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1 Introduction

Today, facing frontier experiments of particle physics, such as the ones at LHC and Super B

Factory (Belle II), there exist increasing demands for more accurate theoretical predictions

based on QCD on various phenomena of the strong interaction. Precise determination

of the strong coupling constant αs, which is a fundamental parameter of QCD, sets a

benchmark for such predictions. In fact, many theoretical developments are required for

improving accuracy of αs determination, and once αs is determined, it serves as an input

parameter for various predictions. For instance, a precise value of αs will play crucial roles
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in measurements of Higgs boson properties, in searches for new physics, or in high-precision

flavor physics. It is also demanded in the context of precise determination of the top quark

mass, predicting running of the Higgs quartic coupling, etc.

Let us quote the current value of αs, given as the world-combined result by the Particle

Data Group (PDG), αs(M
2
Z) = 0.1181± 0.0011 [1]. Dominant contributions to this value

come from determinations by lattice QCD, which have smaller errors than other determina-

tions using more direct experimental inputs. The Flavor Lattice Averaging Group (FLAG)

reports an average of lattice determinations as αs(M
2
Z) = 0.1182± 0.0012 [2] based on the

studies in refs. [3–7]. The relative accuracies of these current values are 0.9–1.0 per cent.

In determinations of αs by lattice QCD, we need to pay attention to the so-called

“window problem,” as pointed out in the FLAG report [2]. This is a problem that it

is difficult to find a wide enough region where both lattice QCD and perturbative QCD

predictions are accurate. A lattice simulation is carried out with a finite lattice spacing a,

whose inverse plays the role of an ultraviolet (UV) cutoff scale. Hence, the lattice results

are accurate in the energy region Q � a−1. On the other hand, perturbative calculations

are accurate at Q & 1 GeV(� ΛQCD ∼ 300 MeV). Determinations of αs are performed by

matching of both results. It turns out that, for currently available lattice cutoff scales, the

energy window 1 GeV . Q� a−1 cannot be taken widely.

The method of finite volume scheme combined with step-scaling [8–11] can resolve this

problem even at currently available lattice cutoffs. In this method, discretization and finite

volume effects are kept under control by a finite volume scheme, while lattice data after the

step-scaling running can be matched with perturbation theory at sufficiently high scale. As

a result, matching with perturbative prediction can be performed at 10–100 GeV. A recent

determination based on this method gives αs(M
2
Z) with 0.7 per cent relative accuracy [12]

(not yet included in the above average values).

In this paper, we determine αs by taking an alternative approach to the window prob-

lem: we enlarge the validity range of a theoretical calculation to lower energy where lattice

calculations are accurate due to Q � a−1. For this purpose, we use the operator product

expansion (OPE) as a theoretical framework. Its difference from perturbative calculations

can be stated as follows. Perturbative predictions have an inevitable uncertainty known

as renormalon uncertainty, which stems from a certain divergent behavior of perturbative

series at large orders. (See ref. [13] for a review of renormalon.) For a dimensionless

observable R(Q) with typical energy scale Q, a renormalon uncertainty is estimated as

O((ΛQCD/Q)n) with a positive integer n (dependent on the observable). In the context of

the OPE of the same observable, given by

R(Q) = C1(Q) + CO1(Q)
〈0|O1|0〉
Qn

+ . . . , (1.1)

the perturbative result is encoded in the leading Wilson coefficient C1. In fact, the renor-

malon uncertainty of C1 generally has the same order of magnitude as the leading nonper-

turbative effect (the second term), which corresponds to dim[O1] = n [14]. It is expected

that the renormalon uncertainty in the leading Wilson coefficient gets canceled when the
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nonperturbative matrix element is added. Hence, the OPE may realize a wider validity

range due to the absence of the renormalon uncertainty, in particular at lower energy side.

However, the OPE cannot be made a maximal use as long as we naively calculate C1

in the ordinary perturbation theory. This is because we do not know sufficiently about

the nonperturbative matrix element. It is not obvious how to practically eliminate the

renormalon uncertainty of C1 using the OPE. In the case where the renormalon uncer-

tainty remains in C1, one encounters a difficulty that the nonperturbative effect cannot be

estimated using the OPE (1.1) since C1 has an error comparable to this nonperturbative

effect. In other words, a renormalon uncertainty causes a mixing between C1 and the non-

perturbative effect. Many studies considering the OPE in the literature are not free from

such a difficulty.

In refs. [15, 16], a method to cope with a renormalon uncertainty has been proposed.

This method enables us to divide C1 into a renormalon uncertainty and a renormalon free

part. By this, we remove a renormalon uncertainty from C1 before referring to the non-

perturbetive matrix element. In this method, we first define C1 as a UV quantity à la

Wilson by introducing an IR cutoff scale µf (corresponding to a factorization scale of an

effective field theory). Then, we separate C1(Q2;µf ) into its cutoff independent part and

dependent part. While a cutoff dependent part exhibits a connection to the IR physics, a

cutoff independent part is regarded as a genuine UV contribution. This cutoff independent

part corresponds to a renormalon free part, determined within perturbation theory. Fur-

thermore, by absorbing the cutoff dependent part into the leading nonperturbative matrix

element, the nonperturbative matrix element can also be defined as a renormalon free quan-

tity. Hence, we can define the leading Wilson coefficient and the leading nonperturbative

effect such that they are clearly separated. This enables us to estimate the nonperturbative

effect without being affected significantly from the higher order uncertainty of C1.

We apply this calculation method for the static QCD potential following ref. [15]. The

typical energy scale of the static QCD potential is r−1, which is the inverse of the distance

between the static color charges. The renormalons of the static QCD potential are located

at half integers in the Borel u-plane. The first renormalon at u = 1/2 gives an O(ΛQCD)

uncertainty. This renormalon is known to be cancelled against twice the pole mass in the

total energy once the pole mass is expressed in terms of a short-distance mass [17, 18]. (At

this stage, the OPE in r is not necessary.) The next-to-leading renormalon at u = 3/2 gives

the leading r-dependent uncertainty of O(Λ3
QCDr

2). In the present work, we remove not

only the u = 1/2 renormalon but also the u = 3/2 renormalon using the above renormalon

subtraction in the OPE framework.

The OPE of the static QCD potential in r can be performed in the form of the mul-

tipole expansion within the effective field theory (EFT), potential non-relativistic QCD

(pNRQCD) [19]. Thanks to this solid basis of pNRQCD, the u = 3/2 renormalon can-

cellation has been convincingly shown [19], which gives a solid basis to our OPE formula.

We construct a renormalon subtracted Wilson coefficient (which will be denoted by V RF
S

below) based on the fixed order result, which is currently known up to the next-to-next-to-

next-to-leading order (N3LO), i.e., O(α4
s) [20–23]. As mentioned, a unique feature of our

renormalon subtraction is that not only the leading renormalon (at u = 1/2) but also the
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next-to-leading renormalon (at u = 3/2) is removed from V RF
S . In the OPE, the leading

term is given by V RF
S ∼ O(1/r). The NLO term represents the leading nonperturbative

effect and is O(r2). We include the NLO term with an unknown coefficient which is to be

determined by a fit. We will explicitly show consistency with the OPE by comparing V RF
S

with a lattice result: the difference between them can be fitted by an O(r2)-term. Our OPE

prediction turns out to be valid up to ΛQCDr . 0.8, corresponding to r−1 & 0.5 GeV. This

shows that our theoretical prediction indeed has a wider validity range than the ordinary

perturbation theory, which is valid at r−1 & 1 GeV.

We determine αs from the static QCD potential by matching a lattice result with the

above OPE where the renormalon uncertainty is subtracted. The lattice results that we

use are obtained by the JLQCD collaboration at large cutoffs up to 4.5 GeV [24, 25], which

facilitate the matching between lattice and the OPE calculations.

Determinations of αs using the static QCD potential have been performed in ref. [7]

with 3-flavor lattice simulation and in ref. [26] with 2-flavor lattice simulation. In these stud-

ies, perturbative calculations are matched with lattice results in the perturbative regime

ΛQCDr . 0.2–0.3. Our determination is carried out with the OPE calculation, and the

matching range is taken as ΛQCDr . 0.6–0.8. We have briefly reported our analysis in

ref. [27].

This paper is organized as follows. In section 2, we present our theoretical formula to

subtract renormalons in the OPE (partially supplemented in appendix B). In section 3, we

determine αs by matching the theoretical calculation with a lattice result. Lattice results

and the way to determine αs are also explained therein. Conclusions and discussion are

given in section 4. Some referential materials and supplementary arguments are given

in appendices.

2 Theoretical framework

Our renormalon subtraction formula [15] is constructed based on the EFT, potential non-

relativistic QCD (pNRQCD) [19]. This EFT factorizes two typical scales of the static QCD

potential. One of the scales is the soft scale ∼ 1/r, which is the inverse of the distance

between the static color charges. The other is the ultrasoft (US) scale ∼ ∆V (� 1/r), which

is the energy difference between the octet and singlet bound states. pNRQCD enables us

to investigate the US scale physics in a systematic expansion in r∆V � 1. The Lagrangian

of this EFT consists of the singlet and octet matter fields and the US gluon fields, while

the soft scale contributions are integrated out and encoded in the Wilson coefficients. Our

formula is based on the multipole expansion, which expands the static QCD potential in r

using the hierarchy r∆V � 1.

In section 2.1, we present our formula to subtract renormalons after a brief review

of the multipole expansion, on which the formula is based. In section 2.2, we explain

our treatment of the IR divergence in the three-loop result of the static QCD potential,

which is related to the US scale dynamics. In section 2.3, we estimate the higher order

perturbative uncertainty of the theoretical calculation, which is required in estimation of

systematic errors in αs determination.
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2.1 Formula to subtract renormalons

Our theoretical calculation is based on the multipole expansion, which gives an expansion

of the static QCD potential in r [19]:

VQCD(r) = VS(r) + δEUS(r) + . . . . (2.1)

The explicit r-dependence is given by VS ∼ O(1/r) and δEUS ∼ O(r2). (The dots denote

higher order terms in r.) The singlet potential VS originates from the soft scale1 ∼ 1/r (�
ΛQCD) and can be evaluated in perturbation theory. In terms of the pNRQCD Lagrangian,

VS is a Wilson coefficient. Perturbative result in coordinate space is usually obtained

through Fourier transform (FT) of the perturbative evaluation of αV (q2),

VS(r) = −4πCF

∫
d3~q

(2π)3
ei~q·~r

αV (q2)

q2
(q = |~q|) , (2.2)

where the perturbative result of αV (q2) is currently known up to three-loop order [21–23]:

αV (q2) = αs(µ
2)

3∑
n=0

[Pn(log(µ/q)) + δPn(log(µ/q))]

(
αs(µ

2)

4π

)n
. (2.3)

Here, Pn is an n-th order polynomial and we denote its constant part by an:

an = Pn(0) = Pn(log(µ/q))|µ=q . (2.4)

The logarithmic terms in Pn can be calculated from the renormalization group (RG) equa-

tion and are expressed by ak with k < n and the coefficients of the beta function. δPn
represents the IR divergence and associated logarithmic dependence. It is zero for n ≤ 2,

and non-zero for n = 3; see eq. (2.14) for δP3. This IR divergence is different from renor-

malon uncertainties and its presence hardly affects the following renormalon subtraction

formula. We explain our prescription for regularizing this divergence in the next section 2.2.

We collect the explicit expressions for an in appendix A.

