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1 Introduction

Conformal higher spin (CHS) models in four-dimensional Minkowski space [1] were pro-

posed more than thirty years ago.1 A few years later, CHS superalgebras [4, 5] and asso-

ciated gauge theories in the cubic approximation [6, 7] were constructed, as an extension

of the seminal work by Fradkin and Vasiliev on higher-spin superalgebras [8–10] and in-

teracting massless higher-spin theories [11, 12]. Finally, the Lagrangian formulation for

a complete interacting bosonic CHS theory was sketched [13] and fully developed [14] in

2002; see also [15–17] for more recent related studies. However, gravitational interactions

of CHS fields still remain quite mysterious.

For every positive integer or half-integer s ≥ 1, the gauge-invariant action for a con-

formal spin-s field contains 2s derivatives, and therefore it is a higher-derivative theory for

s > 1. This higher-derivative structure implies that the problem of a consistent deformation

of CHS actions from flat to curved gravitational backgrounds is nontrivial. For instance,

since the 1985 work by Fradkin and Tseytlin [1] it was reasonably clear that there should

exist a consistent formulation for all CHS models on arbitrary conformally flat backgrounds.

However, such a formulation has been developed only recently [18], and it also works for

generalised CHS models. The latter describe conformal spin-s fields of depth t > 1, which

have been studied for more than thirty years [19–28]. Dynamics of the conformal graviton

(s = 2) can be consistently defined on an arbitrary Bach-flat background, since the corre-

sponding gauge-invariant model is obtained by linearising the Weyl gravity action about its

stationary point, and the equation of motion for conformal gravity is that the Bach tensor

vanishes. The same is true of the conformal gravitino (s = 3/2), since the corresponding

gauge-invariant model is obtained by linearising the action for conformal supergravity [29].

1The CHS gauge fields introduced in [1] are naturally realised as component fields of the conformal

higher spin supermultiplets [2, 3].
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For quite some time it was believed that the dynamics of a single conformal spin-s

field could be consistently defined on Bach-flat backgrounds for any s > 2, see e.g. [30, 31].

However, recent studies of the conformal spin-3 theory [30–33] have demonstrated [31, 32]

that gauge invariance of a pure spin-3 field can only be upheld to first order in the back-

ground curvature. It was then conjectured by Grigoriev and Tseytlin [31] that it might

be possible to restore gauge invariance by switching on a coupling to a conformal spin-1

field. This idea has been confirmed by Beccaria and Tseytlin [32] who explicitly worked

out the spin 1–3 mixing terms. Nevertheless, due to its higher-derivative nature, the pure

spin-3 sector to all orders in the background curvature is still unknown, and the story of

the conformal spin-3 field in curved backgrounds remains so far unfinished.

It appears that new insights into the problem under consideration may be obtained by

studying somewhat simpler dynamical systems — generalised CHS fields in a gravitational

background. The point is that one can decrease the number of derivatives appearing in the

action by increasing the depth of the gauge transformations. This bypasses some of the

technical difficulties associated with higher-derivative models such as the conformal spin-3

one. It is for this reason that in this paper we concentrate on conformal maximal depth

(CMD) fields and work out the cases s = 5/2 and s = 3.

This paper is organised as follows. In section 2 we summarise the basics of generalised

conformal fields and review their gauge invariant formulations on arbitrary conformally flat

backgrounds. Section 3 reviews the extension of the CMD spin s = 2 model to Bach-flat

backgrounds. In sections 4 and 5 we demonstrate how one can make use of lower-spin

fields to achieve a gauge invariant description of CMD spin s = 5/2 and s = 3 fields in

a Bach-flat background, respectively. Concluding comments are given in section 6. The

main body of the paper is accompanied by a technical appendix.

2 Generalised conformal gauge fields

Throughout this work we make use of the conformal calculus described in [18] (building

on the earlier work [34]), to where we refer the reader for further details. The parts of this

formalism that are essential to the models constructed in this paper are as follows.

In modern approaches to conformal gravity [29], the structure group of the space-time

manifold is promoted from the Lorentz group to the conformal group. The geometry of

space-time is then described by the conformally covariant derivative

∇a = ea
m∂m −

1

2
ωa

bcMbc − baD− fa
bKb (2.1)

where Mbc,D and Ka are the Lorentz, dilatation and special conformal generators respec-

tively. Upon imposing appropriate constraints on the torsion and curvature tensors, one

can show that the algebra of conformal covariant derivatives in the two-component spinor

notation (we adopt the spinor conventions of [35]) takes the form[
∇αα̇,∇ββ̇

]
= −

(
εα̇β̇CαβγδM

γδ + εαβC̄α̇β̇γ̇δ̇M̄
γ̇δ̇
)

− 1

4

(
εα̇β̇∇

δγ̇Cαβδ
γ + εαβ∇γδ̇C̄α̇β̇δ̇

γ̇
)
Kγγ̇ . (2.2)
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Here Cαβγδ and C̄α̇β̇γ̇δ̇ are the self-dual and anti self-dual parts of the Weyl tensor and are

related to the Weyl tensor Cabcd through

Cα(4) =
1

2
(σab)α(2)(σ

cd)α(2)Cabcd , (2.3a)

C̄α̇(4) =
1

2
(σ̃ab)α̇(2)(σ̃

cd)α̇(2)Cabcd , (2.3b)

Cabcd =
1

2
(σab)

α(2)(σcd)
α(2)Cα(4) +

1

2
(σ̃ab)

α̇(2)(σ̃cd)
α̇(2)C̄α̇(4) . (2.3c)

The commutation relations (2.2) should be accompanied by[
D,∇ββ̇

]
= ∇ββ̇ ,

[
Kαα̇,∇ββ̇

]
= 4εα̇β̇Mαβ + 4εαβM̄α̇β̇ − 4εαβεα̇β̇D . (2.4)

Models for generalised conformal higher-spin gauge fields [19–28] in arbitrary confor-

mally flat backgrounds were first constructed in [18]. Below we summarise their main

properties.

