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1 Introduction

Chern-Simons theory and the dynamics of vortices are both intimately connected to the

Quantum Hall Effect [1]. The Chern-Simons interaction has the effect of attaching a mag-

netic flux to a charged particle, and endowing magnetic flux carrying vortices with electric

charge. Magnetic flux attachment changes the statistics of particles, so that fermions can

be described as bosons with a Chern-Simons interaction. In particular, the effective the-

ory of the fractional quantum hall state is a complex scalar interacting with an Abelian

Chern-Simons gauge field [1, 2]. Vortex solitons in the relativistic Abelian-Higgs model

in 2+1 dimensions in the presence of a Chern-Simons action (with or without a Maxwell

term) have been extensively studied [3–8].

In this note we are interested in vortex solitons appearing in relativistic scalar field

theory coupled to an Abelian Chern-Simons gauge field when a chemical potential for par-

ticle number is turned on. Our motivation is to investigate vortex configurations whose

presence is triggered purely by finite density effects in Chern-Simons-matter theories. The

Abelian Chern-Simons-scalar system offers the simplest such setting. Eventually, we would

like to understand finite density vortex solutions in SU(N) and U(N) Chern-Simons-scalar

theories where finite chemical potential results in condensation of gauge fields, potentially
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breaking rotational invariance [9].1 A broader aim for exploring different aspects of finite

density physics in Chern-Simons-matter theories is to understand the implications of the as-

sociated web [12–14] of particle-vortex and Bose-Fermi dualities in 2+1 dimensions [15–23].

A chemical potential µ for a gauged U(1) symmetry can only be turned on provided

a source term representing a classical (frozen out) uniform background charge density is

simultaneously introduced. In Chern-Simons theory, such a source can either be viewed as

a distribution of heavy charges or as a uniform magnetic field. We focus on the massless

scalar field with purely power law interaction potential

U =
g2s
s
|Φ|2s , s = 2, 3, . . . , (1.1)

with no symmetry breaking minima in vacuum, and solve the equations of motion nu-

merically with non-zero µ. Chern-Simons vortices with symmetry breaking potentials in

vacuum have vanishing magnetic fields in the interior and on the outside, with the flux

being supported at the edges. The finite µ vortex solutions are qualitatively different as

the magnetic flux acquires support within the vortex interior, and depending on the sign

of the quantized flux (= 2πn), there are two qualitatively distinct types of solutions: (i)

Those with negative flux, given our choice of conventions (µ > 0 and Chern-Simons level

k > 0), where the majority of the flux resides in the vortex interior, and (ii) positive flux

solutions wherein most of the flux sits at the edge of the vortex. The qualitatively different

behaviour of configurations with winding numbers n < 0 and n > 0 is expected due to the

breaking of charge conjugation symmetry when µ 6= 0. Positive flux solutions are ener-

getically disfavoured, or more precisely the grand potential for the n-vortex with n > 0 is

parametrically larger, as a function of n, than that for the n < 0 vortex.

The negative flux solutions are the most interesting. We find these numerically for a

wide range of winding numbers, 1 ≤ |n| . 105. Supported by simple analytical arguments,

we confirm that for large |n|, negative flux vortices for power law potentials (1.1) with

general s exhibit linear scaling of the grand potential with |n|:

E(|n| � 1) =
s− 1

2s
kµ|n| . (1.2)

For a specific value of the dimensionless coupling, the solutions are “BPS” or

marginally bound:

E(|n|)
|n|E(1)

∣∣∣∣
α=s/(s−1)

→ 1 , α ≡ k

4π

(
g2s
µ3−s

)1/(s−1)
. (1.3)

This critical value of α works surprisingly well even for low n vortices. Below this value

individual vortices experience attractive interactions, and repulsive interactions above it.

At the critical coupling, we find numerically that the vortex profiles closely (but not exactly)

solve the first order Bogomolny’i type equation. Finally, the radius of the n-vortex in all

cases is given by

Rn||n|�1 =
√

2α|n|µ−1 , (1.4)

1An analogous situation in 3+1 dimensional Yang-Mills-Higgs system with SU(2) × U(1) gauge group

was encountered in [10] where the finite density ground state breaks spatial isotropy due to condensation

of vector fields. Vortex solutions in the condensed phase were subsequently found in [11].
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implying that the n-vortex behaves like a uniform incompressible droplet within which

individual vortices are as closely packed as possible. The physical properties we have

described closely resemble the non-relativistic supersymmetric Chern-Simons theory intro-

duced in [24]. The scalings with n are in line with the “MIT bag” model for solitons with

large winding number, advocated in [25–27].

