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1 Introduction

The braneworld scenario has attracted much attention since the renowned Arkani-Hamed-

Dimopoulos-Dvali (ADD) model and Randall-Sundrum (RS) model were proposed [1–3].

It is possible to solve the hierarchy problem and the cosmological constant problem in the

braneworld scenario [1–4]. Both the ADD model and RS model are thin brane models.

Later, various thick brane models were investigated [5–16] and the localization of matter

fields on the brane was realized. In the braneworld scenario, our four-dimensional universe

is an infinitely thin brane or a domain wall embedded in a higher dimensional space-time.

The Standard Model fields are localized on the brane [17–23], while the gravity propagates

in all dimensions. In order not to contradict the present observations, the zero mode of

the tensor perturbation of gravity should be localized on the brane and recover the four-

dimensional Newtonian potential [3, 9]. In many types of brane models, the extra part

of the tensor perturbation satisfies a Schrödinger-like equation, and the effective potential

may support resonance modes [9, 11, 24–28]. Thus, apart from the localized zero mode, the

quasi-localized modes, i.e. the resonance modes may exist and contribute correction to the

four-dimensional Newtonian potential [9, 11, 24, 26, 27], which can provide a new way to de-

tect the extra dimension. Therefore, the investigation of gravitational resonances is an im-

portant topic in braneworld models. Gravitational resonances also appear in other systems,

e.g., the quasi-normal modes outside of black holes [29]. For a recent review, see ref. [30].

Since it is widely believed that general relativity should be modified, which is in-

spired by both the theoretical motivation and cosmological observation data [29, 31–33],

braneworld models in modified gravities were investigated extensively [34–46]. New fea-

tures such as inner structure of branes and pure geometrical branes were found [39–41].

Recently the mimetic gravity was proposed to solve the dark matter problem [47, 48]. In

this theory, the physical metric gµν is defined in terms of an auxiliary metric ĝµν and a
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scalar field φ as gµν = −ĝµν ĝαβ∂αφ∂βφ. In the framework of mimetic gravity, the geomet-

rical explanation of dark matter was given on galaxy level, cluster level and cosmological

evolution and perturbation level [49–52]. It is also possible to unify the inflation and late-

time acceleration period in this theory [53]. For more recent works of mimetic gravity in

cosmology see refs. [55–59]. The Friedmann-Robertson-Walker thin brane was considered

and the late time cosmic expansion was explained in the favor of observational data, and

the initial time cosmological inflation was also produced [60]. Later, thick branes with

inner structure generated by mimetic scalar field were found in ref. [61]. The gravitational

perturbation was analyzed in detail. It was found that the tensor zero mode is localized

on the branes. For specific parameters, the branes split into multi sub-branes, and the

effective potential of the tensor perturbation also splits into multi-wells, which is different

from the usual braneworld case. Unlike the zero mode of the tensor perturbation which is

localized on the sub-brane, the resonance modes can be quasi-localized on or between the

sub-branes. This is an important new feature in the mimetic thick brane. Inspired by this

we would like to study the resonances of the tensor perturbation in these brane models. We

will introduce alternative definitions of relative probability and compare the corresponding

mass spectra of gravitational resonances. Then we will analyze how the structure of the

brane impacts on the gravitational resonances quasi-localized on different locations of the

double brane.

The organization of this paper is as follows. In section 2, we briefly introduce the

mimetic thick brane model and the tensor perturbation of gravity. In section 3, we in-

vestigate the gravitational resonances in both single and double mimetic brane models.

In section 4, we will discuss the contribution of the resonances to the four-dimensional

Newtonian potential and give a conclusion.

2 Linear perturbation in a mimetic thick brane model

In this section, we briefly introduce the mimetic thick brane model and the linear pertur-

bation of the brane system, which were given in ref. [61] in detail. We take the geometrized

units in which the gravitational constant κ2 = 1. The action of the five-dimensional

mimetic gravity is

S =

∫
d5x
√
−g
(
R

2
+ λ

[
∂Mφ∂Nφ− U(φ)

]
− V (φ)

)
, (2.1)

where λ is a Lagrange multiplier. Throughout this paper, the indices M,N · · · = 0, 1, 2, 3, 5

denote the bulk coordinates and µ, ν · · · = 0, 1, 2, 3 denote the ones on the brane.

