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1 Introduction

The most influential scattering amplitude in Yang-Mills theory is undoubtedly the Parke-

Taylor amplitude [1]

An,0 =
〈i, j〉4 δ4(

∑
i pi)

〈1, 2〉〈2, 3〉 · · · 〈n, 1〉
. (1.1)

It describes the tree-level (colour-ordered) scattering of two gluons i and j of negative

helicity and n − 2 gluons of positive helicity, each of momentum pi = λiλ̃i. Its talismanic

status rests on two pillars. First, its extraordinary simplicity assures that scattering am-

plitudes are far more managable objects than could be expected from momentum space

Feynman diagrams, encouraging us that their structures and properties will repay our close

attention. Second, it provides a remarkably fertile base for deeper explorations of the full

Yang-Mills S-matrix. In it, one already sees hints of the twistor action for Yang-Mills [2, 3]

and the associated MHV diagram formalism [4–7], the germ of the Grassmannian formu-

lation of all on-shell diagrams [8–10], and the amplitude’s factorization properties — a

crucial ingredient of BCFW recursion [11] — laid bare. Finally, and of particular relevance

to the present paper, (1.1) is an avatar of Witten’s representation [12]1

An,k =

∫
d4(k+2)|4(k+2)Z

vol
(GL(2;C))

1

(12)(23) · · · (n1)

n∏
i=1

Ai(Z(σi)) (σidσi) (1.2)

of the n-particle NkMHV amplitude in N = 4 SYM as an integral over the space of degree

k + 1 rational curves in twistor space. Witten obtained this form by generalizing Nair’s

interpretation [13] of the Parke-Taylor amplitude in terms of (the leading trace part of) a

current correlator supported on a holomorphic twistor line.

This paper is concerned not with Yang-Mills theory, but with gravity. An expression

for all n-particle tree-level MHV amplitudes in gravity was found by Berends, Giele &

Kuijf [14] only two years after the discovery of the Parke-Taylor amplitude. Despite this, the

gravitational S-matrix has proved more resistant to study than its Yang-Mills counterpart.

Although gravity amplitudes admit a BCFW expansion [15–18], actually carrying it out

leads to expressions for n-particle NkMHV amplitudes whose structure is as yet unclear [19].

Applying Risager’s procedure to the BGK amplitude [20, 21] leads to an MHV diagram

formulation that fails when n ≥ 12 [22, 23], while the twistor action for gravity tentatively

proposed in [24] does not appear to extend naturally to N = 8 supergravity. Considering

that N = 8 supergravity is supposed to be the simplest quantum field theory, it has been

remarkably difficult to grapple with.

The situation changed dramatically with Hodges’ two papers [25, 26]. Hodges showed

that the tree-level MHV amplitude for gravity could be reformulated as

Mn,0 = 〈i, j〉8 det′(H) δ4

(∑
i

pi

)
, (1.3)

1Throughout this paper, (ij) denotes the SL(2;C)-invariant inner product εαβσ
α
i σ

β

j of the homogeneous

coordinates σα on an abstract curve Σ of genus zero. Z denotes a holomorphic map Z : Σ → PT to

N -extended supertwistor space, here with N = 4. In (1.2) this map has degree k + 1. Ai(Z) are twistor

representatives of the external wavefunctions. See [12] for further details.
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where H is the n× n symmetric matrix with entries

Hij =
[i, j]

〈i, j〉
for i 6= j, Hii = −

∑
j 6=i

[i, j]

〈i, j〉
〈a, j〉〈b, j〉
〈a, i〉〈b, i〉

, (1.4)

where |a〉 and |b〉 are arbitrary spinors. The diagonal entries are nothing but the charac-

teristic gravitational ‘soft factors’ for the ith particle [14, 27, 28]. H has rank n − 3, and

det′(H) is any (n−3)×(n−3) minor of H, divided by the permutation symmetric combina-

tion 〈r1, r2〉〈r2, r3〉〈r3, r1〉 corresponding to the removed rows and also by a similar factor

〈c1, c2〉〈c2, c3〉〈c3, c1〉 for the removed columns. Hodges’ representation has many remark-

able properties. Chief among these is that Bose symmetry in the external states is achieved

through determinant identities rather than through an explicit sum over permutations.

Like the Parke-Taylor amplitude (1.1), (1.3) provides an inspirational starting point

from which to launch deeper investigations of the gravitational S-matrix. It opens up a path

by which to approach gravity on its own terms. In particular, unlike the BGK form, (1.3)

makes no mention of any cyclic ordering that is an artifact of trying to fit gravitational

pegs into a Yang-Mills hole. See [28, 29] for deconstructed forms of the Hodges amplitude

that were known previously, and [30, 31] for a graph-theoretic explanation of the relation

between them.

One outcome of these investigations was given in [32], where it was conjectured that

arbitrary n-particle NkMHV tree-level amplitudes in N = 8 supergravity could be repre-

sented as

Mn,k =

∫
d4(k+2)|8(k+2)Z

vol
(GL(2;C)) det′(H) det′(H∨)

n∏
i=1

hi(Z(σi)) (σidσi) . (1.5)

This form was obtained by interpreting (1.3) in terms degree 1 holomorphic maps from a

Riemann sphere Σ into twistor space, and then generalizing to higher degree maps. Thus

it bears the same relation to (1.3) for N = 8 supergravity as (1.2) does to (1.1) for N = 4

SYM. In (1.5), H is the n× n matrix of operators

Hij =
1

(ij)

[
∂

∂µi
,
∂

∂µj

]
for i 6= j, Hii = −

∑
j 6=i

1

(ij)

[
∂

∂µi
,
∂

∂µj

] k+2∏
r=1

(arj)

(ari)
(1.6)

that act on the external wavefunctions hi(Z), generalizing (1.4). Here, the ar are any k+ 2

points on Σ. The factor of det′(H) in (1.5) is any (n − k − 3) × (n − k − 3) minor of H,

divided by the Vandermonde determinant

|σr1 · · ·σrk+3
| ≡

∏
i<j

i,j∈{removed}

(rirj) (1.7)

of the worldsheet coordinates corresponding to the removed rows, and a similar factor for

the removed columns. The combination det′(H) is independent of the choice of minor. We

shall call H ‘the worldsheet Hodges matrix’, or often just ‘the Hodges matrix’. Similarly,
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H∨ is the n× n matrix with elements

H∨lm =
〈λ(σl), λ(σm)〉

(lm)
for l 6= m,

H∨ll = −
∑
m 6=l

〈λ(σl), λ(σm)〉
(lm)

n−k−2∏
s=1

(asm)

(as l)

∏
k 6=l,m

(k l)

(km)
, (1.8)

where the as are any n−k−2 points. The factor of det′(H∨) in (1.5) is any (k+1)× (k+1)

minor of H∨, divided by the Vandermonde determinant

|σl1 · · ·σlk+1
| ≡

∏
l<m

l,m∈{remain}

(rl rm) (1.9)

corresponding to the rows that remain in this minor, and again by a similar factor for the

remaining columns. Again, though it is not obvious from our current description, det′(H∨)

is completely permutation symmetric in all n sites. Under a parity transformation of

the amplitude, det′(H) and det′(H∨) are exchanged [33–35] (up to a Vandermonde factor

involving all n points), hence we shall call H∨ the ‘conjugate Hodges matrix’. When k = 0,

the Vandermonde determinant (1.9) should be taken to be unity and det′(H∨) itself is

almost trivial. This is why it is invisible in (1.3).

The conjecture that (1.5) correctly describes the complete classical S-matrix of N = 8

supergravity was proved (to a physicist’s level of rigour) in [33], where it was shown

that (1.5) obeys the twistor space form of BCFW recursion [36–39] at the heart of which

is the requirement that the amplitude has the correct behaviour in all factorization chan-

nels. (1.5) has also been shown to possess the correct soft limits [35]. For preliminary

investigations of a Grassmannian representation of (1.5), see [33, 34]. Using this Grass-

mannian at k = 0, an investigation of the MHV diagram formalism for gravity very re-

cently been carried out in [40]; excitingly, it has the potential to overcome the limitations

of Risager’s method. A different (presumably equivalent) generalization of Hodges’ form

to higher degree maps can be found in [41, 42].

The most striking property of the representation (1.5) is that it exists at all. The

unfathomable morass of Feynman diagrams that contribute to an n-particle gravitational

scattering process miraculously conspires to ensure that the tree amplitude lives on a

rational curve in twistor space! At MHV, this fact was originally seen by Witten in [12]

using the BGK form of the amplitude.2 It was also shown to hold for the 5-particle NMHV

amplitude in [43].3 The existence of (1.5) means, first and foremost, that all gravitational

tree amplitudes live on higher degree rational curves in twistor space.

Why should the gravitational S-matrix know about these curves? The answer pursued

here — really, the only conceivable answer — is that four-dimensional gravity is a twistor

string theory. The purpose of the current paper is to find this twistor string. Specifically,

2The derivatives in the Hodges matrix (4.2) are responsible for what was called ‘derivative of a δ-function

support’ in [12].
3The non-trivial statement here is just that the 5-point NMHV amplitude has support on some CP2 ⊂ PT.

Any five points on a plane define a conic.
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over the course of this paper we shall construct a worldsheet theory that localizes on

holomorphic maps to N = 8 supertwistor space and whose vertex operators correspond via

the Penrose transform to a linearized N = 8 supergravity multiplet. We shall obtain (1.5)

from worldsheet correlation functions of this theory at g = 0. This work thus provides

the theoretical framework in which (1.5) should be understood. See [31, 44–51] for earlier

attempts to understand Einstein gravity in the context of twistor strings.

It is clear that (1.5) possesses a rich and intricate structure. What clues are there to

guide us to the underlying theory? The main prompt follows from a simple counting that

also helped stimulate the discovery of (1.5). At g loops, n particle gravitational scattering

amplitudes are proportional to the κn+2g−2, where κ is the square root of the Newton

constant GN and has dimensions of (mass)−1. Since the amplitude itself is dimensionless,

these dimensions must be balanced by kinematic factors. But on twistor space, the only

object that fixes a mass scale is the infinity twistor — an antisymmetric bitwistor whose

presence breaks conformal invariance. With flat space-time, the infinity twistor appears

in two separate guises, corresponding to the 〈 , 〉 and [ , ] brackets familiar from spinor

momenta. With n particles at g loops, the twistor space amplitude needs to contain

precisely n+ 2g− 2 factors of 〈 , 〉 and [ , ] in total. Under a parity transformation 〈 , 〉 and

[ , ] are exchanged, along with the numbers n± of positive and negative helicity gravitons

participating in the scattering process (in the pure gravity sector). We deduce that the

twistor space amplitude must be proportional to

n+ + g− 1 = n− k + g− 3 factors of [ , ] and

n− + g− 1 = k + g + 1 factors of 〈 , 〉 .
(1.10)

Note that the symmetric choice (n + 2g − 2)/2 is not possible since n may be odd and

the integrand is rational. The fact that n+ and n− respectively go with [ , ] and 〈 , 〉 is a

convention fixed by comparison with (1.3). This dependence is certainly realized in (1.5),

where det′(H) is easily seen to be a monomial of degree n−k−3 in [ , ] whereas det′(H∨) is a

monomial of degree k+1 in 〈 , 〉. At higher loops, (1.10) is compatible with all factorization

channels of g-loop NkMHV amplitudes.

The key question is to ask what sort of worldsheet objects could be responsible for

this behaviour. For [ , ], the answer we find is that k − g + 3 of the vertex operators are

fixed and do not involve the infinity twistor, whereas the remaining n − k + g − 3 are

integrated and are linear in [ , ]. To achieve this, the worldsheet theory will involve a field

with (generically) k − g + 3 zero modes whose fixing is associated to the Vandermonde

factor (1.7) in det′(H). The dependence on [ , ] in the integrated operators is introduced

by the BRST operator responsible for the descent procedure. The infinity twistor in the

form [ , ] really endows twistor space with a twisted holomorphic Poisson structure, and

the BRST operator we arrive at is somewhat reminiscent of those found in Poisson sigma

models [52, 53].

The theory also contains a different field with (generically) k+g+ 1 zero modes whose

fixing provides the Vandermonde determinant (1.9) in det′(H∨). The vertex operators as-

sociated to this field have a rather different character that may be motivated as follows.

– 4 –
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Firstly, notice that the previous integrated and unintegrated vertex operators have appar-

ently already used up all the available n insertion points. (1.5) allows us to choose the

minors of H and H∨ completely independently, so there seems to be no compelling reason

to place the ‘additional’ operators preferentially with either type of insertion mentioned in

the previous paragraph. Secondly, although det′(H∨) knows about the holomorphic map

Z : Σ→ PT, it is completely oblivious to the external world. Unlike det′(H) which knows

about the external states through the derivative operators in (1.6), nothing in the definition

of det′(H∨) cares what we choose for the wavefunctions hi(Z), nor even how many particles

are being scattered. All this is strongly reminiscent of ‘picture changing operators’ of the

RNS superstring. See e.g. [54, 55] for an introduction to these operators. We shall indeed

find picture changing operators in our theory, and inserting k + g + 1 of these leads to the

requisite dependence on 〈 , 〉.
The characterization sketched above may sound worryingly piecemeal. On the con-

trary, the whole theory flows naturally from a single structure: the worldsheet carries a

certain exotic twisted supersymmetry. All the required objects fit into geometrically mean-

ingful worldsheet supermultiplets — properly understood, the theory contains only three

different fields. The action and BRST operator are as simple as one could wish.

The outline of the paper is as follows. In section 2 we describe the worldsheet super-

manifold whose fermionic symmetries and moduli lie at the heart of the whole construction.

The actual worldsheet theory is a relative of Berkovits’ formulation [56] of the original

twistor string, and is described in section 3. (Some readers may prefer to begin with this

section.) Here we begin with a description of the worldsheet fields in section 3.1 and BRST

operator in section 3.2. After a brief diversion, we proceed to show in section 3.3 that the

model is anomaly free if and only if the target twistor space has N = 8 supersymmetry. We

conclude our discussion of the general theory in section 3.4, presenting the vertex operators

of the model and explaining their relation to an N = 8 supergravity multiplet. Section 4

contains the derivation of the complete flat space S-matrix of classical N = 8 supergrav-

ity (1.5) from correlation functions of vertex operators on the worldsheet. The model of

section 3 describes SO(8) gauged supergravity on an AdS4 background in the first instance.

Thus, before embarking on the S-matrix calculation, in section 4.1 we show in section 4.1

how to rescale the fields so as to take the flat space limit. The Hodges matrix (1.6) and

the conjugate Hodges matrix (1.8) have a different origin on the worldsheet. They are

obtained in sections 4.2 and 4.3, respectively. It is worth pointing out immediately that

the present model is more successful than the original twistor strings [12, 56] were (as a

theory of pure N = 4 SYM) in at least one respect: the worldsheet correlator we consider

leads inexorably to (1.5) and only to (1.5). No terms are ignored or discarded by hand.

Our work suggests many promising avenues for future research. We conclude in section 5

with a brief discussion of some of these.

