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ABSTRACT: Jet vetoes are widely used in experimental analyses at the LHC to distin-
guish different hard-interaction processes. Experimental jet selections require a cut on
the (pseudo)rapidity of reconstructed jets, |njet| < 7cut. We extend the standard jet-pr
(jet-veto) resummation, which implicitly works in the limit 7.y, — oo, by incorporating
a finite jet rapidity cut. We also consider the case of a step in the required p$™* at an
intermediate value of |n| >~ 2.5, which is of experimental relevance to avoid the increased
pile-up contamination beyond the reach of the tracking detectors. We identify all relevant
parametric regimes, discuss their factorization and resummation as well as the relations
between them, and show that the phenomenologically relevant regimes are free of large
nonglobal logarithms. The 7.y, dependence of all resummation ingredients is computed to
the same order to which they are currently known for 7.,t — oco. Our results pave the way
for carrying out the jet-veto resummation including a sharp cut or a step at 7y to the
same order as is currently available in the 7.yt — oo limit. The numerical impact of the
jet rapidity cut is illustrated for benchmark ¢ and gg initiated color-singlet processes at
NLL/+NLO. We find that a rapidity cut at high 7., = 4.5 is safe to use and has little
effect on the cross section. A sharp cut at 7¢,; = 2.5 can in some cases lead to a substantial
increase in the perturbative uncertainties, which can be mitigated by instead using a step

in the veto.
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1 Introduction

Measurements that involve a veto on additional jets, or more generally that divide events

into exclusive jet bins, play an important role at the LHC, e.g. in Higgs and diboson

measurements or in searches for physics beyond the Standard Model.

The jet binning

differentiates between hard processes that differ in the number of hard signal jets, and

hence allows one to separate signal and background processes. The separation into 0-jet
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Figure 1. Cartoon of possible strategies to avoid contamination from unsuppressed pile up in
jet-binned analyses. The pile-up suppression is much better in the pseudorapidity range |n| < 2.5,
where it can use information from the tracking detectors. To avoid the higher pile-up contamination
in the forward region, one can raise the jet threshold (left panel), only consider central jets (middle
panel), or combine both approaches by using a step-like jet selection (right panel).

and > 1-jet bins also provides a model-independent way to discriminate between ¢¢ and
gg initiated processes [1].

A veto on jets with transverse momentum pr > p$** gives rise to double logarithms

hr12(pCTut /@) at each order in ay, where @ is the characteristic momentum transfer of the
hard interaction. These logarithms dominate the perturbative series when p** < @, and
represent an important source of theory uncertainty [2, 3]. They can be systematically
resummed to improve the perturbative predictions and assess the associated uncertainties,
which has been well-developed in Drell-Yan and Higgs production [2, 4-17], and has also
been applied to several other color-singlet processes [1, 18-25].

Experiments can only reconstruct jets up to some maximal pseudorapidity [1] < neus
due to the range of the detector, e.g. for ATLAS and CMS 7cy ~ 4.5. In principle, the
utility of the jet binning to discriminate between different hard processes increases for a
tighter jet veto (smaller p§*). However, jets with small transverse momenta are difficult
to reconstruct experimentally, especially for pseudorapidity |n| 2 2.5 beyond the reach
of the tracking detectors, which are important to suppress the large contamination from
pile up (e.g. in the jet vertex tagging algorithm used by ATLAS [26]). This is illustrated
in figure 1. As the LHC luminosity increases and pile-up conditions become harsher, the
contamination from unsuppressed pile-up jets grows worse and must be avoided. One
option is to increase the overall p**. For example, in the context of Higgs measurements,
the increased pile up in Run 2 has forced raising the jet threshold from 25 GeV to 30 GeV.
This however weakens the jet veto and thus reduces its utility. Alternatively, to avoid
raising the jet threshold, one can consider jets only in a restricted pseudorapidity range
of |n| < 2.5. However, this looses the discrimination power from forward jets, which are
a distinguishing feature of some processes (most notably weak-boson fusion topologies in
Higgs and diboson production). The best possible option combines both approaches and

performs a step-like jet selection, with a lower p$™* threshold for central jets and a somewhat

higher p$"* threshold for forward jets. For example, recent ATLAS Higgs measurements [27]
reconstruct jets using p$** = 25 GeV for || < 2.4 and p§** = 30 GeV for || > 2.4 (and no

jets beyond rapidity |y| = 4.4).



A discontinuous step in the jet threshold can also pose challenges on its own, as it
makes the experimental measurements more complex. Theoretically, we will see that it
can complicate the resummation of logarithms in some extreme cases. An alternative to
a step is to use jet vetoes that smoothly depend on the jet rapidity [16, 28], providing a
tighter veto at central rapidities and a looser one at forward rapidities. These rapidity-
dependent vetoes can also be supplemented with an additional sharp jet rapidity cut, which
we briefly discuss in appendix B.

The usual jet-pr resummations [6-9, 12, 13] do not account for any jet rapidity de-
pendence, i.e., the resummation is performed for 7., — co. Using parton-shower Monte
Carlos, one finds that a jet rapidity cut at 7.y = 4.5 has a very small numerical effect,
while 7eyt = 2.5 has a sizable effect on the jet-pr spectrum in Higgs production (see e.g.
refs. [2, 6]), so it is important to properly include it in the resummation. This was already
pointed out in ref. [8], where it was also speculated that a jet rapidity cut might change
the resummation structure.

Our analysis in this paper fully addresses these questions by systematically incorpo-
rating the jet rapidity cut into the jet-pr resummation, including in particular the case
of a step-like veto. For this purpose, we extend the formalism of refs. [8, 13], which uses
the framework of Soft-Collinear Effective Theory (SCET) [29-32]. To be concrete, our
discussion focuses on color-singlet production, including the important cases of Higgs and
Drell-Yan production. Our results for how to incorporate the 7., dependence also carry
over to processes with additional signal jets in the final state to the same extent to which
the usual jet-pp resummation for color-singlet production carries over to such cases [10, 11].

We identify all relevant parametric regimes in the veto parameters p$', neut, D3,
and discuss the factorization and resummation structure for each regime. We also study
the relations between the different regimes and perform numerical studies to check their
respective ranges of validity. An important conclusion of our analysis is that all regions
of parameter space that are of phenomenological interest can be described by parametric
regimes that are free of large nonglobal logarithms.

We analytically compute the 7., dependence of all ingredients at O(«;) as well as of
the dominant O(a?) corrections (those enhanced by jet-veto or jet clustering logarithms),
which matches the order to which they are currently known in the 7e,t — oo limit. Our
results allow for carrying out the jet-veto resummation including jet rapidity cuts to the
same order as is currently available without such cuts, which for color-singlet production
is NNLL/+NNLO. (Reaching this level also requires the still unknown nonlogarithmic
O(a?), which can be extracted numerically from the full NNLO calculation, as was done
for neys — oo in ref. [13]. Carrying out such an analysis is beyond the scope of this paper.)

The effect of a rapidity cut for transverse momentum vetoes has also been considered
independently in refs. [33, 34] for dijet production, and more recently for the transverse
energy event shape in Drell-Yan in ref. [35]. We compare their results to our results for
the case of a sharp cut at 7,y and no measurement beyond in section 2.5.

The paper is organized as follows: in section 2, we discuss the parametric regimes
and corresponding effective field theory (EFT) setups for a sharp cut on reconstructed
jets at neyy and no measurement beyond, as in the middle panel of figure 1. We give the
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Figure 2. Illustration of the parametric regimes for a jet veto with a jet rapidity cut. Emissions
cut

above the black solid lines are vetoed as pr > p* up to |n| < Newt = 2.5. The thick gray line
corresponds to pr/Q = e~ 1", and emissions above and to the right of it are power suppressed.
The colored circles indicate the relevant modes in the effective theory for a given hierarchy between
Pt /Q and e~ "eut. For pi** = 25 GeV, the given examples for pi**/@Q correspond to @ = 125 GeV
(left panel, upper case), @ = 300 GeV (left panel, lower case), @ = 1TeV (right panel).

perturbative ingredients at O(a;) and the leading small-R clustering terms at O(a?2) for all
partonic channels. We numerically validate the EFT setup by comparing to the relevant
singular limits of full QCD, and also compare the regimes to each other and identify their
respective ranges of validity. In section 3, we generalize the results of section 2 to a step in
the jet veto at neyt, as in the right panel of figure 1. In section 4, we illustrate the numerical
impact of the rapidity cut at NLL'+NLO for Drell-Yan at Q = myz and Q = 1TeV and
for g9 - H at myg = 125GeV and gg — X at mx = 1TeV for different values of 7cys.
We conclude in section 5. Details of our calculations can be found in appendix A. In
appendix B, we briefly discuss how an additional sharp rapidity cut affects the description
of the rapidity-dependent jet vetoes introduced in ref. [16].

2 Factorization with no constraint beyond 7e, (P = 00)

2.1 Overview of parametric regimes

We consider exclusive 0-jet cross sections, where the veto is applied by identifying jets
with radius R (the details of the jet-clustering algorithm are not relevant at the order
we are working) and cutting on the transverse momentum pJ;t of the leading jet within
’njet| < Tecut,

< pt. (2.1)

,_ max 1Pk
kejets: || <neut

The resulting constraints on the rapidities and transverse momenta of initial-state radiation
(ISR) are displayed as black lines in figure 2. We can identify two distinct power-counting
parameters that govern the typical angular size of energetic collinear ISR with energy
E ~ @, where () is the momentum transferred in the hard interaction: first, the pr of the
emissions is constrained by pr < p#* for |n| < neut, corresponding to a maximum opening



angle
cut

Pr<Pr (2.2)

E™~Q
Second, the pr of an energetic emission at rapidity 7 is parametrically pr ~ Qe~"l. The
rapidity cut removes the first constraint for |n| > ncyt. Hence, if 7cyt is central enough,
emissions beyond 7y can reach a characteristic pr < Qe evtl  corresponding to a maxi-
mum opening angle

g (2.3)

There are three parametric regimes for p**/Q and e ", which are illustrated in
figure 2 for neyy = 2.5. The thick black lines show the veto for different values of p$**/Q.
The thick gray curve shows the relation pr/Q = eI, while the thin gray lines show the
values of 7ey and pr/Q = e~ e,

The first parametric regime is p$**/Q > e~ "ut. As we will demonstrate in section 2.2,
in this regime effects due to the rapidity cut are power suppressed by Qe "t /pSit. Hence,
they can be treated as a fixed-order power correction to the standard jet-veto resum-
mation, which implicitly works in the limit 7., = oo. For Higgs measurements with
Pt = 25GeV, neyt = 4.5, Q@ = mpy = 125GeV, this parametric assumption is well justi-
fied, as mpe =" /pSit ~ 5%.

For heavier final states and/or more central rapidity cuts the relevant parametric
regime is p§"*/Q ~ e "t This is the case for example for @ = 1TeV and 7oy = 4.5
or @ = 125GeV and ney, = 2.5 at p§** = 25GeV. In section 2.3, we show that in this
regime the rapidity cut effects must be treated as a leading-power correction, and that they
can be seamlessly incorporated into the existing jet-veto resummation without rapidity cut.
We will see that they affect only the boundary terms in the resummed cross section, but
not the anomalous dimensions and evolution factors. Hence, they start contributing at
NLL’ or NNLL.

Finally in section 2.4, we discuss the parametric regime p§'*/Q < e "ut. This case
is conceptually interesting, since logarithms of the ratio of scales Qe "=t and p§'* appear,
changing the logarithmic structure already at leading-logarithmic (LL) order. In addition,
formally large nonglobal logarithms of the same ratio appear. This regime is of very limited
phenomenological relevance for typical jet-binned analyses at the LHC. For example, for
Newt = 2.3 corresponding to e~ vt = (.1, it would require an extremely tight jet veto
P < 0.1Q, which is unrealistic as it would leave almost no signal in the 0-jet cross
section. For the purpose of explicitly probing this regime experimentally, one could lower
Newt =~ 1.0-1.5, such that the jet veto only acts on radiation in the very central region.

cut

2.2 Regime 1: pF*'/Q > e "t (standard jet veto resummation)

As usual, the scaling of the modes in the EFT follows from the nontrivial constraints im-
posed on emissions by the measurement. Soft emissions at central rapidities are always
restricted by the jet veto. Collinear emissions with energy ~ @) and rapidity n have a trans-
verse momentum ~ Qe "l and are constrained by the measurement if Qe ~ P, which

determines their scaling. Since Qe Tut < pS™, these collinear modes are parametrically



not forward enough to be sensitive to the rapidity cut, such that the description of their
dynamics is simply governed by the power counting in p$**/Q. The relevant EFT modes
in this regime are thus the same as for a jet veto without any rapidity cut,

soft: pH ~ (p%“t,p%“t,p%“> :

(pcut)Q
ng-collinear: p* ~< g ,Q, pCTut> )
cut)2
np-collinear: pt ~ (Q (p7") p%ut) . (2.4)
) Q )

Here and below, we give the scaling of momenta in terms of light-cone components defined
as (with n = ng, 1 = ny),
nt n#

pr=np o tnp o +p/ = (npap,pL) =@ p . 0L). (2.5)

In addition, there are the usual inclusive collinear modes that describe the initial protons
at the scale Aqcp, and which are not specific to our discussion here.

