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Abstract: We present the complete formula for the cusp anomalous dimension at four

loops in QCD and in maximally supersymmetric Yang-Mills. In the latter theory it is

given by

Γcusp,A

∣∣∣
α4
s

= −
(
αsN

π

)4 [ 73π6

20160
+
ζ23
8

+
1

N2

(
31π6

5040
+

9ζ23
4

)]
.

Our approach is based on computing the correlation function of a rectangular light-like

Wilson loop with a Lagrangian insertion, normalized by the expectation value of the Wilson

loop. In maximally supersymmetric Yang-Mills theory, this ratio is a finite function of a

cross-ratio and the coupling constant. We compute it to three loops, including the full

colour dependence. Integrating over the position of the Lagrangian insertion gives the

four-loop Wilson loop. We extract its leading divergence, which determines the four-loop

cusp anomalous dimension. Finally, we employ a supersymmetric decomposition to derive

the last missing ingredient in the corresponding QCD result.
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1 Introduction

The cusp anomalous dimension is an important quantity in four-dimensional Yang-Mills

theories ranging from QCD to maximally supersymmetric N = 4 Yang-Mills theory. It

controls the leading ultraviolet divergences of Wilson loops evaluated along a closed contour

in Minkowski space-time containing cusps formed by two light-like tangent vectors [1, 2].

Two examples of such contours relevant for our discussion are a wedge formed by two

semi-infinite lines and a null polygon with edges along different light-cone directions.

The former example plays an important role in the study of infrared asymptotics of on-

shell scattering amplitudes and form factors [3–5]. It also naturally appears in the analysis

of DGLAP splitting functions in the semi-inclusive limit [6, 7], and in the resummation of

large Sudakov corrections due to soft and collinear emissions [8, 9]. In all these cases, the

contribution of soft particles is in a one-to-one correspondence with ultraviolet divergences

of semi-infinite cusped Wilson loops [3], allowing us to find the asymptotic behaviour of

the corresponding physical quantities in terms of the cusp anomalous dimension [10].

The study of infrared and collinear singularities in Yang-Mills theory is of considerable

interest (see for example refs. [11–14]) and the cusp anomalous dimension plays a key role

in it. In particular, the four-loop cusp anomalous dimension is the only missing contri-

bution to understand the double pole in the dimensional regulator of four-loop scattering
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amplitudes. Currently, form factors relevant for the precise determination of hadron col-

lider observables such as the Drell-Yan or Higgs boson production cross section [15, 16]

are known to third loop order [17] and the advent of the next order is apparent [18–21].

Knowing the four-loop cusp anomalous dimension, and consequently more of the singu-

larity structure of these quantities serves as stringent check of such a computation. In

combination with the understanding of how scattering amplitudes factorise as particles

approach kinematic limits the understanding of infrared singularities allows to resum parts

of the perturbative expansion to all orders. The four-loop cusp anomalous dimension is a

necessary ingredient for resummation at next-to-next-to-next-to-leading logarithmic accu-

racy. Currently, such computations exist with numerical approximations for the four-loop

cusp anomalous dimension for a variety of observables. This applications range from the

extraction of the strong coupling constant from e+ e− event shapes [22, 23] to precision

observables at hadron colliders like the transverse momentum distribution of electro-weak

gauge bosons [24–27].

Furthermore, null polygon Wilson loops and the cusp anomalous dimension are of

special interest in N = 4 super Yang-Mills theory (sYM). This theory has a number of

remarkable properties, e.g. the celebrated AdS/CFT correspondence, and is believed to be

integrable, at least in the planar limit [28]. Integrability has been successfully exploited to

predict the cusp anomalous dimension in planar N = 4 sYM theory for any value of the

’t Hooft coupling λ = g2N [29]. Extending the integrability approach to predicting non-

planar corrections to the cusp anomalous dimension is currently under active investigation.

Another remarkable property of N = 4 sYM theory is that light-like Wilson loops

describe the asymptotic behaviour of off-shell correlation functions in the light-like limit,

when the operators approach the position of vertices of null polygon, and they are dual

in the planar limit to the so-called MHV on-shell scattering amplitudes. We shall use this

relationship below.

At present, the cusp anomalous dimension is known in full in QCD at three loops [2, 30].

At four loops, it has been computed analytically up to one special term that we specify

presently. The cusp anomalous dimension is known to have the so-called Casimir scaling

up to three loops [6]. Namely, the dependence of γcusp on the representation of the SU(N)

gauge group only enters through a quadratic Casimir. Starting from four loops this property

is violated due to the appearance of a new SU(N) color factor — the quartic Casimir built

out of two completely symmetric invariant d-tensors with all indices contracted [31, 32].

As mentioned above, in N = 4 sYM theory the cusp anomalous dimension is known

in the planar limit to any loop order. The non-planar correction first appears at four loops

and it arises precisely from the quartic Casimir mentioned above. At large N , it is given

by the sum of two terms with one of them suppressed by the factor of 1/N2. It is this term

that generates a nonplanar correction to the cusp anomalous dimension in N = 4 sYM

theory at four loops.1

The new color factor arises from pure gluonic diagrams. Their contribution to γcusp
is not sensitive to the matter content of the theory and, therefore, is the same in N = 4

1Another class of non-planar corrections in N = 4 sYM theory is generated by instanton effects. The

leading instanton correction to the cusp anomalous dimension has been computed in [33].
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sYM theory and in QCD. Thus, computing the four-loop correction to the cusp anomalous

dimension proportional to this color factor in the former theory, and adjusting the color

factors, we can predict the analogous contribution in QCD. This is the only missing term

in the existing four-loop expression for Γcusp in QCD mentioned above.

In this paper, we compute for the first time analytically the non-planar correction

to the four-loop cusp anomalous dimension, both in N = 4 sYM and in QCD. We do

so using an approach based on a relationship of Wilson loops with correlation functions

of local operators. It allows us to avoid complicated Feynman graph calculations. We

validate our results by comparing them against previously known analytic (in the planar

case) and numerical (in the non-planar case) values, finding perfect agreement. Our result

for the four-loop cusp anomalous dimension in N = 4 sYM in the adjoint representation

of SU(N) is

Γcusp,A =

(
αsN

π

)
− π2

12

(
αsN

π

)2

+
11π4

720

(
αsN

π

)3

−
[

73π6

20160
+
ζ23
8

+
1

N2

(
31π6

5040
+

9ζ23
4

)](
αsN

π

)4

+O(α5
s) , (1.1)

where αs = g2/(4π) is the fine structure constant. The corresponding QCD result can be

found in eqs. (6.2) and (6.3) below.

The outline of the paper is as follows. In section 2, we begin by reviewing correlation

functions in N = 4 super Yang-Mills and their relation to light-like polygonal Wilson loops.

We focus in particular on the case of the latter with a Lagrangian insertion, and review their

relationship to the cusp anomalous dimension. Finally, we discuss the integrand, F , for

the three-loop correlation function of the null rectangular Wilson loop with a Lagrangian

insertion. Section 3 is dedicated to the analytic calculation of the relevant three-loop

Feynman integrals. After reviewing the definitions in 3.1, we explain in section 3.2 our

method for choosing a basis of integrals possessing simple transcendental weight properties.

We make use of a convenient choice of loop variables to simplify this analysis. In section 3.3

we apply the differential equations method to compute all basis integrals. We present the

integrated results for F to three loops in section 4. In section 5, we derive general formulae

for performing the integration over the Lagrangian insertion, to extract the cusp anomalous

dimension at the next loop order. Section 6 contains the main results of this paper — the

expressions for the four-loop cusp anomalous dimension in N = 4 super Yang-Mills and in

QCD, for an arbitrary representation of the Wilson line. Finally, we conclude and give an

outlook in section 7.

2 Cusp anomalous dimension from a correlation function

The connection between infrared asymptotics of on-shell scattering amplitudes and form

factors and ultraviolet divergences of semi-infinite cusped Wilson loops has been previously

used to obtain the cusp anomalous dimension. In this paper, we follow another approach

to computing the cusp anomalous dimension that relies on the relation between off-shell

correlation functions of local operators and light-like Wilson loops.
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2.1 The quartic Casimir terms in different gauge theories

As was mentioned above, the cusp anomalous dimension governs the ultraviolet divergences

of light-like Wilson loops. The simplest example of such an object is a null rectangular

Wilson loop

〈WA(x1, x2, x3, x4)〉 =
1

NA
〈trA P exp

(
i

∮
C
dx ·A(x)

)
〉 , (2.1)

where the contour C is a rectangle with vertices located at four points xi that are light-like

separated, x2i,i+1 = 0 (with i = 1, . . . , 4 and i + 4 ≡ i). We took the representation to be

the adjoint, R = A, the reason for such a choice will be clear in a moment. We normalized

the Wilson loop by NA = N2 − 1, so that its perturbative expansion starts with 1.

The Wilson loop (2.1) has ultraviolet (UV) divergences due to the presence of the four

cusps. In dimensional regularization, with D = 4− 2ε, its leading divergence is [34, 35]2

log〈WA(x1, x2, x3, x4)〉 = −
∑
L≥1

2

(Lε)2

(
αsN

π

)L
Γ
(L)
cusp,A +O(1/ε) , (2.2)

where Γ
(L)
cusp,A are expansion coefficients of the cusp anomalous dimension in the adjoint

representation

Γcusp,A =
∑
L≥1

(
αsN

π

)L
Γ
(L)
cusp,A . (2.3)

The relation (2.2) holds in a conformal Yang-Mills theory, otherwise it is valid up to terms

proportional to the beta function.