The NLO term of eq. (2.1), δEUS, is dominantly determined by dynamics of the US

scale ∼ ∆V . It is given by a correlator of the US fields in pNRQCD:

δEUS(r) = −i2παs
3

∫ ∞
0

dt e−i∆V t 〈0|~r · ~Ea(t)ϕadj(t; 0)ab~r · ~Eb(0)|0〉 , (2.5)

where ~Ea is the US chromoelectric field; see ref. [19] for details.

Despite the fact that conceptually the singlet potential is a soft quantity, the integration

region is usually taken as 0 ≤ q <∞ as shown in eq. (2.2). In particular, IR region of the

integral is known to cause renormalon uncertainties in VS , and it brings about a mixing

between VS and δEUS. To avoid this feature, we construct VS as a renormalon free quantity

below, following ref. [15].

1In the pNRQCD terminology, the “soft scale” corresponds to the UV scale, which has been inte-

grated out.
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We first introduce a factorization (cutoff) scale µf to divide the energy region as

ΛQCD � µf � 1/r, and define VS as a soft quantity in terms of this cutoff scale:

VS(r;µf ) = −4πCF

∫
q>µf

d3~q

(2π)3
ei~q·~r

αV (q2)

q2
. (2.6)

Since all the known renormalons stem from the low energy region of the ~q-integral, the above

definition renders VS free from renormalons.2 In VS(r;µf ), there is a cutoff dependent part

by construction, which is regarded as an IR sensitive part of VS . Such a dependence

vanishes only when it is combined with the IR quantities such as δEUS. Hence, the mixing

is induced through the factorization scale. In this respect the cutoff dependent part can

be regarded as a renormalon related part. In contrast, the cutoff independent part is

determined within perturbation theory independently of IR contributions, and hence it

can be regarded as a genuine renormalon free part and as a pure UV contribution.

The renormalon free quantity, which we denote by V RF
S (r) [= cutoff independent part

of VS(r;µf )], can be constructed systematically as follows. For αV (q2) in eq. (2.6), we

adopt the next-to-next-to-next-to-leading log (N3LL) result, which is obtained by RG im-

provement of the N3LO fixed order result:

αV (q2)|N3LL = αs(q
2)

[
a0 + a1

αs(q
2)

4π
+ a2

(
αs(q

2)

4π

)2

+ aReg.I or II
3 (q)

(
αs(q

2)

4π

)3
]
, (2.7)

where αs(q
2) is the running coupling constant, namely, the solution to the RG equation at

four-loop (for consistency):

q2 d

dq2
αs(q

2) = β(αs(q
2))|4-loop = −αs(q2)

3∑
i=0

βi

(
αs(q

2)

4π

)i+1

. (2.8)

We solve this equation numerically.3 The three-loop coefficient a3 is originally IR divergent

as mentioned and we regularize it with the prescription explained below [aReg.I or II
3 (q) is

given by eq. (2.19) or (2.20) in section 2.2]. Related to this divergence, the regularized a3

has a q-dependence unlike the coefficients up to a2. (As noted, this feature has nothing

to do with renormalons.) We set nf = 3 and the corresponding light quarks (u, d, s) are

treated in the massless approximation in our main analysis. (Finite mass effects are taken

into account as a systematic error of our αs determination in section 3.3.) Up to here,

the integrand of eq. (2.6) is determined. Then, by deforming the integration contour of

eq. (2.6) in the complex q-plane, we can separate a cutoff independent part from a cutoff

dependent part. We explain this formulation explicitly in appendix B, which is a brief

review of refs. [15, 16]. After this procedure, we obtain the following expression:

VS(r;µf ) = V RF
S (r) + C0(µf ) + C2(µf )r2 +O(r3) , (2.9)

2More accurately, dominant renormalons which arise from the ~q-integral are removed. Renormalons

contained in αV (q2) are regarded as subdominant and have not been studied, to our knowledge. We neglect

them in our analysis.
3Although the running coupling constant αs(µ

2) can approximately be expressed by series expansion in

1/ log (µ2/Λ2
MS

), we do not use this approximation but solve the RG equation for αs(µ
2) numerically.
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Figure 1. Renormalon free singlet potential V RF
S /ΛMS as a function of ΛMSr (black solid line).

VC(r)/ΛMS is shown by the blue dotted line, and the linear contribution C1r/ΛMS [eq. (2.11)] is

shown by the green dashed line. The results are obtained with regularization method I [eq. (2.19)].

where V RF
S (r) is a µf -independent and renormalon-free quantity. The cutoff dependence

of VS(r;µf ) is encoded in the r0 and r2 terms (and in further higher order terms), which

correspond to the u = 1/2 and u = 3/2 renormalons, respectively. V RF
S consists of a

Coulomb-like part and a linear part:

V RF
S (r) = VC(r) + C1r . (2.10)

VC(r) is expressed by a one-dimensional integral, whose explicit form is given in eq. (B.9).

We evaluate this integral numerically. VC has a Coulomb-like form with logarithmic cor-

rections at short distances. The coefficient of the linear part, C1, is proportional to Λ2
MS

,

and it can unambiguously be calculated as4

C1 = 1.844Λ2
MS

for nf = 3 at N3LL . (2.11)

One obtains V RF
S /ΛMS as a function of ΛMSr without free parameters, where ΛMS is the

only dimensionful parameter in massless QCD. Here and hereafter, ΛMS is the Λ-parameter

at four-loop in the MS scheme with nf = 3, unless otherwise stated: ΛMS = ΛMS
4-loop
,nf=3.

(See appendix C for the definition of ΛMS.) We show V RF
S (r) in figure 1.

So far, we have concentrated on the perturbative part VS . Now let us see how the

result is combined with the multipole expansion (2.1). Since we define the soft quantity

VS with the IR cutoff scale µf , it is natural to define the US quantity δEUS with the UV

cutoff scale µf . Accordingly, the multipole expansion is written as

VQCD(r) = VS(r;µf ) + δEUS(r;µf ) + . . . . (2.12)

It is confirmed in ref. [28] that the cutoff dependence of VS(r;µf ) of the r2-term gets can-

celed against the leading cutoff dependence of δEUS(r;µf ) at the LL level. This corresponds

4The value is obtained in regularization I, where a3 is regularized as in eq. (2.19).

– 7 –



J
H
E
P
0
4
(
2
0
1
9
)
1
5
5

to the u = 3/2 renormalon cancellation, which was first reported in ref. [19]. Although the

explicit confirmation at the N3LL level (which we consider) is still missing, we assume a

parallel scenario. Hence, by using eq. (2.9), we can perform the multipole expansion as

VQCD(r) = V RF
S (r) + δERF

US (r) + . . . . (2.13)

Here, δERF
US is the sum of δEUS(r;µf ) and C2(µf )r2; hence it is µf independent and free from

renormalons. In this way, V RF
S and δERF

US are defined as genuine UV and IR quantities,

respectively. We omit the constant C0(µf ), which does not have a significant meaning

in αs determination; see section 3. Eq. (2.13) is the central formula of our theoretical

calculation. The first term is given by eq. (2.10) and shown in figure 1. In our analyses,

we regard δERF
US , which is an US quantity, as a nonperturbative object (non-local gluon

condensate), and assume δERF
US ∼ Λ3

MS
r2. This is because we focus on relatively long

distances where ∆V � ΛMS is in general not assured. The perturbative result for δEUS

(obtained within pNRQCD) is used for a limited purpose. Hence, we treat the second term

as δEUS = A2r
2 where A2 is a fitting parameter, showing the size of the (renormalon-free)

nonperturbative effect.5

Let us state the unique features of V RF
S , which is a central object in eq. (2.13). First, let

us clarify the difference from the usual RG improved predictions. Usual NkLL predictions

for the static QCD potential are reliable at short distances, but they have an unphysical

singularity around r ∼ Λ−1
MS

,6 which distorts the behavior around this region drastically. In

contrast, V RF
S (r) does not have an unphysical singularity, while N3LL accuracy is held at

short distances. Therefore, reliable range of V RF
S (r) on the low energy side is not limited

a priori.7 Secondly, V RF
S does not have any renormalons. In particular, it is free not

only from the u = 1/2 renormalon but also from the u = 3/2 renormalon, and thus, it is

free from the leading r-dependent renormalon uncertainty of O(Λ3
MS
r2). Thanks to these

features, V RF
S is reliable at short to relatively long distances ΛMSr ∼ O(1). This allows

our OPE prediction to have a wide validity range, as will be shown in section 3.2.2.

2.2 Treatment of US scale

We explain our prescriptions for regularizing the IR divergence in the three-loop coefficient.

The IR divergence was first discovered in ref. [29] and calculated in ref. [30]. In dimensional

regularization with D = 4− 2ε, it reads

δP3 = 72π2

(
1

ε
+ 6 log(µ/q)

)
. (2.14)

5The r2 behavior may receive logarithmic corrections, for instance, from higher order computations of

Wilson coefficients. We discuss their effects on αs determination in appendix F.
6An NkLL prediction is given by

rVQCD(r) = d0αs(1/r
2) + d1αs(1/r

2)2 + · · ·+ dkαs(1/r
2)k+1 ,

where αs(1/r
2) is the (k+ 1)-loop running coupling. Due to the singularity of αs(1/r

2) around r−1 ∼ ΛMS,

the prediction has an unphysical singularity.
7The naive expectation for the validity range of V RF

S is the region up to where the Λ3
MS
r2 becomes

non-negligible, due to the structure of the OPE.

– 8 –
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This IR divergence signals breakdown of naive perturbative expansion and is attributed to

the dynamics at the US scale. The counterpart of the above divergence is provided from

δEUS (2.5). Namely, the FT of δEUS(r) at O(α4
s), defined by

δEUS(r)|O(α4
s)

= −4πCF

∫
d3~q

(2π)3
ei~q·~r

δ̃EUS(q)|O(α4
s)

q2
, (2.15)

is evaluated as [21]

δ̃EUS(q)|O(α4
s)

= αs

(αs
4π

)3 (
PUS

3 + δPUS
3 (log(µ/q))

)
(2.16)

with

PUS
3 = 72π2

(
2 log(CAαs(µ)) + 2γE −

5

3

)
(2.17)

δPUS
3 (log(µ/q)) = −72π2

(
1

ε
+ 6 log(µ/q)

)
. (2.18)

Namely, δEUS has the UV divergence δPUS
3 , and δPUS

3 = −δP3. Hence, the sum of the soft

contribution (VS) and US contribution (δEUS) at order α4
s is finite.

In our analysis, it is appropriate to remove the IR divergence (δP3) from the definition

of V RF
S as well as its IR renormalons since V RF

S is defined as a pure UV quantity. For

this, we make the UV divergence of δEUS absorbed into VS . This is compatible with our

formulation since we define δERF
US as a pure IR contribution.

We consider the following two prescriptions for regularizing the three-loop perturbative

coefficient of VS . In the first one, we regard PUS
3 + δPUS

3 , the perturbative contribution of

δEUS, as a UV contribution and make V RF
S finite by including it as

aReg.I
3 (q) ≡ (P3 + δP3) + (PUS

3 + δPUS
3 )|µ=q

= a3 + 72π2

(
2 log(CAαs(µ

2)) + 2γE −
5

3

)∣∣∣∣
µ=q

. (2.19)

When RG improvement is applied, we also replace αs(µ
2) inside logarithm of eq. (2.19) by

αs(q
2), in the same way as in eq. (2.7). In the second prescription, we divide PUS

3 + δPUS
3

into UV and IR contributions by a cutoff scale µUS which is taken above the US scale. In

this case we adopt

aReg.II
3 (q) = a3 + 144π2 log(µUS/q) . (2.20)

This can be compared to eq. (2.19) by regarding the regulator CAαs as ∆V (r)r ∼ µUS/q.

