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1 Introduction

Hidden symmetries are associated with peculiar classical and quantum properties of a sys-

tem [1]. They are generated by higher order in canonical momenta integrals of motion.

When a generator of a hidden symmetry does not depend explicitly on time, it trans-

forms solutions of a system into solutions having the same energy. Otherwise, a symmetry

generator is the integral of motion which explicitly depends on time and relates solutions

of different energies. Hidden symmetries appear in a broad spectrum of the systems, in-

cluding the Kepler-Coulomb problem, anisotropic harmonic oscillator with commensurable

frequencies, Higgs oscillator [2] and the Klein-Gordon equation in Anti-de Sitter space-

time [3, 4], integrable nonlinear wave equations [5], Calogero model [6], Kerr-Newman, or

more general Kerr-NUT-(A)dS black hole solutions of the Einstein-Maxwell equations [7].
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They also reveal themselves nontrivially in supersymmetric extensions of such systems,

both in non-exotic [8, 9] and exotic [10, 11].

One of the most known examples of hidden symmetries corresponds to the case of the

three-dimensional isotropic harmonic oscillator, where the closed character of the trajec-

tories is encoded in the Fradkin’s tensor integral [12], which is analogous to the Laplace-

Runge-Lentz vector in the Kepler-Coulomb problem. These tensor and vector integrals

together with angular momentum vectors of the systems define the elliptic form of parti-

cle’s trajectories and their spatial orientation, and at the quantum level the presence of

these integrals explains the origin of the so called “accidental” spectral degeneracy [13, 14].

Another example is provided by reflectionless and finite-gap quantum systems inti-

mately related to the Korteweg-de Vries and modified Korteweg-de Vries equations, in

which the higher-derivative Lax-Novikov integrals separate the left- and right-moving

Bloch states and detect all the bound states and the states at the edges of the contin-

uos parts (bands) of their spectra by annihilating them. Those integrals give rise to ap-

pearance of exotic nonlinear supersymmetric structures in super-extended versions of such

systems [10, 11, 15].

Explicitly depending on time, dynamical higher order in momenta integrals of motion

appear in rational extensions of one-dimensional conformally invariant systems where they

detect and encode the fine, finite-gap type spectral structure [16–20]. In these systems as

well as in general case the higher derivative in momenta generators of hidden symmetries

give rise to non-linear generalizations of Lie algebras and superalgebras [21].

Yet another example of the hidden symmetries corresponds to a non-standard extension

of the fermion-monopole supersymmmetry [22, 23], the existence of which can be related to

the Killing-Yano tensor admitted by the flat background of the monopole [24]. In this sense

its origin is similar to the origin of the exotic “SUSY in the sky” of Gibbons, Rietdijk and

van Holten [25–27], in which additional supercharges are related to generators of hidden

symmetries as it happens in the case of diverse black-hole solutions of the Einstein-Maxwell

equations in (3+1) and higher dimensions [7]. Alternatively, exotic supersymmetry of the

fermion-monopole system finds a simple explanation in special properties of the dynamics

of a spin-1/2 charged particle in monopole background [28].

The flat background of the monopole is revealed in the dynamics of a scalar particle

with electric charge e which in its field realizes a force-free, geodesic motion on a surface

of a dynamical cone defined by the charge-monopole coupling parameter ν = eg, where

g is the monopole’s magnetic charge [29–31]. One can consider a more general case of

the charged particle in the monopole background subjected to the action of an additional

central potential of the form

V (r) =
α

2mr2
+ U(r) , (1.1)

where the first term is conformally invariant and U(r) is a smooth function of r =
√

r2.

Earlier results [32] of two of us show that in the case U(r) = 0 and particular value of

the coupling α = ν2, the projection of the particle’s trajectory to the plane ortogononal to

the total angular momentum vector of the system corresponds to the one-dimensional free

motion along a straight line defined by a certain analog of the Laplace-Runge-Lenz vector

– 2 –
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which for the free particle is p × L. It looks like the particle in the field of the monopole

“remembers” the integrals of motion of the system with switched off charge-monopole

coupling (ν → 0). Supersymmetric extension of such a system is described by the Pauli

Hamiltonian of a spin-1/2 particle in background of a self-dual or anti-self-dual dyon, which

is characterized by a nonlinear, quadratically extended Lie superalgebra D(2, 1; 1/2) [32]

being a particular case of the exceptional superagebra D(2, 1;α) [9].

From another perspective, in the absence of the monopole background (g = 0), two

cases of the systems described by potential (1.1) with U(r) = 0 and U(r) = 1
2mω

2r2

are intimately related to each other and represent two forms of dynamics in the sense of

Dirac [33] corresponding to conformal symmetry. The integrals of the system with U(r) = 0

can be obtained by taking some linear combinations of integrals of another system and

applying to them a limit ω → 0. Or, in both directions the systems and their integrals can

be related at classical and quantum levels by a non-unitary mapping corresponding to the

conformal bridge transformation considered recently by us in ref. [34].

Based on the described relations and peculiarities, one can conjecture that in the

presence of the monopole and confining harmonic term U = 1
2mω

2r2 in potential (1.1)

something particular (related to hidden and conformal symmetries) should happen in the

special case α = ν2. One could expect similar peculiar properties to be seen also in a

superextended version of such a system. If so, it would be an interesting result from the

point of view of three-dimensional (or more generally higher-dimensional) supersymmet-

ric quantum mechanics, because contrary to the one-dimensional case [35–38], there is no

canonical way to obtain such systems. Although there are particular and elegant construc-

tions, see for example [8, 9, 32, 39–43], it is in general a non-trivial task to produce such

theories. In the present context, a possible approach would be to look for a general (3 + 0)

dimensional Dirac type operator as a supercharge (square root) of a Klein-Gordon type

“super-Hamiltonian”.

This work is devoted to the investigation of the conjectures specified in the previous

paragraph, and in conclusion of this section we describe the organization of the paper and

briefly summarize its results.

In section 2 we investigate the classical theory of a charged scalar particle in a monopole

background subjected to the action of additional scalar potential of the form (1.1) with

a harmonic trap U(r) = 1
2mω

2r2, which has a nature similar to the potential in one-

dimensional conformal mechanics model of de Alfaro, Fubini and Furlan (AFF) [44] de-

scribed by the Hamiltonian1

HAFF =
p2

2m
+
mω2q2

2
+
`(`+ 1)

2mq2
. (1.2)

We solve the equations of motion and find that the trajectories are closed for an arbitrary

choice of initial conditions only in the special case when α = ν2. We show that in this

special case the dynamics of the radial variable is governed by conformal Newton-Hooke

symmetry of the system and compare it with the dynamics of the system with U(r) = 0

1This model and its supersymmetric extensions [45, 46] play important role, in particular, in black hole

physics [47–50], AdS/CFT correspondence [51, 52], cosmology [53, 54], and holographic QCD [55].
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studied earlier in details in ref. [32]. It turns out that in the special case α = ν2 the full

dynamics — including its angular part — is controlled by a hidden symmetry described

by the integrals of motion of order four in momenta variables. These integrals define the

orientation of the trajectory projected to the plane orthogonal to the conserved total angu-

lar momentum vector. In spite of the fourth order in momenta nature of generators of the

hidden symmetry, in contrast with the second order generators for the isotropic harmonic

oscillator, they reveal a structure somehow similar to the Fradkin’s tensor in the latter

system. Section 3 is devoted to the quantum theory of the system with α = ν2, where,

in particular, with the help of the hidden symmetry we identify the full set of its ladder

operators. Using the results of our previous paper [34], we also construct the conformal

bridge transformation which relates the quantum spectrum of our system with that of the

model without confining harmonic term as has been studied in [32]. Particularly, we show

that coherent states for the present system are generated by the conformal bridge trans-

formation from non-normalizable energy eigenstates of the system with U(r) = 0, while

all its energy eigenstates are produced from Jordan states of zero energy of the latter sys-

tem. This transformation also establishes a relation between symmetries of both systems,

including generators of their hidden symmetries. In section 4 we consider a supersymmet-

ric generalization of the quantum system by introducing a very special spin-orbit coupling,

that allows us to obtain the osp(2|2) superconformal extension of the system with unbroken

N = 2 Poincaré supersymmetry. We also demonstrate that two different superconformal

extensions of the one-dimensional AFF model with unbroken and spontaneously broken

phases of N = 2 Poincaré supersymmetry have a common origin in the three-dimensional

osp(2|2) superconformal symmetry of the spin-1/2 particle in a monopole background.

When switching off the monopole background by setting g = 0, the non-relativistic limit of

the Dirac oscillator considered in refs. [56–60] is recovered, and the osp(2|2) superconformal

symmetry remains intact. On the other hand, when switching off the harmonic trap by

taking ω = 0, the superconformal Hamiltonian of our extended system takes the form of

the Pauli type Hamiltonian for a charged spin-1/2 particle in a field of the self-dual dyon

studied in [32]. The discussion of our results and an outlook are presented in section 5,

where we also generalize the observation of section 2 by showing a universal relationship

between the three-dimensional dynamics of a Euclidean particle in an arbitrary central po-

tential U(r) and the dynamics of a charged particle in a monopole background subjected

to the action of the central potential U(r) + ν2/2mr2. Several technical details are moved

to four appendices.

2 Conformal mechanics in a monopole background

In this section we study the dynamics of a charged particle in background of a magnetic

monopole in the presence of an additional central potential which is a three-dimensional

analog of that in the AFF conformal mechanics model [44]. The system we investigate is

given by the Hamiltonian

H =
π2

2m
+
mω2r2

2
+

α

2mr2
, (2.1)
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where ω > 0, π = p−eA, A is a U(1) gauge potential of a Dirac magnetic monopole at the

origin with charge g, ∇×A = B = gr/r3, and the coupling α should be chosen appropri-

ately to prevent a fall to the center, see below. We solve the Hamiltonian equations, study

the conformal Newton-Hooke symmetry of the system, and investigate a hidden symmetry

which appears in a special case α = ν2, ν = eg. We follow here the line of reasoning used

in [32] to identify the hidden symmetry and characterize the particle’s trajectories.

2.1 Classical dynamics

The particle’s coordinates and kinetic momenta obey the Poisson brackets relations

{ri, πj} = δij , {ri, rj} = 0 , {πi, πj} = eεijkBk , (2.2)

which give rise to the equations of motion

ṙ =
1

m
π , π̇ =

1

mr3
(αn − ν r × π)−mω2r , (2.3)

where n = r/r. From (2.3) we derive the equations

dr

dt
=

1

m
πr , ṅ =

1

mr2
J × n , (2.4)

where we denote πr = n · π, and

J = r × π − νn (2.5)

is the conserved Poincaré vector identified as the angular momentum of the system,

{Ji, Jj} = εijkJk , {Ji, rj} = εijkrk , {Ji, πj} = εijkπk . (2.6)

From (2.5) it folllows that J · n = −ν and J 2 ≥ ν2, i.e. a trajectory of the particle lies on

the surface of a cone with symmetry axis given by the angular momentum vector J and

cone’s angle

θ = arccos(−ν/J) , J =
√

J 2 . (2.7)

In the limit case J2 = ν2 the cone degenerates into a half-line. If ν < 0, then θ = 0 and

the particle moves on a half-line directed along the angular momentum J , whereas θ = π

if ν > 0 and the particle moves on a half-line opposite to the direction of the vector J .

By means of eq. (2.5), the Hamiltonian can be presented in the form

H =
π2r
2m

+
L 2

2mr2
+
mω2r2

2
, L 2 := J 2 − ν2 + α , (2.8)

which shows that the radial dynamical variables r and πr, {r, πr} = 1, behave like q and p

in the one dimensional AFF model (1.2). From (2.8) it follows that there is no fall to the

center if L 2 > 0, i.e. α > 0, that we will assume from now on. Eq. (2.8) also implies that

the possible values of the angular momentum J and energy obey the relation

L ω

H
:= λ ≤ 1 . (2.9)
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Figure 1. Illustration for the case J2 = ν2 with ν = eg > 0. The monopole with charge g is at

the origin of the coordinate system, and the vectors J and r are oriented in opposite directions.

The position of the particle of charge e oscillates between rmin and rmax. For ν < 0 the vector J is

oriented in the same direction as r .

Let r0 = r(t0) corresponds to a turning point, ṙ(t0) = 0. Then according to relation

πr = mṙ and (2.8), r20 is defined by the equation

r40 −
2H

mω2
r20 +

L 2

m2ω2
= 0 . (2.10)

Its two solutions

r2± =
H

mω2
(1± ρ) , 0 ≤ ρ =

√
1− λ2 < 1 , (2.11)

satisfy the relation

r+r− =
L

mω
. (2.12)

If, for simplicity, we choose the initial moment of time t0 = 0 such that r(0) = r− = rmin,

integration of the first equation in (2.4) with taking into account eq. (2.8) yields

r2(t) =
H

mω2
(1− ρ cos(2ωt)) . (2.13)

So, r(t) oscillates between rmin = r− and rmax = r+ with a period π/ω. The particular case

with H = L ω corresponds to a circular motion for which r(t) = r+ = r− = (L /mω)1/2.

