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1 Introduction and summary

An important step towards a detailed understanding of quantum black holes is the deter-

mination of their spectrum [1]. However, with the exception of BPS black holes, it has

generally proven quite difficult to compute the black hole spectrum precisely. In this paper

we find the spectrum of extremal nonrotating black holes on the nonBPS branch of N = 8

and N = 4 supergravity.

The black holes we consider are solutions to theories with extended supersymmetry and

have AdS2×S2 near horizon geometry, just like BPS black holes; but they are supported by

fluxes that are inconsistent with supersymmetry. In this situation it is not expected that the

spectrum is organized by supersymmetry and our explicit computations confirm this generic

expectation. However, we find that nonetheless the black hole spectrum exhibits significant

simplifications that are reminiscent of the familiar ones that are due to supersymmetry.

This finding does not conform with textbook BPS-ology but we will explain how it fits

nicely with other expectations.

The spectrum of the black holes we consider is described by the quantum numbers of

the SL(2)×SU(2) isometries of AdS2×S2, i.e. the conformal weight h and the partial wave

number j. The conformal weight is equivalent to the mass m of the perturbations in units

of the AdS2 radius ℓ through

h =
1

2
+

√
1

4
+m2ℓ2 , (1.1)

for scalar fields. For BPS black holes the supersymmetry algebra guarantees that the su-

pergravity mass spectrum corresponds to conformal weights h that are integers for bosons

and half-integers for fermions. For nonBPS black holes the masses of fluctuations in su-

pergravity are not constrained a priori but our explicit computations establish that, in

fact, the values of m2 for scalar fields are all such that the conformal weights (1.1) are

integers. This is part of our claim that the spectrum is reminiscent of supersymmetry. In

particular, the result suggests that the supergravity spectrum on the nonBPS branch is

protected against quantum corrections and, if so, it should offer detailed guidance towards

construction of the UV complete string theory describing extreme nonBPS black holes,

despite the absence of supersymmetry.

The technical aspects of our explicit computations follow the strategy that is very well

known from similar problems addressed in the past, such as spherical reduction of type IIB

supergravity in ten dimensions on AdS5×S5 [2, 3]. Accordingly, we first find the equations

of motion of 4D supergravity and then linearize them around our AdS2 × S2 background

solution. We then expand all fluctuating fields in their partial wave components and impose

gauge conditions. It is no surprise that the 2D equations that result from these steps are

messy, but fortunately they are sufficiently block diagonal that they can be disentangled

and solved, despite the absence of supersymmetry. The final mass matrices therefore

straightforwardly give eigenvalues for the masses of each partial wave that we can insert

in (1.1) and so identify the conformal weights in AdS2.

The only subtlety that is special to two dimensions is the spin of the fields [4–6]. In

AdS2 we can generally represent vectors and tensors as scalar fields and similarly recast
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gravitinos as Majorana-Weyl fermions. However, the dualization of fields with with spin

require special considerations for harmonic modes because those are generated by gauge

symmetries that are “large” in the sense that they are non-normalizable on AdS2. There-

fore, such transformations are not true symmetries, they generate field configurations that

are physical and interpreted as excitations that are localized on the boundary. They can

be identified with the modes that are described by a Schwarzian action (and its generaliza-

tions) in the Jackiw-Teitelboim model (and its relatives) [7–12]. We refer to these modes

as boundary modes following the terminology previously used in the context of logarithmic

corrections to black hole entropy in four dimensions. Thus the spectrum of extremal black

holes on the nonBPS branch is characterized by

• Bulk modes that, from the AdS2 point of view, are organized in infinite towers of

Kaluza-Klein modes (partial waves).

• Boundary modes that, from the AdS2 point of view, are field configurations that are

physical even though they can be represented as “pure gauge” locally. These modes

are closely related to harmonic modes.

Our result for the quantum numbers of supergravity on the nonBPS branch of AdS2×S2 are

reported in table 2. As a test of this spectrum we have computed the quantum contributions

due to these modes by explicitly summing over all physical states. We find agreement with

logarithmic corrections to the black hole entropy previously found using local methods [13].

This gives great confidence in the black hole spectrum we find.

We have already mentioned that on the nonBPS branch all fields in AdS2 have integral

conformal weight h and table 2 shows that we mean this quite literally: the conformal weight

is integral even for fermions. This assignment is unusual but not inconsistent because the

familiar relation between spin and statistics does not apply in two dimensions, at least in

its standard form. Indeed, we will confirm our finding that fermions have integral weight

on the nonBPS branch by recovering this assignment in settings where the AdS2 geometry

descends from an AdS3 factor.

The standard simplification due to supersymmetry is that, when certain conditions are

satisfied, the spectrum is organized into short multiplets that enjoy some protection against

quantum corrections. However, there is also a less frequently exploited simplification that

is due to broken supersymmetry. On the BPS branch both simplifications are relevant but

on the nonBPS branch it is only the latter one that applies. It can be interpreted as a

global supersymmetry that is implemented directly on the black hole spectrum. We discuss

this symmetry in detail in section 6.

Before getting to details of our computations we must carefully consider the meaning

of the spectrum of quadratic fluctuations around AdS2 × S2. Indeed, several well-known

results prompt the question of whether such a spectrum makes any sense at all. For

example,1

1There are closely related results for the near horizon Kerr geometry and our discussion below should

apply to that case as well [14, 15].
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• Finite energy excitations in AdS2 are incompatible with asymptotically AdS2 bound-

ary conditions: they elicit strong gravitational backreaction that modifies the asymp-

totic structure of spacetime [16]. Therefore, quadratic fluctuations are not intrinsic

to AdS2.

• In constructions where AdS2 arises from AdS3 through reduction along a null direc-

tion it was argued that the excitations with the lowest energy depend on the compact

null coordinate but not on the AdS2 that is retained by the compactification [17].

Therefore, the perturbations varying over AdS2 that we consider do not dominate in

the infrared limit.

In view of such results it is, for example, not obvious that the AdS2 conformal weight h is

a useful quantum number in AdS2 quantum gravity. However, the recent development of

nAdS2/nCFT1 correspondence [18] addresses these obstacles:

• The strict AdS2 theory is interpreted as an inert IR fixed point of a dual CFT1.

An interesting holographic theory is obtained only by perturbing away from the fixed

point by irrelevant operators. These operators dominate the far UV, corresponding

to the asymptotic AdS2 boundary breaking down. However, their description of the

approach to the IR is controlled.

The spectrum we compute classifies the irrelevant operators in the IR fixed point

theory that may serve as appropriate deformations. When these operators are added

to the Lagrangian they deform the theory such that conformal symmetry is broken

and new length scales are introduced. The most important scales appearing in this

manner are associated with h = 2 operators and were discussed in [19].

• In constructions where AdS2 arises from AdS3 through a null reduction the depen-

dence on the null direction indeed dominates in the strict infrared limit. However,

the irrelevant operators controlling the near infrared regime are transverse to the

direction of dimensional reduction and such excitations depend on position in the

AdS2 geometry. We identify our spectrum with such operators.

In short, the spectrum given in table 2 does not describe the ground state of AdS2 quantum

gravity but rather the low lying excitations above the ground state. In terms of a CFT2,

the ground state has huge degeneracy and is referred to as left moving in our conventions.

The nAdS2 theory with the spectrum we compute characterizes the leading excitations

which, for kinematic reasons, are entirely right moving and only weakly coupled to the

left moving ground state. The discussion in section 5 elaborates on this interpretation and

related conceptual challenges.

The simplifications we observe by explicit computations are, as mentioned, reminiscent

of those that are due to supersymmetry. In section 6 we develop this point of view and

identify fermionic operators that generate the black hole spectra. It would be interesting

to recover the same generators from ab initio considerations. Progress in this direction

could yield clues to the microscopic description of these black holes.
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This paper is organized as follows. In section 2 we describe the extremal non-BPS

black hole backgrounds we consider as solutions to N = 8 (or N = 4) supergravity in

D = 4. They all have AdS2×S2 near horizon geometry and in these contexts they respect

USp(8) (or USp(4) × SO(nV − 1)) global symmetry. This symmetry structure partially

diagonalizes the quadratic fluctuations around the backgrounds by organizing them into

manageable blocks that are decoupled from one another. In section 3 we compute the mass

spectrum of these blocks and obtain the conformal weights h of the corresponding fields.

In section 4 we compute the logarithmic correction to the black hole entropy due the one

loop contributions of all these states and find agreement with the results recently found

using very different methods [13]. In section 5, we study the dimensional reduction from

AdS3 × S2 to AdS2 × S2 and show how, depending on a choice of chirality, we reproduce

either the nonBPS spectrum or the BPS spectrum on AdS2 × S2. This not only yields yet

another consistency check on our computations but, as we discuss, it also enlightens the

relation between the nAdS2/nCFT1 correspondence and black holes in string theory. We

finish in section 6 with a discussion of broken supersymmetry.

2 Black holes and their fluctuations

In this section we introduce the nonBPS black holes in N = 8 and N = 4 supergravity.

We exploit symmetries to establish the partial decoupling of quadratic fluctuations around

these backgrounds into blocks.

2.1 The AdS2 × S2 backgrounds in N = 8 supergravity

N = 8 supergravity in D = 4 spacetime dimensions consists of one graviton, 8 gravitini

Ψµ̂A, 28 U(1) vector fields AAB
µ̂ , 56 Majorana spinors ΛABC , and 70 scalars WABCD. The

hatted greek indices µ̂, ν̂ = 0, 1, 2, 3 denote 4D Lorentz indices and capital latin letters

A = 1, . . . , 8 refer to the global SU(8)R symmetry of N = 8 SUGRA. The SU(8)R indices

are fully antisymmetrized so the graviton, gravitini, vectors, gaugini, and scalars transform

in representations 1, 8, 28, 56 and 70 of the SU(8)R group.

The black hole backgrounds we consider all have an AdS2×S2 near horizon geometry,

Rµνλρ = − 1

ℓ2
(gµλgνρ − gµρgνλ) , (2.1)

Rαβγδ = +
1

ℓ2
(gαγgβδ − gαδgβγ) , (2.2)

where unhatted indices µ, ν = 0, 1 and α, β = 2, 3 refer to AdS2 and S2, respectively. ℓ is

the radius of curvature of both 2D spaces.

The scalar fields are all constant on AdS2 × S2 and the fermions vanish. Thus the

only matter supporting the geometry is the 28 field strengths GAB
µ̂ν̂ = 2∂[µ̂A

AB
ν̂] . The 28

electric charges (field components on AdS2) and 28 magnetic charges (field components

on S2) characterizing the field strengths can famously be organized into a fundamental

representation 56 of E7(7) duality symmetry [20]. However, it is convenient to focus on the

SU(8)R symmetry that is the maximal compact subgroup of E7(7) and express the charges
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by the complex antisymmetric central charge matrix ZAB. After block diagonalization by

an SU(8)R transformation we can present it as

ZAB = diag(λ1ǫ, λ2ǫ, λ3ǫ, λ4ǫ) , ǫ =

(
0 1

−1 0

)
. (2.3)

The canonical example of a charge configuration that corresponds to a BPS solution

is λ1 = ℓ−1 and λ2 = λ3 = λ4 = 0. These skew-eigenvalues preserve a SU(2)R × SU(6)

subgroup of SU(8)R. The symmetry breaking pattern SU(8)R → SU(2)R × SU(6) consti-

tutes a more general characterization of the charges corresponding to BPS black holes with

finite area.

A charge configuration that corresponds to the nonBPS black holes we focus on

is [21, 22]

λ1 = λ2 = λ3 = λ4 =
ei

π
4

2ℓ
. (2.4)

It realizes the symmetry breaking pattern SU(8)R → USp(8) that is characteristic of the

nonBPS branch. To see this, note that the central charge matrix (2.3) with the skew-

eigenvalues (2.4) is proportional to the symplectic matrix

Ω8 = diag(ǫ, ǫ, ǫ, ǫ) . (2.5)

The antisymmetric tensor representation of USp(8) is inherited from that of SU(8) by

imposing tracelessness upon contraction with Ω8 so the symmetry breaking SU(8)R →
USp(8) is manifest.

The phase appearing in (2.4) ensures that the central charge matrix ZAB has deter-

minant +1, as it must to be an element of SU(8)R. Physically, the phase shows that the

nonBPS branch has equal electric and magnetic charges, in contrast to the BPS solutions

that can be chosen to have only electric charge. The factor 1
2 on the right hand side of (2.4)

is such that the quadratic invariant ZABZ
AB has the same magnitude for BPS and nonBPS

black holes. This means the energy momentum tensor will be the same on the two branches

which show that they share the same geometry.

In contrast, fermions enjoy Pauli couplings that depend linearly on the field strengths

so supersymmetry acts differently on the two branches. Supersymmetry is preserved when

the fermion transformations

δλABC = − 3√
2
Ĝ[ABǫC] , (2.6)

δψA
µ̂ =

(
δABDµ̂ +

1

2
ĜABΓµ̂

)
ǫB , (2.7)

vanish, where the field strengths ĜAB ≡ 1
2Γ

µ̂ν̂GAB
µ̂ν̂ . We can assume without loss of general-

ity that ĜAB are block diagonal in the (AB) indices, as for the central charge in (2.3). Thus

the 4 sectors (12), (34), (56), (78) do not couple to each other. On the BPS branch only

Ĝ12 is nonvanishing. In this case there are no solutions for ǫB in the (34), (56), (78) sectors
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but, in the (12) sector, there is a solution with nontrivial ǫ1,2 and so the BPS solutions

preserve N = 2 supersymmetry. On the nonBPS branch the (12), (34), (56), (78) sectors

give equivalent conditions but, because of the factor 1
2 in (2.4) that was discussed in the

preceding paragraph, there is a mismatch between the magnitude of the field strength and

the AdS2 with scale ℓ. Therefore, there are no solutions for ǫB on the nonBPS branch.

2.2 Adaptation to N = 4 supergravity

We also want to discuss the spectrum of nonBPS black holes in N = 4 supergravity. It will

ultimately follow automatically from the results in N = 8 supergravity, after a few modest

reinterpretations.

In order to show this we first truncate N = 8 supergravity to N = 4 supergravity. This

truncation breaks the global symmetry SU(8)R → SU(4)R × SU(4)matter. The branching

rules of this symmetry breaking are

70 → 2(1,1)⊕ (6,6)⊕ (4, 4̄)⊕ (4̄,4) ,

56 → (4̄,1)⊕ (6,4)⊕ (4,6)⊕ (1, 4̄) ,

28 → (1,6)⊕ (6,1)⊕ (4,4) ,

8 → (1,4)⊕ (4,1) ,

1 → (1,1) . (2.8)

It is a consistent truncation that preserves N = 4 supersymmetry to omit all fields in

the 4 (or 4̄) of SU(4)matter. The truncated theory obtained this way comprises an N = 4

supergravity multiplet (in the 1 of SU(4)matter) and nV = 6 matter multiplets (in the 6 of

SU(4)matter).

The matter supporting AdS2 × S2 solutions in N = 8 supergravity is encoded in

the spacetime central charges (2.3). The nontrivial fields can be chosen without loss of

generality as the four skew-diagonal ones and these are all retained in the truncation of

SU(8)R to its SU(4)R × SU(4)matter subgroup. Therefore these background configurations

are also solutions to the truncated theory with N = 4 supersymmetry. We focus on the

nonBPS branch with skew-eigenvalues (2.4) and the symmetry breaking pattern SU(8)R →
USp(8) in N = 8 SUGRA. This case descends to a nonBPS branch of N = 4 SUGRA with

the symmetry breaking pattern SU(4)R × SU(4)matter → USp(4)×USp(4)matter.