We choose µUS = 3ΛMS or 4ΛMS.

The motivation to consider the above two prescriptions in αs determination is to check

sensitivity to the treatment of the US perturbative contribution. We will see that it does

not induce a significant effect. We use the regularization I, given in eq. (2.19), in our

main analysis.
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Figure 2. V RF
S at N3LL (solid) and the higher order uncertainty given by the region between the

dotted lines. The r-independent constants are adjusted such that three lines take the same value

at ΛMSr = 0.1.

2.3 Higher order perturbative uncertainty

V RF
S , which we calculate at N3LL accuracy, receives higher order corrections. We assume

that V RF
S can vary to

V RF
S ± δV RF

S , (2.21)

due to higher order corrections. We take δV RF
S conservatively as

δV RF
S = V RF

S |N3LL − V RF
S |N2LL . (2.22)

In calculating V RF
S |N2LL, we use the 4-loop beta function8 in evaluating αV (q2), while

the fixed order results are used up to a2 rather than up to a3. Hence, δV RF
S reduces to

the Coulomb+linear part originating from the a3-term alone (at N3LL). We show the

perturbative uncertainty of V RF
S (i.e. V RF

S ± δV RF
S ) in figure 2.

Higher order uncertainty δV RF
S takes a Coulomb+linear form (with log corrections)

similarly to VS . Hence, it is qualitatively different from the nonperturbative effect, whose

form is quadratic in r. This enables us to estimate the nonperturbative effect while distin-

guishing it from the perturbative uncertainty.9

Furthermore, we note that the perturbative error is smaller than the one in usual

perturbative calculation thanks to renormalon subtraction. We will revisit this point in

section 3.2.2. We also remark that the higher order uncertainty is expected to become

smaller as the order grows. Since such a property does not hold in the presence of renor-

malons, this is another non-trivial merit of renormalon subtraction.

8This is for simplicity of the analysis.
9In previous studies considering the OPE, an estimation of nonperturbative effect suffers significantly

from perturbative uncertainty since renormalons are not subtracted from perturbative calculation. See

section 3.2.2.

– 10 –



J
H
E
P
0
4
(
2
0
1
9
)
1
5
5

3 αs determination

We determine the strong coupling constant at the Z boson mass scale, αs(M
2
Z). We achieve

this by matching the theoretical calculation [presented in the previous section in particular

in eq. (2.13)] with a lattice result. We perform two analyses.

The first analysis, which we call Analysis (I), consists of two steps. In the first step, we

take the continuum limit of the lattice result (without referring to the theoretical prediction

above). In the second step, we compare it with the theoretical prediction to extract αs(M
2
Z).

We proceed while checking (a) if the lattice result can smoothly be extrapolated to the

continuum limit, and (b) if V RF
S can explain the lattice result up to O(r2) difference,

consistently with the OPE structure of eq. (2.13). After confirming these features, we

determine αs(M
2
Z).

In the second analysis, Analysis (II), we perform a global fit to determine αs(M
2
Z).

The two tasks, i.e., an extrapolation to the continuum limit of the lattice data and a

determination of αs by comparison with the theoretical prediction, are carried out at once.

Our final result will be adopted from Analysis (II), where we achieve a smaller error

than Analysis (I). Analysis (II) is a first-principle analysis, which avoids model interpolat-

ing function, required in Analysis (I) for continuum extrapolation. Nevertheless, Analysis

(II) is performed without revealing detailed profiles at intermediate steps. To fill the gap,

Analysis (I) is performed, where the intermediate steps of the analysis are examined and

exhibited explicitly.

We start with an explanation of lattice simulations in section 3.1. Subsequently we

present Analysis (I) in section 3.2 and Analysis (II) in section 3.3. Necessary formulas for

the analyses are given in appendix D.

3.1 Lattice simulations

Our analysis is performed by using lattice QCD data Vlatt(r) obtained by the JLQCD

collaboration [24, 25]. Their numerical simulations are carried out in three-flavor QCD in

the isospin limit by employing the Symanzik gauge [31] and Möbius domain-wall quark

actions [32]. A careful choice of the detailed structure of the quark action reduces the

computational cost to simulate fine lattices remarkably while preserving chiral symmetry

to good precision [24]. Lattice data of Vlatt are available at three lattice cutoffs, which are

determined as a−1 = 2.453(4), 3.610(9) and 4.496(9) GeV from the Wilson-flow scale [33].

In the following, we denote the three lattice spacings by a1, a2 and a3 (a1 > a2 > a3).

Discretization errors of Vlatt start at O(a2), since chiral symmetry forbids O(a) errors.

The lattice sizes are N3
s × T = 323×64, 483×96 and 643×128 at a1, a2 and a3,

respectively. In order to control finite volume effects, their physical sizes are roughly kept

constant L = Nsa≈2.6 fm, and sufficiently larger than the short distance region r.0.5 fm,

where we perform the matching with the OPE. At each cutoff, we take lattice data Vlatt(r)

at a single combination of the degenerate up and down quark mass mud and the strange

quark mass ms. While ms is close to its physical value, mud corresponds to unphysically

heavy pion mass Mπ ≈ 300 MeV. The correction to Vlatt(r) due to the unphysical quark

masses is taken into account in Analysis (II), but turns out to be small (see section 3.3).
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a−1 [GeV] size mud ms Mπ [MeV] MK [MeV] # bin

a−1
1 =2.453(4) 32×64 0.0070 0.0400 309(1) 547(1) N1 =200

a−1
2 =3.610(9) 48×96 0.0042 0.0250 300(1) 547(2) N2 =100

a−1
3 =4.496(9) 64×128 0.0030 0.0150 284(1) 486(1) N3 =100

Table 1. Lattice simulation parameters. For the quark masses mud and ms, we list bare values in

lattice units. The renormalization factor to the MS scheme is available in ref. [34].

Gauge ensembles are generated by using the Hybrid Monte Carlo algorithm. The statistics

are 5,000 Molecular Dynamics (MD) time at each simulation point. Simulation parameters

are summarized in table 1.

The potential Vlatt(r) is extracted from the asymptotic behavior of the rectangular

Wilson loop

W (r, t) = C(r) exp [−Vlatt(r) t] (t→∞), (3.1)

where r and t represent its spatial and temporal sizes, respectively. A gauge link smear-

ing [35] is applied to the spatial Wilson lines to suppress excited state contaminations at

reasonably small t. The spatial Wilson lines and, hence, the quark pair separation ~r are

chosen to be parallel to the spatial directions (1, 0, 0) and (1, 1, 0), which we call direction

d = 1 and 2 in the following. Throughout this study, we estimate the statistical error by

the jackknife method. The bin size is chosen as 25 (a1) or 50 MD time (a2 and a3) by

inspecting the bin size dependence of the jackknife error of Vlatt. The number of bins is

N1 =200 (a1) or N2 =N3 =100 (a2 and a3). The statistical correlation is taken into account

in the fit (3.1) and subsequent analyses.

3.2 Analysis (I): two-step analysis

In Analysis (I), we first take the continuum limit of the lattice data in section 3.2.1. Using

the extracted result, we confirm the validity of the OPE and compare it with other methods

adopted in preceding studies in section 3.2.2. Matching of the OPE with the lattice result

to determine αs is performed in section 3.2.3.

3.2.1 Continuum extrapolation

We take the continuum limit of the dimensionless combination Xlatt(r) ≡ r1[Vlatt(r) −
Vlatt(r1)]. Here, r1 is the scale defined by r2

1
dV
dr (r1) = 1. We fix the r-independent constant

by subtracting the value at r = r1.10

To take the continuum limit Xcont
latt (r) = Xlatt(r; a = 0), we first construct sequences

{Xlatt(r; a)}a=a1,a2,a3 with physical distances r fixed. We choose these reference distances

r as the physical points where the coarsest lattice has original data.11 To obtain Xlatt(r; a)

10By subtracting the potential at r = r1, we can eliminate the r-independent constant which exhibits a

divergent behavior in the lattice simulations as a→ 0.
11Namely, Xlatt(r; a) at reference distances is determined without extrapolating lattice data using model-

assumption (3.2).
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Figure 3. Interpolation of a jackknife lattice data for d = 1 and i = 1. The reduced χ2 [defined in

eq. (D.1)] is given by χ2
Inter|d=1,i=1/d.o.f. = 6.9/(13− 5).

for each a at a reference distance r, we interpolate the lattice data, which are originally

discrete, and calculate Xlatt(r; a) via the interpolating function. An extrapolation to the

continuum limit of the sequence {Xlatt(r; a)}a=a1,a2,a3 can straightforwardly be performed

once the sequence is constructed.

To interpolate the lattice data, we use the following function form:

V Inter.
latt,d,i(r) =

αd,i
r

+ c0,d,i + σd,i r +
c1,d,i

r3
+ c2,d,i r

2 , (3.2)

where d = 1, 2 and i = 1, 2, 3 specify the direction and lattice spacing, respectively. The first

three terms represent the Cornell potential, which is consistent with the LO perturbation

theory at short distances and consistent with the string model at long distances. If we

assume this function form to be correct at the continuum limit, correction terms can arise

due to finite a and L effects. The fourth term, 1/r3-term, is included to take into account

the O(a2) discretization error. (Note that the potential has mass dimension one.) The

fifth term is similarly introduced for finite L effect to absorb a 1/L3-term. Furthermore,

the lattice potential data are function of ~r rather than r, since the rotational symmetry is

broken. Therefore, the coefficients can differ depending on the direction. We interpolate

the lattice data separately for each direction. This is the reason why the subscript d appears

in eq. (3.2).

In interpolation, we use the lattice data in the range 2a < r < L/2. Namely, we do

not use, for instance, the data at r = a. This aims at being free from serious finite a and

L effects. (We show in appendix E that when we include the data at r = a, continuum

extrapolation cannot be performed reasonably.) In fact, the function form (3.2) is chosen

assuming the hierarchy r/a� 1 and r/L� 1.

From the fit, we obtain an interpolating function in a units. We show an example in

figure 3, where one sees that the interpolating function can indeed fit the lattice data. We

calculate Xlatt(r; a) at reference distances using the interpolating function in lattice units:

first, we calculate the ratio r1/a from the (slope of) interpolating function, with which
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i (size) i = 1 (323 × 64) i = 2 (483 × 96) i = 3 (643 × 128)

d (Ni,d) d = 1 (13) d = 2 (10) d = 1 (21) d = 2 (15) d = 1 (29) d = 2 (21)

χ2/d.o.f 7.5/8 2.5/5 7.7/16 9.6/10 21.4/24 12.9/16

r1/a 3.84(14) 3.93(16) 5.76(15) 5.59(12) 7.13(11) 7.121(98)

α −0.59(77) −0.31(64) −0.74(23) −0.60(20) −0.45(11) −0.577(91)

c0 [GeV] 2.07(66) 1.87(56) 3.17(24) 2.96(23) 3.33(14) 3.50(12)

σ [GeV2] 0.24(19) 0.28(17) 0.060(84) 0.169(81) 0.211(56) 0.139(50)

c2 [GeV3] −0.004(18) −0.008(16) 0.0223(85) 0.0065(91) 0.0036(68) 0.0136(60)

c1 [GeV−2] 0.11(33) −0.03(25) 0.062(53) 0.043(42) 0.007(17) 0.029(13)

Table 2. Fitting parameters in eq. (3.2), r1/a, and the reduced χ2. The fitting parameters are

shown as dimensionful quantities (except for α), which are originally obtained as dimensionless

parameters normalized by proper powers of a. To make them dimensionful parameters, we use the

lattice spacings estimated from the Wilson-flow scale. Ni,d is the number of the lattice data used

in interpolation.

one can convert the function into r1 units. Secondly, we read off a value of Xlatt(r) at a

reference point.