If J2 = ν2, the particle realizes one-dimensional oscillations (2.13) between rmin and rmax

lying on the half-line specified below eq. (2.7), see figure 1

To solve the vector equation in (2.4) in the case J2 > ν2, which we will assume in what

follows, we decompose n into the component parallel to the angular momentum and the

orthogonal component,

n(t) = n‖ + n⊥(t) = −ν Ĵ
J

+ n⊥(t), J · n⊥(t) = 0 , (2.14)

where Ĵ is the unit vector in the direction of J . Since the parallel component n‖ is constant,

we conclude that the orthogonal component n⊥(t) has constant length and thus describes

a circle in the plane orthogonal to J ,

n⊥(t) = n⊥(0) cosϕ(t) + Ĵ × n⊥(0) sinϕ(t) . (2.15)

Using the second equation in (2.4) we then obtain

ϕ̇ =
J

mr2
, (2.16)

– 6 –
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that yields the time-dependence of the angular variable.2 Integrating this equation with

using (2.13) and assuming ϕ(0) = 0, we obtain

ϕ(t) =
J

L
arctan

(
rmax

rmin
tan(ωt)

)
. (2.17)

It is convenient to parametrize the orbits by expressing ξ = 1/r2 as a function of ϕ. We

have dξ/dϕ = −2r−3ṙ/ϕ̇, and so,

dξ

dϕ
= − 2

J

√
2mHξ −m2ω2 −L 2ξ2 . (2.18)

Integration of this equation yields

ξ(ϕ) =
1

r2(ϕ)
=
mH

L 2

[
1 + ρ cos

(
2L

J
ϕ

)]
, (2.19)

which corresponds to r(ϕ = 0) = rmin and the angular period πJ/L . The condition for a

periodic trajectory is

2L

J
2πlr = 2πla ⇐⇒ 2L

J
=
la
lr
, lr, la = 1, 2, . . . . (2.20)

From the definition of L in (2.8) we find that the trajectories are closed for arbitrary

values of J if and only if α = ν2. If α 6= ν2, the trajectory will be closed only for special

values of the angular momentum given by the condition

α = ν2 +

(
1

4

l2a
l2r
− 1

)
J2 , (2.21)

and in this case eq. (2.9) takes the form la
lr
≤ 2H

ωJ .

Figure 2 illustrates several particular orbits lying on the corresponding conical surface

in a general case α 6= ν2 and in the special case α = ν2. Trajectories r(ϕ) are shown

there for fixed values of H, J and ν, but for different values of α. Below we shall see that

when α = ν2, the projection to the plane orthogonal to J of the trajectory shown on the

last plot is an ellipse centered at the origin of the coordinate system similarly to the case

of the three-dimensional isotropic harmonic oscillator. This corresponds to a fundamental

universal property of the magnetic monopole background which we discuss in the last

section. Since the center of the projected elliptical trajectory is in the center of an ellipse,

the angular period Pa is twice the radial period Pr, Pa/Pr = 2, similarly to the isotropic

harmonic oscillator. This is different from the picture of the finite orbits in Kepler problem

where the force center is in one of the foci, and as a result Pa = Pr. This similarity with

the isotropic oscillator and contrast to the Kepler problem are also reflected in the spectra

of the systems at the quantum level.

2Eqs. (2.15) and (2.16) imply a rotation of n⊥ in the positive, clockwise direction looking on it from the

direction of the vector J . If J is oriented along ez, and ν < 0, 0 < θ < π/2 in (2.7), the particle’s trajectory

lies on the upper sheet of the cone and n⊥ rotates in a clockwise direction in the horizontal plane. If J is

oriented along −ez, and ν > 0, π/2 < θ < π, then the trajectory lies again on the upper sheet of the cone,

but the vector n⊥ rotates anti-clockwise in the (x, y) plane if to look at it from ez.
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Figure 2. The depicted trajectories correspond to the vector J oriented along ez. The first

figure in the top row represents the generic case with non-closed trajectory. The other figures are

examples of closed trajectories with parameters satisfying the relation (2.21), with quotients la/lr =

{1, 1/2, 2/3, 3/2, 4/3, 3/4, 2} are sequentially shown. The last relation la/lr = 2 corresponds to

the special case α = ν2.

2.2 Conformal Newton-Hooke symmetry

In this subsection we derive the conformal Newton-Hooke symmetry [61–64] for the sys-

tem (2.1) and compare it with the conformal symmetry of the model with ω = 0 studied

in [32].

Using the AFF form of the Hamiltonian (2.8), one can show that the complex quantity

C = e2iωt
(
π2r
2m

+
L 2

2mr2
− mω2r2

2
− iωrπr

)
= e2iωt

(
H −mω2r2 − iωrπr

)
, (2.22)

and its complex conjugate C∗ are explicitly depending on time integrals of motion which

together with H generate the sl(2,R) algebra

{H, C} = 2iω C , {H, C∗} = −2iω C∗ , { C, C∗} = −4iωH . (2.23)

In terms of C and C∗, the generators of the Newton-Hooke symmetry are given by

D =
i

4ω
( C − C∗) , K =

1

4ω2
(2H − C − C∗) , (2.24)

and together with H they satisfy the algebra

{D,H} = H − 2ω2K , {D,K} = −K , {K,H} = 2D , (2.25)

whose Casimir invariant is

F = D2 + ω2K2 −KH = −1

4
L 2 . (2.26)
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Figure 3. Each plot represents a trajectory for a specific value of α chosen according to (2.21)

with the vector J oriented along ez. From left to right the cases la/lr = {3/2, 1/2, 3, 2} are shown,

where the last plot corresponds to the special case α = ν2.

In terms of these generators, the function r2(t) is presented in the form

r2(t) =
2

mω2

(
ωD sin(2ωt) + ω2K cos(2ωt) +H sin2(ωt)

)
. (2.27)

The values of the dynamical integrals D and K depend on the choice of initial conditions

for r and ṙ , and as follows from (2.22) and (2.24), our choice r(0) = rmin, ṙ(0) = 0

corresponds to D = 0 and K = 1
2mr

2
min. For these values of D and K, (2.27) takes the

form (2.13). On the other hand, since J · r(t) = −νr(t), for a general choice of initial

conditions eq. (2.27) shows that the dynamics of the projection of r(t) on the direction of

the conserved angular momentum is controlled by the conformal Newton-Hooke symmetry

of the system. According to (2.27), the oscillation period of r(t) is π/ω, and taking into

account the value of the Casimir invariant, one can check that in the general case eq. (2.27)

also implies that r(t) oscillates between the values rmin and rmax given by eq. (2.11).

To conclude this part of the analysis, we comment on the limit ω → 0. In this case

the generators H, D and K take the form

H0 =
π2r
2m

+
L 2

2mr2
, D0 =

1

2
rπr −H0t , K0 =

mr2

2
−Dt−H0t

2 , (2.28)

and satisfy the conformal algebra

{D0, H0} = H0 , {D0,K0} = −K0 , {K0, H0} = 2D0 . (2.29)

The case α = 0 of the system H0 corresponds to a geodesic motion on the dynamical

cone [30, 31]. The special case of α = ν2, on the other hand, was studied in [32]. It was

shown there that the trajectory of the particle, projected to the plane orthogonal to J , is a

straight line along which the projected particle’s motion takes place with constant velocity.

Consistently with these peculiar properties, in the special case α = ν2 the system with

H0 possesses a hidden symmetry described by the integral of motion V = π × J being a

sort of Laplace-Runge-Lenz vector, in the plane orthogonal to which and parallel to J the

particle’s trajectory lies [32]. In figure 3 some plots of the trajectories are shown for the

system (2.28).
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2.3 The case α = ν2: hidden symmetry

In the case α = ν2 the particle described by the Hamiltonian (2.1) admits additional

integrals of motion responsible for the closed nature of the trajectories for arbitrary choice

of initial conditions. The integrals are derived by an algebraic approach as in Fradkin’s

construction for the isotropic three-dimensional harmonic oscillator [12].

Let us first consider arbitrary values of α assuming, as we indicated above, J2 > ν2.

Our first step is to introduce the vector quantities

I1 = π× J cos(ωt) + ωmr × J sin(ωt) , (2.30)

I2 = π× J sin(ωt)− ωmr × J cos(ωt) . (2.31)

The time-dependence of these vectors in the plane orthogonal to J follows from the time-

dependence of π and r in (2.3),

dI1
dt

=
1

mr3
(α− ν2)n × J cos(ωt) ,

dI2
dt

=
1

mr3
(α− ν2)n × J sin(ωt) . (2.32)

Then

I1 · I2 =
1

2
(ν2 − α)(J2 − ν2)sin(2ωt)

2r2
, (2.33)

where we have taken into account our choice of the initial condition πr(0) = 0. The initial

values of these vectors are

I1(0) =
J2

rmin
n⊥(0) , I2(0) = mωrminJ × n⊥(0) . (2.34)

Thus, I1 and I2 are orthogonal to each other at t = 0, but in general case of α 6= ν2 their

scalar product is not zero and changes periodically with period π/ω.

For the particular choice α = ν2, the vectors I1 and I2 are orthogonal vector integrals

of motion of order 2 in the kinetic momenta, and so, they correspond to the “hidden

symmetries” [1] of the system. They are, however, dynamical, explicitly time-dependent

integrals of motion (similarly to generators of the conformal Newton-Hook symmetry D

and K), d
dtI1,2 =

∂I1,2
∂t + {I1,2, H} = 0. Their lengths are also dynamical integrals whose

values, again in the sense of a total time derivative, take constant values

|I1| = mω
√
J2 − ν2 rmax, |I2| = mω

√
J2 − ν2 rmin , (2.35)

where we have taken into account eqs. (2.34) and (2.12). The sum of their squares, however,

is a true integral of motion whose value is a function of H and J ,

I 2
1 + I 2

2 = 2mH(J2 − ν2) . (2.36)

These vectors point in the direction of the semi-axes of the elliptic trajectory in the plane

orthogonal to J . The lengths of semi-major and semi-minor axes correspond to those of the

vectors rn⊥(0) and rĴ × n⊥(0), and are equal to rmax

√
1− ν2/J2, and rmin

√
1− ν2/J2.

We note that in general case α 6= ν2 the periodic change of the scalar product of I1 and I2
implies a precession of the orbit, see figure 2.
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Let us now investigate in more detail the most interesting case α = ν2 given by the

Hamiltonian

H =
π2

2m
+
mω2

2
r2 +

ν2

2mr2
. (2.37)

To express the general solution in terms of the conserved J and dynamical integrals I1 and

I2 in (2.30) and (2.31), which for α = ν2 become true integrals of motion, we note that

r(t)× J =
1

mω
(I1 sin(ωt)− I2 cos(ωt)) , π(t)× J = I1 cos(ωt) + I2 sin(ωt) . (2.38)

By means of the relations

J × (r(t)× J ) = J2r(t) + νr(t)J , |r × J |2 = (J2 − ν2)r2(t) , (2.39)

we can express the position r(t) of the particle as follows,

r(t) =
1

mωJ2

J × I1 sinωt− J × I2 cosωt− ν

√
I21 sin2 ωt+ I22 cos2 ωt

√
J2 − ν2

J

 , (2.40)

with I1 = I1(0) and I2 = I2(0). This yields us r(t) and kinetic momentum π = mṙ at any

given time presented in terms of the angular momentum and dynamical vector integrals.

Alternatively, one can follow a more algebraic approach to extract information on the

trajectories without explicitly solving the equations of motion. It is well known from the

seminal paper of Fradkin [12] that for the three-dimensional isotropic harmonic oscillator all

symmetries of the trajectories are encoded in a tensor integral of motion. In the remainder

of this subsection we construct an analogous tensor for the system at hand to find the

trajectories by a linear algebra techniques. We begin with the tensor integrals

T ij = T (ij) + T [ij] , T (ij) =
1

2
(Ii1I

j
1 + Ii2I

j
2) , T [ij] =

1

2
(Ii1I

j
2 − I

j
1I
i
2) . (2.41)

They, unlike the vectors I1 and I2, but like the quadratic expression (2.36) are the true,

not depending explicitly on time integrals of motion, d
dtT

ij = {T ij , H} = 0, whose explicit

form in phase space variables is

2T ij = (π × J )i(π × J )j +m2ω2(r × J )i(r × J )j + εijkmω(J2 − ν2)Jk . (2.42)

In accordance with (2.36), their components satisfy relations

tr(T ) = m(J2 − ν2)H , εijkT
[jk] = mω(J2 − ν2)Ji . (2.43)

As the anti-symmetric part of T ij is related with the Poincaré integral, we only need to

use the symmetric part T (ij), which is related but not identical to Fradkin’s tensor. Since

the vectors (2.30), (2.31) are orthogonal to each other and to J , we immediately conclude

that J , I1 and I2 are eigenvectors of T (ij) with eigenvalues equal, respectively, to zero and

λ1 = |I1|2 =
1

2
m2ω2(J2 − ν2)r2max , (2.44)

λ2 = |I2|2 =
1

2
m2ω2(J2 − ν2)r2min , (2.45)
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where we have taken into account (2.35). The relations

I1 · r = (J2 − ν2) cos(ωt) , I2 · r = (J2 − ν2) sin(ωt) , (2.46)

allow us to conclude that the quadratic form rTTr is time-independent,

2riT
ijrj = (I1 · r)2 + (I2 · r)2 = (J2 − ν2)2 . (2.47)

In a coordinate system with orthonormal base ex = Î1, ey = Î2 and ez = Ĵ , the quadratic

form (2.47) simplifies to

λ1x
2 + λ2y

2 = (J2 − ν2)2 . (2.48)

With rmaxrmin = J/(mω) one ends up with the equation for an ellipse in the plane orthog-

onal to J :
x2

r2min

+
y2

r2max

=
J2 − ν2

J2
. (2.49)

The lengths of the semi-major axis and semi-minor axis of the ellipse are rmax

√
1− ν2/J2,

rmin

√
1− ν2/J2 in accordance with that was found above.