Note added at publication. In the time since this paper first appeared on the arXiv,

there have been several related developments. The most important of these is the emer-

gence of the CHY representation of amplitudes [57, 58] and its realization as a string theory

in ambitwistor space [59]. The ambitwistor string appears to be a more flexible framework

– 5 –
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than that presented here, in particular for amplitudes in various theories [60, 61] in var-

ious dimensions, loop-level amplitudes [62–64, 66, 67] and for describing amplitudes on

curved backgrounds [68, 69]. (For progress on higher genus twistor strings, see [70].) On

the other hand, the twistor string allows for manifestly supersymmetric expressions for

amplitudes that are obscured by the usual CHY formulae. The precise relation between

the ambitwistor and twistor strings has not yet emerged, though ambitwistor versions of

the twistor string [71] and the ‘polarized scattering equations’ of [72–74] make it clear that

they are indeed very closely related. It seems likely that the relation will be somewhat

similar to that between the RNS and pure spinor versions of full string theory [75].

2 The worldsheet supermanifold

In this section we describe the geometry of the worldsheet supermanifold X on which the

twistor string theory is based. See e.g. [76–78] for much more information on complex

supermanifolds.

Let Σ be a closed, compact Riemann surface of genus g. We extend Σ to a complex

supermanifold X of dimension 1|2 by picking4 a line bundle L → Σ of degree d ≥ 0 and a

choice of spin bundle K
1/2
Σ . We then define X to be the split supermanifold whose tangent

bundle TX is

TX = TΣ⊕D , (2.1)

where D is the rank 2 fermionic bundle5

D ∼= Π
(
C2 ⊗K−1/2

Σ ⊗ L
)

(2.2)

over Σ. We will often say that objects taking values in Kp
Σ⊗L

q have spin p and charge q.

Thus, sections of D have spin −1
2 and charge +1.

For a local description of X, we cover the bosonic Riemann surface Σ by open coordinate

patches Uα and let {Ûα} be the corresponding cover of X. Each such Ûα is (an open

subset of) C1|2, so we may describe X locally in terms of one bosonic and two fermionic

holomorphic coordinates z|θa, with a = 1, 2. The fact that X is a split supermanifold

means that on overlaps the coordinate transformations are

zα = fαβ(zβ)

θaα = (gαβ(zβ))ab θ
b
β ,

(2.3)

where the transition functions fαβ and gαβ on Ûα ∩ Ûβ depend only on the bosonic coor-

dinate z, not (z|θ). To identify these transition functions, suppose we write an arbitrary

section V : X→ TX of the tangent bundle of X as

V = V z(z|θ) ∂
∂z

+ Va(z|θ) ∂

∂θa
. (2.4)

4Eventually, the twistor string path integral will include a sum (or integral) over all such choices.
5Here, Π is the ‘parity reversing functor’ whose rôle is simply to remind us that D is fermionic.
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Recalling that TX ∼= TΣ⊕D, we see that V z∂z is a section of TΣ (written in terms of the

local basis ∂/∂z) whilst Va∂a is a section of D (written in terms of the local basis ∂/∂θa).

In order to compensate the transformations of the basis

∂

∂zα
=

1

f ′αβ

∂

∂zβ
and

∂

∂θaα
= (g−1

αβ ) b
a

∂

∂θbβ
(2.5)

that follow from (2.3), the components V z and Va must transform as

V z(zα|θα) = f ′αβ V̂
z(zβ |θβ) and Va(zα|θα) = (gαβ)ab V̂

b(zβ |θβ) (2.6)

on overlaps. But since D ∼= C0|2 ⊗ T 1/2
Σ ⊗ L, we have

(gαβ)ab =
√
f ′αβ × (hαβ)ab (2.7)

where each component of the 2× 2 matrix h is a transition function for sections of L.

Because X is a split supermanifold, it can be viewed as the total space of a bundle over

Σ — indeed, this is just what is meant by the transformation laws (2.3). To identify this

bundle, note that by (2.7) and (2.6), the coordinates θ themselves transform as components

of a section of D. But since the coordinates on a bundle transform oppositely to the bundle

itself, we find that X is the total space of D∨ → Σ, where D∨ is the dual of D. To say

this differently, functions on X are superfields Φ(z|θ) that may be expanded in the usual

way as

Φ(z|θ) = φ(z) + θaψa(z) +
1

2
εabθ

aθbξ(z) (2.8)

where φ(z) is a function on Σ, the ψa are a pair of functions on Σ with values in K
+1/2
Σ ⊗L−1

and of opposite Grassmann parity to φ, and ξ is a function on Σ with values in KΣ⊗L−2.

Thus, the structure sheaf of X is OX = OΣ(∧∗D∨). More generally, if Φ[p,q](z|θ) is a section

of Kp
Σ⊗L

q , then it may be expanded in terms of fields φ[p,q], ψ
[p,q]
a and ξ[p,q] on Σ, of (spin,

charge) = (p, q), (p+ 1
2 , q − 1) and (p+ 1, q − 2), respectively.

To give an example that will be important later, suppose that Σ is the Riemann

sphere. On CP1, the bundles K−1/2 and L are uniquely determined to be O(1) and O(d),

respectively. Thus D = C0|2 ⊗O(d + 1) and the supermanifold X may be identified as the

weighted projective superspace WCP(1,1|d+1,d+1) with homogeneous coordinates (σα|ϑa)
obeying the scaling

(σα|ϑa) ≡ (rσα|rd+1 ϑa) for any r ∈ C∗ . (2.9)

In this case, a function Φ ∈ OX may be expanded as

Φ(σ|ϑ) = φ(σ) + ϑaψa(σ) +
1

2
εabϑ

aϑbξ(σ) , (2.10)

where φ, ψa and ξ have homogeneities 0, −(d + 1) and −2(d + 1), respectively under the

scaling (2.9).

– 7 –
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Returning to the general case, the cotangent bundle T∨X to the supermanifold is just

the direct sum T∨X ∼= KΣ ⊕ D∨ dual to (2.1). Thus the holomorphic Berezinian Ber(X)

of X is

Ber(X) = Ber(KΣ)⊗ Ber(D∨) . (2.11)

To compute this, recall that for an even parity (bosonic) bundle Ber(B) = Det(B) —

the top exterior power of B. However, for an odd parity (fermionic) bundle Ber(F ) =

Det(ΠF )−1, where the power of −1 appears as a consequence of the fact that in Berezin

integration the integral form dθ1dθ2 transforms oppositely to the differential form dζ1∧dζ2

involving variables ζa that have same quantum numbers, but opposite Grassmann parity to

θa. (In one dimension, this is just the familiar statement that since
∫

dθ θ = 1 by Berezin

integration, if θ → g(z)θ, we require that the integral form dθ → g−1(z)dθ.) Thus we have

Ber(X) = KΣ ⊗Det(ΠD∨)−1 = KΣ ⊗
(
KΣ ⊗ L−2

)−1

∼= L2 ,
(2.12)

where we used the definition (2.2) in the second step.

When we come to write the worldsheet action in section 3, we will need a top holo-

morphic integral form on X. Since the Berezinian of X is isomorphic to L2, the product

Ber(X)⊗L−2 is trivial. Thus it admits a global holomorphic section that we write as d1|2z.

For example, at genus zero d1|2z = (σdσ)dϑ1dϑ2 in terms of the homogeneous coordinates

(σα|ϑa) introduced above. We can treat d1|2z as a top holomorphic (integral) form on X of

charge −2. In order to construct an action, this charge must be balanced by the worldsheet

Lagrangian L, so that d1|2z L(z|θ) may be integrated over X.

Let us close this subsection with a couple of remarks. As usual for complex superman-

ifolds (and as on the twistor target space CP3|N ) we take X to be a cs manifold [76, 77], in

the sense that the antiholomorphic tangent bundle is TX ≡ TΣ and so has rank 1|0. An-

tiholomorphic fermionic directions simply do not exist — all operations with the fermions

will be purely algebraic. Finally, we note that X is not an N = 2 super Riemann surface

(see e.g. [78]), because our choice of TX means the distribution D is integrable in the sense

that {D,D} ⊆ D. Indeed, the usual superderivatives

D1 =
∂

∂θ1
+ θ2 ∂

∂z
D2 =

∂

∂θ2
+ θ1 ∂

∂z
(2.13)

on an N = 2 super Riemann surface do not make any sense for us, because the second

term in each expression has different charge from the first and hence is forbidden. Exactly

these forbidden terms are responsible for the non-integrability of the odd distribution on

an N = 2 super Riemann surface.

2.1 Automorphisms

We now consider the symmetries of X as a complex supermanifold. On a local patch Ûα,

as usual these are generated by vector fields V ∈ Ω0(Ûα, TX|
Ûα

). We will be particularly

interested in the symmetries of the distribution D — these are generated by the vector

fields V ∈ Ω0(Ûα, D|Ûα) that act trivially on Σ. (This restriction would not make sense on

a super Riemann surface, but does make sense on X precisely because D is integrable.)
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From (2.4) we can write

Va(z|θ) ∂

∂θa
=

(
va(z) + θbRab(z) +

1

2
εbcθ

bθc ṽa(z)

)
∂

∂θa
(2.14)

where the components v, R and ṽ have (spin, charge) = (−1
2 , 1), (0, 0) and (+1

2 ,−1), re-

spectively. Because the fermionic distribution D is integrable, the anticommutator {V1,V2}
of any two such vector fields again lies in D. A short calculation shows that the component

fields obey the algebra

[v1, R2] = v12 [̃v1, R2] = ṽ12

[R1, R2] = R12 {v1, ṽ2} = R′12 ,
(2.15)

where

va12 = (R2)abv
b
1 ṽa12 = (R2)abṽ

b
1 − tr(R2)ṽa1

(R12)ab = (R2R1 −R1R2)ab (R′12)ab = −ṽa2 v1b .
(2.16)

with vb = εbcv
c. All other commutators are zero — in particular, {ṽ1, ṽ2} = 0 since it is of

order (θ)3 which must vanish.

If we decompose the gl(2;C) matrix R as

Rab =
1

2
δab r + rab (2.17)

where the traceless, symmetric matrix rab takes values in sl(2;C) while r = tr(R) takes

values in gl(1;C). R may be interpreted as generating a gauge transform of C2⊗L so that r

generates gauge transformations associated to the determinant L2. Equations (2.15)–(2.16)

then reflect the fact that the va transform in the fundamental representation of SL(2;C)

and have charge +1 under L, whereas the ṽa transform in the fundamental of SL(2;C) but

have charge −1 under L.

Later, in section 3.2 we shall introduce a (bosonic) ghost multiplet in ΠΩ0(X,D)

corresponding to (2.14). This algebra will then be interpreted as the gauge algebra of our

worldsheet theory. Zero modes of the ghost multiplet live in H0(X,D), parity reversed, and

correspond to globally defined Σ-preserving infinitesimal automorphisms of X as a complex

supermanifold.

2.2 Deformations

As for a usual complex manifold, infinitesimal deformations of X as a complex supermani-

fold are parametrized by elements of H1(X, TX). This cohomology group is the holomorphic

tangent space to the moduli space of X. Again, we will be interested in the moduli of X

associated to deforming the choice of distribution D whilst leaving Σ fixed. Infinitesimally,

these are described by H1(X,D) ⊂ H1(X, TX). On a supermanifold, the dualizing sheaf is

the holomorphic Berezinian, so the deformations are Serre dual6 to H0(X,Ber(X) ⊗ D∨).

6See e.g. [78–80] for a discussion of Serre duality for complex supermanifolds.
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We showed in (2.12) that Ber(X) ∼= L2, so using (2.2) we can identify this cohomology

group as

H0(X,Ber(X)⊗D∨) ∼= ΠH0(X,C2 ⊗K1/2
Σ ⊗ L) , (2.18)

where again the symbol Π denotes that the fibres are fermionic. This group is non-trivial

provided only deg(L) > 0, so X has odd moduli even at g = 0. In section 3.2 we shall

introduce a (bosonic) antighost multiplet valued in Ω0(X,C2 ⊗K1/2
Σ ⊗ L). Zero modes of

this antighost live in (2.18), parity reversed, and so by Serre duality can be paired with

deformations of the odd moduli. This is the usual mechanism by which the RNS superstring

provides a top holomorphic integral form on odd moduli space; see e.g. [55, 78].

3 The twistor string

In this section we define the worldsheet theory that will provide a twistor description of

Einstein supergravity. After introducing the fields and explaining their geometric meaning,

we study the gauge and BRST transformations naturally associated to the structure of the

worldsheet supermanifold X. The model is chiral, and we show that all (local) worldsheet

anomalies vanish if and only if the target space has N = 8 supersymmetry. We then

construct vertex operators in the BRST cohomology, finding that they correspond to an

N = 8 supergravity multiplet. We have just seen that X has odd moduli even at genus

zero. We construct the associated ‘picture changing’ operators.

3.1 Matter fields

To define the worldsheet model, we first introduce four bosonic and N fermionic fields ZI

(where I = 1, . . . , 4|1, . . . ,N ). Each of these are scalars on X of charge +1. In other words,

Z ∈ Ω0(X,C4|N ⊗ L) (3.1)

where L is the same degree d line bundle used in the definition (2.2) of D. In the first

instance, Z defines a smooth map Z : X → C4|4. The twisting by L means that this

map is defined only up to an overall non-zero complex rescaling, so Z really defines a map

Z : X→ CP3|N . The ZI then represent the pullbacks to X of homogeneous coordinates on

this projective space.

Saying that Z is a map from X, rather than from Σ, simply means that it is a worldsheet

superfield. As in (2.8), we define its component expansion to be

ZI(z, θ) = ZI(z) + θaρIa(z) +
1

2
θaθa Y

I(z) (3.2)

in terms of fields (ZI , ρIa, Y
I) on Σ. Since each θa is a fermionic coordinate of (spin,

charge) = (−1
2 , 1) we see that ZI , like ZI , is a scalar on Σ of charge +1, ρIa are a pair

of uncharged (1
2 , 0)-forms, while Y I is a (1,0)-form of charge −1. If the index I denotes

a bosonic direction in CP3|N , then ZI and Y I are bosons while ρIa are fermions. This is

reversed when I denotes a fermionic direction. Altogether, the component fields in the
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matter multiplet are
Z ∈ Ω0(Σ,C4|N ⊗ L)

ρ ∈ ΠΩ0(Σ,C4|N ⊗ C2 ⊗K1/2
Σ )

Y ∈ Ω0(Σ,C4|N ⊗KΣ ⊗ L−1) .

(3.3)

Of course, the ZI represent the pullbacks, now to Σ, of homogeneous coordinates of CP3|N .

We will sometimes decompose ZI as ZI = (Za|χA) = (µα̇, λα|χA) into its bosonic and

fermionic components.

3.1.1 The infinity twistor

In order to write an action for these fields, we must pick some extra data. This is a choice

of constant, graded skew symmetric bi-twistor IIJ , known as the ‘infinity twistor’. Graded

skew-symmetry means that IIJ = −(−1)|IJ | IJI , where |IJ | = 1 if both I and J denote

fermionic directions, and zero otherwise. For any two twistors Z1 and Z2, we will usually

denote IIJZI1ZJ2 by 〈Z1, Z2〉.
Projective twistor space carries a natural action of SL(4|N ;C) acting as linear trans-

formations on the homogeneous coordinates. This is the complexification of (the double

cover of) the space-time N -extended superconformal group. The rôle of the infinity twistor

is to break conformal invariance and determine a preferred metric on space-time [81–83].

Specifically, if Xab = Z
[a
1 Z

b]
2 are homogeneous coordinates for the bosonic part of the twistor

line Z1Z2, representing a point x in space-time, then

ds2 =
εabcddXabdXcd

(IefXef)2
(3.4)

is the space-time metric. According to this metric, lines in twistor space that obey I ·X = 0

lie ‘at infinity’ in space-time. The fermionic-fermionic components IAB were examined

in [84, 85] where it was shown that they likewise define a metric on the R-symmetry group.

