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1 Introduction

In this paper, we analyze the low-energy dynamics of Two Adjoints QCD3 in 2+1 dimen-

sional quantum field theory. The theory we consider consists of Yang-Mills term with gauge

group G = SU(N), SO(N), Sp(N) with Chern-Simons level k, together with two real ad-

joint fermions or equivalently single Dirac adjoint fermion.1 We construct a phase diagram

as a function of the bare mass parameter m.

When the Chern-Simons level k is large enough, semiclassical analysis predicts phase

diagram with two asymptotic regions distinguished by a single phase transition [1, 2].

Simple dimensional analysis indicates that IR dynamics become strongly coupled for a

1We denote ‘adjoint fermion’ as a Majorana fermion in the adjoint representation of the gauge group.

In the real basis γ0 = iσ2, γ1 = σ1, γ2 = σ3, Majorana spinor is equivalent to real spinor.
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sufficiently small Chern-Simons level k, and many recent developments reviewed below

indicate the existence of a non-perturbative quantum phase in the infrared when the bare

quark mass is sufficiently small. As a consequence, there are two different phase transitions

upon varying the mass of fermions from negative to positive infinity. So far, the standard

route to obtain a phase diagram consistent with various anomalies comes from finding two

mutually non-local dual descriptions with common global symmetry [3–9]. Particularly,

all these dual descriptions are in the semiclassical regime, in the sense that intermediate

quantum phase could be accessed by weakly coupled analysis of dual descriptions.2

Up to now nonperturbative quantum phase was investigated for the case of fermions

in the fundamental, single real adjoint and sym/asym representations. The next natural

generalization one could ask is to find a phase diagram when the matter content is two

adjoint fermions since the existence of quantum phase was indicated in the case of SU(2) [7]

together with the various hints from the 3+1 dimensional physics with single Dirac adjoint

fermion [10–13]. But we were unable to replicate the previously successful apporach. In-

stead, we found a new structure which we dub ‘Duality Chain’. This allows to compute

the quantum phase, but not with a weakly-coupled dual description.

To see more clearly the contribution of this paper, it is worth reviewing at least briefly

the recent progress in the non-supersymmetric dualities in 2+1 dimensions so far relevant

to our paper. Originally motivated from AdS/CFT, Chern-Simons matter theories and

its bosonization duality was suggested and supported by many exact computations in the

’t Hooft limit or flows from the N = 2 supersymmetric dualities (large k,N with fixed

λ = N/k) [14–23]. On the other hand, motivated from the recent studies of quantum hall

effect and topological insulator, generalization of bosonic particle-vortex [24, 25] duality

and the webs connecting them were discovered for the case of abelian gauge group [26–

34]. Generalizations of bosonization duality [35–38] to the non-abelian gauge theory with

finite N and k using the exact level/rank dualities were conjectured with pieces of evi-

dence supporting them, e.g. [39–43]. See also [44–53] for the recent developments in the

non-supersymmetric gauge theories in 2+1 dimensions. But there were restrictions on the

parameter space depending on the number of flavors and Chern-simons level which called

‘flavor-bound’ in [9, 54]. Extension of the bosonization duality to the all possible parameter

space led to conjecture the existence of the non-perturbative quantum phase near the mass-

less regime similar to the N = 1 supersymmetric theories [55–57]. Now the bosonization

is carried out at the two distinguished critical points with two different mutually non-local

dual descriptions [3]. This shape of the phase diagram has been successfully applied to the

case of single adjoint/rank-two matter and some other cases such as single bifundamental

fermions [4, 5, 7–9, 58] with various supporting checks [59–65]. (See [66] for the recent

lecture note covering many aspects discussed above.) It is important to note that all these

mutually non-local dual descriptions were weakly coupled in the sense that there are only

two semiclassically-accessible IR phase distinguished by a single critical point.

2From now on, we frequently use the terms ‘weakly-coupled’ and ‘strongly-coupled’. Although interaction

at the critical point is not parametrically small in the low-energy regime except for the few limits of the

parameter space such as large k, we use the term ‘weakly-coupled’ when the phase diagram of the theory

develeops two semiclassical phase with large asymptotic mass separated by single transition point between

them. The term ‘strongly-coupled’ is for the case other than ‘weakly-coupled’.
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In this respect, we employ the possibility of strongly coupled dual description to con-

struct a consistent phase diagram of Two Adjoints QCD3 and its cousins. Our dual descrip-

tions are generically strongly coupled theories in the sense of footnote 2 thus the quantum

phase of the original theory is not directly accessible. Now, the concept of ‘Duality Chain’

is introduced as an algorithm for the determination of the quantum phase. Since original

and strongly coupled dual theory share the same quantum phase, there exists a dual of a

dual description which flows to the same quantum phase. If this is weakly-coupled, then

we land on our feet and the quantum phase can be determined semi-classically. If it is

still strongly-coupled, then we run the same procedure recursively in a sense that we keep

investigating the dual of the strongly coupled theories which shares the common interme-

diate quantum phase. Remarkable observation for Two Adjoints QCD3 is that as we go

over this chain of dualities, weakly coupled description of the initial quantum phase can

be obtained within a finite number of steps for the non-zero Chern-Simons level k. We

specify the duality chain and the phases of two adjoints fermions under the SU/SO/Sp

gauge group which are consistent under various non-trivial test. We emphasize that duality

chain is not applicable anymore for the case of vanishing Chern-Simons level k = 0 and we

comment the problem in the section 6.

We also find that ‘Duality Chain’ is successfully applicable for the following two types of

theories. One is the dynamics of QCD3 with arbitrary pair of fermions in the adjoint/rank-

two representations which is the full generalization of the QCD3 with single flavor fermion in

adjoint/rank-two representation [4, 7]. The other is the dynamics of the 2-node quiver gauge

theory with two bifundamental fermions which is the generalization of the QCD3 with the

vector fermions [3] by gauging flavor symmetry [58]. It is important to note that the latter

model with two bifundamental fermions passes more stringent consistency checks due to

its distinguished characteristics and we propose possible 2+1d orbifold equivalence [58, 67]

between two theories at the end of this paper.

Let us now summarize the main proposals regarding Two Adjoints QCD3:

1. These theories have a critical value of the level kcrit below which a new intermedi-

ate quantum phase appears between the semiclassically accessible asymptotic large-

positive and large-negative mass phases. The critical value is given by the dual

coxeter number of gauge group G.

kcrit = h (1.1)

2. For k ≥ kcrit,3 the phase diagram has just two phases: the asymptotic large-positive

mass and large-negative mass semiclassical phases, separated by a phase transition.

For very large k the phase transition is controlled by a weakly-coupled CFT. The

asymptotic large mass phases are the TQFTs

Gk±h (1.2)

where the upper/lower sign is for the large positive/negative mass asymptotic phase.

These phases are present in these theories for any k.

3From now on, we set k ≥ 0 without loss of generality.
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3. For 0 < k < kcrit, the theories undergo two phase transitions as a function of the

mass of the fermions. Two distinct phase transitions connect the intermediate quan-

tum phase with the asymptotic large-positive mass phase and with the asymptotic

large-negative mass phase. Let’s denote the location of two critical points as m±crit

(m+crit > m−crit). Then we propose new (fermion-fermion) dualities in 2 + 1 di-

mensions at each critical point. This duality is conceptually different compared with

previously conjectured non-supersymmetric dualities in 2 + 1 dimensions because

it’s generically between the strongly-coupled theories which have non-perturbative

quantum phases.

Dualities for SU(N)k + 2 ψadj for 0 < k < N :

SU(N)k + 2 ψadj , mψ = m+crit
ψ ←→ U(N + k)k,−N + 2 ψ̃adj , mψ̃ = m−crit

ψ̃

SU(N)k + 2 ψadj , mψ = m−critψ ←→ U(N − k)k,N + 2 ψ̂adj , mψ̂ = m+crit

ψ̂
.

(1.3)

Dualities for SO(N)k + 2 ψadj for 0 < k < N − 2:

SO(N)k + 2 ψadj , mψ = m+crit
ψ ←→ SO(N + k − 2)k + 2 ψ̃sym, mψ̃ = m−crit

ψ̃

SO(N)k + 2 ψadj , mψ = m−critψ ←→ SO(N − k − 2)k + 2 ψ̂sym, mψ̂ = m+crit

ψ̂
.

(1.4)

Dualities for Sp(N)k + 2 ψadj for 0 < k < N + 1:

Sp(N)k + 2 ψadj , mψ = m+crit
ψ ←→ Sp(N + k + 1)k + 2 ψ̃asym, mψ̃ = m−crit

ψ̃

Sp(N)k + 2 ψadj , mψ = m−critψ ←→ Sp(N − k + 1)k + 2 ψ̂asym, mψ̂ = m+crit

ψ̂
.

(1.5)

We note that for the SO/Sp gauge theory, fermions in the dual gauge theory trans-

forms in the other rank-two representation compared to the fermions in the original

gauge theory which is similar to the single flavor case [4]. To complete the phase

diagram of SO/Sp gauge theory, the following additional dualities are crucial.

Dualities for SO(N)k + 2 ψsym for 0 < k < N − 2:

SO(N)k + 2 ψsym, mψ = m+crit
ψ ←→ SO(N + k + 2)k + 2 ψ̃adj , mψ̃ = m−crit

ψ̃

SO(N)k + 2 ψsym, mψ = m−critψ ←→ SO(N − k + 2)k + 2 ψ̂adj , mψ̂ = m+crit

ψ̂
.