For quantum theory it is of advantage to use the complex form of dynamical integrals

of motion

a =
1√
2

(I1 + iI2) = b × J eiωt , b =
1√
2

(π − iωmr) , (2.50)

and its complex conjugate a∗. They satisfy the non-linear Poisson bracket relations

{H,a} = iωa , {Ji, a#j } = εijka
#
k , {a#i , a

#
j } = −m C#εijkJk , (2.51)

{a∗i , aj} = imω[(2J2 − ν2)δij − JiJj)]−mHεijkJk , (2.52)

and are related to the generators (2.22) of the conformal symmetry,

a#i a
#
i = m(J2 − ν2) C# , (2.53)

where a#i denotes either ai or a∗i , and similarly for C, C∗. The a#i and C# are classical

analogues of the ladder operators in the related quantum system. In terms of a#i the tensor

integrals T(ij) = T (ij) and T[ij] = T [ij] take the form

T(ij) =
1

2

(
a∗i aj + a∗jai

)
, T[ij] =

i

2

(
aia
∗
j − aja∗i

)
=

1

2
mω(J2 − ν2)εijkJk . (2.54)

In fact, such kind of tensors were considered in earlier studies of the quantized system by

Vinet et al. [65]. We find it useful to exploit these integrals for the classical system at hand.

Symmetric tensor integral T(ij) satisfies the Poisson bracket reations

{Ji, T(jk)} = εijlT(lk) + εiklT(jl) , (2.55)

and

{T(ij), T(lk)} = m(εilsFjk + εiksFjl + εjlsFik + εjksFim)Js , (2.56)

where

Fij =
1

4
mω2(J2 − ν2)2δij −HT(ij) , (2.57)
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and we have used eqs. (2.51), (2.52) and the equality

C∗aiaj + a∗i a
∗
j C = 2HT(ij) +mω2(J2 − ν2)[J2δij − JiJj ] . (2.58)

In the following section we shall see that the quantum analog of the classical inte-

grals of motion C# and a#, due to their dynamical nature of conservation, provide us

with a complete set of the spectrum generating operators for the quantum system with

Hamiltonian (2.37).

To conclude this section, we comment on the limit ν → 0, when we recover the isotropic

harmonic oscillator. In this limit the integral a and its complex conjugate reduce to the

vector product of the orbital angular momentum and the classical analogs of the first order

ladder operators. Instead of considering the dynamical integral a one may choose the vector

z =

(
b +

ν

J2
(b · n)J

)
eiωt =

1

J2
J × a (2.59)

with b defined in (2.50). This integral and its complex conjugate, which indeed contain

the same physical information as a and a#, fulfill the Poisson bracket relations

{z#
i , z

#
k } = − ν2

2J4
C#εiklJl , {zi, z ∗k } = −imωδi,k +

1

J4
O(ν2) , (2.60)

where O(ν2) are terms of order ν2. In the limit ν → 0 they are just the classical analogs of

the first order ladder operators satisfying the Heisenberg algebra. However, the appearance

of the non-local operator 1/J2 in quantum mechanics complicates the analysis considerably

and we prefer to use the integrals (2.50) to deal with local operators in what follows.

3 Quantum case for α = ν2

The quantum theory of the system with Hamiltonian (2.37) has been studied earlier

in [65, 66]. Here we reconsider the system as a preparation for our investigation of the

related superconformal system with spin-orbit coupling in the next section, and to discuss

an interesting relation of the generalized quantum AFF system in the monopole back-

ground with its analog without a confining harmonic potential term. First we solve the

Schrödinger equation by a separation of variables and afterwards we solve the problem

of ladder operators by exploiting the quantum conformal symmetry as well as the hidden

symmetry. In a separate subsection, we connect this result with the quantum version of

the system H0 in (2.28) by construction of a “conformal bridge transformation” following

ref. [34]. We shall use the units in which m = 1 and ~ = 1.

In coordinate representation the basic commutation relations are

[r̂i, r̂j ] = 0 , [r̂i, π̂j ] = iδij , [π̂i, π̂j ] = iνεijk
r̂k
r3
. (3.1)

In what follows we shall skip the hat symbol ˆ to simplify the notation. The Hamilto-

nian (2.37) can be written as

H =
1

2

[
− 1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2
J 2 + ω2r2

]
, (3.2)
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where J is just the quantum version of the Poincaré integral (2.5), the components of

which generate the su(2) symmetry. The Dirac quantization condition implies that ν = eg

must take a integer or half integer value [29–31]. Using the angular momentum treatment

we obtain

J 2Yj3j = j(j + 1)Yj3j , J3Yj3j = j3Yj3j , J±Yj3j = c±jj3Y
j3±1
j , (3.3)

with J± = J1 ± iJ2, and

j = |ν|, |ν|+ 1, . . . , j3 = −j, . . . , j , c±jj3 =
√

(j ± j3 + 1)(j ∓ j3) , (3.4)

where the indicated values for j correspond to a super-selection rule. The case ν = 0 corre-

sponds just to the quantum harmonic isotropic oscillator. Excluding the zero value for ν, i.e.

implying that |ν| takes any nonzero integer or half-integer value, the first relation in (3.3)

automatically provides the necessary inequality J 2 = j(j + 1) > ν2. The functions Yj3j =

Yj3j (θ, ϕ; ν) are the (normalized) monopole harmonics [29–31, 67–69], which are well defined

functions if and only if the combination j ± ν is in N0 = {0, 1, 2, . . .} (see appendix A).

Then, the eigenstates and the spectrum of H are given by

ψj3n,j(r) = fn,j(
√
ωr)Yj3j (θ, ϕ) ,

fn,j(x) =

(
2n!

Γ(n+ j + 3/2)

)1/2

ω3/4 xjL(j+1/2)
n (x2) e−x

2/2 , (3.5)

En,j =
(

2n+ j +
3

2

)
ω ,

where L
(j+1/2)
n (y) are the generalized Laguerre polynomials. The degeneracy of the energy

level En,j can be computed by using the property En,j = En+i,j−2i with i ∈ {−n,−n +

1, . . . , [(j − ν)/2]}, where [ . ] is the integer part, and the fact that there are 2(j − 2i) + 1

different states with second index j − 2i. This gives us the sought for degeneracy

g(ν,N) =


1
2(N + ν + 1)(N − ν + 2) , j − ν even

1
2(N − ν + 1)(N + ν + 2) , j − ν odd

, N = 2n+ j . (3.6)

It is remarkable that the system possesses 2|ν| + 1 degenerate ground states. The

ground states here are not invariant under the action of the total angular momentum J ,

although the Hamiltonian operator commutes with J and hence is spherically symmetric.

Thus we see some analog of spontaneous breaking of rotational symmetry in the magnetic

monopole background. This is of course in contrast to the isotropic harmonic oscillator

in three dimensions which has a unique spherically symmetric ground state and symmetry

algebra su(3). According to [65] the symmetry algebra for the system under investigation

is su(2) ⊕ su(2). We do not further dwell on these interesting aspects of symmetry but

rather turn to the construction of spectrum generating ladder operators.

Note that the coefficients at radial, n, and angular momentum, j, quantum numbers

in the energy eigenvalue En,j = (2n + j + 3
2)ω correspond to the ratio Pa/Pr = la/lr = 2
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between the classical angular and radial periods in the special case α = ν2 under in-

vestigation. This can be compared with the structure of the principle quantum number

N = nr + l+ 1 defining the spectrum in the quantum model of the hydrogen atom, where

the corresponding classical periods are equal.

3.1 The algebraic approach

The explicit wave functions in (3.5) are specified by the discrete quantum numbers n, j

and j3. The purpose of this subsection is to identify the ladder operators for radial, n, and

angular momentum, j, quantum numbers (we already have the ladders operators for j3),

which are based on the conformal and hidden symmetries of the system.

In the algebraic approach we do not fix the representation for the position and mo-

mentum operators and thus use Dirac’s ket notation for eigenstates.

Ladder operators for n. Let us first consider the quantum version of the sl(2,R)

symmetry,

[H, C] = −2ω C , [H, C†] = 2ω C† , [ C, C†] = 4ωH , (3.7)

where the generators C, C† are the quantum versions of the integrals (2.22), i.e.

C = e2iωt
(
H − ω2r2 − iω

2
(r · π + π · r)

)
. (3.8)

The time-dependent factors e2iωt in C and e−2iωt in C† can be omitted without changing

the form of the algebra. Due to the first two equations in (3.7), the scalar nature of C and

C†, and the spectrum (3.5) of the system, it is clear that these operators change n in n± 1.

Then using the relations

C C† = H2 + 2ωH − ω2

(
J 2 − 3

4

)
, C† C = H2 − 2ωH − ω2

(
J 2 − 3

4

)
, (3.9)

one obtains

C |n, j, j3〉 = ω dn,j |n− 1, j, j3〉 , C† |n, j, j3〉 = ω dn+1,j |n+ 1, j, j3〉 , (3.10)

dn,j =
√

2n(2n+ 2j + 1) . (3.11)

Rescaling the sl(2, R) generators, J0 = 1
2ωH, J− = 1

2ω C, J+ = 1
2ω C

†, the conformal

algebra takes the form of the so(2, 1) Lorentz algebra

[J0,J±] = ±J± , [J−,J+] = 2J0 (3.12)

with Casimir invariant F = −J 2
0 + 1

2(J+J− + J−J+). From (3.5) it follows that the

eigenvalues of J0 in our case are µ+n with µ = 1
2(j+ 3

2), and using (3.9), we find that the

Casimir invariant takes on eigenstates (3.5) the value F = −µ(µ−1) = −1
4(j(j+1)− 3

4). If

we restore (momentarily) Planck’s constant and compare with the classical analog (2.26),

we see that the last term in parenthesis is equal to −3
4~

2 and is a quantum correction.

We conclude that each subspace of the Hilbert space of the system characterized by the

quantum number j carries an irreducible unitary infinite-dimensional representation of the

conformal algebra sl(2,R) of the discrete type series D+
µ [70]. The operators C = 2ωJ−

and C† = 2ωJ+ correspond here to the ladder operators of sl(2,R).
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Figure 4. The circles represent the first two quantum numbers of the eigenstates |n, j, j3〉. Red

arrows indicate the action of a3 and blue arrows correspond to the action of a†3.

Ladder operators for j. We introduce the complex vector operator

a =
1

2
(b × J − J × b)eiωt = (b × J − ib)eiωt , (3.13)

together with its Hermitian conjugate, where the vector b has been defined in (2.50). The

vector operator a is the quantum version of the complex classical quantity in (2.50) and

its components satisfy the relations

[H, ai] = −ωai , [Ji, aj ] = iεijkak , [ai, aj ] = −iεijk CJk , (3.14)

[a†i , aj ] = −ω[(2J 2 + 1− ν2)δij − JiJj)]− iHεijkJk , (3.15)

with corresponding relations for the Hermitian conjugate a†i . Again, the time-dependent

phase eiωt can be omitted, i.e., one can make a change a → ae−iωt accompanied by the

analogous omission of the time-dependent phase in the generators of the conformal algebra,

that does not change the form of the commutation relations (3.14) and (3.15).

The action of these operators is computed algebraically in appendix B. Here it is

sufficient to consider a3 and a†3 and their actions on the ket-states

a3 |n, j, j3〉 = An,j,j3 |n, j − 1, j3〉+Bn,j,j3 |n− 1, j + 1, j3〉 , (3.16)

a†3 |n, j, j3〉 = An,j+1,j3 |n, j + 1, j3〉+Bn+1,j−1,j3 |n+ 1, j − 1, j3〉 , (3.17)

where the squares of the positive coefficients are(
An,j,j3

)2
= ω(2n+ 2j + 1)

(j2 − j23)(j2 − ν2)
(2j)2 − 1

,
(
Bn,j,j3

)2
=

2n

2n+ 2j + 3

(
An,j+1,j3

)2
.

(3.18)

We see that the operators a3 and a†3 change the quantum numbers n and j, but the result is

a superposition of the two eigenstate vectors. Their action is depicted in figure 4. Clearly,

it would be preferable to find ladder operators that map a given eigenstate into just one

eigenstate with a different quantum number j and not a superposition of eigenstates. To

find such operators we introduce the non-local operator

J =

√
J 2 +

1

4
− 1

2
, J |n, j, j3〉 = j |n, j, j3〉 , (3.19)
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and construct the operators

T± = ω

(
J +

1

2

)
a3 ± (H − ω)a3 ∓ a†3 C (3.20)

together with their Hermitean conjugate. Actually T± and T †± are the third components

of the vector operators T± and T †± which are given by (3.20) wherein a3 and a†3 are replaced

by a and a† on the right hand side. But in what follows it suffices to consider T± and T †±
which are ladder operators for the energy,

[H,T±] = ωT± , [H,T †±] = −ωT †± . (3.21)

They decrease and increase the angular momentum according to

T+ |n, j, j3〉 = ω(2j + 1)An,j,j3 |n, j − 1, j3〉 , (3.22)

T− |n, j, j3〉 = ω(2j + 3)Bn,j,j3 |n− 1, j + 1, j3〉 , (3.23)

and the analogous Hermitian conjugate relations. These non-local objects were inspired

by a similar construction presented in [59] for the three dimensional isotropic harmonic

oscillator.