A non-trivial IAB thus corresponds to gauging the R-symmetry.

For definiteness, we will make the choice

IIJ =

(
Iab 0

0 IAB

)
(3.5)

where the even-even components Iab and odd-odd components IAB are given by7

Iab =

(
Λεα̇β̇ 0

0 εαβ

)
and IAB =

√
Λ δAB , (3.6)

respectively. This infinity twistor is non-degenerate. Its inverse is IIJ/Λ, where

IIJ =

 εα̇β̇ 0 0

0 Λεαβ 0

0 0
√

Λ δAB

 . (3.7)

IIJ defines a holomorphic Poisson structure IIJ ∂
∂ZI
∧ ∂

∂ZJ
of homogeneity −2 on twistor

space. It will play an important rôle in the vertex operators.

7The fact that IIJ with lower indices contains εαβ with raised indices originates with our conventions

that the bosonic twistor components Za are written as (µα̇, λα).
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In (3.6)–(3.7), Λ is a constant of dimensions (mass)2. The powers of Λ can be un-

derstood as follows. Since x has dimensions (mass)−1 and λ has dimensions (mass)
1
2 , the

incidence relations µα̇ = xαα̇λα show that µ has dimensions (mass)−
1
2 . Similarly, the

space-time fermionic coordinate ϑ has dimensions (mass)−
1
2 , so the twistor space fermionic

directions χ are dimensionless. The powers of Λ ensure that both

IIJZIdZJ = Λεα̇β̇µ
α̇dµβ̇ + εαβλαdλβ +

√
Λ δAB χ

AdχB (3.8)

and the Poisson structure

IIJ ∂

∂ZI
∧ ∂

∂ZJ
= εα̇β̇

∂

∂µα̇
∧ ∂

∂µβ̇
+ Λεαβ

∂

∂λα
∧ ∂

∂λβ
+
√

Λ δAB
∂

∂χA
� ∂

∂χB
(3.9)

have homogeneous dimension (mass)+1. Bosonically at least, this dimension is important

in ensuring that (3.4) indeed has dimensions (mass)−2 as expected for a space-time metric.

Recall that the n-particle g-loop gravitational scattering amplitude comes with a factor of

κ2g−2+n. These dimensions must be balanced by a total of 2g− 2 + n powers of I.

With the choice (3.6), the incidence relations show that the space-time metric (3.4)

becomes

ds2 =
ηµνdxµdxν

(1 + Λx2)2
(3.10)

where ηµν is the flat metric. This is the metric of (complexified) AdS4 with cosmologi-

cal constant Λ. Similarly, with IAB =
√

Λ δAB the SL(N ;C) R-symmetry is broken to

SO(N ;C). Thus, with the choice (3.6) of infinity twistor, our model will describe (subject

to an appropriate reality condition) SO(N ) gauged supergravity on an AdS4 background.

It is straightforward to introduce an arbitrary gauge coupling for the gauged R-symmetry

by rescaling IAB → g
√

Λ δAB for some dimensionless coupling g. In section (4.1) we shall

take the limit Λ→ 0 (with g remaining fixed) so as to compute the flat space S-matrix of

ungauged supergravity. Until then, we set Λ = 1 and g = 1 so as to lighten the notation.

3.1.2 The action

Having chosen our infinity twistor, the action for Z is simple to state. We have8

S1 =
1

4π

∫
X

d1|2z 〈Z, ∂Z〉

=
1

2π

∫
Σ
〈Y, ∂Z〉 − 1

2
〈ρa, ∂ρa〉 ,

(3.11)

where ρaI = εabρIb . Notice that the charge +2 of 〈Z, ∂Z〉 balances the charge −2 of d1|2z. In

writing this action, we let ∂ denote the (covariant) Dolbeault operator acting on sections of

the appropriate bundles — since the (0,2)-part F 0,2 of the curvature of any bundle vanishes

trivially on restriction to a Riemann surface, we can always work in a gauge in which the

(0,1)-form part of any connection is the usual ∂-operator. (This applies equally to the cs

manifold X.)

8In computing the component expansion of this action, we use the conventions
∫

d2θ θaθa = 2 where

θaθa = εabθ
aθb. Note also that θaθb = − 1

2
εab θcθc.
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Clearly, to have sensible kinetic terms for all components of Z, it is important that the

infinity twistor 〈 , 〉 be totally non-degenerate, both in the bosonic directions and fermionic

directions. This motivates our choice (3.6). When we come to take the flat space limit in

section 4 so as to describe scattering amplitudes, the infinity twistor necessarily becomes

degenerate. We shall then need to rescale the fields so as to remove the dependence on the

cosmological constant from the action, at the cost of including it in the definition of the

Z(z, θ) supermultiplet.

The Y Z-system9

SY Z =
1

2π

∫
Σ
YI∂Z

I (3.12)

was a key ingredient of Berkovits’ twistor string [56]. Here, as there, performing the path

integral over Y will lead to the constraint that Z be a holomorphic section of C4|N ⊗ L.

Thus, on-shell, Z describes a holomorphic map to PT. Berkovits’ twistor string describes

non-minimal N = 4 conformal supergravity [86–88], at least at tree-level, as does Witten’s

original model [12]. The N = 4 (conformal) gravity multiplet is not self-conjugate un-

der CPT transformations and to build a CPT invariant theory we must use two separate

supermultiplets that are exchanged under CPT. These two multiplets have a very differ-

ent character on twistor space. The multiplet containing the positive helicity graviton is

described locally by a vector field V , whereas the multiplet that contains the negative he-

licity graviton is instead described locally by a 1-form B.10 Correspondingly, in Berkovits’

twistor string the two conformal gravity multiplets are represented by the worldsheet vertex

operators V I(Z)YI and BI(Z) dZI , respectively [87].

Conformal gravity, being a fourth order theory, contains twice as many on-shell degrees

of freedom as Einstein gravity. If we wish to extract the Einstein supergravity multiplets

from the vertex operators of the Berkovits twistor string, we should require that

V IYI = (IIJ∂Jh)YI and B = φ 〈Z, dZ〉 (3.13)

for some (local) functions h(Z) and φ(Z) of homogeneities +2 and −2, respectively.

(See [24, 81, 83, 85] — or section 3.4 below — for further details.) One of the challenges

to be overcome in constructing a twistor string for N = 8 supergravity is to understand

how to unify these ‘vector field’ and ‘one form’ vertex operators as part of a single CPT

self-conjugate N = 8 multiplet.

Although it is premature to discuss the spectrum of our model at this point, (3.2)

already contains a small hint of the solution: the fields Z and Y are unified into a sin-

gle worldsheet supermultiplet. Thus, from the perspective of X, there is no fundamental

difference between the two types of vertex operator in (3.13).

9Here we have used the infinity twistor I to lower the index on Y , so that YI = IIJY J . With a non-

degenerate infinity twistor, this is harmless, but in the flat space case this operation must be done with

care. See section 4.1.
10More precisely [87], in N = 4 conformal supergravity V represents an element of H1(PT, TPT) and

defines an infinitesimal deformation of the complex structure of a patch of twistor space that preserves the

holomorphic section D3|4Z of Ber(PT). The conjugate field B plays a rôle similar to that of the heterotic

B-field. Its curvature H = dB represents an element of H1(PT,Ω2
cl).
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3.2 BRST transformations

To complete the specification of our theory, we need to choose a BRST operator. This will

be based on the symmetries of X that act trivially on Σ, as discussed in section 2.1.

Consider the following three sets of transformations of the component fields. Firstly,

δ1Z
I = εaρIa , δ1ρ

I
a = εaY

I , δ1Y
I = 0 (3.14)

with fermionic parameters εa, secondly

δ2Z
I =

1

2
κ a
a Z

I , δ2ρ
I
a = −κ b

a ρ , δ2Y
I = −1

2
κaaY

I (3.15)

with bosonic parameters κ b
a , and finally

δ3Z
I = 0 , δ3ρ

I
a = −1

2
ε̃aZ

I , δ3Y
I =

1

2
ε̃aρIa (3.16)

with fermionic parameters ε̃a. These transformations represent the actions of a local sym-

metry of X on the matter multiplet Z. On a local coordinate patch U ⊂ Σ, we may

take the parameters (ε, κ, ε̃) to be constant. In this case the action S1 is invariant un-

der (3.14)–(3.16) when restricted to U . However, the spins and charges of the compo-

nent fields mean that if we wish to make sense of these transformations globally over

Σ, then ε and ε̃ must transform non-trivially on overlaps. Specifically, we must have

εa ∈ ΠΩ0(Σ,L⊗K−1/2
Σ ), κab ∈ Ω0(Σ,O) and ε̃a ∈ ΠΩ0(Σ,L−1⊗K+1/2

Σ ), so that they fit

together to form a supermultiplet in Ω0(X,D). In particular, to treat (3.14)–(3.16) globally

over Σ, the parameters ε and ε̃ must depend (smoothly) on the worldsheet coordinates.

Thus these transformations must necessarily be gauged.

3.2.1 The ghost multiplets

With non-constant parameters, the matter action is not invariant under (3.14)–(3.16).

To remedy this, and to treat the transformations as redundancies, we follow the usual

procedure of introducing ghosts. Since the above transformations reflect the actions of

Σ-preserving symmetries of X as studied in section 2.1, we introduce a ghost multiplet

C ∈ ΠΩ0(X,D) (3.17)

in the parity reverse of the parameter multiplet. We declare C to have ghost number

ngh = +1. As with the matter field, we can expand C in terms of components as

Ca(z, θ) = γa(z) + θb Na
b(z) +

1

2
θbθb ν

a(z) , (3.18)

where again a = 1, 2. Recalling from section 2 that ΠD ∼= C2 ⊗K−1/2
Σ ⊗ L, we see that

the component fields γa are a pair of are (−1
2 , 0)-forms of charge +1. They are bosonic

ghosts for the fermionic parameters εa in (3.14). The bosonic fields νa are likewise (+ 1
2 , 0)-

forms of charge −1 and are ghosts for fermionic parameters ε̃a in (3.16). Finally, N b
a are

four fermionic ghosts corresponding to the GL(2;C) transformations of the rank 2 bundle
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C2 ⊗ L. They are scalars on Σ of charge 0. We shall often find it convenient to separate

this GL(2;C) as GL(1;C)× SL(2;C). Accordingly, as in (2.17) we write

Na
b =

1

2
δab n + nab (3.19)

where nab is symmetric and traceless and n ≡ tr(N). Note that since n is the (anticommut-

ing) gauge parameter for the determinant of C2 ⊗L, the appropriate parameter for gauge

transformations of L itself is n/2. This explains various factors of 1
2 that appear in the

BRST transformations below.

We also introduce an antighost multiplet

B ∈ ΠΩ0(X,Ber(X)⊗D∨) (3.20)

of ngh = −1 that is conjugate to C. This may be expanded as

Ba(z, θ) = µa(z) + θb Mab(z) +
1

2
θbθb βa(z) . (3.21)

Since ΠBer(X) ⊗ D∨ ∼= C2 ⊗K+1/2
Σ ⊗ L, we see that the two bosonic fields µa are (1

2 , 0)-

forms of charge +1, the fermionic antighosts Ma
b are uncharged (1, 0)-forms, and finally

βa are a pair of bosonic ( 3
2 , 0)-forms of charge −1. As with the ghost N, we shall often

separate the antighost M into its GL(1;C) and SL(2;C) parts, writing

Mab = εab m + mab (3.22)

with mab symmetric and traceless.

The ghost action is simply

S2 =
1

2π

∫
X

d1|2z Ba∂C
a

=
1

2π

∫
Σ
βa∂γ

a + mab∂nab + m∂n + µa∂ν
a .

(3.23)

Except for their non-trivial charges under L, the βγ-system is just two copies of the usual

βγ system of the RNS superstring, the MN-system is the standard system associated to

fixing the GL(2;C) symmetry of D, and the µν-systems corresponds to fixing supergauge

transformations associated to gauginos. The non-trivial charges of these ghost fields mean

that the gravitinos and gauginos that they fix are also charged.

The above behaviour is perhaps reminiscent of a GL(2;C) gauged supergravity on the

worldsheet. However, because we are only gauging those symmetries of X that act trivially

on the bosonic Riemann surface Σ, we are not actually considering worldsheet gravity itself.

Correspondingly, our ghosts live only in the subgroup ΠΩ0(X,D) of ΠΩ0(X, TX) and there

is no (fundamental) fermionic bc-ghost system. It may seem strange to have gravitinos

(albeit non-propagating ones supplanted by the βγ-system) but no graviton. Usually in

supersymmetry, this is not allowed because the structure of the supersymmetry algebra

{Q,Q†} = P forces us to gauge Poincaré transformations if we gauge the supersymmetry.

In the present case it is possible to have gravitinos without gravitons ultimately because

the distribution D is integrable and {D,D} 6⊃ TΣ.
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3.2.2 The BRST operator

In the presence of the ghosts, the transformations (3.14)–(3.16) are replaced by BRST

transformations generated by the operator

Q =
1

2

∮
d1|2z (Ca〈Z, DaZ〉+Ba{C,C}a) , (3.24)

where the derivative Da ≡ ∂/∂θa and where {C,C}a = 2CbDbC
a denotes the anticommu-

tator — i.e., the graded Lie bracket on the distribution D. The integral is to be taken over

a real 1-dimensional cycle Γ ⊂ Σ as well as over the fermonic directions. Clearly, Q is a

fermionic operator of ngh = +1, and the spins and charges of the fields and measure d1|2z

combine to ensure that Q is a scalar of charge zero under GL(2;C). It is also important to

notice that the BRST operator depends on our choice of infinity twistor 〈 , 〉.
Performing the integrals over the anticommuting coordinates θa, (3.24) may equiva-

lently be written as11

Q =

∮
γa〈Y, ρa〉+

1

2
νa〈Z, ρa〉+

n

2
〈Y, Z〉 − 1

2
nab〈ρa, ρb〉

+ βa

(
n

2
γa + nabγ

b

)
+ µa

(
− n

2
νa + nabν

b

)
+ mγaνa −mab

(
n(a

cn
b)c + γ(aνb)

)
(3.25)

in terms of the component fields (3.2), (3.18) & (3.21). When acting on the matter multiplet

Z(z, θ), this operator generates the transformations

δZI = γaρIa +
n

2
ZI

δρIa = γaY
I +

1

2
νaZ

I − n b
a ρ

I
b

δY I =
1

2
νaρIa −

n

2
Y I

(3.26)

generalizing (3.14)–(3.16). Similarly, the BRST transformations act as

δγa =
n

2
γa + nabγ

b δνa = −n

2
νa + nabν

a

δn = νaγa δnab = n(a
cn
b)c + γ(aνb)

(3.27)

on the ghost multiplet. These transformations directly reflect the structure of the alge-

bra (2.15)–(2.16). For example, we see that γa transform in the fundamental of SL(2;C)

and have charge +1 under L, while νa is again in the fundamental of SL(2;C) but has

charge −1. The unusual factors of νγ in the transformation of n and nab come from the

fact that {v1, ṽ2} = R′12 in (2.15)–(2.16). Finally, the BRST transformations act on the

11Our conventions are that f (agb) is the symmetrized product 1
2
(fagb + f bga). Two-component indices

a, b, . . . , are raised and lowered using the SL(2)-invariant anitsymmetric tensor εab. In particular, for bosonic

fields such as γ and ν, γaνa = εabγ
aνb = −εbaνbγa = −νbγb. Pairs of anticommuting fields would have an

extra minus sign. Some care has been taken to ensure the numerical factors in (3.25)–(3.28) are correct

and compatible with the numerical factors in the matter and ghost action.