There is a simple generalization of this result to N = 4 SUGRA with a general number

nV ≥ 1 of matter multiplets [13]. Since SU(4) = SO(6) and USp(4) = SO(5) as Lie algebras,

the symmetry breaking pattern of the nonBPS branch found in the preceding paragraph

for nV = 6 matter multiplets is equivalent to SO(nV )matter → SO(nV − 1)matter. This is

the pattern that characterizes the nonBPS solutions of theories with any nV ≥ 1.

2.3 Structure of fluctuations

As we have stressed, our background solution breaks the global SU(8)R of N = 8 SUGRA

theory to a USp(8) subgroup. This greatly simplifies the analysis of fluctuations around

the background because it shows that different USp(8) representations cannot couple at

quadratic order. We can therefore organize the spectrum as representations of USp(8).

– 7 –
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Multiplet Block content d.o.f.
N = 8 N = 4 with nV matter multiplets

USp(8) # USp(4)× SO(nV − 1)matter #

KK block 1 graviton, 1 vector, 1 scalar 5 1 1 (1,1) 1

Gravitino block 2 gravitini and 2 gaugini 8 8 4 (4,1) 2

Vector block 1 vector and 1 (pseudo)scalar 3 27 27 (5,1) ⊕ (1,nV − 1) ⊕ (1,1) nV + 5

Gaugino block 2 gaugini 4 48 24 (4,nV − 1) ⊕ (4,1) 2nV

Scalar block 1 real scalar 1 42 42 (5,nV − 1) ⊕ (1,1) 5nV − 4

Table 1. Decoupled quadratic fluctuations around the KK black hole in N = 8 and N = 4

supergravity. The columns # denote the multiplicity of the blocks.

The branchings of SU(8)R → USp(8) for the matter representations in N = 8 SUGRA

can be realized explicitly by removing contractions with the symplectic invariant (2.5) from

SU(8)R representations. This gives

70 → 42⊕ 27⊕ 1 ,

56 → 48⊕ 8 ,

28 → 27⊕ 1 ,

8 → 8 ,

1 → 1 . (2.9)

Collecting all singlets we find that on the nonBPS branch gravity can mix with one linear

combination of the vector fields and similarly with one scalar. This is the field content of

minimal Kaluza-Klein gravity in 4D, obtained by dimensional reduction of Einstein gravity

in 5D. Truncation ofN = 8 SUGRA to this sector is consistent and identifies the black holes

on the nonBPS branch with the black holes in Kaluza-Klein theory [23, 24]. Moreover, the

quadratic fluctuations of these fields is identical whether we consider the nonBPS branch

of N = 8 SUGRA or minimal Kaluza-Klein theory. We therefore refer to the singlet sector

as the “Kaluza-Klein block”.

The other USp(8) representations similarly present “blocks” that do not mix with each

other. We summarize these decoupled sectors in table 1. The partial diagonalization of

quadratic fluctuations into blocks was previously established away from extremality [13].

The spectrum of the KK black hole in N = 4 SUGRA can be computed directly,

or by truncating the fluctuations analyzed for N = 8 SUGRA. The blocks of decoupled

quadratic fluctuations are unchanged, it is only their degeneracy that is modified. Table 1

lists the multiplicity of block in N = 4 SUGRA with nV ≥ 1 matter multiplets and their

representations under the global USp(4)× SO(nV − 1)matter symmetry.

3 Mass spectrum

In this section we compute the mass spectrum of fields on AdS2 × S2. Global symmetries

partially decouple the fluctuations so we can consider one block at a time, as discussed in

section 2 and summarized in table 1. For each block we start from the linearized equa-

tions of motion in 4D and expand the perturbations in spherical harmonics on S2, before

– 8 –
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diagonalizing the resulting 2D equations of motion explicitly. Bulk modes are analyzed in

section 3.2 through 3.6 and boundary modes are considered in section 3.7. From now on,

we set the AdS2 radius ℓ to 1 for simplicity.

This section is long and relatively technical. Readers who are not interested in the

detailed computations can jump directly to section 3.8 where the results are summarized.

3.1 Partial wave expansion on S2 and dualization of AdS2 vectors

The standard basis elements for the partial wave expansion of a scalar field on S2 are

the spherical harmonics Y(lm), i.e. the eigenfunctions of the 2D Laplacian ∇2
S on S2 with

eigenvalues −l(l + 1). The analogous spherical harmonics for vector (or tensor) fields on

S2 are easily formed by taking one (or two) derivatives of Y(lm) along the S2. Thus we can

expand a 4D scalar w, a 4D vector aµ̂, and 4D gravity hµ̂ν̂ as

w =
∑

lm

ϕ(lm)Y(lm) , (3.1)

aµ =
∑

lm

b(lm)
µ Y(lm) , (3.2)

aα =
∑

lm

(
b
(lm)
1 ∇αY(lm) + b

(lm)
2 ǫαβ∇βY(lm)

)
, (3.3)

hµν =
∑

lm

H(lm)
µν Y(lm) , (3.4)

hµα =
∑

lm

(
B

(lm)
1µ ∇αY(lm) +B

(lm)
2µ ǫαβ∇βY(lm)

)
, (3.5)

hαβ =
∑

lm

(
φ
(lm)
1 ∇{α∇β}Y(lm) + φ

(lm)
2 ǫ γ

{α ∇β}∇γY(lm) + φ
(lm)
3 gαβY(lm)

)
. (3.6)

Curly brackets indicate traceless symmetrization of indices such as ∇{α∇β} = 1
2(∇α∇β +

∇β∇α − gαβ∇2). The coefficient functions H
(lm)
µν , B

(lm)
1µ , . . . are fields on the AdS2 base

with AdS2 tensor structure given by the indices µ, ν, . . . and degeneracy enumerated by the

angular momentum quantum numbers (lm).

Fermion fields can similarly be expanded on a basis of spinor spherical harmonics η(σlm)

satisfying γαDαη(σlm) = i(l + 1)η(σlm) where γα denotes gamma matrices on S2. We will

use γµ for gamma matrices on AdS2 and Γµ̂ for 4D gamma matrices. The partial wave

expansion of a gaugino Λ and a gravitino Ψµ̂ are

Λ = λ
(σlm)
+ ⊗ η(σlm) + λ

(σlm)
− ⊗ γSη(σlm) , (3.7)

Ψµ = ψ
(σlm)
µ+ ⊗ η(σlm) + ψ

(σlm)
µ− ⊗ γSη(σlm) , (3.8)

Ψα = ψ
(σlm)
+ ⊗D(α)η(σlm) + ψ

(σlm)
− ⊗D(α)γSη(σlm)

+χ
(σlm)
+ ⊗ γαη(σlm) + χ

(σlm)
− ⊗ γαγSη(σlm) , (3.9)

where the summation symbol is suppressed for brevity. The chirality operator γS is the S2

analogue of Γ5 in 4D and the symbol D(α) = Dα − 1
2γαγ

βDβ. The indices ± on the fields
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on AdS2 thus refer to chirality and the four terms in (3.7) correspond to projection on to

the four helicities, ±3
2 ,±1

2 . There is a detailed discussion of spinors on S2 in [25].

It will be sufficient to discuss bulk modes on-shell. Therefore, we can impose gauge

conditions from the outset. The Lorentz-deDonder (LdD) gauge

∇αhαµ = ∇αh{αβ} = 0 , ∇αaα = 0 , γαΨα = 0 , (3.10)

amounts to the conditions on AdS2 fields

φ
(lm)
1 = φ

(lm)
2 = 0 , B

(lm)
1µ = 0 , (3.11)

b
(lm)
1 = 0 , (3.12)

χ
(σlm)
+ = χ

(σlm)
− = 0 . (3.13)

This simplifies the expansions (3.3), (3.5), (3.6), (3.9). Importantly, the LdD gauge (3.10)

is complete only for partial waves with l ≥ 2. For l = 0, 1 some of the LdD gauge conditions

are vacuous so additional gauge fixing is needed. We will discuss this on a case by case basis.

A vector field in AdS2 can be dualized to two scalars as

b(lm)
µ = ǫµν∇νa

(lm)
⊥ +∇µa

(lm)
‖ . (3.14)

This decomposition into transverse and longitudinal modes is unique when there are no

normalizable harmonic scalars, as in Euclidean AdS2. In Lorentzian signature there are

nontrivial harmonic modes but they are not physical as they can be presented in longitu-

dinal form where they manifestly decouple from physical processes. The determination of

boundary modes in section 3.7 will further refine these statements by considering nonnor-

malizable harmonic modes.

3.2 Bulk modes of the scalar block

The scalar block consists of just one 4D scalar that is minimally coupled. Upon expansion

in partial waves following (3.1), the 4D Klein-Gordon equation becomes

(
∇2

A − l(l + 1)
)
ϕ(lm) = 0 , l ≥ 0 . (3.15)

The effective 2D mass is therefore m2 = l(l + 1) = j(j + 1) after identification of the

orbital angular momentum l with the total angular momentum j, as usual for scalar fields.

Therefore (1.1) gives the conformal weight

h = j + 1 . (3.16)

This result applies for all integral j ≥ 0.

3.3 Bulk modes of the vector block

The 4D vector block couples a scalar field x and a gauge field through the Lagrangian [13]

e−1Lvector = −1

2
∇µ̂x∇µ̂x− 1

4
fµ̂ν̂f

µ̂ν̂ + xfµ̂ν̂G
µ̂ν̂ , (3.17)
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where the background gauge field Gµ̂ν̂ has AdS2 and S2 components Gµν = 1√
2
ǫµν and

Gαβ = 1√
2
ǫαβ . The resulting 4D equations of motion for the scalar and the vector are

∇2x+ fµ̂ν̂G
µ̂ν̂ = 0 , (3.18)

∇µ̂
(
fµ̂ν̂ − 2xGµ̂ν̂

)
= 0 . (3.19)

Applying partial wave expansions of the form (3.2), (3.3), the gauge condition (3.12), and

dualization (3.14) we find
[(
∇2

A − l(l + 1)
)
x+

√
2l(l + 1)b2 +

√
2∇2

Aa⊥
]
Y = 0 , (3.20)

ǫνµ∇µ
[(
∇2

A − l(l + 1)
)
a⊥ +

√
2x

]
Y +∇ν

[(
∇2

A − l(l + 1)
)
a‖
]
Y = 0 , (3.21)

[
−∇2

Aa‖
]
∇αY +

[(
∇2

A − l(l + 1)
)
b2 +

√
2x

]
ǫαβ∇βY = 0 . (3.22)

The partial wave numbers (lm) on the 2D fields x, b2, a⊥, a‖ and on the spherical harmonics

Y are suppressed for brevity. Since Y(00) is a constant on S2 (3.22) has no content for l = 0.

For the same reason, the expansion (3.3) in vector harmonics on S2 leaves the component

b
(00)
2 undefined. Importantly, the combination l(l + 1)b

(00)
2 unambiguously vanishes for

l = 0, so (3.20) is meaningful for all l ≥ 0.

The 4D equations of motion (3.20), (3.21), (3.22) are equivalent to the vanishing of

each expression in square bracket by itself, due to orthogonality of the spherical harmonics.

For (3.21) we also appeal to uniqueness of dualization in order to remove the gradients on

AdS2. In the following we diagonalize these 2D equations of motion. We first discuss modes

with l ≥ 1 and then address the special case l = 0.

Vector block: l ≥ 1 modes. For l ≥ 1 we can apply (3.22). In particular, the

first equation shows that a‖ = 0, due to the absence of propagating harmonic modes.

Then (3.20), (3.21), (3.22) give

(
∇2

A − l(l + 1)
)
x+

√
2l(l + 1)b2 +

√
2∇2

Aa⊥ = 0 , (3.23)
(
∇2

A − l(l + 1)
)
a⊥ +

√
2x = 0 , (3.24)

(
∇2

A − l(l + 1)
)
b2 +

√
2x = 0 , (3.25)

which can be reordered into the diagonal form

(
∇2

A − (l − 1)l
) (√

2x+ (l + 1)(a⊥ + b2)
)
= 0 , (3.26)

(
∇2

A − l(l + 1)
)
(a⊥ − b2) = 0 , (3.27)

(
∇2

A − (l + 1)(l + 2)
) (√

2x− l(a⊥ + b2)
)
= 0 , (3.28)

The eigenvalues of the AdS2 Laplacian ∇2
A thus give the scalar masses

m2 = (l − 1)l , l(l + 1) , (l + 1)(l + 2) , (3.29)

and so the conformal weights (1.1) become

h = j , j + 1 , j + 2 , (3.30)
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for all integral j ≥ 1. We identified the angular quantum number j = l by noting that

each value of the conformal weight has degeneracy (2l+1), the dimension of the irreducible

representation of SU(2) with j = l.

Vector block: l = 0 modes. In the l = 0 sector The 4D gauge field bµ̂ has no com-

ponents on the S2 so the only non-vanishing field components are a⊥, a‖, and x. Since

Y(00) = 1 the LdD gauge condition (3.10) is empty for l = 0. On the other hand, the

standard 4D gauge transformation bµ̂ → bµ̂+∂µ̂Λ reduces to a 2D symmetry acting on the

AdS2 components bµ because for l = 0 it does not act on the (non-existent) components

bα of the vector field on S2. We can exploit this gauge symmetry to set the longitudinal

component a‖ = 0. The equations of motion (3.20), (3.21) then give
{
∇2

Ax+
√
2∇2

Aa⊥ = 0

∇2
Aa⊥ +

√
2x = 0

⇒
{(

∇2
A − 2

)
x = 0

∇2
A

(√
2a⊥ + x

)
= 0

. (3.31)

The lower equation becomes a constraint
√
2a⊥ + x = 0 up to a harmonic solution for

a⊥ which is equivalent to a‖ that vanishes due to the gauge condition. The l = 0 sector

therefore reduces to one degree of freedom which we can identify as the scalar field x. This

is the expected result because the vector block consists of a scalar and a vector but 2D

vector fields have no degrees of freedom.

The upper equation in (3.31) identifies the eigenvalue of the scalar as m2 = 2 which

corresponds to conformal weight h = 2. We can present this in terms of the result (3.30)

for j ≥ 1: the tower with h = j +2 is completed so it includes an entry for j = 0 while the

other two towers have no j = 0 mode.

3.4 Bulk modes of the KK block

Expansion of the Kaluza-Klein Lagrangian to quadratic order around the AdS2×S2 back-

ground supported by nonBPS fluxes yields a Lagrangian for the quadratic fluctuations

(given explicitly in [13]). This in turn gives the equations of motion for the KK block,

summarized in the following.

KK block: Einstein equation. The 4D Einstein equation is given by

∇2hµ̂ν̂ +∇µ̂∇ν̂h− 2∇(µ̂∇α̂hν̂)α̂ − 2Rα̂
(µ̂hν̂)α̂ − 2Rα̂µ̂ν̂β̂h

α̂β̂ + hµ̂ν̂R

+gµ̂ν̂(−∇2h+∇α̂∇β̂h
α̂β̂ − hα̂β̂Rα̂β̂) (3.32)

= −8G α̂
(µ̂ fν̂)α̂+4Gµ̂α̂Gν̂β̂h

α̂β̂+2gµ̂ν̂(G
α̂β̂fα̂β̂−G ν̂

α̂ Gβ̂ν̂h
α̂β̂)+hµ̂ν̂G

α̂β̂Gα̂β̂+8
√
3ϕG α̂

µ̂ Gν̂α̂ .