In the original mimetic gravity, U(φ) = −1, and φ represents the conformal degree

of the metric gMN [47]. This theory was extended to U(φ) < 0 for cosmological applica-

tion [54]. In this work, the mimetic scalar field φ = φ(y) is used to generate the thick brane.

Therefore, we assume that U(φ) = gMN∂Mφ∂Nφ > 0 [61]. This generalization can also

provide thick branes with inner structure. The equations of motion can be easily obtained

by varying the action with respect to the physical metric gMN , the mimetic scalar field φ
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and the Lagrange multiplier λ [61]:

GMN + 2λ∂Mφ∂Nφ− LφgMN = 0, (2.2)

2λ�(5)φ+ 2∇Mλ∇Mφ+ λ
∂U

∂φ
+
∂V

∂φ
= 0, (2.3)

gMN∂Mφ∂Nφ− U(φ) = 0, (2.4)

where Lφ = λ
[
gMN∂Mφ∂Nφ− U(φ)

]
− V (φ) is the lagrangian of the mimetic scalar field.

Assuming the Minkowski brane metric

ds2 = a2(y)ηµνdx
µdxν + dy2, (2.5)

the equations of motion (2.2)–(2.4) read

3a′2

a2
+

3a′′

a
+ V (φ) + λ

(
U(φ)− φ′2

)
= 0, (2.6)

6a′2

a2
+ V (φ) + 2λ

(
U(φ) + φ′2

)
= 0, (2.7)

λ

(
8a′φ′

a
+ 2φ′′ +

∂U

∂φ

)
+ 2λ′φ′ +

∂V

∂φ
= 0, (2.8)

φ′2 − U(φ) = 0, (2.9)

where the primes denote the derivatives with respect to the extra-dimensional coordinate

y. Since there are only three independent equations in eqs. (2.6)–(2.9) and five independent

variables, we can easily solve λ(y), V (φ) and U(φ) for any given a(y) and φ(y). As we

will see later, the equation of the tensor perturbation depends only on the warped factor.

Therefore, in the next section we will only give the warped factor a(y) and omit the

expression of φ(y), λ(y), V (φ) and U(φ) for the brane models. When the mimetic scalar

φ(y) is set to be constant, the potentials V (φ) and U(φ) and the Lagrange multiplier λ(y)

also become constants, and the theory turns to general relativity. In this work we will

focus on the double brane models, in which φ(y) can not be a constant.

Next, we consider the linear perturbation of the brane system. It is easy to see that

the scalar, vector and tensor modes of the pertubation are decoupled with each other.

Thus, we will investigate the tensor and scalar perturbation separately. Redefining the

extra-dimensional coordinate dz = 1
a(y)dy, the perturbed metric in the new coordinate is

given by

ds2 = a(z)2
[
(ηµν + hµν)dxµdxν + dz2

]
, (2.10)

where the tensor perturbation hµν = hµν(xµ, z) depends on all the coordinates and satisfies

the transverse-traceless (TT) condition ηµν∂µhλν = 0 and ηµνhµν = 0. Next we redefine

the perturbation as hµν = a(z)−
3
2 h̃µν . After tedious but straightforward derivation, the

perturbation of eq. (2.2) yields

�(4)h̃µν + ∂2
z h̃µν −

∂2
za

3
2

a
3
2

h̃µν = 0. (2.11)
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Employing the decomposition h̃µν = εµν(xγ)eipλx
λ
t(z) with the polarization tensor εµν

satisfying the TT condition ηµν∂µελν = 0 and ηµνεµν = 0, one can obtain the Schrödinger-

like equation for the extra part t(z) of the tensor perturbation:

−∂2
z t(z) + Vt(z)t(z) = m2t(z), (2.12)

where the effective potential Vt(z) is given by

Vt(z) =
∂2
za

3
2

a
3
2

, (2.13)

and m is the mass of the tensor perturbation t(z). The zero mode of the tensor

perturbation is

t0(z) ∝ a
3
2 (z). (2.14)

Obviously, the tensor perturbation in mimetic gravity is the same as that in general rela-

tivity. Furthermore, eq. (2.12) can be factorized as(
−∂z + ∂z ln a

3
2

)(
∂z + ∂z ln a

3
2

)
t(z) = m2

t t(z). (2.15)

The structure in the above equation (KK† with K = −∂z + ∂z ln a
3
2 ) ensures that the

eigenvalues are non-negative and so there is no tensor tachyon mode with m2 < 0. Thus,

the brane is stable against the tensor perturbation [61]. The tensor zero mode is localized

around the thick brane embedding in an AdS5 space-time. Nevertheless, the mimetic scalar

field generates more types of thick brane, which could lead to new type of potential of the

tensor perturbation. Thus, one can expect new phenomena in the resonances of the tensor

perturbation.