(1.6)

Dualities for Sp(N)k + 2 ψasym for 0 < k < N − 1:

Sp(N)k + 2 ψasym, mψ = m+crit
ψ ←→ Sp(N + k − 1)k + 2 ψ̃adj , mψ̃ = m−crit

ψ̃

Sp(N)k + 2 ψasym, mψ = m−critψ ←→ Sp(N − k − 1)k + 2 ψ̂adj , mψ̂ = m+crit

ψ̂
.

(1.7)
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4. The quantum phase of the strongly coupled theory C0 is obtained by using the concept

of ‘Duality Chain’ as illustrated in figure 1. We already described the two mutually

non-local descriptions share the same quantum phase above, and we call them C−1
and C+1 as in the figure. We define that C1/C−1 has higher/lower ‘rank’ than C0. Now,

if C−1 is still strongly coupled, there must be another dual description describing the

same quantum phase with smaller rank denoted as C−2. Using this step recursively,

we would obtain the weakly coupled theory describing quantum phase Q[C0] within in

finite n∗ steps. We emphasize that critical point of final weakly coupled description of

the quantum phase C−n∗ is in general not dual to any of the original C0’s critical points.

5. One could also go up the ‘Duality Chain’ and thus obtain the infinite number of

theories Ci, i > −n∗ sharing the same quantum phase as in figure 1.

6. Our quantum phase Q[C0] of Two Adjoints QCD3 is generally Chern-Simons TQFT.

But in some special cases, it turns out that quantum phases are TQFT with partially

spontaneously-broken one-form or zero-form global symmetry. We emphasize that

this non-trivial scenario of partial deconfinement in QCD3 is special feature of two

adjoints QCD3 which is absent in the single adjoint QCD3 case of [4].

7. Finally, analysis of the 2 adjoint fermions case naturally lead us to conjecture similar

duality chain structure is inherent for QCD3 with any two combination of rank-

two/adjoint fermions or the theory of two bifundamental fermions. We enumerate

such generalizations in section 4.

Outline of the paper. The outline of the paper is as follows. In section 2, we review

phase diagrams of single adjoint QCD3 proposed in [4]. Section 3 describes in detail the

phase diagram and the duality chain for the case of 2 adjoint fermions under SU/SO/Sp

group and discuss its interesting dynamical implications. We extend the duality chain to

the theories of two fermions in any combination of adjoint/rank-two representation or two

bifundamental fermions in section 4. We present the various non-trivial consistency checks

of the proposal using RG flows, generalized level-rank duality, Lie groups isomorphisms,

SL(2,Z) transfromations and gravitational counterterms in section 5. Finally, discussion

and the possible future directions are in section 6. Appendix A explains the generalized

level-rank duality of the unitary gauge group in terms of SL(2,Z) operations.

2 Review: phases of single adjoint QCD3

Before we propose and explain the phase diagram of two adjoints QCD3 in the following

section, we briefly review the proposal of single adjoint QCD3 in [4]. Consider Gk Yang-

Mills-Chern-Simons theory with a gauge group G and the CS level k coupled to a real

Majorana fermion λ in the adjoint representation with its bare mass mλ. For a special

value of the bare mass Mλ = mSUSY ∼ −kg2, theory exhibits the N = 1 supersymmetry

and the index calculation in [68] shows that the supersymmetry is preserved for k ≥ h/2
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...

C1

C0

C−1

C−2

C−n∗

C−1
C+0

C−−1
C+−2

C−−n∗+1
C+−n∗

C−0
C+−1

C−−2
C+−3

C−2
C+1

Q[Ci>−n∗ ] = C−−n∗

Figure 1. The duality chain. Each straight line under Ci corresponds to the phase diagram of the

theories under the common mass deformations of the matter fields. Blue regions are the semiclassical

phases C±i obtained from the integrating out fermions with large positive/negative mass and are

shared by asymptotic phase of adjacent theories. Each blue wavy line corresponds to the critical

line with same universality class. As we go down the duality chain, quantum phase of C0 which

denoted as Q[C0] is determined by semiclassical phase of the C−n∗ within finite steps. Together with

going up the duality chain, intermediate quantum phase is shared by infinitely many UV theories

Ci with i > −n∗.

while predicts a spontaneous breaking of supersymmetry for k < h/2 with accompanying

Goldstino in the IR. (h is the dual Coxeter number of the gauge group.)

Let’s first discuss the proposed phase diagram for k ≥ h/2. Based on the large k

weakly-coupled analysis of Chern-Simons-matter theories [1, 2], the authors of [4] proposed

the phase diagram for k ≥ h/2 has a single phase transition separating two asymptotic

Chern-Simons TQFTs as we depicted in the figure 2. The two asymptotic TQFTs Gk±h
2

comes from the fact that integrating out the massive adjoint fermion shifts the Chern-

Simons level in the IR by sgn(m)h2 when we.

For the case of k < h/2 (note that we chose k ≥ 0 throught this paper.), it turns out

that the IR phase of the supersymmetric point cannot be a single Goldstino alone due to

the presence of the ’t Hooft anomalies. Let’s focus on the case of SU(N) gauge group. Most

stringently, there is a ZN 1-form symmetry which is anomalous [69] thus there must be

some deconfined degrees of freedom in the IR. Remarkably, the authors of [4] proposed a

– 6 –
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Gk + λadj k ≥ h
2

Gk−h
2

Gk+h
2

m→ +∞m→ −∞

Figure 2. The proposal of [4] for the Phase diagram of Gk gauge theory with a single real adjoint

fermion for k ≥ h/2. The solid circle represents a phase transition between the asymptotic phases.

consistent IR phase by thinking about the one-dimensional phase diagram in terms of bare

mass mλ of the fermion. The natural prediction for the topology of the phase diagram

is to have three distinct phases with two transition points, two of them are asymptotic

semiclassical phases discussed above and the other one is intermediate non-perturbative

phase where supersymmetry is broken. Now to preserve the ZN 1-form symmetry of the

original theory, the authors of [4] proposed a simple dual description at each transition

point with a dual Yang-Mills-Chern-Simons theory coupled to a dual adjoint fermion. The

impressive consequence of this two mutually non-local ‘weakly-coupled’ dual descriptions

is that they share a common intermediate phase by level/rank duality even though they

were independently designed to share each positive or negative asymptotic phases of the

original theory respectively. The phase diagram becomes figure 3 where the intermediate

quantum phase is described by a TQFT with decoupled Goldstino. While the ZN 1-

form anomaly is automatically saturated by the construction, this phase diagram is also

consistent with more subtle discrete time-reversal anomaly together with the background

Riemannian metric [4].

Finally we comment on the case of SO/Sp gauge group. The structure of the phase

diagram for the SO/Sp Yang-Mills-Chern-Simons theory with single real adjoint fermion

has distinguished feature compared to the unitary group case. While the topology of the

phase diagram still depends on whether k ≥ h/2 or k < h/2, the dual fermions are no

more in the adjoint representation of the dual gauge group. Instead, it is symmetric-

traceless/antisymmetric-traceless (sym/asym) representation for the SO/Sp gauge group

to have a intermediate phase shared by level/rank duality. The 1-form symmetry is still

preserved since the SO/Sp gauge group has only trivial or Z2 one-form symmetry. Now, if

we note that the adjoint representation of SO/Sp is equivalent to the asym/sym represen-

tation, SO/Sp gauge theory with single real fermion under sym/asym representation could

be constructed in the same way, with dual descriptions containing single adjoint fermion.

We summarized the k < h/2 phase diagram for the SO/Sp gauge theory with a fermion in

the rank-two representations in the figure 4 and 5.
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SU(N)k + λadj k < N/2

m−critλ m+crit
λ

U
(
N
2 − k

)
3N
4

+ k
2
,N

+ λ̂adj U
(
N
2 + k

)
−3N

4
+ k

2
,−N + λ̃adj

SU(N)k−N
2

U
(
N
2 − k

)
N,N

U(N2 + k)−N
2
+k,−N

U
(
N
2 − k

)
N
2
+k,N

Goldstino

SU(N)k+N
2

U
(
N
2 + k

)
−N,−N

m→ +∞m→ −∞

Figure 3. The proposal of [4] for the Phase diagram of SU(N)k gauge theory with a single real

adjoint fermion for k < N/2. There are two phase transitions each described by a weakly-coupled

dual gauge theory description, which appears with an arrow pointing to the phase transition. The

intermediate phase from each dual descriptions are related by level/rank duality.

SO(N)k + λadj k < N−2
2

m−critλ m+crit
λ

Goldstino

SO
(
N−2
2 − k

)
3N
4

+ k
2
− 1

2
+ λ̂sym SO

(
N−2
2 + k

)
−3N

4
+ k

2
+ 1

2
+ λ̃sym

SO(N)k−N−2
2

SO
(
N−2
2 − k

)
N

SO(N−22 + k)−N−2
2

+k

SO
(
N−2
2 − k

)
N−2

2
+k

SO(N)k+N−2
2

SO
(
N−2
2 + k

)
−N

m→ +∞m→ −∞

Figure 4. The proposal of [4] for the Phase diagram of SO(N)k gauge theory with a single real

adjoint fermion for k < N−2
2 . The representations of the dual fermions are changed to the other

rank-two representation of the gauge group.

3 Phase diagrams for k 6= 0: duality chain

3.1 k ≥ h: semiclassical regime

Now we consider the Yang-Mills-Chern-Simons theory with the gauge group G and the

effective Chern-Simons level k coupled with two real adjoint fermions. Similar to the

single adjoint phase diagram, as long as k is sufficiently large, the above two different

topological phases Gk+sign(m)h are separated by a single transition [1, 2]. We call this as

– 8 –
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SO(N)k + λsym k < N+2
2

m−critλ m+crit
λ

SO
(
N+2
2 − k

)
3N
4

+ k
2
+ 1

2
+ λ̂adj SO

(
N+2
2 + k

)
−3N

4
+ k

2
− 1

2
+ λ̃adj

SO(N)k−N+2
2

SO
(
N+2
2 − k

)
N

SO(N+2
2 + k)−N+2

2
+k

SO
(
N+2
2 − k

)
N+2

2
+k

SO(N)k+N+2
2

SO
(
N+2
2 + k

)
−N

m→ +∞m→ −∞

Figure 5. The proposal of [4] for the Phase diagram of SO(N)k gauge theory with a single real

symmetric-traceless fermion for k < N+2
2 .

