 0. In order to

project out the negative norm states we must have

ρ2 ≥ 0→ k2 ≤ 0. (6.38)

One can extend this analysis to higher levels, and obtain conditions relating the momentum

and the polarisation tensor for which we have no negative norm states.

II. Massless states. The reduction of the constraint conditions discussed in the previous

section are valid only for physical states that have different momentum at different levels.

In general there could be two states at different level built on the same vacuum |0, kµ〉c.
Then we do not have the freedom of setting the sandwich of the “bad” operator Y0 to zero

and the total physical condition can’t be reduced to an analogue of (6.32).

For example, let us have a physical state as a linear combination of level matched

states, |Φ〉 = λ1|r,r〉 + λ2|s,s〉 and |Φ′〉 = |r,r〉 such that r 6= s. Now if we apply the M0

condition, we get

λ1〈r,r|M0|r,r〉+ λ2〈r,r|M0|s,s〉 = λ1aM 〈r,r|r,r〉, (6.39a)

=⇒ λ1(c′k2 + 2r)δkk′ + λ2

∑
m

〈r,r|s+m,s+m〉δr,s+m = λ1aMδkk′ . (6.39b)

Therefore we see that there is a non-trivial contribution from both H0 and Y0 parts of

M0 for k = k′. An important question is how we can build physical level matched states

using the generators L and M ’s in this case. In case of closed tensile strings we needed

states ∼ L−nL̄−n|0〉α to construct level matched states. For our case, we can construct level

matched states using some specific combinations of L and Ms such that it is annihilated by

L0. A problem with the states built using M ’s is that these states run up to infinite levels

due to the non-trivial action, therefore the simplest level matched state with a definite
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momentum k that we can build on the vacuum is |P1〉 = L1L−1|0〉c. In terms of oscillators

this has the form,

|P1〉 = L1L−1|0, kµ〉c = c′k2|0, kµ〉c − c′kµkνCµ−1C̃
ν
−1|0, kµ〉c. (6.40)

An interesting thing to note here is that this state is exactly equal to L−1L1|0〉c. This

is true for any state of the form LnL−n|0〉c, due to the fact that L0 acts on any level

matched state to give zero and the central charge cL = 0. This state |P1〉 is clearly a linear

combination of |0,0〉 and |1,1〉 states as we explained above. For this state to be physical

we now need to reaffirm the viability of sandwich conditions,

〈0, kµ0 |(M0 − aM )|P1〉 = 0, (6.41a)

〈P1|(M0 − aM )|P1〉 = 0. (6.41b)

Expanding these gives us the following results:

c′k2(c′k2 − 1− aM )δkk0 = 0, (6.42a)

2(c′k2)2(c′k2 − aM ) = 0. (6.42b)

Looking closely at the conditions, we find for k 6= k0, we get either k2 = 0 or c′k2 = aM from

the second equation, but the latter can’t be possible since action of M0 dictates c′k2
0 = aM

from (6.19). On the other hand, if k = k0, then we get that c′k2
0 = 0 = aM . This tells us

that we must have k = k0 and the ordering ambiguity in M0 is fixed to be

aM = 0. (6.43)

This in turn means that a physical ground state must have zero mass .

It can also be checked that the norm of |P1〉 is zero. In general if we apply the M0

condition to level matched states that are built on |0, kµ0 〉c, i.e. they are level matched

massless states, we can derive the relations

〈n′,n′|M0|n,n〉 ∼ f [ρ′, ρ] = 0, (6.44a)

〈n,n|M0|n,n〉 ⇒ (c′k2
0 + 2n− aM )||n,n||2 = 0. (6.44b)

Here f [ρ′, ρ] is a function relating the porlarisation tensors. Since we know that c′k2
0 =

aM = 0 for these states, we must have the norm of these states ||n,n||2 = 0, i.e. all of them

are null states. These level matched states are built on |0, kµ0 〉, therefore their masses are

given by

m2|n,n〉 = m2
(
Cµ1−l1 . . . C

µp
−lp

)(
C̃ν1−m1

. . . C̃
νq
−mq

)
|0, kµ0 〉c = 0, (6.45)

where
∑

i li =
∑

imi = n. In summary, we have discussed a clear classification of the

tensionless spectrum built on the vacuum |0〉c. The vacuum state itself is physical if it

is massless. There exist excited states that can be either massless null states, or massive

states. For the latter ones, if aM = 0 the masses of excited states in (6.33) are always

positive and the spectrum is classified by

m2|n,n〉 =
2n

c′
|n,n〉. (6.46)
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This means k2 < 0 and from (6.38) we can conclude that the states have positive norm.

We can now see that by deviating from the conventional method of imposing constraints

only the right side for positive modes, we get novel results simply by analyisng carefully

the sandwich conditions of the constraints, which are more fundamental by nature. One

of the most important result is the physical vacuum is massless: there is no tachyon in the

bosonic tensionless theory over the oscillator vacuum.

The tensionless string on this vacuum clearly seems to have a memory of its parent os-

cillator structure. The oscillators C and C̃ arise from the evolution of the tensile oscillators

α and α̃ in the limit (4.28). The canonical relations, the level matching conditions for the

string are preserved. Moreover, the mass formula in equation (6.46) is almost analogous

to the formula for the tensile string except for the value of the ordering ambiguity and the

string length α′ replaced by the parameter c′. On the other hand we also have the tower of

massless higher spin states (6.45) that obey the physical conditions. Our discussion shows

these are also the null states of the theory. In [4] such a hint of massless tower of states

was uncovered for these tensionless strings in the sense that all masses vanish when one

takes the α′ → ∞ limit. In the present work, our intrinsic analysis solidifies this fact and

we can further probe into a hitherto unknown massive sector of the theory.

6.4 Critical dimensions?

We have seen that it is difficult to construct physical states at a fixed level using the

generators. These states certainly do not form a highest weight representation of the BMS

Algebra. If we simply had highest weight at our disposal, then we could have considered

|φ〉 = L−n|0〉c or |φ′〉 = M−n|0〉c to be a physical state for n > 0, and impose Ln|φ〉 =

Ln|φ′〉 = 0. This would mean that |φ〉,|φ′〉 are null physical states or spurious states, that

exist for a particular value of the ambiguities and the central charges. These values can be

calculated if we could set the right hand side of the following equations to zero.

〈φ|φ〉 = c〈0|LnL−n|0〉c
= c〈0|

[
2nL0 +

cL
12
n(n2 − 1)

]
|0〉c − c〈0|L−nLn|0〉c ∀ n > 0, (6.47a)

〈φ|φ′〉 = c〈0|LnM−n|0〉c
= c〈0|

[
2nM0 +

cM
12
n(n2 − 1)

]
|0〉c − c〈0|M−nLn|0〉c ∀ n > 0. (6.47b)

However, we cannot do so since the constraints does not act on the right hand side. The

null states also can not be defined in this manner. In fact we have already seen that

LnL−n|0〉c 6= 0, but instead generates combinations of level matched states. The central

charge has also been calculated as cL = 0 for level matched states to exist in the physical

state space. For our case, |φ〉 or |φ′〉 are not physical since they are not level matched, and

the sandwich conditions (6.18) are not applicable. While we can show that the other central

charge is related to the spacetime dimension cM = 2D (see appendix), this procedure of

covariant quantisation does not provide a condition for the value of D. One has to consider

other methods of quantization to answer the question.
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7 The induced vacuum

Perhaps the most natural question to ask from the point of view of the tensionless limit is

what happens to the original tensile theory under a tensionless limit. So in this section,

we follow the evolution of states of the tensile Hilbert space under the tensionless limit. In

particular, we will focus on the evolution of the tensile vacuum |0〉α as we take tension to

zero. It will turn out that the evolved vacuum gives rise to states following the induced

representations of the BMS3 algebra, where rather remarkable physics emerges.