In principle, we can consider collinear emissions that are forward enough to resolve
rapidities 1] ~ Neut,

ng-collinear (neyt): pt ~ (Qe—Qﬁcut’ Q, Qe—ncut) ’
np-collinear (neyt): p* ~ (Q,Qe‘zmut,Qe—"m) ) (2.6)

However, since Qe ot < pf'*, these emissions have too little transverse momentum to

be affected by the jet veto, and are therefore unconstrained and integrated over without
requiring additional modes in the EFT. To explicitly see that the 7.y dependence is power
suppressed, note that the full jet-veto measurement for the collinear modes contains a
0 function

O(Neut — 1)) = (1 — elM=eut) = 1 4+ O(Qe"eut /pSit) | (2.7)

which thus only induces power corrections in Qe~"eut /pSut,

1

Therefore, at leading order in the power expansion,” we recover the factorization for

the 0-jet cross section with 7., = oo [7, 8, 13],

0-0(p%1t7 Ncut, R? CD) = Hﬁ(Cba /L) Ba(p%uta Ra Wa, Ky l/) Bb(p%ma Ra Wy, W, V) Sﬁ(p%mv Rv 12 V)
cut —MNcut
X [1 + (’)(pT Qe R2>] .

QA

The hard function H, contains the short-distance matrix element for producing a color-

(2.8)

singlet final state and depends on the hard kinematic phase space ®, which encodes e.g.
the total rapidity Y and invariant mass @ of the color-singlet final state. The soft function
S, encodes soft radiation restricted by p$™*. The partonic channel is denoted by x and is

! As discussed in refs. [8, 13], one formally needs to count R < 1 to avoid soft-collinear mixing terms of
O(R?). A detailed discussion of possible approaches to include them at O(a?) can be found in ref. [28].



implicitly summed over (if necessary). The beam functions B, are forward proton matrix

elements of collinear SCET fields and encode the perturbative collinear ISR constrained

by p$'t as well as the unconstrained ISR below that scale down to the nonperturbative

scale of the PDFs [4]. In eq. (2.8), they are evaluated at w,p = Qe®¥. They are given by
cut

a convolution of perturbative matching coefficients Z;;, which encode the p7** constraint,
and the standard inclusive quark and gluon PDF's f;,

1
Cu dz cu w A CD
Bi(th7R7wnU'7V): E / Iij(th7R7w7Z7M7V>fj( E 7,u> |:1+0< %ut >:|
7 Je z ZLem Pr

(2.9)

As discussed in detail in ref. [13], all logarithms of the ratio p$**/Q in eq. (2.8) are
resummed by evaluating each of the hard, beam, and soft functions at their characteristic
virtuality and rapidity scales,

pi ~Q = wawy, pp~ps~pit, vp~Q, vs~pP, (2.10)

and evolving them to common scales p, v using renormalization group (RG) evolution.
The power corrections in eq. (2.8) can be included at fixed order in as by matching the
resummed result to the corresponding fixed-order result in full QCD. The O(Qe ™ "eut /pSit)
corrections stop being suppressed for large ), small p%‘t, or central 7¢y. In the next section,

we show that they can be incorporated into the beam functions in eq. (2.9).

cut

2.3 Regime 2: p3*/Q ~ e~ "t (Ncut dependent beam functions)

In this regime, the scaling of soft and collinear modes is unchanged from the previous case.
However, the characteristic rapidity of the collinear modes now coincides parametrically
with neyt, i-e.,

soft: pt ~ (p%‘t,p%‘lt,p%“t) ,
(pcut)Z B -
5 Q) ~ (Qe7 Q. Qe )
(p7)*
Q

Thus, collinear emissions resolve the rapidity cut, and are constrained by the jet veto for

ng-collinear: p* ~ <

np-collinear: p ~ <Q, ,p%‘“) ~ <Q,Qe_2"°“t,Qe_"Cut) . (2.11)

Inl < Meut, while for |n| > neys they are unconstrained. As a result, the cross section
factorizes at leading power as

UO(p%utv Tlcut R7 (I)) = Hﬂ(q)a :u) Ba(p’(}uta Tlcut R7 Wa, M, V) Bb(p(jz“ut7 Tlcut R7 Why My l/)

cut
X S(pF, 1, v) {1 +0 (pg? ,e”C““,R2>] : (2.12)

cut

The beam functions now explicitly depend on both p{'* and 7cyt, while the hard and soft

functions are unchanged (with their characteristic scales still given by eq. (2.10)). The RG
consistency of the cross section fixes the anomalous dimensions of the beam function in



terms of those for the soft and hard functions. Thus, the 7., dependence cannot change
the renormalization of the beam function, i.e.,

d .
di IIIB (p%Utancuta R,w,w,u, l/) = ’YZB(WMIL l/) s

d
v B0 ews, By w, @, p1,v) =7, (PP R, 1), (2.13)

where the anomalous dimensions are the same as in the 7.,s — oo limit [8, 13],

’)/33(("]7 K, V) = 2Fcusp[ ( )] ln —+ ’YB[O‘S(IU’)] )

v, a5, R, 1) = 200 (03, 1) + 7, B[as (»$), R, (2.14)

and 77{; in the resummed rapidity anomalous dimension is given by

(o) = [ ij‘ Il ()] (2.15)

Hence, the ncy effects do not affect the RG evolution itself, but only change the beam
function boundary conditions, and therefore first appear at NLL’. The RG evolution

between pp ~ pst

~ Qe vt and pg ~ @ now resums all large logarithms of pup/ug ~
P /Q ~ e et while the beam function boundary condition now explicitly depends on the
ratlo Qe Meut / p%“t ~ O(1), which in contrast to regime 1 is not power suppressed anymore.
In analogy to eq. (2.9) the beam functions can be factorized into collinear matching
coeflicients, which now also depend on 7¢,t, and the PDFs. We write the matching co-
efficients as the sum of the usual 7.yt-independent matching coefficients plus a correction

term that encodes the 7., dependence,
Zij (0 Neut, Ry w, 2, p, v) = Lij(pT, R, w, 2,y v) 4+ ALy (07", Newss Ry w, 2, 1, ) . (2.16)

The ncut-independent Z;; are given in appendix A.2, and in the following we focus on
the AIW

Consistency between the cross sections in egs. (2.8) and (2.12) implies that AZ;; van-
ishes as 1yt — 00. Specifically, defining

Cent = we ™ [pt (2.17)

the AZ;; scale like

AIZ] (p%ltancutaRawaznqu) ~ O(Ccut) for gcut — 07 (218)

which is simply the statement from the previous subsection that the 7.y effects are power
suppressed in (et for Coup < 1.

In fact, AZ;; vanishes altogether for z > (eut/(1+ Ceut), which can be seen from purely
kinematic considerations as follows: for the n-collinear sector the term AZ;; accounts for
the case where at least one jet with p'T > pcut and 7jet > Meut is reconstructed (and no



jet with mjet < Meut). For R < 1 all radiation in this jet has 7 > 7ey, as well. Thus,
contributions to AZ;; can only appear if

jet - -
cut < ‘ je | < Z ‘ka’ Z ppe M (2.19)
k€Ejets k€jets
where the second equality follows from the jets being massless for R < 1. Rewriting this
in terms of momentum fractions p, = z P, = zpw/z yields, with )", 2, + 2 =1 and P
the momentum of the initial state proton,

po < e M < Qwe—ncut . 2.20
kg:em . (2.20)
The second inequality follows from all reconstructed n-collinear jets having n; > 7cyt. This
implies that eq. (2.18) is trivially satisfied since the domain of integration in z scales as
r < 2 5 Ceut- Hence AZ;; is parametrically important for (s ~ 2 ~ 1, but vanishes in the
threshold limit z — 1. This leads to an additional numerical suppression due to the falloff
of the PDFs towards larger partonic momentum fractions.
The RGE of AZ;; follows from the beam-function RGE eq. (2.13) and the analogue of
the matching onto the PDFs in eq. (2.9). It is given by (with the remaining arguments of
AZ;; understood)

d %
/"@Azij(zv s V) = ’YB("‘)? 22 )AIU Zy W,V Z AIlk’ z y YV ®Z 2ij[045(,u), Z] >

d cu
VEAIM(Z’M» ) PVVB(thaRa ,U’) AIij(zalh 1/) : (221)
The Mellin convolution ®, is defined as

d; 9(€) h(%) : (2.22)

and 2P;; (o, ) is the standard PDF anomalous dimension with respect to p,

o i) = 3 [ Earsionm.a 5(on) (223)

Note that the RGE in eq. (2.21) does not mix AZ;; with Z;; and therefore does not change
the (et scaling in eq. (2.18). Solving eq. (2.21) order by order in perturbation theory, we

9(2) ®, h(z) =

find the following structure through two loops:

AT (z) = 22U A7 oy W) A7) o),

47 (47)?
we_"?cut
Azz(jl) (Z) = AIz(jl) (%lt’ Z) )

) " oy ) 1) [ we Meut
AZi(j)(z) zln@ [2F61nf+250+7790] AI’L'(j) <pcut’z>

T
MNcut —TNcut
—2In CutZAIm < i >®2P,§?)(z)+AIZ.(j2) <“’;CTM,R,Z>, (2.24)




where ATl Z(]n ) is the boundary condition of the RGE at p = p{*, v = w, and the required
anomalous dimension coefficients are collected in appendix A.1. By dimensional analysis

(n)

and boost invariance, AL ; cut

(1)

In appendix A.3 we determine the one-loop contribution Al j

can only depend on (cyt = we™ " /pF in addition to R and z.

, which has the simple
form

z

M1 o) =0 (1 =) 2=

with the one-loop splitting functions Pi(;))(z) as given in eq. (A.6). The correction vanishes
at the kinematic threshold encoded in the overall 8-function, which also cuts off the singular
distributions in Pl(-o)( ) at z = 1. The Mellin convolutions of AT Z.(;,) Q. Plg')) appearing in

the coefficient of In(p/p$™™*) in Al'i(j2 )(z) are given in appendix A.G.

While the computation of the full two-loop contribution AIZ-(jQ)

is beyond the scope of
this paper, we analytically compute its leading contribution in the small-R limit, which

contains a clustering logarithm of R. We write the full two-loop result as
ALY (Couts Ry 2) = I RALL™ ™ (Cout, 2) + AL (Cout, 2) + O(R?). (2.26)

In the limit R < 1, we exploit that for the emission of two close-by collinear partons
with relative rapidity An ~ R, the collinear matrix element factorizes into two sequential
collinear splittings at the scale p ~ pCllt and p ~ pi' R, respectively. This allows us to
evaluate the coefficient of In R in a generic two-loop beam function as a convolution of a
primary on-shell emission and (the anomalous dimension of) the semi-inclusive jet function
of ref. [36]. Specifically, for the case of AIi(j2 ) we find

(2,InR) _ Ceut . (0) _ Ceut Rcut _ )\ R
AL (Ceus,2) =10 (1+Ccut z) 2P, (2) [0 (z 2+Ccut> Cij (Ccut(1—2)> CZJ ;

(2.27)
where the coefficient functions cg’cut are given by
?gcut(l‘) — CRcut _ _2/ / dZJ ZJ) + anp(g)(ZJ)] y
12 # J1/2
é%qcut(m) _ CR cut _ _2/ / dZJ )+ Pg(g)(’z])} , (2.28)
172 # J1/2

depending on whether the primary emission we split is a gluon (first line) or a quark (second
line). Their explicit expressions read

2
ﬁ]cut(x) é«’:}cut( )ZQCA [2+7;_3x+31-2_2;33_211121'—4[112(1')]
29 39,23
+ 289 [—M—IHQ—I—?)Q:—QZL‘ —|—§l‘ —lnx] ,
2
ﬁ]wt(w) (IZZCUt( ) =2CF [—34— % —31112—1—61’—31nx—21n2x—4Lig(q:)]. (2.29)
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The coefficients cf} in eq. (2.27) are the (in principle known) coefficients of In R in the
Neus-independent two-loop beam function [13, 19], which we also verified.? They satisfy

= lim P (2) (2.30)

4 z—1 Y

1 87 23
R _ R _
A== (=55 s (5 -om) )

2
=l = 2cy <3—7;—31n2> . (2.31)

and are given by

Our general setup for computing the small-R clustering contributions implies that the

coefficient of the In R terms of the two-loop rapidity anomalous dimension must be equal
to cfg = cgfl,

it also applies to the leading In? R and In R terms in the beam functions for rapidity

in agreement with the corresponding result given in refs. [8, 13]. In addition,

dependent jet vetoes in ref. [28], with which we agree as well.

The R-independent term AI;,? ) (Ceut, 2) and the O(R?) terms in eq. (2.26) are currently
unknown. Their contribution to the cross section can in principle be obtained numerically
from the singular limit of the full-theory calculation at O(a?), as was done for the corre-

sponding 7cyt-independent pieces in ref. [13].

Numerical validation. To validate our results numerically and highlight the differences
in the singular behavior for regimes 1 and 2, we consider the fixed O(ay) pjﬁt spectrum,
do/ dpj;t, where p];t is the transverse momentum of the leading jet within |9jet| < feut. Its
relation to the jet veto cross section with a jet rapidity cut is simply

cut

Pr iet do(Neut, 12
a0 (P, Neu, R) = / dpy’ % (2.32)
0 dp.

At leading power in pjrﬁt /@, we obtain it by taking the derivative with respect to p"* of
either eq. (2.12), retaining the exact dependence on 7y in the beam functions (regime 2),
or of eq. (2.8), incurring power corrections in Qe "ut / pjﬁt (regime 1). The numerical results
for all singular spectra are obtained with the help of SCET1ib [37]. The O(as) spectra in
full QCD are obtained from MCFM 8.0 [38-40].

