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1 Introduction

Six dimensional supergravity models have been an active area of research for a long time.

Among them the simplest one is the so called minimal model whose bosonic field content

is just a graviton and a two-form field with a self-dual field strength. Because of the self-

duality it has no action. Coupling this model with a single tensor multiplet which has

a dilaton and two-form field with an anti-self dual field strength as bosonic fields, these

two-forms can be combined to obtain one with an unrestricted field strength and we have

the following bosonic Lagrangian [1]:

L6 =
√
−g
(
R− 1

2
∂µϕ∂

µϕ− 1

12
e−
√

2ϕHµνρH
µνρ

)
. (1.1)

This theory can be obtained from Heterotic or type IIB theory on K3 or T 4 with some

truncation. Therefore, solutions of this model can be embedded to 10-dimensions as well

which provides additional motivation for studying them. The general form of supersym-

metric solutions of this model and its generalizations with couplings of other multiplets

have been studied in [2–6]. A big motivation of studying such solutions is to understand

microstate geometries of 5-dimensional black holes [7–12]. Of course, such configurations
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are also crucial in studying the AdS3/CFT2 correspondence in detail [13–18]. In partic-

ular, the 6d model (1.1) admits a 1/4 supersymmetric dyonic string solution that carries

electric and magnetic charges [19, 20] which corresponds to the D1-D5 intersection in type

IIB theory and upon dimensional reduction on a circle leads to a black hole in D = 5.

Hence, finding new dyonic string solutions is of considerable interest. Known examples

include [19–24].

A few years ago it was shown that dimensional reduction of the 6-dimensional

model (1.1) on S3 leads to a N = 4, SO(4) gauged supergravity [25]. Moreover, this is

a consistent reduction which means that any solution in the 3-dimensional theory is auto-

matically a solution in 6-dimensions. Such consistent sphere reductions are quite rare and

when available they can be used to construct complicated solutions in the higher dimen-

sional theory, which is the main theme of this paper. An SU(2) group manifold reduction

of (1.1) to 3d is also known and is consistent by construction [26].

In three dimensions it is possible to formulate supergravities in two different ways with

vector fields appearing in the Yang-Mills (YM) form or the Chern-Simons (CS) form in

the action respectively [27]. They are equivalent to each other and one can go from the

CS to YM formulation through some differential constaints. The general construction of 3-

dimensional gauged supergravities was given in [28, 29] using the CS formulation. Yet, the

model one obtains from a dimensional reduction is in YM form. In [25] the CS form of the

aforementioned N = 4, SO(4) theory was also identified. Supersymmetry transformations

(or BPS conditions that follow from them by setting fermions to zero) are given in [28, 29]

and can be carried to YM formulation by the help of the duality constraint equations as

we do in this paper.

In the next section we begin with a brief description of our 3-dimensional model in

the YM form. It contains 10 scalars and 6 vectors which makes it hard to search for exact

solutions. We first simplify this theory by truncating it to a subsector invariant under

the U(1) × U(1) subgroup of the SO(4) gauge group after which only 2 vectors and 4

scalars remain. In section 3, using the BPS conditions for this sector we construct two

different uncharged black string solutions with one and two active scalars respectively.

Then, in section 4 we uplift these to D = 6. The first one leads to a well-known dyonic

string solution that was found long ago [19] describing a single electric and single magnetic

charge located at the origin of the 4-dimensional flat transverse space. The uplift of the

latter, however, results in a rather peculiar configuration where magnetic strings are located

uniformly on a circle in a plane in the 4-dimensional transverse space and electric strings

are distributed homogeneously inside this circle. Both of these solutions have AdS3 × S3

limits. We conclude with some remarks and future directions in section 5. Derivation of

the BPS conditions is given in appendix A.

2 3-dimensional N = 4, SO(4) gauged supergravity

The 3d supergravity model that we are interested in can be obtained from N = (1, 0)

6d ungauged supergravity coupled to a single tensor multiplet by a consistent 3-sphere

reduction [25]. This theory preserves 8 real supercharges, i.e. N = 4, and its bosonic
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Lagrangian is [25]:

√
−g−1

L = R− 1

4
T−1
ij T

−1
kl DµTjkD

µTli −
1

8
T−1
ik T

−1
jl Fµν ijF

µν
kl − V

− k0

8

√
−g−1

εijkl ε
µνρAµ ij

(
∂νAρ kl +

2

3
g0Aν kmAρml

)
,

(2.1)

with i, j, k = 1, . . . , 4. The theory (2.1) is manifestly SO(4) covariant and it depends

explicitly on the symmetric matrix Tij parametrizing the quaternionic target manifold