7.1 The vacuum from the limit

Let us now concentrate on the vacuum of the tensile string theory. We can reverse the

relations (4.27) between the tensile and the tensionless modes:

αn =
1

2

[√
εAn +

1√
ε
Bn

]
, α̃n =

1

2

[
−
√
εA−n +

1√
ε
B−n

]
. (7.1)

We can put these relations back to write the conditions (3.9) as(√
εAn +

1√
ε
Bn

)
|0〉α = 0,

(
−
√
εA−n +

1√
ε
B−n

)
|0〉α = 0 (n > 0). (7.2)

We will assume, in keeping with (2.21), that as ε → 0, the tensile vacuum goes to the

induced vacuum |0, kµ〉I :
lim
ε→0
|0, kµ〉α = |0, kµ〉I . (7.3)

This new vacuum is defined as:

Bn|0, kµ〉I = 0 ∀ n 6= 0, Bµ
0 |0, k

µ〉I = kµ|0, kµ〉I . (7.4)

We would also like to mention here that we can also have a special case where Bµ
0 |0, kµ〉I = 0

which represents the vacuum with zero momentum (|0, 0µ〉I). The BMS constraints are very

stringent on this vacuum with Ln|0, 0µ〉I = Mn|0, 0µ〉I = 0 (∀ n). This corresponds to

case (2,2) of table 1 that we discussed in the previous section. Since there is only one such

state that falls in this category, we are going to focus on the case where kµ 6= 0. Let us

now recall the induced BMS representations (2.17)

M0|M, s〉 = M |M, s〉, L0|M, s〉 = s|M, s〉; (7.5a)

Mn|M, s〉 = 0 (n 6= 0). (7.5b)

In terms of oscillator modes these become

B2
0 |M, s〉 = M |M, s〉; Bn|M, s〉 = 0 (n 6= 0). (7.6)

Identifying |M, s〉 with |0, kµ〉I we observe that this vacuum in the induced representation

and hence the name. The physical state conditions (5.9b) on the induced vacuum are

partially realised by

Mn|0, kµ〉I =
∑
m

B−m ·Bm+n|0, kµ〉I = 0. (7.7)
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Since Bn’s commute amongst each other, there is no ordering ambiguity for the operator

M0, i.e. aM = 0. So the mass of the vacuum |0, kµ〉I is zero:

M0|0, kµ〉I =
∑
n

B−n ·Bn|0, kµ〉I =

(∑
n 6=0

B−n ·Bn +B2
0

)
|0, kµ〉I

= B2
0 |0, kµ〉I = k2|0, kµ〉I = 0. (7.8)

The other constraint condition from (5.9b) for Ln needs to be imposed in its sandwich

form:

I〈0, kµ|Ln|0, kµ〉I = I〈0, kµ|An ·B0|0, kµ〉I = c′k · I〈0, kµ|An|0, kµ〉I = 0. (7.9)

The above conditions help us to compute the central charges for the induced representation

(appendix B.4). We obtain their values as

cL = cM = 0, (7.10)

In terms of C oscillators, the induced vacuum conditions have a suggestive form,

(Cµn + C̃µ−n)|0〉I = 0 (n 6= 0). (7.11)

This is nothing but the condition defining a Neumann boundary state and the solution is

given by

|0〉I = N
∞∏
n=1

exp

(
− 1

n
C−n · C̃−n

)
|0〉c. (7.12)

where N is a normalisation constant. Now let us see how this can be related to the

tensile vacuum |0〉α. We remind ourselves the relation between the C oscillators and the

α oscillators can be obtained as an inverse Bogoliubov transformation from (4.28):

αµn = eiGCne
−iG = cosh θ Cµn − sinh θ C̃µ−n; (7.13)

α̃µn = eiGC̃ne
−iG = − sinh θ Cµ−n + cosh θ C̃µn ,

where the infinitesimal parameter θ was related in turn to the limiting parameter ε and

generator of the transformation takes the form,

G = i

∞∑
n=1

θ
[
C−n.C̃−n − Cn.C̃n

]
, tanh θ =

ε− 1

ε+ 1
. (7.14)

We can use this to relate the tensile and tensionless vacua:

|0〉α = exp[iG]|0〉c (7.15)

=

(
1

cosh θ

)1+1+... ∞∏
n=1

exp

[
tanh θ

n
C−nC̃−n

]
|0〉c.

Using the regularisation: 1 + 1 + 1 + . . .∞ = ζ(0) = −1
2 , we finally get

|0〉α =
√

cosh θ
∞∏
n=1

exp

[
tanh θ

n
C−n · C̃−n

]
|0〉c. (7.16)

From the point of view of |0〉c, |0〉α is a squeezed state.
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7.2 Emergence of open string

In the above expression for the tensile closed string vacuum (7.16), we get |0〉α = |0〉c at

ε = 1. However as ε is dialled to zero (or equivalently tanh θ = −1), the vacuum can be

written as

lim
ε→0
|0〉α = N

∞∏
n=1

exp

[
− 1

n
C−n · C̃−n

]
|0〉c, (7.17)

where we have used limε→0

√
cosh θ = N . This is exactly the relation (7.12) that we found

from the conditions on the induced vacuum. Hence we have shown that the closed tensile

string vacuum |0〉α evolves into the induced vacuum |0〉I in the extreme limit, which turns

out to be a Neumann boundary state. This state is interpreted as an open string which is

free to move in all spacetime dimensions. A detailed intuitive analysis of this can be found

in [24].

For non zero ε we still have two copies of Virasoro as the symmetry algebra. At

ε = 0 however the symmetry algebra becomes BMS3. We obtained the central charge

cM = 0, hence there a truncation of the BMS3 algebra to its single Virasoro sub-algebra is

possible [48]. Indeed, the symmetry algebra for an open string is a single Virasoro, therefore

from an algebraic perspective the appearance of the open string in the tensionless limit is

justified.

7.3 Comments on the spectrum

Having understood how to impose constraints in this case, we now move on to some dis-

cussions about the spectrum of the tensionless theory around the induced vacuum.

Worldsheet condensation of perturbative DOF. In [24], the spectrum of the tensile

bosonic closed string theory was followed in the tensionless limit. It was shown that any

perturbative state in the tensile theory in the limit of ε→ 0 is reduced just to the induced

vacuum:

|Ψ〉 = lim
ε→0

ρµν α
µ
−nα̃

ν
−n|0〉α = K|0〉I . (7.18)

In the above equation, |Ψ〉 is the tensionless version of the tensile closed string perturbative

state at level n and K is a level dependent constant. This novel phenomenon was conjec-

tured to be a Bose-Einstein like condensation of closed string modes to form a long open

string in the tensionless limit. All perturbative degrees of freedom of the tensile closed

string theory thus vanish and there is an emergent open string in this limit. This was also

connected to the Hagedorn transition on strings at very high temperatures. We point the

reader to [24] for further details of this analysis and the physical picture of how the open

string emerges.

