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Abstract: The observed low-energy values of the SU(3)× SU(2)×U(1) gauge couplings,

extrapolated via the minimal Standard Model Renormalization Group evolution, hint at

the exciting possibility of a Grand Unified Theory (GUT) at MU ∼ 1014 GeV — a scale,

however, too high to probe directly via collider searches. Fortunately, since the Hubble

scale H can be as high as 5× 1013GeV ∼MU during the inflationary era, such GUT scale

states can be cosmologically produced at that time and leave direct on-shell signatures

such as their masses and spins, via primordial non-Gaussianity (NG). We explore this

possibility in one of its simplest realizations given by the extra-dimensional framework of

orbifold GUTs, in which proton decay can be straightforwardly suppressed to be within

the stringent bounds. Here, along with the massive GUT states there must also be H-mass

spin-2 Kaluza-Klein (KK) gravitons, collectively giving rise to striking NG signatures. In

our set-up we localize the inflaton on one of the boundaries of an extra dimension. The

inflationary vacuum energy can readily lead to formation of a horizon in the bulk, where

the KK modes then form a continuum above a mass gap of ∼ O(H). We find that the

optimal case for observable NG signals is when the extra dimension is stabilized close to the

onset of this horizon, ensuring a discrete KK spectrum such that the lightest KK modes

can be cosmologically produced without significant Boltzmann suppressions. Although we

mostly focus on the case where there is no higher-dimensional cosmological constant, we

also obtain considerable holographic insights from the AdS5/CFT4 correspondence when

such a cosmological constant is included.
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1 Introduction

It is an intriguing experimental fact that the SU(3)× SU(2)×U(1) gauge couplings, when

extrapolated using the minimal Standard Model (SM) Renormalization Group Evolution

(RGE), become approximately equal to each other at an energy scale MU ∼ 1014 GeV as

seen from figure 1. This can be thought of as a strong circumstantial evidence for the

attractive possibility that the SM gauge theory becomes part of a Grand Unified Theory

(GUT) (see [1] for a review) at that scale, characterized by a simple gauge group and a

single gauge coupling. Some imperfection in the meeting of couplings at MU , such as is seen

in figure 1, is to be expected from beyond-SM thresholds, either &TeV as in the weak scale

supersymmetric (SUSY) paradigm, or from splittings ∼ MU . In this paper, we consider

the minimal scenario where only the non-supersymmetric SM exists in the infrared, with

only MU -scale threshold corrections from beyond the SM (BSM).

However, indirect constraints on such theories exist [2]. In the simplest GUT gauge

theories such as SU(5) and SO(10), unified matter multiplets contain both quarks and lep-

tons, leading to the prediction of proton decay mediated by GUT bosons. Non-observation

of proton decay then puts a lower bound, MU & 1015 GeV, apparently ruling out minimal

SM unification. While it is possible to build purely 4D models (for e.g. see the review [3]

and references therein) that evade these stringent bounds, these are somewhat intricate.

On the other hand, the extra dimensional framework of orbifold GUTs (see [4–6]) offers

a very simple and plausible mechanism to suppress proton decay and still achieve uni-

fication. (Also see [7, 8] for orbifold GUT inspired 4D realizations.) In their simplest

incarnations, orbifold GUTs are theories where a unified gauge theory lives in a (4+1)D

spacetime with the extra dimension being an interval. Boundary conditions (BC’s) on the

bulk gauge fields then must be specified at the two ends of the interval and it is these

conditions that determine which gauge fields will have zero modes and thus be present in

the low energy theory. Since BC’s need not respect the complete GUT gauge invariance, a

breaking GUT→ SU(3)× SU(2)×U(1) can be achieved simply through a suitable choice

of BC’s. See figure 2. The unification will only be manifest when we reach energy scales

∼ MU ∼ MKK , the mass of the lightest Kaluza-Klein (KK) excitations, that is at ener-

gies high enough to directly detect the extra dimension. The proton decay bounds can be

avoided by having separate GUT multiplets for SM quarks and leptons so that conserved

baryon and lepton numbers can be consistently assigned to these multiplets [9]. Again,

suitable boundary conditions on these 5D fermion multiplets can be imposed such that

only the SM fermions have chiral zero modes and appear in the low energy effective theory.

Without new TeV scale particles such as in SUSY or a robust proton decay signal,

it seems impossible to directly test the orbifold GUT hypothesis at foreseeable colliders

or other terrestrial experiments given that the non-SM states reside at ∼ MU ∼ MKK ∼
1014 GeV. However, the primordial universe presents us with a unique opportunity in this

regard. The Hubble scale H during an era of cosmic inflation (see [10] for a review) in

the early universe could be as large as 5 × 1013 GeV [11], and hence GUT scale states

having masses MU ∼ H can be cosmologically produced during that era due to the time-

dependence of the inflationary background. Furthermore, provided there is a suitable
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Figure 1. SM Renormalization Group Evolution (RGE) of gauge couplings gi at 1-loop written

in terms of αi ≡ g2i /4π. The label “i = 1,2,3” denotes the U(1), SU(2) and SU(3) SM subgroups

respectively with the normalization that g1 =
√

5/3g′ where g′ is the SM hypercharge coupling.

Figure 2. 5D spacetime having two boundaries at y = 0 and y = L. (a) Dirichlet Boundary

Conditions (BC’s) on the gauge bosons of GUT/SM achieves the breaking G → SM on the left

boundary, also housing the inflaton φ(x). Neumann BC’s on all gauge bosons preserve G on the

right boundary.

coupling, these states can decay into inflatons. This can, in turn, give a very distinctive non-

Gaussian contribution to the spectrum of primordial curvature fluctuations R [12–25], that

we can probe via the Cosmic Microwave Background [26, 27], Large-Scale Structure [28–35],

and more futuristically 21-cm cosmology [36]. For various interesting applications of this

idea, see the recent works e.g. [22, 37–45]. Refs. [22, 37–39, 43] discussed visibility (in

the sense we describe now) of (B)SM Higgs, (B)SM gauge bosons and (B)SM fermions via

primordial non-Gaussianity (NG).
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Figure 3. Tree level contributions to bispectrum due to massive particle exchange. From left to

right: (a) single exchange diagram, (b) double exchange diagram, (c) triple exchange diagram. All

the three diagrams depend on the mixing between the massive particle (in red) and the inflaton

fluctuation (in black) in the (implicit) non-trivial background of slowly rolling φ0(t). η is (conformal)

time, ending at the end of inflation.

Let us briefly review the structure of these non-Gaussian contributions. Massive fields

with H-scale masses, if present during inflation with appreciable coupling to the infla-

ton, lead to a non-analytic momentum dependence of the three-point function (i.e. the

bispectrum) of R [12–17],

〈R(~k1)R(~k2)R(~k3)〉 ∝ Fs(θ)
1

k3
3

1

k3
1

(
k3

k1

)∆s(m)

+ · · · , for k3 � k1, (1.1)

in the “squeezed” limit where one momentum is much smaller than the other two. Im-

portantly, in eq. (1.1), the exponent ∆s(m) and the pre-factor Fs(θ), with θ = ~k3 · ~k1,

depend on the mass (m) and spin (s) of the massive particle. For example, for a spin-1

particle F1(θ) = cos(θ) and ∆1(m) = 5
2 + i

√
m2

H2 − 1
4 [19]. Thus a precise measurement

of the bispectrum and its momentum dependence in the squeezed limit can capture the

precious mass and spin information of the massive field. The contribution of such massive

fields to the bispectrum can be represented by “in-in” diagrams, where the initial state

is given approximately by the interacting Bunch-Davies de Sitter “vacuum” and the final

time is essentially the end of inflation. In particular we show in figure 3 the three tree level

contributions to the bispectrum which will be called single, double and triple exchange

diagrams depending on the number of massive propagators.

The non-analytic momentum dependence in eq. (1.1) signifies the fact that the massive

particle is produced on-shell during inflation and its effects can not be integrated out [17].

For m� H, the non-analytic contribution to the bispectrum will be very small since cos-

mological, on-shell productions of such heavy particles will be “Boltzmann suppressed”.

This suppression is captured by the proportionality factor in eq. (1.1), which we will write

out explicitly in sections 6 and 7. But when m � H the non-analyticity in the three

point function becomes insignificant as can be seen from the expression of ∆1(m) above.

Hence only the regime m ∼ H yields both a non-trivial and observable bispectrum carry-

ing signatures of new physics. These are the primary observations behind the ambitious

program of “Cosmological Collider Physics” [17] which has an unprecedented reach into

the structure of fundamental physics at energy scales much higher than we can expect to

probe at terrestrial colliders.

Thus, the above considerations show that if during inflation H is comparable to the

GUT scale, then by studying primordial NG we may be able to do mass-spin spectroscopy

– 3 –
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Figure 4. Same set-up as in figure 2 except the right boundary is absent and a “black brane”

horizon has formed due to the backreaction of the inflationary vacuum energy on the left boundary.

of GUT states! A robust feature of orbifold GUTs is that at the unification scale ∼MKK

spacetime is necessarily higher-dimensional, and therefore there must be KK graviton exci-

tations at this scale in addition to GUT/KK gauge states. This has two important, related

consequences in the scenario we are focusing on with H ∼ MKK . First, the KK graviton

will also have a mass ∼ H and a model independent coupling to the inflaton, guaranteed

by 5D diffeomorphism invariance. Therefore, in a set-up with orbifold GUTs, we expect

to see not only the NG signatures of the GUT/KK gauge states but also striking spin-2

signatures due to KK gravitons. The second consequence is that, to describe inflationary

dynamics completely, which involves energies ∼ H ∼ MKK , we have to take into account

the higher-dimensional geometry and cannot just focus on a 4D effective theory where all

the KK modes are integrated out.

The 5D geometry brings in a subtlety. To illustrate that, first consider a set-up where

the inflaton is localized on one boundary of a semi-infinite extra dimension. The infla-

tionary vacuum energy backreacts significantly on the 5D geometry and an event horizon

will be formed at some finite distance, characterized by H, away from the inflationary

boundary [46–49]. See figure 4. Although such a horizon forms quite generally, it has a

particularly nice holographic interpretation via the AdS5/CFT4 correspondence [50] when

there is a negative 5D Cosmological Constant (CC) in the bulk. The 5D spacetime is given

by a detuned RS2 [51] set-up [49, 52, 53], dual to a purely 4D inflationary dynamics cou-

pled to CFT4 self-interacting radiation. The temperature of the horizon, as we will show

later, is equal to H
2π which can be interpreted by the hot “AdS/CFT” correspondence (see

e.g. [54]) as the temperature of the dual 4D CFT. The CFT in this case is being heated due

to the Gibbons-Hawking temperature [55] of dS4. In this case, where the extra dimension
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is only cut off by a horizon, the KK spectra form a continuum of states above a O(H)

gap, dual to the states of the hot CFT plasma. On the other hand, we would like to do

spectroscopy of a discrete set of KK states, in a detuned RS1 set-up [56], so we must ensure

that the right boundary, in figure 2, is stabilized to appear before the horizon is reached.

The 4D dual statement is that the (deformed) CFT confines in the IR, but in order to

do so the Gibbons-Hawking temperature must not exceed the deconfinement temperature.

If this temperature is exceeded, the (deformed) CFT is deconfined, dual to the horizon

in 5D appearing before the second boundary. We will find that there is a “window of

opportunity” for doing discrete spectroscopy using NG, constrained by the need for the de

Sitter temperature H/(2π) to be below the deconfinement temperature, but not so low that

cosmological production of the confined states (dual to discrete KK modes) is Boltzmann

suppressed. Studying this window will be a central part of our work. It is complicated

by the fact that in this regime there is a significant backreaction on the Goldberger-Wise

extra-dimensional stabilization mechanism [57] for the second boundary due to the H-scale

inflation. We perform a novel near-horizon analysis in which this backreaction is system-

atically controllable. The final strength of NG signals will also depend on the backreaction

away from the near-horizon regime, but only up to O(1) uncertainties, which do not affect

their basic observability. We hope to address these uncertainties in later work.