In a generic Yang-Mills theory with SU(N) gauge group, containing nf fermions and

ns scalars, the cusp anomalous dimension takes the following general form at four loops

γcusp,R
∣∣
α4
s

=
(αs
π

)4 [
CRγ

(4) +
dabcdR dabcdA

NR
γ(4)g +

dabcdR dabcdf

NR
nfγ

(4)
f +

dabcdR dabcds

NR
nsγ

(4)
s

]
,

(2.4)

where the subscript R refers to the SU(N) representation in which the Wilson lines are

defined, and NR = trR 1 is the dimension of the representation. In the case of QCD and

N = 4 sYM the relevant representations are fundamental (R = F ) and adjoint (R = A).

The four coefficients γ(4), γ
(4)
g , γ

(4)
f and γ

(4)
s are independent of the representation of the

Wilson lines.

The four terms inside the brackets in (2.4) contain four different color factors depending

on R. Sample diagrams contributing to these terms are shown in figure 1. The first term

in (2.4) is proportional to the quadratic Casimir CR = T aRT
a
R. It only depends on the

quadratic Casimir in the adjoint representation, CA = N , as well as on the number of

fermions (nf ) and scalars (ns) and on the quadratic Casimirs in the representations in

which these particles are defined. This proportionality property is usually referred to as

the Casimir scaling. The coefficient function γ(4) has been computed in refs. [18, 19].

2Here the additional factor of 2 is inserted to take into account that the Wilson loop is defined in the

adjoint representation (and not in the fundamental representation as in the mentioned papers).
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(a) (b) (c)

Figure 1. Sample four-loop diagrams contributing to different color structures in eq. (2.4). Double

lines denote the four light-like Wilson lines, and wavy lines represent gluons. Diagram (a) con-

tributes to γ
(4)
s or γ

(4)
f for a scalar or fermion in the loop, respectively; diagram (b) contributes to

γ(4); diagram (c) contributes to γ(4) and γ
(4)
g .

The three remaining terms in (2.4) involve quartic Casimirs built out of completely

symmetric tensors

dabcdR =
1

4!

∑
σ

tr(T
σ(a)
R T

σ(b)
R T

σ(c)
R T

σ(d)
R ) (2.5)

in different representations. The above sum runs over all permutations of color indices.

Such color factors appear first at four loops and they violate the Casimir scaling. The

last two terms in (2.4) come from Feynman diagrams containing fermion and scalar loops

coupled to four gluons. The corresponding expansion coefficients γ
(4)
f and γ

(4)
s have been

computed in refs. [36, 37]. The main result of this article is the analytic calculation of the

last missing coefficient γ
(4)
g . Numerical results for this quantity were obtained in refs. [37–

40]. Since the matter dependence is known, the gluonic coefficient can be computed in

maximally supersymmetric Yang-Mills theory.3 This theory has a number of remarkable

properties that simplify the calculation significantly.

2.2 The cusp anomalous dimension from a finite ratio of Wilson loops

In principle, one could attempt to compute 〈WA(x1, x2, x3, x4)〉 in N = 4 sYM directly

in perturbation theory in order to extract Γcusp,A. The main complications would be

a proliferation of Feynman diagrams and the evaluation of the corresponding complicated

four-loop Feynman integrals. Instead of attempting this direct calculation, we use a method

that avoids to a large degree the need for Feynman diagrams, and that only requires the

evaluation of a finite three-loop quantity.

The key insight is that we do not need to evaluate log〈WA(x1, x2, x3, x4)〉 fully, as

the cusp anomalous dimension appears in (2.2) as the leading double pole in dimensional

regularization. We can imagine log〈WA(x1, x2, x3, x4)〉 as being represented by multiple

integrals. Physically, it is clear that the cusp divergences arise from the integration over

particles that propagate at short distances along the light-like edges adjacent to the cusps.

The idea is that, upon rescaling the distances, we can isolate a divergent integral over the

3This is done using a supersymmetric decomposition, see refs. [37, 41].
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overall scale and express the cusp anomalous dimension as the finite result of the remaining

integration. This is similar in spirit to [42]. Here we follow the approach of [43–45].

Let us consider a slightly more general object, namely the correlation function of the

Wilson loop with the insertion of the Lagrangian normalized by 〈WA〉,4 [43, 46, 47] (see

footnote 2)

〈WA(x1, x2, x3, x4)L(x5)〉
〈WA(x1, x2, x3, x4)〉

=
2

π2
x213x

2
24

x215x
2
25x

2
35x

2
45

F (x) +O(ε) . (2.6)

It will serve us as the finite integrand mentioned above. It is possible to show following [35]

that UV divergences cancel in the ratio of correlation functions on the left-hand side of (2.6),

so that it remains finite for ε→ 0. As a consequence, the first term on the right-hand side

of (2.6) can be defined at D = 4. Conformal symmetry fixes it up to an arbitrary function

F (x) of cross-ratio [43]

x =
x225x

2
45x

2
13

x215x
2
35x

2
24

. (2.7)

It depends on four points x1, x2, x3, x4 defining vertices of a null rectangle and the La-

grangian insertion point x5. The invariance of the Wilson loop under cyclic permutation

of points x1, . . . , x4 leads to the relation F (x) = F (1/x).

In addition, F (x) depends on the rank of the gauge group N , and on the Yang-Mills

coupling g2. As customary in the QCD literature,5 we expand F (x) in powers of the fine

structure constant αs/π = g2/(4π2),

F (x) =

(
αsN

π

)
F (0)(x) +

(
αsN

π

)2

F (1)(x) +

(
αsN

π

)3

F (2)(x)

+

(
αsN

π

)4 [
F

(3)
planar(x) +

1

N2
F

(3)
non-planar(x)

]
+O(α5

s) .

(2.8)

Note that the expansion starts at order αs. The function F (0) defines the correlator (2.6)

at Born level and the functions F (L) describe corrections at L loops.

Let us now explain how we can combine eqs. (2.6) and (2.2) to obtain the cusp anoma-

lous dimension from F . On the one hand, we observe that once we integrate the l.h.s. of

eq. (2.6) over x5, this yields a derivative of log〈WA(x1, x2, x3, x4)〉 w.r.t. the coupling. On

the other hand, comparing to the r.h.s. of eq. (2.2), we see that the leading divergence of

that quantity is controlled by the cusp anomalous dimension:∫
dDx5

iπD/2
〈WA(x1, x2, x3, x4)L(x5)〉
〈WA(x1, x2, x3, x4)〉

= − 2

ε2

∫ αs

0

dαs
αs

Γcusp,A +O(1/ε) , (2.9)

and Γcusp,A can then be expanded perturbatively as in eq. (2.3). As a consequence, once

we know the finite ratio in eq. (2.6) at (L−1) loops, integrating over x5 and extracting the

leading divergence allows us to compute the cusp anomalous dimension at L loops. The

4This object naturally appears in the method of Lagrangian insertions, see eq. (2.13) below.
5Notice that the results in [45] were expanded in powers of g2N/(8π2).
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detailed derivation was performed in ref. [45] using two different regularizations, with the

same result. The effect of the integration over x5 is given by a functional I relating the

function F (x) to the cusp anomalous dimension. We have

I[F (x)] = −1

4
αs

∂

∂αs
Γcusp(αs, N) , (2.10)

where I acts on individual terms as in

I[xp] =
sin(πp)

πp
. (2.11)

We refer the reader to ref. [45] for a definition of the functional in terms of Feynman

integrals. In order to apply the last relation we write F (x) in the form of a small x

expansion. The reason why small x asymptotics is related to the cusp anomalous dimension

can be understood from eq. (2.9) — the cusp singularities arise from x5 approaching the

cusp points xi. Using the definition (2.7), it is easy to see that in this limit x→ 0 or x→∞.

Due to the symmetry x→ 1/x we can map both regions to small x. The complexity of the

calculation is reduced considerably by obtaining the cusp anomalous dimension at L loops

from the (L− 1) loop quantity F (x).

2.3 The Wilson loop integrand from a correlation function

Our goal is therefore to obtain the function F (x) at three loops. In the conventional

Feynman diagram approach one would compute 〈WAL(x5)〉 and 〈WA〉 in dimensional reg-

ularization and then find their ratio (2.6). Here we follow a different strategy that is based

on a relationship between correlation functions and light-like Wilson loops. It will allow

us to obtain the integrand for F (x), bypassing Feynman diagram computations.

Our starting point is the four-point correlation function of half-BPS operators in N = 4

sYM theory

G4 = 〈O(x1)O(x2)O(x3)O(x4)〉 , (2.12)

where O = tr(ΦIΦJ) − 1
6δ
IJ tr(ΦKΦK) is bilinear in scalar fields ΦI (with I = 1, . . . , 6)

defined in the adjoint representation of the SU(N). The operator’s scaling dimension ∆ = 2

is protected from quantum corrections by supersymmetry.