GL(4)

SO(4)
⊂ SO(4, 4)

SO(4)× SO(4)
. (2.2)

Its gauge group SO(4) determines the following scalar potential

V =
1

2

(
k2

0 detT + 2g2
0TijTij − g2

0(Tii)
2
)
. (2.3)

The covariant derivatives and the field strengths are respectively given by

DµTij = ∂µTij + g0Aµ ikTkj + g0Aµ jkTki ,

Fµν ij = 2∂[µAν] ij + g0Aµ ikAν kj − g0Aµ jkAν ki .
(2.4)

To proceed, we simplify the theory by considering a further truncation, that is consistent

by symmetry considerations. The particular symmetry we choose to preserve is

U(1)×U(1) ⊂ SO(3)× SO(3) ' SO(4) . (2.5)

The matrix Tij is taken to depend only on the four real scalar fields φi = (ξ1, ξ2, ρ, θ) and

it is of the following block diagonal form:

T =

(
eξ1eR(ρ,θ)I2 02

02 eξ2 I2

)
with R(ρ, θ) = ρ

(
sin θ cos θ

cos θ − sin θ

)
. (2.6)

The vectors Aµ ij respecting (2.5) have the form

Aµ =

(
A1
µ 0

0 A2
µ

)
with A1,2

µ =

(
0 A1,2

µ

−A1,2
µ 0

)
, (2.7)

where A1,2
µ are two abelian vector fields. If we express the YM Lagrangian (2.1) in this

explicit parametrization, we obtain

√
−g−1

L = R− 1

2
(∂µ ξ1)2 − 1

2
(∂µ ξ2)2 − 1

2
(∂µ ρ)2 − 1

2
sinh2 ρ(Dµ θ)

2

− 1

4
e−2ξ1 F1

µνF1µν − 1

4
e−2ξ2 F2

µνF2µν − V ,
(2.8)

with the covariant derivative

Dµ θ = ∂µθ + 2 g0A1
µ . (2.9)
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Note that ρ and θ describe a gauged sigma-model with the 2d Euclidean hyperbolic target

space. The scalar θ has a local shift symmetry and hence it is (locally) pure gauge, which

implies it will be absent in the scalar potential (2.3). We find that

V = −4 g2
0 e

ξ1+ξ2 cosh(ρ) + 2 g2
0 e

2ξ1 sinh2(ρ) +
k2

0

2
e2(ξ1+ξ2) . (2.10)

This can be derived from a superpotential W given as

W =
eξ2

2

(
−2 g0 + k0 e

ξ1
)
− g0 e

ξ1 cosh ρ , (2.11)

where V = 2[
∑

i(∂φiW )2 −W 2]. We have checked that this truncation is consistent with

the field equations of the full 3-dimensional theory.

As explained in the appendix A, bosonic solutions of this truncated model preserve

some supersymmetry if and only if the supersymmetry conditions (A.13) and (A.14) are

satisfied, which for convenience we reproduce here:

0 = γµ∂µξ1 ζa−γµ(
√
−g)−1 ε σρµ F1

ρσ εabζ
b+
(
k0 e

ξ1+ξ2−2g0 e
ξ1 cosh(ρ)

)
ζa ,

0 = γµ∂µξ2 ζa−γµ (
√
−g)−1ε σρµ F2

ρσ εabζ
b+
(
k0 e

ξ1+ξ2−2g0 e
ξ2
)
ζa ,

0 = γµ∂µρζa+sinh(ρ)γµDµθ εabζ
b−2g0 e

ξ1 sinh(ρ)ζa ,

0 =

(
∂µ+

1

4
ω bc
µ γbc

)
ζa+

1

4
(1−cosh(ρ))Dµθ εabζ

b−2(
√
−g)−1

(
ε σρµ F1

ρσ+ ε σρµ F2
ρσ

)
εabζ

b

+

(
g0

2
eξ2− k0

4
eξ1+ξ2 +

g0

2
eξ1 cosh(ρ)

)
γµζa . (2.12)

Note that we have recast the 4 real components of the supersymmetry parameter εi in a

doublet of complex numbers ζa with ζ1 = ε1 + iε2 and ζ2 = ε3 + iε4.

