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1 Introduction

Study of heavy quarkonium production is important to understand both perturbative and

non-perturbative physics in QCD. Currently, the most widely used theory for quarkonium

production is the non-relativistic QCD (NRQCD) factorization [1]. Although many impor-

tant processes have been calculated to next-to-leading order in αs expansion [2–25], there

are still some notable difficulties in quarkonium production within the NRQCD frame-

work (see, e.g. [26]). To further explore the quarkonium production mechanism, it may

be better to study quarkonium production at high transverse momentum pT region, where

long-distance interactions between quarkonium and initial-state particles are suppressed

and thus factorization is easier to hold.
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The inclusive production differential cross section of a specific hadron H at high pT
can be calculated in collinear factorization [27],

dσA+B→H(pT )+X =
∑
i

dσ̂A+B→i(pT /z)+X′ ⊗Di→H(z, µ) +O(1/p2
T ) , (1.1)

where i sums over all quarks and gluons, z is the light-cone momentum fraction carried

by H with respect to the parent parton i, and A and B are colliding particles whose

effect should be further factorized into partons if they are hadrons. dσ̂A+B→i(pT /z)+X are

perturbatively calculable hard parts, while Di→H(z, µ) are non-perturbative but universal

fragmentation functions (FFs) describing the probability of parton hadronizing to H with

momentum fraction z. For quarkonium production, O(1/p2
T ) contributions can be further

factorized to double parton FFs [28–32]. In both single parton FFs and double parton FFs,

there is a collinear factorization scale µ dependence, and this dependence can be canceled

between hard parts and FFs perturbatively order by order, leaving physical differential cross

section to be independent of the scale. The evolution of single parton FFs with respect

to µ are controlled by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution

equation [33–35], and similar evolution equations for double parton FFs are calculated

in [29]. With these evolution equations, the only unknown information for FFs are their

values at a chosen factorization scale µ = µf .

When µf is close to the quarkonium mass mH , it is natural to calculate FFs via

NRQCD factorization. For single parton FFs that will be considered in this paper, we

have

Di→H(z, µf ) =
∑
n

di→QQ̄(n)(z, µf )〈ŌHn 〉 , (1.2)

where di→QQ̄(n) represent the perturbative calculable short-distance coefficients (SDCs)

to produce a heavy quark-antiquark pair QQ̄ with quantum number n, and 〈ŌHn 〉 are

normalized long-distance matrix elements (LDMEs).1 The quantum number is usually

expressed in spectroscopic notation n = 2S+1L
[c]
J , with c = 1, 8 respectively for color-singlet

state or color-octet state. According to velocity scaling rule [1], 〈ŌHn 〉 is usually suppressed

if L is too large. Therefore, the most important states for phenomenological purpose are

S-wave and P -wave states. Because LDMEs are supposed to be process independent,

they can be determined by fitting experimental data, while SDCs need to be calculated

perturbatively.

For both S-wave and P -wave states, all SDCs for single parton FFs are available up

to α2
s [36–46] (see [47, 48] for a summary and comparison). However, only a few SDCs

have been calculated to α3
s order, although they are valuable for phenomenological study.

Numerical results for SDCs of g → QQ̄(3S
[1]
1 ) + X were calculated to LO (order α3

s) in

refs. [37, 49–51], including velocity corrections. Analytical results for this process are only

available recently [52] by applying multi-loop techniques developed in the past a few years.

Using the same techniques, analytical results for SDCs of g → QQ̄(1P
[1]
1 ) +X at LO (order

α3
s) are also obtained [53]. A more challenging task is the calculation of NLO (order α3

s)

1〈ŌHn 〉 can be related to the original definition of NRQCD LDME 〈OHn 〉 [1] by the following rules. They

are the same if n is color-octet, and 〈ŌHn 〉 = 〈OHn 〉/(2Nc) if n is color-singlet.
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SDCs of g → QQ̄(1S
[1]
0 ) +X, which involves not only tree-level diagrams but also one-loop

diagrams. Numerical results for this process have been calculated in ref. [54]. Considering

the complicity of the calculation, an independent check by another group is badly needed.

As 1S
[1]
0 is the dominant Fock state for ηc,b, the FF g → QQ̄(1S

[1]
0 ) + X is important

to study ηc,b production at high transverse momentum at LHC [55]. At the LHC, we

have even much more data of J/ψ production at high transverse momentum. Theoretical

studies [13, 17, 56, 57] show that 1S
[8]
0 channel may be crucial to explain the J/ψ data. To

calculate 1S
[8]
0 contribution precisely, we need to calculate the FF g → QQ̄(1S

[8]
0 ) +X to at

least NLO.

In this paper, we aim to calculate NLO SDCs of FFs of g → QQ̄(1S
[1]
0 ) + X and

g → QQ̄(1S
[8]
0 ) + X to high precision using similar methods in our previous paper [52].

With sufficient numerical precision, analytical results can in principle be extracted by

using PSLQ algorithm. The rest of the paper is organized as following. In section 2, we

first introduce the definition of SDCs of quarkonium FFs, including projection operators

and Feynman rules related to gauge link, and then give the LO results. NLO corrections

include real emission Feynman diagrams and one-loop Feynman diagrams, the calculation

of them will be presented in section 3 and section 4, respectively. In the calculation, we use

integration-by-part (IBP) reduction [58–62] to express both real contributions and virtual

contributions in terms of linear combination of a small set of simpler integrals, which

are usually called master integrals (MIs). High precision MIs can be obtained by solving

differential equations of MIs numerically. Renormalization will be presented in section 5.

After renormalization, the obtained SDCs are free of ultraviolet (UV) and infrared (IR)

divergences. Final results and discussions will be given in section 6. We find that our results

for g → QQ̄(1S
[1]
0 )+X seem to be different from that calculated in ref. [54], while our results

for g → QQ̄(1S
[8]
0 ) + X are new. Finally, high precision results and some technical details

will be given in appendices.

2 Calculation of LO FFs

2.1 Definitions

The definition of FF from a gluon to a hadron (quarkonium) is given by Collins and

Soper [63],

Dg→H(z, µ0) =
−gµνzD−3

2πP+
c (N2

c − 1)(D − 2)

∫ +∞

−∞
dx−e−izP

+
c x
−

× 〈0|G+µ
c (0)E†(0, 0,0⊥)cbPH(P )E(0, x−,0⊥)baG

+ν
a (0, x−,0⊥)|0〉 ,

(2.1)

where Gµν is the gluon field-strength operator, P and Pc are respectively the momenta

of the produced hadron H and the initial-state fragmenting gluon g, and z = P+/P+
c

is the ratio of momenta along the “+” direction. It is convenient to choose the frame

in which the hadron has zero transverse momentum, P =
(
zP+

c ,m
2
H/(2zP

+
c ),0⊥

)
, with

P 2 = 2P+P− = m2
H . The projection operator PH(P ) is defined by

PH(P ) =
∑
X

|H(P ) +X〉〈H(P ) +X| , (2.2)
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K , µ

P , ν

b

a

= −iδa b
(
gµ ν − Pµ nν

K·n
)

P , µ

a

b c

= gsf
a b cnµ

P

= i/(P · n+ iε)

Figure 1. Feynman rules related to the gluon gauge link.

where X sums over all unobserved particles. The gauge link E(x−) is an eikonal operator

that involves a path-ordered exponential of gluon field operators along a light-like path,

E(0, x−,0⊥)ba = P exp

[
+ igs

∫ ∞
x−

dz−A+(0, z−,0⊥)

]
ba

, (2.3)

where gs =
√

4παs is the QCD coupling constant and Aµ(x) is the matrix-valued gluon

field in the adjoint representation: [Aµ(x)]ac = ifabcAµb (x).

From this definition, we can derive Feynman rules related to gauge link, which are

shown in figure 1, where n = (0, 1−,0⊥), K and P denote momenta, µ and ν denote

Lorentz indexes, and a, b and c denote color indices.

With these Feynman rules, we can obtain the amplitude of all Feynman diagrams

denoted asMλQλQ̄λ0λi(P, ki,mQ), where λQ and λQ̄ are respectively spins of produced on-

shell heavy quark and heavy antiquark, λ0 and λi (i = 1, 2, . . . ) are spins of the initial-state

virtual gluon and final-state unobserved light particles, respectively, ki are the momenta

of final-state light particles, and mQ is the heavy quark mass. For the processes of gluon

fragmenting to S-wave quarkonium, the relative momentum between the QQ̄ pair can be

chosen as 0 directly at the lowest order in velocity expansion, and thus it does not appear

in the amplitude. If we project the free QQ̄ pair to specific states 1S
[1]
0 or 1S

[8]
0 , we have

Mλ0λi(P, ki,mQ) = Tr
[
ΓcΓ5MλQλQ̄λ0λi(P, ki,mQ)

]
, (2.4)

where Γc ,Γ5 are the projection operators defined as

Γc=1 =
1√
Nc

,

Γc=8 =

√
2T a√
N2
c − 1

,

Γ5 =
1√

M(M/2 +mQ)
(/P/2−mQ)

M − /P

2M
γ5M + /P

2M
(/P/2−mQ) ,

(2.5)
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where P 2 = M2 = 4m2
Q. By summing over spin and color of initial-state and final-state

particles, we get the squared amplitude

|M(P, ki,mQ)|2 =
∑
|Mλ0λi(P, ki,mQ)|2 . (2.6)

Then the SDCs for gluon fragmenting to spin-singlet S-wave quarkonium can be written as

d(z) = NCS

∫
dΦ |M(P, ki,mQ)|2 , (2.7)

where NCS = zD−2

(N2
c−1)(D−2)

with D = 4 − 2ε is the space-time dimension, and final-state

phase space is defined as

dΦ =
1

S
δ

(
z − P+

P+
c

)
(2π)DδD

(
Pc − P −

∑
i

ki

)
dDPc
(2π)D

∏
i

dk+
i

4πk+
i

dD−2ki⊥
(2π)D−2

θ(k+
i )

=
P+

z2S
δ

(
1− z
z

P+ −
∑
i

k+
i

)∏
i

dk+
i

4πk+
i

dD−2ki⊥
(2π)D−2

θ(k+
i )

(2.8)

where S is the symmetry factor for final-state particles.