At weak coupling, the perturbative expansion of G4 in powers of the coupling αs can be

obtained using the method of Lagrangian insertions. This method relies on the observation

that a derivative of an n-point correlation function with respect to the coupling is given

by an (n+ 1)-point correlation function involving the insertion of Lagrangian

αs
∂

∂αs
G4 =

∫
d4x5〈O(x1)O(x2)O(x3)O(x4)L(x5)〉 . (2.13)

The correlation function itself can be expanded in the strong coupling constant as

G4 =

∞∑
L=0

(αs
π

)L
G

(L)
4 . (2.14)

– 7 –
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Differentiating repeatedly with respect to the coupling, we can express the L-loop correction

to G4 in terms of (4 + L)-point correlation functions involving L insertions of N = 4 sYM

Lagrangians

G
(L)
4 =

1

L!

∫
d4x5 . . . d

4x4+LG
(0)
4;L ,

G
(0)
4,L = 〈O(x1)O(x2)O(x3)O(x4)L(x5) . . .L(x4+L)〉(0) . (2.15)

Here the superscript ‘(0)’ was introduced to indicate that the correlation functions are

computed in the Born approximation.

The relation (2.15) allows us to interpret G
(0)
4,L as Feynman integrands at order g2L.

They are rational functions of the distances x2ij = (xi − xj)2 (with i, j = 1, . . . , 4 + L).

The form of the functions is heavily constrained by the symmetries of N = 4 sYM theory.

Namely, the fact that the half-BPS operators O and the Lagrangian L belong to the same

supermultiplet leads to a hidden symmetry of (2.15) under permutation of points x1, . . . , x4
and x5, . . . , x4+L [48]. At four loops, this symmetry, combined with conformal symmetry

and the requirement for (2.15) to have correct behavior in various OPE limits, fixes the

leading, planar part of G
(0)
4,L uniquely whereas the non-planar part of the integrand can be

determined up to four arbitrary coefficients [49].

These coefficients were determined in the recent paper [50] by matching the non-planar

part of G
(0)
4,L=4 computed in ref. [51] using the reformulation of N = 4 sYM in twistor space

to the analogous expression for the same correlation function obtained in refs. [48, 49].

Thus, the construction of the four-loop integrand of the correlation function (2.12) is now

completed.

To make a connection to the Wilson loops considered in the previous subsection, we

examine the limit x212, x
2
23, x

2
34, x

2
41 → 0 when four operators in (2.12) become light-like

separated in a sequential manner. As was shown in ref. [52], the correlation function

simplifies in this limit and its leading asymptotic behavior is given by the product of

Born-level contribution G
(0)
4 and light-like rectangular Wilson loop WA,

lim
x2i,i+1→0

G4/G
(0)
4 = 〈WA(x1, x2, x3, x4)〉 . (2.16)

This relation has a transparent physical meaning. In the first quantized picture, G4 de-

scribes the propagation of a scalar particle along a closed contour that goes through the

point xi. In the light-like limit this particle has infinite energy. As a consequence, it

propagates along a classical trajectory that coincides with C and its interaction with an

induced radiation gives rise to an eikonal phase. The latter is given by a Wilson loop in

the same representation in which the scalars are defined. This explains the choice of the

representation in (2.1).

We note that eq. (2.16) is somewhat formal, as the ratio of four-dimensional correla-

tion functions on the left-hand side diverges in the light-like limit x2i,i+1 → 0 and requires

a regularization. However, for the purposes of the present paper, we can use the rela-

tionship (2.16) at the level of the loop integrands. In other words, we can profit from the

known integrands for the correlation function (2.15) in order to obtain the four-dimensional

– 8 –
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integrand for the function F (x). In the following, for simplicity of notation, we write the

relations between G4 and F (x) in an integral form, but keeping in mind that they hold at

the level of the four-dimensional integrands.

Combining together (2.6) and (2.16) we obtain

lim
x2i,i+1→0

αs
∂

∂αs
log(G4/G

(0)
4 ) =

∫
d4x5
iπ2

2x213x
2
24

x215x
2
25x

2
35x

2
45

F (x). (2.17)

Strictly speaking, the light-like limit and integration do not commute and the integral in

eq. (2.17) requires a regularization. Since we only need the integrand for our purposes,

we keep the integral in four-dimensions and ignore its divergences. Replacing G4 with its

expression (2.15) we can now construct the function F (x) at three loops. Indeed, as was

shown in [52], the ratio of correlation functions take the following form in the light-like

limit

lim
x2i,i+1→0

G4/G
(0)
4 = 1 +

∑
L≥1

1

L!

(
αsN

π

)L ∫ d4x5
iπ2

. . .
d4x4+L
iπ2

IL(x1, . . . , x5, . . . , x4+L) ,

(2.18)

where the integrand IL is obtained from G
(0)
4,L defined in (2.15) for x212 = x223 = x234 = x241 =

0. The explicit expressions for IL are given below. Applying (2.18) we obtain an analogous

representation for a logarithm of the ratio of correlation functions

lim
x2i,i+1→0

log(G4/G
(0)
4 ) =

∑
L≥1

1

L!

(
αsN

π

)L ∫ d4x5
iπ2

. . .
d4x4+L
iπ2

GL(x1, . . . , x5, . . . , x4+L) ,

(2.19)

where GL are expressed in terms of the functions IL according to

G1(x1, . . . , x5) = I1(x1, . . . , x5) ,

G2(x1, . . . , x6) = I2(x1, . . . , x6)− I1(x1, . . . , x5)I1(x1, . . . , x4, x6)
G3(x1, . . . , x7) = I3(x1, . . . , x7)− I1(x1, . . . , x5)I2(x1, . . . , x4, x6, x7)

+ 2I1(x1, . . . , x5)I1(x1, . . . , x4, x6)I1(x1, . . . , x4, x7)

− I1(x1, . . . , x4, x6)I2(x1, . . . , x5, x7)− I1(x1, . . . , x4, x7)I2(x1, . . . , x6)
(2.20)

and so on. Matching eqs. (2.17) and (2.19) we obtain an integral representation for F (x)

in terms of functions IL. The latter are given by6

IL(x1, . . . , x4+L) =
2x213x

2
24

(−4)L
∏

5≤i≤4+L x
2
1ix

2
2ix

2
3ix

2
4i

∏
5≤i<j≤4+L x

2
ij

P (L)(x1, . . . , x4+L) .

(2.21)

6The additional factor of (−4)L in the denominator comes from the different definition of the integration

measure in [49].
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Here P (L) are homogeneous polynomials in x2ij of degree (L − 1)(L + 4)/2 whose explicit

expressions can be found in [48, 49].

Up to three loops, i.e. for L ≤ 3, the polynomials P (L) do not depend on N . At four

loops, P (4) receives a non-planar correction

P (4) = P
(4)
planar +

1

N2
P

(4)
non-planar . (2.22)

As was mentioned above, the planar part can be fixed uniquely whereas the general ex-

pression for the non-planar part involves a few arbitrary coefficients

P
(4)
non-planar = c1Q1 + c2Q2 + c3Q3 + c4Q4 + d1R1 + d2R2 + d3R3 , (2.23)

where the explicit expressions for Qi and Rj can be found in [49] (see eqs. (5.23) and (5.20)

there). Here the polynomials Rj are proportional to Gram determinants depending on the

points xi (with i = 1, . . . , 8). If all vectors xµi are four-dimensional, the Gram determinants

vanish and P
(4)
non-planar does not depend on the coefficients di. The coefficients ci have been

determined in ref. [50] in D = 4 dimensions, c1 = c2 = c3 = 0 and c4 = −6.

Combining together relations (2.17)–(2.22), we obtain the following expression for the

non-planar correction to the function (2.8)

F
(3)
non-planar(x) =

1

3!

∫
d4x6 d

4x7 d
4x8

4 (4π2i)3

P
(4)
non-planar(x1, . . . , x8)∏

6≤i≤8 x
2
1ix

2
2ix

2
3ix

2
4i

∏
5≤i<j≤8 x

2
ij

. (2.24)

The planar correction to F (x) admits a similar representation with P
(4)
non-planar replaced by

a lengthy expression involving a linear combination of P
(4)
planar and the product of lower loop

polynomials P (`1)P (`2) . . . subject to `1 + `2 + · · · = 4. To save space, we do not present

the corresponding expression.

We can use the relation (2.24) together with (2.10) to compute the non-planar correc-

tion to the cusp anomalous dimension at four loops. Notice that applying (2.10), we have

to treat xµ5 as a D-dimensional vector. In this case, the Gram determinants do not vanish,

Rj 6= 0, and may contribute to (2.23). As was shown in [48, 49], the consistency of (2.18)

with the OPE of the correlation function (2.12) for x2i,i+1 → 0 implies that the polynomial

P
(4)
nonplanar has to vanish when one of the integration points xi (with i = 5, . . . , 8) approaches

the edges of light-like rectangle with vertices at the points x1, x2, x3, x4. In D = 4 dimen-

sion, this leads to the general expression (2.23). Repeating the same analysis in D 6= 4 we

find that the above mentioned condition is satisfied provided that

3c4 − 3d1 + 4d2 = 0 . (2.25)

We use this relation and replace the coefficients ci with their values to get from (2.23)

P
(4)
non-planar = −6Q4 +

9

2
R2 + d1

(
R1 +

3

4
R2

)
+ d3R3 , (2.26)

with d1 and d3 arbitrary. The terms proportional to d1 and d3 satisfy separately the OPE

condition mentioned above. This implies that the regions of loop integration that poten-

tially produce divergences are suppressed. For this reason, we expect the corresponding
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terms to have a smooth and vanishing four-dimensional limit. In other words, since the

integrand is finite at every point in D = 4−2ε and in D = 4 dimensions we expect that the

result of the D-dimensional integration equals the result of four-dimensional integration

after the dimensional regulator is taken towards zero. As a consequence the coefficients of

d3 and d1 in (2.26) give vanishing contributions to the integral. To verify this, we show

in the next section explicitly that the d1 term on the right-hand side of (2.26) produces

a vanishing contribution to (2.24) and, therefore, can be safely omitted. For the term

proportional to d3, we then assume the same based on the above argument, and thus set

d1 = d3 = 0 in our calculation. In summary, we obtained the loop integrand for F (x) at

three loops from the corresponding correlation function G4 at four loops.