– 16 –



J
H
E
P
0
4
(
2
0
2
0
)
0
4
7

antighost multiplet as

δµa =
1

2
〈ρa, Z〉+

n

2
µa − n b

a µb + mγa + mabγ
b

δm =
1

2
(〈Z, Y 〉 − βaγa + µaν

a)

δmab =
1

2
〈ρa, ρb〉 − 2n c

(a mb)c + β(aγb) + µ(aνb)

δβa = 〈ρa, Y 〉 −
1

2
nβa − n b

a βb −mνa + mabν
b ,

(3.28)

giving the currents conjugate to each symmetry. The transformations (3.26)–(3.28) have

been checked to be nilpotent and to be symmetries of the full action S1 +S2. Of course, the

statement that Q2 = 0 is subject to potential anomalies — so too is the very definition of

the composite Q operator itself. We shall investigate these anomalies in section 3.3 below.

BRST invariant configurations may be found by setting the fermionic fields to zero

and asking that they remain zero under a BRST transformation. In this regard, the most

dangerous looking transformation is

δρIa =
1

2
νaZ

I (3.29)

which potentially forces Z to vanish, ruining the interpretation of our model as a map to

projective twistor space. Even if only some components of the supertwistor ZI were forced

to vanish, this would still place intolerable restrictions on the map and destroy any chance

of the model describing (non self-dual) gravity. Of course, the resolution is that in fact

ν = 0. To see that this is so, notice that since degL ≥ 0, the field νa ∈ Ω0(Σ,K
1/2
Σ ⊗L−1)

has no zero-modes (at least generically, and always at g = 0). Thus the path integral∫
Dµ exp

(
1

2π

∫
Σ
µa∂ν

a

)
(3.30)

over the non-zero modes of the conjugate fields µ imposes the constraint ν = 0, render-

ing (3.29) harmless. Likewise, the transformation δm ∼ 〈Z, Y 〉 + · · · is tame because Y

vanishes on-shell.

To summarize, our model contains just three field multiplets

Z ∈ Ω0(X,C4|N ⊗ L)

C ∈ ΠΩ0(X,D)

B ∈ ΠΩ0(X,Ber(X)⊗D∨) ,

(3.31)

and is defined by the action12

S =
1

2π

∫
X

d1|2z

(
1

2
〈Z, ∂Z〉+Ba∂C

a

)
(3.32)

12Recall from (2.12) that Ber(X) ∼= L2 and that d1|2z is a holomorphic section of the trivial bundle

Ber(X)⊗ L−2 ∼= O.
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and the BRST charge Q of (3.24). This is enough to describe perturbative N = 8 super-

gravity, also allowing for gaugings and conformally flat backgrounds such as AdS4. The

only structures involved are the choice of infinity twistor 〈 , 〉 and the structure of X as

a complex supermanifold. As promised in section 2.1, zero modes of C represent (parity

reversed) global automorphisms of X that act trivially on Σ. Similarly, as in section 2.2,

parity reversed zero modes of B are Serre dual to H1(X,D), the tangent space to the

moduli space of X as a bundle over Σ.

3.3 Worldsheet anomaly cancellation

The worldsheet theory we have defined is chiral — the matter and ghost kinetic terms each

involve only the worldsheet Dolbeault ∂ operator — so it is potentially rife with anomalies.

We now investigate these, showing that all (local) anomalies cancel when N = 8.

We first compute the anomalies in the worldsheet gauge theory. Consider first the

GL(1;C) transformations associated to the non-trivial line bundle L. On the two dimen-

sional worldsheet, this anomaly is governed by a bubble diagram with the charged chiral

fields running around the loop. It is thus determined by the sums of the squares of the

charges of the fields, weighted by a sign for fermions. The GL(1) charged fields are the Y Z

system, giving a contribution a = (4−N ) to the gauge anomaly, the two βγ systems each

giving a = 1, and the two µν systems that also contribute a = 1 each. Altogether we have

aGL(1) = (4−N ) + 2 + 2 = 8−N (3.33)

so the GL(1;C) gauge anomaly vanishes if and only if N = 8.

If the SL(2;C) bundle has non-trivial second Chern class, there is a further potential

gauge anomaly. From the matter fields, only the ρρ-system transforms non-trivially under

SL(2 C), in the antifundamental representation. The bosonic βγ- and µν-ghosts trans-

form in the fundamental (or antifundamental), while the fermionic mabn
ab-system is in the

adjoint. The anomaly coefficient is thus

aSL(2) = −1

2
(4−N ) trF(tktk) + 2 trF(tktk)− tradj(t

ktk) , (3.34)

where tk denote the generators of SL(2;C), in the representation indicated by the subscript

on the trace. (A sum over k is implied.) Note that the ρρ contribution has a symmetry

factor 1
2 since they are their own antiparticles. Writing trR(tktk) = C2(R) dim(R) in terms

of the quadratic Casimir of the representation, (3.34) becomes

aSL(2) =
N
2
× 2C2(F)− 3C2(adj) =

3

4
(N − 8) , (3.35)

where we used the SL(2;C) quadratic Casimirs C2(F) = 3
4 and C2(adj) = 2. The worldsheet

GL(2;C) gauge theory is thus completely free from local anomalies when N = 8.

In addition, we can compute the total Virasoro central charge.13 From the matter

fields, the Y Z-system contributes central charge c = 2(4−N ), twice the (complex) bosonic

13Since our theory does not involve worldsheet gravity — although there is a worldsheet gravitino asso-

ciated to the βγ-system — the rôle of this anomaly is not completely clear to me. Its vanishing nonetheless

seems significant.
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dimension of the non-projective target space, minus twice the fermionic dimension. The

ρρ-system are spin 1
2 fields on the worldsheet of opposite statistics to Z. As in the RNS

superstring, they contribute a further (4 − N ) to the central charge. From the ghosts

we have two bosonic βγ-systems each contributing c = +11 as in the RNS string, while

fermionic ghosts for the gauge system contribute c = −2 × dim(GL(2)). Finally, because

the spin 1
2 µν-systems are bosonic, they contribute c = −1 each. The total central charge

is thus

c = 3(4−N ) + 22− 8− 2 = 3(8−N ) (3.36)

and vanishes if and only if N = 8. There is in addition a potential mixed GL(1;C)-

gravitational worldsheet anomaly b which equals 8 −N and again vanishes when N = 8.

Since trR(tk) = 0 for SL(2;C), there is never any mixed SL(2)-gravitational anomaly.

For an alternative (though equivalent) view of things, performing the path integral over

the non-zero modes of all fields leads to determinants of ∂-operators. These ∂-operators

act on sections of bundles as appropriate for the charges and spins of the fields, and the

determinants appear in the numerator or denominator according to whether the fields

are fermionic or bosonic. The resulting chiral determinants are not functions, but form

a section of a determinant line bundle over the moduli space of the gauge theory (and,

in principle, the complex structure of the worldsheet). In order to make sense of the

determinants as these moduli vary, we must find a flat connection on this determinant line

bundle. A natural connection was provided by Quillen [89]. Its curvature F is computed

by the Freed-Bismut formula [90, 91]

F =

∫
Σ

Td(TΣ) ∧ Ch(E) , (3.37)

where the bundle E depends on the fields in question. Letting x denote the first Chern

class of TΣ, y denote c1(L), and G denote the SL(2;C) bundle, we find

F =
c

24

∫
Σ
x ∧ x+

b

2

∫
Σ
x ∧ y +

a

2

∫
Σ
y ∧ y − s

∫
Σ

c2(G) (3.38)

where aGL(1), aSL(2), b, and c are the anomaly coefficients computed above.

These potential anomalies would also afflict the BRST charge Q in (3.25), since it

is a composite operator. For example, the terms proportional to the ghost field n each

contain potential short distance worldsheet singularities. However, the coefficient of this

short distance singularity in the combination n (〈Y,Z〉 − βaγa + µaν
a) is the same anomaly

coefficient a = (4−N ) + 2 + 2 as before, so Q is well-defined when N = 8. Similarly, the

terms proportional to nab are sensitive to any anomaly in the SL(2;C) gauge symmetry.

Finally, there are short distance singularities that potentially obstruct Q2 = 0, so that Q

could not be used as a BRST operator. It is left as an exercise to show that these again

cancel when N = 8.

3.3.1 Zero modes

The absence of gauge anomalies means the path integral over the complete set of non-zero

modes of all fields is well-defined, providing a section of a determinant line bundle over the
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moduli space whose Quillen connection is flat. We now examine the properties of the zero

modes of the fields.

Consider first the charged fields in our theory. For a generic chiral βγ-system, with γ

taking values in some vector bundle E, Serre duality and the Riemann-Roch theorem give

nγ0 − nβ0 = h0(Σ, E)− h1(Σ, E) =

∫
Σ

c1(detE) +
1

2
c1(TΣ) . (3.39)

In the case at hand, writing d for the degree of L, we find

nZ0 − nY0 = 4|N × (d + 1− g) (3.40)

for the bosonic and fermionic components of the Y Z-system at genus g,

nγ0 − nβ0 = 2(d + 2− 2g) (3.41)

in total for the two βγ-systems in our theory, and a total of

nµ0 − nν0 = 2d (3.42)

for the two µν-systems.14

The first important consequence of this calculation is that the path integral measure

D(Z, Y, β, γ, µ, ν)0 over these zero modes has net charge

(4−N )(d + 1− g) + 2(d + 2− 2g) + 2d = (8−N )(d + 1− g) , (3.43)

where we recall that by Berezin integration, the integral form dθ scales oppositely to θ

for a fermion. Thus, when N = 8, the zero mode path integral measure provides a top

holomorphic form on the moduli space of the theory.

However, while the total charge of all the zero modes cancels, there are selection rules

associated to the zero modes of the individual fields. Generically, when d is sufficiently

larger than g (and always at g = 0) the Kodaira vanishing theorem asserts that the above

indices are entirely due to the positively charged fields. Let us examine the consequences

of these selection rules, concentrating on this generic case.

To begin with, we have (d+1−g) zero modes of ZA = χA for each A = 1, . . . ,N running

over the fermionic directions of twistor space. These fermionic zero modes cause the path

integral to vanish unless they are saturated by insertions from the vertex operators. Exactly

as in the original twistor string [12, 56], this leads to a relation between the degree of the

curve Z(Σ) ⊂ CP3|N and the allowed helicity sector represented by the vertex operator

insertions. We will find that the vertex operators describe an N = 8 gravity supermultiplet,

in conventions where the positive helicity graviton is at order (χ)0 and the negative helicity

graviton is at (χ)8. Thus we find the usual relation

d = k + 1 + g (3.44)

14Here it is the antighost µ that has zero modes, at least generically.
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between the MHV level k (‘number of negative helicity gravitons, minus 2’) and the degree

of the curve and genus of the worldsheet.15

Now we consider the zero modes of the bosonic fields. We have d + 2− 2g zero modes

for each of the two components of γa and d zero modes of each of the two µas. Of course,

we also have (d + 1 − g) zero modes for each bosonic twistor component. In the absence

of insertions that depend on these zero modes, the integrals over γ and µ would diverge,

rendering the path integral ill-defined. As in the RNS string, we will find that the vertex

operators have δ-function support in these fields, giving a meaningful path integral. For

now, recall from the introduction that in the flat space limit, an n-particle g-loop amplitude

with n± gravitons of each helicity is a monomial of degree n−−1 +g in the infinity twistor

〈 , 〉 as a form, and n+ − 1 + g in the infinity twistor [ , ] as a Poisson structure.16 With

the aid of (3.44), we may rewrite these numbers as

n− − 1− g = d

n+ − 1− g = n− (d + 2− 2g) ,
(3.45)

respectively coinciding with the number of zero modes of each component of µ, and n minus

the number of zero modes of each γ component.

The remaining fields are the worldsheet spinors ρ, which generically have no zero

modes, and the ghost system associated with gauging the GL(2;C) transformations. These

ghosts certainly do have zero modes. However, at g = 0 we will content ourselves to treat

these by simply ‘dividing by vol(GL(2))’ — the path integral will lead yield a form that is

invariant and basic with respect to a natural GL(2) action, and we descend to the moduli

space. While this suffices to recover the g = 0 scattering amplitudes of [32], it is really too

naive. We discuss this further in section 5.

3.4 Vertex operators

In this section we construct the vertex operators representing BRST cohomology classes.

These will correspond to a linearized N = 8 supergravity multiplet. We also construct

picture changing operators required to fix zero modes of the bosonic antighosts.

3.4.1 The N = 8 supergravity multiplet

The odd supervector field V of (2.14) generates a global holomorphic automorphism of X

when V ∈ H0(X,D). In the generic case that d � g, only the lowest two components v

and R in the superfield expansion of V can be globally holomorphic, with

v ∈ H0(Σ,D) and R ∈ H0(Σ,End(C2 ⊗ L)) . (3.46)

The fermionic symmetries of X→ Σ correspond to zero modes of the ghosts γ, with each γa

being one of the d+2−2g holomorphic sections of K
−1/2
Σ ⊗L, while the bosonic symmetries

15The genus h of the image curve Z(Σ) obeys h ≤ g. In particular at MHV level for g = 1, the worldsheet

must double cover a twistor line, branched over four points.
16This monomial behaviour of course refers to the amplitude when written in twistor space. It becomes

obscure on momentum space because the transformation from twistors to momenta itself involves the infinity

twistor. Recall also that I is degenerate in the flat space limit.
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correspond to the zero modes of the ghost Na
b that are constant. To obtain a moduli space

whose (virtual) dimension is non-negative, and hence to have a well-defined ghost path

integral, we must fix these zero modes.

In our case, the odd vector field v = va∂/∂θa s generates (smooth) translations of along

the fibres of X→ Σ. To fix the associated odd automorphisms of X we pick points pi ∈ Σ

and demand that the translations act trivially at these points. In the path integral, these

translations are represented by the ghosts γa, so we can force the translation to be trivial

at some pi by inserting17

δ2(γ) = δ(γ1) δ(γ2) (3.47)

at this point. Each such constraint reduces the dimension of the space of automorphisms

by 1, so generically we need to pick (at least) d+2−2g points to remove all the global odd

automorphisms. The resulting δ-functions absorb the γ zero modes, rendering the path

integral meaningful.

In the usual case of the RNS superstring, the vertex operator would also include a

factor of the fermionic c ghost instructing us to quotient the path integral only by those

diffeomorphisms of the bosonic Riemann surface Σ that act trivially at the pi. For us

however, since we only quotienting by diffeomorphisms generated by sections of D ⊂ TX,

there are no c ghosts. If we do not wish our answer to depend on the choice of pi ∈ Σ, we

must integrate over them.18 Because γa has spin −1
2 and charge +1 under L, the operator

δ2(γ) should be interpreted as a (1,0)-form of charge −2. So the simplest type of vertex

operators are

Oh ≡
∫

Σ
δ2(γ)h(Z) , (3.48)

where h(Z) is a (0,1)-form on Σ of charge +2. This integral is to be taken over Σ at

θa = 0. These vertex operators are closely analogous to Neveu-Schwarz vertex operators

in the superstring.