While the case of non-zero 5D CC offers a simple dual 4D interpretation, as above, we

will mostly focus on the case of vanishing 5D CC for technical simplicity. However, the

qualitative behavior is very similar to that with a CC, and the latter continues to provide

good intuition for our results. Although our focus in this paper will be on the orbifold GUTs

scenario, our results related to KK gravitons and stabilization of the extra dimension are

quite general and will apply whenever the size of the extra dimension is O(H−1).

This paper is organized as follows. In section 2 we detail the specific orbifold set-up that

we will be considering in this paper and recall some aspects of the gauge coupling unification

in orbifold GUTs. In particular, we will see that with boundary localized, non-GUT-

symmetric 4D gauge kinetic terms one can easily fit the observed values of gauge couplings.

In section 3 we will briefly review the definitions of cosmological correlators and the “in-in”

formalism used to calculate them. Section 4 focuses on various extra dimensional features of

the inflationary spacetime, as alluded to above, and ends with an estimation of the strength

of NG mediated by KK gravitons. Section 5 describes the inflationary couplings of the KK

gauge bosons of the GUT, listing all the higher dimensional operators relevant for NG. We

discuss the prospects of visibility when the GUT group is either SU(5) or SO(10). Sections 6

and 7 give the explicit form of NG mediated by KK gravitons and KK gauge bosons

respectively and calculate the strengths of NG. We conclude in section 8. Two technical

appendices supplement the discussion in the main text of the paper. In appendix A we

derive the KK decomposition of the KK graviton-radion system, both reproducing some

of the existing results from the literature and establishing some new results that are used

in section 4. In appendix B we derive the bispectrum mediated by KK gravitons via a

direct computation using the “in-in” formalism. This, as it should, reproduces the form

of [17] obtained via exploiting conformal symmetries of the late time slice. Furthermore,

our calculation also determines the overall normalization of the in-in correlator.

– 5 –
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2 Orbifold GUTs and gauge coupling unification

2.1 Orbifold GUTs

We consider the simplest orbifold GUT structure with a 5D bulk, and with a simple

GUT gauge group such as SO(10) or SU(5). The 5D gauge theory is necessarily a non-

renormalizable effective field theory (EFT). The extra dimension is physically an interval,

although we will realize this as an S1/(Z2 × Z ′2) quotient of a circle in order to precisely

specify boundary conditions. While the 5D bulk preserves the GUT gauge symmetry, it is

broken on one of the boundaries of the extra-dimensional interval (effectively Higgsed at

the 5D EFT cutoff) down to just the SM gauge group. We can think of this as effectively

being given by imposing Dirichlet boundary conditions (BC’s) on the broken gauge fields

and Neumann BC’s on the unbroken (SM) gauge fields on the GUT-breaking boundary,

and all-Neumann BC’s on the other GUT-symmetric boundary. Lastly, we will take the

SM fermions and the SM Higgs to be present in the bulk as well.

Before discussing gauge coupling unification in such a set-up, we give the explicit extra

dimensional profiles of the KK modes of the bulk gauge bosons given our choice of BC’s. In

this section we will assume a simple fixed 5D spacetime product geometry consisting of 4D

Minkowski spacetime and the extra-dimensional interval. We will account for 5D curvature

in later sections, but this will not change the central structure of unification and its low-

energy implications. For finding the free-field profiles we can ignore the self-interactions of

the bulk non-Abelian gauge field.

Then the equation of motion (EOM) for each gauge field component is identical to the

Maxwell equations for a bulk U(1) gauge field. These are given by (suppressing the adjoint

index on the gauge field),

∂MF
MN = 0. (2.1)

By a suitable gauge transformation we can go to the gauge where A5(x, y) = A5(x) with

y being the coordinate along the extra dimension. Furthermore, with our choice of BC’s

above, A5(x) = 0. Hence the Maxwell equations for Aν are given by,

∂νFνµ + ∂2
yAµ = 0. (2.2)

Via a KK decomposition,

Aµ =
∑
l

Al,µ(x)ϑl(y), (2.3)

the 5D EOM (2.2) can be separated into a 4D EOM for a massive spin-1 particle and an

equation governing the extra dimensional profile,

∂νFl,νµ = m2
lAl,µ, (2.4)

∂2
yϑl +m2

l ϑl = 0. (2.5)

Here ml is the mass of the l-th KK mode. Using eq. (2.5) we can derive the profile of SM

and broken gauge fields (part of GUT/SM coset) for the above choice of BC’s,

ϑSM
l (y) = cos(lπy/L), (2.6)

ϑ
GUT/SM
l (y) = sin((l + 1/2)πy/L), (2.7)

– 6 –
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with l being a non-negative integer. We have placed the boundaries at y = 0 and y = L.

Taking l = 0 we see that only the SM gauge bosons have a zero mode, m = 0, whereas the

lightest of GUT/SM bosons have a mass of m = π
2L and hence no zero mode. This choice

of BC’s has broken the GUT down to the SM at the compactification scale, as expected.

2.2 Gauge coupling unification

The action for the gauge sector is given by,

S ⊃
∫
d4x

∫ L

0
dy
√
−G

(
1

g2
5

FMNF
MN + δ(y)

∑
i

κiFi,µνF
µν
i

)
, (2.8)

where M,N and µ, ν run over the 5D and 4D indices respectively. The first term describes

the field strength for the bulk GUT gauge theory. For generality, we have also included

boundary localized, non-GUT-symmetric 4D gauge kinetic terms, where the label “i =

1, 2, 3” denotes the U(1), SU(2) and SU(3) SM subgroups. We can now relate the gauge

couplings g4,i,
1 in the 4D low energy effective theory with the 5D gauge coupling g5. To

this end, we note that the zero modes of the gauge bosons have a flat profile, as seen from

eq. (2.6) for l = 0, in the extra dimension. Then using the Lagrangian (2.8) and doing an

integration over the extra dimension we get the relation between the SM gauge couplings

at the compactification scale (see e.g. [6]),

α−1
i

(
1

L

)
≡ 4π

g2
4,i

=
4πL

g2
5

+ 4πκi. (2.9)

Below the unification scale mKK ∼ 1/L, the couplings g4,i evolve as per the usual SM RGE

which at 1-loop reads as,

α−1
i (µ) =

4πL

g2
5

+
bi
2π

log

(
mKK

µ

)
+ 4πκi. (2.10)

In the above bi = (41
10 ,−

19
6 ,−7) are the three 1-loop SM beta functions with the notation

that g4,1 =
√

5/3g′ where g′ is the SM hypercharge coupling. This has precisely the one-

loop form of a traditional 4D GUT, if we translate αGUT = g2
5/4πL,MGUT = mKK and the

κi are interpreted as GUT threshold corrections. We see that for sufficiently large L and

sufficiently long running, the first two terms on the right dominate, with the “threshold

corrections” κi giving a subleading contribution. This structure then predicts that plotting

1/αi(µ) vs. log µ will give three lines almost meeting at a point, as indeed the data suggests

in figure 1.2 As a benchmark choice taking, κ1 = 40
16π2 , κ2 = 60

16π2 and κ3 = 1
16π2 we can

describe the observed gauge couplings at the weak scale and achieve unification in the sense

described above with,

α−1
G = 39, mKK = 5× 1013GeV. (2.11)

1Here we are making a small change in notation compared to figure 1 by making the replacement gi → g4,i

for i = 1, 2, 3.
2The minimal radiatively stable size of the κi is ∼ 1

16π2 . But it is perfectly natural for the κi to take

larger values, required to interpret figure 1 in the orbifold GUT scenario as we do here.

– 7 –
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The lower unification scale of non-supersymmetric GUTs ∼ 1014 GeV raises the danger

of an unacceptably large proton decay rate mediated by GUT states. In orbifold GUTs this

is straightforwardly avoided by the mechanism of “split multiplets” whereby SM quarks and

leptons are housed within different GUT multiplets, so that baryon and lepton number can

be separately assigned, and unwanted fermionic zero-modes in these multiplets are removed

by Dirichlet BC’s on the GUT-breaking boundary [9].

3 Cosmological correlators and primordial non-Gaussianity

3.1 Cosmological correlators

In this subsection we will very briefly summarize how cosmological correlation functions

are defined and the formalism used to calculate them. For a more thorough explanation of

this the reader is referred to our previous work [22], along with the literature [58, 59].

Master formula. To calculate primordial non-Gaussianity (NG) due to inflaton fluc-

tuations, “in-in” expectation values of some gauge invariant observable of interest are

evaluated. This is most conveniently done in the interaction picture in which the master

formula for “in-in” expectation value of a gauge invariant observable Q at a time tf towards

the end of inflation reads as,

〈0|T̄ e
+i

tf∫
−∞(1+iε)

dt2Hint
I (t2)

QI(tf )Te
−i

tf∫
−∞(1−iε)

dt1Hint
I (t1)

|0〉. (3.1)

In the above, Hint
I is the interacting part of the full Hamiltonian, H = Hquadratic + Hint

evaluated in the interaction picture. The operator Q is denoted by QI after being evaluated

in the interaction picture. |0〉 is the free vacuum obtained from the interacting vacuum by

letting the early time evolution be along a slightly complex direction. T (T̄ ) denotes time

(anti-time) ordered product.

Choice of gauge. Before going into the definition of various cosmological correlation

functions let us address the issue of gauge invariance. We can split the inflaton field

φ(t, ~x) into a homogeneous background field φ0(t) and a fluctuation field ξ(t, ~x), φ(t, ~x) =

φ0(t) + ξ(t, ~x). Now, the scalar fluctuation ξ mixes with scalar fluctuations coming from

the metric and is not gauge invariant in general. A gauge invariant observable, which we

will denote by R, capturing scalar fluctuations can be constructed (see [60] and references

therein). However, rather than working with R “in-in” calculations can often be simplified

by choosing the spatially flat gauge [61]. In this gauge the spatial part of the metric

contains just the transverse traceless tensor γij ,

hij = a2(t) (δij + γij) , (3.2)

and up to slow-roll corrections we can treat ξ(t, ~x) as a massless field in a fixed background

inflationary spacetime metric [61] given by,

ds2 = −dt2 + a2(t)d~x2. (3.3)

– 8 –
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In the above, a(t) = eHt is the scale factor in terms of Hubble scale H, which is a constant

to the leading order in φ̇0, φ̈0. Finally, R is related to ξ(t, ~x) by

R = −H
φ̇0

ξ. (3.4)

We will calculate “in-in” results in terms of ξ and then use the above eq. (3.4) to get a

gauge invariant answer by rewriting the correlators in terms of R.

Power spectrum and higher point functions. An n-point correlation function of

scalar fluctuationR can be defined as the “in-in” expectation value 〈R(~k1)R(~k2) · · ·R(~kn)〉.
Note since we calculate the expectation value at a fixed instant of time, it is only the three

momenta that appear in the above expression. It is conventional to strip momentum

conserving delta functions and define,

〈R(~k1) · · ·R(~kn)〉 = (2π)3δ3(~k1 + · · ·+ ~kn)〈R(~k1) · · ·R(~kn)〉′. (3.5)

The scalar power spectrum PS,k can then be calculated as

PS,k ≡ 〈R(~k)R(−~k)〉′ = H4

φ̇2
0

1

2k3
, (3.6)

where the r.h.s. is to be evaluated at the time of horizon exit k = aH for a given k-mode.

Planck data [11] gives the magnitude and tilt of the power spectrum to be H4

φ̇2
0

≈ 8.2×10−8

and ns ≈ 0.96 at a “pivot” scale 0.05 Mpc−1.

