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Abstract: In this work we analyze F-theory and Type IIB orientifold compactifications

to study α′-corrections to the four-dimensional, N = 1 effective actions. In particular, we

obtain corrections to the Kählermoduli space metric and its complex structure for generic

dimension originating from eight-derivative corrections to eleven-dimensional supergravity.

We propose a completion of the G2R3 and (∇G)2R2-sector in eleven-dimensions relevant

in Calabi-Yau fourfold reductions. We suggest that the three-dimensional, N = 2 Kähler

coordinates may be expressed as topological integrals depending on the first, second, and

third Chern-forms of the divisors of the internal Calabi-Yau fourfold.

The divisor integral Ansatz for the Kähler potential and Kähler coordinates may be

lifted to four-dimensional, N = 1 F-theory vacua. We identify a novel correction to the

Kähler potential and coordinates at order α′2, which is leading compared to other known

corrections in the literature. At weak string coupling the correction arises from the inter-

section of D7-branes and O7-planes with base divisors and the volume of self-intersection

curves of divisors in the base. In the presence of the conjectured novel α′-correction re-

sulting from the divisor interpretation the no-scale structure may be broken. Furthermore,

we propose a model independent scenario to achieve non-supersymmetric AdS vacua for

Calabi-Yau orientifold backgrounds with negative Euler-characteristic.
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1 Introduction

Four-dimensional minimal super-gravity theories are of particular phenomenological inter-

est. The effective actions are commonly derived by dimensionally reducing ten-dimensional

supergravity actions arising in string theory with localized brane sources. The stringy im-

print arises in the form of α′-corrections1 to the Kähler potential and coordinates of the

leading two-derivative action or in form of high-derivative couplings in four dimensions.

1Which is given by α′ = l2S with string length lS . The canonical convention for the definition of α′ is

w.r.t, the string tension T as T−1 = 2πα′.
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Such corrections have been shown to be crucial for moduli stabilization and thus to de-

termine the vacuum of the effective theory [1, 2]. However, to compute α′-corrections in

a truly minimal supersymmetric i.e. N = 1 set-up has been a challenging endeavor. A

promising approach is to utilize F-theory which is a formulation of Type IIB string theory

with space-time filling seven-branes at varying string coupling [3]. It captures the string

coupling dependence in the geometry of an elliptically fibered higher-dimensional mani-

fold. The general effective actions of F-theory compactifications have been studied using

the duality with M-theory [4, 5]. A wide range of phenomenologically promising geometric

F-theory backgrounds are known to give rise to non-Abelian gauge groups [4, 6, 7].

The starting point of the M/F-theory duality is the long wave length limit of M-theory,

i.e. eleven-dimensional supergravity. Higher-derivative or higher-order lM-corrections can

then be followed through the duality to give rise to α′-corrections in the resulting four-

dimensionalN = 1 theory. In this work we first compactify eleven-dimensional supergravity

including the next to leading order eight-derivative or l6M-couplings to three dimensions

on a supersymmetry preserving 8-dimensional background. More precisely, we preform a

classical Kaluza-Klein reduction of the purely gravitational M-theory R4-terms [8–13] on

elliptically fibered Calabi-Yau fourfolds. Furthermore, one needs to consider the G2R3

and (∇G)2R2-sector, where G is the M-theory four-form field strength. One easily verifies

that all those couplings carry eight derivatives. We then implement the F-theory limit by

decompactifying the thee-dimensional theory to four space-time dimensions and interpret

the resulting α′-corrections to the two-derivative effective theory. In particular, we study

l6M-corrections to the three-dimensional Kähler potential and Kähler coordinates of the N =

2 theory, which then modify the four-dimensional Kähler potential and Kähler coordinates

in the F-theory limit. We identify a new leading order α′2-correction to the Kähler potential

and coordinates which may break the no-scale structure. It is then of interest to study its

effects in moduli stabilization scenarios.

We start the discussion in section 2 by reviewing the G2R3 and (∇G)2R2-sector. No

super-symmetric completions of those sectors are known. In this work we propose a com-

pletion of the bosonic terms relevant for Calabi-Yau fourfold reductions. We start from a

general basis and fix the coefficients via comparison to controlled theories upon dimensional

reduction. In particular, we compactify on Calabi-Yau threefolds and verify compatibility

with 5d,N = 2 supergravity. Furthermore, upon reduction on S1×K3 we make use of the

Heterotic/IIA-theory duality.

This then allows us to fix the parameters such that we can perform a controlled di-

mensional reduction on Calabi-Yau fourfolds with a generic number of Kähler deformations

in section 3. Also in this section we review our previous results for the one-modulus case

for which the integration in a three-dimensional Kähler potential and coordinates can be

performed exactly [14].

In section 4 we suggest a proposal for the three-dimensional Kähler potential and

coordinates for a generic number of Kähler moduli of the Calabi-Yau fourfold background.

The key new approach in contrast to our previous attempts [15, 16] is the formulation

of the higher-derivative contributions as divisor integrals, analogous to the discussion of

the warp-factor in [15]. We argue in 4.1 that the new formulation can indeed give rise to
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all relevant higher-derivative couplings in the reduction result obtained in 3.2. However,

to match the reduction result is beyond the aim of this work and we suggest that non-

trivial identities relating the higher-derivative objects are needed to perform this tasks.

Let us stress that obtaining the correct building blocks from a Kähler potential and Kähler

coordinates is a big leap forward as this steps meets heavy obstacles as pointed out in [15].

We then proceed in 4.2 by showing that the divisor integral Kähler coordinates can be

re-expressed as topological integrals. This is very intriguing as it will allow for a F-theory

interpretation. Lastly, in section 4.3 we show compatibility with the one-modulus case [14].

In section 5 we discuss the F-theory uplift of the three-dimensional l6M-corrected Kähler

potential and coordinates to four dimensions. The classical uplift of the topological integrals

is well understood and can be performed rigorously. It is expected that the F-theory lift re-

ceives loop-corrections which result from integrating out Kaluza-Klein states on the 4d/3d

circle at one-loop. As we encounter a l6M-correction to the Kähler coordinates with [14]

logarithmic dependence on the Calabi-Yau fourfold volume reminiscent of such a loop cor-

rection we comment on a one-loop modification of the F-theory uplift. However, to present

a complete analysis of the F-theory uplift at one-loop is beyond the scope of this work. Due

to this the resulting α′2-corrected four-dimensional Kähler potential and coordinates carry

free parameters we are not able to fix. The three-dimensional Kähler coordinates generically

lead to a breaking of the no-scale structure which may remain present in four-dimensions.

This breaking of the no-scale structure is also consistent with the one-modulus case [14].

However, we conclude that a better understanding of the F-theory uplift at one-loop is

required before deciding on the ultimate fate of the α′2-correction to the four-dimensional

scalar potential.

To give an independent interpretation of the novel α′2-correction we take the Type IIB

weak string coupling limit [17]. The correction is proportional to the volume of the intersec-

tion curve of D7-branes and the O7-plane with divisors in the Kähler base of the elliptically

fibered Calabi-Yau fourfold. Moreover, it depends on the volume of the self-intersection

curves of those divisors in the base. We also identify a second correction which survives

the F-theory limit. However it vanishes due to a conspiration of pre-factors. The latter

correction is proportional to the self-intersection of divisors in the base intersecting the

D7-branes and the O7-plane. Both corrections are expected to arise from tree-level string

amplitudes of oriented open strings with the topology of a disk or non-orientable closed

strings with the topology of a projective plane analogous to the α′2-correction encountered

in [18, 19]. We also discuss the latter in this work.

In section 5.4 we discuss the implications of the α′2-corrections on moduli stabiliza-

tion. We propose a scenario to achieve non-supersymmetric AdS vacua for geometric

backgrounds with negative Euler-characteristic χ(B3) < 0, where B3 is the base of the

elliptically fibered Calabi-Yau fourfold in F-theory. In the IIB picture thus for Calabi-Yau

oreintifold backgrounds with negative Euler-characteristic. The vacua are obtained due to

an interplay of the Euler-Characteristic correction [20] and the α′2-corrections to the scalar

potential.2 We close by emphasizing that the discussion can be performed analogously for

2The form of the scalar potential due to the α′2-correction obtained in [18, 19] is similar to the one

obtained at order α′3 in [2, 21].
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Calabi-Yau fourfolds with χ(B3) > 0 which leads to de Sitter extrema. We thus suggest

that the scenarios may suffice to construct an explicit counter example to the recent conjec-

ture by [22]. Let us emphasize that we do not study explicit geometric backgrounds in this

work but derive constraints on the topological quantities such that vacua may be obtained.

2 Towards a completion of the G2R3 and (∇G)2R2 sectors

In section 2.1 we review the known eleven-dimensional supergravity action at eight-

derivatives. In section 2.2 we consider the possibility of having additional G2R3 and

(∇G)2R2-terms in the eleven-dimensional action, where G denotes the M-theory four-form

field strength and R is an abbreviation for the Riemann tensor. We propose a completion of

these two sectors relevant for Calabi-Yau fourfold reductions. Due to these potential novel

terms one encounters an additional parameter freedom in the reduction result in section 3.

However, as we do not make use of this parameter freedom in the remaining work let us

stress that this section stands independently. The reader more interested in the three and

four-dimensional effective actions can thus safely skip the technical section 2.2 and carry

on with section 3.

2.1 Higher-derivative corrections in M-theory

In this section we review the eleven-dimensional supergravity action including the relevant

eight-derivative terms. Note that we comment on a completion of the G2R3 and (∇G)2R2-

sector relevant for a Calabi-Yau fourfold CY4 reductions in the next section 2.2. The

bosonic part of the classical two-derivative N = 1 action in eleven dimensions is given by

2κ2
11 S11 =

∫
M11

R ∗ 1− 1

2
G ∧ ∗G− 1

6
C ∧G ∧G . (2.1)

The purely gravitational sector is corrected at eight-derivatives by R4-terms given by

2κ2
11 SR4 =

∫
M11

(
t8t8 −

1

24
ε11ε11

)
R4 ∗ 1− 32213C ∧X8 . (2.2)

First derived in [23, 24] these terms can be shown to be re related to the R-symmetry

and conformal anomaly of the world-volume theory of a stack of N M5-branes [13]. Sec-

ondly, the known contributions [25] to the G2R3 and (∇G)2R2-sector of the four-form field

strength are given by

2κ2
11 SG =

∫
M11

−
(
t8t8 +

1

96
ε11ε11

)
G2R3 ∗ 1 + s18

(
∇G

)2
R2 ∗ 1 + 256ZG ∧ ∗G . (2.3)

The last term in (2.3) was argued to be necessary to ensure Type IIA/M-theory duality

when considering Calabi-Yau threefold compactifications [21]. The precise definition of

the higher-derivative terms in (2.2) and (2.3) can be found in the appendix in B.3. The

detailed index structure of the terms
(
∇G

)2
R2 in (2.3) can be found in B.3.
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2.2 Checks on the G2R3 and (∇G)2R2-sector

No supersymmetric completions of the eleven-dimensional G2R3-sector and (∇G)2R2-

sector are known. The eleven-dimensional eight-derivative terms involving two powers of

the four-form field strength are lifted from the corresponding terms in the Type IIA effec-

tive action. Those arise at the level of the five point-functions in the Type IIA superstring

and partial indirect conclusions can be drawn at the level of the six-point function [25].

However, let us stress that a conclusive study at the level of the six-point function and

especially at higher order n-point functions remains absent. In particular a supersymmet-

ric completion of the G2R3-sector and (∇G)2R2-sector employing the Noether coupling

method would be of great interest. It is thus desirable to discuss possible extensions of

the G2R3 and (∇G)2R2-sector beyond the known terms.3 In this section we accomplish

this task and provide a complete maximal extension of the eleven-dimensional G2R3 and

(∇G)2R2-sector relevant for Calabi-Yau fourfold reductions.4

Instead of computing string amplitudes or employing the Noether coupling method

we take a more pragmatic way here. In [14] a complete basis of eight-derivative terms

of the schematic form G2R3 was constructed. We then compliment this with a basis

for the (∇G)2R2-sector given in appendix B.3, both of which contribute to the kinetic

terms of the three-dimensional vectors upon dimensional reduction. We follow the same

logic as in our previous work [14, 21] i.e. we derive constraints on the parameters of

the eleven-dimensional Ansatz by verifying compatibility upon dimensional reduction with

lower-dimensional supersymmetry. For example, as the R4-sector is known to be complete

one can fix certain lower-dimensional supersymmetry variables by dimensional reduction,

which then can be compared to the ones derived from the G2R3 and the (∇G)2R2-sector.

Let us next discuss the general form of the relevant terms in the basis of G2R3 and

(∇G)2R2. The terms contributing to the three-dimensional effective action are those,

which do not contain any Ricci tensors or scalars as these vanish trivially on a Calabi-Yau

manifold. Taking into account the first Bianchi identity for the Riemann tensor a minimal

basis of these terms is given in appendix B.3. The general expansion of terms which may

contribute in addition to (2.3) to the three-dimensional action is then

2κ2
11 S

extra, gen = α2

∫
M11

17∑
i=1

Ci Bi ∗ 1 +
24∑
i=1

Ci+17Bi ∗ 1 (2.4)

for some coefficients Ci ∈ R. To restrict the parameters in the Ansatz (2.4) we first take a

detour to Calabi-Yau threefold compactifications and furthermore discuss the dimensional

reduction on K3 × S1. Thus in particular, we provide the maximal complete extensions

3Note that there are other terms quadratic in G containing eight derivatives such as e.g. (∇3G)2,

(∇2G)2R and (∇2G)∇3R. All other terms do not constitute independent degrees of freedom in the eleven-

dimensional action. In other words they can be rewritten up to total derivatives in the basis of ∇2G2
4R

2

and G2
4R

3 by making use of Bianchi identities and the fact that G4 is totally antisymmetric.
4In other words due to the Calabi-Yau condition certain terms in the Ansatz yield zero upon reduction.

Those coefficients can not be fixed by our arguments but constitute a complete description relevant for

Calabi-Yau fourfold reductions.
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of the eleven-dimensional G2R3 and (∇G)2R2-sector (2.4), which is compatible upon di-

mensional reduction with five-dimensional, N = 2 supersymmetry, i.e. by dimensional

reduction on Calabi-Yau threefolds to five dimension for a generic number of Kähler mod-

uli. Moreover, we perform the dimensional reduction on K3 × S1 to six dimensions and

employ the Heterotic-IIA duality to compare the resulting four-derivative couplings to the

well known terms on the Heterotic side of the duality. It turns out that these arguments

are very restrictive and allow us to parametrize the G2R3 basis with only five parame-

ters [14]. However, when allowing for an interplay with the (∇G)2R2-sector the number of

independent parameters reduces from forty-one to thirteen.

Moreover, the above analysis allows us to infer that the G2R3 and (∇G)2R2-terms

are consistent with the partially known six-point function results [25]. Let us stress that

it would be of great interest to study additional constrains on this eleven-dimensional sec-

tor by circular reduction to type IIA effective supergravity. Any combination of novel

terms need to be vanishing at the level of the five-point one-loop string scattering am-

plitude with two NS-NS two-form field and three graviton vertex operator insertions.

We suggest that such a study will lead to fix the remaining parameter freedom in the

eleven-dimensional action.

By dimensionally reducing the extension (2.4) one modifies the kinetic couplings of the

three-dimensional vectors and introduces an additional parameter freedom. One may use

to this to rewrite the reduction result in terms of 3d, N = 2 variables. In section 3.2 we

perform the dimensional reduction of the G2R3 and (∇G)2R2-extensions to three space-

time dimensions on Calabi-Yau fourfolds with arbitrary number of Kähler moduli.

Calabi-Yau threefold checks to 5d,N = 2. In the following we derive constraints

on the coefficients Ci in (2.4) by demanding compatibility with N = 2 supersymmetry in

five dimensions upon compactification on a Calabi-Yau threefold. The l6M-corrections give

contributions to the five-dimensional vector multiplets of the N = 2 supergravity which

is expressed in terms of a real pre-potential F(XI) and real special coordinates XI . Note

that physical scalars in the vector multiplets obey

F(XI) =
1

3!
CIJK X

IXJXK = 1 . (2.5)

The totally symmetric and constant tensor CIJK is entirely determined by the U(1) Chern-

Simons terms ∼ CIJK A
IF JFK , which however do not receive l 6

M-corrections. One con-

cludes that also the physical scalars XI remain uncorrected.

We dimensionally reduce the action (2.4) with general coefficients Ci on a Calabi-Yau

threefold Y3 to five dimensions. As our focus is on the kinetic terms for the vectors we note

that in order to dimensionally reduce one expands

G = F i5D ∧ ω
CY3
i , (2.6)

with the field strength of the five-dimensional vectors F i5D and the harmonic (1, 1)-forms

on the Calabi-Yau threefold ωCY3
i , i = 1, . . . , h1,1(CY3). The constraints imposed by super-

symmetry are then inferred by making use of Shouten and total derivative identities on the

– 6 –
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internal space CY3. The condition one encounters is that novel terms (2.4) may no con-

tribute to the five-dimensional couplings, which is equivalent to the non-renormalisation

of (2.5). The computation is in principal straightforward (but tedious) and leads us to

impose the relations among the coefficients C1 . . . , C41. Details can be found in the ap-

pendix (B.21).