At last, we turn to the scalar perturbation. The perturbed metric is

ds2 = a2(z)
[
(1 + 2ψ)ηµνdx

µdxν + (1 + 2Φ)dz2
]
, (2.16)

and the perturbed scalar field is φ+ δφ. The field equations of the scalar perturbation δφ

and the scalar modes Φ and ψ are

− 3

2
∂2
zδφ+

3

4

(
a2

∂zφ

∂U

∂φ
+

2∂2
zφ

∂zφ
− 4∂za

a

)
∂zδφ

+

[
3a∂za

∂zφ

∂U

∂φ
+ 2λ(∂zφ)2 +

3

4
a2

(
∂2U

∂φ2
− 2

∂U

∂φ

∂2
zφ

(∂zφ)2

)]
δφ = 0, (2.17)

Φ = −2ψ, (2.18)

Φ =
∂zδφ

∂zφ
− a2

2(∂zφ)2

∂U

∂φ
δφ. (2.19)

Redefining the perturbation of the scalar field as δφ(xµ, z) = (∂zφ)
3
2

a2
s(z)δφ(xµ), we can

obtain the equation of the extra part of the scalar perturbation:

−∂2
zs(z) + Vs(z)s(z) = 0, (2.20)
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(a) The warped factor (b) The effective potential

Vt(z)

(c) The effective potential

Vs(z)

Figure 1. The shapes of the warp factor a(y) and the effective potentials Vt(z), Vs(z) for the

single brane model (3.1). The parameters are set to k = 1 and b = 10.

where the effective potential Vs(z) is given by

Vs(z) =
2(∂za)2 − a∂2

za

a2
+
−(∂2

zφ)2 + 2∂zφ∂
3
zφ

4(∂zφ)2
. (2.21)

Since there is no term of the form �4δφ in eq. (2.17), the scalar perturbation does not

propagate on the brane. Furthermore, for the following brane models, we will plot the

shape of the potential Vs(z) to show that the scalar perturbation is not localized on the

brane, and thus does not contribute to the four-dimensional Newton potential. Therefore,

though it seems strange that there is no term of the form �4δφ in eq. (2.17), it does not

lead to any problems. Similarly, in the cosmological context, the scalar perturbation of

mimetic gravity has also no terms of ∇2δφ (see eq. (64) of ref. [48]), which implies that

the sound speed is identically zero.

3 Gravitational resonance in various thick brane models

In the above section, it was pointed out that the zero mode of the tensor perturbation is

localized around the brane embedding in an AdS5 space-time. In this section, we will in-

vestigate quasi-localized modes, i.e. the gravitational resonances, in both single and double

brane models.

3.1 Gravitational resonances in a single-brane model

First of all, as a simple example, we study a single brane model with the following warped

factor [61]

a(y) = tanh[k(y + b)]− tanh[k(y − b)]. (3.1)

The shapes of the warped factor and the corresponding effective potentials (2.13) and (2.21)

are plotted in figure 1. It can be seen that the potential Vt(z) has an obvious double-well

with two barriers, which is the main reason leading to resonance KK modes. The potential

Vs(z) approaches 0− at infinity, therefore the scalar mode is not localized on the brane and

does not contribute to the four-dimensional Newton potential.

– 5 –
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Figure 2. The relative probability P (m2) of the even parity mode te (red solid lines) and the odd

parity mode to(z) (blue dashed lines) for the single brane model (3.1). The parameters are set to

k = 1 and b = 10.