Before proceeding to computing the Feynman integrals contributing to F (x), we make

two further simplifications. First, we make use of the conformal invariance of F (x) to

send the point x5 to infinity. This leads to the expression x = x213/x
2
24 for the cross-

ratio (2.7), and likewise removes the x5−dependence from eq. (2.24). Second, the resulting

expressions for the integrals in (2.24) depend on four points x1, x2, x3, x4 that are null

separated x2i,i+1 = 0. Introducing the dual variables pi = xi+1 − xi, we notice that these

integrals resemble momentum integrals contributing to on-shell four-particle scattering

amplitudes. This will be discussed in the next section.

3 Three-loop integrals from differential equations

In this section we compute the three-loop Feynman integrals contributing to F (x).

3.1 Definition of the integral family

The Feynman integral in (2.24) involves the conformal polynomial P
(4)
non-planar defined

in (2.26). It can be expanded into a sum of terms given the product of distances x2ij .

In spite of the fact that the integral (2.24) is finite, each individual term may produce

divergences. For this reason we set up the calculation in D = 4− 2ε dimensions, and take

the limit ε→ 0 at the end.

After sending x5 to infinity, as explained at the end of the previous section, we find that

the Feynman integrals contributing to (2.24) and to the analogous expression for F
(3)
planar

belong to a family of integrals with 15 denominator factors

Ga1,...,a15 :=

∫
dDx6d

Dx7d
Dx8

(iπD/2)3
(−1)

∑15
i=1 ai

(x236)
a1(x216)

a2(x237)
a3(x217)

a4(x238)
a5(x218)

a6

× 1

(x226)
a7(x267)

a8(x278)
a9(x284)

a10(x264)
a11(x272)

a12(x274)
a13(x282)

a14(x268)
a15

.

(3.1)

We will see presently that this integral resembles momentum integrals computed previously

for three-loop two-to-two scattering processes [53]. In order to do so, we interpret the x’s

as dual variables, according to

x1 = 0 , x2 = p1 , x3 = p1 + p2 , x4 = −p4 , x6 = k1 , x7 = k2 , x8 = k3 . (3.2)
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x1

x3

x2 x4x7x6 x8

p1

p2 p3

p4

1 3 5

7 8 9 10

2 4 6

(a)

x1
x2

x3

x4

x2

x1
x3

x4

x1

x2

x3

x4

p1

p2

p3

p4

p1
p2

p3

p4

p1

p2

p3
p4

x6 x7

x8

8

915

12

3

13

610

145

q8

2

7

1

11 4

(b)

Figure 2. Diagram (a) represents a triple ladder diagram contained in integral family (3.1) in the

dual variables. Each line with index i, separating two regions labelled by the coordinates xi1 and xi2 ,

denotes a denominator factor (x2i1,i2)ai Diagram (b) represents the complete integral family (3.1)

in the dual variables. The internal lines with indices i = 1, . . . , 15 correspond to the 15 propagator

factors in (3.1).

Here, we consider four pi corresponding to a four-particle scattering process. We take pi
as ingoing, ordered according to p1, p2, p3, p4.

7 Furthermore, the sum over momenta is

conserved and they are light-like.

4∑
i=1

pi = 0, p2i = 0. (3.3)

We define scalar products of the momenta by

2p1 · p2 = s = x213 , 2p1 · p3 = t = x224 , 2p2 · p3 = −s− t . (3.4)

Using the definition (3.1), one may represent all planar three-loop two-to-two scattering

integrals. For example, the triple ladder integral is given by G1,1,1,1,1,1,1,1,1,1,0,0,0,0,0, see

figure 2a. However, the use of dual coordinates has further advantages. It allows us also to

write down products of lower-loop integrals. For example, the product of a one-loop box

integrals with a two-loop ladder integral is given by G1,1,1,1,1,1,1,1,0,1,0,0,1,1,0.

What integrals occur in F? At leading color and up to three loops, we have precisely

planar three-loop integrals, and products of planar lower-loop integrals. Up to the unusual

fact that products are considered, these integrals have a clear interpretation in terms of

planar scattering processes. The non-planar corrections to F do not have such a simple

interpretation, but they can still be expressed in our notation. We found the graphical

representation shown in figure 2b useful.

7Our notation for the integral family follows the one for the triple ladder integral in ref. [53] as far as

the labelling of propagators is concerned. However, note that here we use a different ordering of external

momenta.
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Some readers might wonder wether the integrals under consideration are related to

non-planar three-loop integrals considered in refs. [54, 55]. This is not the case. Moreover,

there is one important difference, which is somewhat surprising. Although the integrals

defined in eq. (3.1) cannot in general be drawn as planar two-to-two scattering diagrams,

they do share important analytic properties with planar integrals. It turns out that their

Feynman parametrization is positive definite if s, t < 0, such that in this region the integrals

are real-valued. Moreover, it can be seen from figure 2b that the integrals only have cuts

in the s- and t-channel since the diagram does not have adjacent external lines of p1 and

p3 or p2 and p4, just like planar integrals. For these reasons we expect them to be free of

u-channel cuts [56]. This will be important when fixing boundary conditions for differential

equations in section 3.3.

In practice, in order to analyze the integrals containing polynomials Q4, R1 and R2 (see

eqs. (2.24) and (2.26)), it turns out that we need integrals with up to thirteen propagators,

i.e. thirteen non-negative indices ai in eq. (3.1). Note that this is three more, and hence

considerably more complicated, compared to the integrals that were computed in [53].

We performed the reduction of all integrals needed using the program FIRE5 [57].

As a result, we obtained 257 master integrals, meaning that any integral that we need

can be expressed in terms of the latter.8 In the next section, we explain how we chose a

particularly convenient integral basis.

3.2 Integrand analysis via improved Baikov variables

In the previous section we found that the integral family of eq. (3.1) is described by 257

master integrals. Before proceeding with their calculation, we will choose a convenient

integral basis for the latter. In order to do so, we rely on insights into the structure

of Feynman integrals from [58, 59]. The main idea is that the Feynman loop integrand

contains the key information on the structure of the functions appearing after carrying out

the space-time integrations. In particular, the singularity structure of the integrand, and

its residues, allow one to predict key features of the outcome of the integration, such as

the transcendental weight properties of the answer.

In practice, following [58, 59], we consider loop integrands of the type appearing in

eq. (3.1), and search for integrands that are free of double poles, and whose leading singu-

larities are normalized to be independent of the external kinematics. In order to do so, we

make use of the algorithm [60] (and an independent implementation of it) that is based on a

particular parametrization of the integration variables, combined with partial fractioning.

Although this algorithm has been applied in many similar situations, the present case is

challenging due to the large number of propagator factors. For this reason we made certain

improvements that we discuss below.

The first improvement is based on the observation that certain loop integrands can be

written as dlog differential forms, in such a way that the integrand is expressed as a single

8Computing the integrals, we observe some additional identities, at least to a certain order in the ε

expansion. Therefore this basis may be overcomplete. This does not affect the validity of our calculation.
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term [61, 62]. The key example we need is that of the one-loop on-shell box integrand,

x213x
2
24d

4x6
x216x

2
26x

2
36x

2
46

=
st d4k

k2(k + p1)2(k + p1 + p2)2(k − p4)2
= ±dα1

α1

dα2

α2

dα3

α3

dα4

α4
. (3.5)

Here the new variables αi are closely related to the original propagators,

α1 =
k2

(k − k∗±)2
, α2 =

(k + p1)
2

(k − k∗±)2
, α3 =

(k + p1 + p2)
2

(k − k∗±)2
, α4 =

(k − p4)2

(k − k∗±)2
(3.6)

where k∗± corresponds to the two solutions of the maximal cut condition. We note that

this is closely related in spirit, but different to the Baikov representation. There, one

chooses as new integration variables a set of propagator factors (and possibly irreducible

scalar products), in D dimensions. Here, we consider the four-dimensional part of the

loop integrand, and our new variables are normalized by (k − k∗±)2. As a result, the

change of variables is rational in our case. It was observed in many examples (see for

example refs. [59, 60]) that an analysis of the four dimensional leading singularities of a

Feynman integral allows to determine if an integral has uniform transcendental weight in

D dimensions.