The paper is organised as follows: in sections 2 and 3, we review the standard vortex

equations of motion, but in the presence of chemical potential. We also point out some

features of the finite density spectrum and qualitative aspects of vortex profiles. In section

4, we discuss the energy functional or the grand potential, and argue its expected scaling

for large winding numbers. In section 5, we present several results of the numerical analysis

of the vortex equations of motion for different choices of potentials and parameters.

2 The Abelian theory at finite chemical potential

Our starting point is the Abelian Chern-Simons theory at level k coupled to a relativistic

scalar field in 2+1 dimensions. As is customary, we may regard this system as the in-

frared limit of the Abelian-Higgs model with a Maxwell-Chern-Simons gauge field, since

the Maxwell action is irrelevant compared to the Chern-Simons term. We want to consider

the theory in the grand canonical ensemble with a chemical potential for the U(1) charge.

Turning on a chemical potential for a local symmetry is a subtle issue since the Gauss

constraint requires the total charge in the system to vanish. This putative obstacle can be

overcome by introducing a uniform external classical charge density which can be viewed

as a distribution of heavy charged species whose fluctuations are frozen out [28, 29]. In

the presence of a Chern-Simons density this can also conveniently be viewed as a constant

background magnetic field.

The U(1) chemical potential is introduced as usual via a constant temporal background

gauge field. Picking a (−+ +) metric signature, the Lagrangian density for the system is,

L = Lmatter + LCS − J0A0 , (2.1)

Lmatter = DνΦ†DνΦ + U(Φ†Φ) , (2.2)

LCS =
k

4π
ενλσAν∂λAσ . (2.3)

The gauge-covariant derivatives on the complex scalar Φ include a background value µ for

A0, which is identified as a chemical potential for the U(1) charge:

Dν ≡ ∂ν − iAν − iµ δν,0 , (2.4)

and J0 is the background classical charge density. We assume a simple power law potential:

U(Φ†Φ) =
g2s
s
|Φ|2s , s ≥ 2 . (2.5)

The cases of quartic (s = 2) and sextic (s = 3) potentials are special since they correspond

to relevant and marginal interactions. Our main interest is in monotonic potentials with a
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global minimum at Φ = 0 (in the absence of a chemical potential), so that any stable vortex

configurations only appear at finite density i.e. they are driven by scalar condensation in

the presence of the chemical potential.

The quartic potential is of general interest because when µ vanishes, the theory flows

to the 2+1 dimensional Wilson-Fisher fixed point coupled to a Chern-Simons gauge field.

The critical scalar plays an important role in particle-vortex and the related web of Bose-

Fermi dualities in 2+1 dimensions [22]. Semiclassical solutions are far removed from this

critical point and only reliable when µ/g4 � 1.

The Lagrangian density expanded to show the µ-dependent terms is,

L = ∂νΦ†∂νΦ + iAν

(
Φ†∂νΦ− ∂νΦ†Φ

)
+ AνA

ν |Φ|2 +
g2s
s
|Φ|2s − µ2 |Φ|2

+iµ
(

Φ†∂0Φ− ∂0Φ†Φ
)
− 2µA0 |Φ|2 +

k

4π
ενλσAν∂λAσ − J0A0 . (2.6)

The background charge density J0 is fixed by requiring that the expectation values of A0

and the magnetic field vanish in the ground state:

〈A0〉 = 0 =⇒ J0 = −2µ〈|Φ|〉2 , 〈|Φ|〉 = v =

(
µ2

g2s

) 1
2s−2

. (2.7)

The ground state conditions are also solved by a vanishing source J0 = 0, and an A0 expec-

tation value set by the chemical potential. This latter solution is equivalent to absorbing the

chemical potential via a shift in the gauge field leaving the partition function unchanged.

This possibility is excluded by imposing a vanishing A0 at infinity as a boundary condition.

The classical source J0 can also be interpreted as a background magnetic field. Defining

B = ε0ij∂iAj , (2.8)

and assuming a static configuration, the equation of motion for A0 yields,

J0 −
k

2π
〈B〉 + 2 (µ + 〈A0〉) v2 = 0 . (2.9)

Therefore, even if the source J0 were not explicitly introduced, it is naturally induced

through a non-zero background value for B. We will treat this background value as distinct

from the magnetic field carried by the vortex.