By repeating the above procedure for all the jackknife samples, we obtain the aver-

age of Xlatt(r; a) and its statistical error δXlatt(r; ai) for each a at the reference distances

r.12 In our jackknife analysis, we ignore statistical fluctuation of the covariance matrix

[∆latt
d,i (rk, rj)], and use [∆latt

d,i (rk, rj)] calculated with all the data for all the jackknife sam-

ples. Our analysis using the jackknife method proceeds in the same way hereafter.

In table 2, we summarize the fitting parameters in interpolation of eq. (3.2). Gener-

ally, we have smaller statistical errors for finer lattice since more data are available for the

interpolation. The lattice spacings obtained via r1/a are consistent with the ones deter-

mined from the Wilson-flow scale (where r1 = 0.311(2) fm is assumed [36–38]), although

the former ones have much larger statistical errors.

Now we are in a position to extrapolate the sequences {Xlatt(r; a)}a=a1,a2,a3 to the

continuum limit a → 0. In figure 4, we plot the data point of Xlatt(r; a) as a function of

a2/r2
1, where we choose r = 3a1 and r = 8a1 from the analysis for d = 1. We extrapolate

the data by a linear fit in a2, in accord with the O(a2) discretization error. Namely, we

extrapolate the lattice data at each reference distance to the continuum limit with

Y (a) = γ + δ · (a/r1)2 , (3.3)

where γ, δ are the fitting parameters. γ corresponds to Xcont
latt . In figure 4, one can see

that the data follow this function and are extrapolated to the continuum limit. To see

how smoothly the data are extrapolated to the continuum limit, we show the reduced χ2

[i.e. χ2
ex/d.o.f. of eq. (D.3)] at the reference distances in figure 5. Almost all the points

12More precisely, we choose the reference points as r/r1 = 3 〈a1/r1〉 , 4 〈a1/r1〉 , . . . , 15 〈a1/r1〉 for d = 1,

and similarly for d = 2. Therefore, to calculate the average and statistical error of Xlatt(r; a) at these

distances, we first calculate 〈a1/r1〉 by examining all the jackknife samples of i = 1. Then, we read off the

values of Xlatt(r; a) at these distances for each jackknife sample.
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Figure 4. Xlatt(r; a) as functions of (a/r1)2. We show them for r = 3a1 (left) and r = 8a1

(right), which appear in the analysis for d = 1, as examples. Black lines are linear functions in

a2, which extrapolate the data to the continuum limit. χ2
ex/d.o.f., which is the reduced χ2 in this

extrapolation, are 1.43 (left) and 0.15 (right). The black data at a = 0 are the extracted continuum

limit with the shown statistical errors.

Figure 5. The reduced χ2 in extrapolation [see eq. (D.3) for definition] for the distances where the

continuum limit are taken. As a benchmark, χ2/d.o.f. = 2 is shown by the red line.

are extrapolated to the continuum limit smoothly with the reduced χ2 less than 2. Only

the farthest data of d = 1, which has χ2/d.o.f. > 2, is not adopted as our continuum

limit result.

In this way, we obtain the continuum limit Xcont
latt (r). It is shown in figure 6. We

also list the numerical values in table 3. The covariance matrix for Xcont
latt (as well as its

definition) is presented in appendix D for the first 6 points in the short distance region.13

3.2.2 Consistency checks and comparison with conventional methods

Before determining αs, we check consistency of the OPE as given in eq. (2.13) by using the

lattice data Xcont
latt . First, we examine the perturbative part, V RF

S . We check whether V RF
S

has a reasonable behavior as we go to higher orders. For this purpose, we construct V RF
S

at LL to N2LL in a parallel way to section 2.114 and compare them with the current order

prediction at N3LL. Note that, at NkLL, the prediction V RF
S /Λ

(k+1)-loop

MS
is obtained as a

13The authors can provide a larger size matrix upon request.
14The perturbative potentials at NkLL for k = 0, 1, 2 do not contain IR divergences.
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Figure 6. Continuum limit of the lattice result, Xcont
latt . Blue points originate from d = 1 and red

ones from d = 2.

r/r1 Xcont
latt

0.7196 −0.3305(93)

0.7822 −0.2416(72)

1.043 0.04211(15)

1.079 0.07662(33)

1.304 0.2723(48)

1.439 0.3775(83)

1.564 0.478(13)

1.799 0.645(22)

1.825 0.672(22)

2.086 0.861(33)

2.159 0.908(37)

r/r1 Xcont
latt

2.347 1.049(43)

2.519 1.175(52)

2.607 1.236(52)

2.868 1.426(63)

2.878 1.448(66)

3.129 1.621(75)

3.238 1.725(81)

3.389 1.826(88)

3.598 2.004(97)

3.650 2.05(10)

3.958 2.29(12)

Table 3. Numerical results of Xcont
latt (r).

function of Λ
(k+1)-loop

MS
r. Therefore, in order to plot the k-th order prediction in Λ4-loop

MS
units,

we need a conversion parameter Λ
(k+1)-loop

MS
/Λ4-loop

MS
. We determine these ratios by taking

αs(Q
2) = 0.2 as an input regardless of the order of the running coupling (following ref. [15]),

which yields Λ1-loop

MS
/Q = 0.0305, Λ2-loop

MS
/Q = 0.0685, Λ3-loop

MS
/Q = 0.0648, and Λ4-loop

MS
/Q =

0.0642. By regarding Q as a common scale, we obtain the ratios Λ
(k+1)-loop

MS
/Λ4-loop

MS
for

k = 0, 1, 2. The above condition αs(Q
2) = 0.2 assures that different order predictions

have no large deviations at Λ4-loop

MS
r ∼ 0.0642. This is legitimate since these perturbative

predictions should be accurate at such a high energy scale. In figure 7, we plot each order

prediction in Λ4-loop

MS
units, where the lattice result is shown as well. The lattice result

Xcont
latt is converted to ΛMS units from r1 units by assuming ΛMS = ΛPDG

MS
≡ 336 MeV
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Figure 7. Comparison of the lattice result Xcont
latt (black dots) with V RF

S at LL (red), NLL (green),

N2LL (blue), and N3LL (purple), for the inputs nf = 3 and αs(Q
2) = 0.2. ΛPDG

MS
= 336 MeV is

used to convert Xcont
latt to ΛMS units. r-independent constant of each potential is adjusted.

[which corresponds to the current PDG central value of αs(M
2
Z)], and using the central

value of r1 = 0.311(2) fm. In plotting these theoretical predictions, the r-independent

constants are adjusted such that the different order predictions have a common value at

Λ4-loop

MS
r = 0.0642, and the N3LL prediction matches the shortest distance lattice data.

From the figure, one can see that the perturbative part, V RF
S , gradually approaches the

lattice result at higher order.15

Now let us investigate a more detailed issue: we check if the difference between V RF
S

(at N3LL) and the lattice result is O(r2) as the OPE dictates. In figure 8, we show these

two potentials in ΛMS units. The lattice potential is the same as the previous one. For the

singlet potential, we add an r-independent constant so that the difference between them

is zero at the origin. This constant is determined by a fit assuming that the difference

follows const.+const.×r2.16 We show their difference by the red boxes. In the difference,

a linear-like behavior with an O(Λ2
MS

) coefficient, which is observed in the lattice and

perturbative potentials, vanishes. In fact, they can be fitted well by an r2-term at short

distances, as shown by the red line.17 From this figure, the OPE turns out to be valid up

to ΛMSr . 0.8, corresponding to r . 0.5 fm or r−1 & 0.5 GeV. We remark that this curve

15A similar behavior has been observed in quenched QCD in figure 17 of ref. [15] and figure 13 of ref. [39].

Compared to the quenched case, shorter distance lattice data are absent in the current three-flavor lattice

simulation. Due to this, the coincidence of the lattice result and lower order predictions at short distances

cannot be observed, which are observed in the quenched case.
16The first six points are used in this fit.
17The coefficient of the r2-term (normalized by Λ3

MS
) is determined as

A2/(Λ
PDG
MS )3 = −0.222± 0.011(stat) . (3.4)

The reduced χ2 of this analysis is χ2/d.o.f.= 2.5/(6− 2).
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Figure 8. Comparison of the lattice result (cont. limit: blue circles) and leading OPE prediction

(V RF
S /ΛMS: blue line) using ΛPDG

MS
and adjusting r-independent part. The difference (red boxes) is

fitted by const.×r2 (red line) at small r.

is almost unchanged even if we adopt the first 3 points in the fit, although we use the first

6 points in drawing the figure.

To clarify the impact of the above result, in figure 9 we compare the validity range of

theoretical prediction with the methods adopted in the preceding analyses using the static

potential. We first consider the case adopting the N3LL prediction used in the main analysis

of ref. [7], instead of V RF
S . The prediction in ref. [7] has the u = 3/2 renormalon and the

unphyiscal singularity at ΛMSr ' 0.56 unlike V RF
S , although it is free from the u = 1/2

renormalon.18 Due to this singularity, the prediction cannot be obtained at ΛMSr & 0.56,

and it starts to be distorted around this region as seen from the left panel of figure 9

(orange line). In the right panel, the difference from our continuum lattice result is shown

(orange points). One cannot observe a const.+const.×r2 behavior even at ΛMSr . 0.6.19

Secondly, we consider the fixed order perturbative prediction of VS at N3LO. It is

free from the u = 1/2 renormalon (once a value at some distance is subtracted) and from

the unphysical singularity, while it has the u = 3/2 renormalon. Since it is a fixed-order

potential, the prediction is reliable only around the region r ∼ µ−1. We choose µ as

ΛMS/µ = 0.4, where µ−1 is close to the smallest r among the lattice data points in the

continuum limit. This also fixes the value of αs(µ
2) as αs(µ

2) = 0.59. In the right panel of

18The prediction of ref. [7] is obtained as follows. First, the fixed order perturbative prediction for the

QCD force is considered, which is free from the u = 1/2 renormalon. Then, the RG improved potential

is obtained by integrating the RG improved force with respect to r. Here, the RG improved force has

a singularity due to the running coupling for the reason explained in footnote 6. Hence, the integration

cannot be performed in the region containing this singularity.
19The determination of ref. [7] is performed at the high energy scale ΛMSr . 0.3 after carefully examining

the perturbative regime.
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Figure 9. (Left) Static potentials obtained from lattice (black), V RF
S /ΛMS (purple), the N3LL

prediction of ref. [7] (orange), and the fixed order N3LO prediction with ΛMS/µ = 0.4 (dark blue).

