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1 Introduction

Anti-de Sitter/conformal field theory (AdS/CFT) duality [1–4] provides a powerful frame-

work for investigating the properties of correlators, the basic observables, in strongly

coupled CFTs. Early work in the subject [5–15] laid the foundation for computational

techniques, especially in the context of the holographic evaluation of correlators via bulk

Feynman diagram methods. Traditionally, CFT correlators are obtained in position space,

which though physically intuitive, often falls short of utilizing the full power of conformal

symmetry. Consequently, despite major advances in evaluating holographic correlators in

position space, the study and computation of arbitrarily complicated bulk diagrams re-

mained a challenging task. But beginning with the work of Mack [16], developed further

in refs. [17–26] in the holographic context, Mellin amplitudes emerged as an effective tool

in this regard. Analogous to momentum space for flat space scattering amplitudes, Mellin

space can be regarded as the natural space for studying scattering amplitudes in AdS,

one reason being that it manifestly takes into account the conformal symmetry of the un-

derlying theory. While position space correlators are written as functions of conformally
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invariant cross-ratios constructed out of the boundary insertion points xi, the Mellin am-

plitude M depends on Mandelstam-like invariants defined in terms of the Mellin variables

γij — indeed, the number of conformally invariant cross-ratios in position space matches

the number of independent Mandelstam-like variables in Mellin space. An N -point posi-

tion space correlator A({xi}) is represented as the inverse Mellin transform of the Mellin

amplitude M({γij}), defined (schematically) via the contour integral

A({xi}) =

∫
[dγ]M({γij})

∏
1≤i<j≤N

Γ(γij)

|xi − xj |2γij
, (1.1)

where the measure [dγ] is over the Mellin variables γij , which are integrated along con-

tours parallel to the imaginary axis according to a well-defined prescription. In the early

papers [18, 19], a set of “Feynman rules” were derived which yield, in principle, the Mellin

amplitude for any bulk-diagram at tree-level, and to this date the study of Mellin space

has continued to yield new insights into the structure of correlators and holography, see

e.g. refs. [27–36].

Recently, the framework of holography was extended to the so-called p-adic AdS/CFT

correspondence [37–39]. In the simplest setting, the classical bulk geometry is described

by the Bruhat-Tits tree, essentially an infinite (p+ 1)-regular graph without any loops, in

the place of vacuum (Euclidean) AdS.1 The projective line over p-adic numbers, in place of

reals, is interpreted as the boundary of the tree.2 Just like in the usual AdS/CFT prescrip-

tion, boundary correlators may be obtained via holographic computations. Surprisingly,

the position space correlators in the p-adic formulation are strikingly similar to their real

analogs, not just with respect to the kinematics (such as the functional dependence on

coordinates) but also with respect to the dynamics (such as the functional form of the

OPE coefficients) [37, 39, 42].3 At the same time, the p-adic results are much simpler,

so that for instance closed-form expressions are usually available for position space corre-

lators, in stark contrast with the situation in real AdS/CFT. Thus, in certain respects,

the p-adic formulation provides a simpler, computationally efficient window into the usual

formulation of holography over the reals.

Given the important role Mellin amplitudes have played in the usual AdS/CFT cor-

respondence and the similarities between the position space correlators in the p-adic and

real formulations of holography, it is natural to ask whether p-adic versions of Mellin space

and Mellin amplitudes exist and whether they can prove as fruitful in the context of p-adic

AdS/CFT. This paper answers the question in the affirmative. The new results in this

1For a description of the bulk in other non-trivial geometries such as black-hole backgrounds, see refs. [38,

40, 41].
2Arguably, this version of p-adic holography is similar in certain aspects, such as the structure of the

global conformal group, to AdS3/CFT2 or even AdS2/CFT1. However, one can make contact with certain

aspects of higher dimensional AdSn+1/CFTn holography for any n, if one considers the degree n (unramified)

extension of p-adic numbers on the boundary, corresponding to a bulk given by the Bruhat-Tits tree

associated with the unramified extension [37, 39] (see also ref. [42] for a non-trivial example of an interacting

p-adic CFT defined on such a boundary).
3In fact, one may be tempted to develop a dictionary to translate results back and forth between the two

formulations, reminiscent of related observations made earlier in the context of p-adic string theory [43–47].
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paper consist of a proposal for the definition of p-adic Mellin amplitudes4 and the compu-

tation of such amplitudes for arbitrary-point scalar bulk contact diagrams and exchange

diagrams with one, two or three internal lines, for each of which closed-form expressions are

obtained. Strong mathematical and physical similarities between p-adic Mellin amplitudes

and the Mellin amplitudes of conventional AdS/CFT are also demonstrated.