The field h is a twistor representative of an N = 8 supergravity multiplet, pulled back

to Σ. Writing ZI = (Za|χA) for the bosonic and fermionic components of the twistor, we

can expand h as

h(Z|χ) = h(Z) + χAψA(Z) +
1

2
χAχBaAB(Z) + · · ·+ (χ)8 h̃(Z) (3.49)

where the coefficient of (χ)p is a (0, 1)-form on twistor space of homogeneity 2−p. Via the

linearized Penrose transform [92–94], these states correspond to massless fields with one

boson of helicity +2, 8 fermions of helicity + 3
2 , 28 gauge fields of helicity +1 and so on

until we reach the field h̃ that corresponds to a negative helicity graviton. More precisely,

the Penrose transform asserts that an on-shell, linearized N = 8 supergravity multiplet

corresponds to a cohomology class in H1(PT,O(2)), of which h is a representative.

17The fact that our vertex operators can depend only on γ, and not on derivatives of γ, is determined

by the requirement that the path integral measure over all fields does actually descend to a measure — or

top holomorphic form — on the moduli space of X→ D. See [55] for an explanation in the context of RNS

superstrings.
18See however the discussion in section 5.1.
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While Oh is to be inserted on a fixed section of X → Σ (taken to be the zero section

θa = 0), we also have related vertex operators Ôh that are integrated over the entire

worldsheet supermanifold X. As usual, these are obtained simply by replacing the factor

of δ2(γ) in (3.48) by the integration measure d1|2z on X. We have

Ôh ≡
∫

X
d1|2z h(Z)

=

∫
Σ

∂h(Z)

∂ZI
Y I − 1

2
εbaρIaρ

J
b

∂2h(Z)

∂ZI∂ZJ
.

(3.50)

Note that if I, J correspond to bosonic twistor directions, then ρI and ρJ anticommute, and

the εab symbol ensures that the second term here is symmetric in I, J . Conversely, if I, J

are fermionic directions, the expression is naturally antisymmetric in I, J . In particular,

this means that (3.50) is well-defined as a composite operator, with no short distance

singularities — the potential singularity in either the ρρ-system or the Y Z-system are each

proportional to the (graded) antisymmetric infinity twistor I, so the resulting derivatives

on h would vanish.

The first term in Ôh also has a natural meaning in twistor space: since h represents

an element of H1(PT,O(2)), and in canonical quantization of the action (3.11) we have

Y ∼ ∂/∂Z, the term ∂h
∂ZI

Y I represents an element of H1(PT, TPT). It therefore describes

an infinitesimal deformation of the complex structure of twistor space. The non-linear

Penrose transform [81] asserts that performing a finite deformation of the complex struc-

ture of twistor space corresponds to turning on self-dual Weyl curvature in space-time.

The holomorphic geometry of twistor space determines the conformal structure of space-

time, so an arbitrary deformation of this complex structure, generated by an arbitrary

V ∈ H1(PT, TPT), corresponds to an arbitrary self-dual solution of the Bach equations of

conformal gravity. However, unlike in the original twistor string, the vertex operators we

have found here are associated not to arbitrary vector fields, but rather to vector fields19

V I
h ≡ IIJ

∂h
∂ZJ

that are Hamiltonian20 with respect to the Poisson structure defined by I.

Deforming the complex structure by a such Hamiltonian vector field ensures that the holo-

morphic Poisson structure is preserved, and hence the corresponding deformed space-time

still has a preferred metric. This metric is a self-dual solution of the vacuum Einstein

equations [81–83]. Extending this to the N = 8 multiplet gives a BPS solution to the field

equations of supergravity.

As usual, the integrated vertex operator (3.50) can be added to the original action

S1 → S′1 =

∫
X

d1|2z
(
〈Z, ∂Z〉+ h(Z)

)
=

∫
Σ
〈Y, (∂Z + Vh)〉 + fermions ,

(3.51)

describing strings propagating on a background twistor space with deformed complex struc-

ture ∂ → ∂ + Vh. In the twistor string framework, deformations that are not self-dual are

described perturbatively in terms of higher degree maps (worldsheet instantons).

19We have used I to put the vector field index in the natural place. This is harmless when I is non-

degenerate, and in section 4.1 we shall see it happens automatically in the flat space limit.
20This is the reason we denote the gravity multiplet by h.
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To summarize, freezing all the γ zero modes requires us (in the generic case) to include

d + 2 − 2g vertex operators of the form Oh, involving the basic twistor wavefunction h.

The remaining n− (d + 2− 2g) states are represented by integrated vertex operators Ôh
that involve not h itself, but rather its associated Hamiltonian vector field Vh. In the

introduction we saw that the flat space tree-level scattering amplitude involves precisely

n− (d+ 2− 2g) powers of the infinity twistor [ , ] (i.e., the infinity twistor as a degenerate

Poisson structure). In particular, at g = 0 the tree amplitudes (1.5) are monomials of

degree n − d − 2 in [ , ]. We now understand that this fact has its origin in the odd

automorphisms of X as the total space of a fermionic bundle over a fixed Σ.

3.4.2 Picture changing operators

The worldsheet supermanifold X also has moduli, even for a fixed Riemann surface Σ,

coming from the freedom to deform the distribution D ⊂ TX. As in section 2.2, for fixed Σ

the tangent space to this moduli space is H1(X,D). Our twistor string knows about these

moduli via the zero modes of the antighost multiplet B, which live in the parity reversed

Serre dual group ΠH0(X,Ber(X)⊗D∨) ∼= H0(X,C2⊗K1/2
Σ ⊗L). In the generic case with

d� g, the only components of the B multiplet to have zero modes are µ and M.

Consider first the odd moduli space, associated to zero modes of the bosonic µ antighost

in H0(Σ,C2 ⊗ K
1/2
Σ ⊗ L). To integrate over the odd moduli space we follow the usual

procedure of the RNS superstring and insert 2h0(Σ,K
1/2
Σ ⊗L) ‘picture changing operators’

Υ ≡ 2 δ2(µ)SaSa , (3.52)

where

Sa ≡
1

2
〈Z, ρa〉+

1

2
nµa − n b

a µb + mγa + mabγ
b (3.53)

is the supercurrent obtained by taking the BRST transformation of µa as in (3.28). These

insertions correspond to δ-function wavefunctions for the gauginos associated to the µν-

system, and fix the µa zero modes. See e.g. section 3 of [55] for a clear discussion of picture

changing operators and their relation to fixing parity odd moduli.

Unlike the usual picture changing operators of the RNS string, the operator (3.52)

involves two copies of these currents because D has rank two. Because x δ(x) = 0 we can

neglect the terms proportional to the µ antighost in these supercurrents. Similarly, at

g = 0 when the antighosts Ma
b have no zero modes (and there are no N insertions with

which to contract), we can neglect their contribution to Sa. Then the picture changing

operator simplifies to become

Υ ≡ 1

2
δ2(µ) 〈Z, ρa〉 〈Z, ρa〉 (3.54)

When g = 0 we need (a minimum of) d such Υ insertions.

The previous expression may be thought to be somewhat formal, because composite

operator 〈Z, ρ1〉〈Z, ρ2〉 has a potential short distance singularity from the ρρ contraction.

To regularize this, we point split the two 〈Z, ρ〉 factors and take a limit as they come

– 24 –



J
H
E
P
0
4
(
2
0
2
0
)
0
4
7

together. In terms of a local coordinate z on U ⊂ Σ, one finds

lim
z′→z

〈
〈Z, ρ1(z′)〉 〈Z, ρ2(z)〉

〉
ρρ

= lim
z′→z

√
dz′
√

dz

z′ − z
× 〈Z(z′), Z(z)〉 , (3.55)

where the factors of
√

dz′ and
√

dz arise since ρ is a spinor on Σ. Expanding the holomor-

phic field Z as ZI(z′) = ZI(z) + (z′ − z) ∂zZ
I(z) + · · · , we see that the pole from the ρρ

propagator is cancelled by a zero from the antisymmetric infinity twistor, leaving us with

a finite contribution

lim
z′→z

〈
〈Z, ρ1(z′)〉 〈Z, ρ2(z)〉

〉
ρρ

= −〈Z, dZ〉(z) . (3.56)

We now define Υ more precisely as the normal ordered operator

Υ ≡ δ2(µ)

(
1

2
:〈Z, ρa〉〈Z, ρa〉: − 〈Z, dZ〉

)
(3.57)

in which the local contribution of the ρρ-system is explicitly accounted for. The normal

ordering prescription : : is understood to mean that we do not consider contractions

between the enclosed fields.

Actually, since the potential short distance singularity cancelled in (3.55), we are free

to think of Υ as in (3.54) without normal ordering. We must then remember to include the

local contribution (3.56) when computing correlation functions involving these operators.

In practice, this approach turns out to be somewhat simpler.

Of course, we could have chosen to represent all the external states by the vertex

operators Oh of (3.48), rather than use any integrated ones Ôh. In this description, we

would quotient the path integral only by translations of Σ inside X that act trivially at

n > d + 2 − 2g points. Since we are quotienting by fewer fermionic symmetries, the odd

dimension of the moduli space increases and we must integrate over this larger odd moduli

space. In the language of ghosts, the additional insertions of Oh provide extra factors of

δ2(γ). To compensate for these we should also construct picture changing operators for

the βγ-system, inserting n− (d + 2− 2g) of them so as to provide a top form on the odd

moduli space. This is expected to be the correct approach if one wishes to obtain a detailed

understanding of the compactification of this moduli space [55, 78]. It would be interesting

to investigate this further.

Finally, when g ≥ 1 we also have zero modes of the fermionic antighosts Mab. Insertions

of these amount to constructing a top holomorphic form on the (bosonic) moduli space of

holomorphic GL(2;C) bundles on Σ. For the (generic) case that this bundle is stable and

g ≥ 2, this moduli space has dimension 3(g− 1) + g and has been extensively studied [95–

102]. We discuss it further in section 5.1.

4 Scattering amplitudes in the flat space limit

Our prescription for computing n-point worldsheet correlation functions in the g = 0

twistor string is to consider the path integral〈
d+2∏
j=1

Ohj
n∏

k=d+3

Ôhk
d∏
l=1

Υl

〉
=

〈
d+2∏
j=1

∫
Σ
δ2(γ)hj(Z)

n∏
k=d+3

∫
X

d1|2z hk(Z)

d∏
l=1

Υl

〉
.

(4.1)
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In this section, we will use this prescription to recover the flat space tree-level S-matrix

of N = 8 supergravity in the form obtained in [32]. To do so, we will need to be able

to handle correlation functions of βγ-systems involving operators such as δ2(γ). A clear

explanation of how to achieve this was recently provided in [55] (see especially section 10).

For convenience, the relevant points are summarized in appendix A.

4.1 A degenerate infinity twistor

To compute scattering amplitudes, we must take the limit as the cosmological constant Λ

tends to zero. In this limit, the rank of the infinity twistor

IIJ =

Λεα̇β̇ 0 0

0 εαβ 0

0 0
√

ΛδAB

 (4.2)

we have been working with so far becomes non-maximal. In particular, in the flat space

limit we must carefully distinguish between the infinity twistor as a form and the infinity

twistor in its role as a bivector, since

IIJIJK = Λ δ K
I → 0 (4.3)

and so they are not equivalent.

If we were to take the flat space limit naively, the matter action (3.11) would also be-

come degenerate, with the kinetic terms for the µα̇ and χA components of the supertwistor

ZI vanishing. To avoid this, before taking the limit, we relabel the fields as

ZI → ZI ρI1 → ρI ρI2 → IIJ ρ̃J Y I → IIJYJ (4.4)

and include an overall factor of 1/Λ in the normalization of (3.11). In terms of the rescaled

fields, the matter action becomes

S1 =
1

2π

∫
Σ
YI∂Z

I + ρ̃I∂ρ
I (4.5)

and is independent of the cosmological constant. The ghost fields are unchanged. Having

ensured the action remains non-degenerate, we can now freely take Λ → 0, setting21

IIJ =

 εα̇β̇ 0 0

0 0 0

0 0 0

 and IIJ =

 0 0 0

0 εαβ 0

0 0 0

 . (4.6)

We follow the standard convention that 〈 , 〉 denotes contraction by IIJ with downstairs

indices, involving only the λ part of Z, whereas [ , ] denotes contraction by IIJ with

upstairs indices and involves only the derivatives ∂/∂µ tangent to twistor space (or the λ̃s

on momentum space).

21In the presence of an arbitrary gauge coupling g, we are taking the limit Λ → 0, g
√

Λ → 0. See the

discussion at the end of section 3.1.1.
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While the rescaled action is independent of the infinity twistor, the same cannot be

said for the BRST operator

Qmatter =
1

2

∮
d1|2z 〈Z, DaZ〉 . (4.7)

As with the action, we first apply the recaling (4.4) with a non-degenerate infinity twistor

and then take the limit Λ→ 0. The matter BRST charge becomes

Qflat =

∮
γ1YIρ

I + γ2[Y, ρ̃] +
1

2
ν1〈ρ, Z〉+

1

2
ν2ρ̃IZ

I

+
1

2
nYIZ

I +
1

2

(
n12 + n21

)
ρI ρ̃I +

1

2
n11〈ρ, ρ〉+

1

2
n22[ρ̃, ρ̃] ,

(4.8)

and the presence of the degenerate infinity twistor means that not all supertwistor com-

ponents appear in all terms; for example, 〈ρ, Z〉 = ραλα while [Y, ρ̃] = Yα̇ρ̃
α̇. A somewhat

similar BRST operator occurs in Poisson sigma models, see e.g. [52, 53]. It would be in-

teresting to explore this connection further. Again, the ghost BRST charge is unaltered.

Similarly, in the flat space limit the vertex operators become

Oh =

∫
Σ
δ2(γ)h(Z)

Ôh =

∫
Σ

[
Y,
∂h

∂Z

]
+

[
ρ̃,

∂

∂Z

(
ρI

∂h

∂ZI

)] (4.9)

for the external states and

Υ = δ2(µ) 〈ρ, Z〉 ρ̃IZI (4.10)

for the picture changing operator. As promised, the integrated vertex operator Ôh naturally

depends on the Hamiltonian vector field
[
∂h
∂Z ,

]
associated to the infinity twistor as a

Poisson structure.

4.2 The worldsheet Hodges matrix

We are now in position to recover the flat space gravitational S-matrix from the corre-

lator (4.1) at g = 0. In this section we will show that the worldsheet Hodges matrix H
in (1.6) arises from the correlation function of the matter vertex operators Oh and Ôh.

Firstly, we notice that the only insertions of γ come from the δ-functions in the fixed

section vertex operators Oh. These δ-functions serve to fix the integrals over the zero

modes of γa, representing elements of H0(Σ,K
−1/2
Σ ⊗ L). For each flavour γ1 and γ2, we

expand γ as

γa(σ) =

d+2∑
i=1

Γa iYi(σ) + non-zero modes , (4.11)

where the Yi form a basis of the zero modes (written in terms of a homogeneous coordinate

σα on the CP1 worldsheet), and where the Γas are c-number constants. In [55], it was

explained that for each flavour of γa, the insertion of δ-functions leads to〈
d+2∏
j=1

δ(γ(σj))

〉
βγ

=
1

det(Y)
. (4.12)
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See also the discussion in the appendix. Here, Y is the (d + 2) × (d + 2) matrix whose

entries are Yij = Yi(σj). At genus zero, a basis of H0(Σ,K
−1/2
Σ ⊗ O(d)) is given by

Yi(σ) = (σdσ)−1/2σα1 · · ·σαd+1 . Computing this determinant and including both flavours,

the path integral over the βγ-system yields〈
d+2∏
j=1

δ2(γ(σj))

〉
βγ

=
1

|σ1 · · ·σd+2|2
×

d+2∏
j=1

(σjdσj) , (4.13)

where |σ1 · · ·σd+2| denotes the Vandermonde determinant

|σ1 · · ·σd+2| ≡
∏
i<j

i,j∈{1,...,d+2}

(ij) . (4.14)

This Vandermonde determinant is precisely the denominator factor (1.7) of det′(H) in the

introduction, here specialized to the case that we remove the first d + 2 rows and also the

last d + 2 columns in computing a minor of the Hodges matrix H. (That is, we compute

the (d + 3)rd principal minor.)