(Right) Differences between the lattice result and the theoretical predictions. Purple data represent

the difference from V RF
S , the orange ones from the N3LL prediction of ref. [7], and the dark blue ones

from the N3LO prediction. The curves in this figure are const.+const.×r2 functions determined

by fits. The purple solid line is determined with the first six points [χ2/d.o.f. = 2.5/(6 − 2)],

and the purple dotted one with the first three points [χ2/d.o.f. = 0.19/(3 − 2)]. The orange

solid line is determined with the first three points [χ2/d.o.f. = 85/(3 − 2)], and the orange dotted

one with the first two points [d.o.f. = 0]. The dark blue solid line is determined with the first

six points [χ2/d.o.f. = 141/(6 − 2)], and the dark blue dotted one with the first three points

[χ2/d.o.f. = 0.002/(3− 2)].

figure 9, the difference from the lattice data is shown (dark blue points). We can observe

the OPE structure up to a certain distance region: the first three points (ΛMSr . 0.55) can

be fitted reasonably by a const.+const.×r2 function, while the first six points (ΛMSr . 0.8)

cannot be. However, we note that the result of the analysis is sensitive to a choice of the

renormalization scale. If we make the renormalization scale twice (ΛMS/µ = 0.2), the range

that the OPE is applicable and the coefficient of an r2-term vary considerably. (We cannot

take the scale 1/2, since the running coupling constant diverges above this scale.) This

indicates that the OPE structure is not held stable against the higher order correction. In

contrast, if we perform a parallel analysis using V RF
S ,20 we always confirm that the OPE is

valid up to ΛMSr . 0.8 and the variation of the coefficient of an r2-term is milder. Namely,

the OPE structure is stably observed. This allows us to treat the nonperturbative effect

(coefficient of an r2-term) in a more reasonable and reliable way.

The above arguments show that our theoretical calculation indeed allows us to use

a range up to larger r than previous studies. We confirmed that the OPE structure is

observed up to ΛMSr . 0.8. This is achieved thanks to a stable and reliable prediction of

V RF
S at short to relatively long distances. This feature originates from the RG improvement,

the absence of the unphysical singularity, and the u = 3/2 renormalon subtraction. The

latter two features result from subtraction of IR contributions [see eq. (2.6)] in constructing

V RF
S . This subtraction removes instability caused by IR dynamics.

20Namely, we vary µ = q to q/2 or 2q in αV (q2) in obtaining the renormalon free part V RF
S .
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Discussion on r2 behavior. We provide a supplementary explanation on at which

level the OPE structure is confirmed in this study. The OPE of pNRQCD predicts that

the difference between lattice result and V RF
S is order r2, and that a coefficient of a linear

term in r is zero if it is considered. We investigate size of the coefficient, expected to be

zero, by including a term A1r in addition to A2r
2 for fitting the difference. We obtain

A1/Λ
2
MS

= −0.33 ± 0.23(stat)+0.25
−0.22(ΛMS) ± 0.32(h.o.) = −0.33+0.47

−0.45, where the statistical

and systematic errors are combined in quadrature. Here, we consider only the dominant

systematic errors. The error associated with ΛMS is estimated by varying ΛMS within the

current PDG error ΛMS = 336± 17 MeV; the other stems from higher order uncertainty of

V RF
S , which is estimated by shifting V RF

S → V RF
S ±δV RF

S . One can see that A1 is consistent

with zero. In addition to this result, a fit with an r2-term alone (assuming A1 = 0) can be

reasonably performed as shown above. These facts suggest correctness of the OPE.

At this stage, however, A1/Λ
2
MS

of nearly order one is still allowed. Hence, we refrain

from making a stronger statement on confirmation of the OPE structure before A1/Λ
2
MS

is

constrained to be much smaller than unity.21

Nevertheless, it is worth making a comment on an example of the hypothesis which

conflicts with the OPE. One may find the literature where a nonperturbative linear poten-

tial with the coefficient of the string tension is considered at short distances ΛMSr . 0.8.

This possibility is excluded more than at 8 σ level from our estimate of A1.22

3.2.3 αs determination: matching between OPE and lattice result

We now determine αs(M
2
Z) by matching the lattice result with the OPE. Our determination

of αs reduces to the problem to find an appropriate x = ΛMS r1 such that the OPE agrees

with the lattice result. Once x is determined, we obtain ΛMS through the value r1 =

0.311(2) fm. Then, we obtain αs(M
2
Z) by solving the RG equation for αs(µ

2).

We compare the lattice and theoretical potentials in ΛMS units by converting the lattice

result to ΛMS units with x:

X̃cont
latt (r) = x−1Xcont

latt . (3.5)

The OPE prediction is given by

vOPE(r) = Λ−1
MS
VOPE(r) = Λ−1

MS
[VS(r) +A0 +A2r

2] , (3.6)

where A0 and A2 are the fitting parameters. In the matching, we choose the lattice data

points satisfying ΛPDG
MS

r < 0.8 in order for the OPE to be valid. Hence, the first six

points of figure 6 are used. The covariance matrix required in this analysis is presented in

appendix D.

The results are summarized in table 4. From the result of x in this table, we obtain

ΛMS = 315± 15(stat) MeV , (3.7)

using r1 = 0.311 fm.

21Our result for A2, the coefficient of the r2-term, is consistent with zero as well when systematic errors

are considered. However, in fact, this value is dependent on a scheme to factorize a µf -independent part [16].

There always exists a scheme to render A2 non-zero. Therefore, validity of the OPE, which predicts O(r2)

difference, is exclusively exhibited by smallness of A1. (A1 is independent of a scheme choice.)
22Here, we assume the string tension to be σs/Λ

2
MS
∼ 3.8.
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x 0.496(24)

A0/ΛMS 0.580(44)

A2/Λ
3
MS

0.04(22)

χ2
match/d.o.f. 0.4/(6− 3)

Table 4. Fitting parameters in Analysis (I). Values inside parentheses denote statistical errors.

See eq. (D.5) for definition of χ2
match.

The obtained 3-flavor ΛMS of eq. (3.7) gives the 5-flavor coupling as

αs(M
2
Z) = 0.1166+0.0010

−0.0011(stat) . (3.8)

This value is obtained as follows. First, we calculate αs(µ
2)|nf=3 below the charm MS

mass µ < mc = 1.3 GeV, from the obtained ΛMS using eq. (C.1) in appendix C. Secondly,

we obtain the 4-flavor coupling at the charm MS mass (which we take as a matching

scale) µ = mc, using the 3-loop matching equation [40]. Then, we obtain αs(µ
2) for

mc < µ < mb = 4.2 GeV by solving the RG equation for nf = 4. Similarly, we obtain the

5-flavor coupling at the bottom MS mass by the matching equation. Then, we obtain the

coupling at the Z boson mass MZ = 91.187 GeV, αs(M
2
Z), by solving the RG equation for

nf = 5. We solve the RG equation for αs(µ
2) numerically; see footnote 3.

For convenience, we summarize the conditions used in our main analysis, with which

we determine the central value of αs(M
2
Z).

• Controlling finite a and L effects: Lattice data in the range 2a < r < L/2 are used

in interpolation

• Interpolating function: Cornell type potential [eq. (3.2) ]

• Lattice result extrapolated to a = 0: X(r) = r1[Vlatt(r)− Vlatt(r1)]

• Singlet potential: V RF
S (r) defined by eq. (2.10), which has N3LL accuracy

• Regularization of US divergence: Prescription I [eq. (2.19)]

• Matching range (Used lattice data in the continuum limit): ΛPDG
MS

r < 0.8

• Conversion of x to ΛMS: Central value of r1 = 0.311(2) fm

We now estimate systematic errors of our determination. For this purpose, we per-

form re-analyses by changing the conditions as follows and examine variations of deter-

mined αs(M
2
Z).

• Finite a effects. We use the lattice data of a < r < L/2 in interpolation such that

the shorter distance points r & a are included, although we still omit the data at

r = a.23

23For the case including the data at r = a, see appendix E.
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• Interpolating function. The Cornell potential has a defect that it does not have a

logarithmic correction in the Coulomb part at short distances where it should be

1/(r log(rΛMS)) rather than 1/r. Such a logarithmic correction follows from the one-

loop β function. We replace the Coulomb part by the one consistent with the one-loop

β function:

V ′
Inter.
latt (r) = V large-β0

C

(
rΛ1-loop

MS

)
+ c0 + σr +

c1

r3
+ c2r

2 , (3.9)

where V large-β0

C (r) is the Coulomb-like potential calculated in the large-β0 approxi-

mation according to the method of ref. [15] or appendix B. Its asymptotic form is

given by24

[
V large-β0

C /Λ1-loop

MS

]
(ρ = rΛ1-loop

MS
)→

{
−CF 2π

β0

1
ρ log(1/ρ) (rΛMS � 1)

−CF 4π
β0ρ

(rΛMS � 1) .
(3.11)

• Subtraction point. We take the continuum limit of

r1[Vlatt(r)− Vlatt(0.8r1)] , (3.12)

where the subtraction point is changed.

• Higher order uncertainty. We replace V RF
S in matching as

V RF
S + tδV RF

S (3.13)

with t = −1 or 1 in order to estimate higher order uncertainty; see eq. (2.22) for

δV RF
S .

• US regularization. We adopt the regularization prescription II, given by eq. (2.20).

We choose µUS as 3ΛMS and 4ΛMS.

• Matching range. We vary the range of the lattice result used in the matching as

ΛPDG
MS

r < 0.7 or 0.9 (3.14)

to examine the stability of the OPE truncated at O(r2).

• r1. We vary r1 in the range r1 = 0.311± 0.002 fm.

The estimated systematic errors are summarized in table 5.

By taking the root-sum-square of the errors, we obtain

αs(M
2
Z) = 0.1166+0.0010

−0.0011(stat)+0.0018
−0.0017(sys) (3.15)

from Analysis (I).

24In interpolating the lattice unit potential with the above fitting form, we introduce y = Λ1-loop

MS
a as the

fitting parameter in order to convert V large-β0
C /Λ1-loop

MS
to a units as

aV ′
Inter.
latt (r) = y[V large-β0

C /Λ1-loop

MS
](yr/a) + . . . . (3.10)
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finite a interpol. fn. subt. point h.o. US range r1

Obtained value −4 +4 −8
+14 (t=−1)
−12 (t=1)

+1 (3ΛMS)

−0 (4ΛMS)
+5 (0.7)
−8 (0.9) ±1

Assigned error ±4 ±4 ±8 +14
−12 ±1 +5

−8 ±1

Table 5. Estimates of systematic errors in Analysis (I) from variations of the central value of

αs(M
2
Z) in units of 10−4 when varying the analysis conditions. In the upper row, variations are

shown. (Detailed conditions are shown inside brackets). Assigned systematic errors are shown in

the lower row.

3.3 Analysis (II): global fit

In Analysis (I), an interpolating function is assumed in order to take the continuum limit of

the potential, although the exact functional form is unknown. This is a short-coming from

the viewpoint of first principles. In Analysis (II), we perform a first-principle determination,

without using such a model-like interpolating function. This is achieved by a global fit in

which the continuum extrapolation and the matching with a theoretical calculation are

performed at once.

This analysis is based on the idea that the OPE prediction should be correct at short

distances and coincide with the lattice data once the discretization errors are removed.

Then, the OPE is matched with the modified lattice data which can be regarded as the

result in the continuum limit:

V cont
latt (r) = Vlatt,d,i(r)− κd,i

(
1

r
−
[

1

r

]
d,i

)
+ fd

a2
i

r3
− c0,d,i . (3.16)

Discretization errors contained in the original lattice data Vlatt,d,i are removed by the second

and third terms (depending on i and d), and the last term adjusts the r-independent

constant;
[

1
r

]
is the LO result in the lattice perturbation theory, which deviates from

a smooth 1/r-function due to finite a and L effects. Hence, the second term removes

the discretization error at the tree-level. Note that the tree-level potential is given by

a one-gluon exchanging diagram and is order αs. Here, κ is regarded as an effective

coupling of lattice perturbation theory, and is treated as a fitting parameter. The third

term extrapolates the data to the continuum limit by removing the remaining error of order

α2
sa

2. In eq. (3.16), we do not include a term related to finite L effects because in Analysis

(I) the finite L effects, shown by the size of c2, turn out to be small (see table 2). On the

other hand, the term fda
2
i /r

3, which is also small in Analysis (I) (see c1 in table 2), is kept

just in case because Analysis (II) uses shorter distance data.