Now one can generate in a simple way all eigenstates of the commuting observables

H,J 2 and J3 by acting with the local ladder operators C, C†, J± and with the non-local

ladder operators T+,T
†
+ on just one eigenstate. The same can be achieved with local ladder

operators when one uses a, a† instead of T+,T
†
+, but then the recursive construction get

more involved, since a, a† map into a superposition of eigenstates.

3.2 The conformal bridge

Here we show how the generators of the conformal as well as the hidden symmetry of the

quantum system (3.2) can be obtained from generators of the corresponding symmetries

of the quantum system studied in [32]. This will be realized by means of the special non-

unitary transformation considered recently in [34] and identified there as a “conformal

bridge transformation”. As it will be seen, such a transformation simultaneously generates

eigenstates and coherent states of the system (3.2) from certain states of the quantum

system considered in [32].

Similarly to the classical case, in the limit ω → 0 the quantum version of the genera-

tors (2.24) has the form

H0 =
1

2

(
π2 +

ν2

r2

)
=

1

2

(
− 1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2
J 2

)
, (3.24)

D0 =
1

4
(rπ + π · r)−H0t , K0 =

1

2
r2 −Dt−H0t

2 . (3.25)

They produce the quantum conformal algebra

[D0, H0] = iH0 , [D0,K0] = −iK0 , [K0, H0] = 2iD0 . (3.26)
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The Hamiltonian H0 is a non-compact generator of the conformal algebra sl(2,R) with a

continuos spectrum (0,∞). In the same limit, the quantum version of the vector integrals

I1 and I2 transforms into the vectors

I1 →
1

2
(π× J − J × π) := V ,

I2
ω
→ 1

2

(
πt− r)× J − J × (πt− r)

)
:= G , (3.27)

which we identify, respectively, as the Laplace-Runge-Lentz vector and the Galilei boost

generator for the system H0 [32] in the Weyl-ordered form. The commutator relations of

the vectors V and G with the generators of the conformal algebra are

[H0, Gi] = −iVi , [K0, Vi] = iGi , [H0, Vi] = [K0, Gi] = 0 (3.28)

[D0, Vi] =
i

2
Vi , [D0, Gi] = − i

2
Gi . (3.29)

In order to go in the opposite direction, i.e., to recover our system H and its symmetry

generators starting from the generators (3.24), (3.25) and (3.27), we implement a particular

non-unitary transformation. The conformal bridge transformation [34] corresponds to set-

ting t = 0 in the definition of the generators above and in the construction of the operator

S = e−ωK0e
1
2ω
H0ei ln 2D0 (3.30)

in terms of the conformal symmetry generators of the system H0. A similarity transfor-

mation generated by S yields

SJS−1 = J , SVS−1 = a , SωGS−1 = −ia† , (3.31)

S(H0)S
−1 =

1

2
C , S(2iωD0)S

−1 = H , S(ω2K0)S
−1 = −1

2
C† , (3.32)

where H = H0 + ω2K0 is the quantum Hamiltonian (3.2). The explicit time dependence

can be recovered then by applying a unitary transformation with the evolution operator

U = e−iHt.

In correspondence with the second relation in (3.32), the wave functions (3.5) can

be generated, up to a normalization, by applying the non-unitary operator S to the

formal eigenstates of the first order differential operator 2iωD0 defined by the equation

2iωD0χ
j3
n,j = ω(2n+ j + 3/2)χj3n,j . The latter are given by

χj3n,j(r, θ, φ) = rj+2nYj3j (θ, φ) . (3.33)

To see that S has these properties, we consider the following relation which can be proved

by induction,

(H0)
`χj3n,j(r) =

(−2)`Γ(n+ 1)Γ(n+ j + 3/2)

Γ(n+ 1− `)Γ(n+ j + 3/2− `)
χj3n−`,j , ` = 1, 2, . . . . (3.34)

It vanishes for ` > n due to the pole of the Gamma function in the denominator. Therefore,

χj30,j can be interpreted as the zero-energy eigenstate of H0, and χj3n,j , n = 1, 2, . . ., are its
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Jordan states corresponding to the same zero energy [71]. Decomposing the operator

exp
(

1
2ωH0

)
entering the definition of S and using equation (3.34) one obtains

Sχj3n,j =
(−1)n√

2

(
2

ω

)n+ j
2
+ 3

4

[n!Γ(n+ j + 3/2)]
1
2 ψj3n,j . (3.35)

On the other hand, one can show that solutions of the equation H0φ
j3
j = 1

2κ
2φj3j are mapped

into coherent states of H. The explicit form of these solutions is given by

φj3j (r ;κ) =
1√
r
Jj+ 1

2
(κr)Yj3j =

∞∑
n=0

(−1)n(κ/2)2n+j+1/2

n!Γ(n+ j + 3/2)
χj3n,j(r) , (3.36)

where in the first equality Jj+ 1
2
(y) is the Bessel function of the first kind, and in the second

one we show that the solution can be expressed as a series expansion in terms of the Jordan

states (3.34). The explicit action of S on (3.36) gives us

ζj3j (r ;κ) = NSφ j3j

(
r ;

κ√
2

)
=
√

2Ne−
ωx2

2
+κ2

4ωφ j3j (r ;κ) (3.37)

=
N

ω1/2

∞∑
n=0

1√
n!Γ(n+ j + 3

2)

(
κ

2
√
ω

)2n+j+1/2

ψj3n,j(r) , (3.38)

where N stand for a normalization constant. Using the series expansion in terms of ψj3n,j ,

one finds N2 =
√
ω/(Ij+ 1

2
( |κ|

2

2ω )), where Ij+ 1
2
(z) is the modified Bessel function of the first

kind, and we have put the modulus in its argument because κ admits an analytic extension

for complex values, as is usual for coherent states. Also, this expansion helps us to find

the time evolution of these functions generated by H as follows,

ζj3j (r , t;κ) = e−iHtζj3j (r ;κ) = e−i
ω
2
tζj3j (r ;κe−

iωt
2 ) . (3.39)

At the same time, the first equation in (3.32) shows us that ζj3j (r , t;κ) are eigenstates

of C with eigenvalue −1
2κ

2e−iωt, i.e. they are indeed the coherent states of the system

corresponding to the conformal algebra (3.7) [72].

4 A charge-monopole superconformal model

In this section we admit an additional contribution to the Hamiltonian (3.2) due to the

spin degrees of freedom of the particle. The additional term describes a strong long-range

spin-orbit coupling and gives rise to an exactly solvable supersymmetric extension of the

three-dimensional system studied in previous sections. After introducing the system in the

first subsection we analyze its peculiar properties. In particular, we will find that some

energy values are infinitely degenerate and others are not. In the second subsection, we

show how one can extend the model to a supersymmetric system by means of the fac-

torization method, and by using this we construct an explicit realization of the osp(2|2)

superconformal symmetry. In the third subsection we show that two different supercon-

formal extensions of the one-dimensional AFF model with unbroken and spontaneously

broken phases of N = 2 Poincaré supersymmetry can be obtained by reduction from our

three-dimensional osp(2|2) superconformal system.
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4.1 Spin-orbit coupling model

Let us consider the following two Hamiltonians with strong spin-orbit coupling

H±ω =
1

2

(
π2 + ω2r2 +

ν2

r2

)
± ωσ · J = H ± ωσ · J . (4.1)

The Hamiltonians H±ω are similar to those which appear as subsystems of the non-

relativistic limit of the supersymmetric Dirac oscillator discussed in [57, 58]. Thus the

eigenvalue problems can be solved similarly as in those references, but the usual spherical

harmonics are replaced by the monopole harmonics. Actually, if we would choose a spin-

orbit coupling ω′ σ · J with 0 ≤ ω < ω′, then the spectra of both Hamiltonians would be

unbounded from below. On the other hand, for 0 ≤ ω′ < ω all energies will have finite

degeneracy. Only in the very particular case ω′ = ω, which we consider here, the spectra

are bounded from below and half of the energies have a finite degeneracy whereas the

other half have infinite degeneracy. This reminds us the BPS-limits in field theory, where

different interactions balance and supersymmetry is observed.

The operators H and σ · J commute and as a consequence H±ω commute with the

“total angular momentum”

K = J + s = J +
1

2
σ , [Ki,Kj ] = iεijkKk . (4.2)

The possible eigenvalues of K 2 are k(k + 1). It is well-known how to construct the simul-

taneous eigenstates of K 2 and K3:

|n, k, k3,±〉 =
∑
ms

Ckk3
jj3

1
2
ms
|n, j, j3〉 ⊗

∣∣∣∣12 ,ms

〉
k=j± 1

2

, (4.3)

where the Clebsch-Gordan coefficients

Ckk3
jj3

1
2
ms

=

〈
j, j3,

1

2
,ms

∣∣∣∣ k, k3〉 (4.4)

on the right hand side are nonzero only if j3 + ms = k3 and if the triangle-rule holds,

which means that the total angular momentum k is either j + 1
2 or j − 1

2 . In the first case

the eigenstates of the total angular momentum are denoted by |. . . , k, k3,+〉 and in the

second case by |. . . , k, k3,−〉. The sums (4.3) contain just two terms, since the eigenvalue

ms of the third spin-component s3 = 1
2σ3 is either 1

2 or −1
2 . Note that in the coordinate

representation the wavefunctions corresponding to these kets are given in (3.5), i.e.

〈r |n, k, k3,±〉 = fn,j(
√
ωr) 〈n |k, k3,±〉 , (4.5)

〈n |k, k3,±〉 =
1√

2k + 1∓ 1

±√k ± k3 + (1∓ 1)/2Yk3−1/2k∓1/2 (θ, ϕ; ν)√
k ∓ k3 + (1∓ 1)/2Yk3+1/2

k∓1/2 (θ, ϕ; ν)

 := Ωk3±
k . (4.6)

The wavefunctions (4.5) contain the monopole harmonics and generalized Laguerre poly-

nomials. If ν = eg is integer-valued then j is a non-negative integer and k a positive

half-integer. If eg is half-integer, then j is a positive half-integer and k is in N0.
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The vector in (4.3) is a simultaneous eigenstate of J 2 with eigenvalue j(j + 1), of K 2

with eigenvalue k(k+1), of H with eigenvalue (2n+ j+ 3
2)ω, where j = k∓1/2, and finally

of the operator σ · J :

σ · J |n, k, k3,±〉 =

(
±
(
k +

1

2

)
− 1

)
|n, k, k3,±〉 . (4.7)

As a consequence the action of the Hamiltonians in (4.1) on these states is

H+ω |n, k, k3,±〉 = ω

(
2n+ k +

1

2
± k
)
|n, k, k3,±〉 , (4.8)

H−ω |n, k, k3,±〉 = ω

(
2n+ k +

5

2
∓ (k + 1)

)
|n, k, k3,±〉 . (4.9)

We see that the discrete eigenvalues of both Hamiltonians H±ω fall into two families: in

one family all energies are infinitely degenerate and in the other family they all have finite

degeneracy (due to their dependence on the quantum number k). More explicitly, for

k = j ∓ 1
2 the eigenvalues of H∓ω have infinite degeneracy and for k = j ± 1

2 they have

finite degeneracy g(N, ν) = N2 − ν2, where N = n+ j + 1. A similar peculiar behavior is

observed in the Dirac oscillator spectrum [57].

Operators K± = K1± iK2 are the ladder operators for the magnetic quantum number

k3. The ladder operators for the radial quantum number are given in (3.8), and their action

on the simultaneous eigenstates reads

C |n, k, k3,±〉 = ωdn,j |n− 1, k, k3,±〉 , (4.10)

C† |n, k, k3,±〉 = ωdn+1,j |n+ 1, k, k3,±〉 , (4.11)

with coefficients defined in (3.11). Thus, as for the spin-zero particle system in monopole

background, we can easily construct local ladder operators for n and k3. But again, finding

ladder operators for k is more difficult. One way to proceed is to follow the ideas employed

for the Dirac oscillator in [59, 60]. First we decompose the total Hilbert space in two sub-

spaces, H = H (+)⊕H (−), where each H (±) is spanned by the states |n, k, k3,±〉. Actu-

ally we can construct non-local operators which project orthonormally onto these subspaces,

P+ =
1

2
+

√
K 2 +

1

4
−
√

J 2 +
1

4
, (4.12)

P− =
1

2
−
√

K 2 +
1

4
+

√
J 2 +

1

4
, (4.13)

and reproduce or annihilate the eigenstates,

P(±)
∣∣
H (±) = 1

∣∣
H (±) , P(±)

∣∣
H (∓) = 0 . (4.14)

In next step we introduce the operators

A± = P±T±P± , (4.15)
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where the non-local T± have been defined in (3.20). The presence of the projectors will

ensure that A± only acts on eigenstates in H (±), and its action on these eigenstates can

be computed straightforwardly using the relations (3.22) and (3.23):

A+ |n, k, k3,+〉 = (k − 1)
√
n+ kΛk,k3,j |n, k − 1, k3,+〉 , (4.16)

A− |n, k − 1, k3,−〉 = (k + 1)
√
nΛk,k3,j |n− 1, k, k3,−〉 , (4.17)

with

Λk,k3,j =
ω3/2

k

√
2(k2 − k23)(j2 − ν2) .