Heterotic and type IIA duality. In this section we compactify (2.4) on K3× S1. We

first circular reduce the basis of forty-one G2R3 and (∇G)2R2-terms to ten dimensions on

R1,9 × S1 to obtain a l6M-modified IIA supergravity theory. The only terms relevant for us

are the ones which arise from

G11MNO = e
φ
3HMNO , M,N,O = 1, . . . , 10 , (2.7)

where 11 denotes the direction along S1 and with H the field strength of the type IIA

Kalb-Ramond tensor field. We then check compatibility of the novel induced H2R3-terms

making use of the IIA-Heterotic duality by dimensional reduction on K3. Compactifying

type IIA on K3 is dual to the Heterotic string on T4. For our purpose it is enough to

show that when compactifying the novel H2R3-terms on K3 those do not induce any l6M-

correction to the six-dimensional action. the absence of four-derivative terms is imposed,

which results in one further constraint on the parameters. In particular, the additional

constraints on the C’s arises from imposing the vanishing of the four-derivative terms such

as e.g.

∼ χ(K3) H6DµνρH6D
µ
ν1ρ1 R6D

µµ1νν1 , (2.8)

with µ, ν = 1, . . . , 6. One then infers the additional constraints on the parameters in (2.4)

to be

C2 = 0 , C1 = −1

6

(
8C3 + 2C31 + C35 + 36C4 + 3C6

)
. (2.9)

This concludes that by fixing the parameter (2.9) the proposed maximal extension of G2R3

and (∇G)2R2-terms in the M-theory effective action is fully consistent with the indirect

six-point functions results discussed in [25].

3 Three-dimensional effective actions revisited

F-theory may be viewed as a chain of duality maps which allows one to derive controlled

IIB orientifold backgrounds at weak string coupling with D7 branes and O7-planes [3–5].

The starting point of this journey is eleven-dimensional supergravity, which compactified

on an appropriate eight-dimensional internal space gives a 3d, N = 2 supergravity theory.

Latter is related via the F-theory lift to a 4d, N = 1 supergravity theory. The main

objective of this section is the dimensional reduction of eleven-dimensional supergravity

including the novel eight-derivative couplings (2.4) on Calabi-Yau fourfolds for a generic

number of Kähler moduli in section 3.2. We start our discussion with a review of the

generic properties of 3d, N = 2 supergravity theories in section 3.1. Finally, we conclude

this section with a review of the one-modulus case in which the warp-factor as well as the

higher-derivative couplings can be matched to the 3d, N = 2 variables [14].
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Background solution. Let us set the stage by reviewing the fourfold solutions includ-

ing eight-derivative terms studied in [26–28]. The background solution is taken to be an

expansion in terms of the dimensionful parameter5

α2 =
(4π κ2

11)
2
3

(2π)4 32 · 213
, 2κ2

11 = (2π)5 l 9
M , (3.1)

which reduces to the ordinary direct product solution R1,2×CY4 without fluxes and warping

to lowest order in α. At order α2 a warp-factor W (2) = W (2)(z, z̄) and fluxes are induced.

The background solution is known [27, 28] to then take the form

〈ds2〉 = εα
2 Φ(2)

(
ε−2α2 W (2)

ηµν dx
µdxν + 2εα

2 W (2)
gmm̄ dz

mdz̄m̄
)
, (3.2)

〈G〉 = αG(1) + dvolR1,2 ∧ d
(
ε−3α2 W (2))

. (3.3)

By solving the eleven-dimensional E.O.M.’s for the metric gmm̄ of the internal space one

encounters that it seizes to be Ricci flat i.e. Calabi-Yau [18]. It receives a correction at

order α2 as

gmm̄ = g(0)

mm̄ + α2 g(2)

mm̄ , g(2)

mm̄ ∼ ∂m∂̄m̄ ∗(0)
(
J (0) ∧ J (0) ∧ F4

)
, (3.4)

where g(0) is the lowest order, Ricci-flat Calabi-Yau metric and J (0) is its associated Kähler

form and where F4 the non-harmonic part of the third Chern form. Latter is however

irrelevant for the following discussion, as it only contributes couplings to the effective

action which are total derivatives [19]. Furthermore, (3.4) includes an overall Weyl factor

Φ(2) = −512
3 ∗

(0)
(
c(0)

3 ∧ J (0)
)
, which was first discussed in [28] and a warp-factor W (2)(z, z̄)

satisfying the warp-factor equation

∆(0) ε3α
2W (2)

dvol(0)

Y4
+

1

2
α2G(1) ∧G(1) − 32213 α2X(0)

8 = 0 . (3.5)

The background value of the four-form field strength (3.3) is given by the sum of the internal

flux G(1) ∈ H4(CY4) and a warp-factor contribution. Due to lowest order supersymmetry

constraints the flux is to be self-dual with respect to the lowest order Calabi-Yau metric.

Note that we do not discuss the corrections to the gravitino variations at order l6M here but

refer the reader to [28] for a detailed discussion. Let us emphasize that the l6M-gravitino

variations are not known as a supersymmetric completion of eleven-dimensional super-

gravity at higher lM-order remains elusive. However, it is widely believed that (3.2)–(3.5)

constitutes a supersymmetric background.

3.1 Three-dimensional gauged N = 2 supergravity

In this section we briefly review N = 2 gauged supergravity in three dimensions where all

shift symmetries are gauged. Shift symmetries corresponds to an isometry of the geometry

of the scalar field space. Three-dimensional maximal and non-maximal supergravities are

discussed in [29]. For our purpose it is sufficient to consider three-dimensional N = 2

5We follow the conventions of [13].

– 8 –



J
H
E
P
0
4
(
2
0
2
0
)
0
3
2

supergravity coupled to chiral multiplets with complex scalars Na, which are gauged along

the isometries Iab and subject to the constant embedding tensor Θab. One then infers the

simply form of the N = 2 action to be

SN=2 =

∫
M3

1

2
R ∗ 1−Kab̄∇Na ∧ ∗∇N̄ b̄ − 1

2
ΘabA

a ∧ F b −
(
VD + VF

)
∗ 1 , (3.6)

where Kab̄ = ∂Na∂N̄ b̄K is a Kähler metric with Kähler potential K. The gauge covariant

derivative ∇Na is defined by ∇Na = dNa+Θbc I
abAc . The F-term scalar potential in (3.6)

is given by

VF = εK
(
Kab̄DiWDbW − 4|W |2

)
, (3.7)

with Kab̄ = (K−1)ab̄ the inverse of the Kähler metric given by a hermitian matrix and

W a holomorphic super potential. Furthermore, one finds that VD = Kab̄ ∂aD∂b̄D − D2

where D is a real function of the chiral fields N i. Lastly, note that the vectors in the

Chern-Simons term (3.6) are non-dynamical.

Dualization of the action. One may now split the chiral fields as Na = (M I , Ti) and

dualizes the chiral multiplets in (3.6) with bosonic component Ti into vector multiplets [30].

Note that dualization is in general not possible but requires ImTi to admit a shift symmetry.

Upon Legendre dualization the theory depends on the kinematic potential K̃ which is

expressed in terms of the quantities of the dual theory as

K(M,T ) = K̃(M,L)− ReTi L
i , Li = − ∂K

∂ReTi
. (3.8)

One then derives the dual action to take the form6

SN=2, dual =

∫
M3

1

2
R ∗ 1− K̃MIM̄J DM I ∧ ∗DM̄ J̄ +

1

4
K̃LiLj dL

i ∧ ∗ dLj

+

∫
M3

1

4
K̃LiLj F

i ∧ ∗F j +
1

2
ΘijA

i ∧ F j + F i ∧ Im
[
K̃LiMI ∇M I

]
−
∫
M3

(
VD + VF

)
∗ 1 , (3.9)

with kinematic couplings given by

K̃LiLj = ∂Li∂LjK̃ . (3.10)

Note that the scalars Li belong to vector multiplets. One may furthermore infer

from (3.8) that

KTiT̄j
= −1

4
K̃LiLj , ReTi = K̃Lj ,

∂Li

∂Tj
=

1

2
K̃LiLj . (3.11)

6One may choose a constant embedding tensor such that

Iij = −2i dxij , IIJ = ĨiJ̄ = 0 , IiJ = 0 , ΘIJ = 0 .
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Left to discuss is the dualization of the scalar potential.7 The F-term scalar potential in

the vector multiplet language is then given by

VF = εK
[
K̃MIM̄ J̄

DMIW DMJW −
(
4 + Li K̃LiLj L

j
)∣∣W ∣∣2] , (3.13)

where we have assumed that the superpotential does not depend on the scalars Li in the

vector multiplet. This case is relevant when matching to the string theory reduction result

in which the superpotential does not depend on the Kähler moduli, i.e. non-perturbative

effects such as M5-brane instantons are absent. For the discussion in this work (3.13) will

be sufficient.

3.2 Calabi-Yau fourfold reduction for generic h1,1

In this section we discuss the reduction result of M-theory involving the eight-derivative

action (2.1)–(2.3) and (2.4) on the warped background (3.2)–(3.5) and allow for an arbitrary

number of Kähler moduli of the internal manifold. Latter is achieved by deforming the

background metric as

gmn̄ → gmn̄ + iδviω(0)

imn̄ , (3.14)

where δvi = δvi(x) are infinitesimal scalar deformations and {ω(0)

i } are harmonic (1, 1)-

forms w.r.t the background Calabi-Yau metric g(0), with i = 1, . . . , h1,1(CY4). The non-

vanishing contribution for the dynamical three-dimensional vectors Aiµ is derived by8

Gµνmn̄ = F iµνω
(0)

imn̄ , F i = dAi . (3.15)

To enhance the readability of the main text in the following we shift the more technical

steps to the appendix. To express the reduction result we need to introduce several higher-

derivative building blocks. Among them the familiar second and third Chern-forms c2 and

c3, respectively, and Z,Zmm̄, Zmm̄nn̄ and Yij ,Ωij . All higher-derivative objects are w.r.t. the

zeroth α-order Calabi-Yau metric. Their precise definition can be found in appendix A, in

particular (A.19)–(A.26). Here let us schematically note that

Z, Zmm̄, Zmm̄nn̄ ∼
(
R
)3
, Yij ∼ (∇ωi)(∇ωj)

(
R
)2
, Ωij ∼ (ωi)(ωj)

(
R
)
. (3.16)

where R denotes the Riemann tensor on the internal manifold and ∇ is the covariant deriva-

tive w.r.t. the Calabi-Yau metric. The warp-factor dependence can be elegantly captured

by introducing the warped volume and warped metric

VW = V + 3W , W =

∫
Y4

W (2) ∗(0) 1 , GW
ij =

1

2VW

∫
Y4

e3α2W (2)
ω(0)

i ∧ ∗
(0)ω(0)

j , (3.17)

7The D-term results in

VD = K̃MIM̄ J̄

∂M ĪT ∂M̄ J̄T − K̃LiLj∂LiT ∂LjD −D , D = −1

2
Li Θij L

j . (3.12)

8Note that in the presence of l6M-correction the deformations (3.14) and (3.15) may receive higher-order

corrections as discussed in [15, 16], none of which alter the dynamics of the resulting theory. We thus omit

them from the present discussion.
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which at zeroth order in α reduce to V and Gij = 1
2V
∫
Y4
ω(0)

i ∧ ∗(0)ω(0)

j . We also introduce

KW
i =iVW ω(0)

im
m +

9

2
α2

∫
Y4

∂iW
(2)| ∗(0) 1 , (3.18)

which at lowest order simply reduces to K(0)

i = iV ω(0)

im
m = 1

3!

∫
Y4
ω(0)

i ∧ J (0) ∧ J (0) ∧ J (0).

Note that we use the notation K(0)

i to abbreviate the intersection number evaluated in the

background, in contrast to the analogue quantities Ki which may vary over the Kähler

moduli space. With these definitions we state that the action including the l6M-corrections

to the kinetic terms [15, 16] is given by

Skin =
1

2κ11

∫
M3

[
R ∗ 1− (GW

ij + V−2
W KW

i K
W
j )dδvi ∧ ∗dδvj − V2

W G
W
ij F

i ∧ ∗F j

− dδvi ∧ ∗dδvj α
2

V0

∫
CY4

(
768Zω(0)

im
mω(0)

jn
n − 3072iZmn̄ω

(0)

i
n̄mω(0)

js
s
)
∗(0) 1

+ dδvi ∧ ∗dδvj α
2

V0

∫
CY4

3072Zmn̄rs̄ω
(0)n̄m
i ω(0)s̄r

j ∗(0) 1

− F i ∧ ∗F jα2V0

∫
CY4

(
− 256Zω(0)

imn̄ω
(0)

j
n̄m + 192(7− a1)iZmn̄ω

(0)

i
r̄mω(0)

j
n̄
r̄

)
∗(0) 1

+ F i ∧ ∗F jα2V0

∫
CY4

384(1 + a1)Zmn̄rs̄ω
(0)n̄m
i ω(0)s̄r

j ∗(0) 1 + ΘijA
i ∧ F i

]
. (3.19)

The one parameter freedom a1 arises from the uncertainty inherent in the (∇G)2R2-sector.

From the novel sector [21] we find

δS1 = 256 F i ∧ ∗F jα2V
∫
Y4

Zω(0)

imn̄ω
(0)

j
n̄m ∗(0) 1 . (3.20)

Note that (3.20) is precisely cancelled by the same structure in (3.19). Lastly, one performs

the dimensional reduction of (2.4) to give the potentially novel terms

δS2 = F i ∧ ∗F jα2V
∫
Y4

(
8i(a3 + a4)Zmn̄ω

(0)

i
n̄mω(0)

js
s ∗ 1− 8a3Zmn̄rs̄ω

(0)n̄m
i ω(0)s̄r

j

)
∗(0) 1

+ F i ∧ ∗F jα2V
∫
Y4

a2c2 ∧ Ωij , (3.21)

with the coefficients a3, a4 result from the unfixed eleven dimensional parameters, a3 =

−C22 + 4C3 and a4 = 18C4. Let us close this section with some remarks. Note that

in (3.21) one obtains a term proportional to the second Chern-form. In the limit h1,1 → 1,

i.e. the one-modulus case we see that

δS2 → a4Z , (3.22)

as the term Ωij vanishes. For the physical arguments provided in [14] where the one-

modulus case is discussed we infer that δS2 → 0 as it would change the physical interpre-

tation else-wise. Hence in the remainder of this work we assume C4 = 0 and thus a4 = 0.9

9Comparison to five point-scattering and six-point amplitudes can in principle fix the 11-dimensional

coefficient of the basis, thus also C4.
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Furthermore, note that the action (3.19) depends on the infinitesimal deformation δvi. To

establish the connection to the full field space vi, i.e. the coordinates on the Kähler moduli

space we replace δvi → vi in the following.10 This will become relevant for the discussion

in section 4.

3.3 Review one-modulus Kähler potential and coordinates

The dimensional reduction of the eleven-dimensional supergravity action including higher-

derivative terms on a warped Calabi-Yau fourfold background with one Kähler modulus,

i.e. h1,1 = 1 case was discussed rigorously in [14]. We devote this section to reviewing

this discussion, in particular the derivation of the Kähler potential and coordinates of the

3d, N = 2 theory. As a starting point we may take the limit h1,1 → 1 of the generic

Calabi-Yau fourfold reduction result presented in (3.19)–(3.21). One then infers that the

l6M-corrected action takes the standard form

S3d =

∫
M3

1

2
R ∗ 1 +

1

4
G̃LL(L) dL ∧ ∗ dL+

1

4
G̃LL(L) F ∧ ∗F , (3.23)

with

G̃LL(L) = − 4

L2

(
1− 384α2 Z̃ L

)
= − 4

L2
+ 1536α2 Z̃ 1

L
, (3.24)

and with the topological coupling depending on the third Chern-form given by

Z = (2π3)

∫
CY4

c3 ∧ J , Z = V
1
4 Z̃ , (3.25)

where we have used that J = ω0V
1
4 . We can integrate the metric G̃LL to obtain the kinetic

potential K̃(L) and coordinate

K̃ = 4 logL+ 1536α2 Z̃ L
(

log(L)− 1
)

+ 4 , (3.26)

L = V−
3
4 − 3α2 W V−

7
4 , (3.27)

where we have chosen the integration constants in a convenient way.