Gk + 2 ψadj k ≥ h

Gk−h Gk+h

m→ +∞m→ −∞

Figure 6. Phase diagram of Gk gauge theory with two real adjoint fermions for k ≥ h. The solid

circle represents a phase transition between the asymptotic phases. For sufficiently large k we know

for certain [1, 2] that the phase transition is associated with a CFT.

an semiclassical phase diagram. Then the main question is at which value of k topology

of the phase diagram changes and additional phases appear. We propose that to have a

consistent picture, the topology of large k phase diagram should hold for k ≥ kcrit = h.

(Recall that we choose k ≥ 0 from the beginning.) The phase diagram for k ≥ h is given

in the figure 6.

3.2 Quantum phase for G = SU(N)

For 0 < k < h, we propose that there is a new single intermediate “quantum phase” in be-

tween the asymptotic large mass phases, which we denote as Q[GRk ] where G is dynamical

gauge group and k is UV Chern-Simons level together with matter fields in the representa-

tion R. This inherently non-perturbative phase is connected to the two asymptotic phases

at infinity through the phase transitions at m = m±critψ . Now to access the intermediate

phase, we need to find a consistent proposal for the dual descriptions describing each criti-

cal points. Motivated from the fermion-fermion dualities for the single adjoint fermion case
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SU(N)k + 2ψadj 0 < k < N

m−critψ m+crit
ψ

U(N − k)k,N + 2 ψ̂adj U(N + k)k,−N + 2 ψ̃adj

SU(N)k−N

U(N − k)N,N

Q[SU(N)2adjk ]

SU(N)k+N

U(N + k)−N,−N

m→ +∞m→ −∞

Figure 7. Phase diagram of SU(N) with two real adjoint fermions for 0 < k < N . The solid circles

represent a phase transition between the asymptotic phases and the intermediate quantum phase.

Each phase transition has a dual gauge theory description, which appears with an arrow pointing

to the phase transition. The mass deformations are related by δmψ = −δmψ̂ and δmψ = −δmψ̃.

Importantly, the right dual description is always strongly coupled and left dual description is weakly

coupled only when N/2 ≤ k < N .

we reviewed in the section 2, we propose that each dual description is described by a dual

Yang-Mills-Chern-Simons theory coupled to two dual adjoint fermions. Explicitly, we sug-

gest the following mutually non-local dual descriptions of the original theory at quantum

phase regime as follows:

Dualities for SU(N)k + 2 ψadj for 0 < k < N :

SU(N)k + 2 ψadj, mψ = m+crit
ψ ←→ U(N + k)k,−N + 2 ψ̃adj, mψ̃ = m−crit

ψ̃

SU(N)k + 2 ψadj, mψ = m−critψ ←→ U(N − k)k,N + 2 ψ̂adj, mψ̂ = m+crit

ψ̂
.

(3.1)

Here, the distinguishing feature compared to the single adjoint phase diagram reviewed

in the section 2 comes from our assumption of kcrit = h.4 From the consistency, we

immediately see that the dual description at m = m+crit
ψ is always strongly coupled and

the other dual description at m = m−critψ is weakly coupled only when k ≥ N/2. Since the

dual theory is generically strongly coupled too, which has two transition points at m±crit,

it was necessary to carefully specify the dual theory with the location of bare mass in

the (3.1). The phase diagram is depicted in figure 7.

Before introducing a ‘Duality Chain’, it is vital to note that the assumption of kcrit = h

makes the left dual description at mψ = m−critψ weakly-coupled for N/2 ≤ k < N . Thus

4It is important to note that condition for the quantum phase for the case of U(N)k,k′ UV gauge group

is same as SU(N) case, i.e. kcrit = h and abelian level doesn’t play any role. This is due to the fact that we

could gauge the U(1) global baryon/monopole symmetry in the phase diagram to get another consistent

phase diagram differing only by the content of abelian gauge group and its Chern-Simons level in the UV.
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U(N − k)k,N + 2 ψ̂adj 0 < k < N/2

−mcrit
ψ̂

mcrit
ψ̂

ST 2U(N − 2k)k,N−k + 2 ψ̄adj SU(N)k + 2ψadj

U(N − k)2k−N,N

ST 2U(N − 2k)N−k,N−k

Q[U(N − k)2adjk,N ]

= Q[SU(N)2adjk ]

U(N − k)N,N

SU(N)k−N

m→ +∞m→ −∞

Figure 8. Phase diagram of strongly coupled left dual description of figure 7, which is U(N−k)k,N
with two real adjoint fermions for 0 < k < N/2. It describes the first step of duality chain, where

the right dual description at mψ̂ = m+crit

ψ̂
coincides with original theory thus shares the same

quantum phase with original theory as Q[SU(N)2adj
k ] = Q[U(N − k)k,N ]. Left dual description has

lower rank with same Chern-Simons level, thus one could use this chain recursively to get weakly

coupled description of quantum phase within finite steps. The mass deformations are related by

δmψ̂ = −δmψ and δmψ̂ = −δmψ̄.

the quantum phase of Q[SU(N)2adjk ] is directly obtainable in this range as Q[SU(N)2adjk ] =

U(N − k)2k−N,N .

0 < k < N/2: duality chain. Now for the case of 0 < k < N/2, both dual descriptions

in the figure 7 are strongly coupled. Remarkably, we can nevertheless obtain the description

of the quantum phase Q[SU(N)2adjk ] only from the semiclasscal analysis. Let’s first draw

the phase diagram of the dual description at mψ = m−critψ . Since we are in the range of

0 < k < N/2, the left dual description is still strongly coupled and we could draw its own

phase diagram as in the figure 8.

Now things become transparent when look at the effective Chern-Simons level and rank

of various UV descriptions in the phase diagram of original theory and left dual theory in

the figure 7 and 8. The observation is that in each of the phase diagram the left dual

description at m = m−crit has smaller rank than original gauge group by k with the same

UV Chern-Simons level k. Hence for the non zero k, we could use these steps repeatedly

to finally get the weakly coupled dual description which shares the same quantum phase

Q[SU(N)2adjk ] of original theory. We dub this as ‘Duality Chain’ because we are keep using

a different mutually non-local dual descriptions of the strongly coupled theory to reach

the final weakly coupled description. Once we arrive at the final stage of a duality chain,

we find a weakly coupled description flows to the original quantum phase which could be

determined by the semiclassical analysis. Importantly, after first step of the chain, we

need to use the generalized level-rank duality described in the appendix A. We further
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...

U(N + k)k,−N+2 ψadj
1

SU(N)k+2 ψ
adj
0

U(N − k)k,N+2ψadj
−1

ST
2U(N − 2k)k,N−k+2 ψ

adj
−2

U(N + k)−N,−N

SU(N)k+N

U(N − k)2k−N,N

ST 2U(N − 2k)N−k,N−k

SU(N)k−N

U(N − k)N,N

⇓
Q[SU(N)2adjk ] = (ST 2)d

N
k
e−2U

(
N − dNk ek + k

)
−N+dN

k
ek,N−dN

k
ek+2k

Figure 9. The duality chain for the theory of SU(N)k + 2 ψadj.

emphasize that critical point of the final weakly coupled dual description is not dual (for

0 < k < N/2) to any of the original strongly coupled theory’s critical point.

Using the duality chain, we get the general expression for the quantum phase of

SU(N)k + 2 ψadj for 0 < k < N which is identified after dNk e − 1 steps:

Q[SU(N)2adjk ] = (ST 2)d
N
k
e−2U

(
N −

⌈
N

k

⌉
k + k

)
−N+dN

k
ek,N−dN

k
ek+2k

. (3.2)

In summary, global picture of duality chain for the case of SU(N)k+2 ψadj is illustrated

in the figure 9.

3.3 Quantum phase for G = SO(N)

We could construct the phase diagram for the orthogonal group similar to the unitary

case. Here, we only illustrate the case when gauge group is SO(N), while generalization

for the various covering group O(N)pK,L could be done similarly as in [5]. Construction is

similar to the single adjoint case, where the main difference with unitary case is that the

representation of the matter is transposed along the duality in accord with single adjoint

case in [4]. Hence we propose the following two phase diagram for the SO(N) gauge group

with two adjoint fermions as in the figure 10.

N/2 ≤ k ≤ N − 2. The phase diagram of two adjoint fermions under orthogonal

gauge group in the quantum phase regime is presented in figure 10. Again, there are
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SO(N)k + 2ψadj 0 < k < N − 2

m−critψ m+crit
ψ

SO(N − k − 2)k + 2 ψ̂sym SO(N + k − 2)k + 2 ψ̃sym

SO(N)k−N+2

SO(N − k − 2)N

Q[SO(N)2adjk ]

SO(N)k+N−2

SO(N + k − 2)−N

m→ +∞m→ −∞

Figure 10. Phase diagram of SO(N) with two real adjoint fermions for 0 < k < N − 2. The right

dual description is always strongly coupled and left dual description is weakly coupled only when

N/2 ≤ k < N − 2.

two distinct phase transitions at mψ = m±critψ , where dual description at m+crit
ψ is always

strongly coupled while m+crit
ψ is weakly coupled when N/2 ≤ k ≤ N − 2. In this case,

we can directly obtain the intermediate quantum phase Q[SO(N)2adjk ] from the left dual

description:

Q[SO(N)2adjk ] = SO(N − k − 2)2k−N , N/2 ≤ k < N − 2. (3.3)

0 < k < N/2: duality chain. When Chern-Simons level is sufficiently small(0 < k <

N/2), the left dual description is also strongly coupled. Similar to the unitary case, we

could use the concept of duality chain to determine the quantum phase Q[SO(N)2adjk ]. But

since the dual fermions belong to the different representation, it is necessary to propose the

similar quantum phase diagram for the two symmetric-traceless fermions in the orthogonal

gauge group which presented in the figure 11.