These relations mean that the operators A± and their adjoint act as ladder operators for

the quantum number k. Together with operators K±, C, C† they generate all eigenstates

in the full Hilbert space from just two eigenstates, one from each subspace H (±).

4.2 The osp(2|2) superconformal extension

In this subsection we construct and analyze supersymmetric partners of the Hamiltonians

H±ω by introducing factorizing operators. From these we obtain two N = 2 super-Poincaré

quantum systems which are related to each other by a common integral of motion which

generates an R-symmetry. Supplementing the supercharges of one of these systems by

supercharges of another, we extend the N = 2 super-Poincaré symmetry up to the osp(2|2)

superconformal symmetry realized by a three-dimensional system of spin-1/2 particle in a

monopole background.

Consider the first-order scalar operators

Θ = iσ · b − 1√
2

ν

r
, Ξ = iσ · b† − 1√

2

ν

r
, (4.18)

and their adjoint Θ† and Ξ†. The products of these operators with their adjoint are

H[1] := ΘΘ† = H+ω +
3

2
ω , H̆[1] := ΞΞ† = H−ω −

3

2
ω , (4.19)

where H±ω are given in (4.1). The associated superpartners take the form

H[0] := Θ†Θ = H̆[1] − ν
(

1

r2
+ 2ω

)
σr , (4.20)

H̆[0] := Ξ†Ξ = H[1] − ν
(

1

r2
− 2ω

)
σr , (4.21)

wherein the projection of σ to the normal unit vector appears,

σr = n · σ =

(
cos θ e−iϕ sin θ

eiϕ sin θ − cos θ

)
. (4.22)

The first order operators satisfy the intertwining relations

ΘH[0] = H[1]Θ , Θ†H[1] = H[0]Θ
† , (4.23)

ΞH̆[0] = H̆[0]Ξ , Ξ†H̆[1] = H̆[0]Ξ
† . (4.24)
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The eigenstates of H[0] can be obtained by acting with Θ† on the eigenstates of H[1] or

equivalently of H+ω. They are given in (4.3). For computing the action of the intertwining

operators we use the following representation

Θ† =
σr√

2

(
−1

r

∂

∂r
r + ωr +

1 + σ · J
r

)
. (4.25)

As a result we obtain the relations

Θ† |n, k, k3,±〉 = ±
√

2ω(n+ 1 + β±k) ‖n+ β∓, k, k3,±〉 , β± =
1

2
(1± 1) , (4.26)

where in coordinate representation the normalized spinors ‖n, k, k3,±〉 on the right hand

side have the explicit form

〈r‖n, k, k3,±〉 = fn,j±1σrΩ
k3±
k , (4.27)

where Ωk3±
k are given in (4.6). With the help of functional relations between different

generalized Laguerre polynomials (see appendix C) one proves that

Θ‖n, k, k3,±〉 = ±
√

2ω(n+ β±(k + 1)) |n− β∓, k, k3,±〉 , (4.28)

and by acting with the operator Θ† on these relations we get the eigenvalue equations

H[0]‖n, k, k3,±〉 = 2ω(n+ β±(k + 1))‖n, k, k3,±〉 . (4.29)

Note that the states ‖n, k, k3,−〉 are zero-modes of H[0] since they are annihilated by Θ.

The eigenstates of H̆[0] can be determined in an analogous way by acting with the

operator

Ξ† =
σr√

2

(
−1

r

∂

∂r
r − ωr +

1

r
(1 + σ · J )

)
(4.30)

on the spinors (4.5) and with its adjoint Ξ on the spinors (4.27), that results in the mappings

Ξ† |n, k, k3,±〉 = ±
√

2ω(n+ β∓(k + 1) ‖n− β±, k, k3,±〉 , (4.31)

Ξ ‖n, k, k3,±〉 = ±
√

2ω(n+ 1 + β∓k) |n+ β±, k, k3,±〉 . (4.32)

Note that Ξ† as well as H̆[1] annihilate the set of states ‖0, k, k3,+〉.
Finally, acting with Ξ† on the states in (4.32), we solve the eigenvalues problem for H̆[0]:

H̆[0] ‖n, k, k3,±〉 = 2ω(n+ 1 + kβ∓) ‖n, k, k3,±〉 . (4.33)

Having at hand the eigenstates ‖n, k, k3,±〉, one may find spectrum generating ladder op-

erators. In this context equations (4.26), (4.28), (4.31) and (4.32) can be used to construct

such operators for the quantum number n. They read

C̃ = Ξ†Θ , C̃† = Θ†Ξ , (4.34)

and act on the eigenvectors ‖ . . . 〉 as follows:

C̃† ‖n, k, k3,±〉 = 2ωdn+1,j±1 ‖n+ 1, k, k3,±〉 ,
C̃ ‖n, k, k3,±〉 = 2ωdn,j±1 ‖n− 1, k, k3,±〉 . (4.35)
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Actually, the first order operators Θ and Ξ† factorize the earlier considered second order

ladder operator (3.8) according to C = ΘΞ†.

Having constructed lowering and raising operators for n, we are still missing ladder

operators for k and k3. For the latter we may of course use K±, since Θ, Ξ and their

adjoint are scalar operators with respect to K . But once more, for the angular momentum

quantum number k we can introduce non-local “dressed” operators

Ã− = Θ

√
1

H[1]
A−

√
1

H[1]
Θ† , Ã+ = Ξ

√
1

H̆[1]

A+

√
1

H̆[1]

Ξ† , (4.36)

and their adjoint operators, where A± have been given in (4.15). The operators Ã± are

the analogs to A± for the vectors ‖n, k, k3,±〉, as we see in equations

Ã+‖n, k, k3,+〉 = (k − 1)
√
n+ kΛk,k3,j ‖n, k − 1, k3,+〉 , (4.37)

Ã−‖n, k − 1, k3,−〉 = (k + 1)
√
nΛk,k3,j ‖n− 1, k, k3,−〉 . (4.38)

In a final step we combine the four 2 × 2 matrix Hamiltonians introduced above into

two 4× 4 matrix super-Hamiltonians as follows:

H =

(
H[1] 0

0 H[0]

)
, H̆ =

(
H̆[1] 0

0 H̆[0]

)
. (4.39)

In the limit ν → 0 they turn into different versions of the Dirac oscillator in the non-

relativistic limit, see [57]. Both operators commute with the Z2-grading operator Γ =

σ3 ⊗ I2×2, [Γ,H] = [Γ, H̆] = 0, and their difference is the (bosonic) integral of motion

R =
1

2ω
(H− H̆) =

(
J · σ +

3

2

)
Γ− 2νσrΠ− =

(
σ · J + 3

2 0

0 −(σ · J + 2νσr + 3
2)

)
,

(4.40)

where Π− is a projector,

Π± =
1

2
(1± Γ) . (4.41)

In the fermionic sectors of the systems H and H̆ we have the nilpotent operators

Q =

(
0 Θ

0 0

)
, W† =

(
0 Ξ

0 0

)
, (4.42)

{Γ,Q} = {Γ,W} = 0, and their adjoint operators. Each of these generate an N = 2

Poincaré superalgebra

[H,Q] = [H,Q†] = {Q,Q} = {Q†,Q†} = 0 , {Q,Q†} = H , (4.43)

[H̆,W] = [H̆,W†] = {W,W} = {W†,W†} = 0 , {W,W†} = H̆ . (4.44)

The even integral R in (4.40) generates an R-symmetry for both systems, and satisfies the

relations (for details see appendix D),

[Γ,R] = 0 , [R,Q] = Q , [R,W] = −W , h.c. , (4.45)
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where h.c. corresponds to Hermitian conjugate relations. Having in mind that H and H̆
can be diagonalized simultaneously, from now on we treat H as the Hamiltonian of the

super-extended system and H̆ = H− 2ωR as its integral. Then, by anti-commuting Q and

W we obtain the bosonic generator

G = {W,Q} =

(
C 0

0 C̃

)
, [Γ,G] = 0 , h.c. , (4.46)

composed from the ladder operators of sub-systems H[1] and H[0] of our system H.

Taking together, these scalar generators with respect to

Ki =

(
Ki 0

0 Ki

)
, i = 1, 2, 3 , (4.47)

obey the superalgebraic relations

[H,G] = −2ωG , [G,G†] = 4ω(H− ωR) , (4.48)

[H,W] = −2ωW , [R,W] = −W , [R,Q] = Q , (4.49)

[G,Q†] = −2ωW , [G,W†] = 2ωQ , (4.50)

{Q,Q†} = H , {W,W†} = (H− 2ωR) , (4.51)

{Q,W} = G , (4.52)

supplemented by the adjoint relations. The (anti)-commutators not displayed here do van-

ish. This superalgebra is identified as the osp(2|2) superconformal symmetry which appears

in systems like one-dimensional harmonic super-oscillator or the superconformal mechanics

model with a confining term [19, 20, 71, 73]. Therefore our construction maybe consid-

ered as generalization of the three-dimensional versions of these systems in the monopole

background.

The relations (4.48)–(4.52) are invariant under the automorphism H → H̆, R → R,

Q ↔ W , G → G and h.c., which amount to using H̆ instead of H, as super-Hamiltonian.

The common eigenstates of H, R, Γ, K3 and K2 are given by

|n, k, k3,±, 1〉 =

(
|n, k, k3,±〉

0

)
, |n, k, k3,±,−1〉 =

(
0

‖n, k, k3,±〉

)
, (4.53)

which satisfy the eigenvalue equations

H |n, k, k3,±, γ〉 = 2ω

(
n+

1

2
(1 + γ) + β±

(
k +

1

2
(1− γ)

))
|n, k, k3,±, γ〉 , (4.54)

Γ |n, k, k3,±, γ〉 = γ |n, k, k3,±, γ〉 , γ = ±1 , (4.55)

R|n, k, k3,±, γ〉 =

[
±
(
k +

1

2

)
+
γ

2

]
|n, k, k3,±, γ〉 , (4.56)

K2 |n, k, k3,±, γ〉 = k(k + 1) |n, k, k3,±, γ〉 , (4.57)

K3 |n, k, k3,±, γ〉 = k3 |n, k, k3,±, γ〉 . (4.58)
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The operators Q and Q† (W and W†) defined in (4.42), interchange the state vectors

|n, k, k3,±, γ〉 and |n, k, k3,±,−γ〉 according to the rules in (4.26), (4.28) and (4.31), (4.32).

The ground states ofH (H̆) which are given by |n, k, k3,−,−1〉 (|n, k, k3,+,+1〉 ) are invari-

ant under transformations generated by these fermionic operators, therefore the quantum

system H exhibits the unbroken N = 2 Poincaré supersymmetry.

Finally, the spectrum generating ladder operators for the supersymmetric system cor-

respond to operators G and G† for n, K± for k3 and the matrix non-local operators(
A± 0

0 Ã±

)
,

(
A†± 0

0 Ã†±

)
. (4.59)

for the angular quantum number k.

4.3 Dimensional reduction

In this section we trace out how two different super-extensions of the one-dimensional AFF

model can be obtained by a reduction from our three-dimensional superconformal system.

For the sake of simplicity we put here ω = 1, and denote
√
ωr = r as x.

Let us revisit first the supersymmetric AFF model. There are two possible extensions,

which are given by the 2× 2 matrix Hamiltonians

Hε` =

(
H` + ε(`− 1

2) 0

0 H`−1 + ε(`+ 1
2)

)
, H` =

1

2

(
− d2

dx2
+ x2 +

`(`+ 1)

x2

)
, (4.60)

where ε = ± and ` ≥ −1/2 [74–77]. The Z2-grading operator is σ3, and the supercharges

of super-extended systems Hε` are given by

Qε`,1 = − ε√
2

(
0 Aε`

Aε`
† 0

)
, Qε`,2 = iσ3Q

ε
`,1 , (4.61)

where

Aε` = −ε d
dx

+ x+ ε
`

x
. (4.62)

The supercharges and Hamilltonian operators satisfy the N = 2 Poincaré superalgebra

{Qε`,a, Qε`,b} = 2δabHε` , [Hε`, Qε`,a] = 0 , a, b = 1, 2 . (4.63)

As in the case studied in the previous section, here we can also construct the R symmetry

generator

R` =
1

2
(H−` −H

+
` ) =

1

2
σ3 − ` , (4.64)

and therefore one Hamiltonian can be expressed in terms of another and R`. Additionally,

we have the conformal symmetry ladder operator

G` =

(
G` 0

0 G`−1

)
, G` = −1

2

(
d

dx
+ x

)2

+
`(`+ 1)

2x2
, (4.65)
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and its adjoint, which are generated by

{Qε`,a, Q−ε`,b} = δab(G` + G†`) + iεab(G` −G†`) . (4.66)

By constructing nilpotent fermionic operators 1
2(Qε`,a ± iQε`,a) , it is not difficult to show

that these generators satisfy the algebra (4.48)–(4.52).