Given a conformal gravity background, a generalised conformal gauge field φ
(t)
α(m)α̇(n)

is characterised by three positive integers; m,n and t. The first two specify the Lorentz

type of φ
(t)
α(m)α̇(n). This field transforms in the representation (m/2, n/2) of SL(2,C) and is

usually said to carry spin s = 1
2(m+ n). The third integer t is known as the depth, and it

determines the number of derivatives that appear in the gauge transformation of φ
(t)
α(m)α̇(n),

δλφ
(t)
α(m)α̇(n) = ∇(α1(α̇1

· · · ∇αtα̇tλ
(t)
αt+1...αm)α̇t+1...α̇n) , 1 ≤ t ≤ min(m,n) . (2.5)

The ordinary CHS fields with |m− n| ≤ 1 and t = 1 are sometimes referred to as Fradkin-

Tseytlin fields [26].

In order for the gauge field φ
(t)
α(m)α̇(n) and the gauge parameter λ

(t)
α(m−t)α̇(n−t) in (2.5)

to be primary (i.e. annihilated by Kαα̇), the field must have the following (Weyl) weight

Dφ(t)
α(m)α̇(n) =

(
t+ 1− 1

2
(m+ n)

)
φ

(t)
α(m)α̇(n) . (2.6)

From φ
(t)
α(m)α̇(n) we may construct generalised higher-spin Weyl tensors [18]

Ĉ
(t)
α(m+n−t+1)α̇(t−1)(φ) = ∇(α1

β̇1 · · · ∇αn−t+1
β̇n−t+1φ

(t)

αn−t+2...αm+n−t+1)β̇1...β̇n−t+1α̇1...α̇t−1
,

(2.7a)

Č
(t)
α(m+n−t+1)α̇(t−1)(φ̄) = ∇(α1

β̇1 · · · ∇αm−t+1
β̇m−t+1 φ̄

(t)

αm−t+2...αm+n−t+1)β̇1...β̇m−t+1α̇1...α̇t−1
,

(2.7b)

which are primary and possess the Weyl weights

DĈ(t)
α(m+n−t+1)α̇(t−1)(φ) =

(
2− 1

2
(m− n)

)
Ĉ

(t)
α(m+n−t+1)α̇(t−1)(φ) , (2.8a)

DČ(t)
α(m+n−t+1)α̇(t−1)(φ̄) =

(
2− 1

2
(n−m)

)
Č

(t)
α(m+n−t+1)α̇(t−1)(φ̄) . (2.8b)
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Let L be a primary scalar field of weight +4. Associated with L is the functional

S =

∫
d4x eL , e−1 = det(ea

m) (2.9)

which is invariant under the gauge group of conformal gravity. Upon degauging (see sec-

tion 3), these properties mean that the action (2.9) is invariant under Weyl transformations.

In this paper we will refer to such action functionals as primary.

In any conformally flat background, the commutator of conformal covariant deriva-

tives (2.2) vanishes. This significantly simplifies the construction of CHS models. Indeed,

in such backgrounds one can show that the generalised higher-spin Weyl tensors are gauge

invariant,

Cabcd = 0 =⇒ δλĈ
(t)
α(m+n−t+1)α̇(t−1)(φ) = δλČ

(t)
α(m+n−t+1)α̇(t−1)(φ̄) = 0 . (2.10)

However this is not true in a general curved background, where the gauge variation is

proportional to the Weyl tensor. All of these properties mean that the associated action,

S
(m,n,t)
Skeleton[φ, φ̄] = im+n

∫
d4x e Ĉ

α(m+n−t+1)α̇(t−1)
(t) (φ)Č

(t)
α(m+n−t+1)α̇(t−1)(φ̄) + c.c. , (2.11)

is primary in any background, but gauge invariant only in conformally flat ones.

3 Conformal spin-2 model in Bach-flat background

Given a gauge field φ
(t)
α(m)α̇(n) it is clear that we may decrease the number of derivatives

appearing in the action (2.11) at the cost of increasing the depth t of the gauge transfor-

mations. This significantly reduces the amount of work required to perform calculations

in backgrounds more general than conformally flat ones. Therefore, the remainder of this

work will focus on extending the gauge invariance of the skeleton action (2.11) to arbitrary

Bach-flat backgrounds for CMD fields with spin s = 2, 5/2, 3.

We begin by reviewing the gauge-invariant model for the maximal depth spin-2 field

(corresponding to m = n = t = 2) in a Bach-flat background [18]. Upon degauging, its ac-

tion coincides with the one studied earlier in ref. [36], where it was suggested that gauge in-

variance could only be upheld in an Einstein space. See below for further discussion on this.

For bosonic spin-s fields with m = n = s, we may choose the gauge field to be real,

h
(t)
α(s)α̇(s) := φ

(t)
α(s)α̇(s) = h̄

(t)
α(s)α̇(s) . (3.1)

This means that (2.7a) and (2.7b) coincide,

C
(t)
α(2s−t+1)α̇(t−1)(h) := Ĉ

(t)
α(2s−t+1)α̇(t−1)(h) = Č

(t)
α(2s−t+1)α̇(t−1)(h) . (3.2)

Since we will be dealing exclusively with CMD fields, we will usually drop all labels that

refer to t when its value is clear from the context.

The spin-2 field hα(2)α̇(2) is defined modulo the depth 2 gauge transformations

δλhα(2)α̇(2) = ∇(α1(α̇1
∇α2)α̇2)λ . (3.3)
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Here both hα(2)α̇(2) and λ are primary and have Weyl weights

Dhα(2)α̇(2) = hα(2)α̇(2) , Dλ = −λ . (3.4)

As is the case for all four-dimensional bosonic models with maximal depth, the action (2.11)

is second order in derivatives and it takes the form

S
(2)
Skeleton =

∫
d4x eCα(3)α̇(h)Cα(3)α̇(h) + c.c. , Cα(3)α̇(h) = ∇(α1

β̇hα2α3)α̇β̇ . (3.5)

This functional is not gauge invariant if the background Weyl tensor is non-vanishing,

Cα(4) 6= 0, and one can show that its variation under (3.3) is equal to

δλS
(2)
Skeleton = 2

∫
d4x e λ

{
Cα(3)

δ∇δα̇Cα(3)α̇(h) + 2Cα(3)α̇(h)∇δα̇Cδα(3)

}
+ c.c. (3.6)

However, there is one non-minimal primary term that can be added to S
(2)
Skeleton,

S
(2)
NM =

∫
d4x e hα(2)α̇(2)Cα(2)

β(2)hβ(2)α̇(2) + c.c. (3.7)

The variation of (3.7) under (3.3) is

δλS
(2)
NM = δλS

(2)
Skeleton +

(
2

∫
d4x e λBα(2)α̇(2)hα(2)α̇(2) + c.c.