To be convenient, we extract the dependence on mQ explicitly by rescaling momenta

in the delta function in eq. (2.8) by M ,

P̂ =
P

M
, k̂i =

ki
M

, m̂Q =
mQ

M
=

1

2
. (2.9)

Thus the phase space in eq. (2.8) changes to

dΦ = Mn(D−2)dΦ̂ , (2.10)

where n is the number of final-state light particles, and dΦ̂ is similar to dΦ by changing

all momenta to the dimensionless ones. If we further denote

M̂λ0λi(P̂ , k̂i,mQ) = Mn(D−2)/2Mλ0λi(MP̂ ,Mk̂i,Mm̂Q) , (2.11)

we get a similar relation as that in eq. (2.7),

d(z) = NCS

∫
dΦ̂
∣∣M̂(P̂ , k̂i, m̂Q)

∣∣2, (2.12)

which means that the same SDCs can be obtained by replacing all momenta by their

corresponding rescaled ones. In the rest of the paper, we will only use the rescaled momenta,

but omitting the “ˆ” for simplicity.

2.2 LO SDCs

The Feynman diagrams of gluon fragmenting into 1S
[1]
0 or 1S

[8]
0 QQ̄ at LO in αs are shown

in figure 2. From the definition above, the calculation of LO SDCs involves integrals of the

form ∫
dΦBorn

1

k · P + a
, (2.13)

– 5 –
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P

Figure 2. One of the two Feynman diagrams of gluon fragmenting into 1S
[1]
0 or 1S

[8]
0 QQ̄ at LO in

αs. Another diagram can be obtained by permuting the heavy quark and anti-quark.

where a equals 0 or 1/2, k is the momentum of the emitted gluon with k+ = (1− z)P+/z

and k− = k2
⊥/(2k

+), and ∫
dΦBorn =

1

4πz(1− z)

∫
dD−2k⊥
(2π)D−2

. (2.14)

These integrals can be performed easily.

Then we get LO SDCs:

d
[1]
LO(z) =

α2
s

2(1− ε)Ncm3
Q

(
πµ2

r

m2
Q

)ε
dLO(z) , (2.15)

d
[8]
LO(z) =

α2
s(N

2
c − 4)

4(1− ε)Nc(N2
c − 1)m3

Q

(
πµ2

r

m2
Q

)ε
dLO(z) , (2.16)

where µr is the renormalization scale, d
[1]
LO and d

[8]
LO respectively denote SDCs of gluon

fragmenting into 1S
[1]
0 and 1S

[8]
0 states, and

dLO(z) = Γ(ε)(2ε− 1)(1− z)−2ε
[(
z(ε2 − ε+ 2)− 2

)
(1− z)ε + 2(z − 1)(zε− 1)

]
, (2.17)

with

d
(0)
LO(z) = lim

ε→0
dLO(z) = (3− 2z)z + 2(1− z) ln(1− z) . (2.18)

The color-singlet result and color-octet result are consistent with refs. [54] and [45], respec-

tively.

3 Real NLO corrections

3.1 Reduction to MIs

Real NLO corrections to FFs of g → QQ̄(1S
[1,8]
0 ) + X come from Feynman diagrams with

two real light particles in the final state, either two gluons or a light quark-antiquark (qq̄)

pair. Feynman diagrams with two gluons emission are shown in figure 3, while those with

qq̄ pair emission are shown in figure 4.

SDCs can be expressed as linear combinations of integrals of the form∫
dΦreal

∏
i

1

Eaii
=

P · n
2z2

∫
dDk1

(2π)D−1

dDk2

(2π)D−1
δ+(k2

1)δ+(k2
2)δ

(
k1 · n+ k2 · n−

1−z
z

P · n
)∏

i

1

Eaii
,

(3.1)
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P

Figure 3. Typical Feynman diagrams for g → QQ̄(1S
[1,8]
0 ) + gg. The other diagrams can be

obtained by permuting the heavy quark and anti-quark or the two emitted gluons.

P

Figure 4. One of the two Feynman diagrams for g → QQ̄(1S
[1,8]
0 ) + qq̄. Another diagram can be

obtained by permuting the heavy quark and anti-quark.

where ai are integers, k1 and k2 are momenta of the final-state light particles, the phase

space dΦreal is defined in eq. (2.8) with S = 2, and

E1 = k1 ·k2 , E2 = k1 ·P , E3 = k2 ·P , E4 = 2 k1 ·P+1 , E5 = 2 k2 ·P+1 ,

E6 = 2 k1 ·k2+k1 ·P+k2 ·P , E7 = 2 k1 ·k2+2 k1 ·P+2 k2 ·P+1 ,

E8 = k1 ·n , E9 = k1 ·n+P ·n , E10 = k2 ·n , E11 = k2 ·n+P ·n .
(3.2)

In eq. (3.1), we safely ignore infinitesimal imaginary parts in denominators because Ei(i =

1, · · · 11) are positive-definite and that SDCs are well regularized by dimensional regular-

ization. The later condition implies that only the region where all Ei(i = 1, · · · 11) are

not too small can contribute to the phase space integration. Note that, for qq̄ pair emis-

sion, although the symmetry factor should be 1, we can also express the SDCs as linear

combinations of integrals in eq. (3.1).

To take advantage of multi-loop techniques, we express delta functions by propagator

denominators,

(2π)δ(x) = lim
η→0+

(
i

x+ iη
+
−i

x− iη

)
. (3.3)

– 7 –
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We replace the three delta functions in eq. (3.1) following the above rule, and denote

E12 = k2
1 , E13 = k2

2 , E14 = k1 · n+ k2 · n−
1−z
z

P · n . (3.4)

Then each phase space integral in eq. (3.1) is translated to 8 loop integrals, with either

positive or negative infinitesimal imaginary parts in new denominators.

If we forget about infinitesimal imaginary parts in denominators for the moment, we

need to deal with loop integrals ∫
dDk1

(2π)D
dDk2

(2π)D

14∏
i=1

1

Eaii
(3.5)

with integers ai, which can be expressed in terms of corresponding simpler MIs by using

IBP reduction [58–62]. MIs are also the same kind of integrals, but usually with smaller

ai. Note that, we can always choose MIs with powers of E12, E13 and E14 being no larger

than 1. For MIs with integrand involving 1
E12

, we can replace the denominator by δ+(k2
1)

considering the relation eq. (3.3), while for MIs with integrand E−a12
12 (a12 ≤ 0) we can set

it to zero. Similar replacement can be done for E13 and E14. Therefore, all MIs for loop

integration are changed back to corresponding MIs for phase space integration defined in

eq. (3.1). Once these MIs are also calculated, we obtain final results of real corrections.

In the above procedure, we actually assume that IBP reduction relations are indepen-

dent of infinitesimal imaginary parts in denominators. This assumption, unfortunately,

does not always hold. If one or more integrals cannot be fully regularized by dimensional

regularization, one may get wrong final results. In the appendix A, we will discuss this

problem in more details, and then propose a solution. Eventually, the above procedure is

justified with a small modification.

3.2 Calculation of MIs

To calculate these MIs, we use differential equations (DEs) method [64–76], which has also

been used in our previous paper [52] to calculate SDCs of g → QQ̄(3S
[1]
1 ) +X. We get 95

MIs using the IBP reduction program FIRE5 [62], without using the symmetry rules. We

set up DEs by first differentiating these MIs Ik(k = 1, . . . , 95) with respect to z, and then

reducing the resulted integrals to MIs again by using IBP reduction, which results in

dI(ε, z)

dz
= A(ε, z)I(ε, z) , (3.6)

where I represents the vector of MIs Ik, and A is a 95 × 95 matrix whose elements are

rational functions of z and ε. Having the DEs, we also need boundary conditions of Ik to

fully determine these MIs. We choose the boundary at z → 1, and calculate the boundary

conditions in appendix C.

With boundary conditions, we can solve the DEs to obtain MIs at any value of z.

One possible choice is to solve the DEs analytically, which can be done by transforming

DEs into canonical form (or ε-form) [68, 69]. In this way, we successfully express MIs

in terms of Goncharov polylogarithms (GPLs) [77]. All obtained GPLs have weights at

– 8 –
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-3

-2

-1
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2

3

Re

Im

complex plane

Figure 5. Singularities of DEs of MIs for both g → QQ̄(1S
[1]
0 ) + X and g → QQ̄(1S

[8]
0 ) + X.

Plus signs denote singularities encountered in real corrections while multiplication signs denote

singularities encountered in virtual corrections.

most three, and they can be expressed in terms of logarithms and classical polylogarithms

Lin(z), (n ≤ 3) [78]. Even though, the obtained analytical expression is too long to present

in this paper. Furthermore, for virtual correction, boundary conditions are hard to calculate

analytically.

Another choice is to solve DEs numerically, which is a well-studied mathematical prob-

lem. DEs can help to do asymptotic expansions of MIs around any point z = z0. Because

Feynman integrals have Feynman parametric representation, their asymptotic expansions

have the form (see e.g. ref. [79])

Ik(z, ε)|z0 =
∑
s

ns∑
i=0

(z − z0)s lni(z − z0)

∞∑
j=0

Is i jk (ε)(z − z0)j , (3.7)

where s is a linear function of ε, ns is an integer determined by s, Is i jk (ε) are functions of ε,

and the radius of convergence of the summation over j is usually determined by the nearest

singular point. For the special case when z0 is an analytical point, we have s = ns = 0.

When z0 is a singular point, different values of s and i correspond to different regions of

MIs, which are independent of each other. Therefore, each region satisfies the same DEs as

the original MIs, and the DEs can generate recurrence relations to express Is i jk (ε) in terms

of Is 0 0
k (ε) for each fixed s, i and ε. It implies that, when calculating boundary conditions

in appendix C, we only need to calculate Is 0 0
k (ε) for each region. In practice, as we are

only interested in MIs up to a fixed order in ε expansion, we will do a Laurent expansion

of ε in both (z − z0)s and Is i jk (ε).