Thus pattern of duality chain for the orthogonal group is alternate, where the matter

in the adjoint and symmetric-traceless representations are exchanged under each step of

duality chain which cover the same intermediate quantum phase SO(N)2adjk . Under this

algorithm, the general expression for the quantum phase of SO(N)k + 2 ψadj for 0 < k <

N − 2 could be obtained as follows, where the n∗ is the number of steps of duality chain

we had to apply to identify the quantum phase:

Q[SO(N)2adjk ] = SO
(
N − n∗k − (1− (−1)n

∗
)
)
−N+(n∗+1)k+(1−(−1)n∗+1)

with n∗ ≡ min{n = Z ∪ {0} | nk + (1− (−1)n) < N ≤ (n+ 1)k + (1− (−1)n+1)}
(3.4)

Since fermions under adjoint and symmetric representations appear alternately in the

duality chain, we could also specify the quantum phase for the SO(N)k + 2 ψsym similarly

as follows with the new definition of n∗ corresponding to the number of steps of duality
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SO(N)k + 2ψsym 0 < k < N + 2

m−critψ m+crit
ψ

SO(N − k + 2)k + 2 ψ̂adj SO(N + k + 2)k + 2 ψ̃adj

SO(N)k−N−2

SO(N − k + 2)N

Q[SO(N)2symk ]

SO(N)k+N+2

SO(N + k + 2)−N

m→ +∞m→ −∞

Figure 11. Phase diagram of SO(N) with two symmetric-traceless fermions for 0 < k < N + 2.

The right dual description is always strongly coupled and left dual description is weakly coupled

only when N/2 ≤ k < N + 2.

chain in this case:5

Q[SO(N)2symk ] = SO
(
N − n∗k + (1− (−1)n

∗
)
)
−N+(n∗+1)k−(1−(−1)n∗+1)

with n∗ ≡ min{n = Z ∪ {0} | nk − (1− (−1)n) < N ≤ (n+ 1)k − (1− (−1)n+1)}
(3.5)

3.4 Quantum phase for G = Sp(N)

When the gauge group is symplectic, parallel analysis as orthogonal group can be done

where we have to alternate adjoint and antisymmetric-traceless representation in this case.

Now the quantum phase diagram with two adjoints in figure 12 and two antisymmetric

fermions in figure 13 would complete the duality chain.

Parallel to the orthogonal group case, quantum phase can be determined as follows

under the n∗ steps of duality chain:

Q[Sp(N)2adjk ] = Sp

(
N − n∗k +

1

2
(1− (−1)n

∗
)

)
−N+(n∗+1)k− 1

2
(1−(−1)n∗+1)

with n∗ ≡ min

{
n = Z ∪ {0} | nk − 1

2
(1− (−1)n) < N (3.6)

≤ (n+ 1)k − 1

2
(1− (−1)n+1)

}
5It is necessary to comment that only for the special case of SO(2)2+2 ψsym the dual description obtained

from a naive application of the duality chain SO(2)2 + 2 ψasym doesn’t preserve global symmetry, namely

ZC2 ×ZM2 symmetry. The main reason is the lack of gauge invariant monopole operator in the dual side due

to the decoupled fermions and non-zero Chern-Simons level. While naive continuation of the duality chain

predicts U(1)2, in the 5.3 we propose a reasonable candidate of the quantum phase.
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Sp(N)k + 2ψadj 0 < k < N + 1

m−critψ m+crit
ψ

Sp(N − k + 1)k + 2 ψ̂asym Sp(N + k + 1)k + 2 ψ̃asym

Sp(N)k−N−1

Sp(N − k + 1)N

Q[Sp(N)2adjk ]

Sp(N)k+N+1

Sp(N + k + 1)−N

m→ +∞m→ −∞

Figure 12. Phase diagram of Sp(N) with two real adjoint fermions for 0 < k < N + 1. The right

dual description is always strongly coupled and left dual description is weakly coupled only when

N/2 ≤ k < N + 1.

Q[Sp(N)2asymk ] = Sp

(
N − n∗k − 1

2
(1− (−1)n

∗
)

)
−N+(n∗+1)k+ 1

2
(1−(−1)n∗+1)

with n∗ ≡ min

{
n = Z ∪ {0} | nk +

1

2
(1− (−1)n) < N (3.7)

≤ (n+ 1)k +
1

2
(1− (−1)n+1)

}
3.5 Phase with spontaneously broken partial 1-form, 0-form symmetry

Phase with partial spontaneous breaking of ZN 1-form symmetry in SU(N)

gauge theory. We could see the interesting dynmical implication of the SU(N)k+2 ψadj

theory when we look at the fate of 1-form symmetry in the quantum phase of Q[SU(N)2adjk ]

given by (3.2):

Q[SU(N)2adjk ] = (ST 2)d
N
k
e−2U

(
N −

⌈
N

k

⌉
k + k

)
−N+dN

k
ek,N−dN

k
ek+2k

(3.8)

We see that when k - N , the TQFT Q[SU(N)2adjk ] has ZN 1-form global symmetry. But

when k | N with k ≥ 2 , we see that 1-form symmetry is reduces to ZN/Zk in the IR due to

the confinement of non-abelian Yang-Mills theory SU(k)0 for k ≥ 2. Thus we see that when

k | N , only the nontrivial elements of ZN/Zk 1-form symmetry are spontaneously broken

in the IR while the Zk ⊂ ZN is confined. This has the following implication that when we

gauge the anomaly free subgroup of the Zk ⊂ ZN 1-form symmetry in the SU(N)k + 2 ψadj

for k | N , then the theory flows to a phase with spontaneously broken discrete vacua

coupled to TQFT.

Phase with spontaneously broken ZC
2 , ZM

2 in the SO(N) gauge theory. The

duality chain combined with the fact that SO(N)0 with N ≥ 3 (or SO(2)0 with double
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Sp(N)k + 2ψasym 0 < k < N − 1

m−critψ m+crit
ψ

Sp(N − k − 1)k + 2 ψ̂adj Sp(N + k − 1)k + 2 ψ̃adj

Sp(N)k−N+1

Sp(N − k − 1)N

Q[Sp(N)2asymk ]

Sp(N)k+N−1

Sp(N + k − 1)−N

m→ +∞m→ −∞

Figure 13. Phase diagram of Sp(N) with two antisymmetric-traceless fermions for 0 < k < N − 1.

The right dual description is always strongly coupled and left dual description is weakly coupled

only when N/2 ≤ k < N − 1.

monopole deformation.) exhibit the spontaneous breaking of ZM2 magnetic symmetry has

following implication. Since the charge conjugation symmetry C and magnetic symmetry

M is interchanged under the each step of duality chain similar to [5], we have following

special phases for the SO(N) gauge theory:

SO(2mn)n + 2 ψsym & SO(2mn+ 6)n+3 + 2 ψadj, m, n ∈ N
−→ Two trivial vacua from a spontaneously breaking of ZC2 (3.9)

SO(2mn+ 6m+ n+ 1)n + 2 ψsym & SO(2mn+ n+ 2)n + 2 ψadj, m, n ∈ N
−→ Two trivial vacua from a spontaneous breaking of ZM2 (3.10)

4 More duality chains and quantum phases

4.1 Gk+pair of rank-two/adjoint fermions

Here, we list the possible generalizations of the quantum phase with duality

chain for any two combination of rank-two/adjoint fermions under the gauge group

SU(N), SO(N), Sp(N) with positive k without loss of generality. In parallel to the two

adjoints case, it is natural to conjecture that quantum phase exist only when k < T (R),

where T (R) is Dynkin index of total representation of the matter which is the direct sum

of the each fermion’s representation.

U(N)k,k+ 2 ψadj. We first point out that there is a great simplification when 2 adjoints

fermions are charged under U(N) gauge group, where generalized level/rank duality is no

more required. We explain the connection between the case of SU(N) gauge group through

SL(2,Z) transformation in section 5.4. Duality chain exists for 0 < k < N as SU(N) case,
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with the following quantum phase:

U(N)k,k + 2 ψadj, mψ = m+crit
ψ

←→ U(N + k)k,k + 2 ψ̃adj, mψ̃ = m−crit
ψ̃

U(N)k,k + 2 ψadj, mψ = m−critψ

←→ U(N − k)k,k + 2 ψ̂adj, mψ̂ = m+crit

ψ̂
.

Q[U(N)2adjk,k ] = U

(
N −

⌈
N

k

⌉
k + k

)
−N+dN

k
ek,k

(4.1)

SU(N)k + ψsym + ψasym. This is the case when there are one symmetric and one

antisymmetric representation of fermion. Duality chain exists for 0 < k < N , with the

following quantum phase6

SU(N)k + ψsym + ψasym, mψ = m+crit
ψ

←→ U(N + k)k,2k+N + ψ̃sym + ψ̃asym, mψ̃ = m−crit
ψ̃

SU(N)k + ψsym + ψasym, mψ = m−critψ

←→ U(N − k)k,2k−N + ψ̂sym + ψ̂asym, mψ̂ = m+crit

ψ̂
.