Determining the Kähler potential. One may next dualize the vector multiplet to a

chiral multiplet, whose metric derives from a Kähler potential. As outlined in section 3.1

this is achieved by a Legendre transformation of the kinetic potential

K = K̃ − LReT , ReT = ∂LK̃ . (3.28)

One thus derives the Kähler potential K(T + T̄ ) to be

K = 4 logL− 1536α2 Z̃ L = −3 log
(
V + α2

(
4W + 512Z

))
, (3.29)

with corresponding coordinate

ReT =
4

L
+ 1536α2 Z̃ logL = 4V

3
4 + 12α2 V−

1
4 W − 1152α2 Z̃ logV . (3.30)

Note that all quantities in the Kähler potential (3.29) depend on the one-modulus V,

i.e. the overall volume.
10Possible obstructions and subtleties to this step for higher-derivative couplings of non-topological nature

were discussed in [31].

– 12 –



J
H
E
P
0
4
(
2
0
2
0
)
0
3
2

The no-scale condition and the scalar potential. We next argue that the ` 6
M-

suppressed corrections to the Kähler potential in (3.29) generically lead to a breaking of

the no-scale condition and thus generate a F -term scalar potential. One straightforwardly

computes that

KT K
T T̄ KT̄ =

K2
T

KT T̄

= 4− 1536
α2

V
Z . (3.31)

One may next infer the scalar potential originating from the breaking of the no-scale

condition. It enters the effective action via the F-term scalar potential11

VF = εK
(
KT T̄ DTWDTW − 4

∣∣W ∣∣2) = −1536α2

∣∣W0

∣∣2
V4
Z . (3.32)

Note that it exhibits a runaway direction for V → ∞ if
∫
Y4
c3 ∧ J < 0.12 In (3.32) we

assumed that the complex structure moduli are stabilized by the GVW superpotential [33]

given by

W =
1

` 3
M

∫
Y4

G(1) ∧ Ω , Ω ∈ H4,0(Y4) , (3.33)

which in the vacuum then takes the constant value W0. A critical assessment of this two

step procedure is discussed in [34–36]. The runaway behavior of (3.32) for large volume V
signals an instability of the solution for the case of a non-vanishing W0 as recently examined

in [37].

Let us conclude this section by emphasizing the importance of the one-modulus re-

sults in particular the integration into a Kähler potential and coordinates. In a following

section we will show compatibility with the generic moduli case which is exceedingly more

complicated due to the appearance of non-topological higher-derivative contributions to

the Kähler metric.

4 Three-dimensional Kähler potential and coordinates

The eleven-dimensional higher-derivative corrections manifest themselves in terms of l6M-

modifications of the kinematic couplings of the two-derivative three-dimensional super-

gravity theory as discussed in the previous section 3.2. The objective is to express these

l6M-modifications to the kinematic couplings in the language of three-dimensional, N = 2

supergravity. Namely these must result from a l6M-correction to the Kähler potential and

Kähler coordinates, i.e. fixing the complex structure on the Kähler moduli space. We re-

viewed this procedure for the one-modulus case, i.e. h1,1 = 1 in 3.3. In this section we

propose a novel description of the Kähler coordinates in terms of divisor integrals. Due to

these specific divisor integrals of the Calabi-Yau fourfold one manages to reproduce all high-

derivative structures appearing in the reduction result of the Kähler metric (3.19)–(3.21)

which we discuss in section 4.1. To motivate our Ansatz note that the Kähler coordinates

11Note that superpotential can not be renormalized perturbatively but may be subject to e.g. M5-

instanton corrections which correspond to D3-instantons in the F-theory limit [32].
12An example with this property and h1,1 = 1 is the sextic fourfold. For the sextic one finds∫
Y4
c3 ∧ ω = −420.
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are expected to linearise the action of M5-brane instantons on divisors Di.
13 This implies

that the Ti’s are expected to be integrals over divisors Di. In particular the Ansatz depends

on the first, second and third Chern-form of the Divisors c̃1,2,3 = c̃1,2,3(Di). Let us first

recall further definitions

Zi = (2π)3

∫
CY4

c3 ∧ ωi = (2π)3

∫
Di

c3 , Wi =

∫
Di

W (2) ∗ 1 , Fi = 1536

∫
Di

F6 ∗ 1 . (4.1)

The Ansatz for the Kähler potential and coordinates depends on the real parameters

α1, . . . , α9 and κ1, . . . , κ6. We assert the Kähler potential to take the form

K = −3 log
(
V + α2

(
4Wiv

i + κ1Zivi + κ2Tivi
))
, (4.2)

and for the Kähler coordinates to be14

ReTi = Ki + α2

(
Fi + 3Wi + κ3

Ki
V
Zjvj + κ4Zi logV + κ5

Ki
V
Tjvj + κ6Ti

)
. (4.3)

Note that the warp-factor part of this Ansatz was fixed in [16, 39].15 In (4.3) we introduce

a novel divisor integral higher-order correction

Ti = α1

∫
Di

c̃1 ∧ c̃1 ∧ c̃1 + α2

∫
Di

c̃1 ∧ c̃2 + α3

∫
Di

c̃3 + α4

∫
Di

C1c̃1 ∧ c̃1 ∧ J̃

+ α5

∫
Di

C2
1 c̃1 ∧ J̃ ∧ J̃ + α6

∫
Di

C1c̃2 ∧ J̃ + α7

∫
Di

∗6(c̃1 ∧ J̃) ∧ c̃2 (4.4)

+ α8

∫
Di

∗6(c̃1 ∧ J̃) ∧ c̃1 ∧ c̃1 + α9

∫
Di

C1 c̃1 ∧ ∗6c̃1 ,

with C1 = ∗6(c̃1 ∧ J̃2) = 2Rm
m
n
n and i = 1, . . . , h1,1 and where Di = PD(ωi) are the

Poincare-dual divisors to the harmonic forms ωi the Calabi-Yau fourfold. Furthermore,

c̃1, c̃2, c̃3 are the corresponding Chern-forms of the Divisor and J̃ = i∗J the pull-back of

the Kähler form i : Dj → CY4. In the following c3 is the third Chern-form of CY4. Note

that although c1(CY4) = 0 the divisors i.e. sub-manifolds of complex co-dimension one

generically have c1(Di) := c̃1 6= 0. Let us use the notation

Z = Zivi , (4.5)

in the following. Furthermore, we choose the normalization

α3 = 1 , (4.6)

which is argued for in section 4.1. Note that as in the Ansatz (4.3) we allow for additional

pre-factors (4.6) can be imposed without loss of generality.

13In fact, as discussed in [38] a holomorphic super-potential of the schematic form W ∝ e−Ti can be

induced by such instanton effects.
14We omit constants shifts such as Zi in the definition of the Kähler coordinates.
15Comparison of the warp-factor contribution of the one modulus Kähler coordinates (3.30) and (4.3)

suggest that Fi → 9W V−1/4 in the one-modulus case.
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Let us next briefly outline the logic of this section. In 4.1 we compute the variation

of the Ansatz (4.4) w.r.t. Kähler deformations of the Calabi-Yau fourfold and show the

correlation with the higher-derivative structures encountered in the reduction result. We

will argue in section 4.2 that the Ansatz (4.2) and (4.3) can be rewritten solely in terms of

topological quantities of the divisors. All the higher-derivative structures of the reduction

result (3.19)–(3.21) appear. This steps fixes the relative factors α1, . . . , α9 with one re-

maining free parameter α2. In section 4.3 we discuss the compatibility of this Ansatz with

the one-modulus case which can be integrated exactly into a Kähler potential [14] which

induces certain relations among the κ’s in the Ansatz. However, a precise determination

of the remaining κ-parameters is beyond the aim of this work. We conjecture that the

matching of the reduction result is possible with the Ansatz (4.4), (4.2) and (4.3) which

then may fix all the parameters uniquely. Lastly, we provide further indirect evidence for

this claim by comparison to the newly discovered structures (3.21) proportional to the

second Chern form of the Calabi-Yau fourfold which may also be reproduced by the novel

Ansatz. This insight however is not used in the direct line of arguments which precedes

through the following sections.

4.1 Kähler coordinates as integrals on CY4

To write the integrals (4.4) defined over Divisors Di = PD(ωi) as integrals over the Calabi-

Yau fourfold we note that e.g.∫
Di

c̃1 ∧ c̃1 ∧ c̃1 =

∫
CY4

c̃1 ∧ c̃1 ∧ c̃1 ∧ ωi. (4.7)

Note that it is crucial to maintain c̃1 instead of c1 as latter would vanish due to the Calabi-

Yau condition. The induced metric on a minimal divisor Di inherited from the ambient

space is itself Kähler [40, 41] but generically not Calabi-Yau. Let us note that in previ-

ous work we considered the correction written in terms of topological quantity namely the

third Chern-form of the Calabi-Yau fourfold. One may write the Kähler coordinates (4.4)

in terms of a basis of well defined CY4-integrals in terms the Calabi-Yau metric and co-

variant quantities thereof such as the Riemann tensors if the parameters in (4.4) obey the

following relations

α5 = −1

8
α1 +

1

24
+

1

4
α4 ,

α6 =
1

2
α2 +

1

2
,

α7 = α2 + 1 ,

α8 =
1

2
α1 −

1

3
− α4 ,

α9 = −α1 +
1

6
. (4.8)

Thus in other words by imposing (4.8) we can rewrite the Kähler coordinates in terms of

a higher-derivative density on the Calabi-Yau fourfold, which as we argue in appendix A.1
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may take the form

Ti =

∫
CY4

ωi ∧ X , X ∼ R3 (4.9)

with the higher-derivative (3, 3)-form X defined in the appendix (A.31). One can easily

verify the property

Tivi = Z . (4.10)

To compute the Kähler metric we need to take derivatives of the Kähler potential w.r.t. to

the Kähler coordinates as

Kij =
∂2K

∂ReTi∂ReTj
=

∂2vk

∂ReTi∂ReTj

∂K

∂vk
+

∂vk

∂ReTi

∂vl

∂ReTj

∂2K

∂vk∂vl
, (4.11)

with
∂vi

∂ReTj
=
(∂ReTj

∂vi

)−1
= Kij − α2κ5Kik

( ∂

∂vk
Tl + . . .

)
Klj , (4.12)

where Kij is the inverse intersection number of the Calabi-Yau fourfold defined in the

appendix (A.11). The variation of Ti w.r.t. to the Kähler moduli fields of the Calabi-Yau

fourfold constitutes the crucial new ingredient to generate and match the higher-derivative

structures in the reduction result (3.19)–(3.21) of the Kähler metric. Let us next discuss

it in more detail.

Variational derivative of Kähler coordinates. The aim of this section is to argue

that the Ansatz for the Kähler potential (4.2) and Kähler coordinates (4.3) may repro-

duce the Kähler metric in the Legendre dual variables which are in agreement with the

reduction results. In other words we are able to encounter all relevant higher-derivative

structures found in the reduction result (3.19)–(3.21). However, let us stress that to pre-

cisely match the factors in the reduction result is beyond the aim of this work. It is expected

that additional non-trivial identities relating the higher-derivative building blocks (4.14)

and (3.19)–(3.21), and (4.16) are required to perform this task.

Let us proceed with the main argument. It is straight forward to compute derivatives

of the previously encountered topological objects [19] w.r.t. to the Kähler moduli fields as

∂

∂vi
Z = Zi ,

∂

∂vj
Zj = 0 . (4.13)

Let us note that due to (4.13) no terms proportional to the logarithm of the volume —

logV — appear in the Kähler metric nor in the Legendre dual variables and thus (4.3)

and (4.2) are in agreement with the reduction result in this regard.

Let us next compute the variation of Ti in (4.9) w.r.t. to the Kähler moduli fields which

gives

∂

∂vj
Ti = − 3

V
KjTi +

5

V
KiTj + 3 Tij +

3

V
ZiKj + 4i

∫
CY4

Zmn̄ωi
n̄sωjs

m ∗ 1 , (4.14)

where

Tij =

∫
CY4

∗8
(
ωi ∧ ωj ∧ J

)
∧ X . (4.15)
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To compute (4.14) we make extensive use of the compute Algebra package xTensor [42].

We provide some more technical details in appendix A.3. There we also discuss couplings

of the Kähler metric proportional to the second Chern form of the Calabi-Yau fourfold.

By using the relation

Yij = −1

6

∫
Y4

(iZmn̄ωi
r̄mωj

n̄
r̄ + 2Zmn̄rs̄ωi

n̄mωj
s̄r) ∗ 1 , (4.16)

one infers that (4.14) can be put in relation to Zmn̄rs̄ω
n̄m
i ωr̄si and Yij . Let us emphasize

that establishing the relation of topological Kähler coordinates and the building blocks

of the Kähler metric obtained by dimensional reduction ∼ Zmn̄rs̄ω
n̄m
i ωr̄si as well as ∼

Zmn̄ωi
n̄sωjs

m has been a long standing problem posed in our previous work [15, 16].

Let us close this section by providing further arguments in favor of our conjecture. By

evaluating (4.11) one obtains that the Kähler metric Kij contains VKklKijkTj and K(iTj).16

Those structures arise naturally from the variation of the Kähler coordinates (4.14), in

particular Tij ∼ KklKijkTi + . . . . It has been argued for analogous relations in [43, 44].

Concludingly, the divisor integral Ansatz (4.3) manages to reproduce all relevant higher-

derivative building blocks which appear in the reduction result (3.19)–(3.21). However,

we also find that we have one additional object namely Yij which does not appear in

the reduction result but would be generated by our Ansatz. In [15] we had argued for a

relation in between the F and higher-derivative objects which in the light of this work

most certainly is in need of a revision. Let us close this section with remarks on the

warp-factor in the Kähler potential and coordinates and its potential connection to the

higher-derivative structures. In appendix A.3 we review the integration of the warp-factor

into a Kähler potential in particular in (A.51) — (A.62) . From the definition (A.20) one

immediately infers that Yijvj = Yjivj = 0 and thus it takes special simplified role in the

process of matching the reduction result. One may speculate that a relation Yij ∼ Fij can

be established to proof the conjectured integration into a Kähler potential which revises

the claims of [15].

4.2 Topological divisor integrals as Kähler coordinates

In this section we argue that the Ansatz for the Kähler coordinates (4.4) may be rewritten

in terms of “topological quantities” by fixing the coefficients in the Ansatz. The quotation

marks refer to an abuse of the word as the integrands can be reduced to topological inte-

grands by factorizing out Kähler moduli deformations, e.g. the intersection number of the

Calabi-Yau fourfold Kijkl is a topological quantity, in contrast to the volume of a complex

curve Kijk. Latter is not as it depends on the position in moduli space. However one

may write it in terms of the topological intersection numbers by factorizing out the Kähler

moduli fields as Kijk = Kijklvl.

16The precise form of the Kähler metric results from (4.11) by inserting our Ansatz (4.3), (4.2) and by

using the properties of the intersection numbers listed in equation (A.11). Furthermore, one may use the

relations on the higher-derivative building blocks (A.33) and (A.34).

– 17 –



J
H
E
P
0
4
(
2
0
2
0
)
0
3
2

To set the stage note that any closed form such as c̃1 may be written in terms of its

harmonic part plus a double exact contribution

c̃1 = Hc̃1 + ∂∂̄λ , (4.17)

where λ is a function on the divisor. From the closure of c̃1 and by using inferred relation

thereof in appendix A.2 one may show that the Ansatz for the Kähler coordinates (4.4)

can be rewritten as

Ti = α1

∫
Di

c̃1 ∧ c̃1 ∧ c̃1 + α2

∫
Di

c̃1 ∧ c̃2 + α3

∫
Di

c̃3 +
α4

Ki

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃1 ∧ c̃1 ∧ J̃

+
α5

K2
i

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃1 ∧ J̃2 +
α6

Ki

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃2 ∧ J̃

+ 2α6

∫
Di

∗̃6(Hc̃1 ∧ J̃) ∧ c̃2 −
(
2α4 + 8α5

) ∫
Di

∗̃6(Hc̃1 ∧ J̃) ∧ c̃1 ∧ c̃1

− 4α5

Ki

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃1 ∧ ∗6Hc̃1 , (4.18)

where Ki denotes the volume of the divisor Di. Note that in order to obtain (4.18) one

fixes the coefficients such that

α7 = 2α6 , α8 = 2α4 − 8α5 , α9 = −4α5 . (4.19)

Additionally requiring that we can write Ti as integrals on the Calabi-Yau fourfold one is

led to additional constraints which in combination with (4.8) then impose

α1 =
1

6
, α3 = 1 , α4 = − 1

12
, α5 = 0 ,

α6 =
1

2
+

1

2
α2 , α7 = 1 + α2 , α8 = −1

6
, α9 = 0 . (4.20)

One thus infers from (4.20) the final form of the higher-derivative Kähler coordinate divisor

integral to be

Ti =
1

6

∫
Di

c̃1 ∧ c̃1 ∧ c̃1 + α2

∫
Di

c̃1 ∧ c̃2 +

∫
Di

c̃3 −
1

12Ki

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃1 ∧ c̃1 ∧ J̃

+
1

2

(
1 + α2

) 1

Ki

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃2 ∧ J̃ +
(
1 + α2

) ∫
Di

∗̃6(Hc̃1 ∧ J̃) ∧ c̃2

− 1

6

∫
Di

∗̃6(Hc̃1 ∧ J̃) ∧ c̃1 ∧ c̃1 . (4.21)

Let us note that (4.21) is in indeed a sum of “topological integrals”. In this sense after

factorizing out Kähler moduli deformations one may vary the integrands of (4.21) w.r.t. the

induced metric on the divisors Di and find that the resulting variation constitutes a total

derivative. This follows straightforwardly from the properties of c̃1, c̃2, c̃3 and J̃ . The

integrands involving the hodge star ∗̃6 crucially have it act on only the harmonic part of

the first Chern-form Hc̃1.
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4.3 One-modulus compatibility

The one-modulus case can be integrated exactly into a Kähler potential as discussed in

section 3.3. Thus in this section we examine the limit h1,1 → 1 of the generic moduli

case 3.2 to impose constraints on the κ-parameters in the Ansatz. We focus on the higher-

derivative components and do not discuss the warp-factor contributions W and F here.