Finally, let us comment on the vacua of the theory. From the supersymmetry condi-

tions (2.12), it directly follows that maximal supersymmetry is equivalent to

ρ = 0 , ξ1 = ξ2 = log
2g0

k0
(2.13)

where we chose k0 and g0 to be positive. One checks that indeed the potential is minimized

for these values at

V = −8g4
0

k2
0

. (2.14)

So, the maximally supersymmetric vacuum is AdS3 as expected. More surprisingly this is

only one of a family of AdS3 solutions of the same curvature. This is due to a flat direction

in the potential parameterized by ξ− = ξ1 − ξ2, since

ρ = 0 , ξ1 + ξ2 = 2 log
2g0

k0
⇒ V = −8g4

0

k2
0

. (2.15)

From the inspection of the first supersymmetry condition in (2.12) one concludes that

whenever ξ− 6= 0 these AdS3 vacua break all supersymmetry. Note that from a 6d per-

spective, non-zero ξ− corresponds to a deformation of the S3. There are no other extrema

of the potential (2.10) other than (2.15).
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3 Supersymmetric string solutions in D = 3

Now, we would like to find supersymmetric string solutions in the U(1)2 truncation (2.8)

with all vector fields and one of the scalar fields vanishing, i.e.

A1
µ = A2

µ = ρ = 0 . (3.1)

With this choice the scalar θ decouples from the BPS conditions (2.12) and the equations

of motions. The 3d background describing a domain wall driven by the scalars ξ1 and ξ2

takes the form

ds2
3 = dr2 + e2U(r)ds2

R1,1 ,

ξ1 = ξ1(r) ,

ξ2 = ξ2(r) .

(3.2)

We consider a Killing spinor of the form

ζa(r) = Z(r) ζ0 a , (3.3)

with ζ0 a constant spinor and impose the condition

ζ0 a = γ3ζ0 a , (3.4)

which breaks half of the supersymmetry. Here γ3 is the Dirac matrix corresponding to the

r-direction. We choose for the flat 3d Clifford algebra the following matrices

γ1 = iσ2 , γ2 = σ3 , γ3 = σ1 , (3.5)

where the Pauli spin matrices are

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (3.6)

Now the BPS equations (2.12) become

U ′ = −g0 e
ξ1 − g0 e

ξ2 +
k0

2
eξ1+ξ2 ,

ξ′1 = 2g0 e
ξ1 − k0 e

ξ1+ξ2 ,

ξ′2 = 2g0 e
ξ2 − k0 e

ξ1+ξ2 .
(3.7)

The function Z(r) in the Killing spinor (3.3) satisfies

Z ′ =
1

2

(
−g0 e

ξ1 − g0 e
ξ2 +

k0

2
eξ1+ξ2

)
Z , (3.8)

which, from (3.7) can immediately be solved as Z = eU/2.
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3.1 Single scalar field

It is clear that the above BPS equations (3.7) simplify drastically if the two scalars are

equal, so we consider this case first. Let

ξ = ξ1 = ξ2 . (3.9)

Then by taking the scalar ξ as the radial coordinate, the equation for U in (3.7) is solved as

e2U = e−2ξ
(

2g0 − k0 e
ξ
)
, (3.10)

where an integration constant is chosen as zero without loss of generality. The 3d metric

takes the form

ds2
3 =

e−2ξ dξ2

(2g0 − k0eξ)
2 + e−2ξ

(
2g0 − k0e

ξ
)
ds2

R1,1 . (3.11)

In the limit ξ → log (2g0/k0), the scalar curvature of (3.11) takes the negative constant

value −24g4
0/k

2
0, while for ξ → −∞ the scalar curvature vanishes. It is easy to see that

our domain wall solution interpolates between AdS3 and a cone over R1,1. Note that if one

crosses the horizon at ξ → log (2g0/k0) there is a signature change. We have checked that

this solution satisfies the field equations of (2.1) too.

3.2 Two scalar fields

We now want to solve (3.7) for ξ1 6= ξ2. If we define X = e−ξ1 and Y = e−ξ2 , from the

scalar field equations we get

Xe
− 2g0
k0
X

= c1Y e
− 2g0
k0
Y
. (3.12)

The constant c1 has to be chosen as 1 so that we have a supersymmetric AdS3 limit which

requires X → Y as we explained above.1 Now introducing a new radial coordinate R

such that
dR

dr
= 2g0 (eξ2 − eξ1) , (3.13)

one finds that the solution of (3.7) is:

e−ξ1 =
k0

2g0

ReR

(eR − 1)
,

e−ξ2 =
k0

2g0

R

(eR − 1)
,

e2U =
k0

2g0

ReR

(1− eR)2
.