Q[SU(N)sym+asym
k ] = (ST−2)d

N
k
e−2U

(
N −

⌈
N

k

⌉
k + k

)
−N+dN

k
ek,−3N+3dN

k
ek−2k

(4.2)

SU(N)k + 2 ψsym & SU(N)k + 2 ψasym. Duality chain exists for 0 < k < N ± 2, for

the two symmetric or antisymmetric cases, with the following quantum phase determined

under the n∗S/A steps of duality chain:

SU(N)k + 2 ψsym/asym, mψ = m+crit
ψ

←→ U(N + k ± 2)k,2k+N±2 + 2 ψ̃asym/sym, mψ̃ = m−crit
ψ̃

SU(N)k + 2 ψsym/asym, mψ = m−critψ

←→ U(N − k ± 2)k,2k−N∓2 + 2 ψ̂asym/sym, mψ̂ = m+crit

ψ̂
.

Q[SU(N)
2sym/2asym
k ] =

(ST−2)n
∗−1U

(
N − n∗S/Ak ± (1− (−1)

n∗
S/A)

)
−N+(n∗

S/A
+1)k∓(1−(−1)

n∗
S/A

+1
),

−3N+(3n∗
S/A

+1)k∓(3−(−1)
n∗
S/A )

with n∗S/A ≡ min{n = Z ∪ {0} | nk ∓ (1− (−1)n) < N ≤ (n+ 1)k ∓ (1− (−1)n+1)}
(4.3)

6Here the how does ψsym/asym is charged under multiple U(1) gauge fields can be established using the

consistency under the SL(2,Z) operation similar to the discussion in 5.4. Straightforward analysis shows

that ψsym/asym is neutral under any additional U(1) gauge field generated from SL(2,Z) operations.
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SU(N)k + ψsym + ψadj & SU(N) + ψasym + ψadj. Duality chain exists for 0 <

k < N ± 1, for the adjoint+symmetric or adjoint+antisymmetric cases, with the following

quantum phase determined under the n∗S/A steps of duality chain:

SU(N)k + ψadj + ψsym/asym, mψ = m+crit
ψ

←→ U(N + k ± 1)k,k + ψ̃adj + ψ̃asym/sym, mψ̃ = m−crit
ψ̃

SU(N)k + ψadj + ψsym/asym, mψ = m−critψ

←→ U(N − k ± 1)k,k + ψ̂adj + ψ̂asym/sym, mψ̂ = m+crit

ψ̂
.

Q[SU(N)
adj+sym/adj+asym
k ] =

(S)
n∗
S/ASU

(
N − n∗S/Ak ±

1

2
(1− (−1)

n∗
S/A)

)
−N+(n∗

S/A
+1)k∓ 1

2
(1−(−1)

n∗
S/A

+1
)

with n∗S/A ≡ min

{
n = Z ∪ {0} | nk ∓ 1

2
(1− (−1)n) < N ≤ (n+ 1)k ∓ 1

2
(1− (−1)n+1)

}
(4.4)

Where S is the SL(2,Z) operation defined in the appendix A.

SO(N)k + ψadj + ψsym. Duality chain exists for 0 < k < N , with the following quan-

tum phase:

SO(N)k + ψadj + ψsym, mψ = m+crit
ψ

←→ SO(N + k)k + ψ̃adj + ψ̃sym, mψ̃ = m−crit
ψ̃

SO(N)k + ψadj + ψsym, mψ = m−critψ

←→ SO(N − k)k + ψ̂adj + ψ̂sym, mψ̂ = m+crit

ψ̂
.

Q[SO(N)adj+sym
k ] = SO

(
N −

⌈
N

k

⌉
k + k

)
N−dN

k
ek

(4.5)

Sp(N)k + ψadj + ψasym. Duality chain exists for 0 < k < N , with the following quan-

tum phase:

Sp(N)k + ψadj + ψasym, mψ = m+crit
ψ

←→ Sp(N + k)k + ψ̃adj + ψ̃asym, mψ̃ = m−crit
ψ̃

Sp(N)k + ψadj + ψasym, mψ = m−critψ

←→ Sp(N − k)k + ψ̂adj + ψ̂asym, mψ̂ = m+crit

ψ̂
.

Q[Sp(N)adj+asym
k ] = Sp

(
N −

⌈
N

k

⌉
k + k

)
N−dN

k
ek

(4.6)

4.2 Gk1 ×Gk2+two bifundamental fermions

Surprisingly, duality chain also exists for the 2-node quiver theory with the two bifun-

damental fermions case. Here we only consider when the both gauge group is type of
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SU× SU, SO× SO, Sp× Sp. Story is very similar to the general pair of rank-two/adjoint

fermions so far treated above. When there is a single bifundamental fermion, ‘weakly cou-

pled’ dual descriptions are exist which shares the same intermediate phase by level/rank

duality [58]. In the presence of two bifundamental fermions, direct description of phase

transition in terms of weakly coupled theory is not manageable, and it is also natural

to conjecture that similar duality chain would give the information about the quantum

phase. The notable speciality of the two bifundamentals theory is that we could match

the gravitational counterterms along the any step of duality chain exactly as shown in the

section 5.5.

Similarly, it is natural to conjecture that quantum phase exist for the Gk1 × Gk2 +

2 ψbifund when the |k1| < h2, |k2| < h1 where h1,2 is the dual coxeter number of first and

second gauge group. Thus the first and second gauge group’s rank are changed by k2, k1
under the each step of duality chain.7 When k1 = k2 = 0, duality chain does not exist

similar to the adjoint/rank-two cases before. The structure of duality chains and quantum

phases are following8 (We use U(N)k ≡ U(N)k,k for simplicity):

SU(N1)k1 × U(N2)k2 + 2 ψbifund. Here we choose the SU × U quiver for simplicity.

For the case of SU × SU, U × U can be obtained from appropriate SL(2,Z) operation on

the SU×U results. The dualities and quantum phase are given as following:

SU(N1)k1 ×U(N2)k2 + 2 ψbf , mψ = m+crit
ψ

←→ SU(N1 + k2)k1 ×U(N2 + k1)k2 + 2 ψ̃bf , mψ̂ = m−crit
ψ̂

SU(N1)k1 ×U(N2)k2 + 2 ψbf , mψ = m−critψ

←→ SU(N1 − k2)k1 ×U(N2 − k1)k2 + 2 ψ̂bf , mψ̂ = m+crit

ψ̂
(4.7)

Q[(SU(N1)k1 ×U(N2)k2)2bifund] =
SU
(
N1 − dN1

k2
ek2 + k2

)
−N2+dN1

k2
ek1
×U

(
N2 − dN1

k2
ek1 + k1

)
−N1+dN1

k2
ek2

: dN1
k2
e ≤ dN2

k1
e

SU
(
N1 − dN2

k1
ek2 + k2

)
−N2+dN2

k1
ek1
×U

(
N2 − dN2

k1
ek1 + k1

)
−N1+dN2

k1
ek2

: dN2
k1
e ≤ dN1

k2
e

(4.8)

SO(N1)k1 × SO(N2)k2 + 2 ψbifund. One can do the similar analysis for the SO group

where now the situation is more simpler because of the absence of U(1) factors compared

to the unitary group case. Duality chain and quantum phase are following:

SO(N1)k1 × SO(N2)k2 + 2 ψbf , mψ = m+crit
ψ

←→ SO(N1 + k2)k1 × SO(N2 + k1)k2 + 2 ψ̃bf , mψ̂ = m−crit
ψ̂

SO(N1)k1 × SO(N2)k2 + 2 ψbf , mψ = m−critψ

←→ SO(N1 − k2)k1 × SO(N2 − k1)k2 + 2 ψ̂bf , mψ̂ = m+crit

ψ̂
(4.9)

7Note that for k1k2 < 0, chain makes one of the rank decrease while other increase which is the unique

feature of 2-node quiver theory compared to the simple gauge group case.
8For the introduction to the quiver Chern-Simons theories, see for example [67].
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Q[(SO(N)k1 × SO(N2)k2)2bifund] =
SO
(
N1 − dN1

k2
ek2 + k2

)
−N2+dN1

k2
ek1
× SO

(
N2 − dN1

k2
ek1 + k1

)
−N1+dN1

k2
ek2

: dN1
k2
e ≤ dN2

k1
e

SO
(
N1 − dN2

k1
ek2 + k2

)
−N2+dN2

k1
ek1
× SO

(
N2 − dN2

k1
ek1 + k1

)
−N1+dN2

k1
ek2

: dN2
k1
e ≤ dN1

k2
e

(4.10)

Sp(N1)k1 × Sp(N2)k2 + 2 ψbifund. One can do the similar analysis for the symplectic

group. Duality chain and quantum phase is following:

Sp(N1)k1 × Sp(N2)k2 + 2 ψbf , mψ = m+crit
ψ

←→ Sp(N1 + k2)k1 × Sp(N2 + k1)k2 + 2 ψ̃bf , mψ̂ = m−crit
ψ̂

Sp(N1)k1 × Sp(N2)k2 + 2 ψbf , mψ = m−critψ

←→ Sp(N1 − k2)k1 × Sp(N2 − k1)k2 + 2 ψ̂bf , mψ̂ = m+crit

ψ̂
(4.11)

Q[(Sp(N)k1 × Sp(N2)k2)2bifund] =
Sp
(
N1 − dN1

k2
ek2 + k2

)
−N2+dN1

k2
ek1
× Sp

(
N2 − dN1

k2
ek1 + k1

)
−N1+dN1

k2
ek2

: dN1
k2
e ≤ dN2

k1
e

Sp
(
N1 − dN2

k1
ek2 + k2

)
−N2+dN2

k1
ek1
× Sp

(
N2 − dN2

k1
ek1 + k1

)
−N1+dN2

k1
ek2

: dN2
k1
e ≤ dN1

k2
e

(4.12)

5 Consistency checks

5.1 Deformations under RG flows

Here we break the U(1)B flavor symmetry in the two adjoints duality (3.1) by giving

mass deformation to the single flavor and discover that renormalization group flows of

the duality (3.1) is consistent with the duality of the single real adjoint fermion analyzed

in [4]. We only illustrate the SU gauge group while the SO/Sp cases together with the

generalizations in the section 4 could be done similarly.