Recall that

Zi = (2π)3

∫
CY4

c3 ∧ ωi , Z = Zivi . (4.22)

We made the Ansatz for the Kähler potential

K = −3 log
(
V + α2

(
κ1Zivi + κ2Tivi

))
, (4.23)

and for the Kähler coordinates

ReTi = Ki + α2

(
Fi + 3Wi + κ3

Ki
V
Zjvj + κ4Zi logV + κ5

Ki
V
Tjvj + κ6Ti

)
. (4.24)

Let us next analyse these expressions (4.23) and (4.24) in the case h1,1 = 1. One finds that

Ki → 4V
3
4 , Kij → 12V

1
2 , Kijk → 24V

1
4 , Kijkl → 1 , Kij → 1

12
V−

1
2 (4.25)

and from the expression (4.9) and (4.10) that in the one-modulus case

Ti → Z̃ with Z̃ = (2π)3

∫
CY4

c3 ∧ ω0 . (4.26)

The relation (4.26) follows from (4.4) and (4.18) due to the Calabi-Yau condition which

leads to a vanishing of terms proportional to c̃1. One furthermore notes that J = ω0V
1
4

and thus

Z = V
1
4 Z̃ = (2π)3

∫
CY4

c3 ∧ J . (4.27)

Ones concludes that (4.23) and (4.24) in the limit h1,1 → 1 become

K → −3 log
(
V + α2 (κ1 + κ2)V

1
4 Z̃
)
, (4.28)

and

ReTi → 4V
3
4 + α2

(
(4κ3 + 4κ5 + κ6)Z̃ + κ4Z̃ logV

)
, (4.29)

where we have used (4.25)–(4.27).Thus one infers by comparison to the one-modulus

case (3.29) (3.30) that

κ1 + κ2 = 512 , 4κ3 + 4κ5 + κ6 = 0 , κ4 = −1152 . (4.30)

Additionally one aims to match the Legendre dual coordinates to the one modulus case. To

proceed one needs to specify the precise form of the Kähler coordinates in terms of Calabi-

Yau fourfold integrals. In section 4.1 we emphasized that the match with the divisor
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integral form remains ambiguous. Let us proceed with (4.15) for the remainder of this

section. One can then use

Li = −∂K
∂Ti

= − ∂K
∂vji

∂vj

∂Ti
, (4.31)

to find

Li =
vi

V
+
α2

V

(
κ6KijTj + (3κ1 − 4κ3 − 4κ5 − κ6)KijZj −

vi

3V
(3κ1 − κ3 − κ5 + κ4)Z

)
.

(4.32)

To compute (4.32) we only used the fact that
(
∂
∂vj
Ti
)
vi = −Tj + Zj which follows from

Tivi = Z. Lastly, by imposing (4.30) one infers a match of (3.27) with comparison of

the one-modulus limit of (4.32), i.e. the other l6M -contributions vanishes in the limit. One

can furthermore compute the scalar potential by evaluating (4.11) which can be performed

by using (A.34) and (A.11) contracted with (4.32). One finds for a non vanishing flux-

superpotential W0 that

VF =
|W0|2

V4

4κ4

3
Z , (4.33)

which by imposing (4.30) matches the one modulus case given in (3.32). Moreover, note

that from (4.33) one infers that for the Ansatz (4.2) and (4.3) the no-scale structure is

broken due to the imposed compatibility with the one-modulus case.

Let us close this section with a critical remark. In section 4.1 and 4.2 we pointed

out that the lift of the divisor integral expressions to integrals on the Calabi-Yau fourfold

leaves certain parameters unfixed. In order to compute other quantities such as (4.33)

in full generality we suggest that a better understanding of the Ti contribution is to be

developed. Note that the arguments supporting the Zi logV — correction to the Kähler

coordinates are more solid.

5 F-theory uplift to 4d, N = 1

In this section we utilize the duality between M-theory and F- theory to lift the

lM-corrections in the three-dimensional theory obtained in the previous section to

α′-corrections to the four-dimensional effective theory arising from F-theory compactified

on CY4. This requires the Calabi-Yau manifold to be elliptically fibered over a three-

dimensional Kähler base B3.

In the following we consider the classical result of the F-theory uplift [5]. One may

parametrize the shrinking of the torus fiber by the parameter ε → 0. One then infers the

scaling of the fields v0 ∼ ε and vα ∼ ε−1/2. This leads to an identification of the 3d,N = 2

multiplet field L0 = v0

V = 1
r2 with r the radius of the 4d/3d circular reduction. To keep the

base volume finite in the limit one finds

2πvαb =
√
v0vα . (5.1)

For simplicity, let us restrict to a smooth Weierstrass model, i.e. a geometry without non-

Abelian singularities, that can be embedded in an ambient fibration with typical fibers

being the weighted projective space WP231. This implies having just two types of divisors
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Di, i = 1, ..., h1,1(CY4). There is the horizontal divisor corresponding to the zero-section

D0, and the vertical divisors Dα, α = 1, ..., h1,1(B3), corresponding to elliptic fibrations over

base divisors Db
α. Denoting the Poincare-dual two-forms to the divisors by ωi = (ω0, ωα),

one expands the Kähler form as

J = v0ω0 + vαωα , (5.2)

where v0 is the volume of the elliptic fiber, and we choose the harmonic representatives of

the class. We are now in a position to discuss the F-theory uplift of the individual terms in

Ti =
1

6

∫
Di

c̃1 ∧ c̃1 ∧ c̃1 + α2

∫
Di

c̃1 ∧ c̃2 +

∫
Di

c̃3 −
1

12Ki

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃1 ∧ c̃1 ∧ J̃

+
1

2

(
1 + α2

) 1

Ki

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃2 ∧ J̃ +
(
1 + α2

) ∫
Di

∗̃6(Hc̃1 ∧ J̃) ∧ c̃2

− 1

6

∫
Di

∗̃6(Hc̃1 ∧ J̃) ∧ c̃1 ∧ c̃1 , (5.3)

and

Zα = (2π)3

∫
CY4

c3 ∧ ωα , (5.4)

where Ki is the volume of the divisor Di. Latter was discussed already in [18, 19] however,

we review these results in section 5.2. Note that the relation between the eleven-dimensional

Planck length lM and the string length ls by the M/F-theory duality is obtained as

2πls = V
1
2 lM . (5.5)

As in the F-theory limit one sends v0 → 0 decompactifying the fourth dimension by sending

to infinity the radius of the 4d/3d circle r ∼ V3/2 → ∞. Thus after the limit all volumes

of the base B3 are expressed in terms of the string units ls. In the following we omit the

warp-factor W and thus F from the discussion.

In section 5.1 we shortly comment on the uplift of F-theory involving one-loop correc-

tions resulting from integrating out massive KK-modes at one-loop in the circular reduction

from four to three dimensions. As those results are not well studied in the literature we

present an superficial discussion. Let us stress however, that as we are not able to fix all

parameters in the 3d, N = 2 coordinates the ambiguity of the “one-loop” up-lift can be

hidden in the following section in the uncertainty of the parameters. In section 5.2 we

then analyse the terms in the Kähler potential (4.2) and Kähler metric (4.3) surviving the

F-theory uplift. Finally, in section 5.3 we then combine the conclusions of sections 5.1

and 5.2 to discuss the 4d,N = 1 Kähler potential and Kähler metric. In particular we

give a string theory interpretation of the novel corrections and discuss the breaking of the

no-scale structure and the α′2-modified scalar potential.

5.1 The F-theory uplift

In this section we review the supergravity perspective of the F-theory lift identifying

the connection in-between the four and three-dimensional fields and their kinematic cou-

plings [5]. Note that by compactifying a general four-dimensional, N = 1 supergravity
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theory on a circle one matches the original four-dimensional Kähler potential with the

three-dimensional Kähler potential K or kinetic potential K̃. The resulting kinetic poten-

tial arising in the 4d/3d circular dimensional reduction takes the form

K̃(r, Tα) = − log(r2) +KF (Tα) . (5.6)

To match (5.6) with the natural three-dimensional multiplets one may split Li and Ti
such that

Li =
(
L0 ≡ R , Lα

)
, Ti = (T0 , Tα ) . (5.7)

One is then led to identify that R is given by R = r−2, where r is the radius of the 4d/3d

circle [5]. Furthermore, the fields Tα remain complex scalars in four dimensions whilst T0

should be dualized already in three dimensions into vector multiplets with (R,A0) and then

uplifted to four dimensions as it arises from the four-dimensional metric. Note that one

computes the dualized kinetic potential K̃(R,ReTα) by Legendre dualization as discussed

in 3.1. In the F-theory limit one then identifies

Lαb = Lα|ε=0 , T bα = Tα|ε=0 , (5.8)

where we denote the four-dimensional fields Lαb and T bα due to the fact that they correspond

to fields with couplings related to the base B3 representing the Calabi-Yau orientifold in

the IIB picture, i.e. in the F-theory limit. Let us next review the classical analysis to

determine KF (T bα). Evaluating the intersection numbers Kijkl for an elliptic fibration the

non-vanishing couplings are given by

K0αβγ = Kbαβγ , Kbαβγ =

∫
B3

ωα ∧ ωβ ∧ ωγ . (5.9)

The kinetic potential and coordinates take the following form for an elliptic fibration

K̃(Li) = log(R)− 2 log
(
Vb +O(R)

)
+ 4 , (5.10)

ReTα = Kbα +O(R) , Vb =
1

3!
Kαβγvαb v

β
b v

γ
b , (5.11)

or equivalently

K̃(Li) = log(R) + log
( 1

3!
KbαβγLαb L

β
bL

γ
b +O(R)

)
+ 4 , (5.12)

ReTα =
1

2!

KbαβγL
β
bL

γ
b

V̂b(Lb)
+O(R) , V̂b(Lb) =

1

3!
KαβγLαb L

β
bL

γ
b , (5.13)

where we have replaced the Lα with Lαb by means of (5.8) and made use of the relation

V̂b(Lb) = (Vb)−2. Performing a Legendre transformation in order to express everything in

terms of T bα and comparing the result with (5.6) with R = r−2 one encounters in the limit

r →∞ that

KF (T bα) = −2 log
(
Vb
)

= log
(
V̂b(Lb)

)
, ReT bα = Kbα =

1

2!

KbαβγL
β
bL

γ
b

V̂b(Lb)
, (5.14)

where one has to solve T bα for Lαb (T bα) and insert the result into KF .
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Let us next comment on the case present in this work namely where one encounters

higher-order l6M-corrections to the three-dimensional fields. As suggested by the generic

4d/3d circular reduction result and one infers for the corrected the Kähler coordinates that

ReTα → ReT bα , (5.15)

where we analyse ReT bα in the next section 5.2. The corrected Kähler potential (4.2) can

be re-written as

K = − log (R )− 2 log

(
Vb
(

1 + α2 3

2Vb
(
(512− κ2)Zbαvαb + κ2T bαvαb

))
+O(R)

)
, (5.16)

by making use of the sub-leading order of α2. Thus in the limit r →∞ one encounters

KF (T bα) = −2 log
(
Vb + α2

(
(768− κ̃2)Zbαvαb + κ̃2T bαvαb

)
, (5.17)

where is Zbα the F-theory limit of Zα derived in the following section 5.2 and κ̃2 = 3
2κ2.

The identification of the dependence T bα is implicit.

Let us close this section with remarks on one-loop corrections to the F-theory limit

resulting from integrating out massive KK-modes which is expected to modify the rela-

tion (5.15). The log V-correction to the Kähler coordinates (4.3) is reminiscent of such a

one loop correction. To see this one is to preform a dimensional reduction of a general

4d, N = 1 supergravity theory on the circle to three dimensions where massive KK-modes

are integrated out at one-loop. The case for pure supergravity is discussed in [45] which

yields the three-dimensional Kähler coordinates

ReT 1-loop
0 =

2π2

R
− 7

48
log(R) . (5.18)

However, we are interested in a theory with additional chiral multiplets and vector mul-

tiplets which will lead to a modification of the purely gravitational result (5.18). We are

not aware of such a discussion in the literature and thus have no rigorous tool to argue

for the up-lift of the Zα logV correction in F-theory except the comments made in [14].

Let us assume in the following that the log V-correction in the Kähler coordinates (4.3) is

absorbed entirely by the F-theory uplift. This leads us to write

ReTi = Ki + α2κ4Zi logV , (5.19)

where for simplicity we only write the logarithmic correction to the Kähler coordinates.

Considering (5.19) on the elliptically fibered Calabi-Yau fourfold one finds

ReT0 =
1

R
− α2κ4

3
Zb0 logR− α2κ4

3
Zb0 log

(
(Vb)−3 +O(R)

)
,

ReTα = Kbα −
α2κ4

3
Zbα log(R)− α2κ4

3
Zbα log

(
(Vb)−3 +O(R)

)
. (5.20)

The assumption that it is absorbed in the uplift immediately leads us to a revision of (5.15)

to

ReT 1-loop
0 → 1

R
− q0 logR+

1

2
q0K

4d ,

ReT 1-loop
α → ReT b tree

α − qα logR+
1

2
qαK

4d , (5.21)
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where K4d is the four-dimensional classical Kähler potential. By matching (5.20) and (5.21)

one fixes the charges to qi = −α2κ4
3 Z

b
i +O(R). Note that (5.21) and (5.20) are very sensitive

to a conspiration of factors. Thus at this stage as the one-loop F-theory uplift remains

elusive it cannot be excluded that a finite contribution in (5.20) may survive the F-theory

uplift such as

ReT bα = Kbα + α2κ4Zbα log
(
Vb
)
. (5.22)

Let us stress that different assumptions lead us to find (5.21) and (5.22) but a honest one-

loop computation needs to be performed to decide their validity. Note that (5.21) would

imply that by integrating out massive Kaluza-Klein modes only the three-dimensional

Kähler coordinates receive modifications whilst the Kähler potential remains uncorrected.

Critical comments on Kaluza Klein one-loop corrections. As discussed in this

section the fate of the correction (5.22) in the F-theory approach can’t be determined with

certainty at this stage. The study of Kaluza-Klein induced loop corrections to the Kähler

potential of 3d,N = 2 and 3d,N = 1 of string effective supergravity actions remains an

open problem. Not only in the reduction from four to three dimensions but also form the

reduction from eleven to three dimensions KK induced one-loop terms may be generated.

5.2 Topological integrals on elliptic Calabi-Yau fourfolds

In this section we discuss the F-theory uplift of the higher-order lM -corrections appearing

in (5.3) and (5.4) resulting in α′-corrections. For topological integrals we can use adjunction

formulae to express Chern-classes of CY4 and the divisors Dα in terms of Chern-classes of

the base B3. For details of the derivation of the adjunction formulae see appendix B.2.