The background is described by the 4D metric gµ̂ν̂ with Riemann curvature Rα̂
β̂γ̂δ̂

as well as

the gauge fields Gµν = 1√
2
ǫµν along AdS2 and Gαβ = 1√

2
ǫαβ through S2. The fluctuations

are the metric hµ̂ν̂ , the field strength fµ̂ν̂ , and the scalar field ϕ.

The partial wave expansions of the 4D fields take the form (3.1)–(3.6). Considering

first the equations where µ̂ν̂ = µν so both indices are within AdS2 we find
[
(l(l + 1) + 2)H−2

(
∇2

A − l(l + 1)
)
φ3 + 4

√
2∇2

Aa⊥−4
√
2l(l + 1)b2 + 8

√
3ϕ

]
Y = 0 , (3.33)

[
−l(l + 1)H{µν} + 2∇{µ∇ν}φ3

]
Y = 0 , (3.34)
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for the scalar and symmetric traceless components of the AdS2 indices µν. We suppress

the partial wave indices (lm) on the 2D fields to avoid clutter. The analogous equations

for µ̂ν̂ = αβ so both indices of the Einstein equation (3.32) are on the S2 give
[
∇ρ∇σH

ρσ−
(
∇2

A − 1

2
l(l + 1)

)
H −

(
∇2

A + 2
)
φ3 − 2

√
2∇2

Aa⊥ + 2
√
2l(l + 1)b2

−4
√
3ϕ

]
gαβY + [H] ∇{α∇β}Y −

[
2∇2

AB2‖
]
ǫ γ
{α ∇β}∇γY = 0 . (3.35)

Finally, the partial wave expansion of the Einstein equation with mixed indices µ̂ν̂ = µα

becomes
(
ǫµν∇ν

[
(∇2

A − l(l + 1))B2⊥ − 2
√
2b2 − 2

√
2a⊥

]
−∇µ

[
l(l + 1)B2‖ + 2

√
2a‖

])
ǫαβ∇βY

+
[
∇µH −∇νHµν +∇µφ3 + 2

√
2ǫµνb

ν − 2
√
2∇µb2 + 2ǫµνB

ν
2

]
∇αY = 0 .

(3.36)

KK block: vector equation. The equation of motion for the vector field in KK theory is

∇µ̂

(
fµ̂ν̂ − hµ̂ρ̂G

ρ̂
ν̂ + hν̂ρ̂G

ρ̂
µ̂ +

1

2
hGµ̂ν̂ − 2

√
3ϕGµ̂ν̂

)
= 0 , (3.37)

after linearizing around our background. For ν̂ = ν the 4D index is along AdS2 and the

partial wave expansions (3.1)–(3.6) give
(
ǫνµ∇µ

[(
∇2

A − l(l + 1)
)
a⊥ − 1√

2
l(l + 1)B2⊥ +

1

2
√
2
H − 1√

2
φ3 +

√
6ϕ

]

−∇ν

[
∇2

Aa‖ +
1√
2
l(l + 1)B2‖

])
Y = 0 . (3.38)

We used the identity ∇µH
{µρ}ǫρν = ∇µH{νρ}ǫρµ. The partial wave expansion of the 4D

field equation (3.37) for ν̂ = α similarly gives
[(
∇2

A − l(l + 1)
)
b2 +

1√
2
φ3 −

1√
2
∇2

AB2⊥ − 1

2
√
2
H +

√
6ϕ

]
ǫαβ∇βY

−∇2
A

[
a‖ +

1√
2
B2‖

]
∇αY = 0 . (3.39)

KK block: scalar equation. The last equation of motion for KK theory is the one for

the KK scalar:

8∇2ϕ+ 8
√
3Gµ̂ν̂fµ̂ν̂ − 4

√
3Rµ̂ν̂hµ̂ν̂ = 0 . (3.40)

The partial wave expansion gives
[
(
∇2

A − l(l + 1)
)
ϕ+

√
6∇2

Aa⊥ +
√
6l(l + 1)b2 +

√
3

2
H −

√
3φ3

]
Y = 0 . (3.41)

At this point we must solve all these equations. Orthogonality of spherical harmonics

show that all terms in square brackets vanish. However, we must take into account that

gradients ∇αY of the spherical harmonics vanish for l = 0 and traceless combinations of

the double gradients ∇α∇βY vanish also for l = 1. Therefore we first discuss the equations

for l ≥ 2 and then address l = 1, 0.
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KK block: l ≥ 2 modes. From (3.35) and (3.39) we find

∇2
AB2‖ = ∇2

Aa‖ = 0 , (3.42)

H = 0 . (3.43)

The uniqueness of AdS2 dualization (up to modes that decouple) means we can take all

these fields to vanish B2‖ = a‖ = H = 0 . Additionally (3.34) shows that the graviton

perturbations H{µν} can be expressed in terms of φ3 so they do not represent independent

degrees of freedom.

Taking these simplification into account, we gather the equations of mo-

tions (3.33), (3.36), (3.38), (3.39), (3.41) and find

(
∇2

A − l(l + 1)
)
φ3 = 2

√
2∇2

Aa⊥ − 2
√
2l(l + 1)b2 + 4

√
3ϕ , (3.44)

(
∇2

A − l(l + 1)
)
B2⊥ = 2

√
2b2 + 2

√
2a⊥ , (3.45)

(
∇2

A − l(l + 1)
)
a⊥ =

1√
2
l(l + 1)B2⊥ +

1√
2
φ3 −

√
6ϕ , (3.46)

(
∇2

A − l(l + 1)
)
b2 = − 1√

2
φ3 +

1√
2
∇2

AB2⊥ −
√
6ϕ , (3.47)

(
∇2

A − l(l + 1)
)
ϕ = −

√
6∇2

Aa⊥ −
√
6l(l + 1)b2 +

√
3φ3 . (3.48)

We can reorganize these equations as

(
∇2

A − (l + 2)(l + 3)
) [

2
√
3ϕ− l(l + 1)B2⊥ − 2

√
2la⊥ − 2

√
2lb2

]
= 0 , (3.49)

(
∇2

A − (l + 1)(l + 2)
) [

−φ3 − lB2⊥ −
√
2la⊥ +

√
2lb2

]
= 0 , (3.50)

(
∇2

A − l(l + 1)
) [

2ϕ+
√
3(l2 + l − 1)B2⊥ +

√
6a⊥ +

√
6b2

]
= 0 , (3.51)

(
∇2

A − (l − 1)l
) [

φ3 − (l + 1)B2⊥ −
√
2(l + 1)a⊥ +

√
2(l + 1)b2

]
= 0 , (3.52)

(
∇2

A − (l − 2)(l − 1)
) [

2
√
3ϕ− l(l + 1)B2⊥ + 2

√
2(l + 1) (a⊥ + b2)

]
= 0 . (3.53)

The scalar masses read off from the eigenvalues of ∇2
A are

m2 = (l − 2)(l − 1) , (l − 1)l , l(l + 1) , (l + 1)(l + 2) , (l + 2)(l + 3) . (3.54)

Each of the AdS2 scalars have degeneracy (2l + 1) so we identify j = l, where j is the

angular quantum number labeling the irreducible representation of SU(2). The conformal

weights (1.1) of the 1D conformal fields dual to the five partial wave towers of the KK

block become

h = j − 1 , j , j + 1 , j + 2 , j + 3 . (3.55)

This result is valid for j ≥ 2.
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KK block: l = 1 modes. The l = 1 sector is special because ǫαβ∇βY(1m)/∇αY(1m)

are Killing Vectors (KVs)/Conformal Killing Vectors (CKVs) on S2. Therefore

ǫ γ
{α ∇β}∇γY(1m) = ∇{α∇β}Y(1m) = 0 and so the partial wave expansion (3.6) does

not include the coefficient functions φ
(1m)
1 and φ

(1m)
2 . Moreover, the gauge conditions

∇αh{αβ} = 0 are automatic, they fail to constrain diffeomorphisms ξα on the S2.

We gauge fix the diffeomorphisms along the KVs by setting B
(1m)
2‖ = 0 and those along

the CKVs by taking φ
(1m)
3 = 0. With these conditions (3.34) becomes a constraint that

sets H
(1m)
{µν} = 0 and the vanishing of the second square bracket in (3.36) demands that also

a
(1m)
‖ = 0.

After gauge fixing the 15 partial wave components in the generic KK-block have been

reduced to only 5. We gather the remaining terms in (3.33), (3.36), (3.38), (3.39), (3.41)

for l = 1 and get the equations of motion for these 5 fields in AdS2:

H(1m) = −
√
2∇2

Aa
(1m)
⊥ + 2

√
2b

(1m)
2 − 2

√
3ϕ(1m) , (3.56)

(
∇2

A − 2
)
B

(1m)
2⊥ = 2

√
2b

(1m)
2 + 2

√
2a

(1m)
⊥ , (3.57)

(
∇2

A − 2
)
a
(1m)
⊥ = − 1

2
√
2
H(1m) +

√
2B

(1m)
2⊥ −

√
6ϕ(1m) , (3.58)

(
∇2

A − 2
)
b
(1m)
2 =

1√
2
∇2

AB
(1m)
2⊥ +

1

2
√
2
H(1m) −

√
6ϕ(1m) , (3.59)

(
∇2

A − 2
)
ϕ(1m) = −

√
6∇2

Aa
(1m)
⊥ − 2

√
6b

(1m)
2 −

√
3

2
H(1m) . (3.60)

Simplifying the first of these equations using the others we find

H(1m) = −4
√
2a

(1m)
⊥ + 4

√
2b

(1m)
2 − 4B

(1m)
2⊥ . (3.61)

Therefore H(1m) is not an independent field. We diagonalize the remaining equations as

(∇2
A − 12)

(
−B

(1)
2⊥ −

√
2a

(1)
⊥ −

√
2b

(1)
2 +

√
3ϕ(1)

)
= 0 , (3.62)

(∇2
A − 6)

(
−B

(1)
2⊥ −

√
2a

(1)
⊥ +

√
2b

(1)
2

)
= 0 , (3.63)

(∇2
A − 2)

(√
3B

(1)
2⊥ +

√
6a

(1)
⊥ +

√
6b

(1)
2 + 2ϕ(1)

)
= 0 , (3.64)

∇2
A

(
−B

(1)
2⊥ + 2

√
2a

(1)
⊥ + 2

√
2b

(1)
2 +

√
3ϕ(1)

)
= 0 . (3.65)

The final equation amounts to the constraint

−B
(1)
2⊥ + 2

√
2a

(1)
⊥ + 2

√
2b

(1)
2 +

√
3ϕ(1) = 0 . (3.66)

up to a harmonic function that can be fixed by residual symmetry.

The three eigenvectors that remain represent propagating modes. This is the expected

net number of physical fields from a gauge field and a scalar, the field content in the l = 1

sector of the KK block. The source of all the complications addressed here is the mixing

of these degrees of freedom with gravity and with each other.
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Therefore, for j = l = 1, the eigenvalues of ∇2
A are m2 = 12, 6, 2, corresponding to

the conformal weights h = 4, 3, 2 respectively. Among the five towers in (3.55), we thus

find that those with h = j + 1, j + 2, j + 3 are extended to j = 1 while the towers with

h = j−1, j do not include modes j = 1. Indeed, the three eigenvectors (3.62), (3.63), (3.64)

with eigenvalues 12, 6, 2 found for l = 1 extend those identified in (3.49), (3.50), (3.51) for

l ≥ 2.

KK block: l = 0 modes. The spherical harmonic Y(00) = 1 is constant, so for l = 0

the only non-vanishing terms defined by the partial wave expansions (3.1)–(3.6) are the 2D

metric H
(00)
µν , the 2D gauge field b

(00)
µ , the KK scalar ϕ(00) and the S2 volume φ

(00)
3 . This is

a total of 7 non-vanishing 2D field components for l = 0. In the l = 0 sector the LdD gauge

conditions (3.10) place no restrictions on the fields. The 2D diffeomorphism symmetry

generated by an AdS2 vector ξµ is therefore unfixed, as is the 2D gauge symmetry. We fix

these three symmetries by imposing

∇µ∇νH
(00)
{µν} = 0 , a

(00)
‖ = 0 . (3.67)

Notice that there are still residual diffeomorphisms that satisfy ∇µ∇ν∇{µξ
(00)
ν} = 0, which

we will take advantage of later.

The 2D equations of motion (3.33), (3.34), (3.35), (3.38), (3.41) of the remaining 4

field components a
(00)
⊥ , φ

(00)
3 , H(00), and ϕ(00) can be organized as

∇2
A

(
√
6a

(00)
⊥ + ϕ(00) +

√
3

4
H(00) + 2

√
3φ

(00)
3

)
= 0 , (3.68)

∇{µ∇ν}φ
(00)
3 = 0 , (3.69)

(∇2
A − 2)φ

(00)
3 = 0 , (3.70)

(∇2
A − 2)H(00) = −12φ

(00)
3 , (3.71)

(
∇2

A − 6
)
ϕ(00) = 0 . (3.72)

Now (3.68) amounts to a constraint that expresses a
(00)
⊥ in terms of other fields, up to

a harmonic mode that is inconsequential for the physical spectrum. Similarly, (3.69) define

Conformal Killing Vectors (CKVs) ∇µφ
(00)
3 but, since there are no normalizable CKVs on

(Euclidean) AdS2, we must have φ
(00)
3 = 0. Then (3.71) becomes

(∇2
A − 2)H(00) = 0 . (3.73)

However, the gauge conditions (3.67) permit residual diffeomorphisms ξµ satisfying

∇µ∇ν∇{µξ
(00)
ν} = 0 ⇔ (∇2

A − 2)δH(00) = 0 . (3.74)

Such ξµ are CKVs that are necessarily nonnormalizable, but they correspond to normaliz-

able δH
(00)
µν . Comparison of (3.73) and (3.74) shows that H(00) is pure gauge; it can be set

to be zero by residual diffeomorphisms ξ
(00)
µ .
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In summary, in the l = 0 sector of the KK-block there is only one physical degree of free-

dom which can be identified as ϕ(00). This mode generalizes the partial wave tower (3.49)

to l = 0. It is an eigenfunction of ∇2
A with eigenvalue m2 = 6, corresponding to h = 3.

Thus it extends the final entry h = j + 3 in (3.55) to the value j = 0.

3.5 Bulk modes of the gaugino block

The gaugino block has the 4D Lagrangian [13]

e−1δ2Lgaugino = −Λ̄AΓ
µ̂Dµ̂ΛA − 1

2
ǫABΛ̄AĜΛB , (3.75)

where Ĝ ≡ 1
2Γ

µ̂ν̂Gµ̂ν̂ , summation over the indices A,B = 1, 2 is implied, and ǫAB is

antisymmetric with ǫ12 = +1. It gives the 4D equation of motion

Γµ̂Dµ̂ΛA +
1

2
ĜǫABΛB = 0 . (3.76)

Applying the partial wave expansion (3.7) to the two Majorana gaugini ΛA we find

Λ
(L/R)
A =

1

2
(1± Γ5)ΛA =

1

2
(λA+ ± γAλA−)⊗ η +

1

2
(λA− ± γAλA+)⊗ γSη . (3.77)

for their left- and right-handed components. The indices (σlm) on the 2D fields λA± and

the spinor harmonics η are suppressed for brevity. Inserting the expansion in spinor partial

waves (3.77) into the 4D equations of motion (3.76) projected on to the right helicity by

the operator 1
2 (1− Γ5) we get

0 =

[
γµDµ (λA− + γAλA+) + i(l + 1) (λA+ + γAλA−)−

1

2
ei

π
4 ǫAB (λB− − γAλB+)

]
⊗ η

+

[
γµDµ (λA+ + γAλA−)− i(l + 1) (λA− + γAλA+)−

1

2
ei

π
4 ǫAB (λB+ − γAλB−)

]
⊗ γSη .