2.1 Perturbative spectrum

The vacuum expectation value for Φ Higgses the gauge group and since Chern-Simons

gauge fields do not propagate, the physical perturbative spectrum consists of two gapped

excitations. The dispersion relations can be found by expanding the gauge-fixed action2 to

quadratic order in fluctuations and identifying the gauge-invariant zeros of the fluctuation

determinant. The dispersion relations for the two physical modes can be expressed in terms

of dimensionless frequency and momentum and a single dimensionless coupling (assuming

k > 0, µ > 0)

α ≡ k µ

4πv2
, ω̃ ≡ ω/µ , p̃ ≡ p/µ . (2.10)

2We use an Rξ gauge fixing term of the form Lgf =
(
∂µA

µ − ξ〈Φ〉δΦ† + ξδΦ〈Φ〉†
)2
/(2ξ).
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Figure 1. The dispersion relations of the two branches of perturbative fluctuations for the quartic

potential (s = 2), with different values of the dimensionless coupling α.

We find,

ω̃± =

√√√√
p̃2 + (s+ 1) +

1

2α2
±

√
4p̃2 +

(
s+ 1− 1

2α2

)2

. (2.11)

Both modes are gapped at p̃ = 0.

ω̃2
+ ' 2(s+ 1) + p̃2 2α2(s+ 3)− 1

2α2(s+ 1)− 1
. . . , (2.12)

ω̃2
− '

1

α2
+ p̃2 2α2(s− 1)− 1

2α2(s+ 1)− 1
. . . , |p̃| � 1 .

When the Chern-Simons level is taken to be large the mode ω̃− is the lighter of the two

and becomes the phonon in the strict k → ∞ limit. For the classically marginal sextic

potential with s = 3, this limit yields ω̃2
− ' p̃2/2 which implies a speed of sound cs = 1/

√
2,

expected from scale invariance in 2+1 dimensions. As the level k is lowered, the gaps of

the two branches coincide when α = 1/
√

2(s+ 1), and below this value of α, the roots

exchange roles. Depending on the value of α, the sign of ω̃′′±(0) can be negative which

implies a minimum in the dispersion relation away from p̃ = 0, also called a magneto-roton

minimum. One of the two branches will exhibit a magneto-roton minimum for values of α

in the range:
1√

2(s+ 3)
< α <

1√
2(s− 1)

. (2.13)

3 Vortex equations

We want to solve the equations of motion in polar coordinates. Therefore, allowing for a

non-trivial spatial metric h, the static field equations are:

1√
h
∂j

(√
h ∂jΦ

)
− i√

h
∂j

(√
hAjΦ

)
+ (µ+A0)

2Φ− iAj∂jΦ−AjAjΦ = g2s|Φ|2s−2Φ

k

2π
εσνρ∂νAρ = −

√
h
[
i
(
∂σΦΦ† − Φ∂σΦ†

)
+ 2Aσ |Φ|2 − δ0σ

(
2µ |Φ|2 + J0

)]
. (3.1)
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As usual, a static vortex configuration carrying n units of magnetic flux is described by

the rotationally symmetric ansatz in polar coordinates:

A0 = A0(r) , Ar = 0, Aθ = Aθ(r), Φ = f(r)einθ . (3.2)

This ansatz leads to the following system of equations:3

f ′′ +
f ′

r
− 1

r2
(Aθ − n)2 f + (A0 + µ)2f − g2sf2s−1 = 0 (3.3)

−f
2

r
(Aθ − n) +

k

4π
A′0 = 0 (3.4)

−f2A0 − µf2 +
k

4π

(
A′θ
r

)
=

J0
2
, J0 = − 2µ v2 . (3.5)

We are looking for a configuration which asymptotes at infinity to the ground state with

the fixed non-vanishing background value for J0, obeying the boundary conditions:

Aθ(r)
r→∞−−−→ n , A0(r)

r→∞−−−→ 0, f(r)
r→∞−−−→ v , f(0) = 0 . (3.6)

With the rotationally symmetric ansatz above, the magnetic field B only depends on r,

and the configuration carries n units of flux:

B(r) =
A′θ(r)

r
, ΦB = lim

r→∞

∫ 2π

0
Aθ(r) dθ = 2πn , (3.7)

assuming Aθ vanishes at the origin.