The outline for this paper is as follows. In the remainder of this section, we motivate

and propose the definition of p-adic Mellin amplitudes. In section 2, we review the main

properties of p-adic numbers and the correlators of p-adic AdS/CFT which will be relevant

for the present paper, as well as two key computational ingredients: (a) the p-adic version of

the well-known Schwinger parameter trick, which allows one to carry out bulk integrations

conveniently, and (b) the p-adic analog of the Gaussian function, the so-called characteristic

function. Before moving to the actual computation of p-adic amplitudes, we show in

section 3 using a simple example, how the p-adic Mellin formula works — exactly which

contours the Mellin variables are integrated over, and how the position space amplitude

is recovered given the Mellin amplitude. In section 4, we compute various p-adic Mellin

amplitudes for arbitrary tree-level bulk diagrams involving up to three internal lines, and

we derive the p-adic split representation for the scalar bulk-to-bulk propagator, which is

heavily used in evaluating exchange amplitudes. We close the paper with a comparison

between real and p-adic Mellin amplitudes in section 5.1 and with some final comments

and future directions in section 5.2.

1.1 Mellin space and local zeta functions

In the standard AdSn+1/CFTn formulation, to any N -point position space amplitude

A({xi}) there corresponds a Mellin amplitude M, which is a function of complex Mellin

variables γij , with indices i and j running from 1 to N . The Mellin variables γij satisfy

the constraints

γij = γji ,

N∑
j=1

γij = 0 and γii = −∆i (no sum over i) i = 1, . . . ,N . (1.2)

If the bulk space-time dimension is (n+ 1), then provided n is sufficiently large, the condi-

tions in eq. (1.2) admit N (N − 3)/2 independent Mellin variables, which is the number of

independent conformally invariant cross-ratios constructed out of N points.5 The standard

trick for solving the constraints is to introduce fictitious (n + 1)-dimensional momenta ki
(where we have suppressed the space-time Lorentz index) such that

ki · kj = γij

N∑
i=1

ki = 0 i, j ∈ {1, . . . ,N} , (1.3)

4We should emphasize that what we refer to as the p-adic Mellin amplitude is fundamentally different

from what ref. [48] denotes by the same name. As discussed in section 1.1, the Mellin variables in our

formalism live on a different manifold, and the pole structure of the Mellin amplitudes we derive also differs

entirely from the one mentioned in ref. [48].
5More precisely, we assume n+ 1 ≥ N , otherwise there are nN − 1

2
(n+ 1)(n+ 2) conformally invariant

cross-ratios (see, e.g. ref. [32]).
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which supplemented with eq. (1.2), implies the “on-shell condition”

k2
i = ki · ki = −∆i i ∈ {1, . . . ,N} . (1.4)

For n + 1 ≥ N , the number of independent momentum degrees of freedom, which is the

same as the number of independent Mandelstam invariants constructed out of momenta

from the set {ki : i ∈ {1, . . . ,N}}, is precisely N (N − 3)/2. Such Mandelstam invariants

si1...iK , associated with a subset S = {i1, . . . , iK} ⊆ {1, . . . ,N} are defined to be

si1...iK ≡ −

(∑
i∈S

ki

)2

=
∑
i∈S

∆i − 2
∑
i,j∈S,
i<j

γij . (1.5)

We note that analogously to flat space scattering amplitudes, Mellin amplitudes exhibit

dependence on Mellin variables γij only via such Mandelstam invariants.

As indicated previously, the Mellin space amplitudes M (over the reals) are defined

via eq. (1.1), repeated below for convenience

A({xi}) =

∫
[dγ]M({γij})

∏
1≤i<j≤N

Γ(γij)

|xi − xj |2γij
, (1.6)

where

[dγ] ≡
N (N−3)/2∏

(ij)

dγij
2πi

(1.7)

denotes a N (N−3)
2 -dimensional measure over the independent Mellin variables γij , and

the individual contours are chosen to lie parallel to the imaginary axis, such that they

separate out the semi-infinite sequences of poles arising from the Euler gamma functions in

eq. (1.6). In Euclidean signature, the coordinate dependent factor in eq. (1.6), |xi−xj |2 =

(xi − xj) · (xi − xj) denotes the L2-norm squared of the vector xi − xj ∈ Rn.