(3.78)

Orthogonality of spinor harmonics then give us the 2D equation of motion

γµDµλ̂
(L)
A − (l + 1)λ̂

(L)
A − 1

2
ei

π
4 ǫABλ̂

(R)
B = 0 , (3.79)

γµDµλ̃
(L)
A + (l + 1)λ̃

(L)
A − 1

2
ei

π
4 ǫABλ̃

(R)
B = 0 , (3.80)

for every spinor harmonic index (σlm). Here λ̂
(L/R)
A and λ̃

(L/R)
A are defined by

λ̂
(L/R)
A ≡ (λA+ ± γAλA−) + i (λA− ± γAλA+) , (3.81)

λ̃
(L/R)
A ≡ (λA+ ± γAλA−)− i (λA− ± γAλA+) . (3.82)

Similarly acting with the left projection operator 1
2 (1 + Γ5) on the 4D equations of mo-

tion (3.76), we find the 2D wave equations that are conjugate of (3.79), (3.80):

γµDµλ̃
(R)
B + (l + 1)λ̃

(R)
B +

1

2
e−iπ

4 ǫBAλ̃
(L)
A = 0 , (3.83)

γµDµλ̂
(R)
B − (l + 1)λ̂

(R)
B +

1

2
e−iπ

4 ǫBAλ̂
(L)
A = 0 . (3.84)
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Combining (3.79) and (3.84), as well as (3.80) and (3.83) with A = 1, B = 2, we get

(γµDµ − (l + 1))

(
λ̂
(L)
1

λ̂
(R)
2

)
=

1

2

(
0 ei

π
4

e−iπ
4 0

)(
λ̂
(L)
1

λ̂
(R)
2

)
. (3.85)

(γµDµ + (l + 1))

(
λ̃
(L)
1

λ̃
(R)
2

)
=

1

2

(
0 ei

π
4

e−iπ
4 0

)(
λ̃
(L)
1

λ̃
(R)
2

)
. (3.86)

We are giving these results in full gory detail because the phases e±iπ
4 in the final result

are physical consequences of the interplay between electric and magnetic fields which can

be technically challenging to account for.

The matrices on the right hand side of (3.85) have eigenvalues ±1
2 . Therefore, the

eigenvalues of the Dirac operator γµDµ give the four AdS2 spinor masses

m = ±
(
l +

1

2

)
, ±

(
l +

3

2

)
. (3.87)

The sign of the fermion mass is formal and has no physical meaning. The conformal

weight of the 1D conformal operator dual to an AdS2 spinor is given by the relation

hspinor = |m|+ 1
2 , so we find h = l + 1, l + 2, each with multiplicity 2.

The harmonic expansion for spinor fields has degeneracy 2(l+1), while the irreducible

representation of SU(2) labeled by the angular quantum number j has (2j +1) states. We

therefore identify j = l + 1
2 for spinors. This gives our final result for the spectrum of the

gaugino block

h = 2×
(
j +

1

2

)
, 2×

(
j +

3

2

)
, (3.88)

where “2×” denotes multiplicity 2, not the normal multiplication. This result is valid for

all j ≥ 1
2 .

3.6 Bulk modes of gravitino block

The gravitino block has the 4D Lagrangian [13]

e−1δ2Lgravitino = −Ψ̄Aµ̂Γ
µ̂ν̂ρ̂Dν̂ΨAρ̂ − 2Λ̄AΓ

µ̂Dµ̂ΛA − 1

2
ǫABΨ̄Aµ̂

(
Gµ̂ν̂ + Γ5G̃

µ̂ν̂
)
ΨBν̂

−
√
3

2

(
Ψ̄Aµ̂ĜΓµ̂ΛA + Λ̄AΓ

µ̂ĜΨAµ̂

)
+ 2ǫABΛ̄AĜΛB , (3.89)

where G̃µ̂ν̂ ≡ − i
2ǫ

µ̂ν̂ρ̂σ̂Gρ̂σ̂. It gives the 4D equations of motion

Γµ̂ν̂ρ̂Dν̂ΨAρ̂ +
1

2

(
Gµ̂ν̂ + Γ5G̃

µ̂ν̂
)
ǫABΨBν̂ +

√
3

2
ĜΓµ̂ΛA = 0 , (3.90)

2Γµ̂Dµ̂ΛA − 2ǫABĜΛB +

√
3

2
Γµ̂ĜΨAµ̂ = 0 . (3.91)

In the following we work out the corresponding 2D equations of motion.
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Gravitino block: gravitino equation. We first act with the right projection operator
1
2 (1− Γ5) on the 4D equations of motion for gravitini (3.90) and then insert partial wave

expansions in spinor harmonics (3.7)–(3.8). The S2 components µ̂ = α of the equations

become

0 =

[
1

2
i(l + 1)γµ

(
ψµ
A−

+ γAψ
µ
A+

)
+ γµνD

µ
(
ψν
A+ + γAψ

ν
A−

)
+

√
3

2
ie−iπ

4 (λA− + γAλA+)

]
⊗ γαη

+

[
−1

2
i(l + 1)γµ

(
ψµ
A+ + γAψ

µ
A−

)
+ γµνD

µ
(
ψν
A−

+γAψ
ν
A+

)
+

√
3

2
ie−iπ

4 (λA++γAλA−)

]
⊗ γαγSη

+

[
−γµ

(
ψµ
A−

+ γAψ
µ
A+

)
+ γµDµ (ψA− + γAψA+)−

1

2
iei

π

4 ǫAB (ψB− − γAψB+)

]
⊗D(α)η

+

[
−γµ

(
ψµ
A+ + γAψ

µ
A−

)
+ γµDµ (ψA+ + γAψA−)−

1

2
iei

π

4 ǫAB (ψB+ − γAψB−)

]
⊗D(α)γSη .

(3.92)

The AdS2 components µ̂ = µ of the equations similarly give

0 =

[
− i(l + 1)γµν

(
ψν
A+ + γAψ

ν
A−

)
+

1

2
((l + 1)2 − 1)γµ (ψA− + γAψA+)

−
√
3

2
iei

π
4 γµ (λA+ + γAλA−) +

1

2
e−iπ

4 γµνǫAB

(
ψν
B− − γAψ

ν
B+

) ]
⊗ η

+bg[i(l + 1)γµν
(
ψν
A− + γAψ

ν
A+

)
+

1

2
((l + 1)2 − 1)γµ (ψA+ + γAψA−)

−
√
3

2
iei

π
4 γµ (λA− + γAλA+) +

1

2
e−iπ

4 γµνǫAB

(
ψν
B+ − γAψ

ν
B−

) ]
⊗ γSη . (3.93)

Again, we suppress the indices (σlm) of the spinor harmonics. Orthogonality of the spinor

harmonics mean each square bracket vanishes by itself. This gives four towers of equations

from the S2 but only two from the AdS2 because the µ̂ = α index incorporates spin-32
components on S2 while the µ̂ = µ index only includes spin-12 components. To present the

equations we define

ψ̂
(L/R)
Aµ ≡ (ψAµ+ ± γAψAµ−) + i (ψAµ− ± γAψAµ+) , (3.94)

ψ̃
(L/R)
Aµ ≡ (ψAµ+ ± γAψAµ−)− i (ψAµ− ± γAψAµ+) , (3.95)

in analogy with the variables λ̂
(L/R)
A and λ̃

(L/R)
A introduced for the gaugino block in (3.81).

This gives the three coupled equations

γµνDµψ̃
(L)
Aν − 1

2
(l + 1)γµψ̃

(L)
Aµ +

√
3

2
e−iπ

4 λ̂
(L)
A = 0 , (3.96)

−γµψ̃
(L)
Aµ + γµDµψ̃

(L)
A − 1

2
iei

π
4 ǫABψ̃

(R)
B = 0 , (3.97)

(l + 1)ψ̃
(L)
Aρ − 1

2
((l + 1)2 − 1)γρψ̃

(L)
A +

√
3

2
e−iπ

4 λ̂
(L)
A − 1

2
e−iπ

4 ǫABψ̃
(R)
Bρ = 0 , (3.98)
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as well as the three coupled equations

γµνDµψ̂
(L)
Aν +

1

2
(l + 1)γµψ̂

(L)
Aµ −

√
3

2
e−iπ

4 λ̃
(L)
A = 0 , (3.99)

−γµψ̂
(L)
Aµ + γµDµψ̂

(L)
A − 1

2
iei

π
4 ǫABψ̂

(R)
B = 0 , (3.100)

−(l + 1)ψ̂
(L)
Aρ − 1

2
((l + 1)2 − 1)γρψ̂

(L)
A −

√
3

2
e−iπ

4 λ̃
(L)
A − 1

2
e−iπ

4 ǫABψ̂
(R)
Bρ = 0 . (3.101)

Similarly, starting out by acting with the left projection operator 1
2 (1 + Γ5) on the 4D

equations of motion we find the complex conjugate of the preceding six equations.

Gravitino block: gaugino equation. Acting with the right projection operator
1
2 (1− Γ5) on the 4D equations of motion for gaugini (3.91) and expanding it in partial

waves, we get

[
γµDµ (λA− + γAλA+) + i(l + 1) (λA+ + γAλA−) + ie−iπ

4 ǫAB (λB− − γAλB+)

−
√
3

4
iei

π
4 γµ

(
ψµ
A+ + γAψ

µ
A−

) ]
⊗ η+

[
γµDµ (λA+ + γAλA−)− i(l + 1) (λA− + γAλA+) + ie−iπ

4 ǫAB (λB+ − γAλB−)

−
√
3

4
iei

π
4 γµ

(
ψµ
A− + γAψ

µ
A+

) ]
⊗ γSη = 0 . (3.102)

Again, orthogonality implies that each square bracket vanishes by itself. After introduction

of the variables (3.81) the 2D equation of motion become

γµDµλ̂
(L)
A − (l + 1)λ̂

(L)
A + ie−iπ

4 ǫABλ̂
(R)
B +

√
3

4
ei

π
4 γµψ̃

(L)
Aµ = 0 , (3.103)

γµDµλ̃
(L)
A + (l + 1)λ̃

(L)
A + ie−iπ

4 ǫABλ̃
(R)
B −

√
3

4
ei

π
4 γµψ̂

(L)
Aµ = 0 . (3.104)

Similarly, starting out by acting with the left projection operator 1
2 (1 + Γ5) on the 4D

equations of motion we find the complex conjugate of these two equations.

We next proceed to solve the 2D equations of motion and compute the mass spectrum

of gravitino block. We first discuss modes with l ≥ 1 modes and then deal with the special

case l = 0.

Gravitino block: l ≥ 1 modes. We begin by considering (3.96), (3.97), (3.98), (3.103)

and the equations conjugate to (3.99), (3.100), (3.101), (3.104) since only ψ̃
(L/R)
Aµ , ψ̃

(L/R)
A

and λ̂
(L/R)
A are involved.in this system.

Inspection of (3.98) with A = 1 and the conjugate of (3.101) with A = 2 shows that

the 2D gravitino ψ̃
(L/R)
Aµ is not an independent field. It can be expressed by ψ̃

(L/R)
A and
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λ̂
(L/R)
A as

(
ψ̃
(L)
1µ

ψ̃
(R)
2µ

)
=




4(l+1)
4(l+1)2−1

2e−i π
4

4(l+1)2−1

2ei
π
4

4(l+1)2−1
4(l+1)

4(l+1)2−1


 γµ

[
1

2
((l + 1)2 − 1)

(
ψ̃
(L)
1

ψ̃
(R)
2

)
−

√
3

2

(
e−iπ

4 λ̂
(L)
1

ei
π
4 λ̂

(R)
2

)]
.

(3.105)

Inserting this into (3.97), (3.103) with A = 1 and the conjugates of (3.100), (3.104) with

A = 2 we find

γµDµ




λ̂
(L)
1

λ̂
(R)
2

ψ̃
(L)
1

ψ̃
(R)
2


 =




l + 1 −ei
π

4 0 0

−e−iπ

4 l + 1 0 0

0 0 0 − 1
2e

−iπ

4

0 0 − 1
2e

iπ

4 0







λ̂
(L)
1

λ̂
(R)
2

ψ̃
(L)
1

ψ̃
(R)
2


+ γµ




−
√

3
4 ei

π

4 ψ̃
(L)
1µ

−
√

3
4 e−iπ

4 ψ̃
(R)
2µ

ψ̃
(L)
1µ

ψ̃
(R)
2µ


 (3.106)

=




(l+1) + 3(l+1)
4(l+1)2−1

(
3(l+1)

8(l+1)2−2−1
)
ei

π

4 −
√

3(l+1)((l+1)2−1)
4(l+1)2−1 ei

π

4 −
√

3((l+1)2−1)
8(l+1)2−2(

3(l+1)
8(l+1)2−2−1

)
e−iπ

4 (l+1)+ 3(l+1)
4(l+1)2−1 −

√

3((l+1)2−1)
8(l+1)2−2 −

√

3(l+1)((l+1)2−1)
4(l+1)2−1 e−iπ

4

4
√

3(l+1)
4(l+1)2−1e

−iπ

4 − 2
√

3
4(l+1)2−1 (l + 1)− 3(l+1)

4(l+1)2−1 − 3
8(l+1)2−2e

−iπ

4

− 2
√

3
4(l+1)2−1

4
√

3(l+1)
4(l+1)2−1e

iπ

4 − 3
8(l+1)2−2e

iπ

4 (l + 1)− 3(l+1)
4(l+1)2−1







λ̂
(L)
1

λ̂
(R)
2

ψ̃
(L)
1

ψ̃
(R)
2


 .

The matrix on the right hand side appears very complicated but, remarkably, it has simple

eigenvalues: l − 1
2 , l +

1
2 , l +

3
2 , and l + 5

2 .

Similarly, taking equations (3.99), (3.100), (3.101), (3.104) with A = 1 and the

conjugates of (3.96), (3.97), (3.98), (3.103) with A = 2 we find a matrix equation for

λ̃
(L)
1 , λ̃

(R)
2 , ψ̂

(L)
1 , ψ̂

(R)
2 . The matrix again has simple eigenvalues: −

(
l − 1

2

)
, −

(
l + 1

2

)
,

−
(
l + 3

2

)
, and −

(
l + 5

2

)
. Thus the complete result for the eigenvalues of γµDµ can be

expressed as eight AdS2 spinor masses

m = ±
(
l − 1

2

)
, ±

(
l +

1

2

)
, ±

(
l +

3

2

)
, ±

(
l +

5

2

)
. (3.107)

For spinors we use the relations jspinor = l+ 1
2 for the SU(2) quantum number and hspinor =

|m|+ 1
2 for the conformal weight and so our result for the spectrum of the gravitino block

becomes

h = 2×
(
j − 1

2

)
, 2×

(
j +

1

2

)
, 2×

(
j +

3

2

)
, 2×

(
j +

5

2

)
, (3.108)

where “2×” denotes multiplicity 2, not the normal multiplication. This result is valid for

j ≥ 3
2 .