As representative gluon-induced processes, we consider gluon-fusion Higgs production
g9 — H at myg = 125GeV in the infinite top-mass limit, rescaled with the exact LO
top-mass dependence for m; = 172.5 GeV (rEFT). In addition, we consider gluon fusion
to a hypothetical heavy color-singlet scalar X, gg — X, mediated by the contact operator

Cx

ﬁeff = _T Qg GZVGG:UVX . (233)

*>The coefficient of the ¢/, contribution in eq. (39) of ref. [13] has a typo, missing an overall factor of 2.
We also find that the Ca term of the coefficient cf, in eq. (9) of ref. [19] misses a factor of 1/2 compared
to ref. [13] and our result.
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Figure 3. Comparison of the singular contributions to the fixed O(as) (LO1) qu'ft spectrum for
g9 — H (left) and Drell-Yan (right). The orange solid lines show the singular contributions in
regime 2 with 7., dependent beam functions. The dashed blue lines show the singular contributions
in regime 1 in the limit 7cys = 0o, p$* > Qe~"eut. Their difference, shown by the dotted green lines,
correctly scales as a power in Qe "eut /p];ft The vertical lines indicate the point pjfft = Qe Meut,

We always choose mx = 1TeV, A = 1TeV, and divide the cross section by |Cx|?. To
the order we are working, this is equivalent to setting C'x = 1, since Cx only starts to
run at O(a?).® For quark-induced processes we consider Drell-Yan pp — Z/y* — (14~
at the Z pole (Q = myz) and at @ = 1TeV, where @ = myy is the invariant mass of
the lepton pair. Here we set all scales to upo = mpg, mx, or @, respectively. We use
PDF4LHC_nnlo_100 [45-50] NNLO PDFs with as(mz) = 0.118 throughout.

In figure 3, we compare the regime 2 and regime 1 leading-power (singular) results for
do/ dpjji3t at fixed qu'ft as a function of 7ey for gg — H and Drell-Yan. The regime 1 result
(dashed blue) does not depend on 7)cyt, while the regime 2 result (solid orange) decreases as
Neut becomes more central. The difference between the two (dotted green) has the expected
behavior, vanishing as Qe~"ut / p];t for neyt — 00. We observe that regime 1 is applicable
beyond 7cut 2 4, where the difference to regime 2 is suppressed by an order of magnitude.

Another check is provided by comparing the regime 1 and regime 2 singular results
to the full QCD result, which is shown in figures 4 and 5 for gluon-fusion and Drell-Yan.
For neyy = 2.5 (left panels), it is clear that regime 1 (dashed gray) fails to describe the
singular limit of full QCD, with their difference (dotted gray) diverging for p];ft — 0 like an
inverse power of p];ft as expected. While the singular mismatch becomes less pronounced
for neut = 4.5 (right panels), the uncanceled singular contributions are still clearly visible in
the difference. On the other hand, regime 2 (dashed blue) correctly reproduces the singular
limit pjﬁt — 0, with the difference (dotted green) vanishing like a power of pjfft as it must.
This provides a strong check of the intricate p§** dependence encoded in our O(c) results
for AZ;;. (The power corrections in e~ which are present in regime 2, drop out when
taking the derivative of the fixed-order cumulant with respect to p§t".)

3In MCFM 8.0 we mock up this process using a standard-model Higgs with my = 1TeV and manually
account for the nonzero one-loop contribution from integrating out the top quark in the SM, which differs
from our choice of Cx = 1+ O(a?) for the effective coupling of X to gluons. We also checked the results
against the native gg — X support of SusHi 1.6.1 [41-44].
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Figure 4. Comparison of singular and nonsingular contributions to the fixed O(as) (LOq)
spectrum with rapidity cut |9jet| < 7eus for gg — H (top row) and gg — X (bottom row), feus = 2.5
(left) and neyt = 4.5 (right). The orange solid lines show the full results, the dashed blue lines the
regime 2 results with 7.,+ dependent beam functions, and the dotted green lines their difference.
The dashed and dotted gray lines show the corresponding regime 1 results, which do not describe
the singular behavior of the full cross section for finite 7cyt.

Note that at mx = 1TeV or Q = 1TeV, the fixed-order spectrum is completely
dominated by the rapidity-cut dependent singular result up to ;t < 100 GeV. Hence,
the resummation should provide a significant improvement over the fixed-order result for
typical p$* ~ 50 GeV, which we will indeed find in section 4.

2.4 Regime 3: p$**/Q < e "t (collinear NGLs)

The hierarchy p$"* < Qe ™"t (with e "eut < 1) exhibits different features than the regimes
discussed before. The typical transverse momentum for emissions with |n| > 7cyt is para-
metrically Qe 1", indicated by the horizontal gray line in figure 2, which is now much
larger than for the strongly constrained emissions at || < 7cyt. While the soft modes at
central rapidities are not affected, there are now two types of collinear modes at forward
rapidities with |n] ~ 9cut,

ng-collinear: pt ~ Q(e_%c‘“, 1, e_"C“) ,
na—soft—collinear: p# ~ <p%ute*ncut7p%ute77cut , p%lt> — p%utencuc (67277cut7 17 e*ﬂaut) , (2.34)

and analogously for the my-collinear sector.
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Figure 5. Comparison of singular and nonsingular contributions to the fixed O(a;) (LOq) ‘;c
spectrum with rapidity cut |9jes| < Meus for Drell-Yan at @Q = mz (top row) and @ = 1TeV (bottom
row), Neut = 2.5 (left) and 7neyy = 4.5 (right). The meaning of the curves are as in figure 4.

The collinear and soft-collinear modes have the same angular resolution and only
differ in their energy. This makes their all-order factorization challenging and leads to the
appearance of nonglobal logarithms In(Qe~"eut /pitt) starting at O(a?). Their factorization
and resummation requires the marginalization over all possible configurations of energetic
collinear emissions, involving soft-collinear matrix elements with a separate Wilson line
along each individual energetic collinear emission, see e.g. refs. [51-54].

Since this regime has no immediate phenomenological relevance, we will not carry
out this complete procedure but restrict ourselves to the configuration with soft-collinear
Wilson lines along n and 7, i.e, along the two main collinear emitters. This is sufficient for
the LL resummation, for isolating the nonglobal effects, and for discussing the relation to
the other regimes. Our discussion here is in close analogy to the regime 3 in the factorization
of the exclusive jet mass spectrum with small jet radius R in ref. [55], where the rapidity
cut et here takes the role of R there.*

“The main difference is that here, emissions for |17| < 7eut are constrained by their pr relative to the
same collinear (beam) direction. In the jet mass case, emissions outside the jet are not constrained by their
pr relative to the same collinear (jet) direction (but also relative to the beam direction).
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The factorized cross section takes the form

UO(p%Ut) Ncut R7 ¢) = Hli((b) ,Uf) Ba(p’%Ut) Ncut R7 Way Uy V) Bb(p%utv Tcut R7 Wpy Uy V)
cut
x Se(p7", R, p1,v) [1 +0 ( Qifw ye et R2>] : (2.35)

The initial-state collinear functions B; encode the contributions of both soft-collinear and
energetic collinear modes. They are related to the 7. dependent beam functions B; in
eq. (2.12) by an expansion in the limit p§**/(we ") < 1,

cut
Bi(p%ltanCuthvwal'L? I/) = Bi(p%ltanCuthvwaM7V) |:1 +O ( pT >:| . (236)

we_ncut

Without further factorization, B; contains large unresummed Sudakov double logarithms
al In?" (St Jwe™eut). To resum the leading double logarithms, we can decompose B; as

B’Z (p%ut7 Tcut R7 w, W, V) - Bz‘(cut) (ncum W, ,U,) Sz'(cut) (p%lt7 Tcut s R7 M, V)
cut
X [1 + BN (pT,w, R)] . (2.37)
we*ﬁcut

The function Bi(cm) mainly describes contributions from the energetic collinear modes. It
was dubbed “unmeasured” beam function in refs. [33, 34], in analogy to the unmeasured
jet function [56]. At one loop its matching coefficients account for an energetic collinear
emission with |n| > 7. They are calculated in appendix A.3 and read

Z(eut) - as(W) Cals _ qwe” ™
qg (ncut;waznu) 5(]- Z) An 5(1 Z) 41n 7 6

we*"]cut 1
+4Py4(2) In 0 —|—8£1(1—z)+8<;—2—|—z—z2) ln(l—z)}
+0(a3),
cut o O‘S(M) CF we_ncut(l — Z) 2
Iéq  (Mewts ws 2, 1) = o [4qu(z) In T +2z| + O(af),
cut . Qg (,u) CF 9 we Meut we  Meut 7.[.2
T8 (et w, 2, 1) = (1 — 2) + — {5(1 —2) <4ln L 61n R

—Tcut
+ 4Py (2)In weﬂz +8L1(1—2) —4(1+ 2)In(1 — 2) +2(1 — z)}

+0(a?),

(1) T

o we Meut (1 — z
Ié;ut) (Neut, w, 2, ) = ST [4qu(z) In —()

Wz
where £,,(1—2) = [In"(1—2)/(1—2)]+, P;j(2) are the color-stripped LO splitting functions
given in eq. (A.7), and the flavor structure is trivial,

+4z(1 - z)] +0(a?), (2.38)

7l — 7 — 57l L 0@?), T = 76 — 0(a?). (2.39)

As argued in ref. [33] the results are directly related to the matching coefficients for frag-
menting jet functions in ref. [57].
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The function SZ-(wt) in eq. (2.37) mainly describes contributions from soft-collinear
modes. At one loop it accounts for a soft-collinear emission that couples eikonally to the
incoming collinear parton i. The emission is constrained to pr < p* for |n| < neut by the
jet veto, and is unconstrained for |n| > ney. Using the n regulator [58, 59] it is given by
(see appendix A.4)

(cut) / cut () (cut,1) ag(u) (cut,2) 3
S, (P7" Meut, By, v) = 1+ M_@ M)QS +0(a?),

cut cut —TMcut 2
SZ(CUt71)(p%lt,ncut7R7u) V) — C (41 2 pT o 81 pT In ve + 7;) , (240)
u p p

where C; = CF for an incoming quark or antiquark and C'4 for an incoming gluon. We
checked explicitly that the above results obey the consistency constraint in eq. (2.36). For
this purpose, one has to note that eq. (2.25) becomes distribution valued in (1 — z) when
taking the limit (cy¢ > 1.

At two loops Si(cm) contains a In R enhanced term. Focusing on the constant terms
not predicted by the RG evolution, we have

SR (pert po Ry = p§, v = pelent) = In RSN 4 gleut2) L o(R?) | (2.41)

with SZ»(C“t’Z’C) an unknown two-loop constant. The coefficient of In R is obtained by ex-
panding the In R coefficient in the 7cyt dependent beam function [see egs. (2.27) and (A.21)]
to leading power in 1/(cyt. In the limit (o > 1, the sum Ii(jQ’ln ) + A Izgjg’ln B) becomes
proportional to §(1 — z), as the arguments of both #-functions in eq. (2.27) approach z = 1.
The coefficient of §(1 — z) is then given by the (.yt — 0o limit of the integral of AI(2 n R)
which vanishes for ¢ # j and for ¢ = j leaves

S(cut,Z,lnR 80/ de Rcut (2.42)
/2 %
1622 548 652 232
=C; — =" In 2-471 2o Tp |——+""1n2 471 29
4ol =% ot [ 5 e e

The anomalous dimensions of BZ-(wt) and Sl-(cut) have the general structure

Ve*ncut

Vgcut (ncum w, v ) 2I‘Zcusp[ (:u)] In + ’Y‘iSC“t [Oés (M)] )
"y, seut (PP, Ry 1) = 200 (0, 1) + ), gewt [as (PF), R]

Yigew (e, ) = 2ggplas ()] In + e s (1)) (2.43)

we_T]cut

where the coefficients of the cusp anomalous dimension follow from our explicit one-loop
calculation. Consistency with eq. (2.14) implies

7§cut(a8) + ’)’?Bcut(aLs’) = 7%(“8) )

. . 1 .
T,sen(@s, B) = 7, plas, B) = =5, (as, R). (2.44)
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All of the above noncusp anomalous dimensions vanish at one loop. The canonical scales

for Bl-(cut) and Si(cut) are

S o Qe ment et e lent) et gnen: (2.45)

With these choices and the anomalous dimensions in eq. (2.43) one may resum logarithms
of eeut pSt /@ to any logarithmic order, and at LL also logarithms of p§*/Qe ™ "eut.
Starting at O(a?), the BZ(NG) term in eq. (2.37) contains nonglobal logarithms of the
form a” In"(p$*/Qe~ ). A boost by ney translates the measurement into two hemi-
spheres with one loose (1 > 7ey) and one tight constraint (7 < 7cyt) on emissions. The

nonglobal structure in such a scenario is well understood [60]. Depending on the desired
accuracy, the NGLs may be included at fixed order via BENG) as indicated in eq. (2.37), or
(partially) summed using more steps in a dressed parton expansion [53].

Note that beyond one loop there is some freedom in the choice of measurement that de-
fines the Bi(cut) and Si(cut). In particular, different measurements that reduce to eqs. (2.38)
and (2.40) for a single emission could give rise to different results for the two-loop noncusp
anomalous dimensions and finite terms because the difference can be absorbed into BZ(NG).
We stress that the result eq. (2.42) for the In R coefficient in the two-loop soft-collinear
function is, however, still unique. This is because a In R contribution to BNS) requires
a collinear parton in the unconstrained region to emit a soft-collinear gluon into the con-
strained region, which then undergoes a further collinear splitting. This is only possible

starting at O(a?).