Emergent non-perturbative DOF? The condensation of all closed string degrees of

freedom on the worldsheet to form a long open string is obviously very appealing. But we

want to ask if we can do more. Is it possible to find some new emergent degrees of freedom

that arises at this phase transition point?
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With this question in mind, we will go back to the oscillator construction around this

vacuum, in terms of the modes (A,B). At first sight, it seems natural to build states with

just A oscillators. However, there is a major caveat. Let us remember that [Am, An] = 0,

and hence the norm of a state ∼ A−1|0〉I is not well defined. We could impose An|0〉I = 0

∀ n, but that would lead to all Ln being zero and we will be left with only the vacuum.

Therefore we can build excited states using the An’s. Let us study the action of the

constraint Mn on a generic state Aµ1m1 . . . A
µk
mk |0, kµ〉I .

Mn

∏
j

A
µj
mj |0〉I =

∑
k

B−k ·Bk+n

∏
j

A
µj
mj |0, kµ〉I (7.19)

This is not necessarily annihiliated since for each n + mj = 0 we will get a B0 term. Let

us illustrate this for a simple case:

Mn A
µ
−n|0, kµ〉I = −nBµ

0 |0, k
µ〉I 6= 0. (7.20)

This means that not all states built by the An’s are physical. It can be checked however

that if we build states with the Lns then we can have a non trivial state for which the Mn

condition holds. For example,

Mn L−n|0, kµ〉I = −nB2
0 |0, kµ〉I , (7.21)

is satisfied for L−n|0, kµ〉I to be a massless state. Similarly we can have physical states of

the generic form

Ln1Ln2 . . . Lnk
|0, kµ〉I , (7.22)

which are massless. However, even for these states, the norm is not well defined due to

non-trivial action of the An oscillators.

But there could also be non-perturbatively defined states on this vacuum, which can

have well defined norm. For example, one might consider applying a unitary operator

Un(A,B) built out of the oscillators on a generic states to create a tower of excitations.

Since we want this state to be both non zero and physical, we must have a combination of

A and B in this operator.

Rather intriguingly, it turns out that the kind of states mentioned above can also exist

in the spectrum. Returning to the BMS induced representations, these particular states

can be built out of |M, s〉, defined in [41] as

|ϕ〉 = exp

(
i
∑
n

ωnLn

)
|M, s〉 (7.23)

where ω∗n = ω−n are complex coefficients. For our purpose, it could be checked that this

state satisfies physical states conditions. Clearly this makes these states eigenstates of

supermomenta Mn. In terms of the induced vacuum of the tensionless string, these states

can be explicitly written as

|ϕ〉 = exp

(
i
∑
n,m

ωnAn−m ·Bm

)
|0, kµ〉I . (7.24)
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It is important to note that the ground state momentum is not zero here, and this ensures

the existence of such a unique state. It is clear that these states have the same mass as

|0〉I and hence are massless (k2 = 0) as well. These are highly non-perturbative degrees of

freedom, very different in nature from all the perturbative closed string excitations. These

states definitely warrant more investigation from worldsheet point of view. We aim to

return to this in the near future.

8 The flipped vacuum

In this section we are going to study the Hilbert space built on a vacuum by considering

a “flip” between the creation and annihilation operators of one sector of the oscillators

similar to the tensile analogue considered in sub-section 3.2. We will see how this allows us

to explicitly impose the right-hand side action of the constraints to build a highest weight

representation.

Let us see how we can achieve this from a limit from the parent theory with flipping.

As discussed earlier, the two dimensional Virasoro algebra admits an automorphism given

by L̄n → L̄′n = −L̄−n. In the tensile version it meant that the vacuum was asymmetrically

defined for right and left sectors according to (3.21). Similarly, for the case of tensionless

strings, with the help of oscillator construction, we can define the flipped vacuum in terms

of the oscillators C and C̃ as4

Cn|0〉A = C̃−n|0〉A = 0 (n > 0). (8.1)

Let us look at the transformations in the limit (4.28) which preserves the commutator

brackets of the oscillators. Note that due to the flip, the Bogoliubov transformations don’t

have a mixing of creation and annihilation operators and the vacua (3.21) and (8.1) are

identical. It might be convenient to redefine the flipped oscillator sector such that

C̃n = C̃−n. (8.2)

Then the commutation relations of the oscillators are given by

[Cµm, C
ν
n] = mδm+nη

µν , [C̃ µ
m, C̃

ν
n ] = −mδm+nη

µν , [Cµm, C̃
ν
n ] = 0. (8.3)

Notice the negative sign in the second commutator. With this definition, we can use the

negative modes of C or C̃ to build up the Hilbert space on this vacuum |0〉A. The generators

Ln and Mn can be written in terms of the redefined oscillators following (6.7) as

Ln =
1

2

∑
m

[
C−m · Cm+n − C̃−m · C̃m−n

]
, (8.4a)

Mn =
1

2

∑
m

[
C−m · Cm+n + C̃−m · C̃m−n + 2C−m · C̃−m−n

]
. (8.4b)

4In the A, B oscillator picture this vacuum can be equivalently described by demanding all positive

modes of both A and B annihilate the vacuum, i.e.

An|0〉A = Bn|0〉A = 0 (n > 0).

This can be exactly identified with the first case in (5.8). We discuss this vacuum in the oscillator construc-

tion for clarity.
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Let us look at the action of the generators on the vacuum |0〉A, which simply boils down

to using right hand action of the constraint operators,

Ln|0〉A = Mn|0〉A = 0 (n > 0). (8.5)

This gives us a hint that the physical states fall into the highest weight representation of

BMS3. We must comment here that in the limiting sense, the appearance of the highest-

weight representation is not surprising here at all. As we have explained before, this

“flipped” string theory appears when we take the ultra-relativistic limit on a twisted string

theory defined by physical state conditions (5.3). Due to this L̄n → −L̄−n symmetry, the

limit effectively becomes that of a non-relativistic one, and highest weight representations

of BMS3 algebra emerges naturally.

As detailed earlier, the guiding version of the constraints acting on physical state |phys〉
should be governed by the sandwich conditions:

〈phys′|(Ln − aLδn,0)|phys〉 = 0 (n ∈ Z); (8.6a)

〈phys′|(Mn − aMδn,0)|phys〉 = 0 (n ∈ Z), (8.6b)

where aL and aM are ordering ambiguities. Since we are looking for highest weight repre-

sentations we can restrict the constraint conditions to

(Ln − aLδn,0)|phys〉 = 0 (n ≥ 0), (8.7a)

(Mn − aMδn,0)|phys〉 = 0 (n ≥ 0). (8.7b)

In this case, normal ordered zero modes are defined by

L0 =
∑
m>0

[
C−m · Cm − C̃−m · C̃m

]
= N + Ñ , (8.8a)

M0 = 2C2
0 +

∑
m>0

[
C−m · Cm + C̃−m · C̃m + C−m · C̃m + C̃−m · Cm

]
= c′k2 +N − Ñ +X + Y, (8.8b)

which appears to be very similar to the oscillator vacuum discussed in section 6, N counts

the number of C modes in the standard way. Ñ has an extra sign in this case due to the

sign in the commutator of C̃ . X and Y are again coupled operators, but unlike in the

case of |0〉c they are not “bad”. It is indeed possible to obtain eigenvalues for M0 acting

on certain states. This is a unique feature of this particular vacuum, as the “flip” enables

us to efficiently use the machinery of highest weights. We can calculate the values of the

central charges of BMS3 for this vacuum (appendix B.5) which turn out to be

cL = 2D, cM = 0. (8.9)

Curiously, this is exactly opposite to what we got for |0〉c case (6.13). This also matches

with the limit from the tensile case where we have c = c̄ = D, such that

cL = c+ c̄ = 2D and cM = ε(c− c̄) = 0. (8.10)

In what follows, we will discuss the physical states and spectrum built on |0〉A.
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8.1 Physical states

We now need to find the possible physical states allowed by the constraints. Before we start

a level by level analysis let us look at the L0 constraint on a physical state in particular.