Gravitino block: l = 0 modes. The l = 0 mode is special for gravitini because the

helicity ±3
2 components in the partial wave expansion (3.9) vanish identically. Therefore,

the fields ψA± are not defined for l = 0.

The manipulations giving (3.105) for the AdS2 gravitini remain valid for l = 0 and

we see that, in this special case, the term involving the nonexistent ψA± has vanishing
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coefficient. Therefore, all components of the 2D gravitini ψAµ are determined by the

gaugini λA. Accordingly, the first equation in (3.106) depends only on gaugini for l = 0.

The resulting equation of motion can be read off from the upper left 2 × 2 submatrix of

the second equation in (3.106) by taking l = 0:

γµDµ

(
λ̂
(L)
1

λ̂
(R)
2

)
=

(
2 −1

2e
iπ
4

−1
2e

−iπ
4 2

)(
λ̂
(L)
1

λ̂
(R)
2

)
. (3.109)

The matrix on the right hand side has eigenvalues 3
2 and 5

2 and the analogous equations for

λ̃
(L/R)
A similarly give−3

2 and−5
2 . This corresponds to two modes with conformal weight h =

2 and another two with h = 3. These modes extend the towers h = 2×
(
j + 3

2

)
, 2×

(
j + 5

2

)

in (3.108) so they apply for all j ≥ 1
2 .

3.7 Boundary modes

Boundary modes are harmonic modes on AdS2 which are formally pure gauge but in fact

physical because the gauge functions that generate them are non-normalizable. There

are no boundary modes for the scalar block or gaugino block because they involve no

gauge symmetries. Thus all boundary modes come from vector blocks, the KK block, and

gravitino blocks. This subsection determines the boundary modes of these three types of

blocks in turns.

Since boundary modes are somewhat subtle we proceed with special care. In each

case we add gauge fixing terms and compute the full off-shell spectrum, along with the

appropriate ghosts. This requires some additional effort. On the other hand, since the

gauge functions underlying boundary modes are harmonic, they generally do not couple to

bulk modes so the relevant field content remains manageable.

Boundary modes in vector blocks. For boundary modes in vector blocks we add the

gauge fixing term
(
∇µ̂a

µ̂
)2

to the Lagrangian (3.17), with hatted variables denoting 4D

indices as in previous sections. We can consistently ignore the scalar field in the vector

block because it couples to∇µb
µ which vanishes in the boundary sector due to the harmonic

condition. The effective Lagrangian of the boundary modes in the vector block becomes

Lbndy
vector = bµ

(
∇2

A + 1− l(l + 1)
)
bµ . (3.110)

Harmonic vector modes satisfy ∇2
A+1 so this is equivalent to a tower of nondynamical fields

with m2 = l(l + 1), l ≥ 0 with degeneracy 2l + 1. This result is unsurprising because the

residual gauge transformations underlying these modes satisfy the massless Klein-Gordon

equation in 4D ∇2
4Λ = 0.

Boundary modes in the KK block. In this sector we must consider gravity as well

as the KK vector field. We add the gauge fixing term

Lg.f.
KK = −

(
∇µ̂hµ̂ρ̂ −

1

2
∇ρ̂h

)(
∇ν̂h ρ̂

ν̂ − 1

2
∇ρ̂h

)
− 4

(
∇µ̂a

µ̂
)2

, (3.111)
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to the 4D Lagrangian of the KK block. We then compute the corresponding 2D Lagrangian

Lbndy
KK =H ′{µν} (∇2

x + 2− l(l + 1)
)
H ′

{µν} +
(
b′µ B′

2µ B′
1µ

)
(3.112)

×




(
∇2

A + 1− l(l + 1)
)
δµν −

√
2l(l + 1)δµν −

√
2l(l + 1)ǫµν

−
√
2l(l + 1)δµν

(
∇2

A + 1− l(l + 1)
)
δµν −2ǫµν√

2l(l + 1)ǫµν 2ǫµν
(
∇2

A + 1− l(l + 1)
)
δµν







b′ν

B′ν
2

B′ν
1


 ,

where we introduced conveniently normalized fieldsH ′
{µν} =

1√
2
H{µν}, b′µ = 2bµ and B′µ

1/2 =√
l(l + 1)Bµ

1/2. We consistently ignored scalar fields because their couplings to AdS2 vectors

all contain ∇µb
µ or ∇µB

µ
1/2 which vanish for boundary modes.

We can diagonalize the mass matrix in Lbndy
KK above and so determine the eigenvalues

of ∇2
A. The scalars that are equivalent to AdS2 tensors and vectors have masses given by

the eigenvalues of ∇2
A+2 and ∇2

A+1, respectively. The eigenvectors and the corresponding

scalar masses become:

m2 = l(l + 1) : H ′
{µν} , l ≥ 0 , (3.113)

m2 = l(l − 1) :

√
1 + l

1 + 2l
b′µ −

√
l

1 + 2l

1√
2

(
B′

2µ + ǫµνB
′ν
1

)
, l ≥ 0 , (3.114)

m2 = (l + 1)(l + 2) :

√
l

1 + 2l
b′µ +

√
1 + l

1 + 2l

1√
2

(
B′

2µ + ǫµνB
′ν
1

)
, l ≥ 1 , (3.115)

m2 = l(l + 1) + 2 :
1√
2

(
B′

1µ + ǫµνB
′ν
2

)
, l ≥ 1 . (3.116)

The last three entries deserve some comments: the matrix in the second line of (3.112)

acts on AdS2 vectors so it is 6× 6 and it allows 6 eigenvectors. However, harmonic modes

satisfy a duality condition so, in order to avoid overcounting we should take either the

eigenvector or the dual eigenvector, not both. Since the formalism is off-shell there is some

scheme-dependence to this choice. The analogous treatment of boundary modes for BPS

black holes by Sen [5] includes all contributions and divide by two in the end. We elect

instead to pick an orthogonal set that diagonalizes the off-diagonal terms in (3.112) and

cancels the ghost tower determined below. This choice seems more physical to us but the

final on-shell results are at any rate independent of scheme.

Tensors H{µν} have degeneracy three [5, 6], therefore the boundary modes in the KK

block are 3 towers of m2 = l(l+ 1) with l ≥ 0, 1 tower of m2 = l(l− 1) with l ≥ 0, 1 tower

of m2 = (l + 1)(l + 2) with l ≥ 1, and 1 tower of m2 = l(l + 1) + 2 with l ≥ 1.

In the off-shell formalism that we apply for boundary modes we must consider also the

contribution from the ghost that generates the diffeomorphism δH{µν} = ∇µξν +∇νξµ −
gµν∇ρξρ. The ghost equation of motion follows by variation of the gauge condition under

a diffeomorphism:

δ

(
∇µ̂hµ̂ρ̂ −

1

2
∇ρ̂h

)
= 0 ⇒

(
∇2

A − 1− l(l + 1)
)
ξρ = 0 . (3.117)

Since eigenvalues of ∇2
A + 1 acting on a vector can be identified with the mass of the dual

scalar we find that the boundary ghosts have m2 = l(l + 1) + 2, l ≥ 0 with degeneracy

2l + 1. These contributions effectively cancel one of the 6 towers of KK boundary modes.
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Blocks Bulk Modes Spectrum (h, j)

Scalar (k + 1, k)

Gaugino 2
(
k + 2, k + 1

2

)
2
(
k + 1, k + 1

2

)

Vector (k + 2, k) (k + 2, k + 1) (k + 1, k + 1)

Gravitino 2
(
k + 3, k + 1

2

)
2
(
k + 2, k + 1

2

)
2
(
k + 2, k + 3

2

)
2
(
k + 1, k + 3

2

)

KK (k + 3, k) (k + 3, k + 1) (k + 2, k + 1) (k + 2, k + 2) (k + 1, k + 2)

Table 2. Mass spectrum of bulk modes in non-BPS blocks. The label k = 0, 1, . . ..

Boundary modes in gravitino blocks. In the off-shell formalism that we apply to

boundary modes we add the gauge fixing term 1
2

(
Ψ̄Aµ̂Γ

µ̂
)
Γν̂Dν̂

(
Γρ̂ΨAρ̂

)
to the gravitino

Lagrangian (3.89) and redefine the field as ΦAµ̂ = ΨAµ̂ − 1
2Γµ̂Γ

ρ̂ΨAρ̂. The Lagrangian for

the gravitini then becomes

e−1δ2Lbndy
gravitino = −Φ̄Aµ̂H

µ̂ν̂
ABΦBν̂ = −Φ̄Aµ̂

[
Γρ̂Dρ̂g

µ̂ν̂ − 1

2
ǫAB

(
Gµ̂ν̂ + Γ5G̃

µ̂ν̂
)]

ΦBν̂ ,

(3.118)

after consistently ignoring the gaugini which do not couple to harmonic modes.

The square of the quadratic fluctuation operator H µ̂ν̂
AB is

Λµ̂ν̂
AB = H µ̂ρ̂†

ACH ν̂
ρ̂ CB = −

(
Γρ̂Dρ̂Γ

σ̂Dσ̂ +
1

4

)
gµ̂ν̂δAB . (3.119)

Only the components of Φµ̂
A with µ̂ = µ have boundary modes. Using the partial wave

expansion Φµ
A = φµ

A+ ⊗ η + φµ
A− ⊗ γSη , the equation of motion Λµν̂

ABΦBν̂ = 0 can be

expanded as

−
(
γρDργ

σDσ − (l + 1)2 +
1

4

)
φµ
A+ ⊗ η −

(
γρDργ

σDσ − (l + 1)2 +
1

4

)
φµ
A− ⊗ γSη = 0 .

(3.120)

Thus we find that there are 4 towers of gravitino boundary modes with identical mass

squared m2 = (l + 1)2 − 1
4 , each with the degeneracy 2l + 2.

3.8 Summary of the mass spectrum

As conclusion to this long section we summarize our results.

The mass spectrum (h, j) for the bulk modes is given in table 2. In all cases the

conformal weight h is related to an effective scalar mass as m2 = h(h − 1) for bosons or

m2 = (h− 1
2)

2 for fermions. For scalar fields m2 is the on-shell eigenvalue of ∇2
A. However,

for vectors and tensors we identify m2 as the eigenvalue of ∇2
A+1 and ∇2

A+2, respectively.

This is justified by the action of the operators ∇2
A+1, ∇2

A+2 on vectors and tensors being

equivalent to the action of ∇2
A on the corresponding scalar field obtained by the appropriate

dualization in AdS2. Thus we can use the formula for the conformal weight (1.1) for all

bosons.
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A notable feature of the results recorded in table 2 is that the conformal weight h

is integral in all cases. Since h is determined for each entry by solving the quadratic

m2 = h(h − 1) or m2 = (h − 1
2)

2 this is a rather nontrivial result. It requires that all

effective masses are such that the discriminant of the quadratic is a perfect square. This

property would be expected if the spectrum was organized in supermultiplets but, in the

present context, supersymmetry is entirely broken by the background. We will develop this

point further in sections 5 and 6.

The angular momentum quantum number j labels the irreducible representation of

SU(2). There are (2j + 1) states for each value of j. The values of j are integral (half-

integral) for bosons (fermions), as expected. It is interesting that, in contrast, the conformal

weight h is integral for both bosons and fermions. In our context states are not organized in

supermultiplets so there is no general expectation that h must be half-integral for fermions

but the result seems surprising nonetheless. We will also develop this point further in

section 5.

The scalars in the vector block generally mix with the vector field. However, the

vector field does not include a spherically symmetric mode so the j = 0 sector has just one

mode, an effective 2D scalar with h = 2. A minimally coupled scalar would have h = 1,

as for the scalar block, so these scalars are non-minimally coupled even in the spherically

symmetric sector. This is an aspect of the attractor mechanism which determines the

horizon value of the scalars in the vector block as a function of the charges and therefore

inhibits their fluctuations around the preferred attractor value. This is a nonBPS version

of the mechanism familiar from BPS black holes where these fields are known as fixed

scalars [26].

The analogous scalar mode in the j = 0 sector of the KK block is also interesting.

It has conformal weight h = 3. Thus the coupling between the KK scalar and gravity is

stronger than the analogous coupling between gauge fields and their scalar partners. This

effect has no analogue on the BPS branch but the h = 3 mode was previously identified

for rotating black holes [27].

Boundary modes are more subtle since they are based on harmonic modes which have

no bulk kinetic term. For these modes we worked out the full off-shell spectrum, to cir-

cumvent any ambiguity. The result is present in terms of “masses” in table 3. The mass

indicates the departure from a true zero-mode so m2 is the eigenvalue appropriate for

computing functional determinants.

4 Heat kernels

In this section we use the mass spectrum determined in the previous section to compute

the 4D heat kernel and the associated logarithmic corrections to black hole entropy. There

are three distinct contributions:

• Bulk modes: the propagating degrees of freedom summarized in table 2.

• Boundary modes: the global degrees of freedom due to the harmonic modes of AdS2

vectors, gravitini, and tensors. They are summarized in table 3.
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Blocks Masses of Boundary Modes Degeneracy Multiplicity Range

KK m2 = l(l + 1) 2l + 1 3 l ≥ 0

KK m2 = (l − 1)l 2l + 1 1 l ≥ 0

KK m2 = (l + 1)(l + 2) 2l + 1 1 l ≥ 1

KK m2 = l(l + 1) + 2 2l + 1 1 l ≥ 1

KK m2 = l(l + 1) + 2 2l + 1 −1 l ≥ 0

Vector m2 = l(l + 1) 2l + 1 1 l ≥ 0

Gravitino m2 = (l + 1)2 − 1
4 2l + 2 4 l ≥ 0

Table 3. Mass spectrum of boundary modes in non-BPS blocks. (Multiplicity −1 denotes contri-

bution from ghosts.)

• Zero mode corrections: on-shell boundary modes that were already counted as bound-

ary modes need corrections to their counting weights.

4.1 Heat kernel preliminaries

The action for quadratic fluctuations around a background has the generic form

S = −
∫

d4x
√−g φnΛ

n
mφm , (4.1)

where {φn} is a complete set of fields and Λn
m is a matrix that encodes the action of

quadratic fluctuations around the background. The heat kernel of the operator Λ is then

defined by

K4(s) = Tr e−sΛ =
∑

i

e−sλi , (4.2)

where {λi} is the set of eigenvalues of Λ.

We denote the heat kernel of a massless field on AdS2 by KA(s). The result for a mode

with effective 2D mass m2 is suppressed by an additional factor e−m2s so, upon summing

over a complete tower of states with masses m2
j and SU(2) quantum number j, we find

K4(s) = KA(s)KS(s) = KA(s)
1

4π

∑

j

(2j + 1)e−m2

js , (4.3)

for the 4D heat kernel on AdS2×S2. The sum over the tower can be interpreted as a field on

S2 and so we divide it by the area 4π of the unit S2 and denote it by KS(s). The masses are

related to conformal weights as m2 = h(h−1) for bosons and m2 = (h− 1
2)

2 = h(h−1)+ 1
4

for fermions.