We first discuss what kind of mass deformations in the phase diagram of figure 7

are manageable semi-classically. Recall that the original theory has fermions ψadj
1,2 , and

left/right dual description has fermions ψ̂adj
1,2/ψ̃

adj
1,2 and mass deformations are related by

δmψ = −δmψ̂ and δmψ = −δmψ̃. Since two asymptotic phases at mψ = ±∞ is described

by semiclassical analaysis while the intermediate quantum phase is governed by strongly

coupled interactions, the only deformation that we could access semiclassically are δmψ1 =

−δmψ̂1
� −ΛQCD along the left critical point mψ = m−critψ and independently δmψ1 =

−δmψ̃1
� ΛQCD along the right critical point mψ = m+crit

ψ . After this independent mass

deformations for each duality in (3.1), we get (omitting subscript ‘2’ in the fermion):

SU(N)k+N/2 + ψadj ←→ U(N + k)−N/2+k/2,−N + ψ̃adj

SU(N)k−N/2 + ψadj ←→ U(N − k)N/2+k/2,N + ψ̂adj.
(5.1)

Since the range of the original duality in (3.1) is 0 < k < N , we could see that

above (5.1) is nothing but the duality between single adjoint fermion discussed in [4]. It’s
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become transparent when we change the variables to the each equations in (5.1) respec-

tively:

SU(Ñ/2 + k̃)3Ñ/4−k̃/2 + ψadj ←→ U(Ñ)−k̃,Ñ/2+k̃ + ψ̃adj 0 < k̃ < Ñ/2

SU(N)k̂ + ψadj ←→ U(N/2− k̂)k̂/2+3N/4,N + ψ̂adj, −N/2 < k̂ < N/2.

(5.2)

Where the second line is its original form, while the first one is the version where

appropriate SL(2,Z) operation to the phase diagram of single adjoint fermion is performed.

Both together complete the phase diagram of single real adjoint fermions in [4].

5.2 Matching SU(N)1 + 2 ψadj phase from two approaches

The consistency established in this section highly supports the appearance of generalize

level-rank duality in A for the unitary group case. For the case SU(N)1 + 2 ψadj, we could

find a consistent weakly-coupled dual description from semi-classical reasoning. On the

other hand, duality chain predict the quantum phase to be non-trivial abelian CS theory

with K-matrix description. It turns out that both phases are dual to each other as we

describe now.

• From a 2-dimensional phase diagram. We could vary the bare mass of each adjoint

fermion in the SU(N) gauge group independently and see how does phase diagram

looks like. Similar to the analysis of [70, 71], the information from the phase diagram

of single adjoint fermion at the boundary of 2-dimensional phase diagram might help

us to analyze the inner region near mψ = 0. Notably, for the case of k = 1, all the

critical lines at the boundary |m| → ∞ are in the semiclassical regime and there is no

quantum phase. Thus we could draw the most natural phase diagram as illustrated

in the figure 14.

Here the most natural candidate for the quantum phase near mψ = 0 is SU(N)1 =

U(1)−N , mainly because the critical lines of Goldstino could not affect the any IR

phase abruptly. Our expectation is independently supported by the consistent mu-

tually non-local weakly coupled dual descriptions along the diagonal mass line (not

a duality chain!) as expressed in the table 1.

• From duality chain. Applying the result of the duality chain in (3.2) gives the quan-

tum phase Q[SU(N)2adj1 ] as a following rank N-1 abelian TQFT:

Q[SU(N)adj1 ] = (ST 2)N−2U(1)2 =
∑

i,j=1,...,N−1

kij
4π
aidaj

where kij = 2δij − δi,j+1 − δi,j−1

(5.3)

Surprisingly, this abelian TQFT is dual to U(1)−N [72].

5.3 Matching from the isomorphisms of low-rank Lie groups

Here we uses the various isomorphisms between low rank Lie groups to see whether the

quantum phase using the each duality chain gives the consistent result. As we will see,
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Duality Chain

Phase Transition

Goldstino

Phase Transition

SU(N)1+N

SU(N)1−N

SU(N)1

SU(N)1

m
ψ

adj
1

m
ψ

adj
2

SU(N)1

Figure 14. Generic shape of the two dimensional phase diagram for SU(N)1 +2 ψadj. The diagonal

black line represent the region where duality chain applies. Near the boundary |mψ| → ∞, we could

use the phase diagram of single adjoint fermion reviewed in the section 2 to infer the phase in the

middle region. Our case is special since their is no quantum phase at the boundary, thus it is

natural to predict that SU(N)1 phase in the 2nd and 4th quadrant are smoothly connected through

the middle region.

.

SU(N)1+ 2 ψadj

SU(N)−N+1 SU(N)N+1

l
U(N − 1)N,N U(N − 1)1,N l

l
U(N + 1)1,−N U(N + 1)−N,−N

↑ ↑
U(N − 1)N+1

2 ,N + adj ψ̂ U(N + 1)−N−1
2 ,−N + adj ψ̃

Table 1. Phase diagram for SU(N)1 + 2 ψadj.
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this procedure is highly non-trivial since the each duality chains are totally different in

general.9

• Spin(4)1 + 2 ψadj = SU(2)1 × SU(2)1 + 2 ψadj

We have Q[Spin(4)2adj1 ] = (Z2)4, while Q[SU(2)1×SU(2)1 +2ψadj] = Q[SU(2)2adj1 ]2 =

U(1)−2 ×U(1)−2. If we use (Z2)4 = Spin(4)−1 we get the same phase.

• Spin(5)1 + 2 ψadj = Sp(2)1 + 2 ψadj

We have Q[Spin(5)2adj1 ] = O(3)00,2 =
O(3)00,0×Spin(2)−1

Z2
= U(1)1, while Q[Sp(2)adj1 ] =

Sp(2)0. So both approaches yields the same trivial phase.

• Spin(5)2 + 2 ψadj = Sp(2)2 + 2 ψadj

We have Q[Spin(5)2adj2 ] = (Z2)5, while Q[Sp(2)adj2 ] = Sp(1)2. Since (Z2)5 =

spin(3)1 = SU(2)2 we get the consistent result.

• SU(4)3 + 2 ψadj = Spin(6)3 + 2 ψadj

We have Q[SU(4)2adj3 ] = U(1)4 while Q[Spin(6)adj3 ] = (Z2)6 = Spin(2)1 which indeed

gives the same phase.

• SU(4)1 + 2 ψadj = Spin(6)1 + 2 ψadj

We have Q[SU(4)2adj1 ] = U(1)−4 while Q[Spin(6)adj1 ] = (Z2)2. If we use (Z2)2 =

U(1)−4, we see that both phases are same.

• SU(4)2/Z2 + 2 ψadj = SO(6)2 + 2 ψadj

We have Q[SU(4)2adj2 ] = U(2)0,4 = U(1)2. Note that there is confined Z2 ∈ Z4 1-

form symmetry [69] thus Q[(SU(4)2/Z2)
2adj] = U(1)2 × SO(3)0 which has two vacua

from the spontaneously broken Z2 magnetic symmetry [73]. Hence it is more safe

to analyze from SO(6) side rather than Spin(6) theory. While the Q[SO(6)2adj] =

Q[SO(2)2sym] = U(1)2 from the naive duality chain, we commented on the footnote 5

that Q[SO(2)2sym] case is exceptional since dual description doesn’t preserve common

faithful global symmetry. Remarkably, consistent picture can be obtained if SO(2) +

2 ψsym flows to CP1 since then the double monopole deformationM2 which is required

for the matching of global symmetry [6] generically breaks CP1 to north and south

poles which gives Z2 vacua with minimal TQFT U(1)2 saturating UV 1-form anomaly.

5.4 Self consistency under SL(2,Z) transformation

For the unitary gauge group case, it is necessary to establish the consistency of the duality

chain and SL(2,Z) transformation. We start by explicitly writing down the consistent

coupling of U(1) background gauge field for the SU(N)k + 2 ψadj phase diagram in the

figure 7. Then we show that applying the ST 2 transformation to the phase diagram 7 of

the original theory becomes similar to the first step of the duality chain in the figure 8 where

9For the treatment of various discrete gauge fields in the orthogonal gauge groups and its level/rank

dualities, see [5].
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the only difference is the shift of rank from N to N + k. We comment about the subtlety

of the overall background U(1)B counterterm, which resolves the naive contradiction when

one applies the SL(2,Z) transformation10 to the general expression (3.2) of the quantum

phase of SU(N)k + 2 ψadj when we go up the duality chain.

The Lagrangian density of the original theory together with left and right dual de-

scriptions are as follows:

LSU(N)k[B]+2 ψadj =
k

4π
Tr

(
ada− 2i

3
a3
)

+
1

2π
ed(Tra+B)− 1

4π
BdB + ψ /Daψ

LU(N−k)k,N [B]+2 ψ̂adj =
k

4π
Tr

(
udu− 2i

3
u3
)

+
1

4π
TrudTru− 1

2π
TrudB + ψ̂ /Duψ̂

LU(N+k)k,−N [−B]+2 ψ̃adj =
k

4π
Tr

(
vdv − 2i

3
v3
)
− 1

4π
TrvdTrv

+
1

2π
TrvdB + ψ̃ /Dvψ̃ −

2

4π
BdB (5.4)

The coupling of B and the choice of overall counterterm is consistent in the following

sense. Trivially, it is consistent with level/rank duality [37] at the two asymptotic phases.