Numerical validation. To illustrate the numerical relevance of regime 3, we again con-
sider the fixed O(ay) p';ft spectrum. In regime 2, it is given to leading power in plﬁt /Q by
the derivative of eq. (2.12), while in regime 3, it is given to leading power in p];t /(Qeeut)
by the derivative of eq. (2.35).

In figure 6 we compare the two results for 7.,y = 2.5. In regime 3, the 0-jet cross
section at O(as) contains only single logarithms of p§™, because the double logarithms
cancel between the soft and soft-collinear functions. For this reason, the dashed-blue
regime 3 spectrum with respect to In p]Tet is just a constant. The exact regime 2 result
(solid orange) becomes well approximated by the further factorized regime 3 expression for

;t — 0, with their difference (dotted green) behaving like a power in pJ;t This provides

a strong check of the regime 3 ingredients, more precisely, of the pi** dependence encoded

in the soft-collinear function. (Since the beam function in regime 3 is independent of p',
it drops out when computing the fixed-order spectrum.)

We also observe that for gg — H and Drell-Yan at Q = myz, the regime 3 limit is
applicable only at very small pj6t < 1GeV and already at p]:,(ft ~ 10-20 GeV the power
corrections with respect to regime 2 are of the same size as the full regime 2 result. This
means that one would have to turn off the additional regime 3 resummation above this
region. For gg — X with mx = 1TeV and Drell-Yan at Q = 1TeV, the canonical
regime 3 resummation region, i.e., the region where the regime 3 singular corrections clearly
dominate, extends up to ;ft < 10GeV, while regime 2 power corrections become O(1)

around p';ft ~ 60 GeV.
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Figure 6. Comparison of the singular contributions to the fixed O(«s) quft spectrum for gg — H
(top left), gg — X (top right), and Drell-Yan at @ = myz (bottom left) and @ = 1TeV (bottom
right). The solid orange lines show the full regime 2 singular spectrum, the blue dashed lines the
further factorized regime 3 result. Their difference shown by the dotted green lines vanishes as a
power in pjj‘ft /Qe"ent for small pJ;ft The vertical lines indicate where the relation pj;t = Qe Meut
is satisfied.

Hence, we find that the additional resummation of logarithms of p]:ﬁt /(Qe~"ent) in
regime 3 is not relevant for jet veto analyses at the LHC, where the lowest jet cuts are
Pt ~ 25 GeV, for ney = 2.5 and final states in the @ ~ 100 GeV range. This also holds
for final states at very high invariant mass, e.g. in new physics searches, since in this case
one would typically also apply higher jet thresholds to retain enough signal in the 0-jet
bin. Realistically, one would not go below p* ~ 0.1Q, which means one never enters
the limit where the regime 3 resummation is necessary. This of course does not exclude
the possibility that measurements designed to probe simultaneously very high () and very
low p';t could benefit from the regime 3 resummation. To explicitly explore this regime
experimentally, the best option is to restrict the jet veto to the very central region with
Tlcut ~ 1-1.5.

2.5 Comparison to the literature

Jet vetoes in a restricted rapidity range were already encountered in ref. [33] for the case
of dijet production. Without spelling it out explicitly, ref. [33] used a factorization for
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the regime 3 hierarchy p$'"* < Qe "t < @, but did not distinguish between the soft and
soft-collinear modes necessary in this regime. As a result, parametrically large rapidity
logarithms In et were not captured, which are relevant starting at NLL. The numerical
results in ref. [33] were obtained for Q ~ 1TeV, ney = 5, and pi** = 20 GeV, which rather
corresponds to the opposite regime 1, pS** > Qe ", The difference between regimes 1
and 3 already matters at LL.

In ref. [34], the soft and soft-collinear modes in regime 3 are distinguished and the
presence of nonglobal logarithms in this regime is recognized. Their factorization for dijet
production is carried out at a level analogous to ours in the previous subsection. That is,
at NLL and beyond it only captures logarithms of “global” origin, but does not capture
nonglobal logarithms that are parametrically of the same size. Our results for the one-
loop quark matching coefficients in eq. (2.38) and the one-loop soft-collinear function in
eq. (2.40) agree with ref. [34] [see their egs. (3.27), (B.3), and (B.5)]. Our results for the
gluon channels and the two-loop clustering corrections are new.

Ref. [34] does not consider regime 2 as a separate parametric regime. Instead, it
attempts to extend the validity of the regime 3 factorization into regime 2. This is done
by effectively adding the regime 2 nonsingular corrections appearing in eq. (2.36) to the
unmeasured beam functions. Since some of the regime 3 modes become redundant in
regime 2, this also requires them to account for a nontrivial soft-collinear zero bin. At
fixed order, the sum of all their contributions must reproduce our result for the regime 2
beam function; in appendix A.5 we check that this is indeed the case for the quark matrix
elements given in ref. [34]. As we have seen in figure 6, outside the canonical regime 3, there
are large cancellations between the terms that are singular in the regime 3 limit and the
remaining regime 2 nonsingular contributions. This means that the distinction between
these contributions becomes arbitrary in regime 2 and that they must not be treated
differently, as otherwise one risks inducing large miscancellations. (This is completely

analogous to the situation when matching to full QCD, in which case the p§"* resummation

must be turned off when entering the fixed-order region at large pS™ to properly recover
the full-QCD result.) In particular, in regime 2 all contributions that belong to the full
Neut-dependent regime 2 beam function must be evaluated at a common scale p ~ p$* and
evolved together according to eq. (2.13). This is not the case in ref. [34], where individual
contributions to the regime 2 beam function are evaluated at different scales throughout
(S and p$™ in our notation).

Recently, the setup of ref. [34] was applied in ref. [35] to the case of transverse energy
E7 in a restricted rapidity range in Drell-Yan. In ref. [35], profile scales are used to
combine regimes 3 and 1, requiring that asymptotically ugut) = ufcht) in the regime 1 limit
Ep > Qe vt While this can alleviate the issue raised above, formally this relation must
be satisfied already in regime 2 for Ep ~ Qe "leut,

As we have seen in section 2.3, there is no need to distinguish collinear and soft-collinear
modes in regime 2. Since for jet-veto analyses regimes 1 and 2 are the phenomenologically
relevant ones, doing so unnecessarily complicates the description. Recovering the NNLL'
structure in regime 2 [see eq. (2.24)] based on regime 3 would be quite challenging due to

the intricate nonglobal structure in regime 3. Our dedicated treatment of regime 2 makes
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the absence of nonglobal logarithms manifest, avoiding the associated complications, and
automatically ensures the correct treatment of the regime 2 nonsingular terms. Further-
more, it shows how regime 2 generalizes the well-understood regime 1, and as we will see
in the next section allows for the generalization to a step in the jet veto.

Concerning regime 1, ref. [35] also gave an argument that regime 1 holds up to
power corrections in Qe~ " /Ep which was more intricate due to immediately comparing
regime 1 to regime 3. The power suppression of 7.yt effects at sufficiently large 7yt was
also pointed out briefly in a somewhat different context in ref. [61].

3 Generalization to a step in the jet veto at ¢yt

3.1 Overview of parametric regimes

We now generalize our results to the experimentally relevant scenario of the step-like jet
veto illustrated in the right panel of figure 1. Here, jets with pJT > p§t are vetoed if
jet| < Meut, while for |[nje¢| > Nyt the veto is loosened to p]T > pHt > pSt. The 0-jet cross
section is thus defined by the following measurement:

 max DTk | < pst and  max D] < it (3.1)
kejets: [nk] <neut ke€jets: [, >neut

There are now three relevant power-counting parameters p$*/Q, pCllt /Q, and e~ "eut
cut cut)

with four distinct parametric regimes (assuming p illustrated in figure 7:

o pSM/Q ~ pHt/Q ~ e et (collinear step, top left),

o P /Q < Pt /Q ~ e et (collinear NGLs, top right),

o pM/Q ~ pH/Q < e et (soft-collinear step, bottom left),

° chut /Q < ﬁg}lt /Q < e~ "eut (soft-collinear NGLs, bottom right).

We discuss each of them in turn in the following subsections. For p$**/Q ~ e~ "t (top left)

the only relevant case is p* ~ pS™, leading to a modified measurement on the collinear

modes, a collinear step, compared to the case without a step (p§* = pJ*).

For pcllt /Q < e "eut we have to distinguish three cases depending on pc“t.
Pt ~ e leut implies the hlerarchy P /Q < Pt /Q ~ e et (top right). Here, the mode

setup is the same as for regime 3 without step (corresponding to p$* = oc). As in that

Keeping

case, the large difference in the constraints on collinear radiation above and below 7)cyt
gives rise to collinear NGLs.

For p§*/Q < e "t  we can then have either p*'/Q ~ p5™/Q < e "t (bottom
left) or pi*/Q < pM/Q < e "t (bottom right). For the former, the standard jet veto
factorization is recovered except that there are additional soft-collinear modes that resolve
the shallow step at 7cu. For the latter, the steep step pi™* < pH* at neus gives rise
to two distinct sets of soft-collinear modes with parametrically large soft-collinear NGLs
between them.
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Figure 7. Illustration of the parametric regimes for a jet veto with a step. Emissions above the
black lines are vetoed, and the thick gray line corresponds to pr/Q = e~ 1", The colored circles
indicate the relevant modes in the effective theory. The regimes in the top row are characterized

by p5*t ~ e~ "leut while those in the bottom row have p§** < e~"ut. The regimes on the left have

PS5t ~ pSit, while those on the right have p§"* < p$*"* and involve parametrically large non-global

logarithms.

3.2 pt/Q ~ p3/Q ~ e "eut (collinear step)

We first note that the hierarchy p$™/Q ~ e et < pt /@ is effectively equivalent to the
case without any jet veto beyond 7y (regime 2 in section 2.3). Since collinear emissions
with || > neut cannot resolve the loose veto at p$, its effect is suppressed by 1/p$** and
vanishes for p5** — oco.

The first nontrivial hierarchy is p/Q ~ pS*/Q ~ e "eut illustrated in the top
left panel of figure 7. In this regime, the required modes are the same as in regime 2
in section 2.3. The collinear radiation resolves the step at 7.y while soft emissions are

insensitive to it, leading to a generalization of eq. (2.12),
o) (p%ut)ﬁ%Ut7 Tcut R) q)) == HH((I)7 :u’)
X Ba(p%ltaﬁ%ltv Tlcut Ra Wa, W, V) Bb(p%ltaﬁ%ut7 Tlcut Ra Wh My 1/)

cut ~cut
X Sn(p%l,lt’R, I,L, V) |:].+O (%7%7677(:\11:7R2>:| , (32)
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with the beam functions now additionally depending on p§. In analogy to eq. (2.16) we
write the modified beam function matching coeflicients as

Zi (p%‘lt,ﬁ%‘t, Neuts By w, 2, 1, V) = Iij(p%ut, R,w,z, p,v) + AL (p%‘t,ﬁ%m, Neuts By W, 2, (1, V) .

(3.3)
The first term on the right-hand side is again the matching coefficient for a single veto
at p* without any rapidity dependence. The second term is the correction due to the
step in the jet veto at || = ncus, which vanishes for p§** = p§**. The correction is again
renormalized according to eq. (2.21), which as before follows from RG consistency. In
particular, its two-loop structure predicted by the RGE is the same as in eq. (2.24), where
the finite terms now depend on two dimensionless ratios,

we*ncut - we*ncut
Ceut = W ) Ceut = W . (3'4)

The one-loop and In R enhanced two-loop finite terms in AZ;; can be written in terms of
the results in egs. (2.25) and (2.27) as

Alz(;) (gcut, é:Cuta ) AI ((Cut, ) Iz(l) (écuty Z) ,
Afz(f)(écut,fcumR 2) = lnR[ 1(2 ImR) ()~ 1(32 Ry )] ’
+ AI@‘(]‘ZC (Ceut Ccuta z) + O(Rz) ) (3.5)

since for a single (primary) mg4-collinear emission at (7, pr) the measurement function for
the step correction can be rewritten as

0(n — neus) [0(BF — pr) — 0T — pr)]
= 0(n — Newt) 0(pr — pF*) — 01 — News) O(pr — PF) - (3.6)

Due to the presence of correlated emissions with rapidities smaller and larger than 7c,; at
two loops, this decomposition no longer applies for the full two-loop finite term Ali(f’c),
which therefore needs to be determined separately.

This regime is free of large nonglobal logarithms and is of direct phenomenological in-
terest. The parametric assumptions are satisfied e.g. for high-mass searches, @) 2 300 GeV,
a realistic rapidity cut ey = 2.5, and veto parameters p'* = 25GeV, p§"* = 50 GeV,
which clearly warrant resummation of logarithms of pi**/Q ~ p$*/Q ~ e ”C“t Evolving
the beam function from pup ~ p§'* ~ p§*t ~ Qe "t to puy ~ Q achleves this resummation
for all of the above large ratios in the cross section, while the full (logarithmic and nonlog-
arithmic) dependence on all of the O(1) ratios pS**/pSt, Qe "t /pSit and Qe "Teut /pSHt is

included at fixed order via the beam function boundary condition.