The Laurent expansion of the heat kernel K4(s) around s = 0 generally has poles of

order s−2 and s−1, followed by a constant that we denote Kconst
4 . It is related to the central

charge a of the 4D conformal anomaly by

a = 2π2Kconst
4 . (4.4)
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The other central charge c is immaterial here because the AdS2 × S2 background is con-

formally flat.

4.2 Bulk modes

All bulk bosons in 2D are represented as scalars. A massless scalar on Euclidean AdS2
has continuous eigenvalues λA = p2 + 1

4 , p ∈ R weighted by the Plancherel measure

µ(p) = p tanh(πp). It has heat kernel [4]:

Kb
A(s) =

1

2π

∫ ∞

0
dp p tanh (πp) exp

[
−s

(
p2 +

1

4

)]

=
1

4πs

(
1− 1

3
s+

1

15
s2 +O(s3)

)
. (4.5)

For sums over towers of modes an essential benchmark is the heat kernel of a minimally

coupled scalar on S2. The standard result from introductory quantum mechanics is that

the eigenvalues of −∇2
S are l(l + 1) with degeneracy 2l + 1 and range l = 0, 1. . . .. This

gives the heat kernel:

Kb
S(s) =

1

4π

∞∑

k=0

(2k + 1)e−k(k+1)s =
1

4πs

(
1 +

1

3
s+

1

15
s2 +O(s3)

)
. (4.6)

With these results the spectrum for bulk bosons given in table 2 yields the following

heat kernels:

Scalar block. The scalar block is just a minimal scalar with spectrum (h, j) = (k+1, k)

for k ≥ 0. For bosons, we have m2 = h(h− 1) with degeneracy 2j + 1, therefore

Kscalar
4 = Kb

AK
scalar
S = Kb

A

1

4π

∑

k=0

(2k + 1)e−k(k+1)s

=
1

16π2s2

(
1 +

1

45
s2 +O(s3)

)
. (4.7)

where we used (4.6) for the sum over the tower. The constant term Kconst
4 = 1

720π2 corre-

sponds to the conformal anomaly ascalar.bulk = 1
360 according to (4.4). This is the standard

answer for a minimally coupled scalar (1 d.o.f.) [28, 29].

Vector block. The spectrum of the vector block has 3 towers: (h, j) = (k + 2, k), (k +

2, k + 1), (k + 1, k + 1) for k ≥ 0. Therefore we have

Kvector
4 = Kb

AK
vector
S

=
Kb

A

4π

(
∑

k=0

(2k + 1)e−(k+1)(k+2)s +
∑

k=1

(2k + 1)
(
e−k(k+1)s + e−(k−1)ks

))

= Kb
A

1

4π

(
3
∑

k=0

(2k + 1)e−k(k+1)s

)
= 3Kscalar

4 . (4.8)

Thus the vector block (3 d.o.f.) has the same heat kernel as 3 minimally coupled scalars:

avector.bulk = 1
120 .
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KK block. The spectrum of the KK block has 5 towers: (h, j) = (k+3, k), (k+3, k+1),

(k + 2, k + 1), (k + 2, k + 2), (k + 1, k + 2) for k ≥ 0. Therefore we have

Kgravity
4 = Kb

AK
gravity
S

=
Kb

A

4π

(
∑

k=0

(2k + 1)e−(k+2)(k+3)s +
∑

k=1

(2k + 1)
(
e−(k+1)(k+2)s + e−k(k+1)s

)

+
∑

k=2

(2k + 1)
(
e−(k−1)ks + e−(k−2)(k−1)s

))

= Kb
A

1

4π

(
5
∑

k=0

(2k + 1)e−k(k+1)s

)
= 5Kscalar

4 . (4.9)

Thus the KK block (5 d.o.f.) has the same heat kernel as 5 minimally coupled scalars:

aKK.bulk = 1
72 .

The heat kernel of a massless minimally coupled spinor (1 d.o.f.) on AdS2 is given

by [30]

Kf
A(s) = − 1

2π

∫ ∞

0
dp p coth (πp) exp

(
−sp2

)

= − 1

4πs

(
1 +

1

6
s− 1

60
s2 +O(s3)

)
, (4.10)

where the overall sign incorporates fermionic statistics. With this result as starting point,

the spectrum for bulk fermions given in table 2 yields:

Gaugino block. The spectrum of the gaugino block has 4 towers: two copies of (h, j) =(
k + 2, k + 1

2

)
,
(
k + 1, k + 1

2

)
for k ≥ 0. For fermions we have m2 =

(
h− 1

2

)2
= h(h−1)+ 1

4

with degeneracy 2j + 1, therefore

Kgaugino
4 = Kf

AK
gaugino
S

= Kf
A

2

4π
e−

1

4
s

(
∑

k=0

(2k + 2)e−k(k+1)s +
∑

k=1

2ke−k(k+1)s

)

= Kf
A

4

4π
e−

1

4
s
∑

k=0

(2k + 1)e−k(k+1)s

= − 1

4π2s2

(
1 +

1

4
s+

17

1440
s2 +O(s3)

)
. (4.11)

We used (4.6) for the sum over the tower, as for bosons. The constant term Kconst
4 =

− 17
5760π2 and (4.4) give the conformal anomaly agaugino.bulk = − 17

2880 for the gaugino block

(4 d.o.f.).

Gravitino block. The spectrum of the gravitino block has 8 towers: two copies of

(h, j) =
(
k + 3, k + 1

2

)
,
(
k + 2, k + 1

2

)
,
(
k + 2, k + 3

2

)
,
(
k + 1, k + 3

2

)
for k ≥ 0. It gives

– 28 –



J
H
E
P
0
4
(
2
0
1
9
)
1
6
4

the heat kernel

Kgravitino
4 = Kf

AK
gravitino
S

= Kf
A

2

4π
e−

1

4
s

(∑

k=0

(2k + 4)e−k(k+1)s +
∑

k=1

(2k + 2)e−k(k+1)s

+
∑

k=1

2ke−k(k+1)s +
∑

k=2

(2k − 2)e−k(k+1)s

)

= Kf
A

8

4π
e−

1

4
s
∑

k=0

(2k + 1)e−k(k+1)s = 2Kgaugino
4 . (4.12)

Thus the gravitino block (8 d.o.f.) has the same heat kernel as 2 gaugino blocks:

agravitino.bulk = − 17
1440 .

It is interesting that in all cases the results are equivalent to free massless bosons or

fermions with the appropriate number of degrees of freedom. This amounts to a delicate

conspiracy between non-minimal couplings and ranges of partial wave towers. The origin

of these simplifications is not clear to us.

For N = 8 SUGRA, there are 1 KK block, 27 vector blocks, 42 minimally coupled

scalars, 4 gravitino blocks, and 24 gaugino blocks. In this case the total contribution from

the bulk modes becomes:

abulkN=8 = (5 + 27× 3 + 42)× 1

360
− (4× 2 + 24)× 17

2880
=

1

6
. (4.13)

For N = 4 SUGRA with nV matter multiplets, there are 1 KK block, (nV + 5) vector

blocks, (5nV − 4) minimally coupled scalars, 2 gravitino blocks, and 2nV gaugino blocks,

which give the bulk contribution abulkN=4 =
n+2
96 .

4.3 Boundary modes

As discussed in subsection 3.7, boundary modes are due to the harmonic modes on AdS2 of

vectors, gravitini, and tensors. The scalar and gaugino blocks do not have boundary modes.

These modes are constant on the AdS2 space with (renormalized) volume 2π. Therefore,

the heat kernel for a single boundary mode is given by

Kzero
A (s) = ± 1

2π
, (4.14)

where ± is for bosons/fermions. The contributions to the heat kernel from the entire towers

of boundary modes are then computed as follows.

Vector block. The spectrum of boundary modes for the vector block given in table 3

is m2
l = l(l + 1) with integral l ≥ 0. This is equivalent to a single scalar field on the S2.

Their contribution to the heat kernel become

Kvector.bndy
4 = Kzero

A KS

=
1

2π

1

4π

∑

k=0

(2k + 1)e−k(k+1)s

=
1

8π2s

(
1 +

1

3
s+O(s2)

)
, (4.15)

where we used the sum (4.6).

– 29 –



J
H
E
P
0
4
(
2
0
1
9
)
1
6
4

According to (4.4) the constant term in this expression gives conformal anomaly

avector.bndy = 1
12 , so, adding the bulk contribution of a single vector block avector.bulk = 1

120

from table 2, our explicit sum over modes gives avector.bulk+bndy = 11
120 . This agrees with

the result found in [13] using a very different method.

KK block. The boundary modes listed for the KK block in table 3 comprise 6 towers as

well as a single ghost tower. Their heat kernel becomes

KKK.bndy
4 =

1

2π

1

4π

(
3

∞∑

k=0

(2k + 1)e−sk(k+1) +
∞∑

k=0

(2k + 1)e−s(k−1)k

+
∞∑

k=1

(2k+1)e−s(k+1)(k+2) + e−2s
∞∑

k=1

(2k+1)e−sk(k+1) − e−2s
∞∑

k=0

(2k+1)e−sk(k+1)

)

=
1

8π2

(
5

∞∑

k=0

(2k + 1)e−sk(k+1) + 2− 2e−2s

)

=
1

8π2

(
5

s
+

5

3
+

13

3
s+O(s2)

)
. (4.16)

Reading off the constant term KKK.bndy
4 we find aKK.bndy = 5

12 from (4.4). Adding the bulk

contribution aKK.bulk = 1
72 , we get aKK.bulk+bndy = 31

72 , which also agrees with the result

in [13].

Gravitino block. According to table 3, the gravitino block comprises 4 towers of bound-

ary modes with m2
l = (l+ 1)2 − 1

4 , l ≥ 0, each with degenracy 2l+ 2. This spectrum gives

the heat kernel

Kgravitino.bndy
4 = Kzero

A KS

= − 1

2π

4

4π

∑

k=0

(2k + 2)e−((k+1)2− 1

4
)s

= − 4

8π2s

(
1− 1

6
s+O(s2)

)
e

1

4
s

= − 4

8π2s

(
1 +

1

12
s+O(s2)

)
, (4.17)

corresponding to agravitino.bndy = − 1
12 . With the bulk contribution agravitino.bulk = − 17

1440 .

Again, the sum agravitino.bulk+bndy = − 137
1440 agrees with that of [13].

For N = 8 SUGRA, there are 1 KK block, 27 vector blocks, and 4 gravitino blocks.

In this case the total contribution from the boundary modes becomes:

aboundaryN=8 = 27× 1

12
+

5

12
− 4× 1

12
=

7

3
. (4.18)

For N = 4 SUGRA with nV matter multiplets, there are 1 KK block, (nV + 5) vector

blocks and 2 gravitino blocks, which give the boundary modes contribution aboundaryN=4 =
nV +8
12 .
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4.4 Zero mode corrections

Almost all of the modes we encounter are suppressed in the heat kernel (4.2): their eigen-

value is strictly positive. The zero modes are the exceptions: they are constant on the

AdS2 like all boundary modes but they are also constant on the S2; so they are zero-modes

on the full spacetime AdS2 × S2. The canonical relation between the heat kernel and the

effective action which is implicitly presumed in the formula (4.4) for the anomaly coeffi-

cient a requires damping for large s of an integral over the Feynman parameter s and this

assumption fails in the case of zero-modes.

The correct treatment of zero-modes takes advantage of their relation to symmetries

which means their contributions to the path integral are given by integrals over the volume

of the appropriate symmetry group, rather than Gaussian integrals over damped modes [5].

Therefore, the correct contribution to the conformal anomaly a depends on the dimension

of the symmetry parameter which is ∆ = 1, 32 , 2 for vectors, gravitini, tensors. The heat

kernel (4.2) includes all modes with weight 1 but the correct scaling dimension is ∆ for

bosons and 2∆ for fermions. The zero mode correction takes this effect into account.

Gauge symmetry generators have ∆ = 1 so their zero-modes are, by chance, already

accounted for correctly in the näıve heat kernel, in the sense that the formula for a (4.4)

can be trusted. Moreover, on the nonBPS branch the gravitino has no zero-modes, because

supersymmetry is entirely broken. Therefore, the KK-block is the only one affected by zero

mode corrections. For diffeomorphisms ∆ = 2 so, since they were already counted with

weight one, the contributions of these zero modes should be doubled.

In the KK block, there are in total 6 zero modes from non-normalizable diffeomor-

phisms that need zero mode corrections: 3 zero modes from the AdS2 tensor H{µν} and 3

more from the mixed vector modes (3.114) with l = 1. This gives the zero mode correction

aKK.zero = 2π2 × 6× 1

8π2
=

3

2
(4.19)

This is the same as the contribution from m2 = 0 modes to the sum (4.16) over KK

boundary modes. Thus, by adding this zero mode correction their contribution is doubled,

as it should be.

4.5 Summary of anomaly coefficients

As summary of this section we give our results for the anomaly coefficients a in table 4. The

entry for boundary modes abndy includes näıve zero modes and azero denotes the corrections

determined by the more careful treatment. The sum abulk+bndy is of interest since it can be

compared with results from the local method [13]. We find agreement for each of the 5

type of blocks. This gives great confidence in all our computations.

5 Compactifications with an AdS3 factor

In this section we consider the special case where the AdS2 × S2 geometry arises from

AdS3 × S2 with (0, 4) supersymmetry through a reduction along a direction that is nearly

null. We recover the black hole spectrum on the BPS (or nonBPS) branch depending on

whether the reduction is along the “0” (or the “4”) direction.
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Blocks d.o.f. abulk abndy azero abulk+bndy atotal

Scalar 1 1
360 0 0 1

360
1

360

Gaugino 4 − 17
2880 0 0 − 17

2880 − 17
2880

Vector 3 1
120

1
12 0 11

120
11
120

Gravitino 8 − 17
1440 − 1

12 0 − 137
1440 − 137

1440

KK 5 1
72

5
12

3
2

31
72

139
72

N = 4 32 + 16nV
nV +2
96

nV +8
12

3
2

3nV +22
32

3nV +70
32

N = 8 256 1
6

7
3

3
2

5
2 4

Table 4. Anomaly Coefficients of the Non-BPS Blocks.

5.1 String theory on AdS3 × S2 ×M
We consider M-theory compactified to 5D on a Calabi-Yau manifold M in the supergravity

limit. The 5D N = 2 content of this theory was worked out in [31]. We include cases with

enhanced holonomy M = K3 × T 2 and M = T 6 so, in the long distance approximation,

we effectively study 5D SUGRA with N ≥ 2 supersymmetry. It is useful to describe this

theory as N = 2 SUGRA coupled to nS = N − 2 gravitino multiplets (corresponding to

supersymmetry extended beyond N = 2) and also to N = 2 matter in nV vector multiplets

and nH hypermultiplets.

In the setting of these 5D theories we consider field configurations with magnetic fluxes

through an S2. They correspond to black string solutions in 5D that are interesting for our

purposes because, after further compactification of the string on a circle, they correspond

to black holes in 4D [32]. We focus on fluxes such that the world-volume of the 5D

black strings preserve (0, 4) supersymmetry while their gravitational description features

an AdS3 × S2 near horizon geometry. Supergravity fluctuations in this background can be

classified by the quantum numbers of primary fields (hL, hR; jR), where hL is the scaling

dimension with respect to an SL(2)L isometry of AdS3 and hR, jR are the quantum number

under SL(2)R and SU(2)R isometries of AdS3 and S2, respectively.