Let us now consider the integrand in eq. (3.1) for ai = 1, and with an arbitrary

numerator P (x2ij). The denominator is naturally written in the dual x coordinates, and

contains three factors of the type (3.5). Therefore we find it natural to perform this change

of variable for each loop integration variable. We do so with αi, βi and γi corresponding

to x6, x7 and x8, respectively. The only new calculation w.r.t. (3.5) we need to do is for

factors of the type x267. The latter is a rational function of αi, βi, s, t. As a result, we obtain

for the integrand

I =

4∏
i=1

dαi
αi

dβi
βi

dγi
γi

P

x267x
2
78x

2
68

. (3.7)

where P stands for a polynomial in the x2ij variables. We call this representation improved

Baikov representation.

Our goal is to find as many numerators P as possible for which the integrand is free

of double poles and has constant maximal residues. In principle we could start with a

general ansatz for P , subject to certain power counting constraints, and compute residues.

As already mentioned, this turns out to be prohibitive due to the size of the integrand.

For this reason,we use a divide-and-conquer approach. First of all, most integrals we

are interested in contain only a subset of the 15 propagators, so that we can perform

a dedicated analysis for each of them. Each propagator structure defines what we call

an integral sector. Second, instead of running the algorithm directly for each of these

integral sectors, we analyze the integrand on cuts. In this way, each run of the algorithm

is faster, and we can easily combine the constraints on P arising from each cut. One of

the main advantages of the improved Baikov representation (3.7) is that it makes taking

cuts simple. In practice, we find that only a subset of cuts is needed to obtain candidates

for dlog integrands. Finally, once a candidate is found, we can test it using our algorithm

(this is considerably less complicated than running the algorithm for the whole ansatz).
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In this way, we arrive at a large set of dlog integrands. We complement them with

information on uniform weight integrals from ref. [53]. We then perform the integral

reduction of the corresponding (D-dimensional) integrals, which allows us to relate the

candidate integrals to a basis of master integrals. We then select a linearly independent

set of candidate integrals, and choose this as our new integral basis. In the next section

we derive and solve the differential equations satisfied by these integrals.

3.3 Analytic computation of the master integrals

Here we discuss the computation of the three-loop integrals via differential equations. We

denote by f the basis of integrals that was found with the methods discussed in the last

section. We find that the differential equations (for reviews, see [63, 64]) for this basis takes

the form

d f(s, t; ε) = ε d

[
A1 log s+A2 log t+A3 log(s+ t) +A4 log

1 + i
√
s/t

1− i
√
s/t

]
f(s, t; ε) , (3.8)

where d = ds∂s + dt∂t and Ai are some matrices. These equations are in the canonical

form proposed in [59], as expected for uniform weight integrals. Indeed, it is easy to read

off what properties the perturbative solution in ε has, as we discuss presently. As one can

always choose one overall scale (by dimensional analysis), we can set t = −1 without loss

of generality. In this way it is clear that the solution to (3.8) can be written, to any order

in ε, in terms of iterated integrals of the alphabet

{x, 1 + x, (1 + i
√
x)/(1− i

√
x)} , (3.9)

where x = s/t. This is slightly more complicated compared to the differential equations

for the three-loop integrals derived in [53–55], which are described by the alphabet {x, 1 +

x}. We note that it is possible to rewrite the alphabet (3.9) in terms of linear letters,

with singularities corresponding to fourth roots of unity, 1, i,−1,−i, simply by changing

variables to x = −z2. In this way, one can rewrite the solution in terms of Goncharov

polylogarithms. As we will see below, while the additional letter (1 + i
√
x)/(1 − i

√
x) is

needed in individual Feynman integrals, remarkably, we find that it drops out of the results

for F .

Let us now solve eq. (3.8) for fixed t = −1 and x = s/t. As discussed in section 3.1, f

is real-valued for x > 0, and we expect a branch cut along the negative real x-axis, so that

one needs to add a small imaginary part to x when analytically continuing to that region.

This is relevant when implementing the finiteness of the integrals at u = 0, as discussed

above, which corresponds to x = −1.

Our strategy for solving the differential equation is a follows: we write down the general

solution in terms of iterated integrals, with base point x = 0+. Here the superscript ‘+’

indicates that we approach 0 keeping x > 0. This specification is necessary since the

Feynman integrals under consideration in general diverge as x → 0, with the rate of

divergence being controlled by the matrix A1. We parametrize the solution in terms of

real-valued integration constants at x = 0+.

Then, we analytically continue to negative x, and impose the finiteness condition at

x = −1. This constraint, together with the real-valuedness of the integration constants,
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turns out to fix all integration constants, except for a trivial overall normalization.9 This

useful feature that the integration constants can be obtained effortlessly from physical

consistency conditions, has already been observed and stressed in a number of calculations,

see e.g. [53, 56, 65]. Finally, we fix the overall normalization by explicitly evaluating one

trivial integral in terms of Gamma functions.

In this way, we can obtain the analytic solution for all master integrals to any desired

order in ε. We are interested in computing F , a finite quantity. On the other hand, typical

on-shell three-loop integrals contain nested soft and collinear divergences that lead to up

to 1/ε6 poles. As a consequence, we need to expand the solution of the integrals up to

finite order, which corresponds to up to transcendental weight 6.

With this we can compute all integrals contributing to F (x) to three loops. In partic-

ular, an important check is the finiteness of the answer. Note that this property is highly

non-trivial, since individual three-loop integrals have poles up to 1/ε6. We verify that this

is the case for the planar contributions to F .

Proceeding to the non-planar contribution, we are particularly interested in the non-

planar integral Q4 and the Gram determinants R1 and R2, as discussed in the previous

section. We found there that Q4 by itself does not vanish in the D-dimensional OPE

limit, but the linear combination of eq. (2.26) does. Indeed, we find that Q4 has a 1/ε

pole in dimensional regularization, while the combination appearing in eq. (2.26) is finite.

Moreover, we checked explicitly that the finite result is independent of the free parameter

d1. We take this as supporting evidence that our procedure is consistent and produces an

unambiguous finite answer.

4 Wilson loop with Lagrangian insertion at three loops

Here we present our novel three-loop results for F (x) defined in eq. (2.8). The tree-level,

one-loop, and two-loop contributions to F have been computed in [43–45]. The first non-

planar corrections can appear in eq. (2.8) at three loops, i.e. at order α4
s. They are the

main objectives of our work.

As a warm-up we begin by reproducing the lower-loop results. This serves as a welcome

validation of our procedure, and of the integrals computed in the previous section. We give

the formulas for completeness. We express them in terms of harmonic polylogarithms

(HPL) [66], since the latter will be appropriate when giving the three-loop results below.

We have

F (0)(x) = −1

4
, (4.1)

F (1)(x) =
1

8
H0,0 +

π2

16
, (4.2)

F (2)(x) = −π
2

16
H0,0 −

3

16
H0,0,0,0 +

π2

32
H0,-1 +

1

16
H0,-1,0,0 +

π2

32
H-1,0

+
1

16
H-1,0,0,0 −

π2

16
H-1,-1 −

1

8
H-1,-1,0,0 +

ζ3
16

H0 −
ζ3
8
H−1 −

107π4

5760
. (4.3)

Here we omitted the argument x of the harmonic polylogarithms, for brevity.

9Typically, one needs to expand to some order εn+k, with k > 0, in order to obtain all constraints at

order εn.
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Let us now give the new results at three loops. The planar result is given by

F
(3)
planar(x) =

323π4

11520
H0,0 +

ζ3
32

H0,0,0 +
9π2

64
H0,0,0,0 +

15

32
H0,0,0,0,0,0 −

π4

64
H−1,0

− ζ3
16

H−1,0,0 −
π2

16
H−1,0,0,0 −

3

16
H−1,0,0,0,0,0 +

43π4

1920
H−1,−1 −

ζ3
16
H−1,−1,0

+
π2

16
H−1,−1,0,0 +

3

16
H−1,−1,0,0,0,0 +

ζ3
8
H−1,−1,−1 −

π2

32
H−1,−1,−1,0

− 1

16
H−1,−1,−1,0,0,0 +

π 2

16
H−1,−1,−1,−1 +

1

8
H−1,−1,−1,−1,0,0 −

π2

32
H−1,−1,−2

− 1

16
H−1,−1,−2,0,0 −

ζ3
16

H−1,−2 +
π2

32
H−1,−2,0 +

1

8
H−1,−2,0,0,0 −

π2

32
H−1,−2,−1

− 1

16
H−1,−2,−1,0,0 +

π2

16
H−1,−3 +

1

8
H−1,−3,0,0 −

ζ3
8
H−2,0 −

11π 2

192
H−2,0,0

− 5

32
H−2,0,0,0,0 −

ζ3
16
H−2,−1 +

π2

48
H−2,−1,0 +

1

16
H−2,−1,0,0,0 −

π2

32
H−2,−1,−1

− 1

16
H−2,−1,−1,0,0 +

π2

16
H−2,−2 +

1

8
H−2,−2,0,0 −

11π2

192
H−3,0 −

5

32
H−3,0,0,0

+
3π2

32
H−3,−1 +

3

16
H−3,−1,0,0 −

3

16
H−4,0,0 +

5 (ζ3)
2

32
+
π2ζ3
192

H0 −
ζ5
8
H0

+
7ζ5
16
H−1 +

3ζ3
16
H−3 −

197π 4

11520
H−2 −

3π2

32
H−4 +

617π6

96768
. (4.4)