It is convenient to factor out the product of Euler gamma functions Γ(γij) from the

definition of the Mellin amplitude M as shown in eq. (1.6). The gamma function Γ(γij) in

eq. (1.6) has simple poles at γij = 0,−1,−2, . . . in the complex plane. Evaluating the con-

tour integrals in eq. (1.6), it turns out the residues at the poles of these gamma functions

generate, for large N CFTs, precisely the double-trace contribution to the correlator in

position space. Consequently the Mellin amplitude is restricted to the single-trace sector,

with poles of the amplitude corresponding precisely to the exchange of single-trace opera-

tors and their descendants in the intermediate channels. As a result, the Mellin amplitude

of an arbitrary-point contact diagram between scalar primaries is simply a constant, i.e.

independent of Mellin variables γij ; in contrast, in position space, already the four-point

contact diagram is represented by appropriate D-functions.

In p-adic AdS/CFT, the role of the Euler gamma function is played by the so-called

“local zeta function at a finite place” (which we will refer to as the p-adic local zeta
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function) [37, 39, 42]6

ζp(z) ≡ 1

1− p−z
z ∈ C, (1.8)

where p is a fixed prime number (denoting the “finite place” of the local zeta function),

where we note the important fact that it has a single simple pole along the real axis, at

z = 0. More precisely, ζp replaces the “local zeta function at infinity”,

ζ∞(z) ≡ π−z/2 Γ
(z

2

)
. (1.9)

This suggests a natural candidate for the definition of p-adic Mellin amplitudes (which

we will also denote by the symbol M; it should be clear from the context whether we are

referring to real or p-adic Mellin amplitudes). We define the p-adic Mellin amplitude M
via the relation

A({xi}) =

∫
[dγ]M({γij})

∏
1≤i<j≤N

ζp(2γij)

|xi − xj |
2γij
p

, (1.10)

where A is the position space correlator in p-adic AdS/CFT. The measure [dγ] in eq. (1.10)

is given by

[dγ] ≡
N (N−3)/2∏

(ij)

dγij
2πi/(2 log p)

, (1.11)

where the factor of (2 log p) has been introduced for future convenience, and the integral

in eq. (1.10) is still over N (N−3)
2 independent Mellin variables γij which satisfy eq. (1.2).

Compared to eq. (1.6), in eq. (1.10) we have essentially replaced the Euler gamma function

Γ(s) with ζp(2s), the p-adic local zeta function with twice the argument of the Euler gamma

function, and replaced the L2-norm | · | over the reals with the p-adic norm | · |p. The p-adic

norm will be described in the next section.

Further, we postulate: the complex-valued Mellin variables for p-adic Mellin amplitudes

live, not on the complex plane, but on an infinitely long horizontal cylinder, with circum-

ference π/log p. It is convenient to let the Mellin variables live on such a manifold, different

from C, due to the periodicity of the local zeta function ζp. From its definition (1.8), it is

clear that ζp(z) is periodic in the imaginary direction with periodicity 2π/log p, i.e.

ζp

(
z + i

2π

log p

)
= ζp(z). (1.12)

6It was observed in refs. [37, 39, 42] that the structure constants and anomalous dimensions in the

conformal block decomposition of scalar correlators in the standard formulation of AdS/CFT over the reals

may be repackaged in terms of ζ∞ functions defined in eq. (1.9) (this in turn essentially removes all awkward

factors of π appearing in various formulae), and analogously the same scalar correlators are expressed in

terms of ζp functions in p-adic AdS/CFT. Curiously, one can essentially go back and forth between the two

cases by switching ζ∞ and ζp in the results (modulo some important details which we gloss over here; see

refs. [37, 39, 42] for details).
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As a consequence of the postulate above, Mellin variables γij are identified up to the addi-

tion of integral multiples of iπ/ log p. That is, we have chosen the “fundamental domain”

of γij to be R×
[
− π

2 log p ,
π

2 log p

)
.