Because the 5D black string solution preserves (0, 4) supersymmetry we can organize

its spectrum into supermultiplets. The supergravity fluctuations are all in short multiplets

characterized by chiral primaries (states with hR = jR but any hL) and their descendants

under the preserved N = 2 supersymmetry are

(hL, hR; jR) , 2

(
hL, hR +

1

2
; jR − 1

2

)
, (hL, hR + 1; jR − 1) , (5.1)

with appropriate truncations of the multiplet for small values of jR. The short multiplet

numerically has hR = jR but we retain both notations to emphasize that these are quantum

numbers of two distinct operators. The short multiplet structure applies to all fluctuations

in the supergravity approximation so it is common to present the black hole spectrum

in terms of the chiral primaries, with descendants under supersymmmetry (5.1) implied.
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5D multiplets Spectrum (hL, hR, jR) of chiral primaries (hR = jR)

Hyper 2
(
k + 1, k + 1

2 ; k + 1
2

)

Vector (k + 2, k + 1; k + 1) (k + 1, k + 1; k + 1)

Gravitino
(
k + 2, k + 1

2 ; k + 1
2

) (
k + 2, k + 3

2 ; k + 3
2

) (
k + 1, k + 3

2 ; k + 3
2

)

Gravity (k+3, k+1; k+1) (k+2, k+1; k+1) (k+2, k+2; k+2) (k+1, k+2; k+2)

Table 5. The spectrum of chiral primaries on AdS3 × S2 ×M. The label k = 0, 1, . . ..

A standard computation (see e.g. [44]) yields the spectrum of chiral primaries for the

AdS3 × S2 compactification of 5D supergravity given in table 5. We want to deduce the

implications of this spectrum on AdS3 × S2 for theories on AdS2 × S2.

5.2 nNull reduction: thermodynamics

Many versions of the reduction from AdS3/CFT2 to AdS2/CFT1 have appeared in the lit-

erature over the years, including [17, 33–36]. However, the recent advent of nAdS2/nCFT1

correspondence [7, 37] justifies renewed scrutiny of this point.

We first describe the dimensional reduction from a thermodynamic point of view,

that is more familiar. Because of the chiral nature of CFT2’s it is useful to introduce

two independent “temperatures” TL,R that incorporate both “the” temperature T (the

thermodynamic potential for energy E = (hL + hR)/ℓ3)

1

T
=

1

2

(
1

TL
+

1

TR

)
, (5.2)

and an independent chemical potential (the difference of “temperatures”) for the spin

s = hL − hR.

Implementing the low temperature limit T → 0 by taking TR → 0 with TL fixed, the

semiclassical entropy of the theory takes the form

S =
π2

3
(cLTL + cRTR) ℓ3 = S0 +

1

2
πTL+O(T 2) , (5.3)

where the extremal entropy S0 = π2

3 cLTLℓ3 is independent of the temperature and the

length scale L = 2π
3 cRℓ3 that characterizes the linear term in the temperature is pro-

portional to the inverse mass gap of the theory [7, 38, 39]. Our normalization for the

length scale L follows [19] and ensures that it agrees with the “long string scale” that is

characteristic of the (0, 4) models underlying microscopics of 4D black holes.

The strict extremal limit T → 0 clearly retains states of the form |anything, gs〉 where
the R-sector is in its ground state (except perhaps for a finite ground state multiplicity) and

“anything” is the origin of the extremal entropy S0. In the standard BPS limit “anything”

are the states counted by the elliptic genus.

The near extremal limit is qualitatively different: it is the theory of excitations above

the strict extremal limit T → 0. If focusses on states that take the schematic form
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|anything, δgs〉. The right-moving excitations |δgs〉 are responsible for the term in the

entropy (5.3) that is linear in T . It is the spectrum of these excitations that we study.

The upshot of our discussion of near-extreme thermodynamics is that reduction from

AdS3 ×S2 to AdS2 ×S2 amounts to a basic prescription: simply disregard the left moving

weight hL corresponding to the “anything” that specifies the extremal state and retain the

right moving weight hR that characterizes the excitation. Simple as this algorithm may

be, it is quite unusual. The canonical set-up for Kaluza-Klein compactification considers

a small Kaluza-Klein circle S1 and finds that the low energy approximation retains only

modes that are constant on the compactification circle because higher Fourier modes on

the S1 are “heavy”. In contrast, our prescription keeps all modes on the Kaluza-Klein

circle, we omit a “momentum” quantum number rather than insisting that it vanishes.

The nNull reduction is chiral in that it (nearly) projects to either the L(eft) or the

R(ight) moving sector, depending on whether we study TL → 0 or TR → 0. Its two versions

are equivalent a priori but, when we apply the construction to the (0, 4) CFT2’s that we

have in mind, there is an asymmetry between the two chiralities. In this subsection, we

elected to focus on the nNull reduction TR → 0 that (nearly) projects on the BPS branch,

since that facilitates comparison with the literature. However, our interest in this paper

will ultimtaely is primarily in the analogous discussion for the nonBPS branch. It follows

by interchanging L and R labels.

5.3 nNull reduction: kinematics

The thermodynamic reasoning above establishes features that reduction from AdS3/CFT2

to AdS2/CFT1 must exhibit in order to describe the facts we have established by explicit

computations in AdS2 × S2. They are not consistent with standard Kalaza-Klein reduc-

tion on a spatial circle so their geometrical implementation must be nonstandard. In the

folliowing we show that they can be recovered from null reduction, i.e. “compactification”

on a null circle. The details will not only prove illuminating conceptually but also yield

precise consequences that we can test.

A Lorentzian CFT2 on a spatial circle with radius R is obviously invariant under

simultaneous shift of the two null coordinates xR,L = t ± x by ±2πR. However, due

to invariance under a boost (with rapidity η) it is also invariant under shifts of these

null coordinates by unequal amounts ±2πRe±η. Therefore, as in the DLCQ description

of M(atrix)-theory [17, 40], there is a family of equivalent theories that all have the same

fixed periodicity of the coordinate xL but variable periodicity of xR. As this periodicity get

smaller, states with large “momentum” hR become heavy, as the intuition from standard

Kaluza-Klein compactification suggests. However, in contrast to the standard construction,

the value of the “momentum” hL is inconsequential in this limit.

In the language of effective quantum field theory, the nNull-reduction presents opera-

tors in the theory as (pR
Λ

)hR−1
O(hL,hR;jR)(xL, xR) , (5.4)

where pR is the typical frequency corresponding to the xR dependence and Λ is the “R” cut-

off. The dependence on xL is inconsequential. The strict IR limit takes the cut-off Λ → ∞
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with the physical momenta pL,R fixed so only operators with hR = 1 remain. These ground

states of the R sector are the BPS states in the case of a CFT2 with (0, 4) supersymmetry.

These important operators form the chiral ring of the CFT2 and they are counted by the

the elliptic genus. However, the near IR limit describes the approach to the IR limit by

operators (5.4) with hR > 1. Geometrically, this corresponds to compactification along a

direction that is nearly null. We refer to this construction as a nNull reduction.

In the nNull reduction procedure, the wave functions on AdS3 generally depend on the

xL coordinate but we are instructed to ignore this dependence and instead focus exclusively

on the R direction. Therefore, the effective 2D wave functions that follow from nNull

reduction depend on the position in AdS2. We interpret our computations directly in 2D

as the identification of this dependence.

The nNull reduction thus ignores the L sector and describes the dynamics of the R

sector as a self-contained theory. It is a consistency condition on this procedure that

operators with identical xR dependence but distinct xL dependence realize physics that

is largely independent of the latter. This is indeed the expectation: the L sector is in a

thermal state characterized by temperature TL and, according to standard arguments in

statistical mechanics, the precise state of this thermal background is inconsequential.

The situation is similar to the well-known description of quasiparticles in the effective

field theory of Fermi liquids. In that context the vast majority of the electrons reside

deep under the Fermi surface but these “typical” electrons are not the interesting ones:

the nontrivial dynamics is captured by the quasiparticles corresponding to low energy

excitations on top of the Fermi surface. It is consistent that the Fermi liquid theory ignores

the vast number of states under the Fermi surface as long as the quasiparticles are long

lived, a condition that is satisfied at low temperature. Similarly, in our black hole context,

the coupling between left- and right-moving sectors will also be suppressed thermally. We

can interpret the small residual interaction as the origin of Hawking radiation from the

black hole [41].

5.4 Explicit comparison between AdS3 × S2 and AdS2 × S2

We can use the prescription from the preceding subsection to compare results from explicit

computations in 4D with dimensional reductions from 5D. It is important to distinguish

two cases from the 4D point of view: the BPS branch that was already discussed in

the literature [42, 43] and the nonBPS branch that this paper analyzes in detail. They

correspond to two distinct dimensional reductions of the spectrum on AdS3×S2. In terms

of the labels (hL, hR; jR) employed in table 5 for bulk 5D representations they are:

• The BPS branch: the dimensional reduction removes the hL quantum number. It is

manifest that the spectrum is organized into short multiplets of the form (5.1) also

after reduction. Starting from the 5D spectrum in table 5 we recover the bulk BPS

spectrum on AdS2 × S2 presented in table 6 for reference and comparison.

• The nonBPS branch: the reduction removes the hR quantum number from the labels

(hL, hR; jR). Thus, to find the spectrum on the nonBPS branch of AdS2×S2 we first

augment the chiral primaries in table 5 with the structure of short multiplets (5.1)
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4D supermultiplet Spectrum (h, j) of BPS solutions SU(6)

Hypermultiplet 2
(
k + 1

2 , k + 1
2

)
4 (k + 1, k) 2

(
k + 5

2 , k + 1
2

)
20

Vector multiplet 2 (k + 1, k + 1) 4
(
k + 3

2 , k + 1
2

)
2 (k + 2, k) 15

Gravitino multiplet 2
(
k + 3

2 , k + 3
2

)
4 (k + 2, k + 1) 2

(
k + 5

2 , k + 1
2

)
6

Gravity multiplet 2 (k + 2, k + 2) 4
(
k + 5

2 , k + 3
2

)
2 (k + 3, k + 1) 1

Table 6. Bulk spectrum of BPS solutions. The integral label k ≥ 0. In each line the first entry is

the chiral primary and the remaining entries reflect the structure (5.1) of a short multiplet.

and only then omit the index hR. The spectrum of primaries that follows from this

procedure retains no simplifications that can be obviously traced to supersymme-

try. Nonetheless, the result for primaries identified this way agree with our explicit

computations on AdS2 × S2 presented in table 2.

In the discussion of CFT2’s in this paper we have assigned the theory (0, 4) supersym-

metry. This convention implies no loss of generality by itself but, once we have it, it is

consequential that in subsections 5.2 and 5.3 we discussed reduction along the null-direction

with label L, corresponding to the thermodynamic limit TR → 0. This choice preserves

supersymmetry so it amounts to focus the BPS branch of AdS2 × S2. The discussion of

the nonBPS branch is entirely analogous but, as noted in the end of subsection 5.2, the

labels L and R must be interchanged throughout. In the introduction we similarly opted

to assign labels L,R such that they are appropriate for the more familiar BPS branch.

With these potential confusions in mind, we spell out the details for each 5D N = 2

multiplet at a time:

• Hypermultiplet

The on-shell field content of a 5D hypermultiplet in N = 2 supergravity is two gaugini

(2×2 d.o.f), and four scalars (4×1 d.o.f.). On the BPS branch this amounts precisely

to a 4D hypermultiplet but on the nonBPS branch the fields split so fermions are in

one gaugino block (with two gaugini) and the bosons are in four scalar blocks (each

with one real scalar).

Table 5 indicates that on AdS3 × S2 an N = 2 hypermultiplet is organized in two

towers of chiral primaries that both have (hL, hR; jR) = (k + 1, k + 1
2 ; k + 1

2) where

k = 0, 1, . . .. The structure of short multiplets given in (5.1) then yields 8 towers of

primary fields with (hL, hR; jR) = 2(k+1, k+ 1
2 ; k+

1
2), 4(k+1, k+1; k), 2(k+1, k+

3
2 ; k − 1

2). In the last towers the entry with k = 0 is empty so we may replace these

tower with 2(k + 2, k + 5
2 ; k + 1

2) with k = 0, 1, . . ..

Dimensional reduction to the BPS branch of AdS2×S2 simply omits hL. The resulting

8 towers indeed reproduce the BPS spectrum found directly in 4D that is summarized

in table 6 [44, 45].

On the nonBPS branch we must instead remove the quantum number hR. This

results in 4 bosonic towers with the quantum numbers given in table 2 for a scalar
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block, i.e. a minimally coupled scalar field. Importantly, it also gives 4 fermion towers

with the assignments previously found for a gaugino block on the nonBPS branch.

• Vector multiplet

The on-shell field content of a 5D vector multiplet in N = 2 supergravity is one 5D

vector field (3 d.o.f.), two gaugini (2×2 d.o.f), and one scalar (1 d.o.f.). Dimensional

reduction of a 5D vector field gives a 4D vector field and a real scalar so an N = 2

vector multiplet in 5D corresponds to an N = 2 vector multiplet in 4D on the BPS

branch, comprising one 4D vector, two gaugini and a complex scalar. On the nonBPS

branch these 8 degrees of freedom are organized into one vector block (a 4D vector

plus one real scalar), one gaugino block (two gaugini), and one scalar block (one real

scalar).

On AdS3 × S2 an N = 2 vector multiplet gives chiral primaries that, according to

table 5, are organized in two towers with (hL, hR; jR) = (k + 2, k + 1; k + 1) and

(k+1, k+1; k+1) where k = 0, 1, . . .. The structure of short multiplets given in (5.1)

then yields 8 towers of primary fields.

On the BPS branch our algorithm instructs us to omit the hL index so it is immedi-

ately clear that the reduction of the 5D spectrum to AdS2 × S2 yields two copies of

(hR; jR) = (k + 1; k + 1), each with the descendants prescribed by (5.1). This agrees

with the BPS result exhibited in table 6.

The nonBPS branch is less familiar, but equally simple. Upon omission of the quan-

tum number hR, the 8 aforementioned towers of primary fields each give unambiguous

values for the pair (hL, jR). The quantum numbers found by this procedure can be

organized into the sum of the spectra presented in table 2 for a vector block, a gaugino

block, and a scalar block.

• Gravitino multiplet

The 5D gravitino multiplet consists of one 5D gravitino (4 d.o.f.), two 5D vectors

(2 × 3 d.o.f.) and a gaugino (2 d.o.f.). Dimensional reduction of a 5D gravitino

gives a gravitino and a gaugino in 4D. An N = 2 gravitino multiplet in 5D therefore

corresponds to one 4D gravitino, two 4D vectors, two gaugini, and two scalars. On

the BPS branch these fields amount to the sum of an N = 2 gravitino multiplet and

an N = 2 1
2 -hypermultiplet in 4D. However, on the nonBPS branch, they decompose

as the sum of half a gravitino block (one gravitino plus one gaugino in 4D), two vector

blocks (two vectors plus two scalars in 4D) and half a gaugino block (one gaugino).

The 5D quantum numbers on AdS3×S2 given in table 5 indeed reduce to the sum of a

gravitino multiplet and half a hypermultiplet entries given for the 4D BPS branch in

table 6, upon omission of the hL index. After omission of the hR index they similarly

agree with the sum of half a gravitino block, two vector blocks, and half a gaugino

block given for the 4D nonBPS branch in table 2.