The three point function i.e. the bispectrum can be defined in a similar way,

B(k1, k2, k3) ≡ 〈R(~k1)R(~k2)R(~k3)〉′. (3.7)

A dimensionless bispectrum that we will often use in the rest of paper can be defined by,

F (k1, k2, k3) ≡ B(k1, k2, k3)

PS,k1PS,k3

. (3.8)

In the spatially flat gauge using eq. (3.4) this can be rewritten as

F (k1, k2, k3) = − φ̇0

H

〈ξ(~k1)ξ(~k2)ξ(~k3)〉′

〈ξ(~k1)ξ(−~k1)〉′〈ξ(~k3)ξ(−~k3)〉′
. (3.9)

The size of NG is typically quoted in the literature as a constraint on a parameter fNL

which is defined as

fNL ≡
5

18
F (k, k, k). (3.10)

In general the function F (k1, k2, k3) can have some non-trivial momentum dependent

“shapes”. CMB constraints on fNL depending on differing shapes can be found in [62]

with a rough precision being σfNL
∼ O(5− 50). This sensitivity is expected to be improved

in future with LSS experiments to σfNL
∼ O(1) [63]. However, the ultimate sensitivity

on this will come from an only cosmic variance limited 21-cm experiment because of the
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enormous number of modes, N21-cm, such an ideal experiment can access. Very roughly we

can have
〈RRR〉
〈RR〉

3
2

∼ 1√
N21-cm

∼ 10−8, (3.11)

where with only cosmic variance, N21-cm can be as large as 1016 [64]. This can help us

achieve σfNL
∼ O(10−4 − 10−3). This is the sensitivity that we will keep in mind when

discussing the observability of our signals. We make the crucial assumption that non-

primordial NG induced by various non-linear effects after the modes re-enter the horizon

can be modeled accurately enough so as to extract the primordial contribution.

3.2 Non-gaussianity and massive particles

Inflaton self-interactions or presence of other light fields with masses � H, can contribute

to primordial NG (see [59] for a review and references to original papers). However, a very

distinctive non-Gaussian feature of primordial fluctuations can emerge, if massive fields

with m ∼ H are produced during inflation with sufficiently strong coupling to the inflaton,

in the “squeezed” limit when one of the inflaton momenta becomes much smaller than the

others (say, k3 � k1 ∼ k2). Depending on the mass (m) and spin (s) of such a particle,

the bispectrum mediated by it will have a non-analytic momentum dependent part of the

form [12–17, 19],

F nonanalytic
s=0 ∝ f0(µ0)

(
k3

k1

) 3
2

+iµ0

+ f0(−µ0)

(
k3

k1

) 3
2
−iµ0

, (3.12)

F nonanalytic
s=1 ∝ sin2 θ ×

(
f1(µ1)

(
k3

k1

) 5
2

+iµ1

+ f1(−µ1)

(
k3

k1

) 5
2
−iµ1

)
, (3.13)

F nonanalytic
s=2 ∝

(
cos2 θ − 1

3

)
×

(
f2(µ2)

(
k3

k1

) 3
2

+iµ2

+ f2(−µ2)

(
k3

k1

) 3
2
−iµ2

)
. (3.14)

In the above, µ0 = µ2 =
√

m2

H2 − 9
4 and µ1 =

√
m2

H2 − 1
4 are given in terms of the mass m of

the massive particle. The spin dependence is encoded in the prefactors with θ = k̂1 ·k̂3. The

non-analytic dependence on momenta also follows from simple considerations as reviewed

in [22]. The functions fs(µs) can be calculated given the coupling between inflaton and the

massive particle. For the detailed form of fs(µs) see e.g. [12–17, 19, 22, 65] for spin-0; [22]

for spin-1; eq. (B.17) of the present paper and [17, 19, 25] for spin-2. While the Hubble

spacetime expansion can readily produce particles with masses of order H or smaller,

for larger masses there is a “Boltzmann suppressed” production amplitude, generically

fs(µs) ∼ e−πµs ∼ e−πm/H for m� H. While extra dimensions certainly give rise to higher

spin particles such as our KK gravitons, with a lower bound on their masses to avoid

horizon formation, there is an even more robust bound on higher spin masses in 4D dS

spacetime regardless of their origin. For spin-2 this is given by the Higuchi bound, [66].

We will show that horizon non-formation is a stronger condition in the extra dimensional

scenario so that the Higuchi bound is automatically satisfied.
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Importantly, the non-analytic momentum dependence shown above cannot be “faked”

by inflaton self-interactions since the NG contribution of the latter have only an analytic

momentum dependence in the squeezed limit — making the non-analyticity a “smoking

gun” signal of new particles during inflation [17]. Thus from a precision measurement of

the bispectrum in the squeezed limit, we can probe particles with masses comparable to

H and their spins, far beyond the reach of terrestrial colliders — this is the goal of the

ambitious “Cosmological Collider Physics” [17] program.

4 Inflation and the fifth dimension

4.1 General set-up

We consider a 5D spacetime in which the extra dimension is an interval and localize a 4D

inflaton on one of the boundaries at an end of the interval. Technically, we will realize this

interval as an S1/(Z2 × Z ′2) orbifold in order to determine BC’s. Set-ups with boundary

localized inflaton have been considered in the literature, see e.g. [48, 49, 52, 53, 67–70]. We

will see that for sufficiently large H the non-inflaton boundary can become shrouded by a

black brane horizon, effectively leaving a set-up with a single boundary. To most simply

explore this, we will also consider the limiting case of semi-infinite extra dimension.

The 5D action has the basic structure,

S=

∫
d4x

∫ L

0
dy
√
−G(2M3

5R5−Λ5)−
∫
d4x

∫ L

0
dy
√
−Gδ(y)V0 (4.1)

−
∫
d4x

∫ L

0
dy
√
−Gδ(y−L)VL+

∫
d4x

∫ L

0
dy
√
−G

(
−1

2
GMN∂MΣ∂NΣ−V (Σ)

)
,

where the bulk metric is denoted by GMN and G = det(GMN ). R5 is the 5D Ricci scalar.

Here we have placed the boundaries at y = 0 and y = L where y is the coordinate along

the extra dimension. There are boundary-localized potentials V0, VL at y = 0 and y = L

respectively. M5 is the 5D Planck scale whereas Λ5 is the 5D cosmological constant. We

take the inflaton field to live at y = 0, but begin by neglecting its rolling, so that its potential

is a approximately constant V0 ∼ M2
4H

2, where M4 is the final effective 4D Planck scale.

We will however consider VL to be an exactly constant “brane tension”. We also have a

bulk 5D Goldberger-Wise (GW) scalar Σ [57] with a potential V (Σ) that stabilizes the

extra dimension. The case with a single boundary will be realized by taking L→∞ limit.

Requiring a dS4 foliation (in the limit of no-rolling of the inflaton) and a static extra

dimension we are lead to the ansatz,

ds2 = −n(y)2dt2 + n(y)2a(t)2d~x2 + dy2, (4.2)

where a(t) = eHt is the scale factor, and n(y) is the warp factor. In the presence of dS4

isometry, only the 00 and 55 Einstein equations are independent,

H2 − n(y)n′′(y)− n′(y)2 =
1

4M3
5

n(y)2

3

(
1

2
Σ′(y)2 + V (Σ) + Λ5

)
, (4.3)

n′(y)2 −H2 =
1

4M3
5

n2(y)

6

(
1

2
Σ′(y)2 − V (Σ)− Λ5

)
. (4.4)
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Here and in the rest of the paper the ′ will always denote a derivative with respect to

the explicitly mentioned argument of the function. For example, n′(y) and n′(z) will

denote dn(y)
dy and dn(z)

dz respectively. The Einstein equations above have to be supplemented

with BC’s,3

lim
ε→0

[
n′(y)

n(y)

]+ε

−ε
= − V0

12M3
5

, (4.5)

lim
ε→0

[
n′(y)

n(y)

]L+ε

L−ε
= − VL

12M3
5

. (4.6)

4.1.1 Gravitational fluctuations

The inflationary dS4 foliation necessarily “warps” the extra dimension, even when there

is no bulk energy-momentum tensor. Thus the KK spectrum is also expected to be dif-

ferent from the non-inflationary 4D Lorentz-invariant case, with Mink4 foliation. General

gravitational fluctuations around the metric (4.2), contains the graviton hµν(x, y) and, in

presence of the second boundary, the radion Π(x, y). We will show in appendix A that

the linearized equation of motion for the spin-2 graviton and spin-0 radion decouple for a

general warp factor n(y). Thus postponing the discussion of radion to a later subsection,

we focus only on the 4D graviton and its KK modes for now. These fluctuations can be

parametrized at the linearized level as,

ds2 = −n(y)2dt2 + n(y)2a(t)2d~x2 + dy2 + hµν(x, y)dxµdxν , (4.7)

where µ, ν denote 4D indices t, ~x. In the above we have chosen h5µ = 0 by a suitable gauge

transformation, and hµν satisfies transverse and traceless conditions,

∇µhµν = 0; hµµ = 0. (4.8)

The equation of motion for the graviton can be obtained as [71–73] (for a derivation see

appendix A)

�dShµν(x, y)+n2(y)∂2
yhµν(x, y)−2n′(y)2hµν(x, y)−2n(y)n′′(y)hµν(x, y)−2H2hµν(x, y) = 0,

(4.9)

where �dS = gµν∇µ∇ν is the laplacian operator for dS4 with gµν is the metric for dS4 i.e.

ds2
4D = gµνdxµdxν = −dt2 + a2(t)d~x2. To make the KK decomposition manifest we can

redefine hµν = n2h̃µν to get

�dS h̃µν(x, y) + n2(y)∂2
y h̃µν(x, y) + 4n(y)n′(y)∂yh̃µν(x, y)− 2H2h̃µν(x, y) = 0. (4.10)

Expanding h̃µν into KK modes h̃l,µν(x) with profile χl(y)

h̃µν(x, y) =
∑
l

h̃l,µν(x)χl(y), (4.11)

3We are considering the extra dimension to be a S1/(Z2 × Z′2) orbifold which gives rise to the BC’s

mentioned here.
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we get

�dS h̃l,µν(x) = (m2 + 2H2)h̃l,µν(x) (4.12)

n2(y)χ′′l (y) + 4n(y)n′(y)χ′l(y) +m2χl(y) = 0. (4.13)

These describe h̃l,µν as spin-2 particles with mass m in dS4. The form taken by the bulk

profile is most clear in the analog 1D “quantum mechanics” coordinate system, where

eq. (4.13) has the same form as Schroedinger equation with some potential determined by

the warp factor n(y) [51]. To achieve this, we can do a variable change n(y) d
dy = d

dz and a

field redefinition

χl(z) = n−
3
2 (z)ψl(z) (4.14)

to get,

− 1

2

d2

dz2
ψl(z) +

(
3

8

(
n′(z)

n(z)

)2

+
3

4

n′′(z)

n(z)

)
ψl(z) =

m2

2
ψl(z). (4.15)

We note that the effect of the bulk scalar Σ comes only through the dependence on the

warp factor n(y) given via eqs. (4.3) and (4.4). This is because the spin-0 fluctuations of

Σ cannot mix with spin-2 hµν at the linearized level. The zero mode profile for m = 0 in

eq. (4.15) can be obtained for a general warp factor n(z) with ψ0(z) ∝ n
3
2 (z).

4.2 Semi-infinite extra dimension

We now specialize to the case in which there is only one boundary at y = 0, housing the

inflaton. In this case, the radion is no longer in the spectrum. We therefore drop the

stabilizing GW fields, and for simplicity consider vanishing 5D bulk cosmological constant.

Then the warp factor n(y) satisfying eqs. (4.3), (4.4) and KK graviton profile obeying

eq. (4.15) simplifies significantly as we now demonstrate.

4.2.1 Background solution and the horizon

The solution to eq. (4.3) and eq. (4.4) along with BC eq. (4.5) and normalization

n(y = 0) = 1 is then given by

n = 1−Hy, (4.16)

with V0 = 24M3
5H > 0. We see that the presence of the inflationary vacuum energy,

characterized by H 6= 0, has “warped” the extra dimension giving rise to a horizon at

y = H−1 [48, 49].

Horizon temperature. The temperature of the horizon can be found by studying the

near horizon geometry. A variable change Y = H−1 − y shows that the line element

transverse to the boundary becomes identical to a Rindler metric,

ds2 = −H2Y2dt2 + dY2. (4.17)

The temperature of this Rindler horizon can be found by the standard method of going to

Euclidean time and demanding regularity of the metric at the horizon,

Thorizon =
H

2π
. (4.18)
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This is same as the Gibbons-Hawking temperature of dS4 space [55]. At first, this coinci-

dence of these temperatures is not clear.