(3.14)

The 3d metric reads

ds2
3 =

k2
0

16 g4
0

R2 e2R

(1− eR)4
dR2 +

k0

2g0

ReR

(1− eR)2
ds2

R1,1 . (3.15)

It is straightforward to verify that this solution satisfies the field equations of our

model (2.8). In the limit R → 0 the solution approaches to the AdS3 vacuum of the

model with the two scalars taking the value e−ξ1 = e−ξ2 = k0/2g0. The opposite limit

R→ +∞ is singular.

1One may wonder if equation (3.12) with c1 = 1 has any solution other than X = Y . Indeed, it has; the

inverse of f(x) = xex is the Lambert W function which has two real branches (see e.g. [30]).
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4 Uplifts to D = 6

In [25] it was shown that our 3-dimensional model given by the Lagrangian (2.1) can be

obtained from D = 6 minimal supergravity coupled to a chiral tensor multiplet (1.1) by a

consistent S3 compactification using the reduction ansatz found in [31]. When the gauge

fields are zero, like in our solutions, this ansatz takes the form:

ds2
6 = (detT

1
4 )
(

∆
1
2ds2

3 + g−2
0 ∆−

1
2T−1

ij dµ
idµj

)
,

ϕ =
1√
2

log
(

∆−1 detT
1
2

)
, (4.1)

H = k0(detT ) vol3 −
∆−2

6g2
0

εijkl

(
Ũµidµj ∧ dµk ∧ dµl + 3dµi ∧ dµj ∧ dTkmTlnµmµn

)
,

where

µiµi = 1 , ∆ = Tijµ
iµj , Ũ = 2TikTjkµ

iµj −∆Tii . (4.2)

Now we will uplift the supersymmetric string solutions that we found in the previous section

to D = 6 with the help of this ansatz. Since the compactification is consistent, they will

automatically be supersymmetric solutions of the 6-dimensional theory.

4.1 Uplift of the single scalar solution

In this case the scalar matrix (2.6) takes the simple form

Tij = eξδij , (4.3)

and the relevant quantities for the uplift (4.1) are

∆ = eξ , Ũ = −2 e2ξ . (4.4)

Now using (4.1) on our 3-dimensional solution (3.11) we find:

ds2
6 = e

3ξ
2 ds2

3 + g−2
0 e−

ξ
2 ds2

S3 ,

ds2
3 =

e−2ξ dξ2

(2g0 − k0eξ)
2 + e−2ξ

(
2g0 − k0e

ξ
)
ds2

R1,1 ,

H(3) = k0 e
4ξ vol(3) +

1

g2
0

volS3 ,

ϕ =
ξ√
2
.

(4.5)

If we now make the change of variable

eξ =
2 g0

(k0 + g2
0 r

2)
, (4.6)

– 7 –
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the solution (4.5) becomes

ds2 = H−1/2
p H−1/2

q ds2
R1,1 +H1/2

p H1/2
q dr2 +H1/2

p H1/2
q r2 ds2

S3 ,

H(3) =
1

g2
0

volS3 − volR1,1 ∧ dH−1
q ,

e−
√

2ϕ = HqH
−1
p ,

(4.7)

where

Hp =
1

g2
0r

2
, Hq =

1

2g0
+

k0

2g3
0r

2
. (4.8)

This is the “dyonic” string solution found2 in [19] (see also [20, 22]), but without an additive

constant in Hp. The solution is smooth everywhere [22]. As r → 0 the metric approaches to

AdS3× S3 geometry, the dilaton becomes constant and only the magnetic charge survives.

Whereas, in the limit r → ∞ we have a cone over S3 × R1,1, the dilaton goes to minus

infinity and only the electric charge remains. Note that unlike the solution found in [19]

the solution is not asymptotically Minkowski (but conformally flat) due to the absence of

an additive constant in Hp. This is a direct consequence of the reduction ansatz (4.1).

From (4.5) it is easy to see that the breathing mode (i.e. the volume of S3 [32]) and the

6d dilaton are both determined in terms of the scalar field ξ in such a way that when the

sphere decompactifies, the dilaton diverges instead of going to a constant as in [19].