The non-planar part F
(3)
non-planar has a novel feature. In addition to the dependence on

harmonic polylogarithms, it contains a rational dependence on x, as follows

F
(3)
non-planar =

1

1 + x
F

(3)
non-planar,1 + F

(3)
non-planar,2 . (4.5)

We find

F
(3)
non-planar,1 =

5π4

384
H0,0 +

3ζ3
4
H0,0,0 +

π2

32
H0,0,0,0 +

9

16
H0,0,0,0,0,0 −

π4

128
H−1,0

− 3π2

32
H−1,0,0,0 −

15

16
H−1,0,0,0,0,0 −

3π2

16
H−2,0,0 −

3

4
H−2,0,0,0,0 +

π2

32
H−3,0

+
3

16
H−3,0,0,0 +

3

8
H−4,0,0 +

5π2ζ3
16

H0 +
27ζ5
16

H0 −
π4

16
H−2 +

3π2

16
H−4 +

739π6

80640
,

(4.6)

F
(3)
non-planar,2 =− 5π4

384
H0,0 −

3ζ3
4
H0,0,0 −

π2

32
H0,0,0,0 −

9

16
H0,0,0,0,0,0 −

13π4

960
H−1,0

+
3ζ3
8
H−1,0,0 −

π2

16
H−1,0,0,0 −

3

8
H−1,0,0,0,0,0 +

9π4

128
H−1,−1 +

9π2

32
H−1,−1,0,0

+
27

16
H−1,−1,0,0,0,0 +

π2

32
H−1,−2,0 +

3

16
H−1,−2,0,0,0 −

3π2

32
H−1,−3 −

3

16
H−1,−3,0,0
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+
3ζ3
8
H−2,0 −

3

8
H−2,0,0,0,0 −

3π2

32
H−2,−2 −

3

16
H−2,−2,0,0 −

π2

32
H−3,0 −

3

16
H−3,0,0,0

+
33ζ23
16
− π2ζ3

8
H0 −

9ζ5
8
H0 −

π2ζ3
4

H−1 −
3ζ5
16
H−1 +

3π4

320
H−2 +

11π6

11520
. (4.7)

Let us discuss the structure of these results. First of all, we note that the expressions

for F (L) have uniform transcendental weight 2L. From the point of view of the integrals

we computed, this corresponds to the maximal possible weight. This feature is typical

of calculations in N = 4 super Yang-Mills theory. Second, we find that the first non-

planar correction (unlike the planar one) depends on more than one rational structure.

This corresponds to the fact that the non-planar integrand has two leading singularities,

namely 1 and 1/(1 + x), while the leading singularities of the planar integrand are x-

independent. This is reminiscent of the situation for non-planar three-loop two-to-two

scattering amplitudes, where the same leading singularities occur [55].

5 Cusp anomalous dimension from integration over Lagrangian insertion

The knowledge of F (x) at (L−1) loops allows one to obtain the cusp anomalous dimension

at L loops. The detailed relation was found in [45], and we briefly reviewed it in section 2,

see eqs. (2.10) and (2.11). The net result is that we need to perform a certain integral

transformation of F (x). The action of the latter on a power of x was given in eq. (2.11),

and we repeat it here for convenience,

I[xp] =
sin(πp)

πp
. (5.1)

In this section, we show how to apply the functional I to the terms appearing in F (x).

In particular, we are interested in the scenario where the function F (x) is a linear

combination of harmonic polylogarithms of the form of our results F (n). First, we observe

that the r.h.s. of eq. (5.1) vanishes if p is a non-zero, positive integer. Consequently, only

the first, O(x0) term of a convergent Taylor series expansion of a function would contribute

to this integral. However, the functions we are interested in contain also logarithms loga(x)

for positive integers a. We find that

I [xp loga(x)] = lim
ξ→0

∂a

∂ξa
I
[
xp+ξ

]
=

a!

pa

a∑
k=0

(−1)a+p−1(πp)k−1

k!
sin

(
πk

2

)
. (5.2)

The above expression is valid for positive integer p. Next, we want to apply this result

to the type of functions we are interested in. Note, that a HPL that admits a convergent

power series expansion for x ∈ [0, 1] can be written as

H−mn,...,−m1(x) ≡ H0, . . . , 0︸ ︷︷ ︸
mn−1

,−1,...,0, . . . , 0︸ ︷︷ ︸
m1−1

,−1(x) = (−1)n
∑

jn>···>j1≥1

(−x)jn

jmn
n

1

j
mn−1

n−1
. . .

1

jm1
1

.

(5.3)
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Our integration rule of eq. (5.2) may now be easily applied to each term of such a series

expansion. The integral over HPLs that are regular at x = 0 consequently vanishes. If they

are multiplied by powers of log(x) we obtain a closed form expression by manipulation of

the indices appearing in the definition of a HPL (eq. (5.3)). With this we find the following

two integration rules.

I [loga(x)H−mn,...,−m1(x)] = (−1)1−aa!
a∑
k=0

πk−1

k!
sin

(
πk

2

)
H−(a+1−k+mn),...,−m1

(−1) ,

I
[

loga(x)

1 + x
H−mn,...,−m1(x)

]
= I[loga(x)H−mn,...,−m1(x)] (5.4)

+(−1)aa!
a∑
k=0

πk−1

k!
sin

(
πk

2

)
H−(a+1−k),−mn,...,−m1

(−1) .

To derive the result of the second integration rule above one can simply make use of the

series representation of 1/(1 + x) around x = 0 and re-arrange summation indices. Notice

that the right-hand side of the above integration rules is given by linear combinations of

HPLs with argument −1, which can be evaluated in terms of multiple-zeta values using for

example the package HPL [67]. Since the functions F are of the form considered above we

are now equipped to apply eq. (2.10).

6 The four-loop cusp anomalous dimension in N = 4 sYM and QCD

Applying the method of the previous section we evaluate I[F (L)] for L = 0, 1, 2, 3 and use

eq. (2.10) in order to determine the cusp anomalous dimension in N = 4 super Yang-Mills.

We find

Γcusp,A(αs, N) =

(
αsN

π

)
− π2

12

(
αsN

π

)2

+
11π4

720

(
αsN

π

)3

−
(
αsN

π

)4 [ 73π6

20160
+
ζ23
8

+
1

N2

(
31

5040
π6 +

9ζ23
4

)]
+O(α5

s) .

(6.1)

This is the full result to four loops for the cusp anomalous dimension in N = 4 super

Yang-Mills, for a Wilson loop in the adjoint representation.10 The expression is valid in

the supersymmetric DR scheme. The quartic Casimir term, and equivalently the first

subleading color term in eq. (6.1), is independent of the scheme choice at four loops. We

note that the non-planar four-loop contribution is negative.

We use (6.1) to derive the quartic Casimir part for pure Yang-Mills theory, follow-

ing [37]. Together with the known nf -dependent terms, this completes the full four-loop

cusp anomalous dimension in QCD. We present the full result here, in the MS scheme.

10Note that another common definition in the literature is γK = 2 Γcusp,A.

– 19 –



J
H
E
P
0
4
(
2
0
2
0
)
0
1
8

First, we recall the expressions up to three loops [2, 30]:

γQCD
cusp,R = CR

{
αs
π

+
(αs
π

)2 [
CA

(
67

36
− π2

12

)
− 5

9
nfTF

]

+
(αs
π

)3 [
C2
A

(
11ζ3
24

+
245

96
− 67π2

216
+

11π4

720

)
+ nfTFCF

(
ζ3 −

55

48

)

+ nfTFCA

(
−7ζ3

6
− 209

216
+

5π2

54

)
− 1

27
(nfTF )2

]}
+
(αs
π

)4
γ
QCD,(4)
cusp,R +O(α5

s) . (6.2)

At four loops, depending on the color factor, various terms were known either analytically

or numerically [18–20, 36, 37, 39, 40, 68–72].11 We present for the first time the fully

analytic result, which is

γ
QCD,(4)
cusp,R = CR

[
C3
A

(
1309ζ3

432
−11π2ζ3

144
− ζ

2
3

16
−451ζ5

288
+

42139

10368
−5525π2

7776
+

451π4

5760
−313π6

90720

)

+nfTFC
2
A

(
−361ζ3

54
+

7π2ζ3
36

+
131ζ5

72
−24137

10368
+

635π2

1944
−11π4

2160

)

+nfTFCFCA

(
29ζ3

9
−π

2ζ3
6

+
5ζ5
4
−17033

5184
+

55π2

288
−11π4

720

)

+nfTFC
2
F

(
37ζ3
24
−5ζ5

2
+

143

288

)
+(nfTF )2CA

(
35ζ3
27
− 7π4

1080
−19π2

972
+

923

5184

)

+(nfTF )2CF

(
−10ζ3

9
+
π4

180
+

299

648

)
+(nfTF )3

(
− 1

81
+

2ζ3
27

)]

+
dabcdR dabcdA

NR

(
ζ3
6
−3ζ23

2
+

55ζ5
12
−π

2

12
−31π6

7560

)
+nf

dabcdR dabcdF

NR

(
π2

6
−ζ3

3
−5ζ5

3

)
.

(6.3)

For convenience of the reader we also print the above formula to six significant digits.