Due to the complexity of the function a(y) and the coordinate transformation, we can

not obtain the analytical expressions of the warp factor a(z) and the effective potential

Vt(z). To solve the Schrödinger-like equation (2.12) for t(z) numerically, we decompose

t(z) into an even parity mode te(z) and an odd parity mode to(z), which are set to satisfy

the following boundary conditions:

te(0) = 1, ∂zte(0) = 0; (3.2)

to(0) = 0, ∂zto(0) = 1. (3.3)

To investigate the gravitational resonances, we adopt the concept of the relative probability

of the KK mode t(z) with mass m, which was defined in refs. [62, 63]:

P (m2) =

∫ zb
−zb |t(z)|2dz∫ zmax

−zmax
|t(z)|2dz

. (3.4)

Here 2zb is approximately the width of the thick brane, and zmax = 10zb. Note that

there are other methods that can find out KK resonances, such as the transfer matrix

method [64, 65].

For a given m2, the Schrödinger-like equation (2.12) can be solved numerically for the

even parity mode te(z) and the odd parity mode to(z) with the conditions (3.2) and (3.3),

respectively. Then the relative probability P corresponding to this te(z) or to(z) can be

obtained. By this means, the relative probability as a function of m2 is obtained and

plotted in figure 2, in which each of the peaks represents a resonance mode.

Furthermore, the corresponding life-time τ of the resonances can obtained by τ = 1
Γ ,

where Γ is the full width at half maximum (FWHM) [63, 66]. The resonances having large

life-time can be quasi-localized on the brane for a long time. Therefore, these resonances

are approximately four-dimensional gravitons [27]. The mass spectrum, FWHM, and life-

times are shown in table 1. It is shown that the relative probability P and life-time τ of

the resonance modes decrease with the mass square m2, while the FWHM Γ increases with

m2. Thus, the behavior of the resonances in the single mimetic brane is similar to that in

a single brane model in general relativity [9, 25].

The wave functions of the odd and even modes corresponding to the highest peaks in

figure 2 are plotted in figure 3.
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n Parity m2
n Pmax Γ τ

1 odd 0.1385 0.9902 0.002418 413.50

2 even 0.4609 0.9367 0.007880 126.90

3 odd 0.9711 0.7609 0.019633 50.93

4 even 1.6428 0.4852 0.047884 20.884

5 odd 2.4317 0.2817 0.107172 9.3308

Table 1. The mass spectrum m2
n, relative probability Pmax, FWHM Γ and life-time τ of the

resonances for the single brane model (3.1).

(a) m2 = 0.1385 (b) m2 = 0.4609

Figure 3. Plots of the first even and fist odd parity resonance modes for the single brane

model (3.1). The parameters are set to k = 1, b = 10, and m2 = 0.1385 for to(z), and m2 = 0.4609

for te(z).

3.2 Gravitational resonances quasi-localized on a double-brane

Next we study the gravitational resonances quasi-localized on a double-brane. The warped

factor is given by [61]

a(y) = tanh[k(y + 3b)]− tanh[k(y − 3b)]

− tanh[k(y + b)] + tanh[k(y − b)]. (3.5)

The shapes of the warped factor (3.5) and the corresponding effective potential (2.13) are

plotted in figure 4, which shows that the effective potential Vt(z) has two sub-wells, and

the part between the two sub-wells can also be regarded as a sub-well, and resonances can

be quasi-localized on these threes sub-wells. The potential Vs(z) approaches 0− at infinity,

therefore the scalar mode is not localized on the brane and does not contribute to the

four-dimensional Newton potential.

In this subsection, we would like to investigate the resonances quasi-localized on the

double brane. Since the effective potential has different structure, we introduce two alter-

native definitions of the relative probability:

P1 =

∫ zm
−zm |t(z)|2dz∫ 10zm
−10zm

|t(z)|2dz
, (3.6)

P2 =

∫ z2
−z2 |t(z)|2dz∫ 10z2
−10z2

|t(z)|2dz
, (3.7)
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(a) The warped factor (b) The effective potential

Vt(z)

(c) The effective potential

Vs(z)

Figure 4. The warped factor a(y) and the effective potentials Vt(z) and Vs(z) for the double brane

model (3.5). The parameters are set to k = 1, and b = 1.8.