Numerical validation. We now check that the factorized 0-jet cross section in eq. (3.2)
reproduces the singular limit of full QCD. For this purpose, we construct an observable that
simultaneously forces p§** — 0 and p§** — 0 as it approaches its singular limit. Following
the rapidity-dependent jet vetoes in ref. [16], we define

1

. 2ol > neut »
7;tep = max ’pT,k’fstep(nk) s fstep(n) = {p o
k€jets

(3.7)
1, ’77‘ < Teut »
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Figure 8. Comparison of singular and nonsingular contributions to the fixed O(a) (LO1) Tstep
spectrum with a step at ney = 2.5 and p = p§'*/pSt = 2 for gg — H (left) and Drell-Yan at
@ = my (right). The orange solid lines show the full results, the dashed blue lines the singular
result that accounts for the jet veto step at 7.y in the beam function, and the dotted green lines their
difference. The dashed and dotted gray lines show the corresponding results without taking into
account the step in the jet veto, which do not describe the singular behavior of the full cross section.

i.e., we can express the step veto by ordering the jets with respect to their weighted
transverse momenta, where for 1| > 7cy the corresponding step weight function fitep(n)
is given by the ratio of veto parameters,

~cut

psz >1. (3.8)

cut

_pT

The differential spectrum in Tgtep is then related to the jet-vetoed cross section with a step
by the relation
cut
cut Pr U(ﬂ? Tcut R)

d
g0 (pT ) Pchut, Tlcut R) = d%tep

3.9
0 d%tep ( )

In figure 8 we compare do(p, feut)/dTstep at fixed O(ay) in full QCD to the singular
spectrum predicted by eq. (3.2) as well as the standard factorization eq. (2.8) without a
step for gg — H (left panel) and Drell-Yan at the Z pole (right panel). The singular result
using the full p§" and 7ey dependent beam functions (dashed blue) correctly reproduces
the singular behavior of full QCD (solid orange) in the limit Tgtep — 0, with the difference
to the full QCD spectrum (dotted green) vanishing like a power in Tgep as it should. On
the other hand, the standard factorization without step (dashed gray) does not reproduce
the correct singular behavior of full QCD, with the difference (dotted gray) diverging for
Tstep — 0. Note that the mismatch here is reduced compared to the ]5%“ = 0o case shown

in figures 4 and 5, owing to the larger phase space available to unconstrained radiation at
scut

1| > Neut for pF* = oo.

3.3 p%Ut/Q < ﬁ%“t/Q ~ e~ "eut (collinear NGLs)

This regime is a direct extension of regime 3 without a step in section 2.4. For e™"ut <

P/ Q, the effect of p5** is again suppressed by 1/p$" and vanishes for pi#* — oo, yielding
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the same result as in section 2.4. The nontrivial new hierarchy is pi**/Q < p**/Q ~ e leut,
shown in the top right panel of figure 7. In this regime, the mode setup is as in section 2.4.
However, the collinear modes are now additionally constrained for || > neu by the jet veto
at p*, making them sensitive to both p5** and the kinematic scale Qe "¢, This leads to
a modification of the overall initial-state collinear functions in egs. (2.35) and (2.36) by

B (p%Utvﬁ%l s Neut R7 w, W, V) = BZ(CUt)(~Cut, Tcut R w /’L) S(CUt) (p%ut7 Tcut RJ M, V)
cut cut
x [1+B§NG)< Pr__ Pr w,Rﬂ . (3.10)

we—Necut pcut’

Here Si(cm) is the same soft-collinear function as in eq. (2.37). By RG consistency the
ut)

dependence on pi** does not change their renormalization. The associated matching coef-

functions B(C have the same renormalization as those in eq. (2.37), i.e., the additional

ficients at one loop are given by subtracting the correction term AT .(.1) in eq. (2.25), which

accounts for an n-collinear emission with 7 > ney, and pr > p, from the coefficient I(Cut)

in eq. (2.38), which accounts for an n-collinear emission with 1 > 1, without constralnts
from a jet veto, such that

T B ewts R, 2, 1) = 25" Olewts 0,2, 1) = =

—Tcut
s (p )AI(l) ( ,z,R> + 0(a?).

A7 ﬁ%ut
(3.11)

The BZ-(NG) term in eq. (3.10) contains nonglobal logarithms of p§/pSt ~ pStt /Qe ™ "eut.

3.4 pSt/Q ~ p$/Q K e "eut (soft-collinear step)
In this regime (bottom left panel of figure 7), the mode setup in section 2.2 is extended by
soft-collinear modes that resolve the step in the jet veto at 7cyt,
ng-soft-collinear: pt ~ pGit(e~"Teut et 1) ~ pGE (e "eut glleut 1)
np-soft-collinear: pt ~ pPt(elleut e~ eut 1) ~ pSHE(eMlent e Meut 1) (3.12)

At the same time, the collinear modes only see the jet veto at p$*, while the soft modes

t

only see the veto at p3'*. This yields the factorized cross section

(pg"maﬁ%l » Nlcut s R7 (I)) = HH(CD M) B (p%ut, R>w> H, l/) Bb(p%uta R , W My V) Sli(p%lta 22 V)
X Sq (p%Ut7ﬁ%ut7nCut7 R, w, v )Sb(p%ut’ﬁ%ut7ncut’ R’:U’v V)

L . . A
x [1+O( 0 G e Do — R)|. (3.13)

The soft-collinear function S; encodes the actual step at ney and is defined by the mea-
surement eq. (3.1). For p§* = pS"* there is no step in the jet veto and S; has to vanish.
The RG consistency of the cross section implies that its g anomalous dimension vanishes

in general, while its resummed v anomalous dimension is given by

cu cu cut ~cu 1 cu cu
’}/I/S(th7th7R) = 277F(th7th) + Q{VV[QS(th)ﬂR] Vu[as(th)vR]} . (314)
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It does not depend on p at all, as required by exact path independence in the (u, ) plane.

~cut cut )

Note that the beam functions in eq. (3.13) depend on p{" (rather than pH") because
collinear radiation is too forward to be constrained by the tighter central veto. This is
reflected in the somewhat curious rapidity anomalous dimension of S; in eq. (3.14), which
accounts for the mismatch between the logarithms of pS™* and p§** generated by the soft
and beam rapidity evolution, respectively.

Solving eq. (3.14) order by order in ag we find the following very simple structure of

the soft-collinear function through two loops:

Si(P, P Neut, Ry p,v) = 14+ 4; &) {21" InpLs+S;i(p )] (3.15)
# O (o0} (L) + 2l L (2L T S0 (4) 11
+260Lfs i1 () +Si2(p, B) | +0(a2)
where ot , p
— pgut : L% =1In W , Ls=n W (3.16)

It is straightforward to check that the one-loop finite term vanishes (see appendix A.4),
Si1=0. (3.17)

The two-loop finite term is a generic function of the dimensionless ratio p and the jet
radius parameter R, which must satisfy S;2(p =1, R) = 0. As usual, we can decompose it
according to its R dependence as

Si2(p, R) = —8Cick npln R + 8 (p) + O(R?), (3.18)

where cf is given by eq. (2.31) and C; = C (Ca) for i = q(g). The coefficient of In R at this
order is completely determined by the R dependence of the noncusp rapidity anomalous
dimensions in eq. (3.14). The full two-loop finite term S;2(p, R) could readily be ob-
tained numerically using the methods of refs. [62, 63], which would enable the full NNLL'
resummation.

This regime is again free of nonglobal logarithms and hence can easily be applied to
phenomenological studies. It can be used to supplement the EFT setup from section 3.2,
which enables the resummation of logarithms of the ratio p**/Q ~ p5*/Q, with an addi-
tional resummation of logarithms of the ratio pJ**/Qe "leut ~ pSit /Qe "t by choosing the

pp ~ PP, s ~ /PSSt fis ~ P,
v ~ @, vs ~ \/ PPt | pg ~ pt . (3.19)

Here, the rapidity evolution between rs and vg is responsible for resumming the large

canonical scales

logarithms of e™ " ~ vg/vs.
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Figure 9. Comparison of the singular contributions to the fixed O(as) (LO1) Tstep spectrum for
Newt = 2.5 and p = 2 for gg — H (top left), gg — X (top right), and Drell-Yan at @ = mz (bottom
left) and @ = 1TeV (bottom right). The solid orange lines show the singular spectrum for the
collinear-step regime and the blue dashed lines the further factorized result in the soft-collinear-
step regime. Their difference, shown by the dotted green lines vanishes as a power of Tgtep. The
vertical lines indicate where the parametric relation Tgep/Q = e~ is satisfied.

Numerical validation. To validate our setup in this regime, we exploit that eq. (3.13)

provides a refactorization of the collinear step in eq. (3.2), where

cut ~cut cut

I’L](pT » DT 777cutaRaw7zv/J'ay) :87«(

cut ~cut

T 7ﬁ§“ut7 Tlcut R7 22 V) Iij(p%uta Rawv Zy W, V)
Pr Pr

1 ).
X |: + O (we'r]cut ? we*'r]cut ’ R >:|

In particular, eq. (3.13) must reproduce eq. (3.2) up to power corrections in p$*t/Qe™eut

(3.20)

and p§t/Qe "eut. We can test this numerically using the Tgep observable defined in sec-
tion 3.2, which simultaneously probes both classes of power corrections. In figure 9, we
show the fixed O(as) Tstep spectra for the collinear step (solid orange) and soft-collinear
step (dashed blue). In all cases their difference (dotted green) vanishes like a power in Tgtep.

The additional resummation using the soft-collinear step may be applicable up to

values of p* = 20GeV (pf* = 80GeV) for Q@ ~ 100GeV (Q = 1TeV), for the choice
of p = 2, neyy = 2.5 displayed in figure 9. This can be read off from the relative size of

leading-power (soft-collinear step) and subleading power (difference) contributions, which
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leave some room where resummation in the leading-power cross section can improve the
prediction. We find a slightly larger potential resummation region than for the analogous
refactorization in the p$'* = oo case, where an earlier onset of the power corrections was

observed in figure 6.

3.5 pit/Q K pt/Q <K e et (soft-collinear NGLs)

For this hierarchy (bottom right panel of figure 7), two types of soft-collinear modes arise,

ng-soft-collinear (p™*): pH ~ pt(e~Meut elent 1)

ng-soft-collinear (PG*):  pH ~ pFt (e Teut elent 1) (3.21)

and analogously for the my-soft-collinear sectors, which are both parametrically distinct
from the energetic collinear modes. Compared to the regime p$'* ~ pit < Qe "ut there
are now parametrically large logarithms In(p$/p$™) in the soft-collinear function S; in
eq. (3.13). The cross section can be written as in eq. (3.13), where the soft-collinear

function is refactorized as

-1
Si (p%uta ﬁ%’l‘ltv Tlcut R7 M, V) = Si(cut) (p%uty Tlcut R7 22 V) |:S'L'(Cllt) (ﬁ%lt, Tlcut Ra 22 V)}
cut cut
x [1 + SN (?CTM,RH x [1 +0 (foutﬂ . (322
b Pr

with Sfcut) the same soft-collinear function as in egs. (2.37) and (3.10). Both the power
corrections and the nonglobal piece SZ-(NG) are absent at one loop and at O(a?In R). Equiv-
alently this regime can be interpreted as a refactorization of eq. (3.10), where compared to

the hierarchy for p* < pS** ~ Qe ™"t there are large (rapidity) logarithms In(p§*eut /Q)
(cut)

in the beam function B; . Evolving the two soft-collinear functions to separate renor-

malization scales us1 = p$™, vs1 = p§tet and puso = p$*, vso = pSitellst resums
Sudakov logarithms of pi**/p5*, but does not account for the nonglobal logarithms of the

)

.. NG
same ratio in Si( .

4 Numerical results

In section 2 we discussed in detail how to incorporate the jet rapidity cut into the re-
summed 0-jet cross section. In particular, in the regime p*/Q ~ e vt (regime 2), the
dependence on 7¢yt is incorporated into the resummation via the RG evolution of the
Newt dependent beam functions. In this section, we illustrate these results by presenting
numerical predictions for the resummed cross section at NLL'+NLO.

In section 4.1, we outline how the resummed results are combined with the full QCD
results, as well as our estimation of perturbative uncertainties. In section 4.2, we assess the
impact of the additional perturbative ingredients by comparing the different treatments of
Neut- 1IN section 4.3, we show the predictions for selected 7.yt as a function of p%‘t.

In the following, we consider the four cases of gluon-fusion Higgs production g9 — H

at myg = 125 GeV, gluon fusion to a generic heavy scalar gg — X with myxy = 1TeV,
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and Drell-Yan production at Q = mz and Q = 1TeV, with the same setup and inputs
as described in section 2.3. The numerical results for the resummed predictions for all
processes are obtained from our implementation in SCET1ib [37]. The NLO results in full
QCD are obtained from MCFM 8.0 [38-40)].

4.1 Fixed-order matching and perturbative uncertainties

The resummed cross section obtained from eq. (2.12) describes the 0-jet cross section up to
power corrections in pCTut /@, which become relevant when p%“t ~ ). We account for them

by the usual additive matching,

o0(PF, Meut) = 5 (PF Newt) + 06 (D7 ewr) — 75" (D7 hcue) ] (4.1)

Here, of* is the resummed singular cross section obtained from eq. (2.12), of ¢ is its

fixed-order expansion, and Ug O is the fixed-order result in full QCD. By construction,
the difference in square brackets is nonsingular and vanishes as p“Tut — 0,Mcut — 00 and

can therefore be included at fixed order even at small p%ut. The dominant corrections

at small p§* are resummed in of. At large p$™, fixed-order perturbation theory is the
appropriate description, so eq. (4.1) should recover ag O This is achieved by turning off the
resummation in o’ as a function of pi**, and by constructing o such that it precisely
reproduces 0*"® when the resummation is fully turned off.