We gain insight by considering the case with negative 5D cosmological constant

Λ5 = −24M3
5k

2 in the bulk, which corresponds to the RS2 set-up [51], but with de-tuned

boundary tension giving rise to dS4 foliation rather than Mink4 foliation. The bulk equa-

tions (4.3) and (4.4) can again be solved [49, 52, 53],

n(y) = cosh(ky)−
√
H2 + k2

k
sinh(ky). (4.19)

With this warp factor, we again see the presence of a horizon with an identical near horizon

geometry as before and horizon temperature Thorizon = H
2π . This can be interpreted as the

temperature of the 4D CFT dual to RS2, as follows from the “hot” AdS/CFT correspon-

dence. The CFT in this case is being heated by the dS4 Gibbons-Hawking temperature

due to 4D inflation. For aspects of such “hot” AdS/CFT correspondence, see [54] and

references therein.

4.2.2 KK graviton wavefunction

For now, let us return to the technically simpler case with vanishing Λ5 (at the loss of holo-

graphic insight). Using the explicit form of the warp factor eq. (4.16) in eq. (4.15) we obtain

d2

dz2
ψl(z) +

(
m2 − 9

4
H2 +

V0

8M3
5

δ(z)

)
ψl(z) = 0, (4.20)

where the coordinate z is defined by e−zH = 1−Hy.4 Thus the horizon has been pushed

to z =∞, whereas the y = 0 boundary resides at z = 0.

Remarkably, there is a m = 0 normalizable and localized graviton mode,

ψ0(z) ∝ e−
3
2
Hz, (4.21)

corresponding to a finite 4D effective Planck scale, M4, as we will detail later. This is

similar to the RS2 graviton localization giving an effective 4D gravity despite the infinite

extra dimension, but here the localization relies on 4D inflation, H 6= 0. Intuitively, the

horizon provides a second boundary cutting off the infinite extra dimension. We also see

that for m 6= 0 there is a mass gap of 3H/2 and a continuum of modes for m > 3H/2.

These modes are non-normalizable and their profile in the extra dimension is sinusoidal.

This mass gap aligns nicely with the fact that a massive spin-2 particle in dS4 has to obey

the Higuchi bound [66] m2 ≥ 2H2, which can be derived just by unitarity of the 4D theory.

(In inflationary scenarios where the dS4 isometries are significantly broken, the Higuchi

bound can be evaded and it is consistent to have spin-2 particles with m2 < 2H2 [74].) It

should be mentioned that for Λ5 < 0, some of these features persist and have been pointed

out in the literature, for e.g. [71–73].

In this paper we will be interested in inflaton NG mediated by massive particles (with

or without spin) having a discrete spectrum. Hence to discretize the continuum modes with

4The delta function δ(z) originates because of the R1/Z2 quotient of an infinite extra dimension to obtain

a semi-infinite extra dimension in the present case.
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m > 3H
2 above, we need to reintroduce a second boundary before the horizon is reached at

y = H−1. We turn to this next.

4.3 Introduction of the second boundary

When the second boundary is introduced, the KK graviton wave function ψl(z) has to obey

two BC’s so that the KK continuum above becomes discretized. Furthermore the radion

is a physical degree of freedom and we have to stabilize it.

4.3.1 Radion mass and stabilization

We first set Λ5 = 0 and ask what happens in the absence of a GW field. Using the metric

solution, subject to dS4 ansatz, given in eq. (4.16), and the jump equations (4.5) and (4.6)

the radius of the extra dimension is determined

L =
VL + V0

VLH
, (4.22)

even in the absence a GW field. Note that we need to have VL < 0 for there to be no

horizon formed between the two boundaries. However, this dS4-symmetric configuration is

unstable as we discuss now.

We can parametrize the linearized radion fluctuation as [75]

ds2 =−n(y)2(1−2Π(x,y))dt2+n(y)2a(t)2(1−2Π(x,y))d~x2+(1+2Ξ(x,y))dy2. (4.23)

Although we have two seemingly independent functions, Π(x, y) and Ξ(x, y) to denote

the radion, the perturbed 0i Einstein equations force Ξ(x, y) = 2Π(x, y) [75]. Then the

perturbed 55 Einstein equation, along with the background solution, gives the linearized

radion equation of motion (for a derivation see appendix A),

�dSΠ + 4H2Π = 0. (4.24)

We see that the radion has a tachyonic mass m2
r = −4H2, signalling instability [76].

For the case of Λ5 < 0, it is still true that m2
r = −4H2 [77–79]. Although this can

again be deduced by considering the perturbed Einstein equations, we can get the same

result from a “simple” holographic insight. To this end we calculate the radius of the extra

dimension via a similar procedure as above. Using eq. (4.19) and eqs. (4.5), (4.6) we get,

tanh(kL) =
V0 + VL

24M3
5k + V0VL

24M3
5 k

. (4.25)

To have a solution to the above equation we need VL < −24M3
5k. Now let us write down an

effective potential for the canonically normalized radion field Πc (which is proportional to

Π) on this dS4 symmetric background. As the Goldstone boson of spontaneous conformal

symmetry breaking of the CFT dual to the bulk dynamics, the only possible conformally

invariant form of the radion potential is,

Vr(Πc) = H2Π2
c + λΠ4

c . (4.26)
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A conformal coupling of the radion to the 4D Ricci scalar, L ⊃ − 1
12RΠ2

c + · · · fixes the

mass term above with R = 12H2 for dS4. A quartic coupling λ is also expected to be

present whenever the tension on the second boundary VL is not equal to the tuned RS1

value of −24M3
5k, with sgn(λ) being fixed by sgn(VL + 24M3

5k) (see e.g. [80]). Since we

needed VL < −24M3
5k in the present case, we have λ < 0. If we now expand around the

correct minima of Πc, we get back the identical tachyonic mass m2
r = −4H2 as before.

The tachyonic radion necessitates the presence of some stabilization mechanism. Since

the tachyonic instability is ∼ −O(H2) and we are interested in having mKK ∼ H for observ-

ability of NG, the stabilization will necessarily have an O(1) backreaction on the geometry.

However, this makes the analysis technically more difficult since we have to solve coupled

field equations for the GW field and the metric. Fortunately, as we discuss below, this anal-

ysis simplifies in a near-horizon approximation and yields important qualitative insights.

4.3.2 Near-horizon analysis of stabilization

We begin by noting that the observability of KK gravitons of the compactified (2-boundary)

scenario is tightly constrained by purely 4D considerations: Boltzmann suppression ∼ e−πµ

for large m and the Higuchi lower bound m >
√

2H (following from unitarity). The former

can be seen by an explicit calculation of the bispectrum due to KK graviton exchange which

we carry out in appendix B and detail further in section 6. In figure 5 we plot the function

f2(µ) (defined in eq. (6.2)) which characterizes the strength of NG due to KK graviton

exchange and from there it is evident that significant Boltzmann suppression kicks in soon

as m gets bigger than 3H
2 .5 Hence to have an observable NG mediated by KK gravitons,

we need to have their masses within a narrow window about 3H
2 .

Fortunately, we saw above that in the absence of a second boundary, there is a horizon

at a finite proper distance y = H−1 and a continuum of KK graviton modes starting

precisely at 3H
2 . In the presence of a second boundary this continuum spectrum must turn

into a discrete one. However if the warp factor n(y) on the second boundary is � 1, i.e. if

the second boundary is placed just in front of a “would-be” horizon, we expect to get back

a finely discretized spectrum of KK gravitons starting around m = 3H/2, thereby avoiding

significant Boltzmann suppression. To show this we first write the linearized warp factor

near the second boundary as,

n(ε) ≈ Hε, (4.27)

where ε is the coordinate along the extra dimension and the horizon is reached as ε→ 0.6

Again with the coordinate transformation −n d
dε = d

dz we can write the equation of motion

for the wave function in the analog 1D “quantum mechanics” coordinate system, as in

eq. (4.15),

− ψ′′l (z) +

(
9H2

4
−m2

)
ψl(z) = 0. (4.28)

5The apparent divergence of |f2(µ)| as µ→ 0 is actually absent in the full bispectrum, since in the limit

of µ→ 0 only the real part of f2(µ) contributes which remains finite.
6ε can be related to y once we know the warpfactor along the entire extra dimension, but in this paper

we will be solving for the warp factor only near the second boundary.
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This form is identical to what we had in the absence of the second boundary, eq. (4.20),

without the delta function source.7 However, unlike that case, now the z coordinate does

not extend to ∞, but rather to some finite, but large (in units of 1/H) value. Since

n(ε) ≈ e−zH , by making the warp factor on the second boundary smaller, we can make the

size of the “box” bigger in the analog quantum mechanics problem, and thereby decreasing

the spacing between the KK modes.

Having motivated the need for a near-horizon boundary, we now have to ask whether

such a configuration can actually be stabilized. To this end, we reintroduce a GW field

Σ with a bulk mass mΣ. Then its extra dimensional profile follows the bulk equation of

motion with dS4 ansatz,

Σ′′(y) + 4n′(y)/n(y)Σ′(y) = m2
ΣΣ(y). (4.29)

We have to solve the coupled set of equations (4.3), (4.4) and (4.29) to obtain a consistent

background solution, which is difficult to do in general. But in the near-horizon limit we

are interested in we can solve the coupled set of equations perturbatively in Hε. We take

the ansatz for the warp factor and the profile to be

n(ε) = a1Hε+ a2H
2ε2/2 + a3H

3ε3/3 + · · · (4.30)

Σ(ε) = b0 + b1Hε+ b2H
2ε2/2 + b3H

3ε3/3 + · · · . (4.31)

We will focus on the regime H−1 � ε > εc with εc being the location of the second

boundary. The solution to eqs. (4.3), (4.4) and (4.29) is given by,

n(ε) = Hε− 1

72
v2m2

ΣHε
3 + · · · (4.32)

Σ(ε) =
√

4M3
5

(
v +

1

10
vm2

Σε
2 + · · ·

)
, (4.33)

where v is some constant fixed by the BC’s on the GW field. Note when the stabilizer is

absent i.e. v = 0, we get back the near horizon behavior given in (4.16) with ε = H−1 − y.

Now let us analyze the radion equation of motion. For this we have to consider the

fluctuation σ(x, y) of the background GW field Σ(y), since the former can mix with the

radion. We can go through the perturbed Einstein equations once again to get the equation

of motion for the radion (A.7),

1

n2
�dSΠ =−Π′′−2n′Π′/n+4

((
n′

n

)2

−n
′′

n

)
Π+2

Σ′′

Σ′
(Π′+2n′Π/n)−6H2Π/n2. (4.34)

In the above, we have used the bulk equation,

Π′ + 2
n′

n
Π =

1

12M3
5

σΣ′, (4.35)

7Note that by a slight abuse of notation we used the same variable z in both eqs. (4.20) and (4.28)

whereas they match only very near the horizon.
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to eliminate σ dependence in eq. (4.34). We have also used ′ to denote ∂
∂y . We can now

plug in the background solutions given by eqs. (4.32) and (4.33) in eq. (4.34) to find,

Π(x, ε) ∝ (Hε)
1
2
±ν + · · · (4.36)

with ν =
√

9
4 −

m2
r

H2 . In the absence of the GW field we had to have m2
r = −4H2 to

satisfy the radion equation of motion (4.24). Now, with the stabilizer such a constraint has

disappeared since eq. (4.36) is a near-horizon solution for arbitrary mr, and with a suitable

choice of BC’s we can make m2
r > 0. Thus by studying the near horizon geometry, we have

shown how to stabilize the radion in presence of a GW field.

We see that we can stabilize the second boundary arbitrarily close to the would-be

horizon, and that this results in a finely-spaced spin-2 KK spectrum beginning arbitrarily

close to m = 3H/2. This demonstrates that the KK modes need not suffer large Boltzmann

suppressions in their NG contributions.