• Gravity multiplet

The gravity multiplet in 5D N = 2 SUGRA consists of the 5D graviton (5 d.o.f.),

two 5D gravitini (2× 4 d.o.f), and the 5D graviphoton (3 d.o.f). On the BPS branch
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these fields are represented in 4D as the sum of an N = 2 gravity multiplet (4 + 4

d.o.f.) and an N = 2 vector multiplet (4+4 d.o.f.). On the nonBPS branch, they are

represented instead as the sum of a KK-block (5 d.o.f.), one gravitino block (2 × 4

d.o.f), and a 4D vector block (3 d.o.f).

The 5D quantum numbers on AdS3 × S2 given in table 5 for the gravity multiplet

indeed reduce to the sum of the gravity and hypermultiplet entries given for the 4D

BPS branch in table 6, upon omission of the hL index. After omitting the hR index

they similarly agree with the sum of a KK block, two gravitino blocks, and a vector

block given for the 4D nonBPS branch in table 2.

It is interesting that the decomposition into decoupled blocks on the nonBPS branch

faithfully reflect their 5D origin: the 5D graviton reduces to the KK block, the two 5D

gravitini reduce to a gravitino block, and the 5D vector field reduces to the vector block.

The dimensional reduction from 5D to 4D illuminates the unsettling feature that

fermions on the nonBPS branch all have integral conformal weight in AdS2. A 5D spinor

on AdS3×S2 has half-integral spin on AdS3 and S2 independently. Projection of the half-

integral spin vector in AdS3 on to the periodic spatial coordinate give a half-integral value

of s = hL − hR. Since hR is tied by supersymmetry to the half-integral spin jR on S2 it

must be that hL is integral. Since the reduction from AdS3 to AdS2 on the nonBPS branch

omits hR we see that “the” conformal weight on AdS2 is the integral hL. The integral

weights in 2D are therefore perfectly consistent with the spin-statistics theorem. Indeed,

on the nonBPS branch they are required by its 5D version.

Theories on AdS2 × S2 that arise through dimensional reduction from AdS3 × S2 are

not the most general ones, specific assumptions on the moduli of the 5D theory must

be imposed. However, for the purpose of computing primary fields in supergravity, this

situation does not imply any limitations. This is obvious from a practical point of view:

there is a canonical equivalence between the allowed supermultiplets of N = 2 supergravity

in 4D and in 5D to the extent that, allowing ourselves some abuse of terminology, we apply

identical names to analogous representations in 4D and in 5D: supergravity, gravitino,

vector, hyper. Therefore, since consistency requires that the black hole spectrum agrees

for the AdS2 ×S2 theories that descend from AdS3 ×S2, it must in fact agree for all black

holes. A more abstract approach reaches the same conclusion: since chiral primaries are

robust under motions in moduli space it is sufficient to establish the correspondence when

AdS2 × S2 descends from AdS3 × S2 and then we can conclude that the chiral primaries

determined these two ways must agree. From either point of view our explicit computation

of the black hole spectrum on the nonBPS branch at some level amounts to a consistency

check, albeit a rather nontrivial one.

6 Global supersymmetry

Although our focus is on black holes that do not preserve any supersymmetry it is significant

that they are solutions to supergravity. One aspect of this setting is that a remnant of the

symmetry persists in the spectrum where it acts as a global supersymmetry.
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6.1 Global supercharges: the BPS branch of N = 8 theory

Recall that on the BPS branch there are two spinors ǫ1,2 such that the supersymmetry

transformation (2.7) vanishes. This indicates preserved local supersymmetry and forces the

black hole spectrum into short multiplets with the structure (5.1). The nonBPS branch

has no analogous symmetries and so its spectrum is not organized into short multiplets.

However, on both branches we can exploit the global part of supersymmetry, i.e. the actions

of the transformations (2.7) (and analogous actions on the bosons) that do not depend on

spacetime position.

On the BPS branch ofN = 8 SUGRA the R-symmetry is partially broken as SU(8)R →
SU(2)R × SU(6). The 2 preserved and the 6 broken supersymmetries transform as (2,1)

and (1,6) under the unbroken SU(2)R × SU(6). In this section we write the generators of

the broken supersymmetry as Q
( 1

2
, 1
2
)

A where superscripts refer to (hR, jR) and A is an SU(6)

index. These global supersymmetries (anti)commute with the preserved ones so they leave

the structure (5.1) of short multiplets intact.

The chiral primaries are the first entries in each line of table 6. Their multiplicities

20, 15, 6, 1 can be identified with dimensions of SU(6) representations. For example,

the towers of hypermultiplets are in the antisymmetric 3-tensor of SU(6) and their chiral

primaries are gaugini with quantum numbers (hR, jR) =
(
k + 1

2 , k + 1
2

)
that we can write

as ΛABC
(k+ 1

2
,k+ 1

2
)
. With this notation the obvious contractions

V AB
(k+1,k+1) = Q

( 1

2
, 1
2
)

C ΛABC
(k+ 1

2
,k+ 1

2
) , (6.1)

SA
(k+ 3

2
,k+ 3

2
) =

1

2
Q
( 1

2
, 1
2
)

B Q
( 1

2
, 1
2
)

C ΛABC
(k+ 1

2
,k+ 1

2
) , (6.2)

G(k+2,k+2) =
1

6
Q
( 1

2
, 1
2
)

A Q
( 1

2
, 1
2
)

B Q
( 1

2
, 1
2
)

C ΛABC
(k+ 1

2
,k+ 1

2
) , (6.3)

reproduce the remaining chiral primaries in table 6. In each case indices indicate (hR, jR)

so note that, while generally an SU(2) quantum number j can combine with the jR = 1
2

of the supercharge and give j ± 1
2 , for the broken supersymmetry we select just the upper

sign. This defines global supersymmetry as an operator in the ring of chiral primary fields.

6.2 Global supercharges: the nonBPS branch of N = 8 theory

We now apply the analogous considerations to the nonBPS branch of N = 8 SUGRA.

In this case the local supersymmetry is entirely broken but we can exploit the global

supersymmetry that remains. Its manifestation is a set of global charges Q
(0, 1

2
)

A where the

index A denotes the fundamental representation of the preserved global USp(8) symmetry

and, as usual, (hL, jR) =
(
0, 12

)
denote the SL(2)×SU(2) quantum numbers of the AdS2×S2

isometries.

We start with the 42 moduli, the minimally coupled real scalar fields assembled in a

42 of the global USp(8). We denote this antisymmetric four-tensor of USp(8) as WABCD
(k+1,k).

Upon action with the global supercharges we find

Q
(0, 1

2
)

A WABCD
(k+1,k) = ΛBCD

(k+1,k+ 1

2
) ⊕ ΛBCD

(k+2,k+ 1

2
) . (6.4)
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In this formula, and generally on the nonBPS branch, we refer by definition to an entire

tower with indices k = 0, 1, . . .. In other words, for a given value of k the product of the

SU(2) representations jR = k and jR = 1
2 generally allows the values jR = k± 1

2 . However,

in the special case of k = 0 the option of “-” is absent so, for the second tower in (6.4), we

must shift the indices k → k + 1. We stress that, on the nonBPS branch, we take towers

for both the “+” and “−” of jR = k ± 1
2 . This is in contrast with the BPS branch where

multiplets are shortened so that only the “−” applies for preserved supersymmetries and

only the “+” is active for broken supersymmetries. In the context of the global symmetry

group USp(8), the contraction of the antisymmetric four-tensor 42 with the supercharge

yields an antisymmetric three-tensor 48. Thus the gaugino spectrum (6.4) agrees with the

one we find by explicit computation in section 3 and summarized in table 2.

Action with two global supercharges on the minimal scalar fields similarly gives

Q
(0, 1

2
)

A Q
(0, 1

2
)

B WABCD
(k+1,k) = V CD

(k+2,k) ⊕ V CD
(k+2,k+1) ⊕ V CD

(k+1,k+1) . (6.5)

Since supercharges anticommute and the fields are antisymmetric in the indices A,B, . . .,

the product of the global supersymmetries is effectively symmetric and so corresponds to

spin 1. Generically the product of spin 1 and spin k gives three towers with spin k + 1,

k, and k − 1. However, for k = 0 there is obviously just one tower in this product so,

according to our convention that the index k has range k = 0, 1, . . ., we redefined the label

k → k + 1 in the first two towers of (6.5). Since the two USp(8) indices of the fields V CD

place the fields in the 27 of USp(8) we recover the spectrum of a vector block reported in

table 2, as claimed.

For three global supercharges we similarly reason that, when acting on an antisym-

metric representation, we effectively multiply spin k of the scalar field with spin 3
2 of the

generators. This gives the decomposition

Q
(0, 1

2
)

A Q
(0, 1

2
)

B Q
(0, 1

2
)

C WABCD
(k+1,k) = SD

(k+3,k+ 1

2
) ⊕ SD

(k+2,k+ 1

2
) ⊕ SD

(k+2,k+ 3

2
) ⊕ SD

(k+1,k+ 3

2
) . (6.6)

The smallest values are easily checked by hand: the hL = 1 state in WABCD
(k+1,k) has jR = 0

so, after taking the product with spin 3
2 of the generators, we find that the hL = 1 level

has just one state and that state has jR = 3
2 . The only hL = 1 on the right hand side is

the fourth term for k = 0 and this term indeed has jR = 3
2 . Similarly, the hL = 2 states

on the left hand side arise from the spin composition 3
2 ⊗ 1 = 1

2 ⊕ 3
2 ⊕ 5

2 , in agreement with

the jR values of the k = 0 states in the 2nd and 3rd tower and the k = 1 state in the 4th

tower. The result for the spectrum (6.6) generated by global supersymmetry agrees with

that given in table 2 for half a gravitino block.

Finally, we act with four global supercharges and get

Q
(0, 1

2
)

A Q
(0, 1

2
)

B Q
(0, 1

2
)

C Q
(0, 1

2
)

D WABCD
(k+1,k)

= G(k+3,k) ⊕G(k+3,k+1) ⊕G(k+2,k+1) ⊕G(k+2,k+2) ⊕G(k+1,k+2) . (6.7)

We find the structure of the right hand side by multiplication of spin 2 and spin k, and

then adjust the indices on states with hL = 1 and hL = 2 following the model from the
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preceding paragraph. Our result matches the spectrum of the KK block given in table 2,

as expected.

6.3 Global supercharges in AdS3

We have shown that the black hole spectrum on the BPS branch is generated by global

supercharges Q
( 1

2
, 1
2
)

A while on the nonBPS branch it is organized by Q
(0, 1

2
)

A . It is interesting

to inquire whether these charges acting on the AdS2 spectra can descend from AdS3.

The AdS3 × S2 near horizon geometry of triply self-intersecting strings in 5D N = 8

theory [46, 47] features a supercharge of the form Q
(0, 1

2
; 1
2
)

A where (hL, hR; jR) =
(
0, 12 ;

1
2

)
.

According to the rules for dimensional reduction introduced in section 5.2 omission of hL
yields the BPS branch while omission of hR gives the nonBPS branch. Therefore, a single

AdS3 supercharge gives appropriate supercharges on both branches of the AdS2 theory.

This construction explains the unusual feature that the supercharge on the nonBPS branch

has h = 0. This is possible because the energy hR is unimportant after the reduction to the

nonBPS branch and is closely related to the reason that fermions have integral conformal

weights.

However, the global symmetry encoded in the index A is not entirely clear. The moduli

space of AdS3 × S2 vacua in 5D N = 8 SUGRA is F4(4)/USp(2) × USp(6) [46] and from

this perspective the index A transforms according to the USp(2) × USp(6) group in the

denominator. Upon dimensional reduction to AdS2 × S2 this global symmetry must be

enhanced to SU(2) × SU(6) (on the BPS branch) or USp(8) (on the nonBPS branch). It

is unsurprising that the global symmetry is enhanced upon restriction to one sector or the

other but the details have confusing aspects (see [47, 48] for discussion).

6.4 Global supersymmetry in the N = 4 theory: the nonBPS branch

It is also interesting to determine the global supersymmetry realized by the spectrum of

nonBPS black holes in N = 4 SUGRA with nV matter multiplets. The situation is similar

to N = 8 SUGRA but for N = 4 SUGRA the entire spectrum is not unified into a single

representation so we encounter several distinct multiplets.

The structure of global symmetries for the nonBPS branch of N = 4 SUGRA with nV

matter multiplets was summarized in table 1. The black hole breaks the global symmetry

group of the theory SU(4)R × SO(nV )matter to USp(4) × SO(nV − 1)matter so the global

supercharges Q
(0, 1

2
)

A have USp(4) index A.

• N = 4 superKK Vector Blocks

There are nV − 1 decoupled blocks in the fundamental of the SO(nV − 1) global

symmetry. Each superKK vector block has field content of 5 scalar blocks, 4 1
2

gaugino blocks, and 1 vector block. Table 2 gives their spectrum as

5(k + 1, k)

4
(
k + 2, k + 1

2

)
, 4

(
k + 1, k + 1

2

)

(k + 2, k) , (k + 2, k + 1) , (k + 1, k + 1) .

(6.8)
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We can fit this spectrum into a supermultiplet generated by global supercharges

Q
(0, 1

2
)

A acting once or twice on a scalar block WAB in the 5 of USp(4). The spin-1

USp(4) singlet ΩABQ
(0, 1

2
)

A Q
(0, 1

2
)

B acts trivially in this representation.

• The N = 4 SuperKK Gravity Block .

This is the minimal theory with a KK solution: N = 4 SUGRA with nV = 1 vector

multiplets. Our discussion in section 2 decomposes the N = 4 matter content into

fields that decouple in the KK background: 1 KK block, 4 1
2 gravitino blocks, 6

vector blocks, 4 1
2 gaugino blocks, and 1 scalar block. Boldfaced letters refers not

only to the multiplicity but also to the USp(4) representation. These fields are all

singlets of SO(nV −1) so there is just one N = 4 superKK-block, as expected because

gravity is unique. Table 2 gives their spectrum as

(k + 1, k)

4
(
k + 2, k + 1

2

)
, 4

(
k + 1, k + 1

2

)

6 (k + 2, k) , 6 (k + 2, k + 1) , 6 (k + 1, k + 1)

4
(
k + 3, k + 1

2

)
, 4

(
k + 2, k + 1

2

)
, 4

(
k + 2, k + 3

2

)
, 4

(
k + 1, k + 3

2

)

(k + 3, k) , (k + 3, k + 1) , (k + 2, k + 1) , (k + 2, k + 2) , (k + 1, k + 2) .

We can fit all these fields into a tower of supermultiplets generated by supercharges

Q
(0, 1

2
)

A . Antisymmetric representations formed by tensoring 0, 1, 2, 3, 4 vectors under

the global USp(4) (labelled by 0, 1, 2, 3, 4 indices A,B, . . .) account for the degenera-

cies 1,4,6,4,1. The middle entry is reducible as an USp(4) representation 6 = 5⊕1.

However, both components are kept when the singlet ΩABQ
(0, 1

2
)

A Q
(0, 1

2
)

B is represented

nontrivially. Moreover, symmetric combinations of 0, 1, 2, 3, 4 supercharges of this

form transform as spin 0, 12 , 1,
3
2 , 2. These spins act on the first line of the equation

using the standard product rule of angular momenta and, after compensating for

missing entries with small spin by adjusting the index k so k = 0, 1, . . . in all cases,

the remaining lines follow precisely.
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