The (n − d − 2) × (n − d − 2) minor of H itself comes from the remaining part of

the matter vertex operators. As a first step to understanding this, consider the n− d− 2

insertions of Ôh and temporarily neglect the
[
Y, ∂h∂Z

]
terms. The remaining part of Ôh is

bilinear in the worldsheet spinors ρ and ρ̃. These are free fields on Σ. Since they have no

zero modes, all ρ and ρ̃ insertions must be absorbed by contracting them pairwise in all

possible combinations. Insertions of ρ and ρ̃ can be found both in Ôh and in the picture

changing operators Υ. However, with our degenerate infinity twistor, Ôh involves only the

α̇ components of ρ̃, while Υ involves only the α components of ρ. The off-diagonal two

point function 〈ρ̃α̇(σ) ρα(σ′)〉 vanishes, so the ρ̃α̇s from any Ôh insertion can contract only

with the ρα̇s present in some other Ôh insertion. Furthermore, the pieces ρα
∂h
∂λα

+ρA ∂h
∂χA

in

ρI ∂h
∂ZI

in (4.9) may be ignored because there is always at least one unpaired ρ̃α̇ left over in

some Ôh and at least one unpaired ρα left over in some Υ, either of which causes the path

integral to vanish. We conclude that we can consider the ρρ̃ factors in Ôh independently

from those in Υ, and that we only need consider the α̇ terms in Ôh.

This being so, consider the correlator22

C(σd+3, . . . , σn) ≡

〈
n∏

k=d+3

[
ρ̃,

∂

∂Z

(
ρβ̇
∂hk

∂µβ̇
(σk)

)]〉
ρα̇ρ̃α̇

=

〈
n∏

k=d+3

ρ̃α̇ρβ̇
∂2hk

∂µα̇∂µβ̇
(σk)

〉
ρα̇ρ̃α̇

(4.15)

coming purely from the ρ̃ρ-system. In terms of the homogeneous worldsheet coordinates

σα, the two-point function of the ρρ̃-system is

〈ρα̇(σi) ρ̃β̇(σj)〉 = δα̇
β̇

(σidσi)
1
2 (σjdσj)

1
2

(ij)
. (4.16)

22In this expression µ denotes the bosonic twistor component, not the antighost, as should be clear from

the indices.
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Using this propagator to perform all possible contractions in (4.15) yields

C(σd+3, . . . , σn) =
∣∣∣H(0)

(n−d−2)×(n−d−2)

∣∣∣ n∏
k=d+3

hk(Z(σk)) (σkdσk) , (4.17)

where
∣∣∣H(0)

(n−d−2)×(n−d−2)

∣∣∣ is the (d + 3)rd principal minor of the matrix H(0) whose ele-

ments are

H(0)
ij =

1

(ij)

[
∂

∂Zi
,
∂

∂Zj

]
=

1

(ij)

[
∂

∂µi
,
∂

∂µj

]
for i 6= j (4.18)

and zero on the diagonal. In (4.18) we understand that ∂/∂Zi acts on hi in the prod-

uct (4.17), differentiating this wavefunction with respect to (the µα̇ component of) its

argument Z(σi). For example, if the external states are taken to be twistor representatives

hi(Z(σi)) =

∫
dsi
s3
i

δ
2
(λi − siλ(σi)) exp

(
siµ

α̇(σi)λ̃iα̇ + siχ
A(σi)ηiA

)
(4.19)

of momentum eigenstates, then H(0)
ij → sisj [ij]/(ij).

H(0) is not quite the full worldsheet Hodges matrix (1.6), because the diagonal elements

H(0)
ii vanish. To recover (1.6) in its entirety, we now consider the additional effect of the[
Y, ∂h∂Z

]
terms in the integrated vertex operators (4.9). With the degenerate infinity twistor,

only the α̇ component of Y is present here. This Yα̇ cannot contract with any Z in Υ,

either because there is no short distance singularity or because we would again be left

with an unpaired ρ̃. However, the Yα̇ from any given Ôh may contract with the Zs in

the wavefunctions h(Z) in any of the remaining Ôh operators, and also in the ‘fixed’ Oh
vertex operators.

Since Y ∈ Ω0(Σ,KΣ ⊗O(−d)) and Z ∈ Ω0(Σ,O(d)), the Y Z-propagator is

〈YI(σi)ZJ(σj)〉 = δ J
I

(σidσi)

(ij)

d+1∏
r=1

(arj)

(ari)
, (4.20)

where the σar in the product on the right are arbitrary. This product ensures that both

sides have the correct homogeneity. It arises because ∂
−1
f is ill-defined if f is a (0,1)-form

of homogeneity d > −1; we are always free to modify ∂
−1
f → ∂

−1
f + g where g is an

arbitrary holomorphic section of O(d), since this is annihilated by ∂. We can fix a choice

of propagator by specifying d + 1 points at which ∂
−1
f vanishes. This is the role of the

product in (4.20). Of course, any meaningful expression — such as the Hodges matrix —

is independent of the choice of these points (see [26, 32, 33]).
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Using this propagator, with just one
[
Y, ∂h∂Z

]
insertion we have〈[

Y,
∂hd+3

∂Z
(σd+3)

] n∏
j=d+4

ρ̃α̇ρβ̇
∂2hj

∂µα̇∂µβ̇
(σj)

d+2∏
i=1

hi(Z(σj))

〉

=
∣∣∣H(0)

∣∣∣ 〈[Y, ∂hd+3

∂Z
(σd+3)

] d+2∏
i=1

hi(Z(σi))

〉
n∏

j=d+4

(σjdσj)

=
∣∣∣H(0)

∣∣∣
−

n∑
k=1

k 6=d+3

1

(d+3 k)

[
∂

∂µd+3
,
∂

∂µk

] d+1∏
r=1

(ar k)

(ar d+3)


×

n∏
i=1

hi(Z(σi))

n∏
j=d+3

(σjdσj)

(4.21)

where in the first step we integrated out the ρ fields using (4.17). The term in braces in

the last line is one of the diagonal elements (the (d + 3)rd diagonal entry) that we were

missing from the full Hodges matrix.

We now prove inductively that the sum of Y and ρρ̃ insertions in each integrated

vertex operator Ôh means that the total correlation function assembles itself into the

complete worldsheet Hodges matrix H. To start, this is certainly true when there are only

2 integrated vertex operators (corresponding to an n-point MHV amplitude). For〈
2∏
i=1

([
Y,
∂hi
∂Z

]
+ ρ̃α̇ρβ̇

∂2hi

∂µα̇i ∂µ
β̇
i

)
n∏
j=3

hj

〉

=

(
H11H22 +

∣∣∣∣∣ 0 H12

H21 0

∣∣∣∣∣
)

(σ1dσ1)(σ2dσ2)

n∏
i=1

hi

=

∣∣∣∣∣H11 H12

H21 H22

∣∣∣∣∣ (σ1dσ1)(σ2dσ2)

n∏
i=1

hi ,

(4.22)

where the first equality follows because we must either take the ρ̃ρ term at both sites or at

none23 (If there is only one Ôh insertion — which occurs only for the 3-pt MHV amplitude

— we are forced to take the Y contribution as in (4.21); the ρ fields cannot contribute

at all.)

To perform the induction, assume that the worldsheet correlator correctly gives the

determinant of the full Hodges matrix when there are m− 1 Ôh operators, for some value

of m. Then from (4.21)〈[
Y,
∂h1

∂Z1

] m∏
j=2

Ôhj
n∏

k=m+1

hk

〉
= H11 ×

∣∣H(m−1)×(m−1)

∣∣× n∏
i=1

hi

m∏
j=1

(σjdσj) , (4.23)

23To lighten the notation, we have temporarily reversed our convention and taken the first n − d − 2

vertex operators to be integrated and the last d+ 2 to be fixed. This corresponds to computing the leading

principal minor of H.
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where the sum in each of the diagonal elements of the (m−1)×(m−1) minor
∣∣H(m−1)×(m−1)

∣∣
also runs over site 1, since the Y insertions in the Ôhj s leading to this matrix may addi-

tionally contract with site 1. The Hodges factors on the right hand side of this expression

can be written as the determinant of an m×m symmetric matrix with H1j = 0 for j 6= 1.

On the other hand, instead choosing the ρ̃ρ term at site 1 gives24

〈
ρ̃α̇ρβ̇

∂2h1

∂Zα̇1 ∂Z
β̇
1

m∏
j=2

Ôhj
n∏

k=m+1

hk

〉
= det



0 H12 H13 · · · H1m

H12 H22 H23 · · · H2m

H13 H23
. . .

...
...

...

H1m H2m · · · Hmm


n∏
i=1

hi

m∏
j=1

(σjdσj)

(4.24)

where the first row and first column represent the possible choices of contraction for the

additional ρ̃ and ρ insertions. As before, the sum in the diagonal entries of the (m− 1)×
(m − 1) Hodges matrix should be extended to run over site 1. It is now clear that (4.23)

& (4.24) combine to give the determinant of the full Hodges matrix appropriate to m

insertions of Ôh and n−m insertions of Oh.

Combining this with the factor (4.13) from fixing the γ zero modes shows that the

vertex operators (4.9) contribute〈
d+2∏
i=1

Ohi
n∏

j=d+3

Ôhj

〉
=

∫
det′(H)

n∏
i=1

hi(Z(σi)) (σidσi) (4.25)

to the twistor string path integral, in the specific case that we choose to remove the same

d+ 2 rows and columns in computing a minor of the full n×n Hodges matrix (here chosen

to be rows and columns 1 through d + 2). In [26, 32] we are actually free to compute

any (n − d − 2) × (n − d − 2) minor of H, provided we divide by the corresponding two

Vandermonde determinants. We can arrive at these more general representations by also

allowing ‘intermediate’ vertex operators that involve a single δ(γ) and an integral over the

other θ. That is, if we wish to compute a minor of the Hodges matrix involving different

rows and columns, we should allow∫
dθ2 δ(γ1(σ)) h(Z)|θ1=0 and

∫
dθ1 δ(γ2(σ)) h(Z)|θ2=0 (4.26)

as well as Oh and Ôh. The rows and columns that we remove from the Hodges matrix

correspond to the independent insertion points of δ(γ1) and δ(γ2). More generally, it should

be clear that since the amplitudes depend on H only through det′(H), there is actually a

very large amount of freedom in the elements themselves. It would be interesting to know

if these examples considered in [103] can be realized on the worldsheet. Of course, since

det′(H) is invariant under arbitrary permutations of all n external states, the minimal case

considered in (4.25) is sufficient to recover the amplitude. Indeed, permutation invariance

24The lines in the matrix in (4.24) are simply to distinguish contributions from the new insertions at site

1 from the previous inductive step. H is not a supermatrix.
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is now seen to be a consequence of the usual fact that it does not matter which vertex

operators we choose to be ‘fixed’ and which ‘integrated’. Thus we have recovered one of

the main ingredients in the formula (1.5) for the tree-level gravitational S-matrix.

4.2.1 Self-dual N = 8 supergravity

In the following section we will show that the remaining, conjugate Hodges matrix comes

from the d insertions of picture changing operators Υ. However, in the special case that

d = 0 — corresponding to constant maps to twistor space — X has no odd moduli and no

Υs need be inserted. This case is worth investigating separately.

Since Z(σ) = Z for constant maps, we obtain the 3-point MHV amplitude〈∫
Σ
δ2(γ)h1(Z)

∫
Σ
δ2(γ)h2(Z)

∫
X

d1|2z h3(Z)

〉
=

∫
D3|8Z ∧ h1(Z) ∧ {h2(Z), h3(Z)} ,

(4.27)

where we divided by vol(GL(2;C)) in lieu of fixing the zero associated to the worldsheet

gauge theory. This absorbs the integration over the three vertex operators over Σ and

ensures the remaining integral is taken over the projective twistor space. As usual, the

braces { , } denote the Poisson bracket associated to the infinity twistor I as a Poisson

structure IIJ ∂
∂ZI
∧ ∂

∂ZJ
. Note that the Poisson bracket itself has homogeneity −2, while

each hi(Z) has homogeneity +2, so (4.27) is well-defined on the projective twistor space.

This 3-point MHV amplitude is especially important because it is the vertex of the

action

Ssd =

∫
D3|8Z ∧

(
h ∧ ∂h+

2

3
h ∧ {h, h}

)
, (4.28)

evaluated on on-shell states. Ssd is the twistor action for self-dual N = 8 supergravity

and was first obtained by Mason & Wolf in [85]. At the linearized level its equations of

motion say that h represents an element of H(0,1)(PT,O(2)), as we have used in our vertex

operators. At the nonlinear level, the equations of motion assert that the almost complex

structure determined by ∂ + {h, } is integrable. Once again, the fact that we deform the

complex structure only by Hamiltonian vector fields ensures that we have a solution of

self-dual Einstein gravity, rather than self-dual conformal gravity [81, 82]. Ssd is clearly

analogous to the holomorphic Chern-Simons theory

SsdYM =

∫
D3|4Z ∧ tr

(
A ∧ ∂A+

2

3
A ∧ [A,A]

)
(4.29)

that describes self-dual N = 4 super Yang-Mills in twistor space [12]. Just as (4.29) is the

string field theory of the perturbative open B-model, we can interpret (4.28) as the string

field theory of our twistor string, restricted to constant maps.

4.3 The conjugate Hodges matrix

When d > 0 we must also account for the picture changing operators Υ =

δ2(µ)〈ρ1, Z〉ρ2IZ
I . These will supply the conjugate Hodges matrix H∨.
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In the recipe (4.1) there are no insertions of µ or ν except for those in the picture

changing operators, which just suffice to absorb the µ zero-modes. Recall that at g = 0 a µ

zero-mode is an element of H0(Σ,K
1/2
Σ ⊗O(d)). Thus, at g = 0 we can expand each µa as

µa(σ) = (σdσ)1/2 Maα1···αd−1
σα1 · · ·σαd−1 + non-zero modes , (4.30)

where the Ms are constants. Following the discussion of the appendix, we find from (A.13)

that the δ-functions associated to freezing the odd moduli produce a factor〈
d∏
l=1

δ2(µ(σl))

〉
µν

=
1∏d

l=1(σldσl)

1

|σ1 · · ·σd|2
. (4.31)

The final factor is the Vandermonde determinant (1.9) appearing in the denominator of

det′(H∨) in (1.5), specialized to the case that we compute the first d × d minor of H∨.

Notice that when d = 1 the unique µ zero mode is µ(σ) = (σdσ)1/2 for each of the two

antighosts µ1 and µ2. Therefore, in the case of the MHV tree, the Vandermonde factor

in (4.31) is replaced by unity. This was the prescription taken in [32].