As it is clear, singular points play important role in the procedure of solving DEs

numerically. There are 12 singular points in the DEs (3.6) for real corrections, which

are located at z = 0, 1/2,±1,±2,±4,±2i, 1 ± i, as shown in figure 5. For the interested

physical region 0 ≤ z ≤ 1, the only relevant singularities are z = 0, 1/2, 1, and all other

– 9 –
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P

Figure 6. Some typical Feynman diagrams of the virtual NLO correction for gluon fragmenting into
1S

[1]
0 or 1S

[8]
0 QQ̄. The other diagrams are either self-energy diagrams for external legs (including

initial virtual gluon), or they can be obtained by permuting the heavy quark and anti-quark.

singularities are far enough from the physical region. Among these three singularities, the

point z = 1/2 is in fact a removable singularity. However, as we will discuss in appendix B,

this singularity determines the radius of convergence of the asymptotic expansion at z = 0

and 1. We thus estimate values of MIs in regions 0 ∼ 1/4, 1/4 ∼ 3/4 and 3/4 ∼ 1

respectively by the asymptotic expansions of MIs at z = 0, 1/2 and 1. For example, if

we want to obtain values in the physical region with precision about 15 digits, we should

calculate the expansion in eq. (3.7) with j to as large as 50.

4 Virtual NLO corrections

Some diagrams that contributed to virtual NLO corrections to FFs of g → QQ̄(1S
[1,8]
0 ) +X

are shown in figure 6. The other diagrams are either self-energy diagrams for external legs

(including initial virtual gluon), or they can be obtained by permuting the heavy quark

and anti-quark.

SDCs of the virtual corrections can be expressed as linear combination of integrals of

the form

∫
dΦloop

∫
dDl

(2π)D

∏
i

1

F aii
=
P · n
z2

∫
dDk

(2π)D−1

dDl

(2π)D
δ+(k2)δ

(
k · n− 1− z

z
P · n

)∏
i

1

F aii
,

(4.1)

where z = P+/(k+ + P+), ai are integers, k is the momentum of the final-state gluon, l is
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the loop momenta, and

F1 =k ·P, F2 =2 k ·P+1 , F3 = l2, F4 =(l+k)2, F5 =(l+P )2, F6 =

(
l+

P

2

)2

− 1

4
,

F7 =

(
l−P

2

)2

− 1

4
, F8 =

(
l+k+

P

2

)2

− 1

4
, F9 =(l+k+P )2, F10 = l·n .

(4.2)

Similar to real corrections, by replacing δ functions using eq. (3.3), integrals in eq. (4.1)

can be reduced to corresponding simpler MIs, the number of which is 66. DEs for these

MIs can also be set up.

As for real corrections, asymptotic expansion of virtual-correction MIs at any point

z = z0 can be obtained in the form of eq. (3.7) with the help of DEs, once we have

boundary conditions for these DEs. The DEs have 6 singularities in the complex-z plane,

z = 0,±1, 2, 2(±
√

2−1), as shown in figure 5. For the physical region, the relevant poles are

z = 0, 2(
√

2− 1), 1, among which z = 2(
√

2− 1) is a removable singularity. We will discuss

in appendix B that this removable singularity does not affect the radius of convergence

of asymptotic expansion at z = 1, although it can decrease the precision if we estimate

values for z < 2(
√

2−1) from the asymptotic expansion at z = 1. The later problem has no

impact if boundary conditions can be calculated to sufficient high precision, which is indeed

the case as we will explain later. Therefore, virtual-correction MIs in regions 0 ∼ 1/4,

1/4 ∼ 3/4 and 3/4 ∼ 1 can be respectively estimated by the asymptotic expansions of MIs

at z = 0, 1/2 and 1, where we introduce an expansion at a non-singular point z = 1/2

so that the combination of real corrections and virtual corrections can be expressed by a

single piecewise function.

Finally, let us discuss how to obtain boundary conditions for DEs of virtual-correction

MIs. We find that, if we choose boundary conditions at z → 1, calculation of these MIs

either analytically or numerically to high precision is very hard. The method proposed

in refs. [75, 76] provides a way to calculate MIs numerically to very high precision at any

non-singular point z, which we will explain in appendix D. With this method, we can

not only provide boundary conditions for DEs, but also do a self-consistent check. To this

purpose, we use this method to calculate MIs at two points, say z = z1 and z2. With

results at z = z1 as boundary conditions, the DEs can give prediction for MIs at z = z2,

and the later values can be compared with the values obtained by this method. In our

work, we have done this self-consistent check, and find a perfect agreement.

5 Renormalization

Bare quantities of fields Ψb and Ab, coupling constant gsb, and heavy quark mass mQb

are related to corresponding renormalized ones by the renormalization constants δ2 , δ3 , δg
and δm,

Ψb = (1 + δ2)1/2Ψ , Aµb = (1 + δ3)1/2Aµ , gsb = (1 + δg)gs , mQb = (1 + δm)mQ .

(5.1)

– 11 –



J
H
E
P
0
4
(
2
0
1
9
)
1
1
6

In this paper, we choose MS renormalization scheme for the coupling constant, and choose

on-shell renormalization scheme for gluon field, heavy quark field and heavy quark mass.

It is convenient to rescale the renormalization constants as following

δi =
αs
π

Γ(1 + ε)

(
πµ2

r

m2
Q

)ε
δ̂i , (5.2)

with

δ̂2 = −CF
4

(
1

εUV
+

2

εIR
+ 4 + 6 ln 2

)
,

δ̂3 =

(
5

12
Nc −

1

6
nf

)(
1

εUV
− 1

εIR

)
,

δ̂g = −b0
4

(
1

εUV
− ln

µ2
r

4m2
Q

)
,

δ̂m = −3CF
4

(
1

εUV
+

4

3
+ 2 ln 2

)
,

(5.3)

where b0 = (11Nc − 2nf )/6.

Summing over all counter terms, we obtain∫
dΦBorn

(
δ2 + 2δg +

δm
2k · P

)
|MLO|2, (5.4)

where |MLO|2 is the squared amplitude at LO in αs, and dΦBorn is defined in eq. (2.14).

This integral can be calculated easily.

Besides, we need to renormalize the operator defining the FF. In MS scheme, the

counter term gives

d
[1/8]
Operator(z) = −αs

2π

Γ(1 + ε)

ε

(
4πµ2

r

µ2
f

)ε ∫ 1

z

dy

y
Pgg(y)d

[1/8]
LO

(
z

y

)
, (5.5)

where µf is the factorization scale, d
[1/8]
LO (z) are given respectively in eq. (2.15) and eq. (2.16),

and the Altarelli-Parisi splitting function Pgg(z) is

Pgg(z) = b0 δ(1− z) + 2Nc

(
z

(1− z)+
+

1− z
z

+ z(1− z)

)
. (5.6)

6 Results and discussion

6.1 Final results

Summing over real corrections, virtual corrections and all counter terms, we obtain finite

results at NLO for both FFs. The results can be expressed in terms of piecewise functions,

d
[1]
NLO(z) =

α3
s

2πNcm3
Q

×

(
d[1](z) + ln

(
µ2
r

4m2
Q

)
b0 d

(0)
LO(z) + ln

(
µ2
f

4m2
Q

)
f(z)

)
,

d
[8]
NLO(z) =

α3
s(N

2
c − 4)

4πNc(N2
c − 1)m3

Q

×

(
d[8](z) + ln

(
µ2
r

4m2
Q

)
b0 d

(0)
LO(z) + ln

(
µ2
f

4m2
Q

)
f(z)

)
,

(6.1)
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where b0 is given below eq. (5.3), d
(0)
LO(z) is given in eq. (2.18),

f(z) = −
nf
6
d

(0)
LO(z) +Nc

(
− 2(z + 2)Li2(z)− 2(z − 1) ln2(1− z) + 2(z − 1) ln(z) ln(1− z)

+ (z − 4)z ln(z)− (2z + 1)(9z2 − 5z − 6) ln(1− z)

6z

+
46z3 + (8π2 − 3)z2 + 4(π2 − 9)z + 4

12z

)
, (6.2)

and

d[1/8](z) =



− Nc

2z
+

2∑
i=0

∞∑
j=0

lni z (2z)j
(
Afij nf +A

[1/8]
ij Nc +

ANij
Nc

)
, for 0 < z <

1

4

∞∑
j=0

(2z − 1)j
(
Bf
j nf +B

[1/8]
j Nc +

BN
j

Nc

)
, for

1

4
≤ z ≤ 3

4

3∑
i=0

∞∑
j=0

lni(1− z) (2− 2z)j
(
Cfij nf + C

[1/8]
ij Nc +

CNij
Nc

)
, for

3

4
< z < 1

.

(6.3)

The coefficients Akij , B
k
j , Ckij can be evaluated numerically to very high precision, then

analytical results can be obtained by fitting numerical results using PSLQ algorithm. For

example, with 20-digit precision, we get

A
[1]
00 = A

[8]
00 = 17− 11ζ(3)

8
− 13π2

12
+ ln2 2− π2

4
ln 2 . (6.4)

In practice, however, numerical results with high precision will be sufficient. In appendix E,

we present these coefficients up to j = 40 with 14 digits for each coefficient. With these

numerical results, we can calculate d
[1/8]
NLO(z) to more than 12-digit precision for any value

of z. To obtain results with 160-digit precision at any value of z, we attach an ancillary

file with these coefficients calculated up to j = 530.

6.2 Numerical results

To see the effects of NLO corrections, we choose parameters the same as that in ref. [54],

with mb = 4.75 GeV, Nc = 3, nf = 4, and αs(µr = 2mb) = 0.181. In figure 7, we plot the

curves of LO FFs and LO+NLO FFs with µr = µf = 2mb. To show color-singlet FFs and

color-octet FFs in the same figure, we introduce overall factors c[1] = 6m3 and c[8] = 96m3/5

for them, respectively. We find that our result of NLO FF of g → QQ̄(1S
[1]
0 ) +X has some

differences from that obtained in ref. [54], especially when z → 0. With µr = µf = 2mb,

we also provide K-factors (the ratio of LO+NLO over LO) of some special values of z in

table 1, where we find that K-factors are very significant for most values of z.