4.2 Uplift of the two scalar solution

Now let us consider the uplift of the two scalar domain wall solution (3.14). In this case

the scalar matrix (2.6) has the form:

T =

(
eξ1 I2 02

02 eξ2 I2

)
(4.9)

If we now choose Hopf coordinates on S3:

~µ =

(
sin

η

2
cos

φ+ ψ

2
, sin

η

2
sin

φ+ ψ

2
, cos

η

2
cos

φ− ψ
2

, cos
η

2
sin

φ− ψ
2

)
, (4.10)

applying (4.1) to (3.14) we find

ds2
6 =

2[cos η + coth(R2 )]−1/2

g
3/2
0 k

1/2
0 R1/2

[
2g3

0

k0R

(
2 cos η sinh2

(
R

2

)
+ sinhR

)
ds2

3 + ds2
S̃3

]
,

ds2
3 =

k2
0

16 g4
0

R2 e2R

(1− eR)4
dR2 +

k0

2g0

ReR

(1− eR)2
ds2

R1,1 , (4.11)

2To be coherent with the conventions of [25], the 6d dilaton appearing in [20, 22] has been rescaled as

ϕ→ −
√
2ϕ.
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where ds2
S̃3 is the metric of the squashed 3-sphere given by

ds2
S̃3 = a(R, η) (σ1)2 + b(R, η) ((σ2)2 + (σ3)2) ,

a(R, η) =
(k0R)

(16 g0)

1 + eR + (eR − 1) cos η

eR − 1
,

b(R) =
k0R

8 g0 (eR − 1)
,

(4.12)

and the left-invariant 1-forms are given by

σ1 = dη , σ2 = sin
(η

2

)
(dψ + dφ) , σ3 = sin

(η
2

)
(dψ − dφ) . (4.13)

The 6d dilaton is

e−
√

2ϕ = 4 a(R, η) , (4.14)

and the 3-form is given by

H(3) =
16 g4

0 e
−2R (eR − 1)4

k3
0 R

4
vol3

− e−R (eR − 1)2 (128 + 127 coshR+ 127 cos η sinhR)

g2
0 (sinhR+ cos η (coshR− 1))2 volS̃3 .

(4.15)

In these coordinates the solution is not transparent. To get more insight, it is useful to

think of R4 as C2 with two complex coordinates z and w which we collectively denote as

~u. Hopf-Spherical coordinates are defined as

z = r sin
θ

2
eiα , w = r cos

θ

2
eiβ , α =

φ+ ψ

2
, β =

φ− ψ
2

. (4.16)

It will also be useful later to introduce

r1 = |z| = r sin
θ

2
, r2 = |w| = r cos

θ

2
. (4.17)

Let us point out that r1 and α provide polar coordinates in the w = constant planes,

while r2 and β provide polar coordinates on the z = constant planes. We now perform the

coordinate transformation

eR =
1 + g2

0r
2 cos θ +

√
1 + g4

0r
4 + 2g2

0r
2 cos θ

g2
0r

2(1 + cos θ)
, (4.18)

cos η =
√

1 + g4
0r

4 + 2g2
0r

2 cos θ − g2
0r

2 , (4.19)

after which the metric (4.11), the dilaton (4.14) and the 3-form (4.15) take the form

ds2
6 = (HpHq)

− 1
2ds2

R1,1 + (HpHq)
1
2ds2

R4 ,

e−
√

2ϕ = HqH
−1
p , (4.20)

H(3) = g2
0r

4H2
p volΩ3 − volR1,1 ∧ dH−1

q ,

– 9 –
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where in our new coordinates

ds2
R4

= dr2 + r2dΩ2
3 , dΩ2

3 =
1

4
(dθ2 + dφ2 + dψ2 − 2 cos θdφdψ) (4.21)

and

Hp =
1√

1 + g4
0r

4 + 2g2
0r

2 cos θ
, (4.22)

Hq =
k0

2g0
log

1 + g2
0r

2 cos θ +
√

1 + g4
0r

4 + 2g2
0r

2 cos θ

g2
0r

2(1 + cos θ)
. (4.23)

One can verify that both Hp and Hq are indeed harmonic functions, i.e. solutions of the

Laplace equation on R4 in these coordinates. It is also easy to check that as r → ∞ the

geometry becomes AdS3×S3. The curvature scalar diverges as r → 0 for θ = 0 and θ = π.

Another singularity occurs as r → 1/g0 at θ = π. These correspond to locations of the

sources as we will see below. Note that except the form of the harmonic functions, the

solution (4.20) looks exactly the same as our previous dyonic string solution (4.7). But

unlike before, it is not possible to remove magnetic strings from the system by setting k0 = 0

since there is no additive constant in Hp. Let us also note that the harmonic function Hp

occurred before e.g. in [8, 13] and corresponds to a uniform circular source. Meanwhile, Hq

being a logarithmic harmonic function suggests a 2-dimensional overall transverse space.