(L0 − aL)|phys〉 = (N + Ñ − aL)|phys〉 = 0. (8.11)

This condition is satisfied if the number operators add up to the ordering ambiguity. This

tells us that the physical spectrum is truncated at the particular level that matches the

value of aL. This was also seen in the tensile analogue of the flipped vacuum [46], where

the number of the levels add up to a+ ā, the sum of the two ambiguities.

Level 0. Let us consider the vacuum |0〉A. For n > 0 the conditions (8.6) are trivially

satisfied, while the zero modes give

(L0 − aL)|0〉A = (N + Ñ − aL)|0〉A = 0, (8.12a)

(M0 − aM )|0〉A = (c′k2 − aM )|0〉A = 0. (8.12b)

We observe that the vacuum will be a physical state if we have aL = 0 while the value of

aM will give us the mass.

Level 1. If we start with a state C−1|0〉A, then M0 will not be an eigen-valued operator,

since the operator X maps C̃−1|0〉A to C−1|0〉A while Y does the reverse. Hence we need

a linear combination of both states to define a consistent level 1 state:

|1〉 = aµC
µ
−1|0〉A + bµC̃

µ
−1|0〉A. (8.13)

The L0 condition simply counts the level. The other conditions required for this to be a

physical state are

L1|1〉 = c′k · (a+ b)|0〉A = 0, (8.14a)

M1|1〉 = 2c′k · (a− b)|0〉A = 0, (8.14b)

(M0 − aM )|1〉 =
[
(c′k2 − aM + 1)a− b

]
· C−1|0〉A

+
[
(c′k2 − aM − 1)b+ a

]
· C̃−1|0〉A = 0. (8.14c)

Putting x = (c′k2−aM ), from the last condition we have (1+x)aµ = bµ and (1−x)bµ = aµ.

This is simultaneously possible only when x = 0, provided aµ = bµ 6= 0. The other

conditions give us k · a = 0. Interestingly, the norm of this state can be calculated as

〈1|1〉 = a2−b2 = 0, since we put aµ = bµ. Therefore we find a null physical state at this level.

Level 2. Here again we need to consider the most general states with all combinations,

and in level 2 we can have a six-element basis to generate a state,

|2〉 = aµC
µ
−2|0〉A + eµνC

µ
−1C

ν
−1|0〉A + hµνC

µ
−1C̃

ν
−1|0〉A

+bµC̃
µ
−2|0〉A + fµνC̃

µ
−1C̃

ν
−1|0〉A + jµνC

µ
−1C̃

ν
−1|0〉A. (8.15)
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Here, eµν and fµν are symmetric by construction. For the cross term, we assume hµν is

symmetric while jµν is anti-symmetric. Now let us apply the physical state constraints to

get the following conditions:

L2|2〉 =
[
2c′k · (a+ b) +

1

2
(eµµ − fµµ)

]
|0〉A = 0, (8.16a)

M2|2〉 =
[
4c′k · (a− b) + (eµµ + fµµ)− hµµ

]
|0〉A = 0, (8.16b)

L1|2〉 =
[
2aν + c′(eµν + hµν − jµν)kµ

]
Cν−1|0〉A

+
[
2bν + c′(fµν + hµν + jµν)kµ

]
C̃ ν
−1|0〉A = 0, (8.16c)

M1|2〉 = 2
[
(aν − bν) + c′(eµν − hνµ − jµν)kµ

]
Cν−1|0〉A

+2
[
(aν − bν)− c′(fµν − hµν − jνµ)kµ

]
C̃ ν
−1|0〉A = 0. (8.16d)

The L0 condition give us aL = 2. Applying the other condition for zero modes we get

(M0 − aM )|2〉 =
[
(c′k2 − aM + 2)aµ − 2bµ

]
Cµ−2|0〉A

+
[
(c′k2 − aM − 2)bµ + 2aµ

]
C̃ µ
−2|0〉A

+
[
(c′k2 − aM + 2)eµν − hµν

]
Cµ−1C

ν
−1|0〉A

+
[
(c′k2 − aM − 2)fµν + hµν

]
C̃ µ
−1C̃

ν
−1|0〉A

+
[
(c′k2 − aM )(hµν + jµν) + 2eµν − 2fµν

]
Cµ−1C̃

ν
−1|0〉A = 0. (8.17)

We can solve for (c′k2 − aM ) in the same way as we did for level 1 and obtain aM = c′k2,

aµ = bµ. Solving (8.16) systematically yields the relations 1
2hµν = eµν = fµν ; eµνk

ν =

jµνk
ν = 0 and aµ = 0. Therefore we can write down the resulting level 2 state as:

|2〉 = eµν

[
Cµ−1C

ν
−1|0〉A + 2Cµ−1C̃

ν
−1|0〉A + C̃ µ

−1C̃
ν
−1|0〉A

]
→ Symmetric

+jµνC
µ
−1C̃

ν
−1|0〉A → Anti-symmetric. (8.18)

Similar to the level 1 analysis, we find that the norm of this state also vanishes. Looking at

the spectrum, as we have mentioned, there are three distinct objects, a scalar (trace part

from eµν), a symmetric traceless and an anti-symmetric tensor state (also see [21, 25]). It

is almost tempting to compare these states with the tensile string physical state spectrum,

but without proper understanding of the symmetries of background spacetime, we refrain

from doing so.

8.2 Null states

Let us consider GCA2/BMS3 highest weight null states and make a connection to those

discussed in [48]. At level 1 we can write a general null state,

|1〉 = γ1L−1|0〉A + γ2M−1|0〉A, (8.19)
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where γ’s are numerical constants. For n > 1 the physical conditions are trivially satisfied

for this state. This is a physical null state if L1|1〉 = M1|1〉 = 0 which translates to the

following,

γ1 = 0 and aM = 0. (8.20)

In terms of oscillators this level 1 state is given as,

|1〉 = M−1|0〉A = 2k · (C−1 + C̃−1)|0〉A, (8.21)

which we have also obtained in (8.13) with the identification aµ = kµ. At level 2 we can

write a general null state as

|2〉 =
[
γ1L−2 + γ2M−2 + γ3L−1L−1 + γ4M−1M−1 + γ5L−1M−1

]
|0〉A. (8.22)

If we require that |2〉 is a physical state then this should be annihilated by modes of Ln
and Mn up to n = 2 (beyond n > 2 it is trivially 0). The results that we would obtain

would be identical to the discussion in [48] with ∆ = aL, ξ = aM , C1 = D
6 and C2 = 0. We

spell out these conditions here for convenience:

3γ1 + 2(2aL + 1)γ3 + 2aMγ5 = 0, (8.23a)

(4aL +D)γ1 + 6aLγ3 + 6aMγ5 + 4aMγ2 = 0, (8.23b)

2(aL + 1)γ5 + 4aMγ4 + 3γ2 = 0, (8.23c)

4aMγ1 = aMγ3 = 0, (8.23d)

3γ1 + 2γ3 + 2aMγ5 = 0. (8.23e)

Solving the set of equations and following the analysis of [48], we will find a non trivial

state exists only for aM = 0, γ1 = γ3 = 0, γ2 = −2aL+1
3 γ5, provided aL 6= −1

4D. If we

break down |2〉 in terms of oscillators and apply the conditions of (8.16), we will also get

an additional constraint γ2 = −γ4. Finally, collecting all the parameters, we can write this

null state as a whole,

|2〉 = M−2|0〉A −M−1M−1|0〉A −
3

2aL + 1
L−1M−1|0〉A (8.24)

This is clearly a linear combination of 2D GCA null states as derived intrinsically in [48].