One infers that

c̃3(Dα) = c3(B3)− c1(B3) ∧ c2(B3)− 60c3
1(B3)− 60c2

1(B3) ∧ ω0 − c̃2(Dα) ∧ ωα ,
c̃2(Dα) = c2(B3) + 11c2

1(B3) + 12c1(B3) ∧ ω0 + ω2
α ,

c̃1(Dα) =− ωα , (5.23)

where the ci=1,2,3(B3) on the r.h.s. of these expressions denote the Chern classes of B3

pulled-back to CY4 restricted to Dα. Note that the Poincare duals of the harmonic (1, 1)-

forms in (5.23) are given by PD(ω0) = B3, and PD(ωα) = Dα. We choose to omit the

pull-back map in expressions in this section for notational simplicity. One furthermore

finds that

ω2
0 = −c1(B3) ∧ ω0 . (5.24)

Note that the new contribution to the Kähler coordinates Ti is expressed as integrals on the

divisors Di where the Kählerform is inherited from the ambient CY4. One may thus use

the decomposition (5.2) as well for J̃ . In the F-theory limit one finds the scalings discussed

at the beginning of this section to imply

vα ∼ ε−
1
2 , v0 ∼ ε ⇒ Vα = Kα ∼ ε0 . (5.25)
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Using (5.23) and (5.25) one infers the contributions in (4.3) and (4.2) which survive the F-

theory limit. For the object defined as the third Chern-form of the Calabi-Yau fourfold (5.4)

one finds in the limit

Zα −→ Zbα = −60 (2π)2

∫
Dbα

c1(B3) ∧ c1(B3) . (5.26)

The leading order contributions which are non vanishing in the limit must scale as Tα ∼
O(ε0). The integrals in (5.4) which thus contribute are∫

Dα

c̃1 ∧ c̃2 −→ −12

∫
Dbα

c1(B3) ∧ ωbα ,∫
Dα

c̃3 −→ −60

∫
Dbα

c1(B3) ∧ c1(B3)− 12

∫
Dbα

c1(B3) ∧ ωbα ,∫
Dα

∗̃6(Hc̃1 ∧ J̃) ∧ c̃2 −→ −
12

Kbα

∫
Dbα

ωbα ∧ Jb
∫
Dbα

c1(B3) ∧ Jb + 12

∫
Dbα

c1(B3) ∧ ωbα ,

1

Kα

∫
Dα

c̃1 ∧ J̃2

∫
Dα

c̃2 ∧ J̃ −→ −
12

Kbα

∫
Dbα

ωbα ∧ Jb
∫
Dbα

c1(B3) ∧ Jb , (5.27)

where we used (A.14) and where Db
α are the divisors of the base such that their pre-

image w.r.t. the projection π : CY4 → B3 gives the vertical divisors of the Calabi-Yau

fourfold as Dα = π−1(Db
α).17 One thus infers the divisor integral contribution of the

Kähler coordinates in the limit to take the form

Tα −→ T bα = Zbα − 18(1 + α2) (2π)2 1

Kbα

∫
Dbα

ωbα ∧ Jb
∫
Dbα

c1(B3) ∧ Jb (5.28)

with Kbα = 1
2!

∫
B3
ωbα ∧ J b2 the volume of the divisor Db

α and the Kähler form Jb = ωbαv
α
b .

For further use let us define

Wb
α :=

(2π)2

Kbα

∫
Dbα

ωbα ∧ Jb
∫
Dbα

c1(B3) ∧ Jb , (5.29)

U bα := (2π)2

∫
Dbα

c1(B3) ∧ ωbα . (5.30)

The contribution (5.29) takes a special role as it depends on the Kähler form of the divisor

and thus is non-vanishing upon taking derivatives w.r.t. Kähler moduli fields. Note that

the F-theory uplift absorbs two-derivatives along the fiber thus the resulting corrections

are of order α′2. It would be interesting to establish a connection to the α′2-corrections

to the Kähler potential predicted in the Heterotic string [46]. The U bα-correction (5.30)

vanishes from (5.28) due to a vanishing pre-factor. As one may find that our constraints

imposed are too restrictive this correction may survive if an additional parameter freedom

17Note that in order to rewrite the integrals we note that e.g.∫
B3

c1(B3) ∧ ωbα ∧ ωbα =

∫
Dbα

c1(B3) ∧ ωbα ,

where we again omit the pull-back map on c1(B3) in the r.h.s. of the equality.
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is somehow introduced in the present discussion of divisor integrals. In the following we

thus as well comment on its potential origin and interpretation.

Let us next comment on some special cases before providing a Type IIB string in-

terpretation of the α′-corrections in (5.26) and (5.28). Firstly, for a trivial elliptic fibra-

tion, i.e. CY4 = CY3 × T 2 with CY3 a Calabi-Yau threefold, one infers that ci(CY4) =

ci(CY3), i = 1, 2, 3, in particular c1(CY3) = 0. Furthermore, the divisors relevant in the

Kähler coordinates (4.3) are a direct product and obey c1(Db
α × T 2) = c1(Db

α), c2(Db
α ×

T 2) = c2(Db
α) and c3(Db

α × T 2) = 0, see appendix B.2 for details. One infers that in this

case all corrections in (5.27) and (5.26) go to zero due to their scaling behavior in the limit

v0 → 0 and thus the α′-corrections in the resulting 4d, N = 2 theory are absent.

Secondly, one may study other N = 2 F-theory vacua by taking Y4 = K3 × K3, a

configuration discussed in [47] with a focus on α′-corrections. In this case c3(Y4) = 0

and thus the Zb-correction (5.26) vanishes identically. The corrections resulting from the

divisors (5.27) vanish due to analogous arguments as in the above case. Concludingly, the

α′-corrections discussed in this work vanish in these N = 2 set-ups.

Finally, let us stress that there are several additional lM-corrections to the fourfold

volume surviving the F-theory limit. Let us again go back to the example of the product

geometry Y4 = X3 × T 2, without D7-branes. The α′-corrections involving the Type IIB

axio-dilaton τ have been computed by integrating out the whole tower of T 2 Kaluza-Klein

modes of the 11d supergravity multiplet [9], which results in v0− 1
2 χ(CY 3)E3/2(τ, τ̄) with

E3/2 the non-holomorphic Eisenstein series. Note that it obeys the correct scaling behavior

to survive the F-theory limit. One expects that the proper treatment of the KK-modes in a

generic elliptic fibration is crucial to encounter the Euler-characteristic α′3-correction [20]

to the 4d,N = 1 Kähler potential inside the F-theory framework.18

5.3 4d, N = 1 Kähler potential and coordinates

The discussion of the uplift of the α′-corrections in the previous sections 5.1 and 5.2 enables

us to infer the resulting 4d,N = 1 Kähler potential and coordinates. Let us use the dimen-

sionless coefficients from now one, where all dimensionful quantities, e.g. α′-corrections are

expressed in terms of the string length ls, we thus write

α2 → 1

32 · 213
. (5.31)

One infers that

K4d,N=1 = −2 log
(
Vb + α2

(
(768− κ̃2)Zbαvαb + κ̃2T bαvαb

))
, (5.32)

and

ReT bα = Kbα + α2

(
κ3
Kbα
Vb
Zvαvαb + κ5

Kbα
Vb
T vα vαb − 4(κ3 + κ5) T bα

)
. (5.33)

Note that we have argued in 5.1 that the logarithmic term may be absorbed in the F-theory

uplift as a one-loop correction and is thus not present in (5.33). To verify this assumption

18An alternative approach was taken in [48].
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is of great interest. One may however perform the uplift of this term which then leads to

a modification of (5.33) of the form

α2 κ4Zbα logVb , (5.34)

as suggested in (5.22). Note that (5.32) and (5.33) depend on four unfixed parameters, due

to the additional freedom in (5.28). Further studies are required to proof the existence of

the α′-corrections in (5.32) and (5.33) and especially (5.34). Nevertheless, let us proceed

by giving a string theory interpretation of the novel corrections to the four-dimensional

Kähler potential and coordinates.

String theory interpretation and weak string-coupling limit. We follow the weak

string-coupling limit by Sen [17] which is performed in the complex structure moduli space

of CY4 to give a weakly coupled description of F-theory in terms of Type IIB string theory

on a Calabi-Yau threefold with an O7-plane and D7-branes. Where the CY3 is a dou-

ble cover of the base B3 branched along the O7-plane. Let us stress that the class of

this branching locus is the pull-back of c1(B3) to CY3. In section 5.2 we considered the

topological divisor integrals on the geometries described by the smooth Weierstrass model

i.e. non-Abelian singularities are absent. In this case Sen’s limit contains a single recom-

bined D7-brane wrapping a divisor of class 8c1(B3). This follows from the seven-brane

tadpole cancellation condition. As was noted in [49, 50] this D7-brane is of the character-

istic Whitney-umbrella shape. It would be interesting to extend the study to geometries

with non-Abelian singularities analogously to [19].

The Zbα-correction (5.26) was discussed extensively in [18, 19] and we refer the reader

to this work for details. Let us mention here however, that in more generic geometries it

morally counts the number of self-intersections of stacks of D7-branes and the O7-plane.

It should arise at tree-level in string theory and is of order α′2. In the geometry studied in

this work this can be checked by identifying

VD7∩O7 = 8

∫
CY3

c2
1(B3) ∧ Jb , (5.35)

where we omitted the pull-back map from B3 to its double cover CY3 in the integrand.

To give the string theory interpretation one identifies the string amplitude capturing it by

considering the Einstein-Hilbert term of the four-dimensional action in the string frame19

S(4) ⊃
1

(2π)7 l2sg
2
IIB

∫ (
Vsb −

5π2

2
gIIBVsD7∩O7

)
Rssc ∗s4 1 . (5.36)

Let us recall the general formula for the Euler number of Riemann surfaces, possibly non-

orientable and with boundaries, is

χ(Σ) = 2− 2g − b− c , (5.37)

where g, b, c denote the genus, the number of boundaries, and the number of cross caps,

respectively. One thus infers that the correction in (5.36) arises from a string amplitude

19The superscript s denotes quantities computed using the string frame metric.
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that involves the sum over two topologies, namely the disk g = c = 0, b = 1 and the

projective plane g = b = 0, c = 1. These are tree-level amplitudes of the orientable open

strings and non-orientable closed strings which is in agreement with the property that

the correction is intrinsically N = 1, i.e. its presence is constrained by having D7-branes

intersecting with an O7-plane.

Let us next give a string theory interpretation of (5.28). In fact, at weak string coupling

one infers that ∫
Dbα

c1(B3) ∧ Jb ∼
(
VD7∩Db

α
+ 4VO7∩Db

α

)
, (5.38)

where VD7 and VO7 are the volumes of the D7-brane and the O7-plane in CY3, respectively.

Both volumes are in the Einstein frame and in units of ls. By tadpole cancellation one

infers VD7 = 8VO7. It follows that∫
Dbα

c1(B3) ∧ ωbα ∼ D7 ∩Db
α ∩Db

α + 4 O7 ∩Db
α ∩Db

α, (5.39)

are the self-intersection curves of the base Divisors Db
α intersected with the D7-brane and

the O7-plane in CY3, respectively. Lastly, the Wb
α-correction in (5.29) which is of order α′2

and depends on the volume the self intersection curve of Db
α∫

Dbα

ωα ∧ Jb ∼ VDbα∩Dbα , (5.40)

and furthermore ∫
Dbα

c1(B3) ∧ Jb ∼ VD7∩Db
α

+ 4VO7∩Db
α
, (5.41)

the volume to the intersection curves of the D7-branes and O7-planes with the base divisors

Db
α. One concludes that (5.29) is a product of the curve volumes (5.40) and (5.41) weighted

over the volume of the divisor Db
α. It is of the same order in the string coupling as (5.36)

and is thus expected to arise equivalently from a tree-level amplitude of the orientable open

string or non-orientable closed string amplitude in an orientifold background.

4d scalar potential and no-scale condition. We next comment on the scalar poten-

tial resulting from (5.32) and (5.33). We assume that the complex structure moduli have

been fixed and thus the superpotential remains to be a function of the Kähler moduli. The

F-term scalar potential of a 4d, N = 1 theory is well known

V 4d
F = eK

(
KαβD

αWDβW − 3
∣∣W ∣∣2) , (5.42)

with the superpotential W = W (ReTα) and the Kähler covariant derivative given by

DαW =
∂K

∂ReTα
W +

∂W

∂ReTα
, Kαβ =

(
∂ReTα∂ReTβK

)−1
. (5.43)

Let us next discuss the special case in which the superpotential is generated by fluxes in

F-theory (3.33) and non-perturbative effects are absent. We denote W0 as the vacuum

expectation value of the superpotential resulting after stabilizing the complex structure

– 28 –



J
H
E
P
0
4
(
2
0
2
0
)
0
3
2

moduli. One then infers that for the Kähler potential (5.32) and Kähler coordinates (5.33)

the F-term scalar potential (5.42) the resulting corrections at order α′2 vanish. This can-

cellation was observed in [51, 52]. The terms in the Kähler coordinates (5.33) admit a

functional structure which remarkably never breaks the no-scale condition. Thus the sole

contribution to the scalar potential at order α′2 may arise from the speculative logarithm

term (5.34) to be

VF =− α2 3|W0|2

2V3
b

κ4Zbα vαb . (5.44)

Let us emphasize that this is due to an assumption on the F-theory uplift. As the uplift of

this one-loop term remains elusive note that the pre-factor of the Zbα-correction in (5.44)

might be subject to change and may vanish. In the further context of this work however it

is suggested that the α′2-correction breaks the no-scale structure as seen from (5.44) as it

is interesting to study potential phenomenological consequences.20 Let us emphasize that

the corrections Zbα-correction (5.44) is of order α′2 and thus leading with respect to the

well known Euler-characteristic correction [20]. It is of interest to study the connection to

the correction discussed in [53].

Let us close this section with two critical remarks. Firstly, the F-theory lift is performed

by shrinking the fiber i.e. making the geometry singular and thus other higher-order correc-

tions may become relevant. However, let us emphasize that all the corrections discussed in

this work are of topological nature and thus are expected to be protected in the F-theory

limit. Secondly, let us stress that we did not aim to prove the integration into 3d,N = 2

variables of the reduction result. However, we suggest an Ansatz for the Kähler coordi-

nates and Kähler potential which allow to obtain all the higher-derivative couplings in the

Kähler metric obtained by dimensional reduction from the l6M eight-derivative couplings to

eleven-dimensional supergravity. This is a necessary but not sufficient step, and it thus

remains to ultimately decide on the fate of the α′-corrections Wb
α and Zbα. In particular,

this applies to the phenomenologically interesting correction to the scalar potential (5.44).

5.4 Moduli stabilisation

In this section we comment on the vacuum structure of the potential generated by the

novel conjectured α′-correction (5.44). Furthermore, we study the interplay with the well

known Euler-characteristic α′3-correction to the Kähler potential

ξ = −g−
3
2

s (2π)3 ζ(3)

4
χ(CY3) , (5.45)

with χ(CY3) Euler-characteristic of CY3. Note that it is of order O(α′3) and it depends on

the Type IIB string coupling.21 It is obtained from the parent N = 2 theory arising from

compactification of Type IIB on Calabi-Yau orientifolds [20, 54].22 Note that Calabi-Yau

20Not at least to increase the interest in the tedious study of α′-corrections.
21The correction is known to depend on the dilaton e−Φ. We assume that the dilaton is stabilized by the

flux background and we thus encounter the string coupling constant gs = 〈eΦ〉.
22To compute the correction to the scalar potential resulting from (5.45) we use the Kähler potential and

coordinates obtained in [54].
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threefold in IIB is the double cover of the base B3 branched along the O7-plane. Thus in

particular we find that χ(CY3) = χ(B3). As we discuss intrinsic N = 1 vacua in this work

we continue in the terminology of F-theory. We comment on the potential F-theoretic origin

of the correction (5.45) in section 5.2. Note that the string coupling dependence of (5.45)

makes it parametrically relevant although being sub-leading in α′ compared to (5.44).

Let us remark on the stability of the following scenarios in regard to higher-order

corrections in α′ and gs in the light of [55]. The classical correction to the scalar potential

vanishes due to the no-scale condition and thus the leading order gs and α′-correction

determine the vacuum. Higher-order α′-corrections are parametrically under control as

one stabilizes the internal space at large volumes. Moreover the string coupling constant

gs may be achieved to be parametrically small thus higher-order string loop corrections may

be safely neglected. Details depend however on the relative pre-factors of the perturbative

terms given by topological quantities of the internal space.

Extrema in the generic moduli case. In this section we discuss a scenario in which

all Kähler moduli might be stabilized in a non-supersymmetric anti-de Sitter minimum for

manifolds with χ(B3) < 0. We argue for a model independent extremum and provide a

sufficient condition for the existence of a local minimum in generic geometric backgrounds

for Kähler cone coordinates vαb > 0 to be,

〈Kbα〉〈Kbβ〉 vαb v
β
b > −1

2
〈Kbαβ〉〈Vb〉 vαb v

β
b , ∀ v

α
b . (5.46)

However, to show that is a true local minimum further studies in explicit geometries are

required. The stabilization is achieved by an interplay of the correction proportional to Zbα
in (5.44) with the α′3 Euler-characteristic correction (5.45) to the Kähler potential [20, 54].