This causes the contour prescription in eq. (1.10) to be somewhat different from the

one described below eq. (1.6): the integration contours in (1.10) turn out to be circular

contours winding once around the complex cylinder. On the fundamental domain, this

corresponds to integration contours parallel to the imaginary axis, with the lower and

upper limits of the imaginary part given by − iπ
2 log p and iπ

2 log p , respectively. (Over the

reals, the “fundamental domain” is the entire complex plane, and thus the contours run

parallel to the imaginary axis from −i∞ to i∞, which curiously corresponds to taking the

p → 1 limit in the p-adic formulation.7) Just like in eq. (1.6), the contours are placed

so that they separate out poles arising from different factors of the local zeta functions.

This point is explained in detail via an explicit example in section 3. However, unlike the

Euler gamma function which has a semi-infinite sequence of poles along the real axis, the

p-adic local zeta function ζp(z) has only one (simple) pole at z = 0 in the fundamental

domain. This simplicity in the pole structure of the local zeta function ζp leads to great

simplifications in the computations to follow, and accords the p-adic formulation of Mellin

amplitudes its remarkable computational power.

We end this section by pointing out some important underlying assumptions of

this formalism:

• By construction, the position- and Mellin-space amplitudes in p-adic AdS/CFT are

real- and complex-valued functions (for p-adic valued coordinates xi) respectively, just

as in real AdS/CFT; we refer to them simply as p-adic amplitudes to distinguish them

from the corresponding amplitudes in the usual formulation of AdS/CFT over the

reals. This is in keeping with one of the features of p-adic AdS/CFT correspondence

as set up in refs. [37, 38], that bulk fields are real (or complex) valued functions.

Accordingly, the p-adic CFT on the boundary is described in terms of fundamental

fields and operators which are maps O : V → R, where V = Qp or some field-

extension of Qp [51].

As a consequence, the OPE of two (scalar) operators features neither descendants

nor multi-trace primaries containing any derivatives (i.e., higher-twist primaries) [51].

Thus, for instance, the conformal block decomposition at leading order in 1/N obtains

contributions (aside from single-trace operators) only from double-trace operators of

the form, OAOB, i.e. all derivatives are absent [39]. Mathematically, this is accounted

for by the introduction of the p-adic local zeta functions eq. (1.8) in place of Gamma

functions, due to its considerably simpler pole-structure: the p-adic local zeta function

has a single simple-pole in the fundamental domain described above.

The generalization to CFTs where the operators themselves (and consequently, both

position and Mellin amplitudes as well as Mellin variables) are p-adic valued is not

considered in this paper.

7For discussions on the p→ 1 limit in the context of p-adic string theory and p-adic AdS/CFT, see e.g.

refs. [37, 49, 50].
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• We have kept the definition of Mellin amplitudes eq. (1.10) restricted to the case of

scalar Mellin amplitudes.

• As discussed in more detail in the next section, we are implicitly assuming that

the boundary CFT is defined on the unique unramified field extension of the p-adic

numbers. Considering other field extensions may require replacing the local zeta

function ζp in eq. (1.10) with other more appropriate choices, and would also result

in an appropriate modification of the p-adic norm.

• While technically not an assumption of the definition of p-adic Mellin amplitudes,

in this paper, we will be computing p-adic Mellin amplitudes starting from position

space amplitudes built out of bulk-to-bulk and bulk-to-boundary propagators for a

Bruhat-Tits tree geometry [37]. This is fine as long as we are interested in AdS length

scale effects, but may be insufficient when probing sub-AdS dynamics (such as when

interested in amplitudes for loop diagrams). We comment further on this point later

in section 2.1 as well as in section 5.2.

2 Preliminaries: the p-adic toolbox

Many of the steps involved in computing p-adic Mellin amplitudes closely mirror corre-

sponding steps in computing real Mellin amplitudes, but there also occur several subtleties

that are peculiar to working with the p-adic numbers. In this section we briefly intro-

duce p-adic numbers, review relevant portions of p-adic AdS/CFT, set up some notation

we will be adopting in the following, and present and explain various p-adic computa-

tional tools and techniques that will prove useful in deriving explicit expressions for p-adic

Mellin amplitudes.

2.1 p-adic numbers and holographic correlators

For a fixed prime number p, every non-zero p-adic number is given by a unique formal

power series,

x = pv
∞∑
m=0

amp
m , (2.1)

where the digits am ∈ {0, 1, . . . , p−1} with a0 6= 0, and v ∈ Z is called the p-adic valuation

of x. The p-adic norm, denoted | · |p, is then defined to be

|x|p = p−v , (2.2)

with |0|p ≡ 0. The p-adic numbers, which form a field and are denoted Qp, are obtained as

the completion of the rationals Q with respect to the p-adic norm | · |p, just like the field of

real numbers is obtained as the completion of Q with respect to the absolute value norm.