)
, (3.8)

where Bα(2)α̇(2) is the Bach tensor,

Bα(2)α̇(2) = ∇β1 (α̇1
∇β2 α̇2)Cα(2)β(2) = ∇(α1

β̇1∇α2)
β̇2C̄α̇(2)β̇(2) = B̄α(2)α̇(2) . (3.9)

It follows that the primary action

S
(2)
CHS = S

(2)
Skeleton − S

(2)
NM

=

∫
d4x e

{
Cα(3)α̇(h)Cα(3)α̇(h)− hα(2)α̇(2)Cα(2)

β(2)hβ(2)α̇(2)

}
+ c.c. (3.10)

is gauge invariant in any Bach-flat background,

δλS
(2)
CHS

∣∣∣∣
Bα(2)α̇(2)=0

= 0 . (3.11)

To make contact with the existing literature, it is useful to present the degauged version

of this model. The process of degauging consists of fixing the special conformal symmetry

by gauging away the dilatation connection, ba = 0. After this, the special conformal

connection may be shown to be proportional to the Schouten tensor, fab = 1
2Pab. The

conformal covariant derivative then reduces to

ba = 0 =⇒ ∇a = Da +
1

2
Pa

bKb (3.12)

where Da = ea
m∂m − 1

2ωa
bcMbc is the torsion-free Lorentz covariant derivative.

– 5 –
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Upon degauging and converting to vector notation, the action (3.10) takes the form

S
(2)
CHS = −8

∫
d4x e

{
DahbcDahbc −

4

3
DahabDchbc − 2Rabh

achc
b +

1

6
Rhabhab

+ 2Cabcdh
achbd

}
(3.13)

where we have made use of (2.3) and the definition hα(2)α̇(2) := (σa)αα̇(σb)αα̇hab for sym-

metric and traceless hab. It is invariant under the degauged transformations (3.3),

δλhα(2)α̇(2) = D(α1(α̇1
Dα2)α̇2)λ−

1

2
Rα(2)α̇(2)λ (3.14)

where Rαβα̇β̇ = (σa)αα̇(σb)ββ̇
(
Rab − 1

4ηabR
)

is the traceless part of the Ricci tensor. In

vector notation the transformations (3.14) read

δλhab =

(
DaDb −

1

2
Rab

)
λ− 1

4
ηab

(
�− 1

2
R

)
λ . (3.15)

The action (3.13) consists of two sectors that are independently invariant under Weyl

transformations. Various combinations of these functionals were studied earlier in [19, 20,

37–39] when trying to construct Weyl invariant second-order models for a symmetric trace-

less rank two tensor. However the question of gauge invariance was first raised in [19, 20],

but only in the case of an (A)dS4 background, where the last term in (3.13) is not present.

Much later, the correct action (3.13) was proposed in [36], but the authors considered only

gauge transformations of the type

δλhab =

(
DaDb −

1

4
ηab�

)
λ . (3.16)

Consequently, it was concluded that gauge invariance could only be upheld in Einstein

spaces, where (3.15) and (3.16) coincide. It is important to emphasise that the equation

of motion resulting from (3.13) was observed in [25] to be invariant under the gauge trans-

formations (3.15) in an arbitrary Bach-flat background. However the authors of [25] were

interested in coupling the model to conformal gravity, which lead to the conclusion that

the system was inconsistent.

4 Conformal spin-3 model in Bach-flat background

The next case that we would like to analyse is the CMD spin-3 field hα(3)α̇(3), with

m = n = t = 3. Its gauge freedom is

δλhα(3)α̇(3) = ∇(α1(α̇1
∇α2α̇2∇α3)α̇3)λ . (4.1)

Both hα(3)α̇(3) and λ are primary and have Weyl weights

Dhα(3)α̇(3) = hα(3)α̇(3) , Dλ = −2λ . (4.2)

– 6 –
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The conformal skeleton action

S
(3)
Skeleton = −

∫
d4x eCα(4)α̇(2)(h)Cα(4)α̇(2)(h) + c.c. , Cα(4)α̇(2)(h) = ∇(α1

β̇hα2α3α4)α̇(2)β̇

(4.3)

has gauge variation equal to

δλS
(3)
Skeleton =

∫
d4xeλ

{
8Cα(4)α̇(2)(h)∇αα̇∇γα̇Cα(3)

γ+4∇α̇γCα(4)∇γα̇Cα(4)α̇(2)(h)

+16∇αα̇Cα(4)α̇(2)(h)∇γα̇Cα(3)
γ+

16

3
Cα(3)

γ∇αα̇∇γα̇Cα(4)α̇(2)(h)

}
+c.c. (4.4)

Once again, there is only one possible non-minimal primary term that is bilinear in hα(3)α̇(3),

S
(3)
NM =

∫
d4x e hγα(2)α̇(3)Cα(2)

β(2)hβ(2)γα̇(3) + c.c. , (4.5)

and its gauge variation proves to be equal to

δλS
(3)
NM = −1

2
δλS

(3)
Skeleton +

(∫
d4x e λ

{
− 2∇αα̇Bα(2)α̇(2)hα(3)α̇(3) − 3Bα(2)α̇(2)∇αα̇hα(3)α̇(3)

+
8

3
C̄α̇(3)β̇∇ββ̇C

α(3)βhα(3)α̇(3) +
8

3
Cα(3)β∇ββ̇C̄

α̇(3)β̇hα(3)α̇(3)

+
4

3
Cα(3)βC̄α̇(3)β̇∇ββ̇hα(3)α̇(3)

}
+ c.c.

)
. (4.6)

We would like to point out that in deriving (4.6), there is a nontrivial contribution arising

from integration by parts. We discuss this technicality in more detail in the appendix.