As shown in eq. (6.3), NLO FFs are negative and divergent at both z = 0 and z = 1,

with leading behavior 1/z at z → 0 and ln2(1− z) at z → 1. Thus total fragmenting prob-

ability obtained by integrating NLO FFs over z from 0 to 1 are divergent. The divergence

at z → 0 is not a big problem because physical cross sections are obtained by convolving
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LO

LO+NLO(1S0
[1])

LO+NLO(1S0
[8])

0.0 0.2 0.4 0.6 0.8 1.0
-0.04

-0.02

0.00

0.02

0.04

z

d
[1
/8
] (

z
)×
c
[1
/8
]

c
[1]=6m

3

c
[8]=96m

3/5

Figure 7. SDCs of the fragmentation functions of g → bb̄(1S
[1]
0 ) and g → bb̄(1S

[8]
0 ) at LO and NLO.

The dotted line is for d
[1]
LO(z)×(6m3

b) or d
[8]
LO(z)×(96m3

b/5), the solid line is for
(
d
[1]
LO(z)+d

[1]
NLO(z)

)
×

(6m3
b) and the dashed line is for

(
d
[8]
LO(z)+d

[8]
NLO(z)

)
× (96m3

b/5), with scale choices µr = µf = 2mb.

The superscript [1] or [8] respectively denotes the color-singlet or color-octet states of bb̄.

z K [1] K [8] z K [1] K [8]

0.05 −22.2154523437 −24.6733986814 0.55 2.72527357574 2.66250417113

0.10 −1.19896707966 −2.87199122365 0.60 2.59460446402 2.64623824982

0.15 1.96212951638 0.686093914799 0.65 2.44998117224 2.61539737443

0.20 2.80788837291 1.79077857154 0.70 2.28930766059 2.56549304191

0.25 3.06753043346 2.24294113774 0.75 2.10880071058 2.48839147108

0.30 3.12597786091 2.45762890747 0.80 1.90118848020 2.36993271047

0.35 3.10100074972 2.56808157787 0.85 1.65072948968 2.18335185168

0.40 3.03565411189 2.62635170085 0.90 1.31711318345 1.86698847168

0.45 2.94726594487 2.65539830293 0.95 0.755737935988 1.20834068587

0.50 2.84294512935 2.66590375106 0.99 −0.694039121672 −0.839542885588

Table 1. K-factors at different values of z. The superscript [1] or [8] respectively denotes the

color-singlet or color-octet states of bb̄.

FFs with partonic hard parts, which behave as zn in the small z region with n usually

larger than 4.2 Therefore, the small z region has negligible contributions to physical cross

sections. The divergence at z → 1 region, on the other hand, means that perturbative

calculation in this region is not good. We leave the study of resummation of FFs in the

z → 1 region for future works.

2According to naive mass dimensional counting, partonic differential cross section dσ/dp2
T behaves as

z4/p4
T , where pT /z is the transverse momentum of the fragmenting parton. Due to anomalous dimension

from αs and PDFs, differential cross sections are further suppressed at small z.
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State SDCs∗c[1/8] z2 z4 z6

LO (×10−3) 5.55116944444 3.85331761905 2.99519856859

1S
[1]
0

LO+NLO (×10−3) 7.54577896198 3.90413390636 2.31890675630

K-factor 1.35931339108 1.01318767159 0.774208021001

1S
[8]
0

LO+NLO (×10−3) 8.94021475091 4.99398540596 3.12511443983

K-factor 1.61051015293 1.29602225917 1.04337471064

Table 2. Moments and K-factor of SDCs.

LO

LO+NLO

0.0 0.2 0.4 0.6 0.8 1.0
-0.04

-0.02

0.00

0.02

0.04

z

d
[1
] (
z
)×
6
m
3

Figure 8. SDCs of the fragmentation function of g → bb̄(1S
[1]
0 ) +X at LO and NLO. The dotted

line is for d
[1]
LO(z)× (6m3

b), while the solid line is for
(
d
[1]
LO(z) + d

[1]
NLO(z)

)
× (6m3

b), with scale choices

µr = µf = 2mb. The bands are obtained by varying the renormalization scale µr by a factor of 2.

To estimate the impact of our NLO calculation on physical cross sections, we calculate

the moments of FFs, ∫ 1

0
dz zn

(
d

[1/8]
LO (z) + d

[1/8]
NLO(z)

)
∗ c[1/8], (6.5)

with numerical results shown in table 2 for n = 2, 4, 6. We find that, unlike K-factors for

fixed z, K-factors of 4-th moments and 6-th moments are moderate.

The sensitivities of LO and LO+NLO FFs with respective to the renormalization scale

µr are illustrated in figure 8 for g → QQ̄(1S
[1]
0 ) + X and figure 9 for g → QQ̄(1S

[8]
0 ) + X,

with µf = 2mb and varying µr from mb to 4mb. We find that, after NLO corrections, upper

values of the error bands are larger than corresponding lower values of error bands by a

factor of 2 in the middle z region. Using similar strategy, we find errors bands span by a

factor of 3 in the charm quark case. The large theoretical uncertainties should be caused

by the large NLO corrections. Yet we still do not fully understand the origination of large

NLO corrections.
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LO

LO+NLO

0.0 0.2 0.4 0.6 0.8 1.0
-0.04

-0.02

0.00
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d
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] (
z
)×
9
6
m
3
/5

Figure 9. SDCs of the fragmentation function of g → bb̄(1S
[8]
0 ) +X at LO and NLO. The dotted

line is for d
[8]
LO(z)× (96m3

b/5), while the solid line is for
(
d
[8]
LO(z) + d

[8]
NLO(z)

)
× (96m3

b/5), with scale

choices µr = µf = 2mb. The bands are obtained by varying the renormalization scale µr by a factor

of 2.

LO

LO+NLO

0.0 0.2 0.4 0.6 0.8 1.0
-0.04

-0.02

0.00

0.02

0.04

z

d
[1
] (
z
)×
6
m
3

Figure 10. SDCs of the fragmentation function of g → bb̄(1S
[1]
0 ) +X at LO and NLO. The dotted

line is for d
[1]
LO(z)× (6m3

b), while the solid line is for
(
d
[1]
LO(z) + d

[1]
NLO(z)

)
× (6m3

b), with scale choices

µr = µf = 2mb. The bands are obtained by varying the renormalization scale µf by a factor of 2.

The sensitivities of LO and LO+NLO FFs with respect to the factorization scale µf

are illustrated in figure 10 for g → QQ̄(1S
[1]
0 ) + X and figure 11 for g → QQ̄(1S

[8]
0 ) + X,

with µr = 2mb and µf varying from mb to 4mb. Note that the µf dependences should not

be thought as theoretical uncertainties, because FFs are always defined at a specific value

of µf .
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LO

LO+NLO

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 11. SDCs of the fragmentation function of g → bb̄(1S
[8]
0 ) +X at LO and NLO. The dotted

line is for d
[8]
LO(z)× (96m3

b/5), while the solid line is for
(
d
[8]
LO(z) + d

[8]
NLO(z)

)
× (96m3

b/5), with scale

choices µr = µf = 2mb. The bands are obtained by varying the renormalization scale µf by a

factor of 2.

A IBP reduction with unregularized rapidity divergence

If all integrals are well regularized by dimensional regularization, IBP reduction relations

should be independent of the infinitesimal imaginary parts iη, which means that coefficients

of the relations are the same no matter a denominator is Ej + iη or Ej − iη. This is the

reason why we ignore the infinitesimal imaginary parts when using IBP reduction.

However, in this paper we encounter some integrals that can not be regularized by

dimensional regularization only. There is a MI in the calculation of real correction∫
dΦreal

1

E1E4
, (A.1)

which equals to

1

(4π)2z2

∫ 1

0

dz1

z1

∫
dD−2k1⊥
(2π)D−2

dD−2k2⊥
(2π)D−2

1

(k2⊥−k1⊥)2
(
k2

1⊥ +
(

1−z
z

)2
z1(1−z1) + 1−z

z (1−z1)
) ,

(A.2)

where we integrated out k−1 , k
−
2 and k+

2 , denoted k+
1 = (1−z)z1P

+
c , and did the replacement

k1⊥ →
√

z1

1− z1
k1⊥ , k2⊥ →

√
1− z1

z1
k2⊥ . (A.3)

It is clear now that the integration over z1 is divergent at z1 = 0 and it can not be regularized

by dimensional regularization. This divergence is usually called rapidity divergence, and it

is in fact well-known that it cannot be regularized by dimensional regularization. Similar

problem exists when changing E4 to E5. Because the MI in eq. (A.1) is unregularized, on
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one hand we do not know how to calculate it, and on the other hand the IBP reduction

which expresses SDCs as linear combination of MIs may give wrong result.

To explain why IBP reduction can be wrong, let us replace E1, E4 in eq. (3.2) respec-

tively by

E′1 = (k1 + k2)2, E′4 = (k1 + P )2, (A.4)

which does not change the integral because of δ functions in the definition of dΦreal. If

we then simply replace these δ functions by propagator denominators using eq. (3.3) and

perform IBP reduction of original expression by ignoring the infinitesimal imaginary parts,

we find two equal loop integrals,

P · n
z22!

∫
dDk1

(2π)D
dDk2

(2π)D
1

E′1E
′
4E12E13E14

, (A.5)

and
1− 2ε

ε

(P · n)2

z22!

∫
dDk1

(2π)D
dDk2

(2π)D
1

E′1E
′
4E8E13E14

. (A.6)

Because they are equal to each other, we can choose either the former or the later as our

MI. However, on the other hand, once we replace propagator denominators back to δ

functions, the eq. (A.6) will vanish as it lacks of E12, while the eq. (A.5) will be changed

to MI in eq. (A.1). Therefore, the final results are ambiguous.