To smoothly turn off the resummation as we approach pH* — @, we use profile
scales [64, 65], following the setup developed in ref. [13]. We stress that the profile scales
for regime 2 are in one-to-one correspondence with the standard treatment in regime 1,
since both regimes have the same RG structure. Similarly, our treatment of perturbative
uncertainties is based on profile scale variations following ref. [13]. We distinguish an over-
all yield uncertainty Ao, which is determined by a collective variation of all scales up and
down, and a resummation (jet bin migration) uncertainty Ayesum from varying individual
scales in the beam and soft functions. For the gluon-induced processes, we follow ref. [66]
and include an additional uncertainty A, from varying the complex phase of the hard scale,
which was not considered in ref. [13]. The total uncertainty is then obtained by considering
the different uncertainty sources as independent, and hence uncorrelated, and adding them

in quadrature,
1/2
Atotal = Do ® Dy ® Apegum = (A% + A2+ A2 )7 (4.2)

4.2 Comparing different treatments of the jet rapidity cut

It is interesting to consider the impact of the additional perturbative ingredients in the
Newt dependent beam function on the prediction, e.g. compared to treating the rapidity cut
effects purely at fixed order. In figures 10 and 11, we plot the results for fixed p§* as a
function of 7.yt starting at 7.y = oo on the left and decreasing toward the right. The
corresponding values of the Qe vt scale are shown at the top.

Our result for the 0O-jet cross section using the matching in eq. (4.1) is shown as
orange bands. We refer to this prediction as NLL'(neyt)+NLO(ncyt), because both the

NLL’ resummed singular cross section and the fixed-order matching are exact in 7cy;. To
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Figure 10. The 0-jet cross section for gg — H at mpy = 125GeV for p* = 30GeV (left) and

g9 — X at mx = 1TeV and p§** = 50 GeV (right) as a function of 7.y. The same observable (o)

is calculated in three different ways, shown by the different bands, as described in the text.

highlight the effect of the additional 1., dependence in the regime 2 beam function, we
consider two more alternative treatments of 7n.y. For the regime 1 result, shown by the
blue bands and denoted by NLL'(00)+NLO(7cyt), the neqt dependence in the resummed
cross section is dropped,

00(PF, teut) = o6 (P, 00) + [06 0 (D7 ews) — o5 " (P, 00)] (4.3)

The resummation then only acts on the singular cross section for 7.y = 0o, while all ¢yt
effects are included purely at fixed order via the matching term in square brackets. Note
that the matching term is now no longer nonsingular, i.e., it no longer vanishes like a power
in p* as pM* — 0, as we saw in figures 4 and 5. The plain fixed-order calculation without

any resummation,

UO(pf%uta ncut) = UgO(PCTuty 77cut) > (4'4)
is denoted by NLO(7cyt) and shown by the gray bands. In this case, the uncertainties are
evaluated using the ST procedure [3].

We first consider gluon-fusion Higgs production shown in the left panel of figure 10,
where we set p** = 30 GeV. The NLO(ncyt) prediction (gray band) exhibits a slight, phys-
ical rise in the cross section as 7y decreases towards the right. This is not surprising as at
fixed order, decreasing 7cy¢ simply amounts to accumulating the squared LO; matrix ele-
ment over a larger part of phase space. The rise is less pronounced than for the resummed
results (orange and blue bands), but still compatible with them within each others’ uncer-
tainties. Comparing NLL'(ncut)+NLO(ncyt) (orange) to NLL'(00)+NLO(7cyt) (blue) we
find that the additional tower of logarithms predicted by NLL/(neyt) on top of the fixed
NLO 7yt dependence barely affects the central value of the prediction down to 1y = 2.
This is perhaps not surprising since Qe~""t is at most half of p$™, which means we are
not far from regime 1. However, we do observe a noticeable increase in the perturbative
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Figure 11. The 0-jet cross section for Drell-Yan at Q = mz and p$* = 20 GeV (left) and Q = 1 TeV
and p** = 25GeV (right) as a function of 7cy. The same observable (og) is calculated in three
different ways, shown by the different bands, as described in the text. For better readability, all
results are normalized to the resummed central value at 7., = co.

uncertainty estimate. This is mainly due to the resummation uncertainty, which is reason-
able: Ayesum probes the unknown higher-order finite terms (the RGE boundary condition)
and is therefore sensitive to a change of the beam function boundary condition by the

(1) (

Neut correction Al ; (see section 2.3). On the other hand, AIi(jl) must be large enough to
accommodate — up to power corrections — the fixed-order difference to 7cyt = oo (roughly
2pb at neys = 2.5, as can be read off from the gray line), so we expect an impact on Ayesum
of similar size. Hence, the conclusion is not that the NLL'(00)+NLO(7)cyt) result is more
precise, but rather that its uncertainty is potentially underestimated because it cannot
capture the 7.y dependence.

In the right panel of figure 10, we show the same results for a hypothetical color-
singlet scalar resonance gg — X at my = 1TeV using p$** = 50 GeV. [The dimension-five
operator mediating the production of X is given in eq. (2.33).] The NLO(7cys) result (gray)
is now off by a large amount already at 7y = 00, where it is not covered by the resummed
predictions. This is expected because the high production energy of 1TeV implies we
are deep in the resummation region, even for the larger value of p* = 50GeV. The
central values of the two resummed treatments start to differ below 7., = 3 or above
Qe ent ~ 50 GeV, where we are now fully in regime 2. However, the main difference is
again the larger and likely more reliable uncertainty estimate in the NLL/(1cyt) prediction.

In figure 11 we show the analogous results for Drell-Yan production at Q = myz us-
ing pi* = 20GeV (left panel) and @ = 1TeV using p§'"* = 25GeV (right panel). For
better readability, these results are normalized to the resummed 0-jet cross section at
Newt = 00. While all predictions agree in the slope of the cross section with respect to eyt
the NLO(7cyt) result has a constant offset and an unrealistically small uncertainty esti-
mate. At the lower @ ~ 100 GeV, we find practically no difference between the NLL'(neyt)
and NLL/(00) calculations, so here the effects of the jet rapidity cut can safely be included
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Figure 12. 0-jet cross section og(p$™, neut) for gg — H for my = 125GeV at NLL'+NLO for
different values of 7.yt The bands indicate the total uncertainty Ao @ A, ® Ases. The absolute
cross section is shown on the left. On the right, the same results are shown as the percent difference
relative to the O-jet cross section at 7y = 0.

o0(pS$™, Neut) [Pb], g9 — H (13 TeV), rEFT, mpy = 125 GeV
Neut PPt = 25GeV Pt = 30 GeV
2.5 | 25.943.8,,0t1.5,%£5.0res (25.0%) 28.5+4.0,0%1.6,44.6,c5 (22.0%)
4.5 | 22.042.0,0£1.0,£2.8yes (16.2%) 25.242.2,,0+1.2,£2.8.c5 (15.0%)
00 | 21.841.9,01.0,%2. 70 (15.6%)  25.042.2,0% 1.2, 2. Ty (14.7%)

Table 1. 0-jet cross section for gg — H for mpyg = 125 GeV at NLL'+NLO for different values of
5™ and 7cye with a breakdown of the uncertainties.

via the fixed-order matching corrections to the regime 1 resummation. At higher produc-
tion energies, the intrinsic NLL'(n)eyt) ingredients become more relevant, similar to gluon-
fusion, as shown by the increasing uncertainty estimates as 7.y decreases. Note that below
Newt = 2.5, Qe Tt > 80 GeV becomes large compared to this choice of p§** = 25 GeV, so
resumming logarithms of p§"* /(Qe ") using the regime 3 factorization given in section 2.4

might help reduce the uncertainties.

4.3 Resummed predictions with a sharp rapidity cut

Here, we compare predictions for different values of 7yt as a function of p$*. Our working
order is NLL/(9cyt)+NLO(7cyt) in the notation of the previous section, which from now
on we simply refer to as NLL/+NLO, i.e., the 7., dependence is always included in the
resummation. We stress that the differences we observe between predictions in this subsec-
tion are physical differences due to the different jet rapidity cuts, and not due to different
theoretical treatments as in the previous subsection.

In figure 12 and table 1 we present results for gg — H. Going from neyt = o0 to
Neuwt = 4.5 we find a 1% increase of the cross section for the typical values of p§* = 25 GeV
and 30 GeV. At ey = 2.5 the increase becomes more sizable, 14% (19%) for p$'* = 30 GeV
(25GeV). The differences vanish as the cross section saturates around p$'* ~ 100 GeV.
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Figure 13. 0-jet cross section oo (p$*", neut) for gg — X for mx = 1TeV at NLL'+NLO for different
values of 7cu. The bands indicate the total uncertainty A,,0® A, ® Aes. The absolute cross section
is shown on the left. On the right, the same results are shown as the percent difference relative to
the 0-jet cross section at 7.yt = oc.

Uo(pgput,ncut)/|CX|2 [pb], g9 = X (13TeV), A =mx = 1TeV
Neut QI)CT“‘t = 50GeV p?_p“‘t = 100 GeV
25 | 4.940.7,050. 1,41 2,05 (28.3%)  7.840.8,0%0.1,% 13,06 (19.4%)
45 | 4.140.3,0%0.1,40.7res (19.6%)  7.420.6,020.1,%1.Lpes (16.4%)
00 | 414030201520 70 (19.5%)  7.440.6,0 201, 11105 (16.4%)

Table 2. 0-jet cross section for gg — X for mx = 1TeV at NLL’+NLO for different values of p§**
and 7)eyt With a breakdown of the uncertainties.

The analogous results for gg — X for mx = 1 TeV are shown in figure 13 and table 2.
At such a high hard scale, the uncertainties for 7.y, = 2.5 become essentially beyond control
for very tight vetoes pi** < 25GeV, which would make an additional resummation of
In pS* /(Qe~"ut) as outlined in section 2.4 necessary. As we will see in the next subsection,
this effect can be tamed by replacing the sharp rapidity cut by a step in the jet veto.
However, for any choice of 7cy¢ the cross section is very strongly Sudakov suppressed for such
small values of p§**. At more realistic values of the veto, the jet rapidity cut for ney = 2.5
compared to 7ey, = oo still leads to a sizable increase of 20% (5%) for p§** = 50 GeV
(pS** =100 GeV). In contrast, the effect for 7e,, = 4.5 is very small.

The results for Drell-Yan production are given in figure 14 and table 3. For Q = my
(top rows), we find a 5-7% increase in the cross section at 7y = 2.5 for p* = 20-25 GeV.
Here the uncertainty for 7.yt = 2.5 is under good control even down to p%lt ~ 10GeV.
For Q@ = 1TeV (bottom rows), the cross section for ne, = 2.5 increases by 14% (4%)
for pi* = 25GeV (50GeV) compared to ey = 00. The Sudakov suppression and the
accompanying increase in relative uncertainty at small p$™* are weaker than for gg — X
due to the smaller color factor (Cr vs. C4) in the Sudakov exponent, but are still substantial

for a quark-induced process. The effect of the rapidity cut at n.y = 4.5 is negligible.
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Figure 14. The 0-jet cross section dog(p$, 7eut)/d@ for Drell-Yan production at the Z pole
Q = mgz (top row) and at @ = 1TeV (bottom row) at NLL'+NLO for different values of 7cy. The
bands indicate the total uncertainty A, @ Aes. The absolute cross section is shown on the left.
On the right, the same results are shown as the percent difference relative to the 0-jet cross section

at Nyt = 00.

doo(P, Neut) /dQ [pb/GeV], pp — Z/v* — ¢4~ (13 TeV), Q = my
Neut Pt =20 GeV Pt = 25 GeV

2.5 | 362422,0% 21 es (8.5%) 393+22,0+ 14,5 (6.6%)

4.5 | 3404240 +£22,eq (9.4%) 377424,0 151es (7.4%)

0 | 339424,0%22,es (9.5%) 376£24,0+ 15,05 (7.4%)
doo(p$™, Neut)/dQ [ab/GeV], pp — Z/v* — €14~ (13 TeV), Q = 1 TeV
Neut C“t = 25GeV C“t =50 GeV
9.5 | 14.1£0.8,+1.75e (13.6%) 19.7:|:0.6ﬂzl:1.7res (9.0%)

4.5 12.440.4), £1.1 e (9.2%) 18.940.4), +1.41es (7.6%)
00 12.44:0.4), £1. 165 (9.1%) 18.940.4), 1.4 (7.6%)

Table 3. The 0-jet cross section for Drell-Yan production at the Z pole Q = myz (top) and at
Q = 1TeV (bottom) at NLL’+NLO for different values of p** and 7.y¢ with a breakdown of the

uncertainties.
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Figure 15. 0-jet cross section oo(p$, P, Neut) with a step at newy = 2.5 for gg — H (left
panel) and gg — X (right panel) at NLL'+NLO. The results are shown for a fixed central veto
at pi** = 25GeV as a function of the jet veto p$'* that is applied beyond 7ey;. We show the
percent differences relative to the result for a uniform veto p$'* = p$**. The bands indicate the
total uncertainty Ao ® Ay @ Aves.

4.4 Resummed predictions with a step in the jet veto

In the previous subsection we have seen that a sharp rapidity cut at ey = 2.5 can lead
to a substantial loss of precision in the theory predictions, especially for gluon-induced
processes and at high production energies.