It follows that in a Bach-flat background, the deformed action

S
(3)
hh = S

(3)
Skeleton + 2S

(3)
NM , (4.7)

is gauge invariant only to first order in the background Weyl tensor, since

δλS
(3)
hh

∣∣∣∣
Bα(2)α̇(2)=0

=
8

3

∫
d4x e λ

{
2C̄α̇(3)β̇∇ββ̇C

α(3)βhα(3)α̇(3) + 2Cα(3)β∇ββ̇C̄
α̇(3)β̇hα(3)α̇(3)

+ Cα(3)βC̄α̇(3)β̇∇ββ̇hα(3)α̇(3)

}
+ c.c. (4.8)

This is the best that one can achieve without making use of any extra fields.

Our result (4.8) is analogous to the conclusion of refs. [31, 32] that the pure spin-3

action cannot be made gauge invariant beyond the first order in curvature. It was also

conjectured in [31] (and later confirmed in [32]) that it might be possible to restore the

spin-3 gauge invariance by introducing a coupling to a conformal spin-1 field. For the CMD

spin-3 field, we are going to demonstrate that gauge invariance can indeed be restored by

switching on a coupling to certain lower-spin fields.

– 7 –
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To this aim, we introduce two lower-spin fields χα(3)α̇ and ϕα(4), along with their

complex conjugates χ̄αα̇(3) and ϕ̄α̇(4). They each carry the following conformal properties

Dχα(3)α̇ = χα(3)α̇ , Kββ̇χα(3)α̇ = 0 , (4.9a)

Dϕα(4) = 0 , Kββ̇ϕα(4) = 0 , (4.9b)

and are defined modulo gauge transformations

δλχα(3)α̇ = Cα(3)
β∇βα̇λ− 2∇βα̇Cα(3)

βλ , (4.10a)

δλϕα(4) = Cα(4)λ . (4.10b)

The right hand sides of (4.10) are fixed by the conformal properties (4.9). To cancel the

variation (4.6) we introduce the following couplings between the two lower-spin fields and h,

S
(3)
hχ =

∫
d4x e hα(3)α̇(3)C̄α̇(3)

β̇χα(3)β̇ + c.c. , (4.11a)

S
(3)
hϕ̄ =

∫
d4x e hα(3)α̇(3)

{
Cα(3)

β∇ββ̇ϕ̄α̇(3)
β̇ − 3∇ββ̇Cα(3)

βϕ̄α̇(3)
β̇

}
+ c.c. , (4.11b)

both of which are primary. Under the gauge transformations (4.1) and (4.10) the function-

als (4.11) vary as follows:

δλS
(3)
hχ =

∫
d4x e

{
C̄α̇(3)β̇χα(3)

β̇δλhα(3)α̇(3) − λ
[
3C̄α̇(3)β̇∇ββ̇C

α(3)βhα(3)α̇(3)

+ Cα(3)β∇ββ̇C̄
α̇(3)β̇hα(3)α̇(3) + Cα(3)βC̄α̇(3)β̇∇ββ̇hα(3)α̇(3)

]}
+ c.c. , (4.12a)

δλS
(3)
hϕ̄ =

∫
d4x e

{
δλh

α(3)α̇(3)

[
Cα(3)

β∇ββ̇ϕ̄α̇(3)
β̇ − 3∇ββ̇Cα(3)

βϕ̄α̇(3)
β̇

]
− λ

[
4C̄α̇(3)β̇∇ββ̇C

α(3)βhα(3)α̇(3) + Cα(3)βC̄α̇(3)β̇∇ββ̇hα(3)α̇(3)

]}
+ c.c. (4.12b)

Of course, the presence of the non-diagonal sector (4.11) forces us to introduce kinetic

terms for each field so that we may cancel the first term in each of the variations (4.12a)

and (4.12b). It turns out that the appropriate kinetic actions take the form2

S
(3)
χχ̄ =

1

2

∫
d4x eχα(3)α̇∇αα̇∇αα̇χ̄αα̇(3) + c.c. , (4.13a)

S
(3)
ϕϕ̄ =

1

2

∫
d4x e ϕ̄α̇(4)∇α̇α∇α̇α∇α̇α∇α̇αϕα(4) + c.c. (4.13b)

2The two terms on the right of (4.13a) coincide modulo a total derivative. The same is true of (4.13b).

– 8 –



J
H
E
P
0
4
(
2
0
2
0
)
0
2
1

They are both primary and prove to have the following gauge variations

δλS
(3)
χχ̄ =−

∫
d4xe

{
C̄α̇(3)β̇χα(3)

β̇δλhα(3)α̇(3)

+λ

[
χα(3)α̇∇αα̇Bα(2)α̇(2)+3Bα(2)α̇(2)∇αα̇χα(3)α̇

]}
+c.c. , (4.14a)

δλS
(3)
ϕϕ̄ =

∫
d4xe

{
−δλhα(3)α̇(3)

[
Cα(3)

β∇ββ̇ϕ̄α̇(3)
β̇−3∇ββ̇Cα(3)

βϕ̄α̇(3)
β̇

]
+λ

[
6Bα(2)α̇(2)∇αα̇∇αα̇ϕ̄α̇(4)+8∇αα̇Bα(2)α̇(2)∇αα̇ϕ̄α̇(4)+3ϕ̄α̇(4)∇αα̇∇αα̇Bα(2)α̇(2)

]}
+c.c.