We perform matching by converting lattice and theoretical potentials to GeV units.

Lattice data are converted to these units using a’s estimated by the Wilson-flow scale. The

theoretical potential is converted with z = ΛMS[GeV], which is unknown in advance and

thus is treated as a fitting parameter. Therefore, an OPE prediction used here is given by

VOPE(r) = z[VS/ΛMS](zr) +A2r
2 . (3.17)

Since an r-independent constant is already included in eq. (3.16), it is not included here.
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i (size) i = 1 (323 × 64) i = 2 (483 × 96) i = 3 (643 × 128)

d (Ni,d) d = 1 (4) d = 2 (3) d = 1 (6) d = 2 (4) d = 1 (8) d = 2 (5)

κ 0.19(15) −0.26(85) 0.27(12) −0.53(88) 0.27(11) −0.57(91)

c0 [GeV] 2.245(11) 2.300(87) 3.012(11) 3.099(89) 3.546(10) 3.631(86)

χ2 χ2/d.o.f. = 8.7/(30− 16) (global fit)

fd f1 = 0.0004(18), f2 = −0.025(32) (common to all i)

A2 A2 = −0.0091(54) GeV3 (common to all i, d)

Table 6. Fitting parameters in Analysis (II). Only statistic errors are shown. Ni,d expresses the

number of data points for direction d of the i-th lattice.

In matching, we adopt the lattice data in the range rΛPDG
MS

< 0.6. Here, we choose a

shorter distance region than in Analysis (I) since we have more available data points. It

serves to reduce our dominant error, given by higher order perturbative uncertainty. In

this analysis, we do not omit short distance data at r ∼ a, and in particular we include

the data at r = a. (Note that the continuum extrapolation cannot be taken reasonably

if we include the data at r = a in Analysis (I), as discussed in appendix E.) Thus, we

take into account the tree-level correction, which is powerful to remove the discretization

error at short distances (where perturbation theory works) and does not need the hierarchy

r � a.25 The number of the i-th lattice data used in the matching is 7, 10, 13 points for

i = 1, 2, 3, respectively.

In this analysis, we determine 16 parameters in total: ΛMS, A2, six tree-level correction

parameters κ’s, two f ’s, and six r-independent constants c0’s. Due to the nature of this

global fit, the lattice result in the continuum limit is determined such that it matches

with the OPE prediction. In this respect, the continuum extrapolation is not taken within

lattice simulation, but it is constrained by the OPE prediction.26 Thus, the lattice data in

the continuum limit in Analyses (I) and (II) have qualitatively different meanings.

In this global fit, we obtain

ΛMS = 334± 10(stat) MeV . (3.18)

We summarize the other parameters in this global fit in table 6. The reduced χ2 of this

fit is χ2
GF/d.o.f. = 8.7/(30 − 16) [see eq. (D.7) for definition of χ2

GF], showing the validity

of the analysis. A2 is consistent with our previous estimate eq. (3.4), which is obtained

while assuming ΛMS = ΛPDG
MS

. (It is also consistent with Analysis (I).) f ’s are consistent

with zero, which suggests that the discretization error is quite small after the tree-level

correction is taken into account.

25In Analysis (I), the tree-level correction is not considered. It is because we try to examine the validity

range of the OPE, and thus need the continuum limit result in a wide distance region, where the tree-level

correction is not generally valid.
26We do not interpolate each lattice data (for each d and i). The continuous function appearing in this

analysis is only the OPE prediction, and each lattice data is modified to agree with this function according

to eq. (3.16).
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Figure 10. Determined values of κ. Blue (orange) data represent κi,d=1 (κi,d=2). Red curve

represents the running of CFαs(µ
2) assuming ΛMS = ΛPDG

MS
and nf = 3. We plot κd,i at µ = a−1

i

for comparison.

To check if the tree-level correction works in a reasonable way, we show the determined

values of κ’s in figure 10. In this figure, we compare κd,i with its naively expected value,

CFαs(µ
2), while taking the renormalization scale as µ = a−1

i . Note that CF = 4/3 is

multiplied since the LO result in the continuum theory is VQCD(r)|tree = −CFαs/r. In

plotting the running coupling, we assume ΛMS = ΛPDG
MS

and nf = 3. The determined κ’s

are consistent with the naively expected values within the statistical errors, which supports

validity of our analysis. Large statistical errors for κd=2,i stem from the small number of

data for d = 2.

We show the lattice result in the continuum limit [eq. (3.16)] and the OPE prediction

[eq. (3.17)] which are determined by the fit in figure 11. From the figure, one can see that

the analysis is performed reasonably, and that the OPE calculation and the lattice result

are mutually consistent in the examined region.

The obtained ΛMS in eq. (3.18) gives

αs(M
2
Z) = 0.1179± 0.0007(stat) . (3.19)

The procedure to obtain αs(M
2
Z) is the same as for Analysis (I).

For convenience, we summarize the conditions used in our main analysis, with which

we determine the central value of αs(M
2
Z).

• Controlling finite a effects: The data at r ≥ a are used combined with the tree-level

correction.

• Singlet potential: V RF
S (r) defined by eq. (2.10), which has N3LL accuracy

• Regularization of US divergence: Prescription I [eq. (2.19)]
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Figure 11. Lattice result in the continuum limit (black points) and the OPE calculation (green)

determined simultaneously by the fit in Analysis (II). The distance region used in this fit rΛPDG
MS

<

0.6 is shown by the dotted line. For reference, r = r1 is also shown.

• Quark masses: We use the lattice data obtained with unphysical quark mass inputs

and V RF
S in the massless quark approximation.

• Matching range: ΛPDG
MS

r < 0.6

Now we estimate systematic errors of our determination. We perform the following re-

analyses. Since this analysis will give our final result, some additional aspects are studied

in comparison to Analysis (I).

• Finite a effects. We use the lattice data at r ≥ 2a. In this case, we omit the tree-level

correction by setting κ’s to zero. This is because the role of the tree-level correction

is similar to that of the a2/r3-term under the current hierarchy a/r ≤ 1/2, where the

tree-level correction is well approximated in expansion in a/r.27

• Higher order uncertainty. We replace V RF
S in matching as

V RF
S + tδV RF

S (3.20)

with t = −1 or 1 in order to estimate higher order uncertainty; see eq. (2.22) for δV RF
S .

• US regularization. We adopt the regularization method II, given by eq. (2.20). We

have chosen µUS as 3ΛMS and 4ΛMS.

27If we include both κ’s and f ’s, the fit is destabilized due to a flat direction caused by this degeneracy.

We adopt the a2/r3-term rather than the tree-level correction since the tree-level correction becomes less

reliable when the matching range shifts to lower energy region.
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• Mass effects. Lattice data are obtained with the unphysical mass inputs. We include

an estimation of this mass difference effect as a systematic error, since we do not

know the true correction. We estimate the lattice data on the physical point as

Vlatt,d,i(r;m
latt,i)→ Vlatt,d,i(r;m) = Vlatt,d,i(r;m

latt,i) + [Vpt,i(r;m)− Vpt,i(r;m
latt,i)] ,

(3.21)

where m is the MS masses for the light quarks (u, d, s); Vpt is the finite mass correction

evaluated in perturbative QCD at N2LO [41–43]. More precisely, it is a function of

{r,m, µ} of the form

Vpt(r;m) = c1(r,m)α2
s + c2(r,m, µ)α3

s , (3.22)

which vanishes in the limit m→ 0. In the above estimation, we take the renormaliza-

tion scale as µ = a−1
i and choose αs as 0.27, 0.23, 0.21 for i = 1, 2, 3, respectively, so

that it is close to αs(µ
2 = a−2

i ). For the MS mass values of the light quarks, we use

mu = 2.2 MeV,md = 4.7 MeV,ms = 96 MeV. To model a nonperturbative effect,

we also substitute a constituent quark mass of 300 MeV for m in eq. (3.21) as an

additional test (while the other parameters are kept fixed). Furthermore, since V RF
S

is obtained by treating the light quarks as massless, the finite mass effects are also

added to V RF
S as

V RF
S → V RF

S + Vpt(r;m) . (3.23)

For this Vpt, we take µ = 3 GeV and αs = 0.25. In this way, we estimate both

theoretical prediction and lattice result at the physical point.

• Matching range. We vary the range of the lattice result used in the matching as

ΛPDG
MS

r < 0.5 or 0.8 (3.24)

to examine the stability of the OPE truncated at O(r2).

• Factorization scheme. In extracting the renormalon free part V RF
S , we rewrite the

integrand of VS by a complex function; see (B.2) in appendix B. In general, there can

be other choices for this function, and in this regard, we have chosen a certain scheme.

A different scheme practically causes an O(r3) difference in the OPE prediction trun-

cated at O(r2); see ref. [16] for details.28 To see an effect of this scheme dependence,

we add an A3r
3-term in the fit so that this scheme dependence is absorbed. (Note

that, in order to determine coefficients up to higher orders in r, a wider fitting range

is required. We choose the range in this analysis as ΛPDG
MS

r < 0.8, where A2 and A3

are stable against variation of the range.29)

• Lattice spacing. The lattice spacing a, used to convert r and Vlatt into physical

units, has an error as shown in table 1, and has an additional error of 1.7% due to

the uncertainty of the physical value of the Wilson-flow scale [44]. For the former

28In ref. [16], it is shown that the current choice is natural from the viewpoint of analyticity.
29This range is chosen after studying the stability for various ranges.
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finite a h.o. US Mass range fact. scheme latt. spacing

Obtained value −2
+12 (t=−1)
−10 (t=1)

+2 (3ΛMS)

+0 (4ΛMS) −0(MSmass
Constituent mass)

−3 (0.5)
−4 (0.8) +3 ±4

Assigned error ±2 +12
−10 ±2 ±0 ±4 ±3 ±4

Table 7. Estimates of systematic errors in Analysis (II) from variations of the central value of

αs(M
2
Z) in units of 10−4 when varying the analysis conditions. In the upper row, variations are

shown. (Detailed conditions are shown inside brackets). Mass effects are negligibly small in both

cases. Assigned systematic errors are shown in the lower row.

one, the error is etimated by the largest deviation detected from a set of six data,

{{a1 ± δa1, a2, a3}, {a1, a2 ± δa2, a3}, {a1, a2, a3 ± δa3}}, where δai denotes the error

shown in table 1. The error associated with the latter is estimated by shifting all the

a’s simultaneously by its uncertainty. By combining these two errors in αs(M
2
Z) in

quadrature, the uncertainty from the lattice spacing is estimated.

The estimated systematic errors are summarized in table 7. Some error sources included

in Analysis (I) are absent thanks to the first-principle nature of this analysis. In addition,

most of the systematic errors are reduced compared to Analysis (I). In particular, the

higher order uncertainty is smaller since a shorter distance region is used; see figure 2. The

mass effects turn out to be negligibly small even if we consider the constituent quark mass.

This is because we are probing a sufficiently short-distance region. (Additional analyses

on systematic errors are given in appendix F.)