3.1 Qualitative features

The equation of motion (3.5) for A0, which implements the Gauss constraint, fixes the

value of the magnetic field at the core of the vortex where the scalar field vanishes. Thus,

B(0) =
4π

k
J0 = −µ

2

α
, (3.8)

where α is the effective coupling defined in (2.10). For a given winding number n, the

value of α completely characterizes the vortex solution when expressed in terms of rescaled

dimensionless variables. The effect of the Gauss constraint is to induce a magnetic field

B inside the vortex core to precisely cancel the background source J0 which could also be

viewed as a uniform background magnetic field. Outside the vortex B vanishes,

lim
r→∞

B(r) = 0 . (3.9)

The sign of B(0) plays an important role in determining the properties of the vortex

solutions. Without loss of generality, we assume that the chemical potential µ and the

Chern-Simons level k are both positive:

µ > 0 k > 0 . (3.10)

With this choice B(0) is negative definite, independently of the sign of the magnetic flux

2πn. However, this means that solutions with positive and negative flux will be qualitatively

different. This breaking of charge conjugation is precisely what we expect in the presence

of the U(1) chemical potential.

3We omit the equation of motion for Ar which is automatically satisfied.
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Negative flux n < 0: assuming that the magnitude of the magnetic field |B(r)| increases

monotonically towards the vortex core, and given that the value of the core magnetic field

is independent of |n| (the number of units of flux) the vortex core size should increase with

|n| for negative n. Taking B to be uniform within the core for large enough |n|, we can

estimate the radius Rn of a vortex solution with |n| � 1:

|B(0)|πR2
n ≈ 2π|n| =⇒ Rn ≈

√
2α|n|
µ

, |n| � 1 . (3.11)

The assumption of uniformity of the vortex core region is self-consistently justified by first

noting that for small r,

f(r) = c0 r
|n| + . . . , c0 > 0 . (3.12)

This is obtained by neglecting Aθ in comparison to n, and ignoring higher order terms for

small r in eq. (3.3). Therefore, for large flux, the scalar profile is extremely flat near r = 0.

With a uniform B field in the vortex interior, the vector potential is determined as

Aθ ≈ −
1

2
|B(0)|r2 , (3.13)

and this approximation breaks down precisely when r ≈ Rn (see eq. (3.11)) . We see

numerically that the scalar field profile, inside the vortex, closely follows the solution to

the first order equation:

f ′(r) ≈ 1

r

(
|n| − 1

2
|B(0)|r2

)
f(r) (3.14)

=⇒ f(r) ≈ c0r
|n| e−|B(0)|r2/4 , r < Rn .

This feature of the solution is depicted in figure 6.

The equation of motion (3.4) for Aθ determines the radial electric field E(r) = A′0(r).

The electrostatic potential A0 remains constant inside the core region since f(r) is van-

ishingly small and therefore the electric field is also vanishingly small. Outside the core

region the electric and magnetic fields decay exponentially to zero. Linearizing about the

asymptotic solution at large r we find,

δf ≡ f(r)− v , δAθ = Aθ − n , (3.15)

δAθ =
α

µ
rA′0 ,

δf ′′ +
δf ′

r
− (2s− 2)µ2δf = −2A0µv ,

A′′0 +
A′0
r
− µ2

α2
A0 =

2µ3

vα2
δf .

The solutions to the homogeneous equations for the fluctuations δf and A0 are the Bessel

functions K0

(√
2s− 2µr

)
and K0 (µr/α) respectively, and these control the exponential

decay of fluctuations at large r,

K0

(√
2s− 2µr

) ∣∣
µr→∞ ∼

e−
√
2s−2µr
√
µr

, K0 (µr/α)
∣∣
µr→∞ ∼

e−µr/α
√
µr

. (3.16)
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The two exponents are related to masses of the gapped perturbative excitations around the

Higgsed ground state. Since Aθ(r) ' n outside the core region, according to eq. (3.4) the

electric field is only significant in a strip along the edge of the vortex core. Numerically,

we find that the width of this strip does not scale with |n|, so that in the limit of large |n|,
the contribution from the transition region to the vortex energy is subleading in |n|.

We will see below that these qualitative aspects of the vortex solutions lead to linear

dependence of the vortex energy on |n| and BPS-like behaviour at a critical value of the

effective coupling α.

Positive flux n > 0: positive flux solutions are qualitatively distinct from the negative

flux ones. This is because B(0) < 0 independent of n, so B(r) must switch sign to yield

a net positive flux. For large n > 0, most of this positive flux remains concentrated in a

ring-like region at the edge of the vortex. In this case the total flux can be written as a sum

of two contributions, one that scales with the area of the vortex and is negative, therefore

must be subleading, and a positive dominant contribution which scales with the radius of

the configuration ,

2πn ∼ −πR2
n

µ2

α
+ 2πRn∆ringBring . (3.17)

Here ∆ring is the width of the edge region which we take to be independent of n, whilst Bring

denotes the peak value of the magnetic field in the ring and Rn is the radius of the vortex

for large enough n. The negative area-dependent contribution is a key difference from a

similar situation discussed in [27]. We cannot exclude the possibility that both the area and

perimeter contributions have faster than linear growth and a delicate cancellation yields

the correct flux. It is possible to suppress the area contribution by making α arbitrarily

large. The large α limit makes the magnetic field inside the vortex vanishingly small and

the system then closely resembles an abelian Chern-Simons vortex in vacuum.