(4.14b)

From (4.12) and (4.14), it follows that the conformal action

S
(3)
CHS =S

(3)
hh +

16

3
S

(3)
χχ̄−

8

3
S

(3)
ϕϕ̄+

16

3
S

(3)
hχ−

8

3
S

(3)
hϕ̄ (4.15)

=

∫
d4xe

{
−Cα(4)α̇(2)(h)Cα(4)α̇(2)(h)+2hγα(2)α̇(3)Cα(2)

β(2)hβ(2)γα̇(3)

+
8

3
χα(3)α̇∇αα̇∇αα̇χ̄αα̇(3)−

4

3
ϕ̄α̇(4)∇α̇α∇α̇α∇α̇α∇α̇αϕα(4)+

16

3
hα(3)α̇(3)C̄α̇(3)

β̇χα(3)β̇

− 8

3
hα(3)α̇(3)

[
Cα(3)

β∇ββ̇ϕ̄α̇(3)
β̇−3∇ββ̇Cα(3)

βϕ̄α̇(3)
β̇

]}
+c.c. (4.16)

has gauge variation that is strictly proportional to the Bach tensor,

δλS
(3)
CHS =−

∫
d4xeλ

{
4∇αα̇Bα(2)α̇(2)hα(3)α̇(3)+6Bα(2)α̇(2)∇αα̇hα(3)α̇(3)

+
16

3
χα(3)α̇∇αα̇Bα(2)α̇(2)+16Bα(2)α̇(2)∇αα̇χα(3)α̇+16Bα(2)α̇(2)∇αα̇∇αα̇ϕ̄α̇(4)

+
64

3
∇αα̇Bα(2)α̇(2)∇αα̇ϕ̄α̇(4)+8ϕ̄α̇(4)∇αα̇∇αα̇Bα(2)α̇(2)

}
+c.c. (4.17)

It is therefore gauge invariant when restricted to a Bach-flat background,

δλS
(3)
CHS

∣∣∣∣
Bα(2)α̇(2)=0

= 0 . (4.18)

Due to the presence of the kinetic terms, the action (4.15) does not reduce to (4.3) in the

conformally flat limit, but rather to

S
(3)
CHS

∣∣∣∣
Cabcd=0

= S
(3)
Skeleton +

16

3
S

(3)
χχ̄ −

8

3
S

(3)
ϕϕ̄ . (4.19)

Finally, it is of interest to provide the degauged version of the pure spin-3 sector (4.7).

In vector notation, (4.7) may be shown to take the form

S
(3)
hh = 8

∫
d4x e

{
DahacdDbhbcd − 2DahbcdDahbcd + 6Rabh

acdhcd
b − 2

3
Rhabchabc

− 8Cabcdh
acfhf

bd

}
(4.20)
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where we have made use of the definition hα(3)α̇(3) := (σa)αα̇(σb)αα̇(σc)αα̇habc for symmetric

and traceless habc. The gauge transformations (4.1) are then equivalent to

δλhabc =

(
D(aDbDc)−2R(abDc)−D(aRbc)

)
λ+η(ab

(
Rc)

dDd+
1

3
RDc)+

1

3
Dc)R−

1

2
Dc)�

)
λ.

(4.21)

The conversion of the lower-spin sectors in (4.15) is a straightforward but tedious matter

and will be omitted as the final expressions are not illuminating.

5 Conformal spin-5/2 model in Bach-flat background

Maximal depth fermionic models (half-integer spin) differ from their bosonic counterparts

in that their skeletons (2.11) are all third order in derivatives. This makes extending

them to Bach-flat backgrounds technically more challenging, but conceptually there is no

difference. In particular, as we show below, lower-spin fields must also be introduced to

render the spin-5/2 system gauge invariant beyond first order in the Weyl curvature.

The CMD spin-5/2 field ψα(3)α̇(2) (which corresponds to m − 1 = n = t = 2 in the

notation of section 2) is defined modulo depth two gauge transformations

δλψα(3)α̇(2) = ∇(α1(α̇1
∇α2α̇2)λα3) . (5.1)

Both ψα(3)α̇(2) and λα are primary and carry Weyl weights

Dψα(3)α̇(2) =
1

2
ψα(3)α̇(2) , Dλα = −3

2
λα . (5.2)

The skeleton sector (2.11),

S
(5/2)
Skeleton[ψ, ψ̄] = i

∫
d4x e Ĉα(4)α̇(ψ)Čα(4)α̇(ψ̄) + c.c. , (5.3)

is composed of the two generalised Weyl tensors

Ĉα(4)α̇(ψ) = ∇(α1

β̇ψα2α3α4)α̇β̇ , Čα(4)α̇(ψ̄) = ∇(α1

β̇∇α2
β̇ψ̄α3α4)α̇β̇(2) . (5.4)

Under the transformation (5.1) it varies as

δλS
(5/2)
Skeleton

= i

∫
d4x e

{
λα
[

5

2
Cγβ(3)∇γβ̇Čαβ(3)β̇(ψ̄) + 3∇γβ̇Cγβ(3)Čαβ(3)β̇(ψ̄)− 3

2
Cβ(4)∇αβ̇Čβ(4)β̇(ψ̄)

−∇αβ̇Cβ(4)Čβ(4)β̇(ψ̄)

]
− 1

3
λ̄α̇

[
−∇δδ̇Cβ(4)∇δδ̇Ĉβ(4)

α̇(ψ) + �Cβ(4)Ĉβ(4)
α̇(ψ)

+ 6∇γ δ̇Cγβ(3)∇δ̇
βĈβ(4)

α̇(ψ) + 2∇ββ̇Cβ(3)γ∇γα̇Ĉβ(4)β̇(ψ) + 5∇ββ̇∇γα̇Cγβ(3)Ĉβ(4)β̇(ψ)

+ 10∇γα̇Cγβ(3)∇ββ̇Ĉβ(4)β̇(ψ) + 4Cβ(4)�Ĉβ(4)
α̇(ψ) + 4Cβ(3)γ∇γα̇∇ββ̇Ĉβ(4)β̇(ψ)

− 15Cβ(2)δ(2)Cδ(2)
β(2)Ĉβ(4)

α̇(ψ)

]}
+ c.c. (5.5)
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Unlike the previous bosonic models, for spin-5/2 there is a family of non-minimal primary

counter-terms, which is generated by the following two functionals3

S
(5/2)
NM = i

∫
d4x eψα(3)α̇(2)

{
− 5

4
Cα(3)

β∇ββ̇ψ̄β(2)β̇α̇(2) +∇ββ̇Cα(3)
βψ̄β(2)β̇α̇(2)

+ 3Cα(2)
β(2)∇αβ̇ψ̄β(2)β̇α̇(2)

}
+ c.c. , (5.6a)

S̃
(5/2)
NM = i

∫
d4x eψα(3)α̇(2)

{
Cα(3)

β∇ββ̇ψ̄β(2)β̇α̇(2) − 2∇ββ̇Cα(3)
βψ̄β(2)β̇α̇(2)

+ 3∇αβ̇Cα(2)
β(2)ψ̄β(2)β̇α̇(2)

}
+ c.c. (5.6b)

The overall coefficients in (5.6) are chosen so that their variations may cancel that of (5.3).