Before proceeding further, let us make a comment about the KK spectrum during and

after inflation which we denote by M inf
KK and M today

KK respectively. We should note that the

observed values of the SM gauge couplings suggest, within the orbifold GUT paradigm, an

extra dimension with size M today
KK ∼ 1014 GeV today. On the other hand, an inflationary

Hubble scale Hinf ∼ 5× 1013 GeV is allowed by data and motivated by high-scale inflation

models. Thus we see that it is entirely possible to have M today
KK ∼ Hinf. But this alone does

not guarantee that we will see interesting and observable NG signals due to KK states,

since for that we actually need M inf
KK ∼ Hinf. Here is where the stabilizing GW scalar plays

a crucial role by determining the size of the extra dimension, in the low curvature regime

given by

M today
KK ∼

Htoday≈0
mΣ ln(v1/v2), (4.37)

where the v1,2 are the VEVs of the GW scalar on the two boundaries. Since we are consid-

ering M today
KK ∼ 1014 GeV today, this implies mΣ ∼ 1014GeV ∼ Hinf. With mΣ ∼ Hinf, our

near-horizon analysis then shows that there is no obstruction in stabilizing the non-inflaton

boundary near the would-be horizon, guaranteeing M inf
KK ≈ 3Hinf/2. We can contrast this

with what would have happened if either M today
KK � Hinf or M today

KK � Hinf. In the former

case, we would have mΣ � Hinf, and Hubble expansion would generically8 be subdomi-

nant in the stabilization dynamics from the time of inflation all the way until today, so

that M inf
KK ≈M today

KK � Hinf, and seeing the GUT states would be highly Boltzmann sup-

pressed. In the latter case, we would have mΣ � Hinf, and the σ mixing terms in eq. (4.35)

would be negligible, so we would approximately have the unstabilized result that the ra-

dion would be tachyonic if the boundary is near the horizon. Thus, the rough coincidence

M today
KK ∼ Hinf plays a critical role in allowing us to see the GUT states in NG.

8We can see this in eqs. (4.32) and (4.33), where the near-horizon expansion for large mΣ � H clearly

requires parametrically small εc, which in turn requires εc-level tuning of parameters to stabilize. Generically

there is no such tuning and hence no near-horizon stabilization for mΣ � H.
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4.4 Inflationary couplings

4.4.1 Wavefunction of KK graviton on inflationary boundary

To determine the coupling of the KK graviton to the inflaton, localized at the y = 0

boundary, we will need the wavefunction of the KK graviton at y = 0. However, we have

argued above that to stabilize the radion, the backreaction of the GW field on the metric

will typically be O(1), so that this will also affect the KK graviton wavefunction at the O(1)

level. In order to precisely calculate this we would have to extend our near-horizon analysis

of the last subsection to the entire extra-dimensional interval. It would be interesting to

find some analytic means of doing this (non-perturbative in H), but as yet we do not have

such an analysis. The superpotential approach taken in [81] may be useful in this regard.

Here, we will simply estimate the KK graviton wavefunctions by ignoring the backreaction

completely, but assign an O(1) uncertainty to this estimate.

We therefore proceed by beginning with the metric for the single boundary set-up,

eq. (4.16), but taking the extra dimension to simply be cut off by the location of the

second boundary at say yc before reaching the horizon. This neglects the backreaction

of the requisite stabilization of the second boundary, as discussed above. In terms of the

coordinate z defined by n d
dy = d

dz , we have n(z) = e−zH with the extra dimension ranging

from z = 0 to zc = − 1
H ln(1 −Hyc). Furthermore in this coordinate system the profile of

KK modes, obeying eq. (4.20), is sinusoidal. The orthonormality condition is given by

2M3
5

∫ zc

0
dzψ∗l (z)ψm(z) =

M2
4

2
δlm, (4.38)

where the numerical factor is chosen to ensure that the 4D action is given by
M2

4
2

∫
d4xR4

with R4 and M4 being the 4D Ricci scalar and the 4D Planck scale respectively. As will be

explained below M4 differs from the standard Planck scale Mpl = 2.4× 1018 GeV by some

O(1) amount due to inflationary dynamics. However in the end, this difference will not be

important for us because the final strength of KK graviton NG (6.2) will be dependent on

M4 only via the tensor-to-scalar ratio r. Thus only the observational upper bound on r [11],

rather than an actual knowledge of M4, will be important. Thus in the z coordinate system,

the wavefunction behaves as if it is in a flat extra dimension and after normalization, it

will carry the usual “ 1√
Volume

dilution factor” (see e.g. [82]). On the boundary containing

the inflaton, the wavefunction is given by,

ψl(z = 0) ∼ 1√
Hzc

∼ 1√
− ln(n(yc))

(4.39)

with zc being the “volume” of the extra dimension. In the above, we have used the relation

zc = − 1
H ln(1−Hyc) = − 1

H ln(n(yc)). As we show in the following, the strength of the cou-

pling between the inflaton and the KK graviton is proportional to ψl(z = 0) and eq. (4.39)

shows that such a coupling is only logarithmically suppressed when we place the second

boundary very near a would-be horizon. Crucially, this will allow us to get an observable

NG signal mediated by KK gravitons, without paying a large wavefunction suppression in

the coupling strength. This logarithmic suppression, however, seems unavoidable in our
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set up. This is because, although decreasing the size of the extra dimension will increase

the overlap between the inflaton and the KK graviton — hence increasing the coupling —

it is also expected to make the KK gravitons heavier and thereby we will incur exponential

Boltzmann suppression in NG signals. Let us now write down the explicit inflaton-KK

graviton coupling using which we estimate the strength of NG mediated by KK gravitons

in the subsequent discussion.

4.4.2 Coupling of KK graviton to the inflaton

At the linear order, the graviton fluctuations couple to the energy-momentum tensor of the

inflaton in the standard way, namely,

Sint =

∫
d4x

δSinf

δgµν
hµν = −1

2

∫
d4x
√
−gTµνinf hµν (4.40)

where we have used the definition of the energy momentum tensor Tµνinf = − 2√
−g

δSinf
δgµν

. Since

we are using the convention that the warp factor n(y = 0) = 1 on the inflationary boundary,

using the expansion (4.11) and eq. (4.14) we can simplify eq. (4.40) as,

− 1

2

∞∑
l=0

∫
d4x
√
−gTµνinf h̃l,µνψl(0). (4.41)

Upon canonically normalizing9 the massless 4D graviton and the KK modes, from the

above we get,

− 1

M4

∫
d4x
√
−gTµνinf (h̃0,µν + h̃1,µνψ1(0) + · · · ) (4.42)

We have set ψ0(0) = 1 without loss of generality and focused only on the first (i.e. the

lightest) KK mode for concreteness. Finally using the fact that we are in the gauge hµµ = 0

we get the coupling between the inflaton and the KK graviton,

− 1

M4

∫
d4x
√
−g∂µφ∂νφ(h̃1,µνψ1(0) + · · · ). (4.43)

4.4.3 Estimate of NG mediated by KK graviton

Let us now give a quick estimate of the NG mediated by KK graviton using the coupling in

eq. (4.43). We can expand the inflaton in terms of the background φ0 and the fluctuation

ξ to get,

− ψ1(0)

M4
h̃µν1 ∂µφ∂νφ = −ψ1(0)

M4
h̃µν1 (∂µφ0∂νφ0 + 2∂µφ0∂νξ + ∂µξ∂νξ) (4.44)

The first term gives a small tadpole, which can be shifted via a field redefinition without

affecting the relevant couplings significantly, whereas the second term after using ∇µhµν = 0

gives,

− 2ψ1(0)

M4
Hφ̇0ξh̃

00
1 . (4.45)

9We will continue to denote the canonically normalized KK gravitons by the same variable h̃l,µν to

simplify the notation.
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Hence the relevant couplings are given by,

− 2ψ1(0)

M4
Hφ̇0ξh̃

00
1 −

ψ1(0)

M4
h̃µν1 ∂µξ∂νξ. (4.46)

From the above we can get a quick estimate of the parametric strength of NG defined in

eq. (3.9),

F ∼ ψ1(0)

M4
× ψ1(0)φ̇0

M4
× φ̇0

H2
∼ φ̇2

0

M2
4H

2
× ψ1(0)2, (4.47)

while a detailed form containing the momentum dependence as in eq. (3.14) will be given

in section 6.

The quantity
φ̇2

0

M2
4H

2 differs by anO(1) factor from its standard value of 2ε in a purely 4D

set-up [69] where ε ≡ − Ḣ
H2 . To understand why, note that ordinarily after compactification,

the 4D EFT is generally an expansion in E/mKK < 1. In cosmology a characteristic energy

scale is E ∼ H, and in the present context we seek mKK comparable to H for KK visibility

in NG. Therefore we should expect O(1) corrections relative to the leading 4D predictions.

To see this explicitly we can consider the inflaton EOM with the potential V0 (which we

previously approximated as a constant) on the inflationary boundary,

φ̈0 + 3Hφ̇0 +
dV0

dφ
= 0. (4.48)

The Friedman equation, following from eq. (4.5) (with the warp factor n(y) = 1 − Hy)

reads as,
1

2
φ̇2

0 + V0 = 24M3
5H. (4.49)

Using the relation (4.52) between M5,M4 and H, M2
4 = 4M3

5L
(

1−HL+ H2L2

3

)
, and

using the usual definition of ε = − Ḣ
H2 , one sees that

φ̇2
0

M2
4H

2 6= 2ε.

It will be useful to write the quantity
φ̇2

0

M2
4H

2 in terms of the tensor to scalar ratio, r,

in order to estimate the strength of the KK graviton mediated NG signals in section 6.

In our set-up, the scalar power spectrum will be unaffected, to the leading order in slow-

roll parameters, by the presence of the extra dimension since the inflaton fluctuations are

localized on the boundary [68, 69]. Hence r is given by,

r ≡
PT,k
PS,k

= 8
φ̇2

0

H2M2
4

. (4.50)

In the above, we have used the tensor power spectrum, PT,k = H2

M2
4

4
k3 , and the scalar power

spectrum PS,k = H4

φ̇2
0

1
2k3 .

Now we come back to the estimate of F in eq. (4.47). As argued earlier, the wavefunc-

tion suppression above is quite mild and hence the KK graviton mediated NG is expected

to be of the order of fNL ∼ r < 10−1. While inaccessible by future large-scale structure

surveys [63], such a level of NG should be potentially observable by 21-cm experiments

probing the dark ages [36] if we have a high scale inflation scenario with H . 1013 GeV.

We conclude this section by checking whether such a large value of H is consistent within

our set-up.
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Cutoff of 5D gravity. To have quantum gravity corrections under control, we should

have V0 < M4
5 . To check that, first we recall the graviton zero mode profile given in

eq. (4.21),

ψ0 = e−
3H
2
z, (4.51)

and use the normalization condition in eq. (4.38) to get,

M2
4 = 4M3

5L

(
1−HL+

H2L2

3

)
(4.52)

In the above we have assumed the warp factor is given by n(y) = 1 − Hy ignoring the

backreaction of the stabilizer field. Taking L ≈ 1/H we get,

V0

M4
5

= 24(4/3)1/3 × (H/M4)2/3 � 1. (4.53)

5 Gauge theory states

Whereas observing a KK graviton resonance via NG would be striking, it would be even

more so if we see the accompanying signatures of massive gauge bosons. The latter can arise

naturally in our set up as the KK modes of the bulk unified gauge fields. The observability

of NG mediated by such KK gauge bosons will depend both on their masses and coupling

to the inflaton. Interestingly, we will see below that the set-up with a near-horizon second

boundary, chosen above to give us mgraviton
KK ∼ O(H), also yields mgauge

KK ∼ O(H). Thus in

such a set-up, the cosmological production of KK gauge bosons will not be significantly

Boltzmann suppressed and the observability of KK gauge boson mediated NG will depend

solely on their coupling strength to the inflaton. We start by analysing the mass spectrum

of the KK gauge bosons.

5.1 KK analysis of 5D gauge theory

Let us focus on the case of a bulk U(1) gauge theory which is sufficient for finding free-field

profiles of the self-interacting bulk non-Abelian gauge theory. The 5D action is given by,

SU(1) =

∫ √
−GGMNGPQFMPFNQ, (5.1)

where

ds2 = GMNdx
MdxN = n(y)2gµνdx

µdxν + dy2. (5.2)

GMN corresponds to the 5D metric governing the line element (4.2) while gµν denotes the

metric of dS4 in flat Poincare coordinates. M,N and µ, ν run over the 5D and 4D indices

respectively.