These observations are further clarified in the next part.

4.2.1 The physical interpretation

We can get the physical interpretation of the solution (4.20) through a few observations.

First note that a point source, i.e. a string fully localized in R4 (and with worldvolume

along R1,1) corresponds to both magnetic and electric harmonic functions of the form

Hpoint = a+
b

r2
, (4.24)

since

∇2
R4

(
1

r2

)
= δ4(~u) . (4.25)

This also implies that more generically, a string density (or smeared string configuration)

σ(~u) will give rise to a harmonic solution of the form

Hσ(u) =

∫
d4v

σ(v)

|~u− ~v|2
. (4.26)

The question is then, can we find electric and magnetic string density’s such that

Hp =

∫
d4v

σp(v)

|~u− ~v|2
, (4.27)

Hq =

∫
d4v

σq(v)

|~u− ~v|2
. (4.28)
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The answer is yes, as we will now explain. It turns out that the magnetic strings are

smeared along a ring in the w = 0 plane (that is θ = π) in (4.16), of radius

r0 =
1

g0
. (4.29)

More precisely the magnetic string density is

σp =
r0

2π
δ2(w, w̄)δ(r − r0) , (4.30)

and this follows from the following computation

Hp =

∫
d4v

σp(v)

|~u− ~v|2
(4.31)

=
1

2π

∫ 2π

0
dα

r2
0

r2
2 + r2

1 + r2
0 − 2r0r1 cosα

(4.32)

=
r2

0√
r4

0 + 2r2
0(r2

2 − r2
1) + (r2

1 + r2
2)2

. (4.33)

The fact that this is identical to (4.22) follows directly via (4.17).

Additionally one finds that the electric strings are smeared inside a disk of radius r0

in the w = 0 plane. The electric string density is

σq =
k0

2g0π
δ2(w, w̄)θ(r − r0) , (4.34)

where θ(r − r0) is the Heaviside step function. This is verified by direct computation

Hq =

∫
d4v

σq(v)

|~u− ~v|2
(4.35)

=
k0

2g0π

∫ r0

0
dr

∫ 2π

0
dα

r

r2
2 + r2

1 + r2 − 2rr1 cosα
(4.36)

=
k0

2g0

∫ r0

0
dr

2r√
r4

0 + 2r2
0(r2

2 − r2
1) + (r2

1 + r2
2)2

(4.37)

=
k0

2g0
log

r2
2 + r2

0 − r2
1 +

√
r4

0 + 2r2
0(r2

2 − r2
1) + (r2

1 + r2
2)2

2r2
2

. (4.38)

As before, one checks directly that this is identical to (4.23) by using (4.17).

In summary, we have discovered that the solution (3.15), when lifted to 6 dimen-

sions (4.20), corresponds to a rather peculiar configuration of strings. All strings have

their world-volume along the R1,1 spanned by (t, x). They are however spread out in the

w = 0 subplane of the R4 transverse space. In particular the electric strings are distributed

with constant density inside a disc of radius r0 in this plane, while the magnetic strings are

distributed along the edge of this disc, a circle of radius r0 in the same w = 0 subplane. In

this plane we thus have the simple picture given in figure 1.

It is well-established that in the case of a consistent sphere reduction, the higher

dimensional origin of a domain wall is a brane distribution, see e.g. [32–39]. But unlike
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Magnetic

Electric

w = 0 plane

Figure 1. The distribution of electric and magnetic branes in 6d.

ours, in most of the known examples these distributions are with non-dilatonic branes.

Finally, we would like to point out that such BPS configurations of dyonic strings can

directly be obtained studying 6d equations but only a small subset of them comes from

our particular 3d gauged supergravity (2.1).

5 Final remarks

Consistent compactifications provide a powerful tool to obtain complicated solutions in a

higher dimensional theory from a lower dimensional one. Following this idea, in this paper

we first found two supersymmetric black string solutions in the 3-dimensional N = 4, SO(4)

gauged supergravity and then embedded them to the 6-dimensional ungauged N = (1, 0)

supergravity, using the fact that these two models are connected by a consistent sphere

reduction [25]. Although, one of these solutions gave rise to an already known dyonic

string [19], from the other we obtained an interesting configuration which certainly deserves

further investigation. First of all, it would be interesting to understand its connection with

superstrata [40] or supertube [41, 42] type solutions. The fact that one of the harmonic

functions in this solution already appeared in such set-ups (e.g. in [8]) hints a possible

relationship. Studying its 10-dimensional interpretation in terms of D1-D5 branes and

its dimensional reduction to D = 5 and comparison with black rings [43] would be very

illuminating. One may also consider its generalizations with more number of active scalar

fields or non-zero gauge fields in 3-dimensions. It is possible to add pp-waves travelling

along the worldvolumes of the strings making use of its null Killing vector too [44]. Studying

RG flows using these string solutions [45] is another attractive direction which will give

valuable information about the dual CFT.