First, the left asymptotic phase mψ → −∞ where duality chain starts doesn’t have any

counterterm of B. Moreover, there is no direct coupling of B with fermions, which means

that this U(1)B gauge field is not coupled with a flavor symmetry but coupled with a

topological U(1) current along the phase diagram.11

Now we see that two main features pointed out at the above paragraph make the

SL(2,Z) transformation self-consistent to the phase diagram. If we apply the ST 2 to

the (5.4) simultaneously, we can directly see that the theories become U(N)k,k+N + 2 ψadj,

ST 2U(N − k)k,N + 2 ψ̂adj, SU(N + k)k + 2 ψ̃adj, which are nothing but the components

of the first duality chain of the phase diagram generated by SU(N + k)k with 2 adjoint

fermions similar to figure 8. Thus we see that structure of the duality chain is preserved

under SL(2,Z) transformations.

Furthermore, the overall choice of the counterterm proportional to 1
4πBdB resolves the

possible potential contradiction. Consistentcy of the expression of Q[SU(N)2adjk ] in (3.2)

with duality chain requires that Q[U(N + k)2adjk,−N ] should give same answer since it is

just one step above in the duality chain. Thus we could apply SL(2,Z) transformation

to the Q[SU(N + k)2adjk ] case and to see whether it is consistent or not. Naively, the

right transformation looks to be ST−1 which gives a contradiction in the sense that phase

doesn’t match which should be automatically guaranteed by the algorithm of duality chain.

This is resolved by the correct counterterms − 1
4πBdB in the original theory and − 2

4πBdB

in the right dual theory written in (5.4). Thus the correct required operation is T−2S

which directly cancels ST 2.12 Thus we see that Q[SU(N)2adjk ] = T−2SQ[SU(N + k)2adjk ] =

Q[U(N + k)2adjk,−N ].

10For the introduction to the SL(2,Z) transformations in 2+1 dimensional gauge theory, see [74]
11SU(N) Chern-Simons theory is conveniently represented by U(N) gauge field constrained by U(1)

auxiliary field to become traceless. U(1) background field B is coupled to this auxiliary field but not the

dynamical field directly. See [37] for the detail.
12S2 = C, but the action of C to B can be undone since we could redefine the sign of the abelian

dynamical gauge field.
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Finally, we can connect the duality chain of SU(N)k + 2ψadj to the U(N)k,k + 2ψadj in

the section 4 by the overall S transformation to the (5.4). Then we get the simple duality

chain U(N − mk)k,k + 2ψadj
m , m ∈ Z which shares common intermediate phase without

need of any generalized level/rank dualities.

5.5 Special and general matching of gravitational counterterms

In general, consistency check with the various counterterms in 2+1 dimensions [75, 76] along

the non-trivial closed paths in the phase diagrams are not able to achieve since one of the

dual description in the phase diagram 7 to 13 is always strongly coupled. In this section, we

focus on the gravitational counterterm c which conventionally defined as the coefficient of

the twice of the gravitational Chern-Simons term 2CSgrav from the background Riemannian

metric. In our case, there are two types of contribution to the gravitational counterterm.

One is related to the parity anomaly [77–79] of the fermions in the curved background,

and the other is from the physical requirement of the same thermal conductivity along the

level/rank duality [37, 38].

For the theory with rank-two/adjoint cases, it turns out that there are some special

cases where one could see the non-trivial matching of gravitational counterterm along the

phase diagram. One is the case of isomorphism between low-rank Lie groups as discussed

in 5.3 where there is a two inequivalent steps leads to the same intermediate phases which

can be used to establish the consistency with various counter-terms. This could be done

using the various results in the literatures, e.g. [5, 7, 37, 38].

Another one is the case of specific small Chern-Simons level of UV theory where the

quantum phase of the duality chain matches with the semiclassical phase appears in the 2-

dimensional phase diagram obtained by varying the masses of two flavors independently.13

Surprisingly, for the case of the two bifundamental fermions which discussed in 4.2, we

could show that gravitational counterterm is consistent along the whole strongly coupled

region of duality chain. We now explicitly show the last two tests.

Matching duality chain versus 2 dimensional diagram. Here we use the simplest

example of SU(N)1 + ψsym + ψasym where we could find a non-trivial closed loop in the

2-dimensional phase diagram of (mψsym ,mψasym). Duality chain of original theory to the

intermdiate phase consists of following:

(ST−2)m−1U(N −m)1,−N+m+1 + ψsym
−m + ψasym

−m , m = 0 . . . N − 1 (5.5)

Quantum phase from the duality chain is (ST−2)N−2U(1)−2 which is level rank dual

to SU(N)−1 [72], identical to the semiclassical phase with (mψsym ,mψasym) → (−∞,+∞).

Thus we expect the 2-dimensional phase diagram would look like figure 15 where the middle

quantum phase and 2nd quadrant is smoothly connected.

Now the consistency of the proposal requires that difference of the gravitational coun-

terterm between the semiclassical phases near (mψsym ,mψasym) = (−∞,−∞) and the mid-

dle quantum phase region near (mψsym ,mψasym) = (0, 0) shouldn’t depend on the paths we

choose to connect the two phases. Thus it following tests are necessary:

132-dimensional phase diagram for the vector fermions was analyzed in detail in [70, 71].
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Duality Chain

SU(N)1+N

SU(N)1−N

SU(N)−1

SU(N)3

msym

masym

Figure 15. Generic shape of the two dimensional phase diagram for SU(N)1 + ψsym + ψasym.

The diagonal black line represent the region where duality chain applies. Straight and curved red

lines represent the two different paths connecting SU(N)1−N and the middle quantum phase by

duality chain and 2d phase diagram analysis respectively. Blue wavy lines describe various phase

transitions expected from a effective single adjoint theory at the asymptotic regions of the plane.

The detailed shape of the critical lines at the bottom and right part is not important for the main

discussion.

∆c1[(mψsym ,mψasym) : (−∞,−∞) to (−∞,+∞)]

= ∆c2([duality chain from SU(N)1−N to SU(N)−1])
(5.6)

First, evaluation of ∆c1 is straightforward where we get ∆c1 = N(N−1)
2 .

For the ∆c2, there are three different contributions to the gravitational countert-

erm jumps:

• N-1 times of generalized level rank duality at the each step of duality chain

• N-1 times of mass deformation of ψsym
−m and ψasym

−m , m = 1, . . . , N − 1 in (5.5)

• Level/rank duality of (ST−2)N−2U(1)−2 to SU(N)−1
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Sum of the three contribution ∆c2 turns out to be the same as ∆c1:
14

∆c2 =
N=1∑
m=1

(N −m+ 1)(N −m)−
N−1∑
m=1

(N −m)2 + 0 =
N(N − 1)

2
(5.7)

Hence we see that duality chain is consistent with the prediction of 2d phase diagram

based on the single flavor quantm phases. One can repeat the similar checks to the other

kind of theories with the low Chern-Simons level where there are more semiclasscial critical

lines at the asymptotic region compared to the generic case. In this case, the one of the

semiclassical phases are matched with the quantum phase predicted by duality chain, and

the non-trivial check could be done similar to the above analysis.

Matching duality chains of general two bifudnamental theories. Now we demon-

strate that the duality chain with two bifundamental fermions admits more non-trivial test

because of its distinguishing feature compared to the single gauge group with adjoint/rank-

two fermions. This difference has already appeared in the case of single bifundamental

versus single adjoint/rank-two QCD3 as discussed in [58]. Namely, the quantum phase of

the bifundamental theory admits a scalar dual description with a bifundamental represen-

tation. This is a more natural duality than the fermionic dual description in the sense

that it directly descends from the scalar dual description of the quantum phases of the

fundamental fermions in QCD3 [3] by gauging the global symmetry. We will use this scalar

description to demonstrate the non-trivial consistency of the gravitational counterterms

along the whole duality chains.

Let’s describe the above idea more carefully with a specific example of the theory

SU(N1)k1 ×U(N2)k2 + 2 ψbifund discussed in 4.2. Let’s choose dN1
k2
e ≤ dN2

k1
e without loss of

generality. The theory develops duality chain if |k1| < N2, |k2| < N1 except k1 = k2 = 0.

Then the following sequence of dual theories appears when we go up or down of the chain,

where we define Cm as the theory describing m-th chain similar to the figure 1:

Cm : SU(N1+mk2)k1×U(N2+mk1)k2 +2 ψbifund
m , m = −

(⌈
N1

k2

⌉
−1

)
, . . . ,+∞ ∈ Z (5.8)

We emphasize again that the structure of the duality chain is directly coming from

the self-consistency of the assumption about the appearance of the quantum phase as a

certain condition between Chern-Simons levels and the rank of the gauge group. Thus

dual theory with two bifundamentals develop the quantum phase generically thus requires

multiple recursive steps to access the quantum phase.