To first order in the Weyl tensor, it may be shown that any linear combination of the

two functionals, a1S
(5/2)
NM +a2S̃

(5/2)
NM , with a2 6= 0 will have gauge variation not proportional

to that of S
(5/2)
Skeleton. Therefore it suffices to consider only the first structure (5.6a). Indeed,

its gauge variation may be shown to be

δλS
(5/2)
NM = δλS

(5/2)
Skeleton+

(
i

∫
d4xe

{
λα
[

3

4
Bα

ββ̇(2)∇ββ̇ψ̄β(2)β̇(3)+∇ββ̇Bαββ̇(2)ψ̄β(2)β̇(3)

+Bβ(2)β̇(2)∇αβ̇ψ̄β(2)β̇(3)−
7

4
C̄ γ̇β̇(3)∇γγ̇Cαγβ(2)ψ̄β(2)β̇(3)−

13

8
Cα

γβ(2)∇γγ̇C̄ γ̇β̇(3)ψ̄β(2)β̇(3)

− 9

8
C̄ γ̇β̇(3)Cα

γβ(2)∇γγ̇ψ̄β(2)β̇(3)

]
−λ̄α̇

[
∇ββ̇Bβ(2)β̇α̇ψβ(3)β̇(2)+

3

4
Bβ(2)β̇α̇∇ββ̇ψβ(3)β̇(2)

+Bβ(2)β̇(2)∇βα̇ψβ(3)β̇(2)−
49

24
C̄α̇γ̇β̇(2)∇γγ̇Cγβ(3)ψβ(3)β̇(2)−

4

3
Cγβ(3)∇γγ̇C̄α̇γ̇β̇(2)ψβ(3)β̇(2)

− 9

8
C̄α̇γ̇β̇(2)Cγβ(3)∇γγ̇ψβ(3)β̇(2)

]}
+c.c.

)
. (5.7)

We see that once again, using just the spin-5/2 field, gauge invariance can only be

controlled to first order in the Weyl tensor. To go beyond this order we need to introduce

two lower-spin fields4 χα(2)α̇ and ϕα(3). They possess the conformal properties

Dχα(2)α̇ =
3

2
χα(2)α̇ , Kββ̇χα(2)α̇ = 0 , (5.8a)

Dϕα(3) =
1

2
ϕα(3) , Kββ̇ϕα(3) = 0 , (5.8b)

and are defined modulo the gauge transformations

δλχα(2)α̇ = Cα(2)
β(2)∇βα̇λβ −∇βα̇Cα(2)

β(2)λβ , (5.9a)

δλϕα(3) = Cα(3)
βλβ . (5.9b)

3There are also two more functionals of the form i
∫

d4x eψα(3)α̇(2)Jα(3)α̇(2)(ψ̄) + c.c., where Jα(3)α̇(2)(ψ̄)

is a composite primary field depending on C̄α̇(4) and ψ̄α(2)α̇(3). However they prove to be equivalent to (5.6)

modulo total derivatives.
4In principle one could also consider the field ρα(4)α̇, which has the same conformal properties as ϕα(3)

but has the gauge transformation δλρα(4)α̇ = Cα(4)λ̄α̇. However this field turns out to be unnecessary in

the construction.
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The primary couplings between these fields and the spin-5/2 field take the form

S
(5/2)

ψ̄χ
= i

∫
d4x e ψ̄α(2)α̇(3)C̄α̇(3)

β̇χα(2)β̇ + c.c. , (5.10a)

S
(5/2)
ψϕ̄ = i

∫
d4x eψα(3)α̇(2)

{
Cα(3)

γ∇γβ̇ϕ̄α̇(2)β̇ − 2∇γβ̇Cα(3)
γϕ̄α̇(2)β̇

}
+ c.c. (5.10b)

Their gauge variations may be shown to be

δλS
(5/2)

ψ̄χ
= i

∫
d4x e

{
λα
[
Cα

γβ(2)C̄ γ̇β̇(3)∇γγ̇ψ̄β(2)β̇(3) + Cα
γβ(2)∇γγ̇C̄ γ̇β̇(3)ψ̄β(2)β̇(3)

+ 2C̄ γ̇β̇(3)∇γγ̇Cαγβ(2)ψ̄β(2)β̇(3)

]
− λ̄α̇

[
C̄α̇β̇γ̇(2)∇γ̇β∇γ̇βχβ(2)β̇

+ 2∇γ̇βC̄α̇β̇γ̇(2)∇γ̇βχβ(2)β̇ +Bβ(2)α̇β̇χβ(2)β̇

]}
+ c.c. , (5.11a)

δλS
(5/2)
ψϕ̄ = i

∫
d4x e

{
λ̄α̇

[
Cγβ(3)C̄α̇γ̇β̇(2)∇γγ̇ψβ(3)β̇(2) + 3C̄α̇γ̇β̇(2)∇γγ̇Cγβ(3)ψβ(3)β̇(2)

]
+ λα

[
Cα

β(3)∇ββ̇∇ββ̇∇ββ̇ϕ̄β̇(3) − 3Bα
γβ̇(2)∇γβ̇ϕ̄β̇(3)

− 2∇γβ̇Bαγβ̇(2)ϕ̄β̇(3)

]}
+ c.c. (5.11b)

The kinetic actions required to cancel the variations in (5.11) proportional to the lower-spin

fields are

S
(5/2)
χχ̄ =

i

2

∫
d4x eχα(2)α̇∇αα̇χ̄αα̇(2) + c.c. , (5.12a)

S
(5/2)
ϕϕ̄ =

i

2

∫
d4x e ϕ̄α̇(3)∇α̇α∇α̇α∇α̇αϕα(3) + c.c. (5.12b)