Recently consistency of the reductions of D = 6, N = (1, 1) and N = (2, 0) super-

gravities on AdS3 × S3 was shown [46]. It would be very interesting to repeat our analysis

for these cases too. The uplift of our single scalar solution (4.7) is not asymptotically flat

unlike the dyonic string solution found in [19]. This suggests a possible generalization of

the reduction ansatz (4.1) which is worth investigating. We hope to come back to these

problems soon.
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A Supersymmetry equations

Here we give derivation of the relevant supersymmetry equations for the theory (2.1).

A.1 From SO(4) Yang-Mills to
(
R3 o SO(3)

)2
Chern-Simons

In 3-dimensions vectors are dual to scalars, which implies that one can always rewrite the

theory in such a way that no dynamical3 vectors are present, and only topological, i.e.

Chern-Simons (CS), vectors remain. This CS formulation is the simplest and most natural

setting in which to construct three dimensional gauged supergravity from the bottom-

up [28, 29]. From the top-down perspective of dimensional reduction, one naturally ends

up with dynamical vector fields, and one obtains the gauged supergravity in the so called

Yang-Mills (YM) formulation. The precise connection and translation between these two

formulations of three dimensional gauged supergravities was worked out in [27]. In that

work a particular basis for the gauge group and embedding tensor were used which is

slightly different from the one obtained from the sphere reduction in [25], which amounts

to expressing SO(4) as SO(3) × SO(3).

In summary, although our model (2.1) is a YM formulated theory based on the gauge

group SO(4), to implement the results of [28, 29] one has to reformulate it as a CS theory

based on the gauge group R6 o SO(4) '
(
R3 o SO(3)

)
×
(
R3 o SO(3)

)
, via [27]. As most

steps are rather straightforward (though somewhat tedious) applications of [27–29] we only

present a few key formulae in this reformulation.

The isomorphism between the adjoint representation of SO(4) and SO(3) × SO(3) is

realized by ’t Hooft symbols ηαaij [47]. They take an antisymmetric pair of indices [ij],

i, j = 1, . . . , 4 and map the (anti)self-dual component, in case α = (+,−) respectively, to

the index a = 1, 2, 3. Explicitly

η±aij = εaij ± δaiδj4 ∓ δajδ4i . (A.1)

This change of indices on any tensor V is then implemented in practice via the formulae

Vij = ηαaijV
α
a , V α

a =
1

4
ηαaijVij (A.2)

In the CS formulation one replaces the dynamical degrees of freedom in the field strengths

F of (2.1) by additional scalars χ and introduces extra (topological) vectors, G = dC,

3In this context ‘dynamical’ means ‘with quadratic kinetic term’.
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that gauge an extra nilpotent factor in an enlarged gauge group [27]. The precise relations

between the CS and YM fields are given by the duality formulae

2
√
−g εµνρDρχαa = −Mαβ

ab F
β
µν b , Mαβ

ab = T−1
ik T

−1
jl η

α
aijη

β
bkl ,

G±µν a −
1

2
εabc χ

±
b F
±
µν c =

1

4

√
−g εµνρ η±a jk T

−1
ij DµTik .

(A.3)

A.2 The supersymmetry variations

Once the connection to the CS formulation has been made, one can obtain the supersym-

metry variations for the N = 4 gauged supergravity associated to (2.1) from [28]. As our

interest is in studying bosonic solutions preserving supersymmetry, we only present the

fermionic variations and assume that all fermionic fields vanish. The scalar fields of the

CS formulation, ϕ in [28], are conveniently grouped as

Uij = Tij + χij . (A.4)

The supersymmetry variations of [28] involve a number of geometric data of the scalar

manifold and details on the embedding of the gauge group into the isometry group of that

scalar manifold. For our 3d model these were worked out in [25]. Combining these results

leads to

δε ψ
i
µ = ∇̂µ εi −

1

2
W γµ ε

i , (A.5)