To get unambiguous results both in the reduction step and in the calculation of MIs,

we in principle need all involved integrals to be well regularized. We thus introduce an

additional regulator besides spacetime dimension D = 4 − 2ε, and take the limit of this

new regulator to zero before take the limit of ε → 0. In this way, divergences that are

regularized by dimensional regularization will not be affected. A possible choice of the new

regulator is gluon mass in the phase space integration, which means we use

dΦ′ =
P · n
z22!

dDk1

(2π)D−1

dDk2

(2π)D−1
δ+(k2

1−m2
g)δ+(k2

2−m2
g)δ

(
k1 ·n+k2 ·n−

1−z
z

P ·n
)
, (A.7)

instead of dΦ. Note that, although gluon mass should also be introduced in Feynman

amplitudes to be self-consistent, it is easy to show that only the gluon masses in phase space

integration have non-vanishing effect. With this regulator, we find all involved integrals

in our calculation are well regularized, and thus the IBP reduction do not introduce any

ambiguity. After the IBP reduction and then take the limit mg → 0 in any place as far as

the operation does not result in unregularized integrals, mg still presents in four MIs∫
dΦ′

1

E1E4
,

∫
dΦ′

1

E1E2
4

,

∫
dΦ′

P · n
E1E4E9

,

∫
dΦ′

P · n
E1E4E10

, (A.8)

besides the other four MIs obtained by changing E4 to E5.

As an example, we calculate the first MI in eq. (A.8) in the limit of mg → 0. After we

integrate out k−1 , k−2 , k+
2 , k2⊥ and k1⊥ sequentially, we get

m−2ε
g Γ(ε)2z−2

∫ 1

0
dz1 z

−1+ε
1 (1− 2z1 + 2z2

1)−ε(t2z1 + t+m2
g/z1)−ε, (A.9)
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where t = (1 − z)/z. Because of dimensional regularization, only the region z1 ∼ m2
g

survives in the limit of mg → 0. So we set z1 = m2
g y and take limit of mg → 0, then we get

Γ(ε)2z−2

∫ ∞
0

dy y−1+ε(t+ 1/y)−ε = z−2+2ε(1− z)−2εΓ(2ε)Γ(ε)Γ(−ε) . (A.10)

It tells us that, after introducing and then removing the gluon mass regulator, the MI in

eq. (A.1) is eventually well regularized by dimensional regularization. We can similarly

calculate the other three MIs in eq. (A.8), and find that they can be obtained from the

first MI by multiplying factors 2ε , 1 and z/(1− z), respectively.

Before describing how to apply the above method to our problem, let us first examine

the following integral ∫
dΦ

1

E1E4E7
, (A.11)

which is well regularized by dimensional regularization,3 and thus we can calculate it nu-

merically without introducing any other regulator. On the other hand, again without

introducing any other regulator, we use IBP naively to reduce it to MIs. We find the

reduced result is unique. All MIs obtained here except the one in eq. (A.1) are well reg-

ularized by dimensional regularization, which can be easily evaluated. Then if we replace

the unregularized MI by eq. (A.10), we find the numerical result of eq. (A.11) agrees with

the value calculated by applying IBP reduction. This test tells us two things. The first is

that our gluon mass regulator can indeed give correct result. We thus take eq. (A.10) as

the value of MIs defined in eq. (A.1), and similarly for other unregularized MIs. The second

is that, if the original express is well regularized by dimensional regularization, using IBP

naively may have no problem.

Based on the above lessons, we divide our original express two parts. The first part is

well regularized by dimensional regularization, which is then reduced to MIs by using IBP

naively. We check this part numerically and find good agreement between results before

and after the IBP reduction. As the second part is unregularized, we introduce the above

gluon mass regulator before applying IBP. After inserting the values of MIs, we find the

second part in our decomposition eventually vanishes.

B Removable singularities and their effects

In this work, we encounter some removable singularities. Some of them determine the

convergence radius of asymptotic expansion at some points, and others only decrease the

precision of higher order coefficients in the asymptotic expansion. In the following discus-

sion, to be definite we discuss the case where there is a removable singularity at z = 1/2

and there is a non-removable singularity at z = 1. We will do asymptotic expansion at

z = 0.

Let us first discuss the case where there are more than one analytical structure at z = 0,

and the singularity at z = 1/2 is removable only after the summation of contributions from

3It is well-regularized only if we first integrate out transverse momentum before integrate “+” momen-

tum.

– 19 –



J
H
E
P
0
4
(
2
0
1
9
)
1
1
6

all structures. Here is an example,

f(z) =
ln z
1−z + 2 ln 2

1− 2z
, (B.1)

where z = 1/2 is indeed a removable singularity. When we do the asymptotic expansion

at z = 0, we get two series, where one comes from the analytical part and the other

one comes from the part proportional to ln z. As z = 1/2 is a non-removable singularity

of each of the two parts, the convergence radius of each of the series is 1/2. Although

z = 1/2 becomes a removable singularity in the summation of two parts, the convergence

radius of the asymptotic expansion at z = 0 is still 1/2. The reason is that we have no

way to reorganize the two series to a single series so that it is convergent everywhere in

1/2 < |z| < 1. In our calculation, MIs in real corrections have this kind of removable

singularity at z = 1/2, which determine convergence radius of asymptotic expansion at

both z = 0 and z = 1.

Now let us discuss the case where z = 1/2 is a removable singularity for each non-

vanishing analytical structure at z = 0. A special case is that there is only one non-

vanishing analytical structure, for example

g(z) =
2 ln(2− 2z)

1− 2z
, (B.2)

where 1/2 is a removable singularity while 1 is a branch point. If we denote

g(z) =

∞∑
n=0

anz
n, (B.3)

we have

an = 2n+1 ln 2−
n−1∑
i=0

2i+1

n− i
, (B.4)

based on which we can calculate the convergence radius: limn→∞
an
an+1

= 1. We thus find

that the singularity z = 1/2 does not affect the convergence radius at z = 0. However, we

will show that this singularity has other effects. To this purpose, we note that g(z) satisfies

the following DE, (
1

2
− z
)

dg(z)

dz
= g(z)− 1

1− z
, (B.5)

with initial condition g(0) = a0 = 2 ln 2. The DE can generate the recursion relation

an+1 = 2an −
2

n+ 1
, (B.6)

which determines higher order coefficients in the expansion. However, when we solve DEs

numerically, the initial condition can have only finite precision. If we denote the absolute

error of a0 as λ, the absolute error of an calculated from the recursion relation is 2nλ. At

the point z = x, the contributed error from an is (2x)nλ, which is much larger than λ if

x > 1/2 and n is large. If we reduce this error by truncating the expansion to small n, then
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there will be a large systematic error at the order of xn. The best accuracy at z = x that

one can obtain is to choose a truncation n so that (2x)nλ ∼ xn, which gives n ∼ log2 λ
−1

and xn ∼ λ− log2 x. For example, for the point x =
√

2/2, the smallest absolute error that

we can get is λ1/2, which is larger than the absolute error λ at x = 0.

In virtual corrections, if we do asymptotic expansion at z = 1, the removable singularity

at z = 2(
√

2− 1) belongs to the second type, and the convergence radius is determined by

the singularity at z = 0. Let us denote 1 − 2(
√

2 − 1) = a−1, then the best accuracy at

z = 1−x that we can obtained is determined by (ax)nλ ∼ xn, which gives n ∼ loga λ
−1 and

xn ∼ λ− loga x. In this work, we want to estimate the value at z = 3/4 from the expansion

at z = 1, which gives the best accuracy about λ0.786. If we need the accuracy to be about

10−15, we find λ ∼ 10−19 and n ∼ 25, which means that we need initial condition for the

expansion at z = 1 to have four more significant digits.

C Boundary conditions of MIs in real corrections

MIs in real corrections have the form

∫
dΦreal

1

Enaa Enbb Encc Endd
, (C.1)

where d ∈ {8, 9, 10, 11}, a, b, c ∈ {1, . . . , 7} and dΦreal is defined in eq. (3.1). We calculate

most MIs in the limit z → 1 in this appendix, with the other MIs which are not regularized

by dimensional regularization calculated in appendix A. From eq. (3.1), δ
(
k1 · n+ k2 · n−

1−z
z P ·n

)
together with conditions k+

1 > 0 and k+
2 > 0 requires that k+

1 and k+
2 must be at

the order of 1 − z when z → 1. Otherwise, if taking k+
1 � (1 − z)P+ as an example, the

integral will be proportional to

∫ ∞
0

dk+
1 (k+

1 )a+bε, (C.2)

which equals 0 in dimensional regularization. Introducing the parametrization k+
1 = (1 −

z)z1P
+
c and k+

2 = (1− z)(1− z1)P+
c , dΦreal becomes

∫
dΦreal =

1

(4π)2z(1− z)2!

∫ 1

0

dz1

z1(1− z1)

∫
dD−2k1⊥
(2π)D−2

dD−2k2⊥
(2π)D−2

. (C.3)
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In the limit of z → 1, Ei given in eq. (3.2) become

Ê1 =
1

2

(
1− z1

z1
k2

1⊥ +
z1

1− z1
k2

2⊥ − 2k1⊥ · k2⊥

)
,

Ê2 =
1

2λ

(
k2

1⊥
z1

+ λ2z1

)
,

Ê3 =
1

2λ

(
k2

2⊥
1− z1

+ λ2(1− z1)

)
,

Ê4 =
1

λ

(
k2

1⊥
z1

+ λ

)
,

Ê5 =
1

λ

(
k2

2⊥
1− z1

+ λ

)
,

Ê6 =
1

2λ

(
k2

1⊥
z1

+
k2

2⊥
1− z1

+ λ2

)
,

Ê7 =
1

λ

(
k2

1⊥
z1

+
k2

2⊥
1− z1

+ λ

)
,

(C.4)

where λ = 1− z. As λ→ 0, each MI has at most four non-vanishing regions,

k2
1⊥ ∼ λ2, k2

2⊥ ∼ λ2 ;

k2
1⊥ ∼ λ2, k2

2⊥ ∼ λ ;

k2
1⊥ ∼ λ , k2

2⊥ ∼ λ2 ;

k2
1⊥ ∼ λ , k2

2⊥ ∼ λ .

(C.5)

To obtain boundary conditions, we only need to calculate the leading contribution in each

region, which is proportional to λnε with n = −2,−3 or −4. The calculation is a little

different depending on whether E1 presents in eq. (C.1).