The eigenstates of the super-Hamiltonian Hε` and supercharge Qε`,1, which we will

denote as Φε
n,`,% with % = ±1, are given by

Φ−0,`,1 =
x√
2

(
0

f0,`−1(x)

)
, (4.67)

Φ−n+1,`,1 =
x√
2

(
fn,`(x)

fn+1,`−1(x)

)
, Φ−n+1,`,−1 = σ3Φ

−
n+1,`,1 , (4.68)

Φ+
n,`,1 =

x√
2

(
fn,`(x)

fn,`−1(x)

)
, Φ+

n,`,−1 = σ3Φ
+
n,`,1 , n ∈ N0 . (4.69)

The spectral equations are

Hε`Φε
n,`,% = (2n+ β±(2`+ 1))Φε

n,`,% , Qε`,1Φ
−
n,`,% = %

√
(2n+ βε(2`+ 1))Φε

n,`,% , (4.70)

where β+ = 1, β− = 0, cf. (4.26). In the case of H−` , the ground state Φ−0,`,1 is annihilated

by the super-Hamiltonian and by the supercharges Q−`,a, and, therefore, supersymmetry

is unbroken, with energy levels being independent of `. On the other hand, H+
` has no

zero-energy ground state, energy levels depend on parameter `, and there is no physical

eigenstate annihilated by both supercharges Q+
`,a, that implies that supersymmetry is spon-

taneously broken. For more details see refs. [19, 20, 71]. The independence and dependence

of energy levels on ` is reminiscent of two subsets of states in our three-dimensional system

with infinitely degenerate energy levels due to their independence on the quantum number j

and finitely degenerate, depending on j energy eigenvalues. This is an additional indication

on that one-dimensional superconformal extensions of the AFF model (4.60) may indeed

be obtained by reduction from our three-dimensional osp(2|2) superconformal system.

In the following, we will show that for two different dimensional reductions of the

system H defined in (4.39), we obtain a particular realization of the one-dimensional super-

extended AFF model in both, broken and unbroken, N = 2 supersymmetry phases, with

` = j taking one of the values j = |ν|, |ν| + 1 . . .. To this end we first note that the

Hamiltonian H admits a representation

H =
1

2

[
− 1

x2
∂

∂x

(
x2

∂

∂x

)
+ x2

]
I4×4 +

1

2x2

(
K2 − ΓR+

3

4

)
+R . (4.71)

Also, let us introduce the following notation to distinguish one-dimensional from three-

dimensional generators:

Bε
j,α = {Hεj , Rj ,Gj ,G

†
j} , F ε

j,β = {Qεj,1, Qεj,2, Q−εj,1, Q
−ε
j,2} , (4.72)

Bα = {H,Rj ,Gj ,G†j} , Fβ = {Re(Q), Im(Q), Re(W), Im(W)} , (4.73)

where we imply that Bj,1 = H etc., and Re(Q) = 1
2(Q+Q†), Im(Q) = i

2(Q† −Q).
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For the dimensional reduction we “extract” a subspace in which the angular and spin

operators in (4.71) take fixed numerical values. We have two independent choices which

we distinguish by the signs ±, and they relate to the choice of the states |χ,±〉 defined by

the set of equations

(K2 − k(k + 1)) |χ,±〉 = 0 , (K3 − k3) |χ,±〉 = 0 , (4.74)

P± |χ,±〉 = 0 , P± =
1

2k + 1
(Π± + k ∓R) , (4.75)

where k = j ± 1
2 , and k3 = j3 ± 1

2 . Here, the most general form of |χ,±〉 is

|χ,±〉 =
∞∑
n=0

a±n |n, k, k3,±, 1〉+ b±n |n, k, k3,±,−1〉 =
∞∑
n=0

(
a±n |n, k, k3,±〉
b±n ‖n, k, k3,±〉

)
. (4.76)

The operators P± are projectors onto the orthogonal subspaces |χ,−〉 and |χ,+〉. In both

subspaces, the grading operator preserves its form, while the action of operators R and

K2 − ΓR+ 3/4 produce

R|χ,−〉 =

(
−(j − 1

2)I2×2 0

0 −(j + 1
2)I2×2

)
|χ,−〉

= Rj ⊗ I2×2 |χ,−〉 , (4.77)

R|χ,+〉 =

(
(j + 3

2)I2×2 0

0 (j + 1
2)I2×2

)
|χ,+〉

= −σ1(Rj+1)σ1 ⊗ I2×2 |χ,+〉 , (4.78)(
K2 − ΓR+

3

4

)
|χ,±〉 =

(
j(j + 1) 0

0 j(j ± 1)

)
⊗ I2×2 |χ,±〉 , (4.79)

where the generator Rj defined in (4.64) appears explicitly. In the same way we found in

the subspace represented by |χ,−〉 the following relations,

Ba |χ,−〉 =
1

x
B−j x⊗ I2×2 |χ,−〉 , Fb |χ,−〉 =

1

x
F−j x⊗ σr |χ,−〉 , (4.80)

while in the subspace given by |χ,+〉 we obtain

Ba |χ,+〉=σ1

(
1

x
B+
j+1x

)
σ1⊗I2×2 |χ,+〉 , Fb |χ,+〉=σ1

(
1

x
F+
j x

)
σ1⊗σr |χ,+〉 . (4.81)

In these equations the generators take the form of a direct product of two operators A⊗B,

where A is a one-dimensional 2× 2 matrix operator, and B is the 2× 2 identity matrix or

σr. The latter still contains an angular dependence, see (4.22). To eliminate the angular

variables we introduce the operators

O± =

(
|v〉 〈k, k3,±| 0

0 |v〉 〈k, k3,±|σr

)
, |v〉 =

(
1

1

)
, (4.82)
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and their adjoints. Here |k, k3,±〉 corresponds to (4.5). Acting on the state |χ,±〉, these

operators produce

O± |χ,±〉 = |Ψ,±〉 , 〈r|Ψ,±〉 =
∞∑
n=0


a±n fn,j

a±n fn,j

b±n fn,j±1

b±n fn,j±1

 , (4.83)

and (O±)† |Ψ,±〉 = |χ,±〉, that implies that (O±)†O± |χ,±〉 = |χ,±〉 and

O±(O±)† |Ψ,±〉 = |Ψ,±〉. Multiplication of the bosonic generators by O± from the left

and by O†± from the right does not change their structure, i.e. O±Bα(O±)† = Bα, but the

same operation applied to fermionic generators produces

O−FbO†− |Ψ,−〉 =
1

x
F−j,βx⊗ σ1 |Ψ,−〉 , (4.84)

O+FbO†+ |Ψ,+〉 = σ1

(
1

x
F+
j+1,βx

)
σ1 ⊗ σ1 |Ψ,+〉 . (4.85)

Note that σr disappears, and we effectively eliminated the angular degrees of freedom. The

reduction scheme is almost done. To complete it we introduce the unitary matrix

U =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , UU † = 1 , detU = −1 , (4.86)

which finally gives

UBa |Ψ,−〉 =
1

x

(
B−j,a 0

0 B−j,a

)
xU |Ψ,−〉 , (4.87)

UO−F̂βO†− |Ψ,−〉 =
1

x

(
0 F−j,β

F−j,β 0

)
xU |Ψ,−〉 , (4.88)

UBa |Ψ,+〉 =
1

x

(
σ1B

+
j+1,aσ1 0

0 σ1B
+
j+1,aσ1

)
xU |Ψ,+〉 , (4.89)

UO+F̂βO†+ |Ψ,+〉 =
1

x

(
0 σ1F

+
j+1,βσ1

σ1F
+
j+1,βσ1 0

)
xU |Ψ,+〉 , (4.90)

where each of these matrices is a 4× 4 matrix, and

〈r|U |Ψ,±〉 =

∞∑
n=0


a±n fn,j

b±n fn,j±1

a±n fn,j

b±n fn,j±1

 . (4.91)
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The last state contains two copies of the same two-component column vector, which in turn

can be expanded in terms of eigenstates (4.67), (4.68) divided by x in the case when we do

the reduction with sign −, or in terms of the states (4.69) multiplied by σ1/x, if we choose

the sign +. On the other hand, in equations (4.87)–(4.90) particular bosonic (fermionic)

generators appear as block-(anti)diagonal matrices, where each block corresponds to the

same one-dimensional generator. To eliminate one of these copies we can use the projector

operators Π±. Then we obtain

〈r |Π±UBα |Ψ,−〉 → B−j,αΨ−j (x) , 〈r |Π±UBα |Ψ,+〉→σ1B
+
j+1,αΨ+

j+1(x) , (4.92)

〈r |Π±UO−Fα(O−)† |Ψ,−〉 → F−j,βΨ−j (x) , (4.93)

〈r |Π±UO+Fα(O+)† |Ψ,+〉 → σ1F
+
j+1,βΨ+

j+1(x) , (4.94)

where

Ψ−j = x 〈r |Π±UO− |χ,−〉 =

∞∑
n=0

A−nΦ−n,j,1 +B−n Φ−n,j,−1 , (4.95)

Ψ+
j+1 = xσ1 〈r |Π±UO+ |χ,+〉 =

∞∑
n=0

A+
nΦ+

n,j+1,1 +B+
n Φ+

n,j+1,−1 . (4.96)

and the coefficients A±n and B±n can be expressed in terms of a±n and b±n in (4.76) using the

orthogonality of states (4.67)–(4.69) with ` = j.

Thus, the appropriately realized dimensional reduction of our three-dimensional

osp(2|2) superconformal system H with the unbroken N = 2 Poincaré supersymmetry

produces two different osp(2|2) superconformal extensions of the one-dimensional AFF

model with unbroken or spontaneously broken N = 2 Poincaré supersymmetries.

5 Discussion and outlook

In summary, this work is divided in two parts. In the first part, we studied the special case

of a dynamical conformal system presented by a scalar charged particle in the monopole

background which is characterized by the presence of an additional, hidden symmetry that

controls and reflects its peculiar classical and quantum properties. In the second part, we

added spin degrees of freedom by introducing a spin-orbit coupling of a special, unique

form that guarantees a very peculiar degeneracy of energy levels and gives rise to the

superconformal osp(2|2) symmetry. By two different dimensional reduction schemes this

three-dimensional supersymmetric system produces the one-dimensional superconformal

extensions of the AFF model [44] in unbroken and spontaneously broken phases of N = 2

Poincaré supersymmetry [20].

The scalar charged particle in the monopole background that we considered is sub-

jected to a central potential V (r) = α
2mr2

+ mω2

2 r2, which is a three-dimensional analog of

the AFF model’s potential, and therefore the system posseses the conformal Newton-Hooke

symmetry [61–64]. For coupling constant α 6= ν2, trajectories are closed only for some par-

ticular initial conditions. On the contrary, the special case α = ν2 we study always gives
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us closed trajectories, the angular period is twice the radial period, and even more, the

dynamics projected to the plane orthogonal to the Poincaré angular momentum vector J
turns out to be similar to that for the usual three-dimensional isotropic harmonic oscil-

lator. In fact, such an interesting “coincidence” is a universal property of the monopole

background.3 Indeed, if we consider the system described by the Hamiltonian

Hν =
π2

2m
+

ν2

2mr2
+ U(r) (5.1)

with an arbitrary central potential U(r), then the dynamics of the vector variables r × J
and π×J has the same form as that for vector variables r×L and p×L when ν = eg = 0

with L being the usual angular momentum:

ν 6= 0 ν = 0

d
dt(r × J ) = 1

mπ× J d
dt(r × L) = 1

mp × L
d
dt(π× J ) = U ′(r)n × J d

dt(p × L) = U ′(r)n × L

As a consequence, the motion in the plane orthogonal to J is equivalent to the dynamics

obtained in the absence of the monopole, and if we know the solutions r = r(t) and

p = p(t) in the case ν = 0, the dynamics for π× J and r × J is at hand. To reconstruct

the complete dynamics we combine the relations (2.39) to obtain

r(t) =
1

J2

(
J × (r(t)× J ) +

√
|r(t)× J |
J2 − ν2

J

)
. (5.2)

In particular, if instead of (5.1) we have a system described by the Hamiltonian H̃ν =
1
2mπ

2 + Ũ(r) with arbitrary central potential Ũ(r), it is reduced in an obvious way to the

system (5.1) with central potential U(r) = Ũ(r)− ν2/2mr2. The indicated similarity and

relation allows, particularly, to identify immediately the analog of the Laplace-Runge-Lenz

vector (3.27) for a particle in the monopole background in the case of Ũ = 0 and U = 0,

and for the Kepler problem with U = q/r, that was done earlier in [30–32] and [65] but by

using a different approach.

From this perspective, one can speculate that this peculiar dynamics should be re-

lated with the motion of a particle in a conical geometry under the action of a potential

U(r), or from the perspective of gravity, with the dynamics in a global monopole space-

time [80]. In fact, generalizations of SU(2) systems with D(2, 1;α) superconformal me-

chanics in Einstein-Maxwell background were studied recently in [81]. It would be very

interesting to generalize the system with harmonic trap that we considered for the case of

D(2, 1;α) superconformal mechanics and to look for its relation with the systems from [81]

in the light of the conformal bridge transformation. In another but somehow related di-

rection, it could be interesting to study this system and its hidden symmetries from the

perspective of Eisenhart-Duval lift [82] and Killing-Yano tensors [1].