(a) P1 (b) P2

Figure 5. The relative probability P1(m2) and P2(m2) of the even parity mode te(z) (red solid

lines) and the odd parity mode to(z) (blue dashed lines) for the double brane model (3.5). The

parameters are set to k = 1 and b = 1.8.

where zm = z1+z2
2 , and (z1, z2) is the z-coordinate range of one of the sub-wells (see

figure 4c). Following the same procedure, the relative probabilities P1 and P2 are plotted

in figure 5, and the spectra of the resonant modes calculated with the above two definitions

of relative probability are listed in table 2. From table 2 we can see that the even and odd

parity modes appear alternately. Note that the first even and odd resonance modes are

not degenerate. For the two definitions of relative probability, the difference between the

spectra ∆m2
n is much less than the mass square m2

n. Thus, we may draw a conclusion that

the two definitions give almost the same spectra of resonance modes. Table 2 shows that

the FWHM increases with m2, thus the life-time decreases with m2. It can be seen that

although there is more than one sub-well, the mass spectrum of the resonances is similar

to the case of the single brane model in the last subsection. The wave functions of two

resonances with mass square m2 = 0.1606 and m2 = 0.3907 are plotted in figure 6, which

shows that the resonances are indeed quasi-localized on the double brane.

3.3 Gravitational resonances quasi-localized on the sub-branes

From figure 4c we can see that each sub-brane corresponds to a sub-well, which may support

new kinds of gravitational resonances. Therefore, we investigate gravitational resonances

quasi-localized on the sub-branes in this subsection. We will analyze the influence of the

distance between the two sub-branes and the thickness of the sub-branes. To this end, we
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Parity m2
n(P1) m2

n(P2) ∆m2
n Γ τ Pmax

even 0.1606 0.1605 1× 10−4 1.248× 10−4 8015 0.9978

odd 0.3907 0.3908 1× 10−4 3.760× 10−4 2660 0.9982

even 0.6870 0.6872 2× 10−4 9.170× 10−4 1091 0.9964

odd 1.0445 1.0445 0.0000 2.153× 10−3 464.6 0.9880

even 1.4555 1.4565 1.0× 10−3 9.597× 10−3 104.2 0.02071

odd 1.9032 1.9021 1.1× 10−3 1.305× 10−2 76.64 0.7916

even 2.3424 2.3411 1.3× 10−3 4.177× 10−2 23.94 0.4164

odd 2.6949 2.6802 1.47× 10−2 0.1384 7.223 0.1762

Table 2. The mass spectrum m2
n, relative probability Pmax, FWHM Γ and life-time τ of the

resonances quasi-localized on the double brane described by (3.8).

(a) m2 = 0.1606 (b) m2 = 0.3907

Figure 6. Plots of the first even and first odd parity resonance modes quasi-localized on the double

brane described by (3.5). The parameters are set to k = 1, b = 1.8 and m2 = 0.1606 for te(z),

m2 = 0.3907 for to(z).

consider the following warped factor

a(y) = tanh[k(y + d+ b)]− tanh[k(y − d− b)]
− tanh[k(y + d)] + tanh[k(y − d)], (3.8)

where 2(b+d) is approximately the thickness of the brane, and 2d is the distance between the

two sub-branes in the physical coordinate y. The shapes of the warped factor (3.8) and the

corresponding effective potential Vt(z) in this model are similar to those in subsection 3.2.

In order to investigate resonance modes which are only quasi-localized on the sub-branes,

we define the corresponding relative probability P3:

P3 =


∫ z2
z1
|t(z)|2dz∫ zm+5(z2−z1)

zm−5(z2−z1)
|t(z)|2dz

, zm ≥ 5(z2 − z1)

∫ z2
z1
|t(z)|2dz∫ 10(z2−z1)

0 |t(z)|2dz
, zm < 5(z2 − z1)

(3.9)

where (z1,z2) is the z-coordinate range of one of the sub-wells (see figure 4c as a diagram-

matic drawing), and zm = z1+z2
2 .
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(a) d = 1.6 (b) d = 2.3 (c) d = 2.6

Figure 7. The relative probability P3(m2) of the even parity mode te(z) (red solid lines) and the

odd parity mode to(z) (blue dashed lines) quasi-localized on the sub-branes for the double brane

model (3.8). The parameters are set to k = 1, and b = 7.