The numerator of the conjugate Hodges matrix comes from the associated supercur-

rents. These are 〈ρ, λ〉 ρ̃IZI = 〈ρ, λ〉(ρ̃α̇µα̇ + ρ̃αλα + ρ̃Aχ
A). Again, the ρ̃ρ-system has no

zero modes, so we must absorb all these insertions by contractions. Since 〈ρ, λ〉 cannot

contract with the α̇ or A components of ρ̃, the only term in the bracket that can contribute

is ρ̃αλα.25 Using the propagator

〈ρα(σl)ρ̃
β(σm)〉 = δ β

α

(σldσl)
1
2 (σmdσm)

1
2

(lm)
(4.32)

as in (4.16), performing all possible ρ–ρ̃ contractions yields〈
d∏
l=1

〈ρ, λ〉 ρ̃αλα(σl)

〉
=
∣∣H∨d×d

∣∣× d∏
l=1

(σldσl) , (4.33)

where
∣∣H∨d×d

∣∣ is the first d× d minor of the matrix with elements

H∨lm =
〈λ(σl), λ(σm)〉

(lm)
for l 6= m, and H∨ll = −〈λ(σl), dλ(σl)〉

(σldσl)
. (4.34)

To obtain this result, recall that contractions of worldsheet fermions lead to a determinant

of a matrix whose l-mth entry corresponds to a propagator from site l to m. The diagonal

elements arise as in (3.56) since we are using the form of picture changing operator without

normal ordering, so must allow contractions between ρ and ρ̃ at the same site — see the

discussion in section 3.4.2. Indeed, when d = 1 this is the only contribution.

The off-diagonal elements of H∨ in (4.34) are exactly the same as those in the conjugate

Hodges matrix (1.8). However, the diagonal elements in (1.8) and (4.34) appear to be

25Recall from section 4.2 that, with the degenerate infinity twistor of flat space, there could be no

contribution from cross-contractions of ρ̃s in Υ with any ρ in Ôh.
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different. Let us now show that (1.8) can be simplified so that it takes the form (4.34).26

To begin with, notice that 〈λ(σl), λ(σm)〉/(lm) is everywhere finite, since the potential pole

is cancelled by a zero in the numerator. Now consider the diagonal term27

(σldσl)×
∑
m 6=l

〈λ(σl), λ(σm)〉
(lm)

n−d−1∏
r=1

(arm)

(arl)

∏
k 6=l,m

(kl)

(km)
(4.35)

of (1.8), where we have included a factor of (σldσl). The only possible poles in σl come

from the factors (arl) involving the reference points. However, a key point in [32, 33] was

that (4.35) was completely independent of these points (see [33] for a contour integral proof

of this). Therefore (4.35) is actually holomorphic in σl. Furthermore, (4.35) is a scalar of

homogeneity zero in all other points. Since the first factor in the sum is everywhere finite,

the only possible poles in σm come from the final product and so occur when pm collides with

some other marked point pk, with k,m 6= l. But for any given k,m (say m = 2 and k = 3),

it is easy to check that the singularity cancels in the sum. Therefore (4.35) has no poles in

any of the σm (and hence none in any of the σk). But by Liouville’s theorem, a function

homogeneous of degree zero that is everywhere holomorphic on a compact Riemann surface

must be constant. Quite remarkably, we have learnt that (4.35) is completely independent

of all the marked points except for σi. Finally, since (4.35) is both a (1, 0)-form in σl of

homogeneity 2d and is linear in the infinity twistor 〈 , 〉, we see that

−
∑
m 6=l

〈λ(σl), λ(σm)〉
(lm)

n−d−1∏
r=1

(arl)

(arm)

∏
k 6=l,m

(kl)

(km)
= −〈λ(σl), dλ(σl)〉

(σldσl)
. (4.36)

This is exactly H∨ll in (4.34).

With this simplification understood, combining (4.31) with (4.33) shows that the pic-

ture changing operators give〈
d∏
l=1

Υ(pl)

〉
=

∣∣H∨d×d

∣∣
|σ1 · · ·σd|2

= det′(H∨) (4.37)

as the factors of (σldσl) cancel. This is exactly the contribution of the conjugate worldsheet

Hodges matrix in (1.5), again represented by the specific case that we compute the first

d× d minor (the leading principal minor).

We now address an issue that may have been puzzling some readers. In the above,

we implicitly chose to insert the picture changing operators at d of the same points as the

matter vertex operators. Although this was the minimal choice, was it really necessary?

In fact, as in usual superstring theory, the picture changing operators may be inserted at

completely arbitrary points on the worldsheet, and these locations are not integrated over.

Rather than repeat the standard abstract argument for this (for which see [54, 104]), we

26I am greatly indebted to Lionel Mason for pointing this fact out to me, using a slightly different

argument to the one given here.
27Recall that the sum here runs over all m ∈ {1, . . . ,n}, m 6= l. Likewise, the final product is for all

k ∈ {1, . . . ,n} except l and m.
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shall show directly that despite appearances, (4.37) is in fact completely independent of

the choice of d insertion points.

As a warm-up, it is easy to see this claim is certainly true when d = 1, for then

det(H∨) = H∨11 = −〈λ(σ1), dλ(σ1)〉/(σ1dσ1) and the Vandermonde determinant is unity.

Since Z(σ) = Aσ0 + Bσ1 at MHV level, this becomes simply −〈A,B〉 which is obviously

independent of the insertion point.

For the general case, note first that (4.37) is homogeneous of degree zero in each of the

σls. The minor of H∨ itself can have no poles — it is a polynomial in its entries (4.34), each

of which are everywhere finite. Thus the only possible singularities in (4.37) come from

the Vandermonde determinant |σ1 · · ·σd|2 in the denominator. This produces a second

order pole when any pair of insertion points collide. We shall show that this singularity is

cancelled by a second order zero from
∣∣H∨d×d

∣∣.
To see this, suppose p1 approaches p2 with their separation measured by any small

parameter ε that has a first-order zero when they collide. Then for m ≥ 3 we have

H∨1m → H∨2m +O(ε). Subtracting rows and columns, the numerator of (4.37) becomes

∣∣H∨d×d

∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

H∨11
∗ H∨12

∗ O(ε) · · · O(ε)

H∨12
∗ H∨22

〈2,3〉
(23) · · · 〈2,d〉

(2d)

O(ε) 〈2,3〉(23)

. . .

...
...

...

O(ε) 〈2,d〉(2d) · · · H∨dd

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(4.38)

as ε becomes small. Here, H∨12
∗ ≡ (H∨12 − H∨22). However, in section 3.4.2 H∨ii was defined

to be the limit of H∨ij as the two points collide, so H∨12
∗ = O(ε) automatically. Similarly,

H∨11
∗ ≡ H∨11 − 2H∨12 + H∨22 (4.39)

is by definition ε2 times the second derivative of H∨12 at σ1 = σ2, plus higher order cor-

rections. So H∨11
∗ = O(ε2). Therefore, as p1 → p2 we can extract a factor of ε from the

first row and a separate factor of ε from the first column in (4.38), showing that the d× d

minor of H∨ indeed has a second order zero in this limit. This cancels the second order

pole from the Vandermonde determinant in the denominator so that (4.37) remains finite.

But by the permutation symmetry of
∣∣H∨d×d

∣∣ and |σ1 · · ·σd|, (4.37) cannot have any poles

in any of the worldsheet coordinates. Again, a function of degree zero that has is glob-

ally holomorphic on a compact Riemann surface must be constant, so 〈Υ(σ1) · · ·Υ(σd)〉 is

completely independent of the insertion points, as expected for picture changing operators.

Above we obtained a representation of det′(H∨) in which we computed a minor involv-

ing the same rows and columns. Once again, we can obtain more general representations,

in which we compute arbitrary minors of H∨, by inserting picture changing operators for

the two flavours (µ1, µ2) of antighost at independent locations. That is, we replace

Υ(σ)→ Υ(σ, σ′) ≡ δ(µ1)〈ρ1, Z〉(σ) × δ(µ2)〈ρ2, Z〉(σ′) (4.40)
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to compute a minor of H∨ from rows and columns corresponding to the independently

chosen insertion points of δ(µ1) and δ(µ2). As before, since det′(H∨) is competely permu-

tation symmetric in — indeed, completely independent of — all insertion points, there is

no real difference between any of these cases, although a judicious choice may help simplify

some calculations.

The conjugate Hodges matrix appeared to be the most complicated ingredient in the

gravitational scattering matrix as presented in [32]. Quite remarkably, it has turned out

to be one of the simplest.

4.4 The tree-level S-matrix

Combining the correlation functions (4.25) & (4.37) with the remaining integral over the

zero modes of the Y Z system — i.e., the space of holomorphic maps Z : Σ → PT — and

dividing by vol(GL(2;C)) to account for the zero modes of the ghosts associated to the

worldsheet gauge theory, we have found that〈
d+2∏
i=1

∫
Σ
δ2(γ)hi(Z)

n∏
j=d+3

∫
X

d1|2zHj(Z)
d∏
k=1

Υk

〉

=

∫
d4(d+1)|8(d+1)Z

vol(GL(2;C))
det′(H) det′(H∨)

n∏
i=1

∫
Σ
hi(Z(σi))(σidσi) . (4.41)

Recalling the genus zero relation d = k+1 between the degree of the map and the NkMHV

level, this correlation function is exactly Mn,k as defined in (1.5). Summing over all d ≥ 0

and allowing all n ≥ 3 yields the complete tree-level S-matrix of N = 8 supergravity. The

ability to reproduce this formula for the complete classical S-matrix is a highly non-trivial

test of our claim that the worldsheet model proposed in section 3 does indeed describe

N = 8 supergravity.

5 Discussion

We have shown that the worldsheet theory defined by the action (3.32) and BRST opera-

tor (3.24) provides a twistor string description of N = 8 supergravity. The model depends

on a choice of infinity twistor, and different choices lead to N = 8 supergravity on flat or

curved space-times, with the R-symmetry gauged or ungauged. We showed that in the flat

space limit, g = 0 worldsheet correlation functions in this theory generate the complete

classical S-matrix of N = 8 supergravity, in the form discovered in [32] and proved to be

correct in [33]. By interpreting N = 8 supergravity as a twistor string, the present work

supplies the theoretical framework to explain why this form for gravitational scattering

amplitudes exists.

The ideas presented here suggest many avenues for further exploration. Let us conclude

by discussing some of these.

5.1 The SL(2;C) system

The most immediately important issue is to properly understand the rôle of the worldsheet

gauge theory. In the present paper, our primary concern was to reproduce the tree- level

– 36 –



J
H
E
P
0
4
(
2
0
2
0
)
0
4
7

S-matrix (1.5). At g = 0, the rank 2 bundle C2 ⊗ L is uniquely determined by degree

of L. Consequently, the holomorphic GL(2;C) bundle has no moduli at g = 0 and the

antighost M has no zero modes. We were able to account for the zero modes of N rather

naively, taking the quotient of the zero mode path integral by the obvious GL(2; C) action,

or ‘dividing by vol(GL(2))’.

At higher genus, holomorphic bundles do have a non-trivial moduli space even for a

fixed curve Σ, and this moduli space has been extensively investigated from many points

of view in both the mathematics [95–99] and physics literature [100–102]. In particular,

when g ≥ 2 the moduli space N of stable holomorphic SL(2;C) bundles has dimension

3g − 3, while that of stable GL(2;C) bundles has dimension (3g − 3) + g with the extra

g corresponding to the Picard variety of L. A dense open set of N may be identified

with the Teichmüller space of Σ. We have repeatedly mentioned that our twistor string

does not involve worldsheet gravity and so its path integral does not automatically include

an integral over the moduli space of Riemann surfaces. Nonetheless, it does know about

Teichmüller space via the moduli space of the rank 2 gauge bundle associated to D. In

fact, there is even a natural isomorphism between H1(Σ, TΣ) and H1(N, TN) (see e.g. [95,

98, 102]), so that deformations of the complex structure of Σ and of the SL(2) bundle are

to some extent interchangeable. The mechanism by which this is realized in the current

context, and the implications for the twistor string, cry out for a better understanding.

A closely related issue is the apparent absence of vertex operators inserted at a fixed

point p ∈ X, rather than on a fixed section Σ ↪→ X. A proper understanding of the

SL(2;C) system should include an operator which creates a puncture on Σ to which

our vertex operator is attached. Including such operators should amount to allowing

(parabolically stable [105]) holomorphic SL(2;C) bundles that have simple poles at pi ∈ Σ,

such that the monodromy of the associated flat connection is in a fixed conjugacy class

G ⊂ SL(2;C). With n such punctures, the moduli space of such meromorphic bundles has

dimension 3g− 3 + n.

As an obvious application, vertex operators associated to punctures on X are likely to

be important if one wishes to have a worldsheet description of factorization [55, 78]. The

formula (4) for the gravitational scattering amplitudes was shown to obey the expected

factorization properties in [33]. However, the derivation given there was rather involved,

because by necessity it dealt with the path integral after integrating out everything but

the Z zero-modes. By working directly with the vertex operators, one should be able to

provide a simpler proof (following the general pattern in string theory), as the terms that

may become singular in the factorization limit are isolated more cleanly.

5.2 Higher genus

The discussion of section 5.1 has an immediate corollary that perhaps bears some relation

to the debate about whether N = 8 supergravity could be perturbatively finite [106–112].

Usually, string theory is UV finite because the worldsheet theory is modular invariant. We

do not integrate over Teichmüller space, but rather over its quotient by the mapping class

group. This renders harmless any potential divergence as Im(τ)→ 0, and this potentially

dangerous region becomes (real) codimension 2 rather than codimension 1. In the theory
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studied here though, worldsheet gravity is replaced by a worldsheet gauge theory. As

mentioned above, we expect the path integral to involve an integral over the moduli space

of stable SL(2;C) bundles, not the moduli space of curves. Although many aspects of the

gauge theory (such as the symplectic form) are invariant under the mapping class group, it

is not clear that we should really expect to take the quotient by modular transformations.

If not, then the potentially dangerous region Im(τ) → 0 is still present. Of course, it is

perfectly possible that the integrand still happens to have no singularity here — and indeed

we should expect this at low genus — but this requires calculation.28 We are unable to

offer the usual string theoretic guarantee that there is simply no place for UV divergences

to arise.

Whatever the fate of N = 8 supergravity at higher loops, the current consensus is

that we do not expect any UV divergences when g < 7 [106–112]. What prospect does

the twistor string have for computing these ‘intermediate’ loop amplitudes? Hopefully, the

above discussion has made it clear that we cannot give a proper answer to this question

without first understanding the rôle of the worldsheet gauge theory. Nevertheless it is

clear that many properties of these amplitudes are correctly reflected by the worldsheet

theory. In particular, the zero modes of the βγ- and µν-systems will yield higher loop

Hodges matrices that have the correct dependence on the infinity twistors [ , ] and 〈 , 〉
required by factorization (at least in the generic case with d > 2 − 2g; in general we

would need to work with n ‘fixed’ vertex operators and an appropriate number of picture

changing operators for the βγ-system). The factors of (ij) appearing in these matrices

at g = 0 naturally generalize to the appropriate Szegö kernels at higher genus, while the

Vandermonde determinants coming from the correlation function of insertions fixing the

zero-modes will involve a basis of holomorphic sections of L over a genus g curve. All these

ingredients can be written in terms of (higher-order) theta functions. See [113] for a related

discussion in the context of the original twistor string models.

Even if successful, it is doubtful that the twistor string would reproduce even one-loop

amplitudes in a form that permits direct comparison with known results in the litera-

ture [28] (though some of the expressions found in [114–116] may be closer). A direct

assault on the resulting integrals is unlikely to be successful; the integrals over the mod-

uli space of higher degree twistor curves is challenging even at g = 0 [117]. The most

promising approach is probably to check that the resulting expressions have all the correct

factorization properties.