4 Vortex energy and BPS-like scaling

The “energy” functional appropriate for the grand canonical ensemble is the grand po-

tential. The Chern-Simons term does not contribute to it for static configurations. The

grand potential is obtained by using the Lagrangian density (2.6) with µ 6= 0 and passing

to the Hamiltonian picture. Rewriting the Hamiltonian in terms of the fields and their

derivatives, the desired energy functional is,4

E =

∫
d2x

(
|DiΦ|2 + A2

0 |Φ|
2 +

g2s
s
|Φ|2s − µ2 |Φ|2

)
, (4.2)

accompanied by the constraint which incorporates the effect of the Chern-Simons term,

k

4π
B = A0|Φ|2 + µ

(
|Φ|2 − v2

)
. (4.3)

4For static configurations, the grand potential can be quickly derived by retaining only the spatial

gradient and potential terms including the Chern-Simons density,

E =

∫
d2x

(
|DiΦ|2 − (A0 + µ)2 |Φ|2 +A0

(
k

2π
B − J0

)
+
g2s
s
|Φ|2s

)
, (4.1)

and then applying the constraint (4.3).
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An interesting feature of the finite-µ vortices (with negative flux) is that they appear

to be marginally bound (or BPS-like) for a specific value of the effective dimensionless

parameter α. Recall that this parameter depends on the Chern-Simons level, the chemical

potential and the interaction strength:

α =
kµ

4πv2
=

k

4π

(
g2s
µ3−s

) 1
s−1

. (4.4)

Let us perform a rescaling of variables and fields so that the equations of motion can be

written explicitly in terms of dimensionless quantities:

r̃ ≡ µr , f̃ ≡ f

v
, a ≡ 1

r̃
(Aθ − n) , Ã0 ≡

A0

µ
. (4.5)

The rescaled scalar profile vanishes at r̃ = 0 and approaches unity for large r̃: f̃(r̃ →∞) =

1. The asymptotic behaviours of a(r̃) and Ã0 are,

lim
r̃→0

r̃a(r̃) = −n , lim
r̃→∞

r̃a(r̃) = 0 , lim
r̃→∞

Ã0(r̃) = 0 . (4.6)

The resulting dimensionless equations of motion (primes denote derivatives with respect

to r̃) are,

f̃ ′′ +
f̃ ′

r̃
− a2 f̃ +

(
Ã0 + 1

)2
f̃ − f̃2s−1 = 0 (4.7)

αÃ′0 = a f̃2 (4.8)

αB̃ =
(
f̃2 − 1

)
+ f̃2Ã0 . (4.9)

Therefore, for a fixed flux n, the solutions are only parametrised by the dimensionless

effective coupling α. Note we have introduced the dimensionless magnetic field,

B̃ =
1

r̃
(r̃a)′ =

A′θ
r̃
. (4.10)

We first rewrite the energy functional using the rescaled fields and variables,

E = 2πv2
∫ ∞
0

r̃ dr̃

[(
f̃ ′ − af̃

)2
+ a

d

dr̃

(
f̃2 − 1

)
+ Ã2

0f̃
2 +

f̃2s

s
− f̃2 +

s− 1

s

]
, (4.11)

where we have included a constant zero-point shift so that the energy density is vanishing

for the ground state at infinity. The second term in eq. (4.11) when integrated by parts

yields a nonvanishing surface contribution,∫ ∞
0

dr̃ (r̃a)
d

dr̃

(
f̃2 − 1

)
= |n| −

∫ ∞
0

r̃ dr̃B̃(f̃2 − 1) . (4.12)

Employing the Gauss constraint to eliminate B̃ in favour of Ã0, we obtain an expression

for the energy functional which is suitable for subsequent approximations and matching

– 9 –
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with numerical results,

E = 2πv2|n|+ 2πv2
∫ ∞
0

r̃dr̃

[(
f̃ ′ − af̃

)2
+

(
f̃2s

s
− f̃2 +

s− 1

s

)
− 1

α

(
1− f̃2

)2
+

(4.13)

Ã2
0 f̃

2 +
1

α
Ã0f̃

2(1− f̃2)
]
.

4.1 The quartic potential s = 2

Anticipating numerical results in the next section, we can make certain observations on

the energetics of vortex solutions for large negative flux.