To achieve positivity of the four-cycle volumes in the vacuum the α′-corrections additionally

needs to obey strict positivity and negativity conditions, i.e. the geometric background must

be suitable. Note that due to a similar potential all Kähler moduli may be stabilized for

χ(B3) > 0 as discussed in [2]. Let us emphasize that the we do not require non-perturbative

effects which are generically exponentially suppressed by the volume of the cycles. In future

work [56] we study a modified scenario by additionally considering the α′3g
−3 / 2
s -correction

to the scalar potential discussd in [2, 21]. The resulting potential in the large volume limit

then takes the form23

VF =
3gs|W0|2

4V3
b

(
ξ + κ̂4Zbα vαb

)
, (5.47)

where κ̂4 = − 1
64 . We note that the functional structure is similar to the α′-correction

discussed in [2, 21].24 One finds the AdS vacua where all four-cycle volumes Kbα are stabi-

lized at

〈Kbα〉 = Λ2Zbα , with Λ =
9 ξ

8 |κ̂4|
· 1

Zbα〈vα0 〉
, (5.48)

23We refer to the large volume limit to the regime at large volumes Vb and weak string coupling such

that higher order α′ and gs-corrections can be neglected.
24The overall factor gs/2 in (5.47) stems from the dilation dependence of the Kähler potential.
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where 〈vα0 〉 = 1
Λ〈v

α
b 〉 is the expectation value of the fields such that

Kbαβγ〈v
β
0 〉〈v

γ
0 〉 = Zbα . (5.49)

This scaling is required to ensure that Zbα〈vαb 〉 = 9 ξ / (8 |κ̂4|). In other words this additional

condition can always be satisfied as one concludes from (5.49) which fixes 〈vα0 〉 uniquely,

and thus implies (5.48). One infers the volume in the extremum to be

〈Vb〉 =
3 ξ Λ2

8 |κ̂4|
∼ g−

9
2

s , (5.50)

and moreover that the value of the potential in the extremum takes the form

〈V F 〉 = −3 gs ξ

32
· |W0|2

〈Vb〉3
∼ −g13

s |W0|2 < 0 . (5.51)

Note that since χ(B3) < 0 one infers that ξ > 0. In the weakly coupled string regime

gs < 1 one generically achieves a large positive overall volume 〈Vb〉 > 0 in (5.50). Moreover,

positivity of all four-cycles volumes 〈Kbα〉 > 0 for Zbα > 0 for all α = 1, . . . , h1,1(B3) in (5.48)

and (5.49).25 From (5.51) one finds that one may achieve small values of 〈V F 〉 also for

a moderately large |W0| due to the strong string coupling suppression. By analyzing the

matrix of second derivatives in the extremum one infers〈 ∂2 VF

∂vαb ∂v
β
b

〉
=

3 gs |W0|2Λ2

4 〈Vb〉5
(
γ1Kbαβ + γ2ZbαZbβ

)
, γ1 =

9

64 |κ̂4|
ξ2 , γ2 =

3

4
ξΛ2 , (5.52)

where one concludes that γ1 > 0 and γ2 > 0. The matrix γ2ZbαZbβ is positive semi-define,

however it was argued in [57] that Kbαβ is of signature (1, h1,1(B3)), i.e. it exhibits one

positive eigenvalue in the direction of the vector 〈vαb 〉. Thus to argue for a local minimum

one needs to analyse (5.52) in explicit models. One may rewrite (5.52) to be in the form〈 ∂2 VF

∂vαb ∂v
β
b

〉
=

9 gs |W0|2ξ
16 〈Vb〉4

(
1

〈Vb〉
〈Kbα〉〈Kbβ〉+

1

2
〈Kbαβ〉

)
, (5.53)

from which one infers a sufficient condition on the geometry for positive semi-definiteness

of (5.53) and thus for the existence of a local minimum to be

〈Kbα〉〈Kbβ〉 vαb v
β
b > −

1

2
〈Kbαβ〉〈Vb〉 vαb v

β
b , ∀ v

α
b . (5.54)

Note that in this paragraph we have assumed that the self-intersection numbers are van-

ishing to argue for the vanishing of the Wb
α in the scalar potential (5.47). Thus (5.54) is

automatically satisfied by the non-vanishing of all four-cycle volumes in the vacuum. Thus

one encounters a local minimum for those geometries. Let us next compare the gravitino

mass with the string and Kaluza-Klein scale [58] for which one finds that

mS ∼ 〈Vb〉−
1
2 , mKK ∼ 〈Vb〉−

2
3 , m3/2 ∼

|W0|
〈Vb〉

. (5.55)

25Note that the mechanism could also be applied for different sign of the pre-factor of the Zbα-correction

in (5.47) and would then lead to Zbα > 0 for all α = 1, . . . , h1,1(B3) with opposite overall sign in (5.48)

and (5.49).
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Thus one infers by using (5.50) that

m3/2

mS
∼ |W0|

2|Λ|

√
3

ξ
∼ g

9
4
s |W0| ,

m3/2

mKK
∼ g

3
2
s |W0| ,

mKK

mS
∼ g

3
4
s . (5.56)

Thus for a weakly coupled string regime the hierarchies in (5.56) can be satisfied accord-

ingly. Let us conclude by noting that this mechanism might lead to a stabilization for all

four-cycles for geometric backgrounds with χ(B3) < 0. This is achieved solely by an inter-

play of the Euler-Characteristic α′3-correction [20] with the α2-correction [18, 19]. As the

volume can be stabilized at sufficiently large values higher-order α′-corrections are under

control i.e. the vacuum may not be shifted.

Let us close this section with some remarks concerning the recent conjecture by [22]

which in particular implies the absence of local de Sitter extrema in any controlled string

theory set-up. Note that the discussion in this section can be performed analogously for

χ(B3) > 0 which then leads to a de Sitter extremum as seen by equation (5.51) with

ξ < 0. To achieve a positive overall volume Vb > 0 in (5.50) and positivity of all four-cycles

volumes Kbα > 0 one infers that Zbα < 0 for all α = 1, . . . , h1,1(B3) and the opposite overall

sign choice in (5.48) and (5.49) which as well constitutes a solution. It would be interesting

to study explicit geometries where Zbα takes values such that a de Sitter extremum is

obtained. Let us close this section by emphasizing that the scenario in this section might

thus suffice as the starting point for a concrete counter example to the conjecture [22].

6 Conclusions

In this work we established a connection in between eight-derivative l6M-couplings in eleven-

dimensional supergravity i.e. the low wave length limit of M-theory, and α′-corrections to

the Kähler potential and Kähler coordinates of four-dimensional N = 1 supergravity the-

ories. The derivation relies on the M/F-theory duality. In particular we argue for two

potential novel corrections to the Kähler coordinates and potential at order α′2. Notewor-

thy, one of them breaks the no-scale structure. However, we are not able to ultimately

decide on the fate of the proposed correction as a more complete analysis of the 3d,N = 2

variables is required. Furthermore, it was the intention of the author to review our previous

work to allow to emphasize the open questions in this research program in a self-contained

way. We provide the completion of the eleven-dimensional G2R3 and (∇G)2R2-sectors

relevant four Calabi-Yau fourfold reductions. We suggest that it would be of great interest

to match our proposal against 5-point and 6-point scattering amplitudes. Furthermore,

we provide the reduction result of the G2R3 and (∇G)2R2-sectors for Calabi-Yau fourfolds

with an arbitrary number of Kähler moduli.

We conjecture a divisor integral basis for the three-dimensional Kähler coordinates at

higher-order in lM. This allows us to derive the non-topological higher-derivative couplings

obtained in the dimensional reduction from the novel Ansatz for the Kähler potential and

Kähler coordinates. We suggest that in order to prove the integration into the proposed

3d, N = 2 variables additional non-trivial identifies relating the higher-derivative building

blocks are required. Then this amounts to fixing the remaining parameters in our Ansatz.

– 32 –



J
H
E
P
0
4
(
2
0
2
0
)
0
3
2

We are able to fix several parameters by ensuring compatibility with the one-modulus case

in which the Kähler potential and Kähler coordinates can be determined exactly as no

non-trivial higher-derivative couplings appear.

To connect the l6M-corrections in the three-dimensional Kähler coordinates and Kähler

potential to the α′2-corrections in the 4d,N = 1 theory we employ the well understood

classical F-theory uplift. Although it is expected that a one-loop modification of the F-

theory lift is needed we argue that in particular the novel log(V)- contribution to the Kähler

potential and coordinates. It would be interesting to perform a dimensional reduction of a

generic 4d,N = 1 supergravity theory in particular with vector and chiral multiplets where

the Kaluza Klein-modes are integrated out at one-loop extending the work of [45]. The

novel divisor integral contribution in four-dimensions is of order α′2. Let us stress that the

ultimate fate of the novel α′-corrections to the scalar potential shall be decided on in a

forthcoming work. Let us continue with a critical remark. The F-theory lift is performed

by shrinking the fiber of the Calabi-Yau fourfold, i.e. the geometry becomes singular in this

process. In this limit other higher-order UV-corrections may become relevant and modify

the uplift. However, the corrections discussed in this work are of topological nature and

are thus expected to be protected in the F-theory limit.

Although the resulting α′2-corrected scalar potential arisies from a conjectured cor-

rection to the Kähler coordinates it is of interest to study possible scenarios to obtain

stable vacua. We discuss a scenario in which the Zbα-correction at order α′2 interplays

with the α′3 Euler-characteristic correction to achieve a non-supersymmetric anti-de Sitter

minimum for geometric backgrounds with χ(B3) < 0. Moreover constraints on the topo-

logical quantities of the geometric backgrounds are derived such that a minimum may be

obtained. It would be of great interest to realize our constraints in explicit examples of

elliptically fibered Calabi-Yau fourfolds. Furthermore, we note that the scenarios provide

a model independent de Sitter extremum for geometric backgrounds with χ(B3) > 0. One

may extend the present analysis [56] by additionally considering the α′3-correction to the

scalar potential discussd in [2, 21]. Lastly, let us point the reader to an obvious extension

of the present work. Our analysis of geometries does not allow for no-Abelian singularities,

i.e. no non-Abelian four-dimensional gauge fields are present. It would be highly desirable

to analyse the uplift of the Kähler potential and Kähler coordinates for such backgrounds.
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A Conventions, definitions, and identities

In this work we denote the eleven-dimensional space indices by capital Latin letters M,N =

0, . . . , 10 and the external ones by µ, ν = 0, 1, 2, and the internal complex ones by m,n, p =

1, . . . , 4 and m̄, n̄, p̄ = 1, . . . , 4. The metric signature of the eleven-dimensional space

is (−,+, . . . ,+). Furthermore, the convention for the totally anti-symmetric tensor in

Lorentzian space in an orthonormal frame is ε012...10 = ε012 = +1. The epsilon tensor in d

dimensions then satisfies

εR1···RpN1...Nd−pεR1...RpM1...Md−p = (−1)s(d− p)!p!δN1
[M1

. . . δNd−pMd−p] , (A.1)

where s = 0 if the metric has Riemannian signature and s = 1 for a Lorentzian metric. We

adopt the following conventions for the Christoffel symbols and Riemann tensor

ΓRMN =
1

2
gRS(∂MgNS + ∂NgMS − ∂SgMN ) , RMN = RRMRN ,

RMNRS = ∂RΓMSN − ∂SΓMRN + ΓMRTΓT SN − ΓMSTΓTRN , R = RMNg
MN ,

(A.2)

with equivalent definitions on the internal and external spaces. Written in components,

the first and second Bianchi identity are

ROPMN +ROMNP +RONPM = 0

(∇LR)OPMN + (∇MR)OPNL + (∇NR)OPLM = 0 . (A.3)

Differential p-forms are expanded in a basis of differential one-forms as

Λ =
1

p!
ΛM1...Mpdx

M1 ∧ . . . ∧ dxMp . (A.4)

The wedge product between a p-form Λ(p) and a q-form Λ(q) is given by

(Λ(p) ∧ Λ(q))M1...Mp+q =
(p+ q)!

p!q!
Λ

(p)
[M1...Mp

Λ
(q)
M1...Mq ]

. (A.5)

Furthermore, the exterior derivative on a p-form Λ results in

(dΛ)NM1...Mp = (p+ 1)∂[NΛM1...Mp] , (A.6)

while the Hodge star of p-form Λ in d real coordinates is given by

(∗dΛ)N1...Nd−p =
1

p!
ΛM1...MpεM1...MpN1...Nd−p . (A.7)

Moreover,

Λ(1) ∧ ∗Λ(2) =
1

p!
Λ

(1)
M1...Mp

Λ(2)M1...Mp∗1 , (A.8)

which holds for two arbitrary p-forms Λ(1) and Λ(2).
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Let us next define the intersection numbers, where {ωi} are harmonic w.r.t. to the

Calabi- Yau metric gmn̄

Kijkl =

∫
X
ωi ∧ ωj ∧ ωk ∧ ωl , Kij = Kijklvl , Kij =

1

2
Kijklvkvl,

Ki =
1

3!
Kijklvjvkvl , V =

1

4!
Kijklvivjvkvl . (A.9)

Let us review well known identities such as∫
ωi ∧ ∗8ωj = −Kij +

1

V
KiKj . (A.10)

Let us note that the intersection numbers obey the properties

Kivi = 4V , Kijvj = 3Kj , Kijkvk = 2Kij

Kijklvl = Kijk , KikKjk = δij , KikKk =
1

3
vi( ∂

∂vk
Kij
)
Kj = −2

3
δik ,

( ∂

∂vk
Kij
)
Kjl = −KijKkjl , (A.11)

with the inverse intersection matrix Kij . The intersection numbers for the Kähler base are

given by

Kbαβγ =

∫
B3

ωα ∧ ωβ ∧ ωγ , Kαbβ = Kbαβγv
γ
b , Kbα =

1

2
Kbαβγv

β
b v

γ
b ,

Vb =
1

3!
Kbαβγvαb v

β
b v

γ
b . (A.12)

One may show that for a six-dimensional Kähler manifold

∗6 (ωbα ∧ Jb) =
Kbα
Vb
Jb − ωbα , (A.13)

with intersection numbers defined analogously to (A.9). In particular, this implies the

analogous relation∫
Dα

∗̃6(Hc̃1 ∧ J̃) ∧ c̃2 =
1

Kα

∫
Dα

c̃1 ∧ J̃2

∫
Dα

c̃2 ∧ J̃ −
∫
Dα

c̃1 ∧ c̃2 , (A.14)

which holds due to the harmonicity of Hc̃1(Dα).

We define the curvature two-form for Hermitian manifolds to be

Rmn = Rmnrs̄ dz
r ∧ dz̄s̄ , (A.15)

and

TrR = Rmmrs̄dz
r ∧ dz̄s̄ ,

TrR2 = Rmnrs̄R
n
mr1s̄1dz

r ∧ dz̄s̄ ∧ dzr1 ∧ dz̄s̄1 ,
TrR3 = Rmnrs̄R

n
n1r1s̄1R

n1
mr2s̄2dz

r ∧ dz̄s̄ ∧ dzr1 ∧ dz̄s̄1 ∧ dzr2 ∧ dz̄s̄2 . (A.16)
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The Chern forms can be expressed in terms of the curvature two-form as

c1 = iTrR ,

c2 =
1

2

(
TrR2 − (TrR)2

)
, (A.17)

c3 =
1

3
c1c2 +

1

3
c1 ∧ TrR2 − i

3
TrR3 ,

c4 =
1

24

(
c4

1 − 6c2
1TrR2 − 8ic1TrR3

)
+

1

8
((TrR2)2 − 2TrR4) .