γQCD
cusp,R = CR

[(αs
π

)
+
(αs
π

)2
(1.03864CA − 0.555556nfTF )

+
(αs
π

)3 (
1.52982C2

A − 1.45614CAnfTF + 0.0562236CFnfTF − 0.0370370n2fT
2
F

)
11Strictly speaking, the nfTFCRCFCA term is based on a conjecture [70]. The latter agrees perfectly

with the numerical value from [39, 40].
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+
(αs
π

)4 (
2.38379C3

A − 3.44271C2
AnfTF + 0.303089CACFnfTF

−0.242621C2
FnfTF + 0.911990CAn

2
fT

2
F − 0.333037CFn

2
fT

2
F + 0.0766956n3fT

3
F

) ]

+
(αs
π

)4(
−
dabcdR dabcdA

NR
1.97915− nf

dabcdR dabcdF

NR
0.483964

)
. (6.4)

This result is given for an arbitrary representation R of the Wilson loop. In the QCD

context there two choices for the representation, namely R = A (gluons) and R = F

(quarks). For the normalization of the SU(N) generators, we follow the conventions of [73,

74], which are

dabcdA dabcdA

NA
=
N2(N2 + 36)

24
,

dabcdF dabcdA

NA
=
N(N2 + 6)

48
,

dabcdF dabcdF

NA
=
N4 − 6N2 + 18

96N2
,

TF =
1

2
, CA = N , CF =

N2 − 1

2N
, NA = N2 − 1 , NF = N. (6.5)

We remark that if one retains only the leading transcendental pieces of the QCD result (6.3),

i.e. the transcendental weight 2(L − 1) pieces at L loops, and switches to the adjoint

representation R→ A, then one recovers (6.1), as expected [75, 76].

7 Conclusion and outlook

In this paper we computed analytically the non-planar part of the cusp anomalous dimen-

sion in N = 4 super Yang-Mills at four loop. Our result agrees with the previous numerical

results of refs. [37, 38]. N = 4 super Yang-Mills is expected to be integrable, and there

is considerable interest in finding ways to solve the theory. The planar part of the cusp

anomalous dimension is successfully described by integrability [29], with important input

from perturbative calculations [77]. We expect that our result, which constitutes the lead-

ing non-planar contribution to this quantity, will be an important reference value for future

integrability studies.

As was mentioned in the Introduction, the cusp anomalous dimension controls behav-

ior of the DGLAP splitting functions close to the end-point, or equivalently the large spin

asymptotics of twist-two anomalous dimensions, γ(S) = 2Γcusp logS+O(S0) [6]. Using the

obtained result, we can predict nonplanar correction to these anomalous dimensions. At

present, nonplanar corrections to γ(S) are known for lowest value of spins S = 0, 2, 4, 6, 8

both in N = 4 sYM and in QCD [50, 78–80]. These expressions exhibit an interesting

structure and several conjectures have been formulated about the possible form of non-

planar corrections to γ(S) for arbitrary spin S. It would be very interesting to find such

a formula. Our result provides the large spin asymptotics of γ(S) and it can be used to

constrain an ansatz for this function.

Having the result in N = 4 super Yang-Mills, we derived the value for the purely glu-

onic quartic Casimir contribution to the cusp anomalous dimension in QCD. The analytic

value we computed agrees with the numerical result of ref. [40]. Our result provides the
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last missing ingredient for the full four-loop result in QCD. By assembling the known terms

from the literature, together with our new result for the gluonic quartic Casimir term, we

presented for the first time the complete result for the four-loop cusp anomalous dimension

in QCD, for an arbitrary color representation of the Wilson lines.

For convenience of the reader we provide supplementary material with our paper that

contain the results for F (x) given in eqs. (4.1)–(4.5), as well as the result for the cusp

anomalous dimension in N = 4 sYM, eq. (6.1), and QCD, eqs. (6.2) and (6.3).

Note added. After our article appeared publicly on the arXiv our result for the four-loop

cusp-anomalous dimension in N = 4 SYM was confirmed independently in ref. [81].
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[26] W. Bizoń et al., The transverse momentum spectrum of weak gauge bosons at N3LL + NNLO,

Eur. Phys. J. C 79 (2019) 868 [arXiv:1905.05171] [INSPIRE].

[27] X. Chen et al., Precise QCD Description of the Higgs Boson Transverse Momentum

Spectrum, Phys. Lett. B 788 (2019) 425 [arXiv:1805.00736] [INSPIRE].

[28] N. Beisert et al., Review of AdS/CFT Integrability: An Overview, Lett. Math. Phys. 99

(2012) 3 [arXiv:1012.3982] [INSPIRE].

[29] N. Beisert, B. Eden and M. Staudacher, Transcendentality and Crossing, J. Stat. Mech.

0701 (2007) P01021 [hep-th/0610251] [INSPIRE].

[30] S. Moch, J.A.M. Vermaseren and A. Vogt, The Three loop splitting functions in QCD: The

Nonsinglet case, Nucl. Phys. B 688 (2004) 101 [hep-ph/0403192] [INSPIRE].

[31] J.G.M. Gatheral, Exponentiation of Eikonal Cross-sections in Nonabelian Gauge Theories,

Phys. Lett. B 133 (1983) 90 [INSPIRE].

[32] J. Frenkel and J.C. Taylor, Nonabelian Eikonal Exponentiation, Nucl. Phys. B 246 (1984)

231 [INSPIRE].

[33] G.P. Korchemsky, Instanton effects in correlation functions on the light-cone, JHEP 12

(2017) 093 [arXiv:1704.00448] [INSPIRE].

[34] I.A. Korchemskaya and G.P. Korchemsky, On lightlike Wilson loops, Phys. Lett. B 287

(1992) 169 [INSPIRE].

[35] J.M. Drummond, J. Henn, G.P. Korchemsky and E. Sokatchev, Conformal Ward identities

for Wilson loops and a test of the duality with gluon amplitudes, Nucl. Phys. B 826 (2010)

337 [arXiv:0712.1223] [INSPIRE].

[36] R.N. Lee, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Four-loop quark form factor with

quartic fundamental colour factor, JHEP 02 (2019) 172 [arXiv:1901.02898] [INSPIRE].

[37] J.M. Henn, T. Peraro, M. Stahlhofen and P. Wasser, Matter dependence of the four-loop cusp

anomalous dimension, Phys. Rev. Lett. 122 (2019) 201602 [arXiv:1901.03693] [INSPIRE].

[38] R.H. Boels, T. Huber and G. Yang, Four-Loop Nonplanar Cusp Anomalous Dimension in

N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 119 (2017) 201601

[arXiv:1705.03444] [INSPIRE].

[39] S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, Four-Loop Non-Singlet

Splitting Functions in the Planar Limit and Beyond, JHEP 10 (2017) 041

[arXiv:1707.08315] [INSPIRE].

[40] S. Moch, B. Ruijl, T. Ueda, J.A.M. Vermaseren and A. Vogt, On quartic colour factors in

splitting functions and the gluon cusp anomalous dimension, Phys. Lett. B 782 (2018) 627

[arXiv:1805.09638] [INSPIRE].

[41] Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n point gauge theory

amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226]

[INSPIRE].

[42] O. Erdoğan and G. Sterman, Gauge Theory Webs and Surfaces, Phys. Rev. D 91 (2015)

016003 [arXiv:1112.4564] [INSPIRE].

[43] L.F. Alday, E.I. Buchbinder and A.A. Tseytlin, Correlation function of null polygonal Wilson

loops with local operators, JHEP 09 (2011) 034 [arXiv:1107.5702] [INSPIRE].

[44] L.F. Alday, P. Heslop and J. Sikorowski, Perturbative correlation functions of null Wilson

loops and local operators, JHEP 03 (2013) 074 [arXiv:1207.4316] [INSPIRE].

– 24 –

https://doi.org/10.1140/epjc/s10052-019-7324-0
https://arxiv.org/abs/1905.05171
https://inspirehep.net/search?p=find+EPRINT+arXiv:1905.05171
https://doi.org/10.1016/j.physletb.2018.11.037
https://arxiv.org/abs/1805.00736
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.00736
https://doi.org/10.1007/s11005-011-0529-2
https://doi.org/10.1007/s11005-011-0529-2
https://arxiv.org/abs/1012.3982
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3982
https://doi.org/10.1088/1742-5468/2007/01/P01021
https://doi.org/10.1088/1742-5468/2007/01/P01021
https://arxiv.org/abs/hep-th/0610251
https://inspirehep.net/search?p=find+EPRINT+hep-th/0610251
https://doi.org/10.1016/j.nuclphysb.2004.03.030
https://arxiv.org/abs/hep-ph/0403192
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0403192
https://doi.org/10.1016/0370-2693(83)90112-0
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B133,90%22
https://doi.org/10.1016/0550-3213(84)90294-3
https://doi.org/10.1016/0550-3213(84)90294-3
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B246,231%22
https://doi.org/10.1007/JHEP12(2017)093
https://doi.org/10.1007/JHEP12(2017)093
https://arxiv.org/abs/1704.00448
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.00448
https://doi.org/10.1016/0370-2693(92)91895-G
https://doi.org/10.1016/0370-2693(92)91895-G
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B287,169%22
https://doi.org/10.1016/j.nuclphysb.2009.10.013
https://doi.org/10.1016/j.nuclphysb.2009.10.013
https://arxiv.org/abs/0712.1223
https://inspirehep.net/search?p=find+EPRINT+arXiv:0712.1223
https://doi.org/10.1007/JHEP02(2019)172
https://arxiv.org/abs/1901.02898
https://inspirehep.net/search?p=find+EPRINT+arXiv:1901.02898
https://doi.org/10.1103/PhysRevLett.122.201602
https://arxiv.org/abs/1901.03693
https://inspirehep.net/search?p=find+EPRINT+arXiv:1901.03693
https://doi.org/10.1103/PhysRevLett.119.201601
https://arxiv.org/abs/1705.03444
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.03444
https://doi.org/10.1007/JHEP10(2017)041
https://arxiv.org/abs/1707.08315
https://inspirehep.net/search?p=find+EPRINT+arXiv:1707.08315
https://doi.org/10.1016/j.physletb.2018.06.017
https://arxiv.org/abs/1805.09638
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.09638
https://doi.org/10.1016/0550-3213(94)90179-1
https://arxiv.org/abs/hep-ph/9403226
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9403226
https://doi.org/10.1103/PhysRevD.91.016003
https://doi.org/10.1103/PhysRevD.91.016003
https://arxiv.org/abs/1112.4564
https://inspirehep.net/search?p=find+EPRINT+arXiv:1112.4564
https://doi.org/10.1007/JHEP09(2011)034
https://arxiv.org/abs/1107.5702
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.5702
https://doi.org/10.1007/JHEP03(2013)074
https://arxiv.org/abs/1207.4316
https://inspirehep.net/search?p=find+EPRINT+arXiv:1207.4316