Without E1, there is no cross term k1⊥ · k2⊥ in the limit λ→ 0. We thus first rescale

momenta by

k1⊥ →
√
z1 k1⊥ , k2⊥ →

√
1− z1 k2⊥ , (C.6)

and then integrate out k2⊥. After that, the integration over k1⊥ is very simple unless it

has the form ∫
dD−2k1⊥
(2π)D−2

1

(k2
1⊥ + 1)n1

(
k2

1⊥ + a(z1)
)n2

, (C.7)

with a(z1) 6= 0, 1. For this kind of integrals, we integrated out k1⊥ after Feynman

parametrization. Finally, the integration over z1 and Feynman parameters can be cal-

culated analytically with the help of sector decomposition refs. [80, 81], which can isolate

mixed divergences from parameter integrals. There are two widely used programs that can

do the sector decomposition, SecDec [82–85] and FIESTA [86–89]. We use SecDec in this

paper.

If E1 presents, we first rescale momenta by

k1⊥ →
√

z1

1− z1
k1⊥ , k2⊥ →

√
1− z1

z1
k2⊥ , (C.8)
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and then do the the replacement k1⊥ → k1⊥+k2⊥, which changes Ê1 to k2
1⊥ and moves the

cross term k1⊥·k2⊥ to other denominators. To proceed, we introduce Feynman parametriza-

tion and integrate out k2⊥. Then the integration of k1⊥ has the form∫
dD−2k1⊥
(2π)D−2

1

(k2
1⊥)n1

(
k2

1⊥ + a(z1)
)n2

, (C.9)

which can be easily integrated out. Finally, integration of Feynman parameters can be

worked out with the help of sector decomposition.

All analytical results of MIs calculated here have been checked by numerical results

computed by SecDec, and good agreement is found.

D Calculation of MIs in virtual corrections

MIs for virtual corrections in eq. (4.1) can be expressed as

1

4πz(1− z)

∫
dD−2k⊥
(2π)D−2

dDl

(2π)D

∏
i

1

F νii
, (D.1)

where Fi are defined in eq. (4.2) with k2 = 0, k− = k2
⊥/(2k

+) and k+ = (1 − z)P+/z.

We apply the method proposed in refs. [75, 76] to calculate these MIs at any regular point

z = z0. To this purpose, we change Fi to Fi+ iη for i 6= 1, 2 to obtain new MIs. We can set

up DEs of the new MIs by first differentiating them with respect to η and then reducing

the obtained expressions to the new MIs using IBP reduction. If we also know boundary

conditions of the new MIs at a special value of η, we can solve the DEs numerically to

obtain the new MIs at η = 0+ with very high precision, which are nothing but our desired

old MIs.

The boundary that we choose is at η → ∞. To calculate the boundary conditions,

we first perform Feynman parameterization and then shift l to remove cross terms. The

obtained results are proportional to∫∫
dx1 . . . dxn

∫
dD−2k⊥
(2π)D−2

dDl

(2π)D
1

(k2
⊥ + a)n1(l2 − b k2

⊥ − c+ iη)n2 (l · n+ d+ iη)n3
,

(D.2)

where b, c, d are functions of z and the Feynman parameters x1, . . . , xn, and a is a function

of z. As η →∞, there are only two regions for this integral,

l2 ∼ η , k2
⊥ ∼ 1 ;

l2 ∼ η , k2
⊥ ∼ η .

(D.3)

The leading term of the first region gives

η2−n2−n3−ε i−n3

∫∫
dx1 . . . dxn

∫
dD−2k⊥
(2π)D−2

1

(k2
⊥ + a)n1

∫
dDl

(2π)D
1

(l2 + i)n2
, (D.4)

which can be easily integrated out. The leading term of the second region gives

η3−n1−n2−n3−2ε i−n3

∫∫
dx1 . . . dxn

∫
dD−2k⊥
(2π)D−2

1

(k2
⊥)n1

∫
dDl

(2π)D
1

(l2 − b k2
⊥ + i)n2

, (D.5)
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the integrand of which is proportional to bn1−1+ε after integrating out k⊥ and l. Though b

is a function of Feynman parameters and z, the dependence of z can be factorized out. So

the integration over Feynman parameters can be easily performed.

E Coefficients

In this appendix, we give the coefficients defined in eq. (6.3). The coefficients of asymptotic

expansion at z = 0 with different powers of ln(z) are shown respectively in tables 3–5. The

coefficients of asymptotic expansion at z = 1/2 are shown in table 6. The coefficients of

asymptotic expansion at z = 1 with different powers of ln(1 − z) are shown respectively

in tables 7–10. To obtain results with 160-digit precision at any value of z, we attach an

ancillary file with these coefficients calculated up to j = 530.
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j 2j Af2j 2j AN2j A
[1]
2j A

[8]
2j

0 0 0 0 0

1 0 0 −0.12500000000000 −0.50000000000000

2 0 0.062500000000000 0.17187500000000 0.18750000000000

3 0 0 0.40625000000000 0.43750000000000

4 0 0.010416666666667 0.41992187500000 0.58333333333333

5 0 0.012500000000000 0.61302083333333 0.83072916666667

6 0 0.012500000000000 0.77320963541667 1.0865885416667

7 0 0.011904761904762 0.96474144345238 1.3835937500000

8 0 0.011160714285714 1.1624375116257 1.7071149553571

9 0 0.010416666666667 1.3765091668992 2.0620698474702

10 0 0.0097222222222222 1.6032713269430 2.4461819118924

11 0 0.0090909090909091 1.8448080307822 2.8605321490575

12 0 0.0085227272727273 2.1006452758591 3.3048841336073

13 0 0.0080128205128205 2.3713380017388 3.7796014959162

14 0 0.0075549450549451 2.6569079570824 4.2847597683451

15 0 0.0071428571428571 2.9575555837436 4.8205296219487

16 0 0.0067708333333333 3.2733526663303 5.3870027269636

17 0 0.0064338235294118 3.6043937236582 5.9842752947952

18 0 0.0061274509803922 3.9507353541372 6.6124149853725

19 0 0.0058479532163743 4.3124309604004 7.2714813347533

20 0 0.0055921052631579 4.6895195736275 7.9615206143639

21 0 0.0053571428571429 5.0820347557021 8.6825717844530

22 0 0.0051406926406926 5.4900031588248 9.4346665064663

23 0 0.0049407114624506 5.9134472546027 10.217831334440

24 0 0.0047554347826087 6.3523855949021 11.032088390171

25 0 0.0045833333333333 6.8068338723260 11.877456377491

26 0 0.0044230769230769 7.2768053293128 12.753951144117

27 0 0.0042735042735043 7.7623112742042 13.661586235331

28 0 0.0041335978835979 8.2633613935222 14.600373279871

29 0 0.0040024630541872 8.7799640454746 15.570322323673

30 0 0.0038793103448276 9.3121264733205 16.571442086004

31 0 0.0037634408602151 9.8598549881702 17.603740172815

32 0 0.0036542338709677 10.423155112584 18.667223247831

33 0 0.0035511363636364 11.002031700614 19.761897174325

34 0 0.0034536541889483 11.596489035538 20.887767131486

35 0 0.0033613445378151 12.206530911465 22.044837711381

36 0 0.0032738095238095 12.832160701094 23.233112999755

37 0 0.0031906906906907 13.473381412637 24.452596643923

38 0 0.0031116642958748 14.130195737711 25.703291909998

39 0 0.0030364372469636 14.802606091904 26.985201731406

40 0 0.0029647435897436 15.490614649253 28.298328750170

Table 3. Coefficients of the term including ln2(z) in the asymptotic expansion at z = 0.
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j 2j Af1j 2j AN1j A
[1]
1j A

[8]
1j

0 0 0 0 0

1 −0.50000000000000 0.40342640972003 0.57398486804019 2.1705584583202

2 0.50000000000000 −0.56250000000000 1.4045473411516 1.5117808350766

3 −0.16666666666667 0.22822546990668 0.93487513830781 0.99773602488115

4 −0.083333333333333 0.063728942128898 0.77583977358195 1.1446460363136

5 −0.050000000000000 0.022603443749342 1.2365719430589 1.6550348228586

6 −0.033333333333333 0.0083258186336740 1.4092448914801 2.0468490402404

7 −0.023809523809524 0.0026716127522174 1.7361186602102 2.5406880555688

8 −0.017857142857143 0.00032676908567975 2.0196361310846 3.0423344345641

9 −0.013888888888889 −0.00063076082765445 2.3512179222451 3.5982593417265

10 −0.011111111111111 −0.00098315445723759 2.6900249599261 4.1889435565027

11 −0.0090909090909091 −0.0010700359072207 3.0552572573464 4.8243295123460

12 −0.0075757575757576 −0.0010438451264836 3.4384052244977 5.5004264496101

13 −0.0064102564102564 −0.00097377622797185 3.8437040732642 6.2195037543678

14 −0.0054945054945055 −0.00089095569474677 4.2693965297393 6.9807979692039

15 −0.0047619047619048 −0.00080888658331143 4.7164846138369 7.7848921322315

16 −0.0041666666666667 −0.00073292167756481 5.1846360515956 8.6316844605753

17 −0.0036764705882353 −0.00066470610592851 5.6741210281724 9.5213601185356

18 −0.0032679738562092 −0.00060426584550321 6.1849023934097 10.453940889020

19 −0.0029239766081871 −0.00055098207513755 6.7170723197927 11.429505551778

20 −0.0026315789473684 −0.00050403611185787 7.2706479877643 12.448089618283

21 −0.0023809523809524 −0.00046260357211663 7.8456719124648 13.509736676690

22 −0.0021645021645022 −0.00042593116202551 8.4421660426331 14.614476407438

23 −0.0019762845849802 −0.00039335992204217 9.0601554299886 15.762337114500

24 −0.0018115942028986 −0.00036432525363425 9.6996581355889 16.953341233177

25 −0.0016666666666667 −0.00033834791659660 10.360691100613 18.187508691798

26 −0.0015384615384615 −0.00031502244008527 11.043268112937 19.464856235503

27 −0.0014245014245014 −0.00029400570927271 11.747401426065 20.785398505998

28 −0.0013227513227513 −0.00027500677270258 12.473101486693 22.149148123601

29 −0.0012315270935961 −0.00025777814198227 13.220377479519 23.556116136380

30 −0.0011494252873563 −0.00024210852946522 13.989237398849 25.006312200449

31 −0.0010752688172043 −0.00022781685111583 14.779688288806 26.499744818788

32 −0.0010080645161290 −0.00021474729572681 15.591736353070 28.036421494339

33 −0.00094696969696970 −0.00020276527369408 16.425387089137 29.616348878805

34 −0.00089126559714795 −0.00019175408363014 17.280645379247 31.239532886426

35 −0.00084033613445378 −0.00018161216223762 18.157515576954 32.905978794662

36 −0.00079365079365079 −0.00017225080769429 19.056001575036 34.615691326624

37 −0.00075075075075075 −0.00016359228794356 19.976106865459 36.368674722171

38 −0.00071123755334282 −0.00015556826266034 20.917834589155 38.164932797826

39 −0.00067476383265857 −0.00014811846167822 21.881187579114 40.004468998286

40 −0.00064102564102564 −0.00014118957386764 22.866168397045 41.887286440479

Table 4. Coefficients of the term including ln1(z) in the asymptotic expansion at z = 0.
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j 2j Af0j 2j AN0j A
[1]
0j A