The p-adic norm obeys a stronger version of the triangle inequality; |a+b|p ≤ sup{|a|p, |b|p}.
This property is referred to as the ultrametricity of the p-adic norm.

– 7 –
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In this paper, we will be working with the unique unramified field extension of Qp

of degree n, denoted Qpn , which contains Qp as a sub-field and may be viewed as an n-

dimensional vector space over Qp. (Formally, setting n = 1 recovers the base field Qp.) A

unique ultrametric norm can be defined on the field extension, such that the field extension

norm of any element x ∈ Qp ⊂ Qpn is precisely its p-adic norm |x|p. Thus by abuse of

notation, we will denote the norm in the field extension also by | · |p and simply refer to it

as the “p-adic norm”. For more details on the unramified field extension see, for instance,

the review in section 2 of ref. [37].

According to the p-adic AdS/CFT correspondence [37, 38], large N conformal field the-

ories living on a p-adic valued spacetime, for instance on the degree n unramified extension

of the p-adic numbers Qpn , should admit a holographic description much like in the stan-

dard AdSn+1/CFTn correspondence over the reals. Over the p-adics, the role of vacuum

AdS space is played by the Bruhat-Tits tree Tpn (also sometimes referred to as the Bethe

lattice in the physics literature) for pn a positive integer power of a prime. Tpn is a discrete

(pn+ 1)-regular graph without any cycles, whose boundary at infinity is the projective line

P1(Qpn) = Qpn ∪ {∞}. If we define the set of p-adic integers, Zpn ≡ {z ∈ Qpn : |z|p ≤ 1},
then in the Poincaré patch picture [37], each vertex on the Bruhat-Tits tree corresponds

to a bulk point, and can be identified with a pair of coordinates (z0, z) where z0 = pω with

ω ∈ Z denoting the bulk depth (with more negative ω corresponding to vertices deeper

in the bulk), and z ∈ Qpn denoting the boundary direction. Such an identification is

highly non-unique, with any other pairing (z0, z
′) related to the original pairing (z0, z) via

z′ = z + z0Zpn also corresponding to the same bulk vertex on the Bruhat-Tits tree [37].8

In a more “global picture”, any vertex on the Bruhat-Tits can be uniquely specified by

choosing three points on the boundary P1(Qp).

The simplest bulk action one can write down on the Bruhat-Tits tree is the free lat-

tice action for a real-valued bulk scalar field φ (defined on the vertices of the tree) of

mass-squared m2
∆ (and conformal dimension ∆) which lives on the vertices of the Bruhat-

Tits tree,

Skin =
∑

〈(z0,z)(w0,w)〉

1

2
(φ(z0,z) − φ(w0,w))

2 +
∑

(z0,z)∈Tpn

1

2
m2

∆φ
2
(z0,z)

, (2.3)

where the first sum is taken over all pairs of neighbouring vertices on the tree (i.e. over

all edges), while the second sum is over all vertices of the tree. Further, the classic mass-

dimension relation takes the following form in p-adic AdS/CFT [37]

m2
∆ =

−1

ζp(−∆)ζp(∆− n)
. (2.4)

To get a theory with non-trivial correlators, it is necessary to introduce interactions. In

a perturbative expansion in the coupling constant, the leading order contribution to the

correlators can be depicted graphically as tree-diagrams (not to be confused with the

8This non-uniqueness in the description of the bulk coordinate in terms of the boundary coordinates

encodes the relation between bulk depth direction and boundary RG flow [37, 38].
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1

N
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A
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... iR

A

...iL
... iR

A

...iL

A

... iR

...iL
... iR

A

1

Figure 1. Left: N -point bulk contact diagram. Right: arbitrary-point bulk exchange diagram.

underlying space which is itself a tree), one important class of which is contact diagrams.

Letting the external operators in a contact diagram carry different scaling dimensions

presents little extra difficulty, so we will consider a theory with N different bulk scalar

fields φi of mass m∆i and conformal dimension ∆i obeying eq. (2.4), and contact interaction

terms of the type

∑
(z0,z)∈Tpn

N∏
i=1

φi(z0,z) , (2.5)

for N ≥ 3. This interaction eq. (2.5) represents the p-adic analog of a local N -point

interaction term in continuum AdS space of the form
(
φ∆1(x) . . . φ∆N (x)

)
, where φ∆ is a

bulk field of conformal dimension ∆. We omit overall coupling constant factors.