Moreover, one can see that these states appear as the UR limit of the null states in the

parent flipped theory as discussed in section 3.2. The limiting null states will be given by,

|χ1〉 = lim
ε→0
|χR〉 − |χL〉, |χ2〉 = lim

ε→0
ε(|χR〉+ |χL〉). (8.25)

Taking the limits consistently will lead us to,

|χ1〉 ∼ −M−1M−1|φ〉
|χ2〉 ∼ (M−2 − ηL−1M−1) |φ〉. (8.26)

Which can be checked to be 2D GCA null states mentioned in [48] for the case hM = 0 in

the NR limit. So all in all we take an UR limit on the states, but arrive at the well-known

NR answer as in [48], keeping with the spirit of the flipped theory.

– 39 –



J
H
E
P
0
4
(
2
0
2
0
)
0
6
1

We must note here that this analysis doesn’t give us a fixed level since aL is undeter-

mined. However, if we take the limit from the tensile case, we have the two vacua to be

identical to each other. This enables us to map the ambiguities and the central charges

directly. We find that aL = a+ ā = 2 while aM = ε(a− ā) = 0 with respect to the Virasoro

ordering ambiguities. The central charges follow in same way in the limit (8.10). This

means we see a tensionless theory in D = 26 dimensions with limited massless spectrum

at level 2, in a similar way as in [45].

8.3 Taking limit from parent states

A supposed problem with the spectrum we described for the flipped tensionless strings is

all the physical states seem to be null in this case. This seems to create a confusion since

the parent states had definite norms as discussed in section 3.2, albeit with some added

peculiarities. One must understand how these states arise in the limit in order to say more

about the spectrum.

In this section we would concentrate on the parent massless state |ψ1〉 = ξµνα
µ
−1α

ν
+1|0〉A

which has a positive norm coming from the symmetric part of ξµν as described before in

section 3.2. Using the limiting relations between α and C oscillators (4.28), we can write

the fate of the state in the limit,

lim
ε→0
|ψ1〉 = ξµν

[
cosh θ Cµ−1 − sinh θ C̃ µ

−1

][
sinh θ Cν−1 − cosh θ C̃ ν

−1

]
|0〉A. (8.27a)

= γ1|φ〉1 + γ2|φ〉2 + γ3|φ〉3, (8.27b)

where the different excitations are,

|φ〉1 = εξµν

[
Cµ−1C

ν
−1 − 2Cµ−1C̃

ν
−1 + C̃ µ

−1C̃
ν
−1

]
|0〉A

|φ〉2 =
1

ε
ξµν

[
Cµ−1C

ν
−1 + 2Cµ−1C̃

ν
−1 + C̃ µ

−1C̃
ν
−1

]
|0〉A

|φ〉3 = ξµν

[
Cµ−1C̃

ν
−1 − Cν−1C̃

µ
−1

]
|0〉A, (8.28a)

which evidently occur at different orders of ε. For any arbitrary ε, the coefficients γ1,

γ2 and γ3 can be normalised to be 1
2
√

2
, 1

2
√

2
and 1. Comparing this to the level two

physical state (8.18) we find the symmetric and the anti symmetric parts at order ε−1 and

ε0 respectively by redefining eµν = 1
ε ξµν and jµν as the anti-symmetric part of ξµν . It

should be noted that anti-symmetric part of the parent state had zero norm, and in the

limit it exactly reduces to another antisymmetric state (|φ〉3) with zero norm.

Actually, one can check that the norm of each state |φ〉1, |φ〉2 or |φ〉3 are individually

zero owing to the sign in the commutator of C̃n oscillators. However the norm of the total

state |ψ〉1 in the limit is non-zero and can be calculated by the following, where we only

list the contributing terms coming from the inner product of 〈φ1|φ2〉,

〈ψ1|ψ1〉 =
1

8
ξµνξρσA〈0|

[
Cµ1C

ν
1C

ρ
−1C

σ
−1 − 4Cµ1 C̃ ν

1 C
ρ
−1C̃

σ
−1 + C̃ µ

1 C̃ ν
1 C̃ ρ
−1C̃

σ
−1

]
|0〉A

=
1

8
ξµνξρσA〈0|

[
2ηµρηνσ + 4ηµρηνσ + 2ηµρηνσ

]
|0〉A = ξµνξ

µν . (8.29)
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So in general the norm of the total state remains preserved under the limit. One can see the

O(ε) contribution, i.e. |φ〉1 is not a physical state combination and hence does not appear

in (8.18). This apparent loss of information made it seem that generic physical state in

level two will be null.

9 Conclusions

In this paper, we have investigated, in detail, the quantum structure of the tensionless

bosonic closed string within the premise of canonical quantisation. We have seen that

a careful analysis of the imposition of constraints leads us to three different quantum

mechanical theories starting from the same classical null string. We have analysed the

different vacua of these theories and some properties of these different theories arising of

these diverse vacuum structure.

There are innumerable directions of future work, some of the most pressing of which

we elaborate on below.

• All quantum theories. We have worked under the ambit of canonical quantisation.

It would be of importance to see if other types of quantisation also lead us to these

three distinct theories, or perhaps one or more of them are ruled out. We want to

address lightcone quantisation first and this is being currently pursued. The path

integral quantisation poses interesting problems as we need to consider null surfaces

and the underlying Riemannian structure of usual string geometry would change in

this case. We are hopeful that BRST quantisation would be more accessible and plan

to look at this in the near future.

For each of the different vacua addressed here, there are a number of immediate questions.

• The Oscillator vacuum. We seem to have a huge number of null states in the spec-

trum around the oscillator vacuum. Especially, all the massless sector that we have

described also happens to be null. This is indication of a huge (higher spin) gauge

symmetry in the quantum theory. We wish to concretise this and hopefully find links

to the recent discourse of tensionless strings and higher spin theory [49, 50].

We have also not been able to fix the critical dimensions in our way of formulating

the theory. Light-cone quantisation here would come in handy here.

Another very important question is about representation theory. While the other two

vacua are directly linked to known representations of the underlying BMS algebra,

the oscillator vacuum does not seem to clearly follow from BMS representation theory.

To elaborate this point, note that the Induced vacuum is of course the vacuum of the

induced representation, and the flipped vacuum is the vacuum of the highest weight

representations. The oscillator vacuum thus could lead us to a hitherto unknown

representation of the BMS group. Even if it does not, then it would be very interesting

to understand the interplay between the different representations that give rise to the

oscillator vacuum.
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• The Induced vacuum. The induced vacuum leads to some very intriguing physics, as

has been discussed in [24] and we have slightly elaborated this in the present paper.

The physics of the Bose Einstein like condensation of states and also the implications

of Rindler-like physics on the string worldsheet need a lot of further investigation.

One of the primary questions is the formulation of the phase transition near the

tensionless point. We would like to characterise this in terms of an order parameter

and work out the statistical mechanical picture in more detail.

It also seems likely that the Gross-Mende like relations of the scattering amplitudes

in the very high energy regime of string theory should arise from the quantum me-

chanical tensionless theory around the induced vacuum. It should be possible to

construct vertex operators in a BMS-invariant way and then use them to build up

n-point amplitudes of states. This can then be compared to answers arising from the

tensionless limit of the tensile string scattering amplitudes themselves.