[8]
0j

0 0 0 3.4252812215960 3.4252812215960

1 −0.70456854629337 1.4697992278829 4.6689187537857 6.1685539364111

2 0.25000000000000 −1.1843929628919 −1.8640969877500 −2.8881394426089

3 0.17298364660445 0.094965152253727 −0.16554393253699 0.51213384853759

4 −0.045452621142219 0.23072894840510 0.78382242411568 0.85936906668774

5 −0.066577128240887 0.17053547870878 0.44336647144137 0.73994308173799

6 −0.063366233642073 0.12109747519709 0.67331915427375 0.96405497622222

7 −0.056542774596945 0.087614056243353 0.72643591336692 1.1148648188725

8 −0.049872358725487 0.065138970095316 0.86374734795843 1.3236172730145

9 −0.044061671976084 0.049781093512754 0.97691299177752 1.5305055344041

10 −0.039144013506793 0.039034884002099 1.1101510178493 1.7590775589338

11 −0.035004464286014 0.031325828249495 1.2448043644419 1.9991406479620

12 −0.031510629609838 0.025657937682758 1.3891309165733 2.2552261847826

13 −0.028545040478971 0.021391957753787 1.5396189149342 2.5254422703430

14 −0.026010792203882 0.018110414250278 1.6979242952360 2.8107253874451

15 −0.023829906843410 0.015535501281597 1.8633587742894 3.1107172815180

16 −0.021940102001844 0.013478693328440 2.0362782983433 3.4256301152076

17 −0.020291630604230 0.011809471062524 2.2165508569299 3.7554031028881

18 −0.018844617116018 0.010435658435772 2.4042617391595 4.1000931093606

19 −0.017566929679332 0.0092908842985695 2.5993906536078 4.4596966727796

20 −0.016432517354084 0.0083264647109326 2.8019628414668 4.8342342183080

21 −0.015420121785057 0.0075060622043309 3.0119795344474 5.2237117778890

22 −0.014512280853376 0.0068021129583808 3.2294511242571 5.6281396460192

23 −0.013694556865817 0.0061933957846504 3.4543820046562 6.0475241093669

24 −0.012954936500540 0.0056633497945082 3.6867780428773 6.4818717308353

25 −0.012283362047158 0.0051988907233773 3.9266432894214 6.9311876101839

26 −0.011671363211814 0.0047895646955148 4.1739817310093 7.3954764370257

27 −0.011111766227744 0.0044269339720905 4.4287966091054 7.8747421701539

28 −0.010598462663998 0.0041041246704996 4.6910908677894 8.3689883364117

29 −0.010126224574093 0.0038154892744314 4.9608670398859 8.8782180067257

30 −0.0096905558141942 0.0035563516646064 5.2381273837575 9.4024339054297

31 −0.0092875717533919 0.0033228122754372 5.5228738857788 9.9416384388550

32 −0.0089139013993049 0.0031115976166264 5.8151083158355 10.495833749157

33 −0.0085666073218522 0.0029199429178158 6.1148322480858 11.065021745042

34 −0.0082431197889759 0.0027454997753454 6.4220470909011 11.649204134677

35 −0.0079411823135248 0.0025862628642111 6.7367541061961 12.248382450199

36 −0.0076588064118678 0.0024405113261225 7.0589544287767 12.862558070213

37 −0.0073942338376384 0.0023067615547164 7.3886490814482 13.491732238224

38 −0.0071459049121013 0.0021837289043051 7.7258389886494 14.135906078845

39 −0.0069124318511479 0.0020702964389732 8.0705249878506 14.795080611558

40 −0.0066925762066937 0.0019654892760815 8.4227078395553 15.469256762702

Table 5. Coefficients of the term including ln0(z) in the asymptotic expansion at z = 0.
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J
H
E
P
0
4
(
2
0
1
9
)
1
1
6

j Bfj BNj B
[1]
j B

[8]
j

0 −0.16851770326295 0.41612862149279 3.4502975889603 3.1359899450428

1 −0.28278529964508 0.35334086558632 0.42316029178587 2.2549071617698

2 0.033232765296908 −0.078926461470642 −2.4479134932754 −1.2096826020440

3 −0.020468226170618 0.18257241446333 1.3806416076688 1.5894441359737

4 −0.14037814600712 0.18764848019285 −1.3100405280826 −1.0254411711450

5 −0.065776956191377 0.074435996336763 0.39126631701522 0.25474714881661

6 −0.076860753906582 0.068406036987869 −1.5646863364829 −1.5566491831871

7 −0.046950966357598 0.033611273229861 0.40381458231355 0.21319989582011

8 −0.050729242941967 0.034248119325764 −1.5303231186726 −1.6118306150112

9 −0.034864417756233 0.018849286758299 0.47363972162014 0.28152365204275

10 −0.036914263377718 0.020548082773928 −1.4706719667535 −1.5832992441957

11 −0.027191811319423 0.012105804040568 0.53859653194338 0.35621228190425

12 −0.028565671912742 0.013735845824808 −1.4169118860031 −1.5396619168110

13 −0.022043774469329 0.0084582196164943 0.59223102386109 0.42155640308020

14 −0.023064062765382 0.0098442114801508 −1.3722504391114 −1.4966631611278

15 −0.018406627098339 0.0062522624645907 0.63575099421848 0.47636585731335

16 −0.019207900828926 0.0074059596217084 −1.3355336251243 −1.4579860431543

17 −0.015725574144345 0.0048127407975187 0.67127156389260 0.52214798327752

18 −0.016377071313228 0.0057753762958888 −1.3051503967425 −1.4240860212676

19 −0.013680301725950 0.0038201885977304 0.70061447318763 0.56064719921929

20 −0.014222889561732 0.0046305266387179 −1.2797303934160 −1.3945398884440

21 −0.012075838152948 0.0031064803097827 0.72517425732263 0.59334093028222

22 −0.012535906633085 0.0037956652982329 −1.2582129267355 −1.3687399929482

23 −0.010787850505734 0.0025759385521478 0.74598991589784 0.62139093121312

24 −0.011183512355657 0.0031680450206490 −1.2397948295255 −1.3461030762910

25 −0.0097338247794586 0.0021707493510462 0.76383548086394 0.64569354140257

26 −0.010078064196233 0.0026842711508940 −1.2238677415693 −1.3261252483808

27 −0.0088571028090975 0.0018542686601597 0.77929301723785 0.66694014586286

28 −0.0091595360435268 0.0023034840146319 −1.2099669946673 −1.3083872688362

29 −0.0081176272567437 0.0016023432021528 0.79280579496772 0.68566776608843

30 −0.0083855603387736 0.0019983773878152 −1.1977336654198 −1.2925449365197

31 −0.0074863542106615 0.0013985224518692 0.80471594074944 0.70229760367572

32 −0.0077254540444392 0.0017501362421637 −1.1868871664174 −1.2783164432622

33 −0.0069417578505870 0.0012312853690261 0.81529101005047 0.71716353672909

34 −0.0071564964635966 0.0015454523692259 −1.1772055371491 −1.2654705594653

35 −0.0064675743925251 0.0010923669606980 0.82474286322051 0.73053304052605

36 −0.0066615331494768 0.0013746965638203 −1.1685112004789 −1.2538166822664

37 −0.0060513051734458 0.00097571253275151 0.83324121877091 0.74262258886253

38 −0.0062273889483643 0.0012307617616398 −1.1606605749105 −1.2431967939952

39 −0.0056831988213171 0.00087680407439360 0.84092350493513 0.75360907400686

40 −0.0058437903118448 0.0011083095732526 −1.1535364167066 −1.2334790765198

Table 6. Coefficients of the asymptotic expansion at z = 1/2.
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J
H
E
P
0
4
(
2
0
1
9
)
1
1
6

j 2j Cf3j 2j CN3j C
[1]
3j C

[8]
3j

0 0 0 0 0

1 0 0 −0.83333333333333 −1.0000000000000

2 0 0 0.12500000000000 0.062500000000000

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

7 0 0 0 0

8 0 0 0 0

9 0 0 0 0

10 0 0 0 0

11 0 0 0 0

12 0 0 0 0

13 0 0 0 0

14 0 0 0 0

15 0 0 0 0

16 0 0 0 0

17 0 0 0 0

18 0 0 0 0

19 0 0 0 0

20 0 0 0 0

21 0 0 0 0

22 0 0 0 0

23 0 0 0 0

24 0 0 0 0

25 0 0 0 0

26 0 0 0 0

27 0 0 0 0

28 0 0 0 0

29 0 0 0 0

30 0 0 0 0

31 0 0 0 0

32 0 0 0 0

33 0 0 0 0

34 0 0 0 0

35 0 0 0 0

36 0 0 0 0

37 0 0 0 0

38 0 0 0 0

39 0 0 0 0

40 0 0 0 0

Table 7. Coefficients of the term including ln3(1− z) in the asymptotic expansion at z = 1.
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J
H
E
P
0
4
(
2
0
1
9
)
1
1
6