In figure 15 we show the resummed 0-jet cross section for gg — H and gg — X with
a step in the jet veto at 1,y = 2.5 as a function of the second jet veto parameter pS* that
is applied beyond 7yt The central jet veto below 7yt is fixed to pf_}“t = 25GeV. On the

left of the plot p5** = p§t*, which is equivalent to having no rapidity cut, in which case the

uncertainties are well under control. In the limit pS** — oo (towards the right) the step
becomes a sharp cut, corresponding to the results of the previous subsection. While the
step in the jet veto still leads to an increase in the uncertainties, this can now be controlled
by the choice of p$. At this order, a small step from p§* = 25 GeV to p5** = 30 GeV only
leads to a small increase in uncertainty. For a larger step to pi** = 50 GeV = 2p$™*, the

uncertainties already increase substantially but are still much smaller than for a sharp cut.

5 Conclusion

We have developed a systematic framework to seamlessly incorporate a cut on the rapidity
of reconstructed jets, |7jet| < 7eut, into the theoretical description of jet-vetoed processes
at the LHC. We have shown that the standard jet-veto resummation, which neglects
the rapidity cut, is correct up to power corrections of O(Qe~ vt / p%ut)’ with @ the hard-
interaction scale and p$"* the jet veto cut.

We calculated the necessary ncyt-dependent corrections at one loop as well as all loga-
rithmic contributions to them at two loops (including both small-R clustering logarithms
and all jet-veto logarithms predicted by the RGE; see section 2.3). The remaining ingredi-

ents required for a full NNLL’ analysis with 7.y effects are finite nonlogarithmic pieces that

~ 34—



could be either calculated explicitly or extracted numerically from the full-QCD results,
which we leave to future work. In addition, we considered for the first time the case of a

~cut cut

step in the jet veto, i.e., an increase in the veto parameter to p$* > p7" beyond 7cyut, and

showed how to similarly incorporate it into the jet-veto resummation (see section 3.2).

We also considered the jet veto cross section in the limit p§'* < Qe ", corresponding
to either very tight vetoes or very central rapidity cuts (see section 2.4). In this regime, the
jet-veto resummation becomes impaired by the presence of nonglobal logarithms, requiring
a refactorization of the cross section. However, we have argued that this parametric region
will most likely not play a role for typical jet binning analyses at the LHC. If experimentally
necessary, it can be avoided by replacing the sharp rapidity cut by a moderate step in the
jet veto, which is free of nonglobal logarithms (see section 3.4).

There are several important outcomes of our analysis. First, a jet rapidity cut at very
forward rapidities due to the finite detector acceptance, neyt =~ 4.5, is theoretically safe and
unproblematic. In contrast, restricting the jet veto to the more central region, with a sharp
rapidity cut at the end of the tracking detectors, 7.yt =~ 2.5, leads to an increase in the
perturbative uncertainties (which may not be captured if the jet rapidity cut is not included
in the resummation). This loss in theoretical precision can become particularly severe for
gluon-induced processes and for processes at high scales. It can however be mitigated
by replacing the sharp rapidity cut by a moderate step in the jet veto. We expect this
to be a generic feature that also holds at higher orders. It will be interesting to extend
our resummed predictions to the next order (NNLL') to confirm this as well as to reduce
the overall size of the theoretical uncertainties. We encourage our experimental colleagues
to take full advantage of such step-like jet vetoes in order to benefit from suitably tight
jet vetoes at central rapidities, while avoiding the increased pile-up contamination in the

forward region.
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A Perturbative ingredients

We collect known results for required anomalous dimensions in appendix A.1 and for the
standard p$"* beam function without a jet rapidity cut in appendix A.2. In appendix A.3
we provide some details on the computation of the one-loop beam function matching coef-
ficients in egs. (2.25) and (2.38). In appendix A.4 we compute the soft-collinear functions
given in eqgs. (2.40) and (3.15). In appendix A.5 we compare to the one-loop results of
ref. [34]. In appendix A.6 we discuss the Mellin convolutions required in the two-loop 7yt

dependent beam function in eq. (2.24).
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A.1 Anomalous dimensions

We expand the § function of QCD as

nG =t plag =203 ()" (A1)

with the one-loop and two-loop coefficients in the MS scheme given by

11 4 34 20
b=y Ca-yTeng,  m=S5 Ch (F o race) Tony. (a2)

The cusp and all noncusp anomalous dimensions y(«;) are expanded as
oo o0
. . e\ tl o\ N+l
F;L:usp(as) = Z F:’L (ﬁ) 5 ’Y(Ols) = Z Yn <ﬁ) . (A3)
n=0

The coefficients of the MS cusp anomalous dimension through two loops are

't = Cpl'y,, 'Y = Cyuly,, (forn=0,1,2),
I‘0 = 47
67 w2 20 4
T, = 4[0,4 (5 - ?) - 5T nf} = 2[(4—7)Ca +55)] (A4)

The PDF anomalous dimension in eq. (2.23) is expanded as

o0

Pylas2) = S PP (£2) (4.5)

47
n=0

Note that we expand the PDF anomalous dimension in a,/(47) and not a/(27) as is often
done. The one-loop coefficients of the PDF anomalous dimension read

PO (2) = PY) (2) = 2Cp 8 0(2) Pyg(2),  PQ(2) = 204 0(2) Pyg(2) + Bo 6(1 — 2),
PO (2) = PO (2) = 2Tr 0(2) Pyy (=) , PO (z) = P (2) = 2Cr 0(2)Pyy(z),  (A.6)

in terms of the standard color-stripped one-loop QCD splitting functions

22
Fyg(2) = 2£0(1 = 2) —9(1—2)(1+Z)+;5(1 —2) - [M—z)ltz} :
+
2)\2
Pyg(2) = 0(1 = 2)[1 = 22(1 = 2)],
— )2
Pyq(2) = 0(1 — Z)H(lz) . (A7)
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The two-loop coefficients were calculated in refs. [67-69]. They can be decomposed as

PO (2) = P (2) = 4Ck 0(2) [ Py (2) + PLs(2)]

qi9q; qiq;
P (2) = PM(2) = 4T 6(z) P,
PU) (2) = PL) (2) = 4CF 0(2) [0, Pl (2) + PLg(2)]
P (2) = 46(z) [C’AP A+ Trng Plop]
PO (z) = PY)(2) = 4Crb(2) P, (A.8)

where explicit expressions for the P! functions on the right-hand side can be found in
appendices A of refs. [70, 71]. [Note that in refs. [70, 71] the superscript “1” here is written
as “(1)” there, and the PDF anomalous dimension is expanded there in «g/(27), which
is already accounted for by the overall factors of 4 on the right-hand side of eq. (A.8).]
Explicit results for the Mellin convolutions of two color-stripped leading-order splitting
functions can also be found there.

The coefficients of the noncusp beam anomalous dimension are [13, 24]

Vho = 6CF,

V%, = Cr [(3 — 4% +48(3)Cp + (—14 + 16(1 + 7°) In2 — 96¢3) C

19 4,
- 712
# (5 -y me) a).

7%0 = 2/807
5 w2 10

7%1 =201 +8Cy [(—Z +2(1 +7T2)1n2 - 6€3) Ca+ (24 3 + 3ln2) 50} (A.9)

The coeflicients of the rapidity noncusp anomalous dimension depend on the jet radius R.
They read [13]

Wo(R) =0, (4.10)

| , |
wi(R) = ~16C; [<197 (1+7T2)1n2+C3> CA+<;1+71T2—§IDQ> 50] + Ci(R).

Here C; = Cr (Ca) for i = q(g) and C4(R) is the clustering correction due to the jet
algorithm relative to a global Er veto, as computed in refs. [8, 13],

CH(R) = 16C;cBIn R +15.62C;C4 — 9.17 Cifo + O(R?) . (A.11)
The small-R clustering coefficient c¢;; = c4g = c4q is given in eq. (2.31).
A.2 Beam function master formula for 7., — oo

In analogy to eq. (2.21) the matching coefficient Z;;(p$™, R, w, z, i, v) of the neyy — 00
beam functions satisfies (suppressing all other arguments of Z;;)

d
,U/@I ( ) 'YB(CU Hy, v E I’Lk ®Z QPICJ [Cts(/,L), Z] )
d cut
VEIU( ) fYVB(pT 7R7/j’) Iij(z) : (A12)
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Solving this order by order in ay yields the beam function master formula,
as() 7y, A5 7o) 3
Z; =0;;0(1 — As\H) 7 ’
J( ) 6]6( )+ A7 z] (Z)—|- (471_)2 4] (z)+0(as)
1 iTv i 0 1
Ii(j)<z) = 0i;0(1 — 2) L (2L Ls + Vo) — 2L%‘Di(j '(2)+ I@'(j)(z) ;
Z(:) = 801~ { (L) [205P (L + Lp(280Th + 2Mirpo) + foro + 50

2
1 ) v
- §7y1(R)LB

+ L 2T L + v |
+ PY)(2) (L) [~ATh L — 280 — 27| + 1 (2) L 200 L% + 260 + o

2 SR 0 P ) 2P () + 2 Y PR - P ()
k

k
(2)
+1;; (R, 2), (A.13)
where we abbreviated
v
Ly =In—— pCTut ) %5 =1In = (A.14)
The one-loop finite terms I l-(jl) using the n regulator [58, 59] are given by (see e.g. refs. [13,
19, 24))
I, (2) = I, (2) = Cr 8 0(2)0(1 = 2) 2(1 = 2),
1) TW () =
I§)(2) = Tgig(2) = Tr 6(2)6(1 — 2) 42(1 — 2),
1 _
g(g) (Z) - Oa
() = I33)(2) = Cpo(2)0(1 — 2) 22. (A.15)
Their convolutions with leadmg-order splitting functions always appear in the form
1D & PO Z 15)(z) @. Y (). (A.16)

For quark-to-(anti)quark transitions we decompose the above flavor structure as
(1) (0) = [ (0) = 5. [TV (0) (1) (0)

Y epP®) =1V e PV =610 ePY] L+ [N e PP

(1) (0) = [ (0) — 1 (0)

Y eoprP®] =[1"epP?] =" PY]

The building blocks on the right, together with the gluon-to-quark case, are given by

qqV qqS”’

(A.17)

qqS”’

1O @ PO) =403 6(2)0(1 — 2) (1 - ) [2 In(1—2)—Ilnz— ;] ,

4 2
2—{———221112—2)

1D & PO = ATpCr0(2)0(1 - 2) (3 =

[[(1) ® p(O)]

9.9

= [I(l) ® P(O)]q_g =0(2)0(1 — z){4CFTF [22 +2z—(2241)Inz — 2]

34 2
+4TrCy [322 — 10z + 3 8zlnz—2+42(1—2)In(1 — z)}
z

+4TF o 2(1 — z)} . (A.18)
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The convolutions required for the gluon beam function read

[V P(O)]gg = 4Cp(2ny)Tr 0(2)0(1 — 2) (1 + 2z — 222 + 2z1n2) (A.19)
[I(l) ® P(O)] = [I(l) ® P(O)] =4C%0(2)0(1 — 2) {1 + i ilmz+2s In(1 — z)} .
94i 9q; 2
These expressions agree with the color-stripped convolutions given in refs. [13, 19], account-

ing for different conventions for splitting functions. The two-loop finite terms in eq. (A.13)
depend on R. Expanding them as

(2) _ (2,In R) (2,0) 2
Iij (R,2) = lnRIij (z) + Il-j (z) + O(R?), (A.20)
the coefficient of In R can be written as

121 (2) = B [2P(2) — 0 01501 — 2)] (A.21)

R
ij
literature. [See eq. (2.31) in the main text.] Note that the terms proportional to §(1 — z)

We explicitly recomputed the coefficients c:, for which we found some discrepancies in the
cancel in eq. (A.21) when the distributional structure of the splitting function is written
purely in terms of §(1 — z), £,,(1 — z), and regular terms in 1 — z.

A.3 Rapidity cut dependent beam functions

Here we provide some details on the computation of the one-loop beam function matching
coefficients in egs. (2.25) and (2.38). We use dimensional regularization for both UV and
IR divergences and the n regulator [58, 59] for rapidity divergences. This ensures that
all virtual diagrams, PDF diagrams, and zero-bin subtractions are scaleless. We work in
Feynman gauge.

The relevant real-radiation diagrams are displayed in figure 16, and the associated
expressions for the spin-contracted amplitudes can be read off e.g. from refs. [2, 72] with a
proper replacement of the measurement function. For the beam function in eq. (2.12), the
measurement on a single n-collinear emission with momentum k* and rapidity

1, k™
reads, including label momentum conservation for w = zp~, k= = (1 — 2)p~,

MB<kM7p’3"ut7 Tcuty W, Z)

k~ - k~ o w(l=2)
— 277cut _ cut _ _ 277cut I S
o (e = ) ot =iy o (5 - ) [ o (i - =22)

= MU (et pw, z) 4+ MU (B e w, 2) (A.23)

Here we will separately display the result for each diagram with ngwt) and Mgpnwt)
)

inserted, respectively. This also allows one to read off the one-loop result for the Bi(Cllt beam

function in eq. (2.38), for which the measurement on a single emission is just Mgpnc‘“).
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Figure 16. Nonvanishing diagrams for the computation of the one-loop beam function in pure
dimensional regularization and Feynman gauge. Symmetric configurations are implicit. The mea-
surement acts on particles crossing the on-shell cut indicated by the vertical dashed line.

On the other hand, for a direct computation of the finite correction due to the rapidity cut

in eq. (2.25) it is more convenient to decompose the measurement function as

MB(k#7p%ut) Tlcut , W, Z)

= (ot = )+ 005 - 0 (1 - o) o (1 - 2H=2)

kT z
== MB(k;uvp%lta w, Z) + AMB(kH7p§“Ut7 Tcut, W, Z) . (A24)

Inserting the first term into matrix elements yields the known results for the matching
coeflicients without any rapidity cut, while the second term yields the correction.