• The Flipped vacuum. The spectrum around the flipped vacuum is also rather weird.

Firstly, the spectrum is truncated and the value of aL and aM are not fixed in the

canonical analysis. The limit suggests an answer and this ties up with what has

been found earlier in [21, 25]. An independent analysis of this would be appropriate

and is currently underway from the point of view of a light-cone analysis. Secondly,

even with the truncated spectrum, the physical state conditions seem to conspire in

a way so as to make all the existing states null. This is not particularly pleasing.

Perhaps this is an indication that the bosonic ambitwistor theory does not make

sense, as has been put forward in [25]. The natural direction would be to move to a

supersymmetric theory.

We also wish to investigate some natural generalisations and other directions.

• Superstrings. Possibly the most natural generalisation of our analysis in the current

paper is to look at the supersymmetric version of the current analysis. The process

of classifying all possible quantum theories would be somewhat more involved

due to the presence of more generators in the underlying SUSY algebra. In this

context, it is also worth mentioning that there are two possible choices of the Super

BMS (SBMS) algebra that can arise on the worldsheet of the tensionless closed

superstring, viz. the homogeneous [9] and the inhomogeneous SBMS [10]. Hence,

an exhaustive analysis would be even more tedious. But we expect to see some

very interesting physics emerging, e.g. in the equivalent of the induced vacuum for

the tensionless superstring. It is expected that this will lead to something that is

qualitatively different from the picture of the Bose-Einstein like condensation we

found for the bosonic tensionless string.

• Transitions between different vacua? Another immediate question is whether

there can be transitions between these various vacua e.g. via instantons. If these

are present, these would be novel quantum phase transitions between different

tensionless string theories, unlike anything we have encountered before.
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These are only some of the directions we wish to make progress on in the near future. It is

clear that a very fertile and exciting corner of string theory has been reinvigorated by our

recent investigations. We wish to pursue this with enthusiasm and hope to unearth more

exciting physics in this extreme limit of string theory.

Acknowledgments

We would like to thank Hamid Afshar, Andrea Campoleoni, Daniel Grumiller, Alejan-

dro Rosabal, Bo Sundborg, Chi Zhang for inspiring discussions. AB is partially sup-

ported by the following grants from the Science and Engineering Research Board, India:

EMR/2016/008037, ERC/2017/000873, MTR/2017/000740. ArB was supported in part

by Chinese Academy of Sciences (CAS) Hundred-Talent Program, Key Research Program

of Frontier Sciences, CAS, Project 11647601 supported by NSFC, The Korea Ministry of

Education, Science and Technology, ICT and Future Planning, Gyeongsangbuk-do and

Pohang City. SC is partially supported by the ISIRD grant 9-252/2016/IITRPR/708. Pu-

lastya Parekh (PP) was funded by the Junior Research Fellowship Programme from Erwin

Schrödinger International Institute for Mathematics and Physics, Vienna. ArB would like

to thank the ICTP HECAP, CERN PH-TH, NCTS Hsinchu and OIST Okinawa for warm

hospitality during the course of this project.

A Other constraint conditions

In this appendix we are going to look at the remaining five constraint conditions possible to

impose the parent condition of (5.1) as discussed in section 5. Then we shall show how in-

consistencies arise from these conditions and hence the ones considered in the above sections

are the only possible way to get a non-trivial and meaningful spectrum of the tensionless

string. We are going to show this by considering a vacuum which we assume to obey the

physical conditions for at least n 6= 0. Referring to table 1 we consider the following cases:

Case (1,2). This condition is given by

Ln|phys〉 = 0, ∀ n > 0, Mn|phys〉 = 0, ∀ n 6= 0. (A.1)

For starting, let us consider a physical vacuum |0, kµ〉 that satisfies

Mn|0, kµ〉 =
∑
m

B−m ·Bm+n|0, kµ〉 = 0 ∀ n 6= 0. (A.2)

This immediately tells us that we must have Bµ
n |0, kµ〉 = 0 (n 6= 0). For the other condition

we have

Ln|0, kµ〉 =
∑
m

A−m ·Bm+n|0, kµ〉 = 0 ∀ n > 0

= An ·B0|0, kµ〉 = 0 ∀ n > 0. (A.3)

For the vacuum with generic momentum this gives rise to the additional property

Aµn|0, kµ〉 = 0 (n > 0). This means the excited states can be defined by

Aµ1−n1
Aµ2−n2

. . . A
µj
−ni
|0, kµ〉, ∀ n1, n2, . . . , ni > 0. (A.4)
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Therefore the vacuum is defined by

Aµn|0, kµ〉 = (Cµn − C̃
µ
−n)|0, kµ〉 = 0 ∀ n > 0, (A.5a)

Bµ
n |0, kµ〉 = (Cµn + C̃µ−n)|0, kµ〉 = 0 ∀ n 6= 0, (A.5b)

where we have used (4.20) relating A,B and C, C̃ oscillators. We can rewrite the above

conditions as

Cµn |0, kµ〉 = C̃µ−n|0, kµ〉 = 0 ∀ n > 0, (A.6a)

Cµn |0, kµ〉 = −C̃µ−n|0, kµ〉 ∀ n < 0. (A.6b)

The first equation is actually the condition for the flipped vacuum |0〉A defined in (3.21).

The second condition is an extra restriction that couples the creation modes of C oscillators

with creation modes of C̃. Basically this reduces the system to only one set of oscillators

and the realisation of the algebra is somewhat destroyed, since the decoupling of the modes

is crucial for the BMS Algebra to close.

Case (1,3). This case is represented by

Ln|phys〉 = 0, ∀ n > 0, Mn|phys〉 6= 0, ∀ n. (A.7)

but 〈phys′|Mn|phys〉 = 0 ∀ n. Here, the only meaningful way we can realise this is choosing

Bn ∼ Cn ± C̃−n for the oscillator vacuum |0〉c. Once again we find that closure of the

BMS Algebra requires An ∼ Cn ∓ C̃−n. The first condition is realised on the vacuum by

An|0, kµ〉 = 0, n > 0. This imposes an extra restriction on |0〉c in the following way

An|0, kµ〉c = 0 ∀ n > 0 =⇒ Cn|0, kµ〉c = C̃−n|0, kµ〉c = 0 ∀ n > 0. (A.8)

This brings us to case (1,2) in a way, that one of the oscillators fall off, but this time

for |0〉c. Once again, the BMS Algebra would break down and hence we end up with an

inconsistency.

Case (2,1). This case is given by the conditions

Ln|phys〉 = 0, ∀ n 6= 0, Mn|phys〉 = 0, ∀ n > 0. (A.9)

The first condition can be realised on the physical vacuum by

Mn|0, kµ〉 =
∑
m

B−m ·Bm+n|0, kµ〉 = 0 ∀ n > 0, (A.10)

which gives us Bn|0, kµ〉 = 0 (n > 0). Expanding Ln and imposing the second condition

Ln|0, kµ〉 =
∑
m

A−m ·Bm+n|0, kµ〉 = 0 ∀ n > 0, (A.11)

gives An|0, kµ〉 (n 6= 0). Following the same steps as done for case (1,2) we will end up

getting the conditions

Cµn |0, kµ〉 = C̃µ−n|0, kµ〉 = 0 ∀ n > 0, (A.12a)

Cµn |0, kµ〉 = C̃µ−n|0, kµ〉 ∀ n < 0. (A.12b)

We see once again that here the C and C̃ oscillators in the case of the flipped vacuum

become coupled to each other and we are left with only one set of oscillators, and the BMS

algebra doesn’t close.
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Case (2,2). Now let us consider

Ln|phys〉 = 0, Mn|phys〉 = 0, ∀ n 6= 0. (A.13)

For a vacuum |0, kµ〉 to satisfy this, it must obey the following condition.