Our arguments rely on the fact that for n sufficiently large and negative, all fields are

uniform inside and outside the vortex whose radius scales as
√
|n| , with a thin transition

region whose width does not scale with n. In the case of the quartic potential the energy

functional is,

E(n, α)
∣∣
s=2

= 2πv2|n|+ 2πv2
∫ ∞
0

r̃dr̃

[(
f̃ ′ − af̃

)2
+

(
1

2
− 1

α

)(
1− f̃2

)2
+

(4.14)

+Ã2
0 f̃

2 +
1

α
Ã0f̃

2(1− f̃2)
]
.

We know that f̃ vanishes inside the vortex, whilst Ã0 and a(r) vanish outside it. Specifically

when α = 2, the scalar potential is precisely cancelled, and the integrand in the expression

above has support only within the transition region at the edge of the vortex. If we assume

that this contribution does not scale with n, we conclude that

E(n, α = 2)
∣∣
s=2,|n|�1

= 2πv2|n| . (4.15)

Our numerical solutions confirm (figure 5) this conclusion which works remarkably well

even for low values of n, including |n| = 1, 2 . . .. Another surprising feature of the solutions

for α = 2 is that they appear to solve the first order equation f̃ ′ = af̃ to very high numerical

accuracy (figure 6).5

It is easy to extend the arguments to other values of α. When α 6= 2, the second term

in the integrand of (4.14) provides an approximately constant energy density inside the

vortex where f̃ = 0, while all other contributions remain vanishingly small. We therefore

find,

E(n, α)
∣∣
s=2,|n|�1

= 2πv2
(
|n| +

1

2
µ2R2

n

(
1

2
− 1

α

))
= απv2|n| . (4.16)

5In this context, it is worth noting that if the terms proportional to Ã0 are omitted (or assumed to be

negligible) in eqs. (4.7) and (4.9), then the resulting equations coincide, for a particular value of α, with

equations of motion for a BPS vortex in U(2) × U(2) ABJM theory which solves an equivalent first order

system [30].
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This behaviour is also confirmed numerically in figure 5, albeit only for large |n| as expected.

Interestingly, although v and α each depend on the quartic coupling constant g4, the large-

|n| vortex mass formula depends only the Chern-Simons level k and the chemical potential,

E(n, α)
∣∣
s=2,|n|�1

= απv2|n| =
kµ

4
|n| . (4.17)

4.2 General power law potential (s ≥ 2)

The energies of solutions for general power law potentials now work along similar lines.

The integrand in the energy density (4.13) is negligible both inside and outside the vortex

when α = αc,

αc =
s

s− 1
. (4.18)

At this critical α we expect solutions with large flux to have energies E(n) ' 2πv2|n|.
When α takes generic values away from αc, adapting the s = 2 argument to general power

law potentials ∼ g2s|Φ|2s we obtain,

E(n, α; s)
∣∣
|n|�1

= 2απv2|n|s− 1

s
=

s− 1

2s
kµ|n| . (4.19)

This result is confirmed by our numerical solutions for the sextic potential below. As before

the mass formula is independent of the interaction strength of the potential. We point out

however that the radius of the vortex solution Rn = 1
µ

√
2α|n| depends nontrivially on all

parameters. From the definition of α (4.4), increasing the interaction strength (for fixed µ

and k) has the effect of increasing the vortex size.

4.3 Positive flux vortices

With our choice of conventions µ > 0 and k > 0, positive flux solutions are energetically

disfavoured. To see this, let us reconsider the energy functional (4.11). As in the case of

the flux in eq. (3.17), there are different types of contributions to the energy, those that

scale with the area of the vortex, those that scale with the perimeter, and finally (gauge-

covariant) gradient terms which become important at the edge of the vortex. If we pick α

to be sufficiently large so that we can ignore the flux contribution from the vortex interior,

then Bring ∼ n/Rn. Then the leading contributions to the energy take the schematic form,

E(n) ∼ (2πv2)

(
n2

Rn
∆ + c0πR

2
n

)
, α� 1 (4.20)

Here the first term is a perimeter contribution from a covariant gradient while the second

term is a potential energy contribution from the interior. Extremizing with respect to Rn,

we obtain Rn ∼ n2/3 and E(n) ∼ n4/3. However this argument will fail for finite α since

B(0) = −µ2/α and the area scaling as n4/3 would violate the flux condition (3.17). We have

not found a satisfactory scaling argument for finite α and large n, but our numerical results

indicate a faster than quadratic growth of the energy as a function of n in this situation.
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Figure 2. Left : the scalar field profile f̃(r̃) for α = 5 and negative flux. Right: the dimensionless

magnetic field B̃(r̃) for the same values of α and magnetic flux.