N -point bulk contact diagrams (see figure 1) are given by the product of N bulk-

to-boundary propagators from N distinct boundary points xi to the same bulk point of

integration (z0, z), as follows

Acontact(xi) =
∑

(z0,z)∈Tpn

N∏
i=1

K∆i(z0, z;xi) , (2.6)

where K∆i are the bulk-to-boundary propagators discussed below. The bulk point (z0, z) in

eq. (2.6) is integrated over the entire bulk space. On the Bruhat-Tits tree, such integrations

reduce to discrete summations over the vertices of the tree; see the discussion around

eq. (2.13) in section 2 for the connection between a continuum integral prescription and

the tree-summation.

Another class of bulk diagrams are the exchange diagrams, those which admit exactly

one single-trace exchange of dimension ∆A (see figure 1), given by

Aexch =
∑

(zL0 ,z
L)∈Tpn

∑
(zR0 ,z

R)∈Tpn

(∏
iL

K∆iL
(zL0 , z

L;xiL)

)
G∆A

(zL, zL0 ; zR, zR0 )

×
(∏

iR

K∆iR
(zR0 , z

R;xiR)

)
, (2.7)

where the product over the index iL (iR) runs over all external legs to the left (right) of

the single-trace exchange depicted in figure 1. Here G∆ is the bulk-to-bulk propagator for

a scalar field of conformal dimension ∆, and is discussed below. Such p-adic position space
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amplitudes were first computed in the case of the three- and four-point contact diagrams

and the four-point exchange diagram in refs. [37, 39] and represent the current state-of-

the-art in p-adic AdS/CFT. For higher point bulk Feynman diagrams, such as the five-

point contact diagram and exchange diagrams with one or two internal lines, geodesic bulk

diagram techniques of ref. [52] adapted to the p-adics [39], together with various propagator

identities of ref. [39] can be used to obtain closed-form position space expressions, though

such expressions become tedious to write down when going beyond five points.

We now recall from ref. [37] the expressions for the propagators of the bulk theory de-

scribed by the free action (2.3) on the Bruhat-Tits tree. The Green’s function of the action

gives rise to the following bulk-to-bulk propagator for a field φ of scaling dimension ∆,

G∆(z0, z;w0, w) = c̃∆ p
−∆ d[z0,z;w0,w] ≡ c̃∆ Ĝ∆(z0, z;w0, w) , (2.8)

where c̃∆ is a normalization constant and d[z0, z;w0, w] denotes the graph distance between

the two bulk points on the tree, i.e. the number of edges separating the two vertices on

the tree.

Taking a suitable limit of the bulk-to-bulk propagator, one can obtain the bulk-to-

boundary propagator from a bulk point (z0, z) to a boundary point x,

K∆(z0, z;x) = c∆

|z0|∆p
|z0, z − x|2∆

s

≡ c∆ K̂∆(z0, z;x) , (2.9)

where c∆ is a normalization constant and |z0, z − x|s denotes the supremum norm,

|z0, z − x|s ≡ sup{|z0|p, |z − x|p} . (2.10)

In this paper we adopt the following normalization convention,

c∆ = c̃∆ = ζp(2∆) . (2.11)

This choice differs from conventions used in refs. [37, 39] but leads to simpler overall factors

in the final expressions for Mellin amplitudes as defined by eq. (1.10). Further, we note

that when it comes to computing the Mellin amplitudes, the simple power law behavior of

the propagators makes it unnecessary to pass to a (p-adic) embedding space formalism as

is usually done in the case of real Mellin amplitudes.