Mn|0, kµ〉 =
1

2

∑
m

B−m ·Bm+n|0, kµ〉 = 0 ∀ n 6= 0. (A.14)

Since all Bns commute, this boils down to Bn|0, kµ〉 = 0 ∀ n, which is precisely the

condition (7.4). It immediately follows that the for the condition Ln|phys〉 = 0, ∀ n 6= 0 to

be true we also require An|0, kµ〉 = 0, ∀ n 6= 0. This gives us a case with only the vacuum

with no other excitations. Alternatively this can also be achieved by setting kµ = 0 for

all the states which combined with (7.11) is the condition for boundary states. Therefore

we see that the cases from Mn|phys〉 = 0, ∀ n 6= 0, follow as special cases of the induced

vacuum discussed extensively in section 2.17.

Case (2,3). Let us consider the following case for imposing the constraint:

Ln|phys〉 = 0, Mn|phys〉 6= 0, ∀ n 6= 0, (A.15)

but 〈phys′|Mn|phys〉 = 0 ∀ n. For starting, let us consider a physical vacuum |0, kµ〉 that

satisfies

Ln|0, kµ〉 =
∑
m

A−m ·Bm+n|0, kµ〉 ∀ n 6= 0. (A.16)

which leads to either An|0, kµ〉 = 0 or Bn|0, kµ〉 = 0, ∀ n 6= 0. The latter gives us

Mn|0, kµ〉 = 0 which contradicts (A.15). If we choose the former then the only meaningful

way we can realise this is choosing Bn ∼ Cn± C̃−n and the vacuum conditions being (6.2),

in order to satisfy the sandwich condition of Mn. Then the algebra (5.7) which is vital for

the closure of the BMS Algebra dictates that An ∼ Cn ∓ C̃−n. It can be easily seen that

An|0, kµ〉 = 0 ∀ n 6= 0 =⇒ Bn|0, kµ〉 = 0 ∀ n 6= 0. (A.17)

Thus we see that since the oscillators and constraints are intertwined by the commutations

that preserve the algebra, we get back from the above Mn|0, kµ〉 = 0 which again contra-

dicts (A.15). This tells us that the condition Mn|phys〉 6= 0, but 〈phys′|Mn|phys〉 = 0

(∀ n) is consistent only with the oscillator vacuum defined by (6.2).

Case (3,1). Last, but not the least we turn our attention to the condition

Ln|phys〉 6= 0, ∀ n, Mn|phys〉 = 0, ∀ n > 0, (A.18)

but 〈phys′|Ln|phys〉 = 0 ∀ n. Here again, realising the second condition on the vacuum

gives us Bn|0, kµ〉 = 0 for n > 0. The non trivial way to impose the first condition would be

〈0, kµ|Ln|0, kµ〉 =
∑
m

〈0, kµ|A−m ·Bm+n|0, kµ〉 = 0. (A.19)
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This gives us 〈0, kµ|An|0, kµ〉 = 0. We can realise this by choosing An ∼ Cn ∓ C̃−n for

the oscillator vacuum |0〉c. The logic from case (1,3) would follow and we would end up

getting the extra condition on |0〉c as

Bn|0, kµ〉c = 0 ∀ n > 0 =⇒ Cn|0, kµ〉c = −C̃n|0, kµ〉c = 0 ∀ n > 0, (A.20)

which again is an inconsistency.

Thus we see that since the oscillators and constraints are intertwined by the com-

mutations that preserve the algebra, the only interesting and self-consistent cases are the

oscillator, induced and flipped vacua discussed in the main text above.

B Central charges: explicit calculations

The classical Virasoro × Virasoro algebra satisfied by the constraints Lm and L̄m is

[Lm,Ln] = (m− n)Lm+n, [L̄m, L̄n] = (m− n)L̄m+n, [Lm, L̄n] = 0. (B.1)

When we quantize the system, a central term needs to be added to the classical counterpart

of the Virasoro algebra only when we get L0 and L̄0 on the right hand side, which we assume

to be of the form

[Lm,L−m] = 2mL0 +A(m), [L̄m, L̄−m] = 2mL̄0 + Ā(m), (B.2)

where it can be easily seen that A(−m) = −A(m). Imposing that these generators satisfy

the Jacobi identities, we can derive

A(m) =
m(m2 − 1)

6
A(2)− f(m)A(1), (B.3)

where we have assumed f(m) to be some function of m. A general form of A(m) can be

found to be A(m) = c1m+ c3m
3. Ā(m) can be shown to be also of the same form, which

enables us to write the algebra with central charges (2.2)

[Lm,Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0,

[L̄m, L̄n] = (m− n)L̄m+n +
c̄

12
m(m2 − 1)δm+n,0,

[Lm, L̄n] = 0. (B.4)

We can fix the central charge c by calculating the value of A(1) and A(2). To do this,

we consider the expectation values of the following commutators for the vacuum with zero

momentum |0, 0µ〉:

〈0, 0µ|[L1,L−1]|0, 0µ〉 = 2〈0, 0µ|L0|0, 0µ〉+A(1),

〈0, 0µ|L2,L−2]|0, 0µ〉 = 4〈0, 0µ|L0|0, 0µ〉+A(2), (B.5)

with similar expressions for computing c̄. This is the basic formulation to calculate the

central charges. For the case of BMS, we see a similar structure. A central extension can

be constructed for the classical BMS (2.10) as

[Lm, L−m] = 2mL0 +AL(m),

[Lm,M−m] = 2mM0 +AM (m). (B.6)
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The Jacobi identities can be applied here and we find AL(m) and AM (m) to have the

exact form as (B.3), that are related to the central charges cL and cM . For AL(m) this can

also be calculated by finding out the following expectation value for the vacuum with zero

momentum:

〈0, 0µ|[L1, L−1]|0, 0µ〉 = 2〈0, 0µ|L0|0, 0µ〉+AL(1)

〈0, 0µ|[L2, L−2]|0, 0µ〉 = 4〈0, 0µ|L0|0, 0µ〉+AL(2) (B.7)

Similarly to find AM (m), we need to use expectation values of [L1,M−1] and [L2,M−2].

With some algebra one finds

〈0, 0µ|[L1,M−1]|0, 0µ〉 = 2〈0, 0µ|M0|0, 0µ〉+AM (1)

〈0, 0µ|[L2,M−2]|0, 0µ〉 = 4〈0, 0µ|M0|0, 0µ〉+AM (2) (B.8)

We are now going to apply the appropriate sandwich conditions for the tensile, oscillator,

induced and flipped vacuum to explicitly obtain the central charges.