The Chern classes of a n complex-dimensional Calabi-Yau manifold CYn reduce to

c3(CYn≥3) = − i
3

TrR3 and c4(CYn≥4) =
1

8
((TrR2)2 − 2TrR4) , (A.18)

with TrR4 defined analogous as in (A.16). Let us next define a set of higher-derivative

building blocks identified in [16] as

Zmm̄nn̄ =
1

4!
ε(0)

mm̄m1m̄1m2m̄2m3m̄3
ε(0)

nn̄n1n̄1n2n̄2n3n̄3
R(0)m̄1m1n̄1n1R(0)m̄2m2n̄2n2R(0)m̄3m3n̄3n3 ,

(A.19)

and

Yijmn̄ =
1

4!
ε(0)

mm̄m1m̄1m2m̄2m3m̄3
ε(0)

nn̄n1n̄1n2n̄2n3n̄3
∇(0)nω(0)

i
m̄1m1∇(0)m̄ω(0)

j
n̄1n1

×R(0)m̄2m2n̄2n2R(0)m̄3m3n̄3n3 . (A.20)

It turns out that the tensor Zmm̄nn̄ given in (A.19) plays a central role in the following and

is related to the key topological quantities on Y4. It satisfies the identities

Zmm̄nn̄ = Znm̄mn̄ = Zmn̄nm̄ , ∇(0)mZmm̄nn̄ = ∇(0)m̄Zmm̄nn̄ = 0 . (A.21)

It is related to the third Chern-form c(0)

3 via

Zmm̄ = i2Zmm̄n
n = (2π)3 1

2
(∗(0)c(0)

3 )mm̄ ,

Z = i2Zm
m = (2π)3 ∗(0) (J (0) ∧ c(0)

3 ) , (2π)3 ∗(0) (c(0)

3 ∧ ω
(0)

i ) = −2Zmn̄ω
(0)

i
n̄m , (A.22)

and yields the fourth Chern-form c(0)

4 by contraction with the Riemann tensor as

Zmm̄nn̄R
(0)m̄mn̄n = (2π)4 ∗(0) c(0)

4 . (A.23)

We note that Yijmn̄ is also related to Zmm̄nn̄ upon integration as∫
Y4

Yijm
m ∗(0) 1 = −1

6

∫
Y4

(iZmn̄ω
(0)

i
r̄mω(0)

j
n̄
r̄ + 2Zmn̄rs̄ω

(0)

i
n̄mω(0)

j
s̄r) ∗(0) 1 , (A.24)

where the right hand side represents the same linear combination that will be relevant

in 4.1. Let us for further use define

Yij :=

∫
Y4

Yijm
m ∗(0) 1 . (A.25)

Lastly in this work we encounter a new (2,2)-form object

Ωij = R(0)

mn̄rs̄ω
(0)

i
r
tω

(0)

j
s̄
ū dzm ∧ dzt ∧ dz̄n̄ ∧ dz̄ū . (A.26)
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A.1 Divisor integrals in terms of CY4 integrals

We define an arbitrary basis of higher-derivative (1, 1) -forms convenient for the computa-

tions in this work

X1 = Rm
m2

m5
n2Rm2

n3
n2
n4Rn3m̄n4

m5 dzm ∧ dz̄m̄

X2 = Rm
m2

m5
n2Rm2m̄n3

n4Rn2
m5

n4
n3 dzm ∧ dz̄m̄

X3 = Rmm̄m2
m5Rm5

n2
n3
n4Rn2

m2
n4
n3 dzm ∧ dz̄m̄

X4 = gmm̄Rm1
m2

m5
n2Rm2

n3
n2
n4Rn3

m1
n4
m5 dzm ∧ dz̄m̄

X5 = gmm̄Rm1
m2

m5
n2Rm2

m1
n3
n4Rn2

m5
n4
n3 dzm ∧ dz̄m̄ (A.27)

These (1, 1)-forms can be expressed as integrals on Calabi-Yau fourfolds which admit

an interpretation as integrals on divisors Di of a Calabi-Yau fourfold as∫
CY4

(
∗8 Xk=1,..,5

)
∧ ωi =

∫
Di

∗8Xk=1,..,5 , (A.28)

where the r.h.s. is to be seen as pulled back to the divisor. Let us now recall the fact [40]

that any complex sub-manifold of a Kähler manifold M is itself Kähler with induced metric

and Kähler form g, J of M. Thus in particular we find for the Divisors i : Di ↪−→ CY4 the

Kähler metric and form ∗ig and ∗iJ , respectively, which are pulled back from the Calabi-

Yau fourfold. One may thus as well restrict Riemann tensors on the Calabi-Yau fourfold

to divisors Di expressed by the induced metric which generically obeys c1(Di) 6= 0. In

particular contractions of the Riemann tensors which do not vanish on the Calabi-Yau

manifold due to the Calabi-Yau conditions may be pulled back to the divisors and expressed

in terms of Riemann tensors in terms of the induced metric on Di. Note that the (1, 1)-

forms in (A.27) expressed as integrals on divisors (A.28) in are of this form. By

We may write the Kähler coordinates as (4.4) in terms as the new basis on CY4 in the

following way if the coefficients obey the following relations

α5 = −1

8
α1 +

1

24
α3 +

1

4
α4 ,

α6 =
1

2
α2 +

1

2
α3 ,

α7 = α2 + α3 ,

α8 =
1

2
α1 −

1

3
α3 − α4 ,

α9 = −α1 +
1

6
α3 , (A.29)

one then infers that

Ti = − i
3

∫
CY4

ωi ∧ ∗8
(

(α3 + 3γ2 + 6γ3)X1 + (α3 + 3γ1 − 12γ3)X2 + 3(γ3 − α3)X3

+ 3(−γ2 + γ4 + γ5)X4 − 3(γ1 + 2γ4 + 2γ5)X5

)
, (A.30)
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where Xi=1,2,3,4,5 are defined in (A.27), and where the freedom in the real parameters

γ1, . . . , γ5 results due to total derivatives which take different form on the divisors inte-

grals and Calabi-Yau fourfold integrals, respectively. The simplest choice in this work for

coefficients γ1, γ2, γ3 defines the higher-derivative (3, 3)-form to be

X = − i
3
∗8
(
X1 +X2 −X3

)
, (A.31)

and thus the Kähler coordinate modification is

Ti = − i
3

∫
CY4

ωi ∧ ∗8
(
X1 +X2 −X3

)
. (A.32)

Note that α3 = 1 which is in agreement with the divisor integral one-modulus limit.26

Note that the choice of fixing α1 does not limit the Ansatz for the Kähler coordinates as

it amounts only to an overall coefficients which is anyway taken into account for in (4.3).

One may easily show that thus

Tivi =

∫
CY4

J ∧ X = Z , (A.33)

and from this property (A.33) that(
∂

∂vj
Ti
)
vi = −Tj + Zj(

∂2

∂vk∂vj
Ti
)
vi = −

(
∂

∂vj
Tk
)
−
(

∂

∂vk
Tj
)
. (A.34)

Let us comment on (A.31). the combination of basis elements Xi=1,2,3,4,5 is a choice

compatible with the match to six-dimensional divisor integrals. In section A.3 we discuss

the variation of Ti w.r.t. to the Kähler deformations.

As the matching of the correction to the Kähler coordinates in terms of CY4 integrals

to the divisor integral expression is not unique, let us close this section on remarks other

possible choices of γ1, γ2, γ3. Due to (A.33) the Ansatz (4.2) and (4.3) cannot depend

separately on Tivi. It is interesting to study the possible where (4.2) is modified by this

expression as well and (4.3) by 1
VKiTjv

j . Let us close this section by discussing a caveat to

the Ansatz in this work namely that our choice for Ti (A.31) may be rewritten by splitting

integrals using the harmonicity of ωi

Ti =
1

3

(
−Zi +

1

V
KiZ

)
. (A.35)

Let us emphasize that the insights of this work is that the higher-derivative structures

derived in dimensional Calabi-Yau fourfold reductions for h1,1 > 1 can be obtained by

variation of Ti before applying the integral split (A.35) which suggests an interpretation

in terms of divisor integrals. One infers that by imposing (A.35) first the Ansatz for the

Kähler coordinates (4.3) does not carry any new information, i.e. those to steps seem not

26The coefficients in (A.30) are chosen as γ1 = 8/3, γ2 = −4/3, γ3 = 2/3, γ5 = −4/3− γ4.
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to commute. However, by choosing a more involved combination for the correction to the

Kähler coordinate in terms of Calabi-Yau fourfold quantities in (A.30) this caveat can be

prevented as then no analogous relation for (A.35) holds. Generically we expect the form

Ti+T 0
i where in the one-modulus limit Ti → Z̃ and T 0

i → 0. This suggests that one might

need to extend the basis (A.27) to also contain terms with explicit covariant derivatives such

as e.g.∼ (∇R)2. Moreover, one may not expect to capture the information of topological

quantities of divisors entirely by local covariant integral densities on the entire space but

may need to include additional global obstructions to succeed in the matching.

A.2 3d Kähler coordinates as topological divisor integrals

In this section we argue that the Ansatz for the Kähler coordinates (4.4) may be rewritten

in terms of topological integrals by fixing the coefficients in the Ansatz. Any closed form

on such as c̃1 may be written in terms of its harmonic part plus a double exact contribution

c̃1 = Hc̃1 + ∂∂̄λ , (A.36)

where λ is a function on the divisor. From the closure of c̃1 we infer that

∇[mR̃n]n̄r
r = 0 . (A.37)

But equivalently one may use that

∇mR̃nnrr = ∇m∇n∇nλ ,
∇mR̃nnrr = ∇m∇n∇nλ ,
∇mR̃nmrr = ∇m∇n∇mλ ,
∇mR̃mnrr = ∇m∇n∇mλ . (A.38)

Using the above set of equations one may show that the Ansatz for the Kähler coordi-

nates (4.4) can be written as

Ti = α1

∫
Di

c̃1 ∧ c̃1 ∧ c̃1 + α2

∫
Di

c̃1 ∧ c̃2 + α3

∫
Di

c̃3 +
α4

Ki

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃1 ∧ c̃1 ∧ J̃

+
α5

K2
i

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃1 ∧ J̃2 +
α6

Ki

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃2 ∧ J̃

+ 2α6

∫
Di

∗̃6(Hc̃1 ∧ J̃) ∧ c̃2 −
(
2α4 + 8α5

) ∫
Di

∗̃6(Hc̃1 ∧ J̃) ∧ c̃1 ∧ c̃1

− 4α5

Ki

∫
Di

c̃1 ∧ J̃2

∫
Di

c̃1 ∧ ∗6Hc̃1 , (A.39)

where Ki denotes the volume of the divisor Di. Note that in order to obtain (4.18) one

fixes the coefficients such that

α7 = 2α6 , α8 = 2α4 + 8α5 , α9 = −4α5 . (A.40)
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Additionally requiring that we can write Ti as integrals on the Calabi-Yau fourfold i.e. the

constraints (4.8) then imposes

α1 =
1

6
, α3 = 1 , α4 = − 1

12
, α5 = 0 ,

α6 =
1

2
+

1

2
α2 , α7 = 1 + α2 , α8 = −1

6
, α9 = 0 . (A.41)

Note that this coordinate (A.41) depends on the free parameter α2. It would be interesting

to determine it by imposing some other constraint.

A.3 Variation w.r.t. Kähler moduli fields

To compute the variation of covariant integral densities such as (3.12) w.r.t. Kähler moduli

fields we deform the Calabi-Yau fourfold metric gmn̄ in complex coordinates by

gmn̄ → gmn̄ + iδviωimn̄ and gn̄m → gn̄m − iδviωn̄mi . (A.42)

The determinant of the metric subject to (A.42) derives to

√
−g →

√
−g + i

√
−g viωimm . (A.43)

Note that we are only interested in linear deformations here thus we need to expand the

expression to O(δvi). The Riemann tensors variation compute to

Rmm̄nn̄ → Rmm̄nn̄ + iδvi∇m∇m̄ωin̄n +
i

2
δviRmn̄n

rωirm̄ +
i

2
δviRmm̄n

rωirn̄ . (A.44)

To evaluate the variation of higher-derivative object a computer algebra package such as

xTensor [42] is highly desirable. One may employ its power to generate a complete set

of Shouten identities, Bianchi identities and total derivatives to show that the variation

of (A.32) can be written as

∂

∂vj
Ti = − 3

V
KjTi +

5

V
KiTj + 3 Tij + Λij , (A.45)

where

Tij =

∫
CY4

∗8
(
ωi ∧ ωj ∧ J

)
∧ X , (A.46)

and

Λij = 4i

∫
CY4

Zmn̄ωi
n̄sωjs

m ∗ 1− 6i

∫
CY4

Zmn̄ωj
m̄nωis

s ∗ 1

= 4i

∫
CY4

Zmn̄ωi
n̄sωjs

m ∗ 1 +
3

V
ZjKi . (A.47)

Let us stress that in order to compute (4.14) we make extensive use of the computer algebra

package [42], and a non-publicly self-developed extension for complex manifolds and tools

to perform the above computation. By using the relation

Yij = −1

6

∫
Y4

(iZmn̄ωi
r̄mωj

n̄
r̄ + 2Zmn̄rs̄ωi

n̄mωj
s̄r) ∗ 1 . (A.48)
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We note in section A.1 that the we are not able to fix Ti precisely in this work. Thus let us

present here the variation of a different possible choice of the parameter freedom in (A.30)

which one may show then leads to analogous expression as (A.45). It is intriguing to note

that one can obtain also the novel higher-derivative structure in (3.21) by variation of the

alternative Kähler coordinates

∂

∂vj
T alti ⊃

∫
CY4

c2 ∧ Ωij +

∫
CY4

c2 ∧ J ∧ Ω1
ij +

∫
CY4

c2 ∧ J ∧ Ω2
ij (A.49)

with Ωij defined in (A.26) and with the (1, 1)-forms

Ω1
ij mn̄ :=

(
∇m∇n̄ωirs̄

)
ωj

s̄r Ω2
ij mn̄ :=

(
∇r∇rωims̄

)
ωj

s̄
n̄ . (A.50)

Note that the second Chern-form c2 appears in this case (A.49) in particular in the combi-

nation as in (3.21). Note that (A.49) is of schematic form and we do not specify the factors

in this work.

Warp-factor and the Kähler potential. Let us next review the integration of the warp

factor into a Kähler potential following [15]. To begin with, let us reduce our Ansatz (4.3)

and (4.2) to the warp factor related quantities which gives

K = −3 log

(
V + 4α2Wiv

i

)
(A.51)

We therefore suggest that they take the form

ReTi = Ki + α2
(
Fi + 3Wi

)
(A.52)

where Di are h1,1(Y4) divisors of Y4 that span the homology H2(Y4,R). The six-form F6

in this expression is a function of degrees of freedom associated with the internal space

metric. It is constrained by a relation to the fourth Chern form c4 such that F6 determines

the non harmonic part of c4 as

c4 = Hc4 + i∂∂̄F6 . (A.53)

Note that (A.53) leaves the harmonic and exact part of F6 unfixed and we will discuss

constraints on these pieces in more detail below. The justification of the first term in ReTi
is simpler. Remarkably, this definition of the Kähler coordinates as Di integrals will help

us to obtain the couplings
∫
e3α2W (2)

J ∧ J ∧ ωi ∧ ωj , which, as we stressed in our previous

work [16], cannot be obtained as vi-derivatives of the considered CY4-integrals. In order

to evaluate the derivatives of Ti with respect to vi and to make contact with the Kähler

metric found in the reduction result (3.19), we have to rewrite the integrals over Di into

integrals over CY4. Due to the appearance of the warp-factor and the non-closed form F6

in (A.52) this is not straightforward. In particular, one cannot simply use Poincaré duality

and write Ti as an integral over CY4 with inserted ωi. Of course, it is always possible to

write Ti as a CY4 integral when inserting a delta-current localized on Di, i.e.

ReTi =

∫
CY4

( 1

3!
e3α2W (2)

J ∧ J ∧ J + 1536α2F6

)
∧ δi , (A.54)
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where δi is the (1,1)-form delta-current that restricts to the divisor Di. Appropriately

extending the notion of cohomology to include currents [59], we can now ask how much δi
differs from the harmonic form ωi in the same class. In fact, any current δi is related to

the harmonic element of the same class ωi by a doubly exact piece as

δi = ωi + i∂∂̄λi . (A.55)

This equation should be viewed as relating currents. Importantly, as we assume Di and

hence δi to be vi-independent, the vi dependence of the harmonic form ωi and the current

λi has to cancel such that ∂jωi = −i∂∂̄∂jλi. Importantly, once we determine ∂jReTj we

can express the result as Y4-integrals without invoking currents. We therefore need to

understand how each part of Ti varies under a change of moduli. This will also fix the

numerical factor in front of F6 in (A.52).

In order to take derivatives of Ti we first use the fact that Di and hence δi are inde-

pendent of the moduli vi, which implies

∂jReTi =

∫
Y4

(
1

2
e3α2W (2)

ωj ∧ J ∧ J +
1

2
α2∂jW

(2)J ∧ J ∧ J + 1536α2∂jF6

)
∧ δi . (A.56)

We next claim that we can replace δi with ωi such that finally

∂jReTi =
1

2

∫
Y4

e3α2W (2)
ωi∧ωj∧J ∧J+

1

2
α2

∫
Y4

∂jW
(2)ωi∧J ∧J ∧J+1536α2

∫
Y4

ωi∧∂jF6 .

(A.57)

Note that by using (A.55) the two expressions (A.56) and (A.57) only differ by a term

involving ∂∂̄λi. By partial integration this term is proportional to∫
Y4

λi∂∂̄

(
1

2
e3α2W (2)

ωj ∧ J ∧ J +
1

2
α2∂jW

(2)J ∧ J ∧ J + 1536α2∂jF6

)
(A.58)

=

∫
Y4

λi

(
1

2
∂∂̄(e3α2W (2)

)ωj ∧ J ∧ J +
1

2
α2∂∂̄(∂jW

(2))J ∧ J ∧ J + 1536α2∂∂̄∂jF6

)
.

It is now straightforward to see that the terms multiplying λi are simply the ∂j derivative

of the warp-factor equation (3.5). One first writes (3.5) as

d†de3α2W (2) ∗8 1− α2Q8 = −1

3
i∂∂̄(e3α2W (2)

) ∧ J ∧ J ∧ J − α2Q8 . (A.59)

Then one takes the vj-derivative of (A.59) by using the fact that Q8 is given via

Q8 = −1

2
G(1) ∧G(1) − 32213X(0)

8 , (A.60)

which can easily be inferred by comparison to (3.5) and (A.53). The moduli dependence

of Q8 only arises from the term involving F6, i.e. one has ∂iQ8 = 3072 i ∂∂̄∂iF6. Hence

one finds exactly the terms in (A.58) such that this λi dependent part of the Ti varia-

tion vanishes due to the warp-factor equation (3.5). The final expression (A.57) is then

written as

∂jReTi =
1

2

∫
Y4

e3α2W (2)
ωi ∧ ωj ∧ J ∧ J + 3α2KiWj + 1536α2

∫
Y4

ωi ∧ ∂jF6 . (A.61)
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Evaluating (4.11) effective action will depend on the quantities∫
Y4

ωi ∧ ∂jF6| and

∫
Y4

J ∧ ∂i∂jF6| , (A.62)

in order for the results to match the reduction result those terms need to interact with

the higher-derivative building blocks. One may use the freedom in the definition (A.53)

to accomplish this task. A concise match with the reduction result is beyond the scope of

this work.