They are both primary and prove to have the gauge transformations

δλS
(5/2)
χχ̄ = −i

∫
d4x e λ̄α̇

{
2∇γ̇βC̄α̇β̇γ̇(2)∇γ̇βχβ(2)β̇ + C̄α̇β̇γ̇(2)∇γ̇β∇γ̇βχβ(2)β̇

}
+ c.c. ,

(5.13a)

δλS
(5/2)
ϕϕ̄ = −i

∫
d4x e λαCα

β(3)∇ββ̇∇ββ̇∇ββ̇ϕ̄β̇(3) + c.c. (5.13b)

It follows that the action

S
(5/2)
CHS =S

(5/2)
Skeleton−S

(5/2)
NM − 37

24
S

(5/2)

ψ̄χ
+

17

24
S

(5/2)
ψϕ̄ +

37

24
S

(5/2)
χχ̄ +

17

24
S

(5/2)
ϕϕ̄ (5.14)

= i

∫
d4xe

{
Ĉα(4)α̇(ψ)Čα(4)α̇(ψ̄)+ψα(3)α̇(2)

[
5

4
Cα(3)

β∇ββ̇ψ̄β(2)β̇α̇(2)

−∇ββ̇Cα(3)
βψ̄β(2)β̇α̇(2)−3Cα(2)

β(2)∇αβ̇ψ̄β(2)β̇α̇(2)

]
+ψα(3)α̇(2)

[
17

24
Cα(3)

γ∇γβ̇ϕ̄α̇(2)β̇

− 17

12
∇γβ̇Cα(3)

γϕ̄α̇(2)β̇

]
− 37

24
ψ̄α(2)α̇(3)C̄α̇(3)

β̇χα(2)β̇+
37

48
χα(2)α̇∇αα̇χ̄αα̇(2)

+
17

48
ϕ̄α̇(3)∇α̇α∇α̇α∇α̇αϕα(3)

}
+c.c. , (5.15)
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has gauge variation that is strictly proportional to the Bach tensor

δλS
(5/2)
CHS = −i

∫
d4x e

{
λα
[

3

4
Bα

ββ̇(2)∇ββ̇ψ̄β(2)β̇(3) +∇ββ̇Bαββ̇(2)ψ̄β(2)β̇(3)

+Bβ(2)β̇(2)∇αβ̇ψ̄β(2)β̇(3) +
17

8
Bα

γβ̇(2)∇γβ̇ϕ̄β̇(3) +
17

12
∇γβ̇Bαγβ̇(2)ϕ̄β̇(3)

]
− λ̄α̇

[
∇ββ̇Bβ(2)β̇α̇ψβ(3)β̇(2) +

3

4
Bβ(2)β̇α̇∇ββ̇ψβ(3)β̇(2)

+Bβ(2)β̇(2)∇βα̇ψβ(3)β̇(2) +
37

24
Bβ(2)β̇α̇χβ(2)β̇

]}
+ c.c. (5.16)

It is therefore gauge invariant in any Bach-flat background

δλS
(5/2)
CHS

∣∣∣∣
Bα(2)α̇(2)=0

= 0 , (5.17)

and has the conformally flat limit

S
(5/2)
CHS

∣∣∣∣
Cabcd=0

= S
(5/2)
Skeleton +

37

24
S

(5/2)
χχ̄ +

17

24
S

(5/2)
ϕϕ̄ . (5.18)

6 Concluding comments

In this paper we have provided the first two consistent models for conformal higher-spin

fields propagating on four-dimensional Bach-flat backgrounds. To mitigate technical diffi-

culties, we have considered the simpler problem associated with conformal fields of maximal

depth. We have found that when s > 2, certain lower-spin fields are required in order to

restore gauge invariance beyond first order in the background curvature. We have explored

only the s = 5/2 and s = 3 cases in detail, but expect that similar models can also be

constructed for higher-spins. In such models it is likely that the number of lower-spin fields

required will increase. We plan to revisit these issues in the future.

It is important to point out that the lower-spin fields are not gauge fields in the sense

that they cannot have their own standard gauge transformations of the type (2.5). This

is because their conformal weights differ to that prescribed by (2.6). This property is an

artefact of the higher-depth nature of the CHS fields under consideration, and is one of

the main differences to the model analysed in [32]. In ref. [32], the authors considered a

coupling between the spin s = 1 and s = 3 conformal gauge fields with depth t = 1. In that

context, it is possible to consistently entangle their gauge symmetries whilst simultaneously

preserving the conformal symmetry.

To illustrate this, let us denote these fields by h
(1)
αα̇ and h

(1)
α(3)α̇(3). According to (2.6),

if they are to be conformal and defined modulo depth 1 gauge transformations (2.5), then

their conformal weights are fixed to be 1 and −1 respectively. These restrictions allow for
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entangled gauge transformations such as5

δλh
(1)
α(3)α̇(3) = ∇(α1(α̇1

λ
(1)
α2α3)α̇2α̇3) , (6.1a)

δλh
(1)
αα̇ = ∇αα̇λ(1) +

[
Cα

β(2)γ∇γβ̇λ(1)

β(2)β̇α̇
− 3∇γβ̇Cαβ(2)γλ

(1)

β(2)β̇α̇
+ c.c.

]
. (6.1b)

As per usual, the right hand sides are determined by the primary condition.

In contrast, for the maximal depth spin-3 field h
(3)
α(3)α̇(3) to be conformal and defined

modulo the gauge transformations (4.1), its conformal weight must be equal to 1 (and so

its gauge parameter λ(3) has weight −2). There is no possible way to deform the gauge

transformations of the spin-1 field (or spin-2 for that matter) to include the parameter λ(3)

in a way that preserves its conformal symmetry and index structure. Thus we are forced

to introduce exotic fields such as χα(3)α̇ and ϕα(4), eq. (4.10), which are not technically

gauge fields and whose physical meaning is obscure.