δε λ
i ,kl =

1

2
(γµDµ U

mn + ∂mnW )
(
δijδkmδ

l
n − f ij klmn

)
εj , (A.6)

where

∇̂µ εi = ∇µ εi + P ijkl+ εj

(√
T−1Dµ

√
T
)
kl

+ P ijkl+ εj
√
T kmDµχmn

√
Tnl , (A.7)

where ∇µ = (∂µ + 1
4ω

bc
µ γbc), P+

ijkl = 1
4 (δikδjl − δjkδil + εijkl) and the superpotential is

W =
1

2

(
k0 det

√
T − g0 TrT

)
. (A.8)

Finally, the complex structures f ij on the scalar target space are

f ij = −(Γij)klmn e
kl ∧ emn , with (Γij)klmn = 4 δkm Pijln+ , (A.9)

where emn is the vielbein on the target manifold as in (5.2) of [28].

A.3 Supersymmetry conditions for the truncated model

We now investigate the vanishing of (A.6) under the assumption that the only non-trivial

bosonic fields are those of the truncation (2.6) and (2.7). Note that in the CS formulation

the F1,2 of the main text (2.7) are related to scalars χ1,2 through the duality relations (A.3),

which after the truncation become:

eξ1,2Dµχ
1,2 =

εµ
νρF1,2

νρ√
−g

. (A.10)
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Labeling the scalars appearing in this truncation as φi = (ξ1, ξ2, ρ, θ) and χI = (χ1, χ2),

we can formally re-express the vanishing of (A.6) as(
∂Umn

∂φp
(γµDµφ

p) +
∂Umn

∂χI
(
γµDµχ

I
)

+ ∂mnW

)(
δijδkmδ

l
n − f ij, klmn

)
εj = 0 . (A.11)

Our approach to analyze these equations is to think of them as a linear algebra problem

determining the variables Xi
j = (Dµφ

i)γµεj , since the equations (A.11) have the form

M ikl j
pX

p
j = V ikl . (A.12)

Note that these are 64 equations for 16 variables, and if M and V would be generic these

equations would be without solution. However, and this might have been expected since

the truncation (2.6)–(2.7) is consistent, in this particular case most of the equations are

actually redundant. It turns out that only 12 of them are linearly independent and so the

16 components of Xi
j are not uniquely determined. We find it convenient to choose the

12 variables to solve for as Xα
i , α = 1, 2, 3 and reorganize them as 6 complex variables

Zαa , a = 1, 2, defined as Zα1 = Xα
1 + iXα

2 and Zα2 = Xα
3 + iXα

4 . Carrying through the

straightforward but somewhat tedious solution of (A.12) one finds

Z1
a = γµ ∂µξ1 ζa = γµ(

√
−g)−1 ε σρ

µ F1
ρσ εabζ

b −
(
k0 e

ξ1+ξ2 − 2 g0 e
ξ1 cosh(ρ)

)
ζa ,

Z2
a = γµ ∂µξ2 ζa = γµ (

√
−g)−1ε σρ

µ F2
ρσ εabζ

b −
(
k0 e

ξ1+ξ2 − 2 g0 e
ξ2
)
ζa ,

Z3
a = γµ ∂µρ ζa = − sinh(ρ)γµDµθ εabζ

b − 2 g0 e
ξ1 sinh(ρ)ζa .

(A.13)

with ζ1 = ε1 + iε2 and ζ2 = ε3 + iε4.

Additionally to the vanishing of (A.6) one also needs to impose the vanishing of the

gravitino variation (A.5). Inserting the truncation (2.6) and (2.7) into (A.5) gives

0 = ∇µ ζa +
1

4
(1− cosh(ρ)) Dµθ εabζ

b − 2(
√
−g)−1

(
ε σρ
µ F1

ρσ + ε σρ
µ F2

ρσ

)
εabζ

b

+

(
g0

2
eξ2 − k0

4
eξ1+ξ2 +

g0

2
eξ1 cosh(ρ)

)
γµζa . (A.14)

To summarize, any bosonic solution of the U(1)2 truncated model (2.8) that preserves some

supersymmetry should satisfy (A.13) and (A.14).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[35] M. Cvetič, S.S. Gubser, H. Lü and C.N. Pope, Symmetric potentials of gauged supergravities

in diverse dimensions and Coulomb branch of gauge theories, Phys. Rev. D 62 (2000) 086003

[hep-th/9909121] [INSPIRE].

[36] I. Bakas, A. Brandhuber and K. Sfetsos, Domain walls of gauged supergravity, M-branes and

algebraic curves, Adv. Theor. Math. Phys. 3 (1999) 1657 [hep-th/9912132] [INSPIRE].
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