As a result of Analysis (II), we obtain

αs(M
2
Z) = 0.1179± 0.0007(stat)+0.0014

−0.0012(sys) . (3.25)

3.4 Summary of results

We have performed two determinations of αs. In Analysis (I), which is a preparatory anal-

ysis, we first took the continuum limit of the lattice data, and then we matched the result

with the OPE prediction. Although this analysis partially relies on a model-like assump-

tion, we explicitly showed that (a) the continuum extrapolation of the lattice data can be

taken smoothly, and that (b) the OPE combined with our renormalon subtraction is in-

deed consistent; see figure 8. We obtained ΛMS = 315±15(stat)+26
−25(sys) = 315+30

−29 MeV and

αs(M
2
Z) = 0.1166+0.0010

−0.0011(stat)+0.0018
−0.0017(sys) = 0.1166+0.0021

−0.0020. The total errors are obtained by

combining the statistic and systematic errors in quadrature.

In Analysis (II), we performed a global fit, where theoretical constraints are fully used.

Analysis (II) is superior to Analysis (I) in the sense that it is a first-principle analysis and

that our dominant error, higher order uncertainty, is reduced thanks to the use of short

distance range. This gives our final result:{
ΛMS = 334± 10(stat)+21

−18(sys) MeV = 334+23
−21 MeV ,

αs(M
2
Z) = 0.1179± 0.0007(stat)+0.0014

−0.0012(sys) = 0.1179+0.0015
−0.0014 .

(3.26)

One can see that both analyses give consistent values. Our results of αs(M
2
Z) are

compared with the current PDG and FLAG results in figure 12, where one can see that

our results are also consistent with them.

– 28 –



J
H
E
P
0
4
(
2
0
1
9
)
1
5
5

Figure 12. Comparison of various αs determinations.

4 Conclusions and discussion

We determined the strong coupling constant αs from the static QCD potential by matching

a lattice result with a new OPE calculation where renormalons are subtracted from the

leading Wilson coefficient. We subtract both u = 1/2 and u = 3/2 renormalons from

the Wilson coefficient. In particular, we confirmed the following features regarding the

renormalon subtraction.

1. Theoretically the cancellation of the u = 3/2 renormalon against the nonperturba-

tive term is checked at the LL order. Furthermore, logarithmic contributions at IR

region in the Fourier integral, which cause factorial divergence, are subtracted at the

NNNLL level.

2. To check that ignoring renormalons contained in αV (q) is harmless at the current

level of the analysis, we confirmed that the renormalon-free Wilson coefficient V RF
S (r)

approaches the lattice data as we raise the order: LL, NLL, NNLL, NNNLL (figure 7).

3. As a result of the renormalon subtraction, convergence and stability against scale

variation are improved as compared to the conventional methods. The difference

between the Wilson coefficient V RF
S (r) and the lattice data can be fitted with r2

consistently with the prediction of the OPE. This r2 behavior is observed up to

ΛMSr ∼ 0.8 (r ∼ 0.4 fm). (Figures 8, 9)

Based on these confirmations, we adopt the OPE framework where a power correction term

of order r2 is added to the renormalon-free Wilson coefficient.

In our αs determination, the matching range is taken as ΛMSr . 0.6 based on the

above observation. This range is significantly wider than preceding determinations using

the static QCD potential, where typically ΛMSr . 0.3 has been used. This enables us to

use the data not only at r ∼ a but also at r � a, where lattice simulation is considered to

be accurate. We performed a reasonable fit in this wide region, which leads to a reliable

determination. Our final result is αs(M
2
Z) = 0.1179+0.0015

−0.0014. This result is obtained by a

global fit [Analysis (II)] and is consistent with our another analysis [Analysis (I)], where
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we examined intermediate processes step by step. The reasonable value of αs with re-

spect to today’s other determinations again indicates the validity of our analysis. We also

confirmed that although the energy region extends to lower energy side than conventional

determinations using perturbative calculation, varying the matching range does not induce

significant systematic errors.

Dominant error of our determination comes from systematic errors, in particular from

the higher order perturbative uncertainty of the leading Wilson coefficient. We emphasize

that a finer lattice simulation will straightforwardly reduce this error, since we can adopt

a shorter distance range in the fit, where the uncertainty becomes smaller.30,31

We believe that our analyses are useful not only in determining αs but also in promoting

understanding on the OPE structure and lattice discretization errors. As stated, this is

a first numerical observation that the difference between the Wilson coefficient and the

lattice result is consistent with O(r2) behavior at ΛMSr . 0.8 in accordance with the OPE

structure. We also give a constraint on the linear term in r in the difference, which should

be zero in the OPE. (See discussion in section 3.2.2.) Concerning the lattice discretization

error, we clarified that (i) the data at r = a indeed has a serious finite a effect (appendix E),

and (ii) once the tree-level correction is considered combined with the OPE calculation, the

finite a effect can be largely removed with reasonable values of lattice effective couplings.
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A Coefficients of perturbative calculation

The coefficients an of eq. (2.4) are given by

a0 = 1 ,

a1 =
31

3
− 10

9
nf ,

a2 =
4343

18
+ 36π2 + 66ζ3 −

9π4

4
−
(

1229

27
+

52

3
ζ3

)
nf +

100

81
n2
f ,

a3 = a
(0)
3 + a

(1)
3 nf + a

(2)
3 n2

f + a
(3)
3 n3

f , (A.1)

30Reduction of the higher order uncertainty can be estimated as follows. The relative perturbative

accuracy in our formulation at N3LL is order αs(µ
2)4, not affected by renormalon uncertainties. Here, µ is

the typical scale used in the αs determination. For instance, suppose that currently µ ∼ 7ΛMS, and suppose

that µ can be raised by a factor 2 (corresponding to twice finer lattices). Then the perturbative error would

reduce, which is multiplied by [αs((2µ)2)/αs(µ
2)]4 ∼ 0.3–0.4.

31We remark that if the coarsest lattice becomes finer while the finest lattice spacing is kept fixed, it

serves to reduce the error. This is because our current range ΛMSr < 0.6 is chosen so that the number of

data points from the coarsest lattice is sufficient.

– 30 –



J
H
E
P
0
4
(
2
0
1
9
)
1
5
5

with

a
(0)
3 =

385645

108
+ π2

[
893

3
+ 816α4 + (1844− 1302ζ3) log 2 + 295ζ3

]
+ 5256ζ3

+ π4

(
−227

20
+ 115 log 2 + 35 log2 2

)
− 17343

2
ζ5 −

1643π6

168
− 3861ζ2

3

2
+ 3888s6 ,

a
(1)
3 = −452213

324
+ π2

[
274

27
− 409

9
ζ3 − 144α4 +

(
−8

3
− 28ζ3

)
log 2

]
− 26630ζ3

27

+ π4

(
−293

18
− 35

18
log 2 +

17

6
log2 2

)
+

30097

36
ζ5 +

1931

1260
π6 +

513

4
ζ2

3 − 216s6 ,

a
(2)
3 =

93631

972
+

16π4

45
+

412ζ3

9
,

a
(3)
3 = −

(
10

9

)3

. (A.2)

Here, α4 and s6 are given by

α4 = Li4(1/2) +
(− log 2)4

4!
= 0.527097 . . . , (A.3)

s6 = ζ(−5,−1) + ζ(6) = 0.987441 . . . . (A.4)

The above analytic expression for a3 has been obtained in ref. [23].

B Formulation to extract V RF
S (r) from VS(r)

We explain the formula to extract V RF
S (r) from eq. (2.6). We reduce eq. (2.6) to the

one-dimensional integral representation:

VS(r;µf ) = −2CF
πr

∫ ∞
µf

dq

q
sin(qr)αV (q2) , (B.1)

with q = |~q|. We rewrite the integral as

VS(r;µf ) = −2CF
πr

Im

∫ ∞
µf

dq

q
eiqrαV (q2)

= −2CF
πr

Im

(∫
Ca

−
∫
Cb

)
dq

q
eiqrαV (q2) . (B.2)

The contours Ca and Cb are displayed in figure 13. The integral along Ca is clearly indepen-

dent of µf . Although the integral along Cb looks µf dependent, it contains a µf -independent

part. We evaluate this integral as

2CF
πr

Im

∫
Cb

dq

q
eiqrαV (q2) =

2CF
πr

Im

∫
Cb

dq

q

[
1+iqr− 1

2
(qr)2− i

6
(qr)3+. . .

]
αV (q2) , (B.3)

since |qr| < µfr � 1. In expansion of the exponential factor, the real and pure imaginary

coefficients appear in turn.
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Figure 13. Contour Ca and Cb in the complex q-plane. q∗ shows the singular point of αV (q2).

Figure 14. Contour CΛQCD
.

The terms with real coefficients satisfy the relation {f(z)}∗ = f(z∗). Owing to this,

these parts can be calculated as

2CF
πr

Im

∫
Cb

dq

q

[
1− 1

2
(qr)2

]
αV (q2) =

2CF
πr

1

2i

∫
CΛQCD

dq

q

[
1− 1

2
(qr)2

]
αV (q2)

=
1

r
C−1 + C1r (B.4)

with

C−1 = 2CF
1

2πi

∫
CΛQCD

dq

q
αV (q2) , (B.5)

C1 = −CF
1

2πi

∫
CΛQCD

dq

q
q2αV (q2) , (B.6)

where CΛQCD
is shown in figure 14. The coefficients C−1 and C1 are µf independent and

real. Numerical evaluation of these coefficients is sufficient for our purpose. [C1 is given by

eq. (2.11).] We remark that the analytical results up to N2LL can be found in ref. [15].
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On the other hand, the terms with imaginary coefficients do not satisfy the relation

{f(z)}∗ = f(z∗), and the above deformation cannot be applied. Therefore, we have

2CF
πr

Im

∫
Cb

dq

q

[
iqr − i

6
(qr)3

]
αV (q2) = C0(µf ) + C2(µf )r2 , (B.7)

where µf dependence remains.

Based on the above argument, we can construct a µf -independent quantity V RF
S . Note

that a µf -independent part is also given by the integral along Ca. Then by collecting all

the µf -independent part, we obtain

V RF
S (r) = VC(r) + C1r (B.8)

with

VC(r) = −1

r

[
2CF
π

Im

∫
Ca

dq

q
eiqrαV (q2)− C−1

]
= −1

r

[
2CF
π

∫ ∞
0

dq

q
e−qrImαV (−q2 + i0)− C−1

]
. (B.9)

In the last line, we rotate the contour Ca to the line along eiπ/2q with real positive q.

Once the µf -dependent part of VS(r;µf ) is considered as well, one obtains the decom-

position shown in eq. (2.9).

C Definition of ΛMS

The definition of the scale Λ in the MS scheme, ΛMS, is given by

log

(
µ2

Λ2
MS

)
=

4π

αsβ0
+
β1

β2
0

log

(
β0αs
4π

)
+

∫ αs

0
dx

(
1

β(x)
+

4π

β0x2
− β1

β2
0x

)
, (C.1)

where αs represents the coupling at the renormalization scale µ. We approximate the β

function at four-loop as in eq. (2.8), which gives the definition of Λ4-loop

MS
, used extensively

in this paper.

D χ2 and covariance matrix

We present definitions of χ2 and covariance matrices used in our analyses, which may be

useful especially for non-expert readers.