3For earlier discussion of the quantum mechanical and classical aspects of such a universality see [14,

78, 79]. We thank A. Nersessian for drawing our attention to these works.
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The similarities in the dynamics are revealed not only at the classical level, but also in

the quantum theory. In particular, the Hamiltonian operator (3.2) has the form of a three-

dimensional harmonic oscillator Hamiltonian with a modified angular momentum, which

takes values j = |ν|+ k with k = 0, 1, . . .. Also, degeneracy of the spectrum, related with

the ratio of the classical radial and angular periods, can be explained in terms of the hidden

integrals of motion as we did in section 3.1. Earlier results on the quantum analogy was

obtained for this system and for the Kepler potential in [65] in the case of integer values of ν.

On the other hand, though the systems of the form (5.1) with U = 0 and U = 1
2mω

2r2

classically and quantum mechanically are essentially different since their Hamiltonians

are generators of conformal sl(2,R) symmetry of non-compact and compact topological

nature, respectively, they correspond to two different forms of dynamics governed by con-

formal symmetry in the sense of Dirac [33, 71]. This fact allowed us to relate them at the

quantum level (that also can be done classically) by applying the conformal bridge trans-

formation [34], as we did this in section 3.2. Symmetry generators of one of these systems,

including those of hidden symmetry, are mapped into symmetries of the other system. This

transformation also allowed us to obtain the coherent states for the system we studied.

In the second part, similarly to the construction of the Dirac oscillator [57], we in-

troduce additional spin degrees of freedom at the quantum level and adding a spin-orbit

coupling term ±ω′J · σ. The constant value ω′ = ω is very special as then the spectrum

is divided in two subsets. The eigenvalues in one subset do not depend on the quantum

angular momentum number j and hence are infinitely degenerate. In the other subset each

energy level has finite degeneracy defined by the constant ν = eg which can only take in-

teger and half-integer values. Using the hidden symmetries of the scalar system, as well as

its conformal Newton-Hooke symmetry, we construct independent pairs of non-local ladder

operators acting within both subspaces, one with infinite and one with finite degeneracy

of energy levels. Here we do not compute commutators of these objects and the question

on the symmetry algebra of the system remains unanswered.

The system with spin degrees of freedom gives rise to an N = 2 supersymmetric

system characterized by the osp(2|2) superconformal symmetry. Applying two different

dimensional reduction schemes to the obtained superconformal system produces in one

case the one-dimensional superconformal extension of the AFF model with harmonic trap

in the phase of the unbroken N = 2 Poincaré supersymmetry, while in the other case gives

us the same system but in the spontaneously broken phase [19, 20, 71, 73]. In this context,

it would be interesting to look for three-dimensional generalizations of the one-dimensional

rationally deformed superconformal systems constructed recently in [19, 20, 71] by using

dual Darboux transformations.

Hermitian supercharges of three-dimensional supersymmetric quantum mechanics can

be related with (3 + 1)-dimensional Dirac operators in Euclidean space by setting ∂t →
0, and adding a gauge field connection. It is known that for self-dual or anti-self-dual

electromagnetic fields an extended N = 4 supersymmetry can be obtained [39]. In the

present case, the Hermitian combination Q+ +Q−, where Q± are given in (4.42), can be
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re-written in terms of Euclidean Dirac matrices

γi =

(
0 −iσi
iσi 0

)
, γ0 =

(
0 1

1 0

)
(5.3)

in the following form:

Q0 = −
√

2(Q+ +Q−) = γi(pi − eAi) + eγ0A0 , (5.4)

where

A0 =
g

r
, Ai = Ai − i

ω

e
γ5 ri , (5.5)

with γ5 = Γ is our grading operator in section 4.2. Then the operator (5.4) can be viewed

as a parity breaking Euclidean Dirac operator with components of the gauge potential

satisfying the relations −∂iA0 = εijk∂jAk = gri/r
3. Hence we are dealing with a new

type of parity breaking dyon background. Actually, the γ5 terms do not allow for an

N = 4 supersymmetric extension and we only have N = 2 supersymmetry, with the

second supercharge given by i
√

2(Q+ − Q−) = iγ5Q0. It is interesting to relate a parity-

breaking Dirac operator with a supersymmetric quantum mechanics. In this context it

is not clear whether a (pseudo)classical supersymmetric system exists whose quantization

would produce our three-dimensional sl(2,R) superconformal system, or we have here a

kind of a classical anomaly [83].

To further interpret the three-dimensional supersymmetric system, one can study lim-

iting cases of the coupling constant. In particular, in the limit ν → 0 we recover the

non-relativistic limit of the Dirac oscillator considered in [56–60], and the supersymme-

try (4.48)–(4.52) remains intact. On the other hand, in the limit, ω → 0, both Hamiltonians

in (4.39) take the form

Hdyon =
1

2

(
π2 +

ν2

r2
− 4ν

r3
S−i · r

)
, S− =

1

2
(1− Γ)S , (5.6)

where S = I⊗ 1
2 σ denotes the vector spin operator. This is just a Pauli type Hamiltonian

for a charged spin-1/2 particle in a field of a self-dual dyon [32]. In the same limiting case

the operator (5.4) is a Dirac type Hamiltonian which is identified as a supercharge related

to (5.6). As we have emphasized earlier, this system has extended N = 4 supersymmetry.

However, taking the limit ω → 0 in our system (and following the approach in [73]) we

cannot reconstruct the other three supercharges and one may suspect that something is still

missing in our construction. One possible way to answer this question is to try to perform a

supersymmetric extension of the conformal bridge [34] and to apply this to the system (5.6).

Finally, another interesting question related to the Killing-Yano tensor problem men-

tioned above is the possible existence of an additional, hidden non-linear supersymmetry in

the system studied by us in section 4.2. Such a possibility is suggested by the presence of

such symmetries in the system of a spin-1/2 particle in a self-dual dyon background [32], in

superconformal mechanics at special values of the boson-fermion coupling constant [84, 85],

in the system of a scalar particle investigated by us in section 2.3, and the nonlinear exotic

supersymmetry seen in the systems of spinning particles in backgrounds characterized by

the presence of Killing-Yano tensors [7, 25–28].
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A The monopole harmonics

The monopole vector gauge potential possesses a singularity often called Dirac string,

because of which one may split the domain of definition of this field in two parts (charts)

related by a gauge transformation. The continuity conditions for the wave function in the

transition region imply the remarkable result that ν = eg can take only integer and half

integer values at the quantum level. Here we obtain an explicit expression for monopole

harmonics, and for this purpose it is enough to work in the fixed gauge

A =
gz

r(x2 + y2)
(yx̂− xŷ) = −g

r
cot(θ)ϕ̂ , ϕ̂ = (− sinϕ, cosϕ) . (A.1)

To see how the monopole harmonics change under the corresponding gauge transformation,

see refs. [67, 68]. With this choice, the spherical components of the Poincaré vector J are

given by

J± = e±iϕ
(
i cot θ

∂

∂ϕ
± ∂

∂θ
− ν

sin θ

)
, J3 = −i ∂

∂ϕ
. (A.2)

These operators can be obtained as a “reduction” of the so(4) = so(3)⊕ so(3) symmetry

[Ji,Jj ] = iεijkJk , [Ka,Kb] = iεabcKc , [Ji,Ka] = 0 , (A.3)

of the spinning top. Consider the following realization of this algebra [86],

J± = J1 ± iJ2 = e±iϕ
(
i cot θ

∂

∂ϕ
± ∂

∂θ
− i

sin θ

∂

∂ψ

)
, J3 = −i ∂

∂ϕ
, (A.4)

K± = K1 ± iK2 = e∓iψ
(
i cot θ

∂

∂ψ
∓ ∂

∂θ
− i

sin θ

∂

∂ϕ

)
, K3 = i

∂

∂ψ
. (A.5)

Here, θ, ϕ and ψ are the Euler angles, 0 ≤ ϕ,ψ < 2π, 0 ≤ θ < π, and JiJi = KaKa =

J 2. The common eigenstates of J 2, J3 and K3 satisfying relations

J 2Dj,m,m′ = j(j + 1)Dj,m,m′ , J±Dj,m,m′ =
√

(j ∓m)(j ±m+ 1)Dj,m±1,m′ , (A.6)

K±Dj,m,m′ =
√

(j ∓m′)(j ±m′ + 1)Dj,m,m′±1 , (A.7)

J3Dj,m,m′ = mDj,m,m′ , K3Dj,m,m′ = m′Dj,m,m′ , (A.8)

are given by the generalized spherical functions

Dj,m,m′(ϕ, θ, ψ) = ei(mϕ+m
′ψ)Pj,m,m′(cos θ) , (A.9)
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where

Pj,m,m′(u) = Nj,m,m′(1− u)−
m−m′

2 (1 + u)−
m+m′

2

(
d

du

)j−m
(1− u)j−m

′
(1 + u)j+m

′
,

Nj,m,m′ =
(−1)j−m

′

2j(j −m′)!

√
(j −m)!(j +m′)!

(j +m)!(j −m′)!
, (A.10)

j = 0, 1/2, 1, 3/2, . . . , m,m′ = j, j − 1, . . . ,−j .

The necessary reduction is achieved by imposing the condition

(K3 − ν)Ψ(θ, ϕ, ψ) = 0 (A.11)

on a wave function Ψ(θ, ϕ, ψ) being a linear combination of the states Dj,m,m′(ϕ, θ, ψ). This

equation has a nontrivial solution only when a constant parameter ν takes some integer or

half-integer value that corresponds to the Dirac quantization condition for ν = eg. Fixing

integer or half-integer value for ν, a general solution of (A.11) is a linear combination of the

states Dj,m,ν , with j = |ν|, |ν|+ 1, . . ., m = −j,−j + 1, . . . , j, and therefore the monopole

harmonics are given by

Yj3j (θ, φ; ν) = e−iνψDj,j3,ν(θ, φ, ψ) . (A.12)

B The derivation of An,j,m and Bn,j,m

To clarify the action of operators a± it is convenient to introduce notation

η0 = a3 , η± = a1 ± ia2 . (B.1)

Then

[H, ηq] = −ωηq , [J3, η0] = [J±, η±] = 0 , [J3, η±] = ±η± , q = 0,± , (B.2)

[J±, η0] = ∓η± , [J±, η∓] = ±2η0 . (B.3)

From equations (B.2) one concludes that the action of ηq and η†q has to be of the form

ηq |n, j,m〉 = A
(q)
n,j,m |n, j − 1,m+ q〉+B

(q)
n,j,m |n− 1, j + 1,m+ q〉 , (B.4)

η†q |n, j,m〉 = A
(−q)∗
n,j+1,m−q |n, j + 1,m− q〉+B

(−q)∗
n+1,j−1,m−q |n+ 1, j − 1,m− q〉 . (B.5)

The first equation in (B.3) means that A
(±)
n,j,m and B

(±)
n,j,m are related with A

(0)
n,j,m ≡ An,j,m

and B
(±)
n,j,m ≡ Bn,j,m by means of the algebraic expressions

A
(±)
n,j,m =∓

√
(j ∓m− 1)(j ±m)An,j,m ±

√
(j ∓m)(j ±m+ 1)An,j,m±1 ,

B
(±)
n,j,m =∓

√
(j ∓m+ 1)(j ±m+ 2)Bn,j,m ±

√
(j ∓m)(j ±m+ 1)Bn,j,m±1 ,

(B.6)
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and using the second equation in (B.3) we derive the recurrence relations

2(2j + j2 −m2)Bn,j,m√
(j + 1)2 −m2

=
√

(j −m+ 2)(j +m+ 1)Bn,j,m−1

+
√

(j +m+ 2)(j −m)Bn,j,m+1,

2(j2 −m2 − 1)An,j,m = [j2 −m2]−
1
2

(√
j2 − (m− 1)2An,j,m−1

+
√

(j + 1)2 −m2An,j,m+1

)
, (B.7)

the solutions of which are

An,j,m =
√

(j +m)(j −m)an,j , Bn,j,m =
√

(j +m+ 1)(j −m+ 1)bn,j . (B.8)

To determine coefficients an,j and bn,j we use the relations

[η0, η±1] = ∓CJ± [η0, η
†
0] = ω

(
2J 2 − J2

3 + 1− ν2
)
, (B.9)

which produce the equations

(2j + 3)bn,jan−1,j+1 − (2j − 1)bn,j−1,man,j = ω
√

2n(2n+ 2j + 1) ,

ω(2j(j + 1) + 1− ν2 −m2) = (2j + 1)(a2n,j+1 − b2n,j)+ (B.10)

+ (m2 − j2)(a2n,j − b2n+1,j−1 + b2n,j − a2n,j+1).