5.3 Boundary correlation functions in AdS4

In this paper, we concentrated on taking the flat space limit so as to extract gravitational

scattering amplitudes and make contact with the known literature. However, the theory is

equally capable of describing supergravity or gauged supergravity on AdS backgrounds —

we simply keep the infinity twistor or infinity supertwistor non-degenerate.

28Another intriguing but very speculative idea would be that the theory allows us to take the quotient

by a g-dependent congruence subgroup of the mapping class group that becomes trivial when g is greater

than some minimum value g0, signalling the onset of UV divergences.
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On anti de Sitter space, the natural observables are not scattering amplitudes but

rather boundary correlation functions. These are obtained by choosing the external wave-

functions to represent bulk-to-boundary propagators, that is, solutions of the free equations

of motion on AdS, with a singularity on the conformal boundary. Such wavefunctions have

a very simple description in twistor space, known in the twistor literature as ‘elementary

states’ (see e.g. [118]). For example, consider the elementary state

φ(Z) =
1

A·Z B·Z
∈ H1(PT,O(−2)) (5.1)

representing a scalar field in twistor space. If the line AB is chosen to obey 〈A,B〉 = 0,

then it lies at infinity. In particular, if I is the non-degenerate infinity twistor associated

to AdS4, then this twistor line represents a point y on the thee dimensional conformal

boundary. Using the standard incidence relation µα̇ = xαα̇λα, the Penrose transform

of (5.1) appropriate to AdS4 is

K(x, y) =

∮
〈Z, dZ〉

A·Z B·Z
=

∮
(1 + Λx2)〈λdλ〉

(Aα̇xα̇α + Aα)λα (Bβ̇x
β̇β + Bβ)λβ

∝ (1 + Λx2)

(x− y)2

(5.2)

where we used the non-degenerate infinity twistor in the measure 〈Z, dZ〉. This is the bulk

to boundary propagator for a scalar field, written in the coordinates where

ds2 =
dxµdxµ

(1 + Λx2)2
(5.3)

is the AdS4 metric and where (x− y)2 is computed using the flat metric.

Using states such as (5.1), it should be possible to use the formalism of this paper to

compute arbitrary n-point boundary correlators, again in the form of an integral over the

moduli space of degree d curves in CP3, at least at g = 0. One obvious feature is that the

(n−d−2)× (n−d−2) worldsheet Hodges’ matrix and the d×d conjugate Hodges’ matrix

will combine into a single (n− 2)× (n− 2) worldsheet matrix, with the off-block-diagonal

terms being proportional to the cosmological constant. These terms arise because with

a non-degenerate infinity twistor, both the ρρ- and Y Z-systems have cross-contractions

between the Oh vertex operators representing the external states and the picture changing

operators Υ. Indeed, one could anticipate this happening. The generalization of Hodges’

MHV amplitude to the worldsheet Hodges’ matrices was deduced [32] starting from the

observation that factorization requires the n-particle Nd−1MHV flat space tree amplitude

to contain n− d− 2 powers of [ , ] and d powers of 〈 , 〉 when written in twistor space. But

with a non-degenerate infinity twistor these two objects are really equivalent.

In the twistor string, as in usual string theory, factorization of scattering amplitudes is

closely related to collision of vertex operators on the worldsheet [33, 36, 39]. Factorization

of boundary correlators in AdS has been investigated recently in [119–122], where it is

shown that (tree-level) Witten diagrams in AdS obey a natural generalization of BCFW
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recursion. An important observation related to this is that the structure

M(Z1, . . . , Zn) =
∑∫

D3|8Z ∧ dt

t
∧ML(Z1 + tZn, . . . , Z) ∧MR(Z, . . . , Zn) (5.4)

of the BCFW recursion relation in twistor space [37, 38] is completely conformally invariant

when expressed in terms of external ‘twistor eigenstates’

hi(Z) = δ
3|8

(Z,Zi) ≡
∫

ds

s3
∧ δ4|8

(Zi + sZ) . (5.5)

In particular, the infinity twistor arises only via the three-point functions that seed the

recursion relation. We can obtain AdS boundary correlators by integrating (5.4) against

appropriate boundary elementary states hi(Zi). Thus, in twistor space, the BCFW recur-

sion for Witten diagrams in AdS is exactly the same as BCFW recursion for flat space

amplitudes. Only the translation back to momentum space (associated to the boundary

∂AdS) and the three-point functions are different. It would be fascinating to relate these

observations to the structures of Witten diagrams found in [119–122]. Of course we are

limited to the case that the bulk AdS space is four-dimensional.

Finally, via analytic continuation to dS, boundary correlators of gravitational modes on

AdS may even have cosmological applications [123]. The ideas presented here may provide

a way to extend the calculations of [123] to higher-point functions. The (n > 3)-point

gravitational wave power spectrum is admittedly a rather esoteric cosmological observable!

5.4 Other issues

We briefly mention various other issues.

Firstly, the theory we have presented is purely chiral really provides a top holomorphic

form on the moduli space. It is this ‘scattering form’ that was found in [32]. To recover

the actual scattering amplitudes we must still pick a 4d-dimensional29 real integration

cycle on which to integrate this form. When d = 1 and g = 0, the moduli space is

simply complexified space-time and the appropriate integration cycle is just a copy of

real Minkowski space. For higher degrees the appropriate contour is less easy to define.

One possibility, suggested in [12] and hardwired into Berkovits’ model [56], is to pick real

structures30 τ1 on Σ and τ2 on CP3 and ask that the map is equivariant in the sense that

Z ◦ τ1 = τ2 ◦ Z. In ultrahyperbolic space-time signature, these real structures fix an S1

equator on Σ at g = 0 and an RP3 real slice of twistor space. However, some care is needed

in the interpretation of wavefunctions on real twistor space (see e.g. [37] for a discussion).

Other integration cycles of interest include those that compute factorization channels of

amplitudes, ultimately yielding ‘leading singularities’. It would be good to know whether

the twistor string naturally picks a preferred integration cycle for us, or whether this is

additional data that must be specified.

29This is in the case that the wavefunctions are represented in terms of Dolbeault cohomology classes

H(0,1)(PT,O(2)). A description in terms of sheaf cohomology would require us to pick a (4d + n)-

dimensional cycle.
30Recall that a real structure is an antiholormorphic involution squaring to the identity.

– 40 –



J
H
E
P
0
4
(
2
0
2
0
)
0
4
7

In this paper, although we identified the relevant transformations of X that were being

gauged, we did not attempt to write down a classical action theory that realized this gauge

symmetry off-shell. Instead, we moved right away to a gauge fixed model together with

its ghosts and BRST symmetry. It would be interesting to construct the unfixed model,

particularly is this would likely shed further light on the rôle of the GL(2)-system. Such a

model would appear to involve 2 charged gravitinos and 2 charged gauginos in addition to

the GL(2) gauge fields.

Next, the vertex operators Oh and Ôh that we obtained are natural analogues of

Neveu-Schwarz sector vertex operators in the superstring. It is important to know what,

if anything, the Ramond sector could be in the present context. Unlike conformal gravity

modes in the original twistor string, we would not expect Ramond sector operators to be

generated at g = 0 if they are not present (pairwise) in the external states. If they exist,

their rôle at g ≥ 1 is clearly important to understand.

We saw in section 4.2.1 that, when restricted to constant maps, the string field theory

of our model is the twistor action for self-dual N = 8 supergravity found by [85]. The string

field theory of the full model should thus include a further term representing worldsheet

instanton contributions. Presumably, only the degree 1 instantons need be included, as

is the case in usual string theory [124] and as in the analogous twistor action for N = 4

super Yang-Mills [3]. In our context, these would represent off-shell gravitational MHV

vertices. This strongly suggests that despite the difficulties [22] with Risager recursion for

gravity [20, 21] an MHV formalism for gravity exists. It would clearly be of great interest

to find a twistor action for non self-dual gravity. The deformed worldsheet action (3.51)

perhaps provides a good starting-point. See [24] for an earlier attempt to construct a

twistor action for gravity. An important step in the right direction has recently been

taken in [40].

Last but not least, it would be very interesting to revisit the potential existence of a

twistor string for pure N = 4 super Yang-Mills in the light of this paper. One approach

might be to try to understand the meaning of the duality between colour and kinemat-

ics [125] in a twistor framework. This duality has certainly lead to great progress in the

computation of multi-loop gravitational amplitudes in momentum space, typically with

n = 4. The similarity between the twistor action (4.28) for self-dual gravity and (4.29) for

self-dual Yang-Mills is surely no coincidence. Yang-Mills amplitudes are completely per-

mutation symmetric in the external states provided we include their colour factor. Perhaps

they also admit a Hodges matrix form.
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A Some properties of algebraic βγ-systems

In this appendix we will compute some correlation functions of operators in βγ systems

that are ingredients in computing the twistor string worldsheet correlator (4.1). Nothing in
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this appendix is new — all (and much more besides) may be found in [126] and in section

10 of [55], which we follow closely.

In constructing the twistor string theory, we imposed no reality conditions on the

worldsheet fields (see the discussion in section 5.4). Thus the path integral over these fields

should be understood as a formal algebraic operation. This is exactly the usual case for

Berezin integration of fermionic variables, and so the discussion of [55] proceeds by relating

integrals over bosonic fields to integrals over fermionic fields that are easier to understand.

Thus we consider the path integral over anticommuting fields that we call b and c with

action

Sbc =
1

2π

∫
Σ
b ∂c . (A.1)

The result of this path integral depends on the quantum numbers of these fields. Without

loss of generality, we can assume that

c ∈ Ω0(Σ, L) and b ∈ Ω0(Σ,KΣ ⊗ L−1) (A.2)

for some line bundle L, and we assume the ∂-operator in the action in (A.1) acts appropri-

ately on sections of L. Then zero modes of c are globally holomorphic sections of L while

zero modes of b are globally holomorphic sections of KΣ ⊗ L−1. By Serre duality, this is

H1(Σ, L). In the case that L is a spin bundle, so that L2 = KΣ, (generically) neither field

has zero modes and the bc path integral is∫
D(b, c) exp

(
− 1

2π

∫
Σ
b ∂c

)
= det(∂

K
1/2
Σ

) , (A.3)

or in other words the determinant of the Dirac operator on Σ. As explained in [127, 128]

this may be written in terms of the Riemann theta functions associated to Σ and the choice

of spin structure. When g = 0, we may take it to be a constant.

For any other choice of L, at least one of b or c will have zero modes. By the usual

rule
∫

dθ · 1 = 0 of Berezin integration, the path integral (A.3) vanishes. To obtain a

non-vanishing result, we must insert exactly enough fields to absorb the zero modes. For

simplicity, let us suppose that c has some number m of zero modes, so that we may expand

it as

c(z) =

m∑
i=1

ciYi(z) + non zero-modes (A.4)

where ci are anticommuting constants and the Yi form a basis of H0(Σ, L) (here written in

terms of a local coordinate z ∈ U ⊂ Σ). With m insertions of c, the path integral becomes∫
D(b, c) c(z1) · · · c(zm) exp

(
− 1

2π

∫
Σ
b ∂c

)
= det′(∂L)×

∫ m∏
i=1

dci c0(z1) · · · c0(zm) (A.5)

where c0(z) =
∑

i ciYi(z), and where the determinant is provided by the path integral

over the non-zero modes of the bc-system. Since the c’s anticommute, (A.5) must be

antisymmetric under the exchange of any pair of insertion points zi and zj . It must also

be holomorphic in all of these insertion points. Thus we find∫
D(b, c) c(z1) · · · c(zm) exp

(
− 1

2π

∫
Σ
b ∂c

)
= det′(∂L)× det(Y) , (A.6)
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where Y is the m ×m matrix with entries Yij = Yi(zj). Equation (A.6) is the standard

result for fermions.

In Berezin integration, if c(z) is fermionic then δ(c(z)) = c(z). In addition, because

eτ = 1 + τ if τ2 = 0, we can represent δ(c(z)) in integral form as

δ(c(z)) =

∫
dτ exp (τc(z)) (A.7)

where τ is an auxiliary anticommuting variable. This is clearly analogous to the usual

integral representation of the Dirac δ-function. Following [55] we thus introduce m =

h0(Σ, L) such constant anticommuting variables (τ1, . . . , τm) and let b̂ indicate the collection

of fields (b(z); τ1, . . . , τm). We also introduce the extended action

Ŝ
b̂c

=
1

2π

∫
Σ
b ∂c −

m∑
i=1

τic(zi) (A.8)

and the extended path integral measure

D(̂b, c) = D(b, c)n.z.m dc1 · · · dcm dτ1 · · · dτm , (A.9)

where D(b, c)n.z.m. is the measure on the infinite dimensional space of non zero-modes.

Combining (A.7)–(A.9) we see that the path integral (A.6) may be rewritten as

det′(∂L)× det(Y) =

∫
D(b, c) e−Sbc

m∏
i=1

δ(c(zi)) =

∫
D(̂b, c) e−Ŝ

b̂c (A.10)

in terms of the extended set of fields and action. The virtue of thinking about (A.6) in

this way is that we have changed a path integral with insertions into a simple path integral

over a Gaussian action.

It is now straightforward to understand the bosonic case that is actually needed in

section 4. Suppose β and γ are fields on Σ with exactly the same quantum numbers as

b and c, except that they are commuting fields. In the case that L2 = KΣ, in contrast

to (A.3) we have ∫
D(β, γ) exp

(
− 1

2π

∫
Σ
β ∂γ

)
=

1

det(∂L)
(A.11)

giving the inverse of the determinant, as is familiar from Gaussian integration.31 When

L is a more general line bundle such that γ has zero modes, the path integral diverges

(or, without a reality condition, is ill-defined) because of the integration over these zero

modes. They can be fixed by inserting δ-function operators, and again we represent these

in integral form as

δ(γ(z)) =

∫
dt exp (tγ(z)) . (A.12)

31With no reality condition on the βγ-system, this is really a definition of what we mean by the Gaussian

path integral. See sections 3 & 10 of [55].
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Constructing an extended action and path integral measure as before, but now with com-

muting variables, we again convert multiple insertions of such δ-function operators into a

Gaussian integral. We thus find∫
D(β, γ) exp

(
− 1

2π

∫
Σ
β ∂γ

) m∏
i=1

δ(γ(zi)) =
1

det′(∂L) det(Y)
(A.13)

where Y is the same matrix of zero modes as before. Notice that with our formal algebraic

treatment, there is no modulus sign on the determinants on the right hand side. Notice

also that if γ(z) represents a section of L, then δ(γ(z)) should transform as a section of

L−1. Both sides of (A.13) transform as sections of ⊗iL−1|zi .
In the main text, we will be interested in the cases L = K

−1/2
Σ ⊗L and L = K

1/2
Σ ⊗L,

where L is a line bundle of degree d. In particular, when g = 0, L is uniquely determined

to be OCP1(d). The appropriate zero modes are then

Yi(σ) =
σα1 · · ·σαd+1

(σdσ)1/2
for K

−1/2
Σ ⊗ L

Yi(σ) = σα1 · · ·σαd−1 (σdσ)1/2 for K
+1/2
Σ ⊗ L

(A.14)

where i runs over all possible choices of the indices α1, . . . , αd+1 or α1, . . . , αd−1, respec-

tively. Inserting these zero modes into Y in (A.13) gives equation (4.13) for the zero modes

of each flavour of the worldsheet fields γaa, and (4.31) for the zero modes of each copy of

the worldsheet field µa. Recall that det′(∂L) is a constant at g = 0.

Far more information about correlation functions in algebraic βγ systems can be

found in [55].

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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