B.1 The tensile vanilla vacuum

Let us consider the tensile case first. The states are governed by two copies of the Virasoro

algebra. The constraints act on the vacuum with zero momentum |0, 0µ〉α in the following

way.5

L0|0, 0µ〉α = 0, Ln|0, 0µ〉α = 0 ∀ n > 0, (B.9a)

L−1|0, 0µ〉α =

√
α′

2
k · α−1|0, 0µ〉α = 0, (B.9b)

L−2|0, 0µ〉α =
1

2
α−1 · α−1|0, 0µ〉α. (B.9c)

Applying these to the conditions (B.5) we obtain

α〈0, 0µ|[L1,L−1]|0, 0µ〉α = 0 +A(1) = 0, (B.10)

and for A(2), we get

α〈0, 0µ|[L2,L−2]|0, 0µ〉α = α〈0, 0µ|L2L−2|0, 0µ〉α = A(2)

=
1

4
α〈0, 0µ|α1 · α1α−1 · α−1|0, 0µ〉α =

D

2
. (B.11)

Collecting the above information for A(1) and A(2) and plugging them back into (B.3) we

get

A(m) =
1

12
D(m3 −m) (B.12)

Likewise by following the same analysis we can show that Ā(m) = 1
12D(m3 −m). Hence

from (B.4) we read off the two central charges as

c = c̄ = D. (B.13)
5It is to be noted that the vacuum with zero momentum does not obey the physical state conditions in

general.
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B.2 Tensile flipped vacuum

As we have mentioned before in section 3 for a flip in the oscillator α̃n → α̃−n we will have

L̄−n|0, 0µ〉A = 0 ∀ n > 0, (B.14a)

L̄1|0, 0µ〉A =

√
α′

2
k · α̃1|0, 0µ〉A = 0, (B.14b)

L̄2|0, 0µ〉A =
1

2
α̃1 · α̃1|0, 0µ〉A. (B.14c)

This will modify (B.11) as

α〈0, 0µ|[L̄2, L̄−2]|0, 0µ〉A = −A〈0, 0µ|L̄−2L̄2|0, 0µ〉A = Ā(2)

= −1

4
A〈0, 0µ|α̃−1 · α̃−1α̃1 · α̃1|0, 0µ〉A = −D

2
. (B.15)

This justifies the transformation in the central charge c̄→ −c̄ for the flip.

B.3 Tensionless oscillator vacuum

Let us consider |0, 0µ〉c, the oscillator vacuum with zero momentum. The action of L0 and

M0 on this state is given from (6.19)

c〈0, 0µ|L0|0, 0µ〉c = c〈0, 0µ|M0|0, 0µ〉c = 0. (B.16)

Lets us also remind ourselves of the redefinition we made in (6.8)

Ln = Jn − J̄−n (B.17a)

Mn = Jn + J̄−n + 2Kn (B.17b)

with Jn = 1
2

∑
mC−m · Cm+n, J̄n = 1

2

∑
m C̃−m · C̃m+n and Kn = 1

2

∑
mC−m · C̃−m−n.

Due to the presence of cross terms in Kn it can be checked that c〈0, 0µ|JmKn|0, 0µ〉c = 0

∀ m,n. We proceed to calculate the following commutators for m = 1, 2:

c〈0, 0µ|[Lm, L−m]|0, 0µ〉c = c〈0, 0µ|LmL−m|0, 0µ〉c − c〈0, 0µ|L−mLm|0, 0µ〉c
= c〈0, 0µ|JmJ−m|0, 0µ〉c − c〈0, 0µ|J̄mJ̄−m|0, 0µ〉c
= AL(m) = 0. (B.18)

Similarly we can calculate the commutators for (B.8)

c〈0, 0µ|[L1,M−1]|0, 0µ〉c = c〈0, 0µ|L1M−1|0, 0µ〉c − c〈0, 0µ|M−1L1|0, 0µ〉c
= c〈0, 0µ|J1J−1|0, 0µ〉c + c〈0, 0µ|J̄1J̄−1|0, 0µ〉c

= AM (1) = 2c〈0, 0µ|c′k2|0, 0µ〉c = 0. (B.19)

c〈0, 0µ|[L2,M−2]|0, 0µ〉c = c〈0, 0µ|L2M−2|0, 0µ〉c − c〈0, 0µ|M−2L2|0, 0µ〉c
= c〈0, 0µ|J2J−2|0, 0µ〉c + c〈0, 0µ|J̄2J̄−2|0, 0µ〉c

= AM (2) =
1

4
c〈0, 0µ|C1 · C1C−1 · C−1|0, 0µ〉c

+
1

4
c〈0, 0µ|C̃1 · C̃1C̃−1 · C̃−1|0, 0µ〉c = D. (B.20)
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From this we read the charges as cL = 0 and cM = 2D which gives us the algebra (2.10)

[Lm, Ln] = (m− n)Lm+n + 0,

[Lm,Mn] = (m− n)Mm+n +
D

6
m(m2 − 1)δm+n,

[Mm,Mn] = 0. (B.21)

B.4 Tensionless induced vacuum

As seen above we need to consider I〈0, 0µ|[L2, L−2]|0, 0µ〉I and I〈0, 0µ|[L2,M−2]|0, 0µ〉I .
The action of Ln on the vacuum can be read from (7.9)

Ln|0, kµ〉I = c′k ·An|0, kµ〉I . (B.22)

For the zero momentum ground state we get

Ln|0, kµ〉I = 0 ∀ n (B.23)

Now we can apply this to the following sandwich and get for m = 1, 2

I〈0, 0µ|[Lm, L−m]|0, 0µ〉I = AL(m) = 0. (B.24)

which gives us cL = 0. From (7.7) we get the action of Mn on |0, kµ〉I which is simply

Mn|0, kµ〉I = 0 ∀ n. (B.25)

Then the other sandwich can be calculated for m = 1, 2

I〈0, 0µ|[Lm,M−m]|0, 0µ〉I = AM (m) = 0. (B.26)

from which we can read off cM = 0. Under the tensionless limt the tensile vacuum maps to

the induced vacuum: |0, 0µ〉α → |0, 0µ〉I , hence the central charges follow from the limit.

Since we have c = c̄, this also implies

cL = c− c̄ = 0 and cM = ε(c+ c̄) ≈ 0. (B.27)

B.5 Tensionless flipped vacuum

For the flipped vacuum we can write down the following relations by referring to (8.5)

and (8.9)

Ln|0, 0µ〉A = 0 ∀ n ≥ 0, (B.28a)

Mn|0, 0µ〉A = 0 ∀ n ≥ 0. (B.28b)

Employing the oscillator structure from (8.4) we can also write

L−1|0, 0µ〉A = 0; L−2|0, 0µ〉A =
1

2

[
C−1 · C−1 − C̃−1 · C̃−1

]
|0, 0µ〉A, (B.29a)

M−1|0, 0µ〉A = 0; M−2|0, 0µ〉A =
1

2

[
C−1 · C−1 + C̃−1 · C̃−1

]
|0, 0µ〉A. (B.29b)
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Let us proceed to calculate the central charges.

A〈0, 0µ|[L2, L−2]|0, 0µ〉A =
1

4
A〈0, 0µ|C1 · C1C−1 · C−1|0, 0µ〉A

+
1

4
A〈0, 0µ|C̃1 · C̃1C̃−1 · C̃−1|0, 0µ〉A = D, (B.30)

A〈0, 0µ|[L2,M−2]|0, 0µ〉A =
1

4
A〈0, 0µ|C1 · C1C−1 · C−1|0, 0µ〉A

−1

4
A〈0, 0µ|C̃1 · C̃1C̃−1 · C̃−1|0, 0µ〉A = 0. (B.31)

Collecting the above results we have cL = 2AL(2) = 2D and cM = 2AM (2) = 0. This gives

the centrally extended algebra as

[Lm, Ln] = (m− n)Lm+n +
D

6
m(m2 − 1)δm+n,0,

[Lm,Mn] = (m− n)Mm+n + 0,

[Mm,Mn] = 0. (B.32)

This is consistent with the fact that due to flipping we have a change in the sign for the

Virasoro central charge c̄ → −c̄. Then in the limit we will obtain cL = c + c̄ = 2D, while

cM = ε(c− c̄) = 0, which is precisely what is obtained above.
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