Firstly, we fix the parameter b and plot the shape of P3(m2) for three values of the

parameter d in figure 7. The mass spectrum, relative probability, FLHM, and life-time of

the resonances in two definitions of relative probability are given in table 3. Note that in

figure 7 and the figures of the relative probability in the following subsections, only the

peaks which satisfy P > 0.1 and have a FWHM represent the resonances. The relative

probability of the resonance modes do not monotonically decrease with the mass square

m2, and there are only one odd and one even significant resonance modes, which is different

from the case in single brane model. As the brane distance d increases, more resonances

appear. The mass spectra, FWHMs and life-times of a part of the resonances are shown in

table 3. The wave functions te(z) and to(z) of a part of the resonance modes are shown in

figures 8–10. For each resonance mode, the amplitude in the sub-wells is larger than the

one out of the sub-wells, which shows that the definition (3.9) of relative probability P3 is

proper. In figures 8–10 the red and blue lines denote even and odd modes, respectively.

Nevertheless, figures 8c, 8d, 9c, 9d, 10c, 10d are even modes with respect to the sub-branes,

and the others are odd modes. This is crucial to the correction of the four-dimensional

Newtonian potential, which will be demonstrated in the next section.

Next, we analyze the influence of the thickness of sub-branes. We fix the parameter

d and plot the shapes of the relative probability P3(m2) for different values of the brane

thickness b in figure 11. The mass spectrum, relative probability, FWHM and life-time of

a part of the resonances are given in table 4. It is shown that as the sub-brane thickness

increases, the mass of the first even and odd modes decrease, while their relative proba-

bilityincrease. Furthermore, for small sub-brane thickness b = 5, there are only a group

of resonances with small relative probability, while for large sub-brane thickness, the res-

onances with large relative probability appear. The wave functions of the resonances are

similar to the ones in figures 8a–10d.

Through the above demonstration, it can be seen that the character of the reso-

nances quasi-localized on the sub-branes is quite different from that of the resonances

quasi-localized on the double brane and single brane studied before.

3.4 Gravitational resonances quasi-localized between the sub-branes

Figure 4c shows that the gravitational resonances could also be quasi-localized between

the sub-branes, since sub-well between the sub-branes can support resonances. Therefore,
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(a) m2 = 0.944 (b) m2 = 0.972

(c) m2 = 3.445 (d) m2 = 3.002

Figure 8. Plots of the even and odd parity resonance modes quasi-localized on the sub-branes for

the double brane model (3.8). The parameters are set to k = 1, b = 7, and d = 1.6.

(a) m2 = 0.965 (b) m2 = 0.943

(c) m2 = 3.038 (d) m2 = 2.903

Figure 9. Plots of the even and odd parity resonance modes quasi-localized on the sub-branes for

the double brane model (3.8). The parameters are set to k = 1, b = 7, and d = 2.3.

we investigate the gravitational resonances quasi-localized between the sub-branes in this

subsection. The warped factor a(y) is also assumed as eq. (3.8). The relative probability P4

corresponding to the gravitational resonances quasi-localized between the two sub-branes

is given by

P4 =

∫ z1
−z1 |t(z)|2dz∫ 10z1
−10z1

|t(z)|2dz
, (3.10)

where z1 is shown in figure 4c. Then we can analyze the influence of the thickness of

sub-branes and the distance between the two sub-branes, respectively.
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(a) m2 = 0.963 (b) m2 = 0.942

(c) m2 = 0.073 (d) m2 = 2.945

Figure 10. Plots of the even and odd parity resonance modes quasi-localized on the sub-branes

for the double brane model (3.8). The parameters are set to k = 1, b = 7, and d = 2.6.

d Parity m2
n Pmax Γ τ

even 0.944 0.7310 0.02726 36.68

1.6 odd 0.972 0.7072 0.02763 36.20

odd 3.002 0.2680 0.1227 8.149

even 3.345 0.2206 0.1385 7.220

odd 0.943 0.7078 0.03034 32.96

2.3 even 0.965 0.6955 0.03076 32.51

odd 2.903 0.2507 0.06870 14.56

even 3.083 0.2622 0.07261 13.77

even 0.963 0.6317 0.02644 37.82

2.6 odd 0.942 0.6385 0.02630 38.02

odd 2.945 0.1947 0.1877 5.330

even 3.073 0.1945 0.1863 5.368

Table 3. The mass spectrum m2
n, relative probability Pmax, FWHM Γ and life-time τ of a part

of the resonances quasi-localized on the sub-branes with different brane distance d for the double

brane model (3.8).