J
H
E
P
0
4
(
2
0
2
0
)
0
1
8

[45] L.F. Alday, J.M. Henn and J. Sikorowski, Higher loop mixed correlators in N = 4 SYM,

JHEP 03 (2013) 058 [arXiv:1301.0149] [INSPIRE].

[46] O.T. Engelund and R. Roiban, On correlation functions of Wilson loops, local and non-local

operators, JHEP 05 (2012) 158 [arXiv:1110.0758] [INSPIRE].

[47] O.T. Engelund and R. Roiban, Correlation functions of local composite operators from

generalized unitarity, JHEP 03 (2013) 172 [arXiv:1209.0227] [INSPIRE].

[48] B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, Hidden symmetry of four-point

correlation functions and amplitudes in N = 4 SYM, Nucl. Phys. B 862 (2012) 193

[arXiv:1108.3557] [INSPIRE].

[49] B. Eden, P. Heslop, G.P. Korchemsky and E. Sokatchev, Constructing the correlation

function of four stress-tensor multiplets and the four-particle amplitude in N = 4 SYM, Nucl.

Phys. B 862 (2012) 450 [arXiv:1201.5329] [INSPIRE].

[50] T. Fleury and R. Pereira, Non-planar data of N = 4 SYM, arXiv:1910.09428 [INSPIRE].

[51] D. Chicherin et al., Correlation functions of the chiral stress-tensor multiplet in N = 4 SYM,

JHEP 06 (2015) 198 [arXiv:1412.8718] [INSPIRE].

[52] L.F. Alday, B. Eden, G.P. Korchemsky, J. Maldacena and E. Sokatchev, From correlation

functions to Wilson loops, JHEP 09 (2011) 123 [arXiv:1007.3243] [INSPIRE].

[53] J.M. Henn, A.V. Smirnov and V.A. Smirnov, Analytic results for planar three-loop four-point

integrals from a Knizhnik-Zamolodchikov equation, JHEP 07 (2013) 128 [arXiv:1306.2799]

[INSPIRE].

[54] J.M. Henn, A.V. Smirnov and V.A. Smirnov, Evaluating single-scale and/or non-planar

diagrams by differential equations, JHEP 03 (2014) 088 [arXiv:1312.2588] [INSPIRE].

[55] J.M. Henn and B. Mistlberger, Four-Gluon Scattering at Three Loops, Infrared Structure and

the Regge Limit, Phys. Rev. Lett. 117 (2016) 171601 [arXiv:1608.00850] [INSPIRE].

[56] T. Gehrmann and E. Remiddi, Two loop master integrals for γ∗ → 3 jets: The Planar

topologies, Nucl. Phys. B 601 (2001) 248 [hep-ph/0008287] [INSPIRE].

[57] A.V. Smirnov, FIRE5: a C++ implementation of Feynman Integral REduction, Comput.

Phys. Commun. 189 (2015) 182 [arXiv:1408.2372] [INSPIRE].

[58] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Local Integrals for Planar

Scattering Amplitudes, JHEP 06 (2012) 125 [arXiv:1012.6032] [INSPIRE].

[59] J.M. Henn, Multiloop integrals in dimensional regularization made simple, Phys. Rev. Lett.

110 (2013) 251601 [arXiv:1304.1806] [INSPIRE].

[60] P. Wasser, Analytic properties of Feynman integrals for scattering amplitudes, MSc Thesis,

Institut für Physik, Johannes Gutenberg-Universität, Mainz Germany (2016) and online at

https://publications.ub.uni-mainz.de/theses/frontdoor.php?sourceopus=100001967.

[61] N. Arkani-Hamed, J.L. Bourjaily, F. Cachazo and J. Trnka, Singularity Structure of

Maximally Supersymmetric Scattering Amplitudes, Phys. Rev. Lett. 113 (2014) 261603

[arXiv:1410.0354] [INSPIRE].

[62] Z. Bern, E. Herrmann, S. Litsey, J. Stankowicz and J. Trnka, Evidence for a Nonplanar

Amplituhedron, JHEP 06 (2016) 098 [arXiv:1512.08591] [INSPIRE].

[63] M. Argeri and P. Mastrolia, Feynman Diagrams and Differential Equations, Int. J. Mod.

Phys. A 22 (2007) 4375 [arXiv:0707.4037] [INSPIRE].

– 25 –

https://doi.org/10.1007/JHEP03(2013)058
https://arxiv.org/abs/1301.0149
https://inspirehep.net/search?p=find+EPRINT+arXiv:1301.0149
https://doi.org/10.1007/JHEP05(2012)158
https://arxiv.org/abs/1110.0758
https://inspirehep.net/search?p=find+EPRINT+arXiv:1110.0758
https://doi.org/10.1007/JHEP03(2013)172
https://arxiv.org/abs/1209.0227
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.0227
https://doi.org/10.1016/j.nuclphysb.2012.04.007
https://arxiv.org/abs/1108.3557
https://inspirehep.net/search?p=find+EPRINT+arXiv:1108.3557
https://doi.org/10.1016/j.nuclphysb.2012.04.013
https://doi.org/10.1016/j.nuclphysb.2012.04.013
https://arxiv.org/abs/1201.5329
https://inspirehep.net/search?p=find+EPRINT+arXiv:1201.5329
https://arxiv.org/abs/1910.09428
https://inspirehep.net/search?p=find+EPRINT+arXiv:1910.09428
https://doi.org/10.1007/JHEP06(2015)198
https://arxiv.org/abs/1412.8718
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.8718
https://doi.org/10.1007/JHEP09(2011)123
https://arxiv.org/abs/1007.3243
https://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3243
https://doi.org/10.1007/JHEP07(2013)128
https://arxiv.org/abs/1306.2799
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.2799
https://doi.org/10.1007/JHEP03(2014)088
https://arxiv.org/abs/1312.2588
https://inspirehep.net/search?p=find+EPRINT+arXiv:1312.2588
https://doi.org/10.1103/PhysRevLett.117.171601
https://arxiv.org/abs/1608.00850
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.00850
https://doi.org/10.1016/S0550-3213(01)00057-8
https://arxiv.org/abs/hep-ph/0008287
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0008287
https://doi.org/10.1016/j.cpc.2014.11.024
https://doi.org/10.1016/j.cpc.2014.11.024
https://arxiv.org/abs/1408.2372
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.2372
https://doi.org/10.1007/JHEP06(2012)125
https://arxiv.org/abs/1012.6032
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.6032
https://doi.org/10.1103/PhysRevLett.110.251601
https://doi.org/10.1103/PhysRevLett.110.251601
https://arxiv.org/abs/1304.1806
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.1806
https://publications.ub.uni-mainz.de/theses/frontdoor.php?sourceopus=100001967
https://doi.org/10.1103/PhysRevLett.113.261603
https://arxiv.org/abs/1410.0354
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.0354
https://doi.org/10.1007/JHEP06(2016)098
https://arxiv.org/abs/1512.08591
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.08591
https://doi.org/10.1142/S0217751X07037147
https://doi.org/10.1142/S0217751X07037147
https://arxiv.org/abs/0707.4037
https://inspirehep.net/search?p=find+EPRINT+arXiv:0707.4037


J
H
E
P
0
4
(
2
0
2
0
)
0
1
8

[64] J.M. Henn, Lectures on differential equations for Feynman integrals, J. Phys. A 48 (2015)

153001 [arXiv:1412.2296] [INSPIRE].

[65] D. Chicherin, T. Gehrmann, J.M. Henn, P. Wasser, Y. Zhang and S. Zoia, All Master

Integrals for Three-Jet Production at Next-to-Next-to-Leading Order, Phys. Rev. Lett. 123

(2019) 041603 [arXiv:1812.11160] [INSPIRE].

[66] E. Remiddi and J.A.M. Vermaseren, Harmonic polylogarithms, Int. J. Mod. Phys. A 15

(2000) 725 [hep-ph/9905237] [INSPIRE].
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