As bn,j and an,j do not depend on m, the last equation implies the identity a2n,j−b2n+1,j−1+

b2n,j − a2n,j+1 = −ω. On the other hand, from equation (B.4) with q = 0 we conclude that

the constant b0,j should vanish, contrary to the constant a0,j 6= 0. Using this and the first

equation in (B.10) we have

an,j = ãn,j

√
ω(j + ν)(j − ν)

(2j − 1)
, ã0,j+1 = 1 . (B.11)

Inserting this result and the anzatz

bn,j = b̃j

√
ω2n(j + ν + 1)(j − ν + 1)

(2j + 1)
, (B.12)

into equations eq. (B.10) we finally obtain the system of equations

(2j + 3)b̃j ãn−1,j+1 =
√

2n+ 2j + 1 , 2nb̃2j − ã2n,j+1 = −1 (B.13)

which has the solutions b̃2j = (2j + 3) and ã2n,j = (2n+2j+1
2j+1 ). Collecting our results we end

up with (3.18).
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C Generalized Laguerre polynomials

When acting with the first order operators Θ,Ξ and their adjoint on the eigenspinors

|n, k, k3,±〉 and ‖n, k, k3,±〉, the following functional relations for the generalized Laguerre

polynomials are useful:

y
d

dy
Lαn(y)− yLαn(y) + αLαn = (n+ 1)Lα−1n+1 ,

d

dy
Lαn(y)− Lαn(y) = −Lα+1

n (y) ,

d

dy
Lαn(y) = −Lα+1

n−1(y) ,

y
d

dy
Lαn(y) + αLαn(y) = (n+ α)Lα−1n (y) . (C.1)

D Commutators [R,Q] and [R,W†]

To compute these commutators, we first observe that b and b† are vector operators with

respect to J , that means

J · b = b · J , J × b + b × J = 2ib . (D.1)

Next we use the equality π× π = i ν
r2

n which implies

J · b =
1√
2r

(iν − νr · π + iωνr2) , J · b† =
1√
2r

(iν − νr · π − iωνr2) . (D.2)

With these identities and representations of Θ and Ξ in (4.25) and (4.30), one can easily

compute the commutators

[R,Q] =

(
0 (J · σ + 3

2)Θ + Θ(J · σ + 3
2 + 2νσr)

0 0

)
= Q , (D.3)

[Rν ,W†] =

(
0 (J · σ + 3

2)Ξ + Ξ(J · σ + 3
2 + 2νσr)

0 0

)
=W† . (D.4)

Open Access. This article is distributed under the terms of the Creative Commons
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[19] J.F. Cariñena, L. Inzunza and M.S. Plyushchay, Rational deformations of conformal

mechanics, Phys. Rev. D 98 (2018) 026017 [arXiv:1707.07357] [INSPIRE].

[20] L. Inzunza and M.S. Plyushchay, Hidden symmetries of rationally deformed superconformal

mechanics, Phys. Rev. D 99 (2019) 025001 [arXiv:1809.08527] [INSPIRE].

– 38 –

https://doi.org/10.1103/PhysRevD.91.126010
https://doi.org/10.1103/PhysRevD.91.126010
https://arxiv.org/abs/1502.03749
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.03749
https://doi.org/10.1007/JHEP01(2016)151
https://arxiv.org/abs/1512.00349
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.00349
https://doi.org/10.1007/JHEP04(2014)151
https://arxiv.org/abs/1312.5749
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.5749
https://doi.org/10.1007/s41114-017-0009-9
https://arxiv.org/abs/1705.05482
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.05482
https://doi.org/10.1016/S0003-4916(03)00003-4
https://arxiv.org/abs/hep-th/0208228
https://inspirehep.net/search?p=find+EPRINT+hep-th/0208228
https://doi.org/10.1088/1126-6708/2003/03/014
https://arxiv.org/abs/hep-th/0212303
https://inspirehep.net/search?p=find+EPRINT+hep-th/0212303
https://doi.org/10.1103/PhysRevLett.101.030403
https://arxiv.org/abs/0801.1671
https://inspirehep.net/search?p=find+EPRINT+arXiv:0801.1671
https://doi.org/10.1007/978-3-030-20087-9_6
https://arxiv.org/abs/1811.11942
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.11942
https://doi.org/10.1119/1.1971373
https://doi.org/10.1119/1.1971373
https://doi.org/10.1007/bf01450175
https://doi.org/10.1103/PhysRev.176.1480
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,176,1480%22
https://doi.org/10.1103/PhysRevD.92.105009
https://arxiv.org/abs/1507.07060
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.07060
https://doi.org/10.1088/1751-8121/aa739b
https://arxiv.org/abs/1701.08657
https://inspirehep.net/search?p=find+EPRINT+arXiv:1701.08657
https://doi.org/10.1007/JHEP12(2017)061
https://arxiv.org/abs/1710.00356
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.00356
https://doi.org/10.1007/JHEP01(2019)194
https://arxiv.org/abs/1806.08740
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.08740
https://doi.org/10.1103/PhysRevD.98.026017
https://arxiv.org/abs/1707.07357
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.07357
https://doi.org/10.1103/PhysRevD.99.025001
https://arxiv.org/abs/1809.08527
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.08527


J
H
E
P
0
4
(
2
0
2
0
)
0
2
8

[21] J. de Boer, F. Harmsze and T. Tjin, Nonlinear finite W symmetries and applications in

elementary systems, Phys. Rept. 272 (1996) 139 [hep-th/9503161] [INSPIRE].

[22] E. D’Hoker and L. Vinet, Supersymmetry of the Pauli equation in the presence of a magnetic

monopole, Phys. Lett. B 137 (1984) 72 [INSPIRE].

[23] E. D’Hoker and L. Vinet, Dynamical supersymmetry of the magnetic monopole and the 1/r2

potential, Commun. Math. Phys. 97 (1985) 391 [INSPIRE].

[24] F. De Jonghe, A.J. Macfarlane, K. Peeters and J.W. van Holten, New supersymmetry of the

monopole, Phys. Lett. B 359 (1995) 114 [hep-th/9507046] [INSPIRE].

[25] G.W. Gibbons, R.H. Rietdijk and J.W. van Holten, SUSY in the sky, Nucl. Phys. B 404

(1993) 42 [hep-th/9303112] [INSPIRE].

[26] M. Tanimoto, The role of Killing-Yano tensors in supersymmetric mechanics on a curved

manifold, Nucl. Phys. B 442 (1995) 549 [gr-qc/9501006] [INSPIRE].

[27] M. Cariglia, Quantum mechanics of Yano tensors: Dirac equation in curved spacetime,

Class. Quant. Grav. 21 (2004) 1051 [hep-th/0305153] [INSPIRE].

[28] M.S. Plyushchay, On the nature of fermion monopole supersymmetry, Phys. Lett. B 485

(2000) 187 [hep-th/0005122] [INSPIRE].

[29] P. Goddard and D.I. Olive, New developments in the theory of magnetic monopoles, Rept.

Prog. Phys. 41 (1978) 1357 [INSPIRE].

[30] M.S. Plyushchay, Monopole Chern-Simons term: charge monopole system as a particle with

spin, Nucl. Phys. B 589 (2000) 413 [hep-th/0004032] [INSPIRE].

[31] M.S. Plyushchay, Free conical dynamics: charge-monopole as a particle with spin, anyon and

nonlinear fermion-monopole supersymmetry, Nucl. Phys. Proc. Suppl. 102 (2001) 248

[hep-th/0103040] [INSPIRE].

[32] M.S. Plyushchay and A. Wipf, Particle in a self-dual dyon background: hidden free nature

and exotic superconformal symmetry, Phys. Rev. D 89 (2014) 045017 [arXiv:1311.2195]

[INSPIRE].

[33] P.A.M. Dirac, Forms of relativistic dynamics, Rev. Mod. Phys. 21 (1949) 392 [INSPIRE].

[34] L. Inzunza, M.S. Plyushchay and A. Wipf, Conformal bridge between freedom and

confinement, arXiv:1912.11752 [INSPIRE].

[35] E. Witten, Dynamical breaking of supersymmetry, Nucl. Phys. B 188 (1981) 513 [INSPIRE].

[36] E. Witten, Constraints on supersymmetry breaking, Nucl. Phys. B 202 (1982) 253 [INSPIRE].

[37] V.B. Matveev and M.A. Salle, Darboux transformations and solitons, Springer, Berlin,

Germany (1991).

[38] F. Cooper, A. Khare and U. Sukhatme, Supersymmetry and quantum mechanics, Phys. Rept.

251 (1995) 267 [hep-th/9405029] [INSPIRE].

[39] A. Kirchberg, J.D. Lange and A. Wipf, Extended supersymmetries and the Dirac operator,

Annals Phys. 315 (2005) 467 [hep-th/0401134] [INSPIRE].

[40] S. Bellucci, S. Krivonos and A. Nersessian, N = 8 supersymmetric mechanics on special

Kähler manifolds, Phys. Lett. B 605 (2005) 181 [hep-th/0410029] [INSPIRE].

– 39 –

https://doi.org/10.1016/0370-1573(95)00075-5
https://arxiv.org/abs/hep-th/9503161
https://inspirehep.net/search?p=find+EPRINT+hep-th/9503161
https://doi.org/10.1016/0370-2693(84)91108-0
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B137,72%22
https://doi.org/10.1007/BF01213405
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,97,391%22
https://doi.org/10.1016/0370-2693(95)01063-V
https://arxiv.org/abs/hep-th/9507046
https://inspirehep.net/search?p=find+EPRINT+hep-th/9507046
https://doi.org/10.1016/0550-3213(93)90472-2
https://doi.org/10.1016/0550-3213(93)90472-2
https://arxiv.org/abs/hep-th/9303112
https://inspirehep.net/search?p=find+EPRINT+hep-th/9303112
https://doi.org/10.1016/0550-3213(95)00086-8
https://arxiv.org/abs/gr-qc/9501006
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9501006
https://doi.org/10.1088/0264-9381/21/4/022
https://arxiv.org/abs/hep-th/0305153
https://inspirehep.net/search?p=find+EPRINT+hep-th/0305153
https://doi.org/10.1016/S0370-2693(00)00671-7
https://doi.org/10.1016/S0370-2693(00)00671-7
https://arxiv.org/abs/hep-th/0005122
https://inspirehep.net/search?p=find+EPRINT+hep-th/0005122
https://doi.org/10.1088/0034-4885/41/9/001
https://doi.org/10.1088/0034-4885/41/9/001
https://inspirehep.net/search?p=find+J+%22Rept.Prog.Phys.,41,1357%22
https://doi.org/10.1016/S0550-3213(00)00530-7
https://arxiv.org/abs/hep-th/0004032
https://inspirehep.net/search?p=find+EPRINT+hep-th/0004032
https://doi.org/10.1016/S0920-5632(01)01563-8
https://arxiv.org/abs/hep-th/0103040
https://inspirehep.net/search?p=find+EPRINT+hep-th/0103040
https://doi.org/10.1103/PhysRevD.89.045017
https://arxiv.org/abs/1311.2195
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.2195
https://doi.org/10.1103/RevModPhys.21.392
https://inspirehep.net/search?p=find+J+%22Rev.Mod.Phys.,21,392%22
https://arxiv.org/abs/1912.11752
https://inspirehep.net/search?p=find+EPRINT+arXiv:1912.11752
https://doi.org/10.1016/0550-3213(81)90006-7
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B188,513%22
https://doi.org/10.1016/0550-3213(82)90071-2
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B202,253%22
https://doi.org/10.1016/0370-1573(94)00080-M
https://doi.org/10.1016/0370-1573(94)00080-M
https://arxiv.org/abs/hep-th/9405029
https://inspirehep.net/search?p=find+EPRINT+hep-th/9405029
https://doi.org/10.1016/j.aop.2004.08.006
https://arxiv.org/abs/hep-th/0401134
https://inspirehep.net/search?p=find+EPRINT+hep-th/0401134
https://doi.org/10.1016/j.physletb.2004.11.023
https://arxiv.org/abs/hep-th/0410029
https://inspirehep.net/search?p=find+EPRINT+hep-th/0410029


J
H
E
P
0
4
(
2
0
2
0
)
0
2
8

[41] S. Bellucci, A. Nersessian and A. Yeranyan, Hamiltonian reduction and supersymmetric

mechanics with Dirac monopole, Phys. Rev. D 74 (2006) 065022 [hep-th/0606152]

[INSPIRE].

[42] N. Kozyrev, S. Krivonos, O. Lechtenfeld, A. Nersessian and A. Sutulin, Curved

Witten-Dijkgraaf-Verlinde-Verlinde equation and N = 4 mechanics, Phys. Rev. D 96 (2017)

101702 [arXiv:1710.00884] [INSPIRE].

[43] N. Kozyrev, S. Krivonos, O. Lechtenfeld, A. Nersessian and A. Sutulin, N = 4

supersymmetric mechanics on curved spaces, Phys. Rev. D 97 (2018) 085015

[arXiv:1711.08734] [INSPIRE].

[44] V. de Alfaro, S. Fubini and G. Furlan, Conformal invariance in quantum mechanics, Nuovo

Cim. A 34 (1976) 569 [INSPIRE].

[45] S. Fubini and E. Rabinovici, Superconformal quantum mechanics, Nucl. Phys. B 245 (1984)

17 [INSPIRE].

[46] S. Fedoruk, E. Ivanov and O. Lechtenfeld, Superconformal mechanics, J. Phys. A 45 (2012)

173001 [arXiv:1112.1947] [INSPIRE].

[47] R. Britto-Pacumio, J. Michelson, A. Strominger and A. Volovich, Lectures on superconformal

quantum mechanics and multi-black hole moduli spaces, NATO Sci. Ser. C 556 (2000) 255

[hep-th/9911066] [INSPIRE].

[48] P. Claus, M. Derix, R. Kallosh, J. Kumar, P.K. Townsend and A. Van Proeyen, Black holes

and superconformal mechanics, Phys. Rev. Lett. 81 (1998) 4553 [hep-th/9804177] [INSPIRE].
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