Firstly, we fix the sub-brane thickness and plot the shapes of P3(m2) for three values of

the sub-brane distance in figure 12, and list the information of some resonances in table 5.

It can be seen that the number and life-time of the resonances increase with the width d of

the middle sub-well, which is similar to the case of a single brane [9, 25]. While the relative

probability of the resonances does not monotonically decrease with the mass square m2,

which is very different from the case of a single brane [9, 25].
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(a) b = 5 (b) b = 9 (c) b = 13

Figure 11. The relative probability P3(m2) of the even parity mode te(z) (red solid lines) and the

odd parity mode to(z) (blue dashed lines) for the double brane model (3.8). The parameters are

set to k = 1 and d = 2.3.

b Parity m2
n Pmax Γ τ

even 1.726 0.444 0.06316 15.83

5 odd 1.628 0.347 0.09062 11.04

odd 0.5744 0.835 0.01445 69.22

9 even 0.5794 0.867 0.01504 66.50

even 0.2689 0.950 0.004628 216.1

13 odd 0.2683 0.952 0.004633 215.8

Table 4. The mass spectrum m2
n, relative probability Pmax, FWHM Γ and life-time τ of a part of

the resonances quasi-localized on sub-branes with different brane thickness b for the double brane

model (3.8).

(a) d = 12 (b) d = 15 (c) d = 18

Figure 12. The relative probability P4(m2) of the even parity mode te(z) (red solid lines) and

the odd parity mode to(z) (blue dashed lines) quasi-localized between the sub-branes for different

values of the distance d. The parameter k is set to k = 1, b = 7, and d = 12, 15, 18.

Next, we fix the distance d and plot the shapes of P4(m2) for different values of the

brane thickness b in figure 13. It is shown that though the parameter b is related to the

sub-wells on the left and right rather than the one in the middle, it has an important

impact on the resonance quasi-localized between the sub-branes. With the increasing of

the parameter b, an even or odd resonance splits into two resonances with small relative

probability, and then the two resonances become a single resonance again. While the other

resonances are not significantly changed with the parameter b, which is different from all

the cases above or the case in a single brane model.
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d Parity m2
n Pmax Γ τ

even 1.235 0.7185 0.02655 37.66

1.2 odd 2.438 0.5590 0.03195 31.30

odd 0.459 0.990 0.000594 1693

1.5 even 1.131 0.653 0.009404 106.3

even 0.683 0.9765 0.001452 688.8

1.8 odd 0.391 0.9979 0.0003200 3125

Table 5. The mass spectrum m2
n, relative probability Pmax, FWHM Γ and life-time τ of a part of

the resonances quasi-localized between the sub-branes with different brane distance for the double

brane model (3.8).

(a) b = 11 (b) b = 11.9

(c) b = 14.9 (d) b = 16

Figure 13. The relative probability P4(m2) of the even parity mode te(z) (red solid lines) and

the odd parity mode to(z) (blue dashed lines) quasi-localized between the sub-branes for different

values of the brane thickness b. The parameters are set to k = 1, d = 2.3, and b = 11, 11.9, 14.9, 16.

4 Conclusion and discussion

In this work, we discussed gravitational resonances quasi-localized on different locations of

mimetic branes. Firstly we considered a single brane as an example and used the relative

probability in ref. [62] to investigate the gravitational resonances. Then we considered a

double brane and investigated resonances quasi-localized on the double brane, on the sub-

branes and between the sub-branes, respectively. For the first case, since the effective poten-

tial splits into two sub-wells, we introduced two alternative definitions of the relative proba-

bility. In each definition, we obtained the spectrum of gravitational resonances and showed

that the two spectra are almost the same. We also obtained the FWHM and life-time of the

resonances. For the second case, we introduced another definition of relative probability to

– 14 –



J
H
E
P
0
4
(
2
0
1
9
)
1
5
4

investigate the gravitational resonances quasi-localized on the sub-branes. The influence of

the distance between the two sub-branes and the thickness of the sub-branes was analyzed.