By a suitable gauge transformation and orbifold BC’s, Ay can be eliminated from the

physical spectrum. The equation of motion for the gauge boson is then given by,

∇νFνµ(x, y) + ∂y(n
2∂yAµ(x, y)) = 0, (5.3)
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where ∇ denotes the covariant derivative w.r.t. dS4. Via a KK decomposition,

Aµ(x, y) =
∑
l

Al,µ(x)ϑl(y), (5.4)

the equation of motion (5.3) can be rewritten as,

∇νFl,νµ(x) = m2
lAl,µ(x), (5.5)

∂y(n
2∂yϑl(y)) +m2

l ϑl(y) = 0. (5.6)

Eq. (5.5) describes the usual 4D equation of motion for a massive/massless gauge field in

dS4, whereas eq. (5.6) governs the profile of the KK gauge boson in the extra dimension.

With our earlier variable change, n(y) d
dy = d

dz , and a field redefinition

ϑl(y) = n−1/2(y)ϑ̃l(y), (5.7)

we can rewrite the eq. (5.6) as,

ϑ̃′′l (z) +

(
1

4

(
n′(z)

n(z)

)2

− 1

2

n′′(z)

n(z)
+m2

l

)
ϑ̃l(z) = 0. (5.8)

The zero mode profile can be obtained for a general warp factor n(z) and is given by

ϑ̃0(z) ∝ n1/2(z).

Mass spectrum. To analyze the KK gauge boson mass spectrum we can proceed in a

manner similar to the case of the KK graviton. For a moment let us go to the case where the

second boundary is absent, so that the extra dimension ends in the horizon z =∞. Then

the warp factor (4.16) is given by n(z) = e−zH and correspondingly eq. (5.8) reduces to,

ϑ̃′′l (z) +

(
m2
l −

H2

4

)
ϑ̃l(z) = 0. (5.9)

First, note that for ml = 0 we will have a zero mode whose profile is given by,

ϑ̃0(z) ∝ e−
Hz
2 . (5.10)

Furthermore, we will have a continuum of KK gauge bosons above ml >
H
2 . This par-

ticular lower bound is significant because if we now place the second boundary very near,

but before we reach the horizon, the KK modes will get discretized and the lightest of the

KK modes will have masses ≈ H
2 . These lightest KK modes can mediate observable NG

without significant Boltzmann suppression.

Wavefunction of KK gauge boson on inflationary boundary. The coupling of the

KK gauge boson to the inflaton, localized at the y = 0 boundary, is determined by the

wavefunction of the KK gauge boson at y = 0. To find the wavefunction, in principle,

we have to solve eq. (5.8) after the backreaction of the stabilizing GW field has been

taken into account. However, using the same reasoning as in the previous section, we will

simply estimate the KK gauge boson wavefunction by ignoring the effects of backreaction

– 23 –



J
H
E
P
0
4
(
2
0
1
9
)
1
2
0

completely and assigning an O(1) uncertainty in our estimate. Under this approximation

the KK gauge boson profile, obeying eq. (5.9) between the two boundaries at z = 0 and

z = zc = − 1
H ln(n(yc)), behaves as if it is in a flat extra dimension. Hence the profiles will

be sinusoidal and when normalized they will carry the usual “ 1√
volume

dilution factor”. Thus

on the boundary containing the inflaton, the KK gauge boson wavefunction is given by,

ϑ̃′l(z = 0) ∼ 1√
Hzc

∼ 1√
− ln(n(yc))

. (5.11)

As for KK gravitons, the fact that this wavefunction suppression is only logarithmic, will

allow us to get an observable NG.

5.2 Contribution of KK gauge boson to NG

Cutoff of 5D gauge theory. To explain the observed smallness of the slow roll pa-

rameter η ∼ 10−2, in the following, we will impose an (approximate) shift symmetry on

the inflaton. This implies that the inflaton-gauge boson couplings will necessarily involve

higher dimension operators suppressed by some field theory cutoff scale Λinf. For consis-

tency of the derivative expansion in (∂φ)2

Λ4
inf

, we require Λinf >

√
φ̇0 ∼ 60H [83]. Furthermore

the 5D gauge theory, being non-renormalizable, will be valid only below a certain energy

scale Λgauge. A naive dimensional analysis shows that such a scale is given by,

Λgauge ∼
1

N

16π2

g2
5

, (5.12)

where N is the number of colors if the gauge group is of SU type. Note the gauge zero

mode profile (5.10) is flat in the y coordinate system defined in eq. (4.2). Hence the 5D

gauge coupling g5 will be related to the 4D gauge coupling g4 via eq. (2.9) (using L ∼ H−1),

1

Hg2
5

∼ 1

g2
4

. (5.13)

In the above, we have used the fact that in the near-horizon set-up we are working in, the

size of the extra dimension is ∼ 1
H . Taking mKK ∼ H we get,

mKK

Λgauge
∼ g2

4N

16π2
. (5.14)

As an example, with N ∼ 5 and the gauge coupling at the unification scale,
g2
4

4π ∼
1
40 , (see

figure 1) we get,

Λgauge ∼ 100H. (5.15)

Since Λgauge &
√
φ̇0 ∼ 60H we can simply take Λinf ∼ Λgauge ∼ 100H to have the derivative

expansion in (∂φ)2

Λ4
inf

under control. From now on we will use Λ to denote this common cut-off

scale. Alternatively, we can switch to the effective theory of inflation [84] in which the scale

φ̇0 does not appear, in which case a lower Λ, and consequently larger NG, is allowed. We

will not pursue this direction further in this paper.
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For the choice H ∼ 5×1013 GeV, motivated by the observed (approximate) unification

of the gauge couplings (figure 1), we have V
1/4

inf ∼ 1016GeV & Λgauge ∼ 5 × 1015GeV.

This suggests that the 5D gauge theory may need to be UV completed a little below the

inflationary vacuum energy scale. This does not conflict with obtaining effective inflaton-

gauge interactions suppressed only by Λ if these are mediated by massive states, as explored

in ref. [22].

The interaction between the inflaton and KK gauge boson is constrained by the fact

that we take the inflaton to be a singlet under the bulk gauge group. As a consequence,

if we restrict ourselves to tree level “in-in” diagrams (for the sake of observability), the

KK gauge boson must also be singlet under the broken gauge group to mediate a non-zero

NG. To illustrate this restriction, we now discuss two well motivated scenarios where the

unified gauge groups in the bulk are respectively SO(10) and SU(5).

5.2.1 SO(10) GUT in the bulk

In this case, with Neumann inflationary-BC’s for the SM subgroup gauge fields and Dirich-

let inflationary-BC’s for the remaining SO(10)/SM gauge fields, as well as Neumann BC’s

on all SO(10) gauge bosons on the near-horizon boundary (preserving the entire SO(10)

symmetry there), we end up with only SM gauge field zero-modes after KK reduction.

We need only respect the preserved SM gauge invariance in coupling on the inflationary

boundary. Under the SM gauge symmetry one of the broken generators is a singlet, corre-

sponding to B − L symmetry. The associated gauge field, which we simply denote by Aµ,

can therefore be coupled to the SM-singlet inflaton, unconstrained except for spacetime

symmetries. While Aµ has no zero-mode, its KK excitations can thereby mediate NG.

Inflationary couplings of the B-L gauge boson. Our choice of Dirichlet BC on the

inflationary boundary and the absence of restrictions imposed by gauge invariance give the

following lowest dimension operators that give the leading contributions to NG,

Linf-gauge ⊃
c1

Λ3
(∂yAν)(∂yAµ)∇µ∇νφ+

c2

Λ4
(∇φ)2(∂yAµ)2 +

c3

Λ4
(∇µφ∂yAµ)2+

+
c4

Λ4
(∇φ)2∇µφ∂yAµ +

c5

Λ4
∂yA

µ∇µφ∂yAν∂yAν + · · · (5.16)

In the above ci’s are some coefficients of O(1). We have omitted a term of the type

ρ1∇µφ∂yAµ, since its effects are negligible for ρ1 . 1, which is natural.

To obtain the couplings required for estimating the bispectrum, we expand the inflaton

field, φ = φ0(t) + ξ(t, ~x) as before. It can be seen that Linf-gauge contains a gauge boson

tadpole coming from the term with coefficient c4. Such a tadpole can be removed by a

field redefinition, without significantly affecting the relevant couplings for the parameter

choice we will be focusing on. Linf-gauge also contains several terms of the form A2
0 and A2

µ.

Such mass corrections also will not give a large effect within the same parameter choice.
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Keeping up to cubic order in fluctuations, Linf-gauge is then given by

c1

Λ3

(
A′µA′ν(∂µ∂νξ − Γαµν∂αξ)

)
+

2c2

Λ4
φ̇0ξ̇A

′2
µ +

2c3

Λ4
φ̇0A

′0∂µξA
′µ

+
2c4

Λ4
φ̇0ξ̇∂µξA

′µ +
c4

Λ4
φ̇0A

′0(∂µξ)
2 +

2c4

Λ4
φ̇2

0ξ̇A
′0

+
c5

Λ4
φ̇0A

′0A′2ν . (5.17)

In the above the ′ ≡ ∂
∂y .

Estimates of NG. Eq. (5.17) contains interactions that can give rise to single, double

and triple exchange diagrams for NG based on the number of gauge boson propagators,

see figure 3. Let us estimate each of these in turn,

F single ∼ c2
4 ×

φ̇4
0

Λ8
× ϑ′1(0)2, (5.18)

F double ∼ (c2 or c3)× c2
4 ×

φ̇4
0

Λ8
× φ̇2

0

Λ4
× ϑ′1(0)4, (5.19)

F triple ∼ c5 × c3
4 ×

φ̇6
0

Λ12
× φ̇2

0

Λ4
× ϑ′1(0)6. (5.20)

In the above we have kept the O(1) coefficients ci’s to be explicit about the particular

couplings contributing to each of the diagrams. The fact that F single is sensitive to a very

high power of the cut-off scale Λ, namely ∼ Λ−8 implies that NG will be significantly

suppressed (and, possibly unobservable) if Λ �
√
φ̇0. However, we saw above that the

5D gauge theory breaks down at a scale Λgauge &
√
φ̇0, hence taking Λ ∼ Λgauge we can

have F single . 1. For the same scenario, F double and F triple are somewhat smaller than

F single because of the extra suppressions due to ϑ′1(0) . 1 and
φ̇2

0
Λ4 . 1, but they can still

be observable for favorable values of Λ and ϑ′1(0). In section 7 we will give the detailed

form of NG mediated by the single exchange diagram using the results from our previous

work [22].

5.2.2 SU(5) GUT in the bulk

In this case, with Neumann inflationary-BC’s for the SM subgroup gauge fields and Dirich-

let inflationary-BC’s for the X,Y gauge fields, as well as Neumann near-horizon BC’s on

all SU(5) gauge bosons (preserving the entire SU(5) symmetry there), we again end up

with only SM gauge field zero-modes after KK reduction.

Two scenarios can arise now: (a) the SM gauge group remains unbroken at en-

ergies ∼ H, and (b) through the presence of a non-minimal Higgs-curvature coupling

L ⊃ cR4H†H, c > 0 the electroweak symmetry gets spontaneously broken at inflation-

ary scales ∼ H. After inflation ends, the curvature effect of such a non-minimal coupling

decreases rapidly and electroweak symmetry gets restored until the SM temperature falls

below ∼ 100 GeV. This is the scenario of “heavy-lifting” [22]. For case (a) there are mas-

sive gauge singlets (under the unbroken SM gauge group), namely the KK excitations of

hypercharge gauge boson, Bl,µ. However because U(1)Y is unbroken, the quadratic mixing
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between the inflaton and Bl,µ — necessary for a non-zero bispectrum — will be highly

suppressed. Hence the resulting bispectrum is expected to be unobservably small. But

this does not mean that a bulk SU(5) GUT will not have any NG signature, since for case

(b), there will be a massive Z boson. This will have O(H) mass for O(1) non-minimal

coupling (i.e. c ∼ 1) and can couple to the inflaton with appreciable strength to mediate

observable NG. This type of scenario has been discussed at length in [22] and hence, we

will not pursue it here further.