So far, we have confined our attention to gauge fields with spin less than or equal

to three. A natural question to ask is whether similar lower-spin couplings are expected

to be necessary in the construction of gauge-invariant models for fields φ
(t)
α(m)α̇(n) with

m+n > 6. For minimal depth gauge fields (t = 1), it is not hard to work out a higher-spin

generalisation of the gauge transformations (6.1). In the bosonic case, with m = n = s > 3,

it takes the form

δλh
(1)
α(s)α̇(s) =∇(α1(α̇1

λ
(1)
α2...αs)α̇2...α̇s)

, (6.2a)

δλh
(1)
α(s−2)α̇(s−2) =∇(α1(α̇1

λ
(1)
α2...αs−2)α̇2...α̇s−2)+

[(
sa1−2a2

)
C(α1

β(2)γ∇|γ|β̇λ
(1)

α2...αs−2)β(2)β̇α̇(s−2)

−
(
s2a1−3(s−1)a2

)
∇γβ̇C(α1

β(2)γλ
(1)

α2...αs−2)β(2)β̇α̇(s−2)

+
1

2
(s−3)a1C(α1α2

β(2)∇ββ̇λ(1)

α3...αs−2)β(3)β̇α̇(s−2)

+
1

2
(s−3)a2∇ββ̇C(α1α2

β(2)λ
(1)

α3...αs−2)β(3)β̇α̇(s−2)
+c.c.

]
, (6.2b)

which may be seen to be equivalent to (6.1) in the s = 3 case. The presence of the two

free parameters a1, a2 ∈ R in (6.2b) signals that the greater the spin, the more freedom

there is to entangle the gauge transformations. Actually, analogues of (6.2b) also exist

for lower-spin gauge fields h
(1)
α(s−s′)α̇(s−s′) with 1 ≤ s′ ≤ s − 1. It is even conceivable to

couple the parent field to a non-gauge field in a similar fashion to the maximal depth models

presented in this paper.6 Therefore, it seems reasonable to expect that the number of lower-

spin couplings required will increase with the spin of the parent field. However, explicit

calculations are needed in order to understand which lower-spin field(s) will be necessary.

So far, no calculations in Bach-flat backgrounds have been carried out for minimal depth

gauge fields h
(1)
α(s)α̇(s) with s > 3.

5By inspection of the weights, it is not possible for the gauge transformation of the spin-3 field to involve

the spin-1 gauge parameter.
6Recently we have constructed a gauge-invariant model for the conformal gauge field φ

(1)

α(3)α̇ in an ar-

bitrary Bach-flat background [40], and the action involves a non-gauge field, similar to the CMD models

studied above.
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In conclusion we point out that the lower-spin fields in the CMD s = 5/2 and s =

3 models contribute to the Weyl anomalies. It would be interesting to compute these

contributions.
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A Aspects of integration by parts

In general, integrating by parts in conformal space is nontrivial because the conformal

covariant derivative carries extra connections that give non-vanishing contributions from

total derivatives.7 However, under special conditions, which in practice are usually met,

we may follow the usual procedure and ignore any total derivatives that arise. These

conditions are not met for the non-minimal action (4.5) and so below we elaborate on how

integration by parts works in this case.

In what follows we drop the ‘+ c.c.’ for simplicity. The gauge variation of (4.5) is

δλS
(3)
NM = 2

∫
d4x e∇(α1α̇1

∇α2α̇2∇γ)α̇3
λCα(2)β(2)hβ(2)

γα̇(3)

=
1

3

∫
d4x e

[
6∇γα̇1∇α1α̇2∇α2α̇3λ− 4εα1γC̄α̇(3)

γ̇∇α2γ̇λ− 8εα1γ∇α2γ̇C̄α̇(3)
γ̇λ

]
× Cα(2)β(2)hβ(2)

γα̇(3)

= ITotal +
1

3

∫
d4x e λ

{
− 6∇α1α̇1∇α2α̇2∇γα̇3

[
Cα(2)β(2)hβ(2)

γα̇(3)
]

+ 4∇γγ̇
[
C̄α̇(3)

γ̇Cγβ(3)hβ(3)
α̇(3)
]
− 8∇γγ̇C̄α̇(3)

γ̇Cγβ(3)hβ(3)
α̇(3)

}
. (A.1)

Here ITotal represents the total derivative that arises in moving from the second to third line,

ITotal =
1

3

∫
d4x e∇αα̇Zαα̇ , (A.2)

with

Zαα̇ = 6Cγ(2)δ(2)hδ(2)αα̇β̇(2)∇γ
β̇∇γβ̇λ+ 4λCα

γ(3)C̄α̇
γ̇(3)hγ(3)γ̇(3)

+ 6∇γβ̇λ∇ββ̇
[
Cα

γ(3)hγ(2)ββ̇(2)α̇

]
− 6λ∇γβ̇∇ββ̇

[
Cα

γ(3)hγ(2)ββ̇(2)α̇

]
. (A.3)

7We refer the reader to appendix D of ref. [18] for a more detailed discussion on this technical issue.
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Typically, the action that we begin with is primary (as it is here), which means that all

conformal covariant derivatives in the action take the form

∇αα̇ = Dαα̇ −
1

4
Pαα̇,

ββ̇Kββ̇ (A.4)

where Dαα̇ is the torsion-free Lorentz covariant derivative and Pαα̇,ββ̇ is the Schouten

tensor. Since we can always ignore total derivatives from the former, this allows us to

rewrite (A.2) as

ITotal = − 1

12

∫
d4x ePαα̇,ββ̇Kββ̇Zαα̇ . (A.5)

The above expression vanishes in most cases because Zαα̇ turns out to be primary, however

this is not true for the current example and one can instead show that (A.5) reduces to

ITotal = 2

∫
d4x ePαα̇,ββ̇∇αγ̇

{
λCβ

γ(3)hγ(3)α̇β̇γ̇

}
. (A.6)

By making use of the well-known Bianchi identity

DdCabcd = −2D[aPb]c ⇐⇒ Dαβ̇C̄α̇(3)β̇ = D(α̇1

βPβα̇2,αα̇3) , (A.7)

one can show that (A.6) is equivalent to

ITotal = 2

∫
d4x e λ

{
Cα(3)β∇ββ̇C̄

α̇(3)β̇hα(3)α̇(3)

}
. (A.8)

One must be careful to include this term when computing the gauge variation (4.6). This

subtlety regarding integration by parts does not occur elsewhere throughout this paper.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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