j 2j Cf2j 2j CN2j C
[1]
2j C

[8]
2j

0 0 0 −0.50000000000000 −1.0000000000000

1 0.50000000000000 0 0.37500000000000 0.12500000000000

2 0 0 0.50000000000000 0.15625000000000

3 0 0 −0.60416666666667 −0.87500000000000

4 0 0 −0.34635416666667 −0.72135416666667

5 0 0 −0.35052083333333 −0.83411458333333

6 0 0 −0.38502604166667 −0.97376302083333

7 0 0 −0.43921130952381 −1.1611421130952

8 0 0 −0.51572265625000 −1.3897426060268

9 0 0 −0.61328900049603 −1.6551300533234

10 0 0 −0.72943289620536 −1.9555071149554

11 0 0 −0.86277792574179 −2.2895857465560

12 0 0 −1.0130357310197 −2.6566851969577

13 0 0 −1.1799183499470 −3.0563270136100

14 0 0 −1.3631643781600 −3.4882098354713

15 0 0 −1.5625995583057 −3.9521164788987

16 0 0 −1.7781207862923 −4.4478939551494

17 0 0 −2.0096467849050 −4.9754273064916

18 0 0 −2.2571121633958 −5.5346296712624

19 0 0 −2.5204664136241 −6.1254332211172

20 0 0 −2.7996704241174 −6.7477843824523

21 0 0 −3.0946924018735 −7.4016400405593

22 0 0 −3.4055061873651 −8.0869651205236

23 0 0 −3.7320901937905 −8.8037307378166

24 0 0 −4.0744264633797 −9.5519128887260

25 0 0 −4.4324998780102 −10.331491446636

26 0 0 −4.8062976159231 −11.142449408254

27 0 0 −5.1958087389786 −11.984772306809

28 0 0 −5.6010238595632 −12.858447755577

29 0 0 −6.0219348723453 −13.763465086182

30 0 0 −6.4585347425683 −14.699815060482

31 0 0 −6.9108173355185 −15.667489638499

32 0 0 −7.3787772771983 −16.666481790253

33 0 0 −7.8624098399109 −17.696785341976

34 0 0 −8.3617108480247 −18.758394849621

35 0 0 −8.8766765997782 −19.851305494155

36 0 0 −9.4073038019765 −20.975512994373

37 0 0 −9.9535895151783 −22.131013533921

38 0 0 −10.515531107478 −23.317803699878

39 0 0 −11.093126215343 −24.535880430829

40 0 0 −11.686372710287 −25.785240972751

Table 8. Coefficients of the term including ln2(1− z) in the asymptotic expansion at z = 1.
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J
H
E
P
0
4
(
2
0
1
9
)
1
1
6

j 2j Cf1j 2j CN1j C
[1]
1j C

[8]
1j

0 0.16666666666667 0 0.37320146702979 −1.2717325998184

1 −0.83333333333333 3.0000000000000 1.2317374615085 5.1665396620531

2 −1.3333333333333 −1.0000000000000 −0.0049415864371726 −0.72501733141193

3 0 1.7777777777778 −0.39583333333333 −1.2048611111111

4 0 −1.1666666666667 −0.27777777777778 −0.94843750000000

5 0 1.1733333333333 −0.55451388888889 −1.4184027777778

6 0 −1.0666666666667 −0.58496961805556 −1.6571884300595

7 0 1.0775510204082 −0.76076140873016 −2.0457971053005

8 0 −1.0357142857143 −0.89078802061189 −2.4197029982240

9 0 1.0440917107584 −1.0690909387844 −2.8659408280999

10 0 −1.0222222222222 −1.2604599181252 −3.3457155692993

11 0 1.0284664830119 −1.4812527410936 −3.8767821276542

12 0 −1.0151515151515 −1.7217815999456 −4.4498991482114

13 0 1.0199031737493 −1.9862444565446 −5.0689360493821

14 0 −1.0109890109890 −2.2724855553188 −5.7315689661375

15 0 1.0147008547009 −2.5813070161657 −6.4386168752643

16 0 −1.0083333333333 −2.9120850939700 −7.1894448486906

17 0 1.0113033448674 −3.2649946515199 −7.9841914861373

18 0 −1.0065359477124 −3.6398583480110 −8.8226548755166

19 0 1.0089620335669 −4.0366845785431 −9.7048301626652

20 0 −1.0052631578947 −4.4554039346054 −10.630636010721

21 0 1.0072801050245 −4.8959997271497 −11.600044668106

22 0 −1.0043290043290 −5.3584385359755 −12.613013813211

23 0 1.0060311459177 −5.8427017364928 −13.669517729188

24 0 −1.0036231884058 −6.3487688117350 −14.769529890133

25 0 1.0050782608696 −6.8766247677079 −15.913030161841

26 0 −1.0030769230769 −7.4262555253483 −17.100000108663

27 0 1.0043347050754 −7.9976495249565 −18.330424461170

28 0 −1.0026455026455 −8.5907964418184 −19.604289700477

29 0 1.0037433390584 −9.2056874302096 −20.921584215344

30 0 −1.0022988505747 −9.8423146685881 −22.282297781623

31 0 1.0032652768309 −10.500671315910 −23.686421461447

32 0 −1.0020161290323 −11.180751314226 −25.133947357953

33 0 1.0028733078586 −11.882549305241 −26.624868493459

34 0 −1.0017825311943 −12.606060519716 −28.159178667350

35 0 1.0025479282622 −13.351280705239 −29.736872357411

36 0 −1.0015873015873 −14.118206055173 −31.357944626608

37 0 1.0022748617343 −14.906833153491 −33.022391049349

38 0 −1.0014224751067 −15.717158925268 −34.730207646287

39 0 1.0020434635819 −16.549180595653 −36.481390829981

40 0 −1.0012820512821 −17.402895654033 −38.275937357712

Table 9. Coefficients of the term including ln1(1− z) in the asymptotic expansion at z = 1.
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J
H
E
P
0
4
(
2
0
1
9
)
1
1
6

j 2j Cf0j 2j CN0j C
[1]
0j C

[8]
0j

0 −0.50000000000000 1.4631484256449 2.9908803661052 5.3672341813001

1 −1.4299560445655 1.1378636777296 1.5413614947768 2.6955279484399

2 1.9166666666667 −2.2500000000000 1.7184021483612 −1.6007519167030

3 0.61111111111111 −0.61959019752306 −2.0642440567933 −1.5427483775876

4 −0.64351851851852 0.19595791897636 −0.013041375932536 −0.30341867173287

5 0.34027777777778 −0.041373974809664 −0.23831132043848 −0.66995761696499

6 −0.32555555555556 0.050632425392143 −0.29505564506105 −0.76483272256170

7 0.22645502645503 −0.0085130103757183 −0.33982237796946 −0.89088866631223

8 −0.21839569160998 0.021364564886038 −0.39014664025160 −1.0512016932370

9 0.16922949735450 −0.0021163793679548 −0.46132229463197 −1.2231379052781

10 −0.16440329218107 0.011352248256237 −0.54181900555092 −1.4140169880252

11 0.13501683501684 −0.00031876770238782 −0.62865298103254 −1.6193130343325

12 −0.13184113865932 0.0069044046901382 −0.72327561055935 −1.8406888957442

13 0.11229279979280 0.00026524868288686 −0.82599364970112 −2.0771148764280

14 −0.11005447543909 0.0045886802251189 −0.93646341983044 −2.3289420592043

15 0.096110238967382 0.00045367535620384 −1.0545144536797 −2.5959150798748

16 −0.094451058201058 0.0032466294330511 −1.1801975461308 −2.8780968527867

17 0.084002246732026 0.00049759837275320 −1.3135046985544 −3.1754140946729

18 −0.082724593105216 0.0024063111971173 −1.4544109140733 −3.4878694626044

19 0.074602810584923 0.00048632461101711 −1.6028971675594 −3.8154359820062

20 −0.073589309531138 0.0018484695198520 −1.7589576701531 −4.1581059460687

21 0.067094820384294 0.00045472318488549 −1.9225846311898 −4.5158659968494

22 −0.066271559128702 0.0014608181493982 −2.0937708334094 −4.8887083360078

23 0.060959681513041 0.00041715324450384 −2.2725100912738 −5.2766246918423

24 −0.060277873250463 0.0011813528773489 −2.4587976549535 −5.6796088121000

25 0.055852455716586 0.00037961316951524 −2.6526292535445 −6.0976549233305

26 −0.055278632478632 0.00097371475344293 −2.8540011625229 −6.5307582257733

27 0.051534808970706 0.00034450885468517 −3.0629101297186 −6.9789144511760

28 −0.051045262465016 0.00081551052326244 −3.2793533396823 −7.4421199171304

29 0.047836791166019 0.00031265716431784 −3.5033283074846 −7.9203713698022

30 −0.047414264952909 0.00069237305414920 −3.7348328397738 −8.4136659536719

31 0.044633955423722 0.00028417060994145 −3.9738649934083 −8.9220011379835

32 −0.044265594288357 0.00059476050997821 −4.2204230432240 −9.4453746793249

33 0.041833086408439 0.00025886130696172 −4.4745054503731 −9.9837845786079

34 −0.041509119717676 0.00051614527601586 −4.7361108384675 −10.537229050602

35 0.039362982269557 0.00023642858405518 −5.0052379727688 −11.105706495350

36 −0.039075852563248 0.00045194571806451 −5.2818857426495 −11.689215475273

37 0.037168319112764 0.00021654582243161 −5.5660531463308 −12.287754694956

38 −0.036912089899288 0.00039887305714912 −5.8577392779563 −12.901322984173

39 0.035205459028174 0.00019889927248022 −6.1569433164241 −13.529919283126

40 −0.034975402839775 0.00035451933700361 −6.4636645157488 −14.173542629791

Table 10. Coefficients of the term including ln0(1− z) in the asymptotic expansion at z = 1.
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