6 Detailed form of NG mediated by spin-2

In the following we focus on the single exchange diagram, given in figure 3, for KK gravi-

ton mediated NG. Since the inflaton-KK graviton couplings are ∼ M4 suppressed, the

double and triple exchange diagrams will be more suppressed compared to the single ex-

change diagram. The couplings relevant for computing this diagram can be obtained from

eq. (4.46),10

− 2ψ(0)

M4
Hφ̇0ξh

00 − ψ(0)

M4
hµν∂µξ∂νξ, (6.1)

and the resulting NG is given by eq. (B.17), (using eq. (4.50) to write
φ̇2

0

M2
4H

2 = r
8)

5

18
F single

KK Graviton =
5

18
ψ(0)2 r

8
×
(

cos2 θ − 1

3

) √
π

8(1 + 4µ2
2)2 cosh(πµ2)

×(
A(µ2)(1 + i sinhπµ2)

(
k3

k1

)3/2+iµ2

+ (µ2 → −µ2)

)

≡
(

cos2 θ − 1

3

)
×

(
f2(µ2)

(
k3

k1

) 3
2

+iµ2

+ f2(−µ2)

(
k3

k1

) 3
2
−iµ2

)
, (6.2)

with

A(µ) = (−27 + 120iµ+ 152µ2 − 32iµ3 + 16µ4)Γ(5/2 + iµ)Γ(−iµ)2−2iµ, (6.3)

and µ2 =
√

m2

H2 − 9
4 . The factor of 5

18 is present to conform with the definition of fNL

parameter in eq. (3.10). We plot |f2(µ2)| in figure 5 to illustrate the strength of NG signal

mediated by KK gravitons. Using the discussion following eq. (4.21), we see that as the non-

inflaton boundary approaches the would-be horizon the effective mass parameter µ2 → 0.11

We will encounter an identical feature for the case of gauge bosons in the following.

7 Detailed form of NG mediated by spin-1

In the following we focus on the single exchange diagram for KK gauge boson mediated

NG. The double and triple exchange diagrams are expected to be somewhat suppressed

compared to the single exchange diagram, as we estimated in eqs. (5.18)–(5.20). For the

10We will drop the subscript in ψ1(0) for brevity.
11This feature persists even when there is a bulk cosmological constant, see e.g. [71–73].
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Figure 5. Strength of NG mediated by spin-2 KK graviton for tensor-to-scalar ratio r = 0.1 and

KK wavefunction on inflationary boundary ψ(0) = 1. Such strengths for the range of masses shown

are observable within cosmic variance (see section 3).

single exchange diagram, the relevant couplings that give an angular dependence that is

characteristic of a spin-1 exchange, can be obtained from eq. (5.17),

+
ρ

φ̇0

ξ̇∂iξA
′i + ρξ̇A′0, (7.1)

where ρ = 2c4
Λ4 φ̇

2
0 gives the inflaton-KK gauge boson mixing. The resulting strength of NG

has been calculated in [22] and is given by,

5

18
F single

KK Gauge Boson =
5

18

( ρ
m

)2 1

16π
sin2 θΓ

(
3

2
+iµ1

)
Γ

(
3

2
−iµ1

)
cosh(πµ1)ϑ′(0)2×(

(7−5iµ1+16µ2
1+4iµ3

1)Γ

(
3

2
+iµ1

)2

Γ(−2−2iµ1)(1−isinh(πµ1))

(
k3

k1

)5
2

+iµ1

+(µ1→−µ1)

)

≡ sin2 θ×

(
f1(µ1)

(
k3

k1

) 5
2

+iµ1

+f1(−µ1)

(
k3

k1

) 5
2
−iµ1

)
, (7.2)

where µ1 =
√

m2

H2 − 1
4 and ϑ′(0) is the derivative of the wavefunction of the KK gauge boson

on the inflationary boundary. As in the case of KK gravitons, we plot |f1(µ1)| in figure 6

to illustrate the strength of NG signal mediated by KK gauge bosons. Using the discussion

following eq. (5.10), we see that as the non-inflaton boundary approaches the would-be

horizon the effective mass parameter µ1 → 0, similarly to the case of KK gravitons above.

Furthermore, it can be seen using eq. (5.8) (which is valid for a general warp factor n(z)),

that the above feature persists even if there is a negative bulk cosmological constant. In

fact, for such a case of ≈ AdS5 geometry in the bulk, the non-inflaton boundary being

very close to the horizon is holographically dual to a strongly-interacting and confining

matter sector, which due to the inflationary Gibbons-Hawking temperature is heated to

be close to its confinement-deconfinement phase transition. We expect that there is some

deep (holographic) significance to µ1,2 → 0 at this transition, but we have not found it

beyond just direct 5D computation. A simpler and deeper understanding would also allow

us to predict if µ → 0 applies to more general spins in more general models. We hope to

come back to this issue in future work.
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Figure 6. Strength of NG mediated by spin-1 KK gauge bosons for inflaton-KK mixing ρ = 0.3

and derivative of KK wavefunction on the inflationary boundary ϑ′(0) = 1. Such strengths for the

range of masses shown are observable within cosmic variance (see section 3).

8 Conclusion and future directions

The observation that the SM gauge couplings become approximately equal to each other

at MU ∼ 1014 GeV hints at the exciting possibility of grand unification around that scale.

Although such a scale is too high to directly probe using terrestrial colliders, an inflation-

ary era in the primordial universe offers a unique opportunity in that regard. Since the

inflationary Hubble scale H can be as big as MU , inflationary spacetime can produce such

MU -scale GUT states on-shell which can then decay into inflatons and give distinct, non-

analytic NG contributions to the spectrum of primordial curvature perturbations, from

which one can extract the masses and spins of such GUT states.

Motivated by their simplicity and the ease of suppressing proton decay, we have focused

on orbifold GUTs and studied the strength of such NG signals mediated by KK GUT gauge

bosons and KK gravitons. An optimal scenario is identified where the extra dimension is

stabilized, via a Goldberger Wise scalar, close to the onset of a bulk event horizon such that

there is a discrete KK spectrum but with small enough splittings that their production does

not suffer significant Boltzmann suppression. In such a scenario, we have found that both

the KK gravitons and KK gauge bosons can mediate potentially observable NG allowing

for a unique and direct probe of orbifold GUTs. A (near) future discovery of primordial

gravity waves from inflation — implying H ∼ MU — combined with a discovery of both

spin-1 and spin-2 mediated NG signals, and an absence of higher spin signals (hinting at the

absence of composite or stringy effects during inflation) would make a strong observational

case for an orbifold GUT structure during inflation.

There remain various interesting directions for future work. From figures 5 and 6 we

see that the strengths of NG — characterized by the fNL parameter — mediated by KK

gravitons and KK gauge bosons are typically fNL < 0.1. Although such a level of NG can be

potentially observable using futuristic 21-cm cosmology experiments, they will be difficult

to detect via upcoming Large Scale-Structure surveys which will mostly probe fNL ∼ O(1)

(See [63] for a summary). Hence it is important to look for variations in our set-up in which

– 29 –



J
H
E
P
0
4
(
2
0
1
9
)
1
2
0

stronger NG can be obtained. Let us briefly mention two separate possibilities in which one

can get potentially larger NG mediated by KK gravitons and KK gauge bosons respectively.

We saw in section 4 that the inflationary couplings of the KK gravitons are model

independent and suppressed by the 4D Planck scale, M4. Hence to get a larger KK graviton

mediated NG, we have to increase the strength of this gravitational coupling. Fortunately,

Randall Sundrum models [51, 56] already provide an example where the 4D Planck scale

gets warped down, in the presence of a bulk 5D cosmological constant, as one moves towards

the infrared (IR) boundary. Thus with the inflaton localized on the IR boundary or in the

bulk one can expect to have stronger coupling between the inflaton and the KK graviton.

However, one has to be careful as to whether the large inflationary vacuum energy stored

on the IR boundary can backreact significantly on the geometry and take into account the

effect of that on the KK graviton mode functions.

Interactions between the KK gauge bosons and the inflaton involve higher dimension

operators suppressed by the cutoff scale Λ. This is due to the shift symmetry of the infla-

ton and the Dirchlet boundary conditions on the non-SM gauge fields on the inflationary

boundary in figure 2. Since we described the inflationary dynamics in the paradigm of

single-field slow-roll inflation we had to impose the constraint Λ >

√
φ̇

0
∼ 60H. However

it is possible that the single-field slow-roll paradigm is not an appropriate description of

inflationary dynamics and in particular some unknown new physics comes in at energies

ΛEFT �
√
φ̇

0
. To capture the effects of such new physics, we can write an effective field

theory (EFT), valid . H, for the inflaton which is a Goldstone of the time translation

breaking [84]. Within such an EFT one can parametrize the inflaton interactions system-

atically in an expansion in H
ΛEFT

. With ΛEFT �
√
φ̇

0
one can then obtain larger KK gauge

boson mediated NG signals.

We have seen that a complete description of a stabilization mechanism of the extradi-

mensional set-up with two boundaries involves solving the coupled Einstein equations for

the stabilizer field and the metric simultaneously. In general, this is difficult to do analyti-

cally. In this paper, we have done a near-horizon analysis of stabilization by which we can

systematically solve the coupled equations perturbatively, and the warp factor n(y) very

near the second boundary is determined that way. This allows us to compute NG but with

O(1) uncertainties. It would therefore be very useful to find an analytic way of solving the

coupled equations in the entire extra dimension. The superpotential approach taken in [81]

can help in this regard. In that case, we could calculate the precise inflationary couplings

of the KK modes by determining their profile in the entire extra dimension and thereby

obtain a more precise calculation of the NG they mediate.
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A KK reduction of the graviton-radion system

The linearized gravitational fluctuations to the background metric (4.2) can be character-

ized by,

ds2 = −n(y)2(1− 2Π(x, y))dt2 + n(y)2a(t)2(1− 2Π(x, y))d~x2 + (1 + 4Π(x, y))dy2

+ hµν(x, y)dxµdxν , (A.1)

where hµν and Π(x, y) denote the graviton and the radion fluctuations respectivey. We

have chosen a gauge such that ∇µhµν = 0 = hµµ. In the following we derive the linearized

equation of motion for the graviton and the radion from the perturbed Einstein equations,

δRMN =
1

4M3
5

δT̃MN , (A.2)

where T̃MN = TMN − 1
3gMNT

A
A with TMN being the bulk stress-energy tensor. Our

approach will be similar to [75] and we generalize their results appropriately to the case of

a dS4 foliation with H 6= 0.

For a generic metric fluctuation δGMN , we can get the linearized perturbed Ricci

tensor [66],

δRMN =
1

2

(
∇A∇MδGAN +∇A∇NδGAM

)
− 1

2
∇A∇AδGMN −

1

2

(
∇N∇MδGAA

)
. (A.3)

To show that the graviton and the radion equation of motion decouple at the linearized

level, we split δRMN into,

δRMN = δRhMN + δRΠ
MN , (A.4)

where δR
h(Π)
MN is linear in hµν(Π). Then using eq. (A.3) and the identity,

[∇A,∇M ]δGAN = R̄BMδG
B
N − R̄BNAMδGAB, (A.5)

we can derive,

δRhµ5 = 0; δRh55 = 0. (A.6)

This implies the 55 and 5µ Einstein equations can only contribute to the radion eq. of

motion which we now derive. To do this first we evaluate,

δRFµ5 = 3∂µΠ′ + 6
n′

n
∂µΠ,

δRF55 = − 2

n2
�dSΠ + 4Π′′ + 16

n′

n
Π′,

where �dS d’Alembertian for dS4. In the above and the rest of this appendix, ′ ≡ ∂
∂y . We

will also need the perturbed stress energy tensors,

δT̃5µ = ∂µσΣ′,

δT̃55 = 2Σ′σ′ +
2

3

dV (Σ)

dΣ
σ +

8

3
V (Σ)Π.
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The GW field is expanded as Σ(y) + σ(x, y) where σ is the fluctuation of the background

GW field Σ. Then the 55 Einstein equation gives the radion eq. of motion,

1

n2
�dSΠ =−Π′′−2n′Π′/n+4

((
n′

n

)2

−n
′′

n

)
Π+2

Σ′′

Σ′
(Π′+2n′Π/n)−6H2Π/n2, (A.7)

while the 5µ Einstein equations give (after doing an integration to get rid of ∂µ),

3Π′ + 6
n′

n
Π =

1

4M3
5

σΣ′. (A.8)

We can consider the special case of an unstabilized extra dimension where the GW field is

absent. In that case eq. (A.8) simplifies to give 3Π′ + 6n
′

n Π = 0, so that (A.7) becomes,

1

n2
�dSΠ = 2

((
n′

n

)2

− n′′

n

)
Π− 6H2Π/n2 (No Stabilization). (A.9)

Then using the background eqs. (4.3) and (4.4) we get,

�dSΠ = −4H2Π (No Stabilization), (A.10)

which shows that the radion gets a tachyonic mass of −4H2 in absence of a stabilizing

GW field.