We found that more gravitational resonance modes appear with the increasing of the dis-

tance between the two sub-branes or the thickness of the sub-branes. Especially, we found

some new feature of the resonances. For the third case, we investigated the resonances

quasi-localized between the two sub-branes. We showed that the number and life-time

of the resonances increase with the distance between the two sub-branes. As the brane

thickness increases, an even or odd resonance will split into two resonances with smaller

relative probability, and then the two resonances will become a single resonance again.

Finally, we will discuss briefly the contribution of the resonances to the four-dimensional

Newtonian potential. For the case that the brane locates at z = z0 along the extra dimen-

sion, the correction from resonances to the four-dimensional Newtonian potential of a mass

point M is given by [9, 67]

U(r) ∼ GN
M

r

[
1 +

∫ ∞
0

dm e−mrt2m(z0)

]
, (4.1)

where r is the distance to the mass point on the brane, and tm(z) is the normalized wave

function of the resonance with mass m and the normalization constant Nm is related to

m. For subsections 3.1, 3.2, and 3.4, z0 = 0, and so only the even modes contribute to the

four-dimensional Newtonian potential as to(0) = 0. For subsection 3.3, the resonances are

quasi-localized on the sub-branes, therefore z0 =
∫ b+d

0
dy
a(y) , and the resonances shown in

figures 8c, 8d, 9c, 9d, 10c, 10d contribute to the four-dimensional Newtonian potential. The

resonances which have larger life-time escape to the five-dimension more slowly [27]. On

the other hand, it is shown in section 3 that these resonances have larger tm(z0). Therefor,

the resonances which have larger life-time contribute to the Newtonian potential more than

other resonances. The mass spectrum of the resonances show that the mass scale m of the

resonances is of about m ∼ k, where k is the scale on the brane. Usually we assume that

k is much less than the Planck scale, therefore m is also much less than the Planck mass.

According to the analysis of refs. [9, 67], the normalization constant Nm is decided by the

asymptotic behavior of the effective potential Vt(z) in (2.13) at the boundary of the extra

dimension. For the asymptotic AdS5 solutions (3.1), (3.5), and (3.8) considered in this

paper, we have Vt(z) ∝ 15
4z2

at |z| � 1/k and tm(0) ∼ (m/k)1/2 for the brane located at

z0 = 0, for which the correction to the four-dimensional Newtonian potential is

U(r) ∼ GN
M

r

[
1 +

C

(kr)2

]
, (4.2)

where C is a dimensionless constant determined by the structure of the brane. For the case

of the double brane, the correction also occurs at the scale of r ∼ 1/k, but it has a complex

form because of the rich structure of the mass spectrum of the resonance KK modes.

According the recent test of the gravitational inverse-square law, the usual Newtonian

potential still holds down to a length scale at 59 µm [68]. Therefore, the thickness of the

brane, 1/k, should be much less than 59µm.

– 15 –



J
H
E
P
0
4
(
2
0
1
9
)
1
5
4

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants

No. 11875151 and No. 11522541) and the Fundamental Research Funds for the Central

Universities (Grants No. 531107051196, No. lzujbky-2018-k11, and No. lzujbky-2017-it68).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The Hierarchy problem and new

dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].

[2] L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys.

Rev. Lett. 83 (1999) 3370 [hep-ph/9905221] [INSPIRE].

[3] L. Randall and R. Sundrum, An Alternative to compactification, Phys. Rev. Lett. 83 (1999)

4690 [hep-th/9906064] [INSPIRE].

[4] J.E. Kim, B. Kyae and H.M. Lee, Randall-Sundrum model for selftuning the cosmological

constant, Phys. Rev. Lett. 86 (2001) 4223 [hep-th/0011118] [INSPIRE].

[5] S. Kobayashi, K. Koyama and J. Soda, Thick brane worlds and their stability, Phys. Rev. D

65 (2002) 064014 [hep-th/0107025] [INSPIRE].

[6] M. Giovannini, Gauge invariant fluctuations of scalar branes, Phys. Rev. D 64 (2001)

064023 [hep-th/0106041] [INSPIRE].

[7] D. Bazeia, C. Furtado and A.R. Gomes, Brane structure from scalar field in warped

space-time, JCAP 02 (2004) 002 [hep-th/0308034] [INSPIRE].

[8] D. Bazeia and A.R. Gomes, Bloch brane, JHEP 05 (2004) 012 [hep-th/0403141] [INSPIRE].
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