We make a final remark on an alternate way of writing down position space correlators

such as eq. (2.6) and eq. (2.7), which will be especially useful in the computation of Mellin

amplitudes. Instead of starting with a discrete bulk geometry given by the Bruhat-Tits

tree, one could have started with a continuum p-adic anti-de Sitter space given by

pAdSn+1 = Q×p ×Qpn , (2.12)

where the first factor in the product represents the continuum bulk depth direction. It

turns out, owing to the ultrametricity of the p-adic norm, the discrete Bruhat-Tits tree Tpn
emerges as a course-graining of pAdSn+1 at AdS length scales.9 This identification allows

9We refer the reader to ref. [37] for a discussion on how this tree structure emerges as a course-graining

at AdS length scales of a continuum p-adic bulk (see also ref. [38]).
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one to replace the discrete sum on the tree with a bulk integral [37],∑
(z0,z)∈Tpn

f(z0, z) = ζp(1)

∫
Q×p

dz0

|z0|n+1
p

∫
Qpn

dz f(z0, z) , (2.13)

for any function f(z0, z) which takes a constant value over each ball B(z0, z) ≡ z0Up ×
(z+ z0Zpn). The ball B(z0, z) corresponds precisely to the set of points in pAdSn+1 which

are up to a unit AdS length separated from (z0, z) as measured using a chordal distance

function. Roughly, equation (2.13) can be understood as follows: each bulk point (z0, z) is

identified with a subset of boundary points, and z is one representative from this set. But

rather than picking an arbitrary representative, we can integrate z over the whole subset,

provided we also include a factor of |z0|−np to compensate for the overcounting. As for z0,

one could have restricted this variable to run over all values of pω with ω ∈ Z, but instead

the right-hand side of equation (2.13) integrates z0 over all of Q×p and compensates for the

overcounting with a factor of ζp(1)/|z0|p in the integrand.

It is easily checked that the bulk-to-bulk and bulk-to-boundary propagators written

above are examples of functions f(z0, z) which satisfy eq. (2.13). Thus we may rewrite, for

instance the position space contact amplitude eq. (2.6), as

Acontact(xi) =
∑

(z0,z)∈Tpn

∏
i

K∆i(z0, z;xi) = ζp(1)

∫
pAdSn+1

dz0 dz

|z0|n+1
p

∏
i

K∆i(z0, z;xi) ,

(2.14)

which now looks similar to the usual prescription for computing correlators in the standard

AdS/CFT correspondence.

2.2 The characteristic function

Over p-adics, the role of the Gaussian function is played by the characteristic function

of p-adic integers Zpn , which were defined in the previous subsection. The characteristic

function is denoted γp and is defined as follows,

γp(x) ≡

{
1 for x ∈ Zpn ,
0 otherwise.

(2.15)

In other words γp(x) = 1 iff |x|p ≤ 1; otherwise it vanishes. This function features promi-

nently in the rest of the paper, so we briefly discuss some of its properties here.

As demonstrated e.g. in ref. [37], the characteristic function, just like the Gaussian

over the reals is its own Fourier transform. However, it factorizes significantly differently

than the Gaussian, namely as

γp(x1) . . . γp(xN ) = γp
(
(x1, . . . , xN )s

)
, (2.16)

where

(x1, . . . , xN )s ≡


x1 if |x1, . . . , xN |s = |x1|p
x2 if |x1, . . . , xN |s = |x2|p
. . .

xN if |x1, . . . , xN |s = |xN |p

, (2.17)
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Figure 2. The characteristic function γp(x) can be expressed in terms of a closed contour integral

running around a cylinder with a circumference of 2π
k log p .

with the added stipulation that when multiple cases above are simultaneously true,

(x1, . . . , xN )s can be set equal to any element from the set {xj : |x1, . . . , xN |s = |xj |p, 1 ≤
j ≤ N}. Thus (x1, . . . , xN )s is ill-defined as a function from (Qpn)N → Qpn . However,

in this paper such (x1, . . . , xN )s will only appear in the argument of the characteristic

function, and γp((x1, . . . , xN )s) is well-defined since it only depends on the norm of its

argument. The property eq. (2.16) can be verified directly from the definition eq. (2.15).

Another useful property of γp, which follows from the ultrametricity of the p-adic norm,

is that for any p-adic number x ∈ Qpn , and any p-adic integer z ∈ Zpn ,10

γp(x+ z) = γp(x) , (2.18)

that is, it is invariant under translations by p-adic integers.