5 Numerical results

The vortex equations of motion are not analytically solvable. We numerically solve the

dimensionless equations of motion (4.7), (4.8) and (4.9) along with the accompanying

boundary conditions. Below we outline the results for the quartic potential (s = 2) first,

and subsequently summarize the results for the sextic (s = 3) case.

5.1 Quartic potential (s = 2)

Negative flux solutions: a well known feature of Chern-Simons-Higgs vortices in vac-

uum is the ring-like profile of electric and magnetic fields [8]. The finite density vortices

we have studied are qualitatively distinct and retain this feature only partially. Figure 2

shows the (dimensionless) scalar field f̃(r̃) and magnetic field B̃(r̃) at α = 5 and different

negative values of the magnetic flux. Unlike Chern-Simons vortices in vacuum [8, 27] the

magnetic field is no longer expelled from the core of the vortex. Instead, the magnetic field

and the scalar are both effectively constant separately inside and outside the vortex and

we observe a kink-like transition in between. The value of the dimensionless magnetic field

inside the vortex is B̃(0) = −1/α = −0.2 for α = 5.

The electric field on the other hand has support only at the edge or the transition-

region where the gradient of A0 is significant. This is illustrated in figure 3. Even for

relatively low values of |n|, the location of the peak in the magnitude of the electric field

begins to track the large |n| estimate of the vortex radius (3.11):

µRn =
√

2|n|α =


7.07 n = −5 , α = 5

15.81 n = −25 , α = 5

44.7 n = −200 , α = 5 .

(5.1)

The width of the ring-like transition region remains fixed as |n| is increased. In particular,

both the width of the ring and the peak magnitude of the electric field appear to be solely

determined by α for large flux. A precise agreement between the above scaling formula for

the radius is obtained when the magnitude of the flux is significantly increased, as shown

in the second plot in figure 4.
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Figure 3. The electric field has support only at the edge of the vortex implying a ring-like profile.

The width of the transition region remains fixed as |n| is cranked up.

Figure 4. The radii of large-n vortex solutions follow very closely the curve µRn =
√

2µ|n|. We

define the radius of the vortex as the position at which the dimensionless energy density falls below

a threshold ∼ 10−4.

The most interesting aspect of the negative flux vortex solutions is the scaling of the

energy with |n|. Using the energy functional (4.11), we compute the two dimensionless ra-

tios,
E(n, α)

|n|E(1, α)
and

E(n, α)

2πv2|n|
|n|�1−−−−→ α

2
. (5.2)

The first ratio measures the energy of the n-vortex relative to that of |n| vortices each with

unit (negative) flux. If this is less than unity, then the n-vortex has lower energy than

|n| separated −1-vortices, and therefore the interactions between them must be attractive

(type I). Conversely, if E(n, α) > |n|E(1, α), the vortex interaction is repulsive (type II).

The second ratio in (5.2) is the general formula for the α-dependence of the n-vortex energy

which was deduced from arguments for large |n|. Figure 5 shows to significant numerical

precision that negative flux solutions with α = 2 are effectively “BPS” for any value of

|n|, separating α > 2 solutions which are type II (repulsive) from the solutions with α < 1

which are type I or attractive. Furthermore the α-dependence of the energies of type I and

type II vortices for large flux matches the predicted behaviour in eq. (5.2).
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Figure 5. Left: this shows that α < 2 vortices are type I (attractive), separated from type II

(repulsive) solutions for α > 2 by the α = 2 line where the solutions have vanishing interaction

energy. Right: the α-dependence of the n-vortex mass formula agrees with analytical arguments at

large |n|.

Figure 6. The figure shows the three quantities: rf ′/f (red), (Aθ + |n|) (green), and(
−|B(0)|r2/2 + |n|

)
(purple) evaluated on the exact numerical solutions for α = 1 and α = 2.

A surprising feature of the numerical results is how closely the energies of the vortices

with α = 2 match the BPS result 2π|n|v2 even for low values of |n|. This matching is

corroborated by figure 6, which shows that the vortex profile for α = 2 almost solves

the first order equation f̃ ′ = af̃ . This figure also demonstrates that the vector potential

inside the vortex closely follows the result for a uniform magnetic field. The extent of the

departure of the vortex profile from an exact solution to the first order equation f̃ ′ = af

is shown in figure 7. Evaluated on the α = 2 solution, the quantity (f̃ ′ − af̃) deviates

minimally from zero near the edge of the vortex.