Now let us study the µν equations. We expect these to give the graviton eq. of motion,

but first we have to show that the radion decouples from these equations. This can be done

using the expressions,

δRΠ
µν = gµν�dSΠ− gµνn2(−24Π(n′/n)2 − 6Π(n′/n)′ − 10Π′n′/n−Π′′), (A.11)

δT̃Π
µν = −4

3
VΠn2gµν +

2

3

dV

dΣ
σn2gµν , (A.12)

where gµν is the metric for background dS4 spacetime (without the n(y)2 warp factor).

Using the eqs. (A.11), (A.12) and (A.7) we can derive that δRΠ
µν = 1

4M3
5
δT̃Π

µν . Hence the

µν eqs. imply δRhµν = 1
4M3

5
δT̃ hµν , from which we will get the graviton eq. of motion. Thus

we have decoupled the graviton-radion system. δRhµν can be evaluated to be,

δRhµν = − 1

2n2
�dShµν −

1

2
h′′µν − 2(n′/n)2hµν + 4

H2

n2
hµν . (A.13)

Using δT̃ hµν = 2V
3 hµν we finally arrive at the graviton eq. of motion,

1

n2
�dShµν + h′′µν − 2(n′/n)2hµν − 2n′′/nhµν − 2H2/n2hµν = 0. (A.14)
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B NG mediated by KK graviton

To calculate KK graviton mediated NG, we will need the mode functions of a massive

spin-2 field in dS4 [19] which we now derive.

B.1 Mode functions for helicity-0 component of a massive spin-2 field in dS4

Helicity decomposition. The NG contribution that we are interested in involves

quadratic mixing between the inflaton and the KK graviton. Since the inflaton is a scalar,

only the scalar degree of freedom (DOF), or the helicity 0 component of a massive spin-2

particle in 4D, can be relevant. This DOF will come from metric fluctuation hηη and helic-

ity 0 components of hiη and hij . To isolate the helicity 0 component from the 3-vector hiη
we can write it as a gradient of a scalar and a divergenceless vector, in momentum space,

hiη(η,~k) = k̂ihV (η,~k) + · · · , (B.1)

where we have omitted the divergenceless vector for brevity. To isolate the same from hij
we first note that to implement hµµ = 0 we can write, hij = htraceless

ij + 1
3hηηδij , and then

write the traceless part as,

htraceless
ij (η,~k) = εij(~k)hT(η,~k) + · · · , (B.2)

where εij(~k) = 3
2(k̂ik̂j − 1

3δij) and · · · contain the helicity ±1 and ±2 fluctuations which

we have not kept for brevity. In the above k̂i’s are unit vectors.

Mode functions. We now focus on deriving the mode functions for hηη and hT which

will be required for computing KK graviton mediated NG that will have a characteristic

spin-2 angular dependence. First, from the eq. of motion �dShηη = (m2 +2H2)hηη we get,

∂2
ηhηη +

2

η
∂ηhηη −

4

η
∂ihiη −

2

η2
hii +

m2/H2 − 6

η2
hηη − ∂2

i hηη = 0. (B.3)

To convert the above into an eq. of motion involving only hηη, we apply the constraints

hµµ = 0 and

∇µhµη = ∂ηhηη −
1

η
hηη − ∂ihiη −

1

η
hii = 0, (B.4)

to get,

∂2
ηhηη −

2

η
∂ηhηη +

m2

H2η2
hηη − ∂2

i hηη = 0. (B.5)

Using the constraint,

∇µhµi = ∂ηhηi −
2

η
hiη − ∂jhij = 0, (B.6)

we can obtain an algebraic equation for hij ,

∂2
ηhηη −

4

η
∂ηhηη +

6

η2
hηη = ∂i∂jhij . (B.7)

Note the above equation is sufficient to determine the helicity-0 component of hij , i.e. hT .

Hence to summarize, by solving eqs. (B.5) and (B.7) we will get the desired mode functions.
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To canonically quantize the spin-2 field we can follow the standard procedure as in the case

of scalars. We write the fields hηη and hT in terms of linear combinations of the creation

and destruction operators,

hηη(η,~k) = hk,0(η)a†~k
+ h̄k,0(η)a−~k, (B.8)

hT (η,~k) = hk,T (η)a†~k
+ h̄k,T (η)a−~k, (B.9)

where hk,0(η), h̄k,0(η) and hk,T (η), h̄k,T (η) are solutions of eqs. (B.5) and (B.7) respectively.

In particular,

h̄k,0(η) = eiπ/4e−πµ/2Nk(−kη)
3
2H

(1)
iµ (−kη), (B.10)

and,

h̄k,T (η) =
1

12
eiπ/4e−πµ/2Nk(−kη)−

1
2

×
(
−6(2−iµ)kηH

(1)
iµ−1(−kη)+6(2+iµ)kηH

(1)
iµ+1(−kη)−(9−8k2η2)H

(1)
iµ (−kη)

)
,

where Nk =
√

π
6

√
k
H

H

m
√
m2/H2−2

is a normalization factor which can be derived by demand-

ing the orthonormality of the mode functions [19], and µ =
√
m2/H2 − 9/4.

B.2 Calculation of the single exchange diagram

In this subsection we will be interested in computing the NG mediated by a single KK

graviton exchange as in figure 3 using the master formula (3.1) for computing an in-

in expectation values. Our discussion here will be very brief and for a more detailed

explanation of the set-up and the notation, we refer the reader to our previous work [22].

We will also momentarily work in H = 1 units and restore H in the final expression for

NG in eq. (B.17).

The lagrangian relevant for the single exchange diagram can be obtained from

eq. (4.46),

L = −2ψ1(0)

M4
η2φ̇0ξhηη −

ψ1(0)

M4
η4∂iξ∂jξεijhT + · · · . (B.11)

In the cubic term above we have kept only the spatial metric fluctuation hij , since that gives

an angular dependence that is characteristic of a spin-2 exchange, and used its helicity-0

piece. The three point function corresponding to this single exchange diagram will consist of

4 diagrams, Iab, where a, b = ±. The indices a and b correspond respectively to the mixing

and cubic vertex in figure 3 (a). For example, a = +(−) when the mixing vertex, comes

from anti-time ordered (time ordered) part of the interaction Hamiltonian in eq. (3.1).
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We will first evaluate I−+ for which the time-ordered and anti-time ordered components

factorize. We will do this in the squeezed limit where k1 ≈ k2 � k3 and denote the angle

between ~k1 and ~k3 by θ.

Time ordered contribution.

(−i)× 2ψ1(0)φ̇0

M4
×
∫ 0

−∞

dη′

η′4
η′2 × hk3,0(η)× (1− ik3η

′)

2k3
3

eik3η′

= (−i)2ψ1(0)φ̇0

M4

m2

H2
× Nk3

√
π

2
√

2k2
3 cosh(πµ)

. (B.12)

Anti-time ordered contribution.

(+i)×ψ1(0)

M4
×
∫ 0

−∞

dη

η4
η4×εij h̄k3,T (η)×(−ik1i)(−ik2j)

(1+ik1η)

2k3
1

(1+ik2η)

2k3
2

e−ik12η

= (+i)×ψ1(0)

M4
× Nk3

32k4
1k3

(cos2 θ−1/3)eiπ/4×

e−πµ/2
∫ ∞

0
dxx−

1
2

[
6x
(

(2−iµ)H
(1)
iµ−1−(2+iµ)H

(1)
iµ+1

)
−(9−8x2)Hiµ

]
(1−2ipx−p2x2)e2ipx

= (+i)×ψ1(0)

M4
× Nk3

32k4
1k3

(cos2 θ−1/3)eiπ/4×(T1+T2+T3),

where

T1 =

(
8F
(

3

2
, 2p, µ

)
− 9F

(
−1

2
, 2p, µ

)
+ 6(2− iµ)F

(
1

2
, 2p, µ+ i

)
eiπ/2

− 6(2 + iµ)F
(

1

2
, 2p, µ− i

)
e−iπ/2

)
,

T2 = −2ip

(
8F
(

5

2
, 2p, µ

)
− 9F

(
1

2
, 2p, µ

)
+ 6(2− iµ)F

(
3

2
, 2p, µ+ i

)
eiπ/2

− 6(2 + iµ)F
(

3

2
, 2p, µ− i

)
e−iπ/2

)
,

T3 = −p2

(
8F
(

7

2
, 2p, µ

)
− 9F

(
3

2
, 2p, µ

)
+ 6(2− iµ)F

(
5

2
, 2p, µ+ i

)
eiπ/2

− 6(2 + iµ)F
(

5

2
, 2p, µ− i

)
e−iπ/2

)
,

and,

F(n,p,µ)≡ e−πµ/2
∫ ∞

0
dxxneipxH

(1)
iµ (x)

= (+i/2)n
1√

πΓ(n+3/2)
Γ(n+1−iµ)Γ(n+1+iµ)2F1

(
n+1−iµ,n+1+iµ,n+3/2,

1−p
2

)
.

Using the asymptotic form of the hypergeometric function 2F1 for large negative argument,

2F1(a, b, c; z) =
Γ(b− a)Γ(c)

Γ(b)Γ(c− a)
(−z)−a +

Γ(c)Γ(a− b)
Γ(a)Γ(c− b)

(−z)−b, (B.13)
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we can simplify the anti-time ordered contribution to get,

Anti-time ordered contribution = (+i)× ψ1(0)

M4

3

128
√

2π

Nk3

k4
1k3

(cos2 θ − 1/3)
1

(1 + 4µ2)
×(

A(µ)

(
k3

k1

)1/2+iµ

+A(−µ)

(
k3

k1

)1/2−iµ
)
,

where

A(µ) = (−27 + 120iµ+ 152µ2 − 32iµ3 + 16µ4)Γ(5/2 + iµ)Γ(−iµ)2−2iµ. (B.14)

Multiplying the time and anti-time ordered contributions we get,

I−+ =
ψ1(0)2φ̇0

M2
4

√
π(cos2 θ − 1

3)

128k4
1k

2
3(1 + 4µ2)2 cosh(πµ)

(
A(µ)

(
k3

k1

)1/2+iµ

+A(−µ)

(
k3

k1

)1/2−iµ
)
.

(B.15)

Next we have to take into account I+−, I++ and I−−. However, I+− and I−− are just

complex conjugates of I−+ and I++ respectively, hence we need only I++. Computing I++

analytically is difficult in general, however, in the squeezed limit k3 � k1 we can get the

non-analytic terms in I−− by just making the variable change k1 → −k1 and changing the

overall sign, i.e. for non-analytic pieces [17],

I++(k1, k3) = −I−+(−k1, k3). (B.16)

Using the above relation to sum over all diagrams and momenta gives finally (after rein-

troducing H),

F single
KK Graviton =

ψ1(0)2φ̇2
0

M2
4H

2
×
(

cos2 θ − 1

3

) √
π

8(1 + 4µ2)2 cosh(πµ)
×(

A(µ)(1 + i sinhπµ)

(
k3

k1

)3/2+iµ

+ (µ→ −µ)

)
. (B.17)

This can be equivalently written as,

F single
KK Graviton =

4ψ1(0)2φ̇2
0

M2
4H

2
×
(

cos2 θ− 1

3

) √
π

(1+4µ2)cosh(πµ)
×(

9
2 +iµ

−1
2−iµ

Γ(5/2+iµ)Γ(5/2−iµ)
Γ(−iµ)

Γ(1/2−iµ)
(1+isinhπµ)

(
k3

4k1

)3/2+iµ

+(µ→−µ)

)
,

(B.18)

whose form agrees with the results of [17, 25] obtained via exploiting conformal symmetries

of the late time slice.
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