B Higher-derivatives and F-theory

B.1 11d higher-derivative terms

The terms t8t8R
4 and t8t8G

2R3 in require the definition

tN1...N8
8 =

1

16

(
−2
(
gN1N3gN2N4gN5N7gN6N8 +gN1N5gN2N6gN3N7gN4N8 +gN1N7gN2N8gN3N5gN4N6

)
+8
(
gN2N3gN4N5gN6N7gN8N1 +gN2N5gN6N3gN4N7gN8N1 +gN2N5gN6N7gN8N3gN4N1

)
−(N1↔N2)−(N3↔N4)−(N5↔N6)−(N7↔N8)

)
. (B.1)

Let us now discuss the various eight-derivative couplings in more detail. We recall the

definition

X8 =
1

192

(
TrR4 − 1

4
(TrR2)2

)
, (B.2)

where R is the eleven-dimensional curvature two-from RMN = 1
2R

M
NPQdx

P ∧ dxQ, and

ε11ε11R
4 = εR1R2R3M1...M8εR1R2R3N1...N8R

N1N2
M1M2R

N3N4
M3M4R

N5N6
M5M6R

N7N8
M7M8 ,

t8t8R
4 = tM1...M8

8 t8N1...N8R
N1N2

M1M2R
N3N4

M3M4R
N5N6

M5M6R
N7N8

M7M8 , (B.3)

where ε11 is the eleven-dimensional totally anti-symmetric epsilon tensor and t8 is given

explicitly in (B.1). Using ε11 and t8 the explicit form for the terms in section 2.1 are

precisely given by

ε11ε11G
2R3 = εRM1...M10εRN1...N10G

N1N2
M1M2G

N3N4
M3M4

×RN5N6
M5M6R

N7N8
M7M8R

N9N10
M9M10 , (B.4)

t8t8G
2R3 = tM1...M8

8 t8N1...N8G
N1

M1R1R2G
N2

M2
R1R2RN3N4

M3M4R
N5N6

M5M6R
N7N8

M7M8 .

Finally, we need to introduce the tensor sN1...N18
18 , however its precise form not known.

Significant parts of it may be fixed following [60]. We argue for an extension in 2.1 of

this work. In order to express the kwon parts we use the basis Bi, i = 1, . . . , 24 of [60],

that labels all unrelated index contractions in s18(∇G)2R2. The basis {Bi} is explicitly

given in section B.3. The result can then be expressed in terms of a four-point amplitude
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contribution A and a linear combination of six contributions Si=1,...,6 which do not affect

the 4-point amplitude as

s18(∇G)2R2 = sN1...N18
18 RN1...N4RN5...N8∇N9GN10...N13∇N14GN15...N18

= A+
2∑

n=1

anSn +
6∑

n=3

ânSn . (B.5)

The combinations A and Sn are then given in terms of the basis elements as

A = −24B5 − 48B8 − 24B10 − 6B12 − 12B13 + 12B14 + 8B16 − 4B20

+B22 + 4B23 +B24 ,

S1 = 48B1 + 48B2 − 48B3 + 36B4 + 96B6 + 48B7 − 48B8 + 96B10

+ 12B12 + 24B13 − 12B14 + 8B15 + 8B16 − 16B17 + 6B19 + 2B22 +B24 ,

S2 = −48B1 − 48B2 − 24B4 − 24B5 + 48B6 − 48B8 − 24B9 − 72B10

− 24B13 + 24B14 −B22 + 4B23 ,

S3 = 12B1 + 12B2 − 24B3 + 9B4 + 48B6 + 24B7 − 24B8 + 24B10

+ 6B12 + 6B13 + 4B15 − 4B17 + 3B19 + 2B21 ,

S4 = 12B1 + 12B2 − 12B3 + 9B4 + 24B6 + 12B7 − 12B8 + 24B10 + 3B12

+ 6B13 + 4B15 − 4B17 + 2B20 ,

S5 = 4B3 − 8B6 − 4B7 + 4B8 −B12 − 2B14 + 4B18 ,

S6 = B4 + 2B11 . (B.6)

Note that S3 to S6 vanish both on the considered Calabi-Yau fourfold background solution.

B.2 Adjunction of Chern-classes

Let us next discuss the adjunction of Chern-classes of divisors on an elliptically fibered

Calabi-Yau fourfold CY4 which is a hyper-surface in a P321 bundle of the Kähler base B3

denoted by P321(L)given by the vanishing locus of the Weierstrass equation

y2 − (x3 + fxz4 + gz6) = 0 , (B.7)

with f, g holomorphic sections of L4 and L6, respectively. The SL(2,Z) line bundle L over

B together with the choice of f, g defines the elliptic fibration. One may show that the

first Chern class is given by

c1(CY3) = c1(B3)− c1(L) , (B.8)

where the r.h.s is pulled back to CY 3. Then the total Chern class is given by

c(P321(L)) = c(B3)(1 + 2ω0 + 2c1(B3)))(1 + 3ω0 + 3c1(B3)))(1 + ω0) (B.9)

were ω0 is the harmonic (1, 1)-form such that PD(ω0) = B.27 Using adjunction formulae

for the

c(CY4) =
c(P321(L))

(1 + L)
(B.10)

27We are using abuse of notation in the following using ω0 and c1,2,3 in the context of a concrete repre-

sentative of the class as well as the class itself.
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with

L = 6ω0 + 6c1(B3) (B.11)

one then derives

c3(CY4) = c3(B3)− c1(B3) ∧ c2(B3)− 60c3
1(B3)− 60c2

1(B3) ∧ ω0

c2(CY4) = c2(B3) + 11c2
1(B3) + 12c1(B3) ∧ ω0

c1(CY4) = 0 (B.12)

and furthermore

ω2
0 = −c1(B3) ∧ ω0 , (B.13)

where the ci=1,2,3(B3) on the r.h.s. of these expressions denote the Chern classes of B

pulled-back to CY4.

One may next iterate the adjunction formulae to find The Chern-forms of the vertical

divisors Dα of the Calabi-Yau fourfold which are pullbacks of divisors of the base Db
α.

Thus we denote the class of such divisors via its representatives of harmonic (1, 1)-forms

ωα, α = 1, . . . , h1,1. Thus one may use adjunction to write

c(Dα) =
c(P321(L))

(1 + L)(1 + ωα)
, (B.14)

with which one then derives

c3(Dα) = c3(B3)− c1(B3) ∧ c2(B3)− 60c3
1(B3)− 60c2

1(B3) ∧ ω0 − c2(Dα) ∧ ωα
c2(Dα) = c2(B3) + 11c2

1(B3) + 12c1(B3) ∧ ω0 + ω2
α

c1(Dα) =− ωα , (B.15)

where ci=1,2,3(B3) on the r.h.s of the above equality are pulled back to the divisor Dα,

which amounts to a simply restriction to the subspace Dα ⊂ CY4. In particular we find

that the self intersection of divisors [Dα] · [Dα] is generically non-vanishing.

Let us close this section by analyzing the case where the Calabi-Yau fourfold is a

direct product manifold e.g. CY4 = CY3 × T 2 or CY4 = K3 ×K3. The Chern-character

on product spaces X = Y × Z obeys c(X) = c(Y )c(Z). Thus we find for the Chern-forms

c3(X) = c1(Y ) ∧ c2(Z) + c2(Y ) ∧ c1(Z) + c3(Y ) + c3(Z) ,

c2(X) = c1(Y ) ∧ c1(Z) + c2(Y ) + c2(Z) ,

c1(X) = c1(Y ) + c1(Z) . (B.16)

Furthermore, on may apply adjunction to compute the Chern-forms of CY3 in therms of

Chern-forms Divisors Db
α pulled back to CY3 which results in

c1(Db
α) = ωbα , c2(Db

α) = c2(CY3) , (B.17)

where we have used the Calabi-Yau condition c1(CY3) = 0. Divisors inside CY4 = CY3×T 2

wrapping the torus are as well a direct product of Db
α × T 2. Thus by combing (B.16)

and (B.17) one can straightforwardly infer their Chern-forms.

– 45 –



J
H
E
P
0
4
(
2
0
2
0
)
0
3
2

B.3 Basis of the G2R3 and (∇G)2R2-sector

Basis of the G2R3-sector. The complete eleven-dimensional G2R3 terms may be writ-

ten in terms of the basis [21] The basis for the potentially relevant eight-derivative terms

involving the four-form field strength is

B1 = GM5
M7M8M9 GM6M7M8M9 RMM2

M4M5 RMM1M2M3 RM1M3M4
M6

B2 = GM4M6
M8M9 GM5M7M8M9 RMM2

M4M5 RMM1M2M3 RM1M3
M6M7

B3 = GM4M5
M8M9 GM6M7M8M9 RMM2

M4M5 RMM1M2M3 RM1M3
M6M7

B4 = GM6M7M8M9 G
M6M7M8M9 RMM2

M4M5 RMM1M2M3 RM1M4M3M5

B5 = GM6M7M8M9 G
M6M7M8M9
4 RM

M4
M2

M5 RMM1M2M3 RM1M4M3M5

B6 = GM5
M7M8M9 GM6M7M8M9 RMM2

M4M5 RMM1M2M3 RM1M4M3
M6

B7 = GM5
M7M8M9 GM6M7M8M9 RM

M4
M2

M5 RMM1M2M3 RM1M4M3
M6

B8 = GM3M6
M8M9 GM5M7M8M9 RMM2

M4M5 RMM1M2M3 RM1M4
M6M7

B9 = GM3M5
M8M9 GM6M7M8M9 RMM2

M4M5 RMM1M2M3 RM1M4
M6M7

B10 = GM3M6
M8M9 GM5M7M8M9 RM

M4
M2

M5 RMM1M2M3 RM1M4
M6M7

B11 = GM3M5
M8M9 GM6M7M8M9 RM

M4
M2

M5 RMM1M2M3 RM1M4
M6M7

B12 = GM4M7
M8M9 GM5M6M8M9 RM

M4
M2

M5 RMM1M2M3 RM1
M6

M3
M7

B13 = GM3M7
M8M9 GM5M6M8M9 RMM2

M4M5 RMM1M2M3 RM1
M6

M4
M7

B14 = GM3M7
M8M9 GM5M6M8M9 RM

M4
M2

M5 RMM1M2M3 RM1
M6

M4
M7

B15 = GM5
M7M8M9 GM6M7M8M9 RMM1M2

M4 RMM1M2M3 RM3
M5

M4
M6

B16 = GM4M6
M8M9 GM5M7M8M9 RMM1M2

M4 RMM1M2M3 RM3
M5M6M7

B17 = GM4M6
M8M9 GM5M7M8M9 RMM1M2M3 R

MM1M2M3 RM4M5M6M7 . (B.18)

Basis of the (∇G)2R2-sector. The complete eleven-dimensional (∇G)2R2 terms may

be written in terms of the basis [60]. In order to discuss the term s18 appearing in (2.4)

and (B.5) we introduce the basis

B1 = RM1M2M3M4RM5M6M7M8∇M5GM1M7M8
M9∇M3GM2M4M6M9 ,

B2 = RM1M2M3M4RM5M6M7M8∇M5GM1M3M7
M9∇M8GM2M4M6M9 ,

B3 = RM1M2M3M4RM5M6M7M8∇M5GM1M3M7
M9∇M6GM2M4M8M9 ,

B4 = RM1M2M3M4RM5M6M7M8∇M9G
M3M4M7M8∇M6GM9M1M2M5 ,

B5 = RM1M2M3M4RM5M6M7
M4∇M1GM2M3

M8M9∇M5GM6M7M8M9 ,

B6 = RM1M2M3M4RM5M6M7
M4∇M1GM2M5

M8M9∇M3GM6M7M8M9 ,

B7 = RM1M2M3M4RM5M6M7
M4∇M1GM2M5

M8M9∇M7GM3M6M8M9 ,
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B8 = RM1M2M3M4RM5M6M7
M4∇M1GM3M5

M8M9∇M2GM6M7M8M9 ,

B9 = RM1M2M3M4RM5M6M7
M4∇M1GM3M5

M8M9∇M6GM2M7M8M9 ,

B10 = RM1M2M3M4RM5M6M7
M4∇M9G

M3M5M7M8∇M9GM1M2M6M8 ,

B11 = RM1M2M3M4RM5M6M7
M4∇M8G

M1M2M6
M9∇M9GM3M5M7M8 ,

B12 = RM1M2M3M4RM5M6M7
M4∇M3GM5M6

M8M9∇M7GM2M1M8M9 ,

B13 = RM1M2M3M4RM5
M1

M6
M3∇M9G

M2M6
M7M8∇M9GM4M5M7M8 ,

B14 = RM1M2M3M4RM5
M1

M6
M3∇M9G

M2M4
M7M8∇M9GM5M6M7M8 ,

B15 = RM1M2M3M4RM5
M1

M6
M3∇M2GM6

M7M8M9∇M5GM4M7M8M9 ,

B16 = RM1M2M3M4RM5
M1

M6
M3∇M2GM4

M7M8M9∇M5GM6M7M8M9 ,

B17 = RM1M2M3M4RM5
M1

M6
M3∇M2GM5

M7M8M9∇M4GM6M7M8M9 ,

B18 = RM1M2M3M4RM5
M1

M6
M3∇M9G

M5M6
M7M8∇M4GM2M7M8M9 ,

B19 = RM1M2M3M4RM5M6
M3M4∇M9G

M1M5
M7M8∇M9GM2M6M7M8 ,

B20 = RM1M2M3M4RM5M6
M3M4∇M1GM5

M7M8M9∇M2GM6M7M8M9 ,

B21 = RM1M2M3M4RM5M6
M3M4∇M1GM5

M7M8M9∇M6GM2M7M8M9 ,

B22 = RM1M2M3M4RM5
M1M3M4∇M2GM6M7M8M9∇M5GM6M7M8M9 ,

B23 = RM1M2M3M4RM5
M1M3M4∇M9G

M2
M6M7M8∇M9GM5M6M7M8 ,

B24 = RM1M2M3M4R
M1M2M3M4∇M5GM6M7M8M9∇M6GM5M7M8M9 . (B.19)

The contributions to s18(∇G)2R2 are then formed from the linear combinations described

in (B.5). We write the eleven-dimensional action as

2κ2
11 S

extra, gen = α2

∫
M11

17∑
i=1

Ci Bi ∗ 1 +

24∑
i=1

Ci+17Bi ∗ 1 (B.20)

with real parameters C1, . . . , C41 which are fixed by the reduction on a Calabi-Yau threefold

and compatibility with 5d, N2 super symmetry to

C5 = −1

2
C4 , C7 = −C1 −

1

2
C6 ,

C9 = 4C3 , C10 = −3C1 − 2C2 − 8C3 − 18C4 −
3

2
C6 − C8 ,

C11 = −4C3 , C12 = 4C3 ,

C13 = −8C3 , C14 = −6C1 − 2C2 − 12C3 − 36C4 − 3C6 − C8 ,

C15 =
1

3
C2 + 3C4 , C16 = −2C2 − 4C3 ,

C17 =
1

4
C2 , C25 = 2C22 − C24 ,

C29 =
1

4
C22 +

1

4
C23 −

1

4
C24 +

1

4
C26 ,

C32 = −C1 −
1

3
C22 −

4

3
C3 +

2

3
C30 − 6C4 −

1

2
C6 ,
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C33 = C1 −
1

3
C22 +

4

3
C3 + 6C4 +

1

2
C6 ,

C37 = −C1 −
4

3
C3 −

1

3
C31 −

1

2
C34 −

1

6
C35 −

2

3
C36 − 6C4 −

1

2
C6 ,

C38 =
1

3
C30 +

1

3
C31 +

1

2
C34 +

1

6
C35 +

2

3
C36 ,

C39 =
1

4
C1 −

1

24
C22 +

1

3
C3 +

3

2
C4 +

1

8
C6 ,

C40 =
1

2
C1 +

2

3
C3 +

1

3
C31 +

1

6
C35 + 3C4 +

1

4
C6 ,

C41 =
1

4
C1 +

1

3
C3 +

1

12
C31 +

1

24
C35 +

3

2
C4 +

1

8
C6 , (B.21)

We then check compatibility of the novel induces H2R3 terms making use of the IIA-

Heterotic duality. Compactifying type IIA on K3 is dual to the Heterotic string on T4.

One finds that additionally

C2 = 0 , C1 = −1

6

(
8C3 + 2C31 + C35 + 36C4 + 3C6

)
, (B.22)

where more details can be found in section 2.2.
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