So far, the story is parallel to the adjoint/rank-two cases. But as we mentioned at the

beginning, each step of the duality chain has dual scalar descriptions in the 2-node quiver

case descend from the boson-fermion dualities in the fundamental matter case. Specifically,

we can think of SU(N1 +mk2)k1 ×U(N2 +mk1)k2 + 2 ψbifund
m as coming from the following

14See [80] for the calculation of the gravitational counterterm in the presence of abelian TQFT.
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dualities [3]:15

SU(N1 +mk2)k1 + (2N2 + 2mk1) ψ
fund
m , mψ = m±crit

←→

U(N2 + (m+ 1)k1)−N1−mk2 + (2N2 + 2mk1)φ
fund
m , mφ = 0

U(N2 + (m− 1)k1)N1+mk2 + (2N2 + 2mk1)φ
fund
m−1 , mφ = 0

(5.9)

Where we have quantum phase described by non-linear sigma model with target space

M(2N2 + 2mk1, N2 + (m + 1)k1) with some WZ term. Also there is a U(2N2 + 2mk1)

global symmetry consistent with the phase whole phase diagram. Now we could gauge the

U(N2 + mk1) × U(N2 + mk1) subgroup of U(2N1 + 2mk1) to get the new dualities with

2-node quiver:

SU(N1 +mk2)k1 ×U(N2 +mk1)k2 + 2 ψbifund
m , mψ = m±crit

←→
U(N2 + (m+ 1)k1)−N1−mk2 ×U(N2 +mk1)N1+(m+1)k2 + 2 φbifundm , mφm = 0

U(N2 + (m− 1)k1)N1+mk2 ×U(N2 +mk1)−N1−(m−1)k2 + 2 φbifundm−1 , mφm−1 = 0

(5.10)

We see that after gauging the original theory becomes the fermionic duality chain that

has appeared in 5.8. The remarkable property of the above two mutually non-local dual

descriptions with scalars is that they should share identical intermediate phase without

any need of duality transformation. The reason is that two dual scalar descriptions in

the original ungauged theory (5.9) have identical non-linear sigma model without any

duality transformation hence same background counterterms. Thus intermdiate quantum

phase after gauging the global symmetry should have no difference in any background

counterterms when described by either of dual descriptions with bifundamental scalars.

Now we are ready to test whether the gravitational counter-terms along the duality

chains are consistent using two bifundamental scalars description. We recall the notation

in the figure 1 where the infrared phases of the m-th duality chain Cm in (5.8) are denoted

as C+m, Q[Cm], C−m each represent the phases where fermions are large positive, masless ,

large negative respectively. If we choose the reference point C−0 , then consistency of the

duality chain requires that ∆c with respect to the intermediate quantum phase accessed

from dual scalar description of the Cm in (5.10) should be independent of m, which we

call it as ∆c[C−0
duality chain−−−−−−−−→ C±m

scalar dual−−−−−−−→ Q[Cm] = 0]. Surprisingly, it turns out that

counterterms are consistent as follows:16

∆c
[
C−0

duality chain−−−−−−−−→ C±m
scalar dual−−−−−−−→ Q[Cm]

]
= N1(N2 − k1) = const ! (5.11)

15One can interchange the role of first and second gauge group and perform the parllel analysis for the

counter-terms.
16Note that the case for the orthogonal and symplectic groups could be analyzed similarly and pass the

same consistency check.
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6 Discussion and future directions

In this paper, we propose a way to analyze the phase diagrams of QCD3 with two fermions

under any combination of adjoint/rank-two representations, or two bifundamental fermions

using the duality chain. This was achived by realizing the possibility that dual description

could be ‘strongly coupled’ in the sense that dual description could also develop non-

perturbative quantum phases.

Thus we hope that the concept of strong-strong duality and duality chain would lead to

further understanding of strongly coupled dynamics in QCD3. We list here several possible

future directions.

IR phase for k = 0. In the main text, we neglected the discussion of the phase diagram

when the Chern-Simons level k is zero. Existence of the quantum phase for the case of

SU(2) + 2 ψadj was anticipated in [7], which was the gapless phase originated from the

spontaneous symmetry breaking of SO(2) flavor symmetry. Thus it is natrual to expect

two adjoints theory with k = 0 would similary has a identical gapless phase if we follow the

logic of [7]. Moreoever, it is also important to find a candidate IR phases for the k = 0 in

the case of any pair of rank-two/adjoints fermions or two bifundamental fermions treated

in 4. We hope to return to this in the future.

Generalization to the higher Nf or higher representations. The extension of

duality chain to the case of general number of matters or higher representation is also

an interesting direction. Evidence for the quantum phase in higher Nf follows from the

observation that SU(2) + 2 ψsym analyzed in the section 4 is same as SU(2) + 4 ψadj with

SU(2) flavor symmetry preserving deformations. As in the Nf = 2 adjoints case [10–13], the

intuition from 3+1 adjoint QCD with higher nf would be helpful, e.g. [81]. The existence

of the quantum phase for the matter with higher representations are also positive from

the analysis of the main text. For instance, SU(4) + is equivalent to Spin(6) + , or

Spin(5) + is equivalent to Sp(2) + . It is interesting to find out to what extent the

quantum phase or duality chain exist.

Construction of two dimensional phase diagrams. Focusing on the theories dis-

cussed in this paper where we always have two flavors of fermion, it is also natural to ask

how does the two dimensional diagram with flavor symmetry breaking masses would look

like. Similar work for the fundamental matter was done in [70, 71]. One notable difference

is the case when the adjoint fermion is included, since then we have to answer how does

the critical lines of Goldstino look like coming from the spontaneous SUSY breaking [68].

Careful construction of two-dimensional phase diagram might give a non-trivial test of

our proposal.

Orbifold equivalence. Regarding the more nontrivial evidences coming from two bifun-

damental theories in 5.5 (by this we mean the matching of gravitational counterterm.), it

is also natural to ask whether we could connect the two bifundamental theories to the the-

ory of two adjoint fermions. The answer was positive for the case of single bifundamental

and single adjoint fermions in [58] using the orbifold projection. Similar technique gives
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a positive answer between two bifundamentals and two adjoints by using similar Z2 auto-

morphisms along the dualities to single flavor case. Thus it is natural to conjecture some

kinds of 2+1 dimensional version of planar equivalence should hold between two theories.

It would be nice to see more evidence of this connection.
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A. Sharon, M. Yu for useful discussions. We would also like to especially thank Z. Komar-

godski for the invaluable support, discussions and the careful reading of this manuscript.

CC is supported in part by the Simons Foundation grant 488657 (Simons Collaboration on

the Non-Perturbative Bootstrap). Any opinions, findings, and conclusions or recommen-

dations expressed in this material are those of the authors and do not necessarily reflect

the views of the funding agencies.

A Generalized level-rank duality

In this appendix, we derive the level-rank dual of U(N)K,K±pN using SL(2,Z) transforma-

tions on the standard SU(N)K ↔ U(K)−N,−N level-rank duality. We start from showing

that U(N)K,K±N ↔ U(K)−N,∓k−N is directly obtained by SU(N)K ↔ U(K)−N with

simple SL(2,Z) operation.

First we review the elements of SL(2,Z) transformation for the 3d QFT with U(1)

global symmetry coupled to the background field B, following the notation of [37]. If we

denote the Lagrangian density of such theory as L[B], S and T trasnformation is defined

as follows [74]:

S : L[B]→ L[b]− 1

2π
bdB

T : L[B]→ L[B] +
1

4π
BdB

(A.1)

Where the b field in the S operation is a dynamical field from the gauging of the

original U(1) background field. The S and T operations generate the SL(2,Z) operation

on the theory space of 3d QFT with U(1) global symmetry, satisfying following identities:

S2 = (ST )3 = C.
Now we discuss how this SL(2,Z) operation derives the generalized level/rank du-

altiy for the unitary gauge group. We start from the seed level/rank duality SU(N)K ↔
U(K)−N,−N 3d Chern-Simons TQFT with the following form of consistent mapping be-

tween the U(1) baryon/monopole background gauge field B on the each side [37]:

LSU(N)K [B] =
K

4π
TrN

[
bdb− 2i

3
b3
]

+
1

2π
cd(Trb+B)

←→ LU(K)−N,−N [B] =
−N
4π

TrK

[
udu− 2i

3
u3
]

+
1

2π
(Trb)dB

(A.2)

– 30 –



J
H
E
P
0
4
(
2
0
2
0
)
0
0
6

Now U(N)K,K±N ↔ U(K)−N,∓K−N is derived once we apply the operation ST±1 on

the both side of (A.2) as follows:

LST±1SU(N)K [B] =
K

4π
TrN

[
bdb− 2i

3
b3
]

+
1

2π
cd(Trb+ e)± 1

4π
ede− 1

2π
edB

←→ LST±1U(K)−N,−N [B] =
−N
4π

TrK

[
udu− 2i

3
u3
]

+
1

2π
(Tru)de± 1

4π
ede− 1

2π
edB

(A.3)

After integrating out c and e we obtain LU(N)K,K±N [B] ↔ LU(K)−N,∓K−N [±B] +

LU(1)±1[−B], thus we get the desired duality U(N)K,K±N ↔ U(K)−N,∓K−N . Note that

this simplification only happens to this case. More general level-rank duality is obtained

once we apply ST p to the both side of (A.2):

LST pSU(N)K [B] =
K

4π
TrN

[
bdb− 2i

3
b3
]

+
1

2π
cd(Trb+ e) +

p

4π
ede− 1

2π
edB

←→ LST pU(K)−N,−N [B] =
−N
4π

TrK

[
udu− 2i

3
u3
]

+
1

2π
(Tru)de+

p

4π
ede− 1

2π
edB

(A.4)

After integrating out the auxiliary fields, we obtain following generalization of level-

rank duality:

U(N)K,K+pN [B] ←→ ST pU(K)−N,−N [B] (A.5)

It is useful to write down the the generalized level-rank duality obtained similarly from

time-reversal of (A.2):

U(N)−K,−K+pN [B] ←→ ST pU(K)N,N [−B] = ST pU(K)N,N [B] (A.6)

Where we used the fact that redefining the sign of abelian dynamical gauge field

effectively makes B to −B.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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