Interpolation [analysis (I)]. We define χ2 in the interpolation with a covariance matrix

as32

χ2
Inter(α,c0,σ,c1, c2)|d,i =

∑
k,l

[Vlatt,d,i(rk)−V Inter.
latt,d,i(rk)]∆

latt
d,i (rk, rl)

−1
[Vlatt,d,i(rl)−V Inter.

latt,d,i(rl)] ,

(D.1)

32χ2 is a dimensionless quantity. Accordingly, each quantity appearing in eq. (D.1) can be made dimen-

sionless. In practice, we normalize all the quantities with a.
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0.7196 0.7822 1.043 1.079 1.304 1.439

0.7196 8.61× 10−5 −1.47× 10−6 −8.72× 10−8 1.79× 10−6 −5.14× 10−6 2.36× 10−5

0.7822 5.24× 10−5 9.45× 10−7 −1.76× 10−7 2.25× 10−5 −4.33× 10−6

1.043 2.18× 10−8 −3.54× 10−9 6.34× 10−7 −7.32× 10−8

1.079 1.07× 10−7 −1.25× 10−7 2.40× 10−6

1.304 2.27× 10−5 −1.65× 10−6

1.439 6.90× 10−5

Table 8. Covariance matrix for Xcont
latt , ∆cont(ri, rj). The first row is ri/r1 and the first column

is rj/r1. The (i, j) component is the numerical value of ∆cont(ri, rj). Note that ∆cont(ri, rj) is a

symmetric matrix, and hence, we only show the elements of the upper triangular part.

where V Inter.
latt,d,i(r) is defined in eq. (3.2) and k, l run over the lattice points under consider-

ation. The covariance matrix ∆latt(rk, rl) is calculated as

∆latt
i (rk, rl) = (Ni − 1) 〈(Vlatt,i(rk)− 〈Vlatt,i(rk)〉) · (Vlatt,i(rl)− 〈Vlatt,i(rl)〉)〉 (D.2)

in the jackknife method, where Ni is the number of bins for the i-th lattice simulation; see

table 1. If the subscript d is shown, it expresses a covariance matrix among the poten-

tials Vlatt,i,d.
33

Continuum extrapolation [Analysis (I)]. χ2 in the extrapolation to the continuum

limit is defined as

χ2
ex(γ, δ; r) =

∑
i=1,2,3

(
Xlatt(r; ai)− Y (ai)

δXlatt(r; ai)

)2

, (D.3)

where Y (a) is defined by eq. (3.3).

The covariance matrix for Xcont
latt is calculated as

∆cont(ri, rj) = (Ntot − 1) 〈(Xcont
latt (ri)− 〈Xcont

latt (ri)〉) · (Xcont
latt (rj)− 〈Xcont

latt (rj)〉)〉 . (D.4)

Note that in the continuum extrapolation, the jackknife samples with the size Ntot =∑3
i=1Ni = 400 are generated since we have three independent lattice measurements. We

present the numerical result of ∆cont in table 8.

Matching [Analysis (I)]. We define χ2 in the matching of Analysis (I) as

χ2
match(x,A0, A2) =

∑
i,j

[X̃latt(ri)− vOPE(ri)]∆̃
cont(ri, rj)

−1[X̃latt(rj)− vOPE(rj)] , (D.5)

where vOPE is given in eq. (3.6) and ∆̃cont is the covariance matrix for X̃cont
latt (r):

∆̃cont(ri, rj) = x−2∆cont(ri, rj) . (D.6)

See eq. (D.4) and table 8 for ∆cont.

33Although in Analysis (I) we treat the data separately according to each direction, we will use them

simultaneously in Analysis (II). This is the reason why we suppress the subscript d in eq. (D.2).
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Figure 15. Xlatt(r; a) as functions of (a/r1)2 when we include r = a in interpolation. We show

them for r = a1 (left) and r = 7a1 (right), which are reference distances for d = 1. Black lines are

linear functions in a2 determined by fits. χ2
ex/d.o.f., which is the reduced χ2 in this extrapolation,

are 20 (left) and 4.3 (right).

Global fit [Analysis (II)]. We define χ2 in the global fit in Analysis (II) as

χ2
GF(z = ΛMS, A2, κ, f, c0) =

∑
i,j

[V cont
latt (ri)−VOPE(ri)]∆

latt(ri, rj)
−1[V cont

latt (rj)−VOPE(rj)] .

(D.7)

Here, the covariance matrix consists of three matrices of dimension 7, 10, and 13 in a block

diagonal form:

∆latt =

∆latt
1 O O

O ∆latt
2 O

O O ∆latt
3

 , (D.8)

where the definition of each matrix is given by eq. (D.2).

E Case including data at r = a in Analysis (I)

In Analysis (I), we do not use the data at r = a in interpolating lattice data in our analyses,

in order to suppress serious finite a effects. Here, let us see what happens if we include

this shortest point. We interpolate lattice data including the ones at r = a, and obtain

Xlatt(r; a) in the same way. In figure 15, we plot the data points of Xlatt(r; a) taking the

horizontal axis as (a/r1)2. One can see that they do not obey linear behaviors in a2. We

remark that even the data for r = 7a1, where the finite a effect is considered to be well

suppressed, cannot smoothly be extrapolated to the continuum limit. It shows that the

data at r = a, which has a small statistical error, dominantly contributes to determining

the interpolating function, and thus, the interpolating function is seriously distorted. In

figure 16, we show χ2
ex/d.o.f. in this case, corresponding to figure 5. Extrapolations to the

continuum limit do not work for d = 1. For d = 2, where the shortest point is located at

r =
√

2a, extrapolations work better than for d = 1. We conclude that the data at r = a

has serious discretization error, and we should be cautious about treating it.
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Figure 16. The reduced χ2
ex in extrapolations. χ2

ex/d.o.f. = 2 is shown by red lines as a benchmark.

F Additional analyses on systematic errors

In this appendix, we provide supplemental analyses to check validity of our error analyses

from additional aspects.

O(a4) effect. In section 3, we considered the leading discretization error, the quadratic

effect in a, of the lattice data. Here, we estimate the possible effect coming from the

neglected O(a4) error.34

In both Analyses (I) and (II), if we perform fits including O(a4) terms it turns out

that the fits have little sensitivities to these terms, given the current lattice data. As a

result, the fits become fairly unstable, leading to fairly uncertain results for αs(M
2
Z) [even

though they are consistent with eqs. (3.8) and (3.19) within estimated (large) errors].

Instead we can confirm that our analysis is stable against possible O(a4) effects in the

following way in the case of Analysis (II). We add an O(a4)-term to eq. (3.16) as gda
4
i /r

5

while fixing gd. In this analysis, to properly consider the expansion in a/r up to NLO,

we omit the data at r < 2a because this expansion is not legitimate when the data at

r = a is included, as clarified in appendix E. In this case, the tree-level correction is not

necessary and is omitted (see footnote 27). To assume a reasonable size of gd, we refer

to the size of fd, the coefficients of the O(a2) error, determined from the data at r ≥ 2a.

They read f1 = 0.04, f2 = −0.008. Then, we assume g1 = g2 = 0.04t and vary t = −1 to

+1. The other parameters (such as fd and ΛMS) are treated as fitting parameters. The

largest variation of αs caused by the O(a4)-term is obtained as ∆αs(M
2
Z) = −0.0003. This

is comparable to the assigned error in table 7 in Analysis (II). This result indicates that

our error analysis concerning finite a effects is reasonable even if we take into account the

neglected higher order discretization errors.

Mass correction. In section 3.3, the effect of the mass deviation in the lattice simulations

was estimated based on perturbation theory, where it was found negligibly small. We

support this result by directly comparing lattice results with different pion masses. We

analyze the lattice data with Mπ = 300 and 408 MeV for the lattice spacing a2 [25]. (Here,

34Due to chiral symmetry, an O(a3) error is prohibited.
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Figure 17. Difference of the (approximate) slopes of the potentials in the different pion masses

(Mπ = 300 MeV and 408 MeV). The potential V and distance r are normalized by lattice spac-

ing a. The blue data show the lattice results with statistical errors. The orange points are the

perturbative estimate.

t −0.3 −0.1 0.1 0.3

A2 [GeV3] −0.01 −0.01 −0.008 −0.007

∆αs(M
2
Z)× 104 2 1 −0 −1

Table 9. Values of A2 and variation of αs(M
2
Z) when the logarithmic correction of eq. (F.1)

is considered.

we neglect finite a effects.) Since the slope of the potential affects αs, we examine the

difference of the slopes. The slopes are approximately obtained from the difference of the

potentials at the nearest neighbor. In figure 17, the difference of the (approximate) slopes

is shown, where it is consistent with zero.35 (In Analysis (II), we use the first 10 points.)

This result is consistent with our error estimate that the mass effect is negligibly small.

Possible logarithmic correction to r2-term. We have treated the nonperturbative

effect as δERF
US (r) = A2r

2. There is a possibility that this r2-term is modified by logarithmic

corrections, which may stem from higher order computations of Wilson coefficients. Here,

we examine how large such a logarithmic correction affects our αs determination.

In Analysis (II), we assume δERF
US (r) as

δERF
US (r) = A2 [1 + t log (r · 1 GeV)] r2 (F.1)

with t = −0.3,−0.1, 0.1, 0.3. Then, we obtain the result in table 9. (We also use 1.5 GeV

and 0.5 GeV instead of 1 GeV as a scale in the logarithm. We find that the results hardly

change.) One sees that this uncertainty dose not induce a dominant systematic error, and

thus, is not included in our final result.

35The slope itself (before taking the difference) is about 0.1 in the same units.
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[44] S. Borsányi et al., High-precision scale setting in lattice QCD, JHEP 09 (2012) 010

[arXiv:1203.4469] [INSPIRE].

– 40 –

https://doi.org/10.1103/PhysRevD.46.2636
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D46,2636%22
https://doi.org/10.22323/1.105.0074
https://arxiv.org/abs/1012.0868
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.0868
https://doi.org/10.1103/PhysRevD.85.054503
https://doi.org/10.1103/PhysRevD.85.054503
https://arxiv.org/abs/1111.1710
https://inspirehep.net/search?p=find+EPRINT+arXiv:1111.1710
https://doi.org/10.22323/1.187.0015
https://arxiv.org/abs/1401.3270
https://inspirehep.net/search?p=find+EPRINT+arXiv:1401.3270
https://arxiv.org/abs/1411.7853
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.7853
https://doi.org/10.1103/PhysRevLett.79.2184
https://arxiv.org/abs/hep-ph/9706430
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9706430
https://arxiv.org/abs/hep-ph/0008102
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0008102
https://doi.org/10.1103/PhysRevD.62.074019
https://arxiv.org/abs/hep-ph/0001295
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0001295
https://doi.org/10.1103/PhysRevD.65.054018
https://arxiv.org/abs/hep-ph/0109122
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0109122
https://doi.org/10.1007/JHEP09(2012)010
https://arxiv.org/abs/1203.4469
https://inspirehep.net/search?p=find+EPRINT+arXiv:1203.4469

	Introduction
	Theoretical framework
	Formula to subtract renormalons
	Treatment of US scale
	Higher order perturbative uncertainty

	alpha(s) determination
	Lattice simulations
	Analysis (I): two-step analysis
	Continuum extrapolation
	Consistency checks and comparison with conventional methods
	alpha(s) determination: matching between OPE and lattice result

	Analysis (II): global fit
	Summary of results

	Conclusions and discussion
	Coefficients of perturbative calculation
	Formulation to extract V(S)**(RF)(r) from V(S)(r)
	Definition of MS
	chi**(2) and covariance matrix
	Case including data at r = a in Analysis (I)
	Additional analyses on systematic errors