The relevant diagrams for the computation of the matching coefficient Z,, are (a) and
(b). The on-shell condition and label momentum constraint lead to a trivial kT integral,
which gives for diagram (a), after expanding in e,

(n]0(w) OLMC(PSEE, W) | g (@7 <ent)

_aOrp( weT™ N -y PR

- g ’ < p%ut + wencut) 6(1 Z) (1 Z) In wefncut(l — Z) T O(E) ’
(gn|0(w) O™ (p§H*, w) g ) @7 e0)

_ asCr 1 we—’%ut(l _ Z) 1

= 2O o1 -2 0 z>[ Lons 0 o]
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Diagram (b) together with its mirror diagram gives, after expanding in 7 and e,

(an]0(w) OF (5", ) gn) 1<) (A.26)
c ~leut 1/1 gt 1
_ BTEy (z— utwe_nt) (1 —z){5(1 —2) [( —om L —i—(’)(e)) - —
s Py 4 weeu n\ € n 2e
1 —Ncut —Tcut cut 2 cut
T M m2 pomP ¥y T —1—250(1—2)lnM
€ M /,L M vV 24 we " Tlcut
Pz
-2L;(1—-2)—2ln———+ 0O
(4n6(w) O (P, ) ) 77
asCr 1 1. we Meut 9 we Meut 2
= 0(z)0(1 — 0(l—2)|=— —-1 1 - —
o0 - a1 - ) g - TS g S
1 —Tlcut 1 “Neut (1 —
+£0(1—z)[—+2lnwe ]+2L’1(1—z)+—21nw6(2)+(’)(6)}.
€ Wz € Wz
The matching coefficient Z,, is computed from diagram (c) giving
(gn]0(w) O™ (P, w)[gn) <) (A.27)
cut

asTE ( we " Meut
= 2 ———0T-
T p%Ut —+ we " Meut

(gn]01(w) OF™ (P, ) g ()

_ _ NPT =
) 0(1—2)(1—-2z+22")In oot (1= 2) + O(e),

= TP gyen - z){(l — 2z 4222 [—21 I S0

m € Wz

F2(1-2)+ 0(6)}.

The relevant diagrams for the computation of the matching coefficient Z,, are (d) and (e),
which yield

(gn|0(w) OB (pSEE, )| g,,) (7 <ewt)

—Tcut 9_9 2_2 3 cut
:asCA0<Z_tue_> 0(1—2) 243z z In _pT Py +O(€)7
™ Pr Fwe T Meut z weMeut (1 —2)
(9n[0(w) OF™ (" w) g} (47> et
OZSCA 2—22+322_223 1 we_ncut(l_z)
= 0(z)0(1— ——+n——= A2
T (2)0(1—2z) P [ 2€+ n e +0(e) |, (A.28)

5For the renormalization one needs to account for the full d dimensional coefficient of the 1 /n divergence,

which we do not display here for simplicity.
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and, including the symmetric contribution of (e),

<gn ‘ 0 (UJ) Olg)are (p%ut s w) |gn> (en<1tcut)

_ 2Ca _wer™™ N g [t (L g, P 1
= 0(2 )0(1 z){5(1 Z>L7<e 2ln . +0O(e) 52

p%}m “+weNeut

- €
1 —TMcut —MNcut cut 2 g
S w2 o P m e T sy (-2 L

€ M M M v 24 et

PPtz
_2»61(1—2) —(2+Z) In ujencut(l_z)"‘(?(n,ﬁ)} R
<gn‘9(w) O;)are (p%ut’w) ‘gn> (e;m>ncut)

o asCy
s

1 1. we Meut o we ™ Meut 72
+In

9(2)9(1—2){5(1—2) [M—Eln . T

1 —Tcut
+Lo(1—2) [—€+21n we

} +2L1(1—2)+(2+=2) [216_111‘*’6_776::;1_'2)]

—I—O(e)} . (A.29)
The matching coefficient Z,, is computed from diagram (f), giving

<qn ‘ 9(0)) O;)are (p,—clwut , w) |qn> (fm<necut)

C —TNeut 2_9 2 cut
=&l (z—cu:je> 6(1—=z) G W < +0(e),
T PR Fweeut z weMeut (1 —2)

(0010(60) O3 (1) g, 727
I et

——+In
2€+
Since PDF diagrams are scaleless in pure dimensional regularization, the renormalized

s z

+2+(’)(6)}. (A.30)

beam function matching coefficients are given by the O(¢’n°) terms in these expressions.
From the results for Mgwk‘“) we get Ii(;m’l) in eq. (2.38), while adding Mg@CUt) gives
the sum of eq. (2.25) and the second line of eq. (A.13).

A.4 Soft-collinear functions

We again use pure dimensional regularization and the 7 regulator, so virtual diagrams and
soft zero-bin subtractions are scaleless. Note that we expand the 7 regulator to leading
power using the soft-collinear scaling, i.e., for a single emission we insert |k~ /v|~" rather
than |2k3/v|~". This choice leads to a scaleless soft zero bin. In Feynman gauge the bare

one-loop real contribution to the n-soft-collinear function SZ-(CHt)

in eq. (2.37) is given by

cut,1), eu e\ [ d% | v m 276 (k*) cu cu
Si(baie )(pT t7 nCut) = 4920i ( A > /(271')d ‘ k- ‘ k—k+ MSS R (ku7pT t’ 77Cut) )
(A.31)

where 01 (k*) = §(k?) 0(k"), and the measurement function reads

cu cu cu . k™ k™
M0 52 ) = 005~ B0 (20— ) o (e ) (a32)

— 492 —



The second term yields a scaleless contribution, while the first term corresponds to a
boosted hemisphere and leads to the result

(171 cut 1 1 —Tecut
S-(Cllt71)(p§‘ut777cut) _ OésCz { |: — QIDPL + O(e):| ——+-In ve
7

i bare T nle 262 € U
cut cut —Tecut 2
2 A O /A M +7T—|—(’)(77,6)}. (A.33)
p Iz p 24

Absorbing the divergent terms (including contributions of the form €"/n, which are not
shown) into counterterms yields the renormalized one-loop result in eq. (2.40).

The bare one-loop contribution to the soft-collinear function resolving the step in
eq. (3.13) is again given by eq. (A.31), but this time the measurement reads

ste cu cu 7 t k ~cu 7 k™~ t
MG ) = 005 — )0 (2 = 1) + 05 = e 0 (5 = e ).

k+
(A.34)
Successively dropping terms that yield scaleless integrals we can replace ()
ke~ 3 . .
MG 155 ) 0 (o = € ) [O05 — [Ral) = 005" ~ V)]
k— - 3 .
o (e = ) [o0 — el — 05~ 1)
= MG (P o) = ME™ R P ). (A35)
so at one loop we find a simple relation between bare results,
S e (P 55 Neut) = St (S, 1) — Sipte) (B, eu) - (A.36)

Remapping the measurement on the primary emission as in eq. (A.35) yields the analogous
relation for the small-R clustering contributions.

A.5 Comparison to quark beam function results in the literature

In ref. [34] the regime p$™ ~ Qe "t was accounted for by adding a finite contribution

AB;}J). from so-called out-of-jet radiation to the unmeasured beam function in eq. (2.37) as

T (et 2 10) = T5" D (s, 2,0) + AB G 2,0, (A37)

One-loop consistency with our eq. (2.12) reads, at the level of bare ingredients,

T e (P ot w, 2) (A.38)
= T (et . 2) + ABL) (2,00, €7%) 4 53581 — 2) S{HD (07 )

where Sfcut’l) is the bare soft-collinear function at one loop, see eq. (A.33). By eq. (A.23)
we have, in terms of bare collinear matrix elements up to scaleless PDF diagrams,

1 cu cut,1 are (,.cu cut
I e D5 Teuts @, 2) = T (et w0, 2) + (4a]0(w) OF (05, w)]ga) 7<) | (A.39)
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and similarly for Z,,. With this, eq. (A.38) simplifies to

(gn[0(w) O (p5H* ) [gn) <) = ABL) (p§°, 2,0, e7%%) + 6(1 = 2) S\ (D, et

(gn|O(w) ogare(chut,w),gn>(n<nmt) —ABY

q/g(pCTUt, Z,w, e et (A.40)

Both relations are readily checked after summing over all contributing diagrams.

A.6 Mellin convolutions in the two-loop rapidity dependent beam function

The PDF and beam function RGEs together predict Mellin convolutions of the following
form in the two-loop matching kernels eq. (2.24) for the rapidity dependent beam function:

3" ALY (Couts 2) ©: PO (2) = [ATD @ POL5(Cour, 2) - (A1)
k

The relevant partonic channels read, leaving all arguments implicit,

AW @ PO, =6;;8CE PL @, P+ 8TrCp P @, Pyg = AT @ PO,

Gidj »
[Af(l) ®P(O)]qitjj = 8TwCp P;)q R, P, = [AI(l) ®P(O)]t¥iqj ,

Bo

[AI(1)®P(O)]Qi9 =8CFTr Pyy®: Pyg+8TF [CAP;g}@ngg—i_QP;Z/ = [AI(1)®P(O)]%97

Bo

ATWe PO, =8C4 [CA ry ®Zng+2P;;} +8CrTr(2ns) Pyy®, Pyg,

[AI(D ®P(O)]gqi =8CaCFFy®, qu+80%P;‘;®2qu = [AI(D@P(O)]Q% ) (A.42)

where ny is the number of light quark flavors. Here we introduced a shorthand for weighted
color-stripped splitting functions that depend on (., in addition to z,

cu cu 1—
Pi;q(gcutaz) =0 <1 f‘ thut - Z) 1n<t(ZZ)P"j(Z) : (A'43)

The Mellin convolutions PY ®. Pj; are straightforward to evaluate analytically, but the
resulting expressions are lengthy. They are available from the authors upon request.

B Jet rapidity cuts in Tg and T¢ vetoes

Here we comment on how the factorization setup for the smoothly rapidity dependent
jet vetoes introduced in ref. [16] is modified when an additional sharp jet rapidity cut is
introduced. The restriction on reconstructed jets reads in this case

- max  {|prgl fme)} < Teur (B.1)
k€jets: Nk | <ncut

where f(n)e'"' — 1 for n — +oo. Examples are the beam thrust veto with f(n) = eIl
and the C-parameter veto with f(n) = 1/(2coshn). The discussion of an additional sharp
rapidity cut largely parallels the case of the pi** veto in section 2. We again distinguish
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three hierarchies between /Teyt/Q and et where now y/7Teut/Q replaces p§' /@ as the

characteristic angular size of collinear radiation constrained by the jet veto. The hierarchy
VTeut /@ > e~ ent (regime 1) reduces to the factorization for ne,; — oo [8, 16, 28], up to

power corrections of O(e™"uty/Q/Tcut).
For \/Teut/Q ~ e vt (regime 2) the relevant EFT modes scale as

soft:  p ~ (Teut, Teut, Teut)
ng-collinear: pt ~ (7::111:,@7 \/@) ~ (Qe_znwt,Q,Qe_"C“t) ,
np-collinear: p" ~ (Q,ﬁut, \/m> ~ (Q,Qe_%’c‘“,Qe_"c‘“) . (B.2)
The factorized 0-jet cross section reads
00(Teuts Neuts By @) = Hy (P, 1) Ba(Teut, Neut, By Wa, 1) Bo(Teuts Neuts Ly wo, 1) Sk (Teut, R, 1)
x {1 + O(%‘t e et Rz)] . (B.3)

The beam and soft function are different from the pi** veto. The rapidity cut again affects
only the beam functions without changing their RG structure or anomalous dimension. In
analogy to eq. (2.16) we can write the matching coefficients as

7 '(%uta Ncut vaa 2y /’L) = I’L'j(w%uta R> 2, /L) + AIij(’]Zuta Tlcut Ra w, 2, :u) ’ (B4)

where the first term on the right-hand side is the 7.y — oo matching coefficient as calcu-
lated to two loops in ref. [28], which only depends on the boost-invariant product w7eyt.
The correction AZ;; vanishes for we 2wt < To i and at one loop is given by

as(p) we ™ 2Meut 0 we ™ Zeut (1 — z)
AT (Teuts Nt By w, 2, 1) = =2 =0 <w6_zw T PY(2) In .
+0(a?). (B.5)

For \/m < e eut (regime 3) we again distinguish two types of collinear modes,
ng-collinear: pt ~ <Qe*277cut’ Q, Qe*ﬁcut) ,
ng-soft-collinear:  p# ~ (7;% Teureeut %utenmlt) ) (B.6)

The contributions from these modes can be encoded in a function B; which can be refac-
torized in analogy to eq. (2.37) to resum Sudakov logarithms of Teute?7eut /Q,

(2

27cut
x [1 + BN (mw R)} . (B.7)

w

Bi (7::ut’ Ncut R7 w, z, ,LL) — B‘(CHt) (ncu‘m W, ,U’) Si(CUt) (%utenc‘ltv R7 H)

(cut)

Here, the 7c.; dependent and 7Tcu independent piece B; is identical to the one in

S(cut)

eq. (2.37), while the soft-collinear function S; is different and reads

sCi cu fleut 2
O‘M (41112 Tt/j - 2) +0(a?). (B.8)

7

S (Towe™ 1) = 1+
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The BZ(NG) piece, which contains nonglobal logarithms starting at O(a?), is again different
from the one in eq. (2.37). We verified that, up to power corrections, the explicit one-
loop expressions in egs. (2.38) and (B.8) reproduce the sum of eq. (B.5) and the matching
coefficients without a rapidity cut given in appendix B of ref. [16].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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