Yet another measure of the relevance of the first order equation f̃ ′ = af̃ for the α = 2

solutions is given by the value of Ã0(0). The value of the electrostatic potential at the

origin is not fixed as a boundary condition, but an output of the solution. Let us use the

equation of motion for the electric field (4.8) in conjunction with the first order equation

at α = 2,

Ã′0 =
1

2
af̃2

f̃ ′=af̃−−−−→ Ã0 =
1

4

(
f̃2 − 1

)
, (5.3)
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Figure 7. Left:
(
f̃ ′ − af̃

)
plotted for 3 values of α including critical case. α = 2. Right: the value

of Ã0 at the origin for different α as a function of |n|.

Figure 8. Magnetic and electric fields for positive flux vortices have support near the edge of the

vortex and their peak values grow without bound as n is increased.

where the integration constant on the right hand side is fixed by requiring that Ã0 vanishes

as r →∞. We therefore arrive at a prediction,

Ã0(0)
∣∣
α=2

= −1

4
. (5.4)

This is precisely what we see in figure 7 for the α = 2 solution. However, we also find the

unexpected feature that Ã0(0) for other values of α approaches −1/4 at large |n|. This

suggests that solutions with generic α and large |n| are not approximate solutions to the

first order equation.6

Positive flux solutions: we have explained how positive flux vortex solutions are quali-

tatively distinct from negative n solutions. In certain limits (large-α) they closely resemble

Chern-Simons vortex solutions in vacuum. The majority of the flux resides in the ring

region or edge of the solution as n is increased (see figure 8). In figure 9 the dependence of

the n-vortex energy on |n|, is displayed for the negative and positive flux solutions, and as

expected the latter are more massive. It is surprising that E(n)/|n| appears to grow faster

than |n|.
6For generic α, eq. (4.8) along with the first order equation f̃ ′ = af̃ , would imply Ã0(0) = −1/2α.

– 15 –



J
H
E
P
0
4
(
2
0
2
0
)
0
4
1

Figure 9. Positive flux vortices have higher energy than their negative flux counterparts.

Figure 10. Vortex profiles with negative winding number for quartic(solid) and sextic(dashed)

potentials.

5.2 Sextic potential (s = 3)

Finally we turn to numerical results for the higher power law potentials, in particular the

s = 3 or sextic potential. We do not expect to see major qualitative differences overall.

One special feature of the quartic potential (s = 2) is that when α = 2, there is a precise

cancellation of the scalar potential energy contribution to the energy functional. This is

not the case for general power laws. Nevertheless there is an approximate cancellation

when evaluated on the vortex background at the critical value of α = s
s−1 . The critical

value for the sextic potential is α = 3
2 . The profiles for the negative flux vortex with sextic

and quartic potentials are shown on the same plot in figure 10. For the same values of

the dimensionless parameter α there is very little difference between the two systems. The

transition between the two phases is slightly steeper for the sextic potential. The ratios

of the energies of the n-vortex to single vortex and and the BPS value (2πv2n) are shown

in figure 11. The dependence of the energy on |n| and α matches the prediction (4.19),

and we find a transition line between type I and type II vortices at the critical coupling

αc = 3
2 which represents the marginally bound “BPS” case for the sextic potential. Again

the value of Ã0(0) indicates that the profiles almost satisfy the first order equation which

would imply,

Ã0(0) = − 1

2αc
= −1

3
. (5.5)

This is indeed what we observe in figure 12. All large n vortex profiles approach this value.
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Figure 11. The scaling of the energy of the n-vortex with |n| and α, with sextic potential.

Figure 12. Value of Ã0 at the origin for different values of α, as a function of |n|, with the sextic

potential.

6 Discussion

We have studied Abelian Chern-Simons vortices in the presence of a chemical potential driv-

ing the theory into the Higgs phase. The numerical solutions reveal several features which

are in line with the physical picture presented in an analytically solvable (nonrelativistic)

supersymmetric model [24, 31]. The configurations with large (negative) flux show precise

BPS-like scaling of energy/grand potential and appear (numerically) to closely solve first

order equations. It would be interesting to make use of the large flux limit to understand

the edge excitations of the vortex droplet. We expect that some of the lessons learnt from

analyzing this system will be of use in SU(N) and U(N) Chern-Simons-scalar theories with

a particle number chemical potential. In these theories the ground state putatively breaks

rotational invariance due to condensation of vector fields [9], and depending on whether

we are in the SU(N) or U(N) theory, particle number is ungauged or gauged, and we will

have superfluid or superconducting vortices.
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