The characteristic function admits a representation in terms of a contour integral

as follows,

γp(x) =
k log p

2πi

∫ ε+ iπ
k log p

ε− iπ
k log p

dγ
ζp(kγ)

|x|kγp
k > 0 , (2.19)

where k is a positive number and ε is a real number between 0 and 1/k. Because the

integrand is periodic in the imaginary direction with periodicity 2π/(k log p), the contour

can be thought of as a closed loop around a cylinder as shown in figure 2. On the cylinder,

ζp(kγ) has but one pole, namely the simple pole at γ = 0. To prove eq. (2.19), we observe

first that when |x|p ≤ 1, the integrand dies off if <[γ]→ −∞. So we shift the contour left

to <[γ] → −∞ where it vanishes, but we pick up the residue at γ = 0, which combines

with the pre-factor to yield unity. For |x|p > 1 the integrand vanishes on the right, so

the contour can be shifted to the right without encountering any poles. Thus the contour

integral equals zero.11

The complex parameter γ on the r.h.s. of (2.19) is not to be confused with the charac-

teristic function γp on the l.h.s. which takes a p-adic number as its argument. As we argue

now, the complex parameter γ has a natural interpretation as a Mellin variable. We note

10Due to the Zpn invariance of the characteristic function as exhibited in eq. (2.18), γp really is a function

on Qpn/Zpn .
11Actually |x|−kγp does have a pole at γ = 1

k
, but the residue is proportional to the p-adic delta function

δp(x) (see pp. 138–139 of [53]), thus it does not contribute when |x|p > 1.
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that the real analog of eq. (2.19) is the familiar integral representation of the exponential

function,

e−x =
1

2πi

∫ ε+i∞

ε−i∞
dγ

Γ(γ)

xγ
ε > 0 , (2.20)

which we recognize as the statement: the inverse Mellin transform of the Euler gamma

function is the exponential function. Similarly we may think of eq. (2.19) (at k = 1) as

performing the inverse (p-adic) Mellin transform of the local zeta function ζp(γ).

In this paper we will mostly be interested in setting k = 2 in eq. (2.19). Choosing k = 2

is suggestive of the parallels between the Gaussian over the reals and the characteristic

function of Zpn (and in fact also the parallels between the Euler gamma function Γ(γ) and

the local zeta function ζp(2γ)), as summarized in the following table:

x ∈ R x ∈ Qp

e−x
2

=
1

2πi

∫ ε+i∞

ε−i∞
dγ

Γ(γ)

x2γ
γp(x) =

2 log p

2πi

∫ ε+ iπ
2 log p

ε− iπ
2 log p

dγ
ζp(2γ)

|x|2γp

Γ(γ/2) = Γ(1)

∫
R
dx e−x

2 |x|γ−1 ζp(γ) = ζp(1)

∫
Qp
dx γp(x)|x|γ−1

p

where the contours in the first line are as described earlier. We will return to the identities

in the second line of the table in the next subsection.

2.3 p-adic integration and Schwinger parametrization

Defining the p-adic units Upn ≡ {z ∈ Qpn : |z|p = 1}, we note

Q×pn = Qpn r {0} =
⊔
ω∈Z

pωUpn . (2.21)

Such a partitioning is convenient in integrating any arbitrary complex-valued function of

the norm of a p-adic variable x, f(|x|p) over Qpn , as we now describe.

Conventionally, p-adic integrals are normalized by setting the Haar measure of the

p-adic integers to 1, namely ∫
Zpn

dx = 1 . (2.22)

Translational invariance of the Haar measure dx then dictates that∫
pωUpn

dx =
p−nω

ζp(n)
ω ∈ Z . (2.23)

Thus for an arbitrary function f(|x|p), we have∫
Qpn

dx f(|x|p) =

∞∑
ω=−∞

f(|pωUpn |p)
∫
pωUpn

dx =
1

ζp(n)

∞∑
ω=−∞

f(p−ω)p−nω , (2.24)
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where in the second equality we used the partitioning in eq. (2.21) to rewrite the integral

over Qpn as an integral over the union of open sets pωUpn , while dropping the integral

over a set of measure zero. Moreover, we could pull f(|x|p) outside the integral since all

elements of pωUpn have identical p-adic norm. As an application of this formula, one can

show that

ζp(n)

ζp(∆)

∫
Qpn

dS

|S|np
|S|∆p γp(xS) =

1

|x|∆p
. (2.25)

Equation (2.25) will serve for us the purpose of a p-adic analog to the Schwinger parameter

trick over the reals, which takes the form

1

Γ(∆)

∫ ∞
0

dS

S
S∆e−Sx =

1

x∆
. (2.26)

Identities eq. (2.25)-eq. (2.26) are generalizations of the identities in the second line of the

table in the previous subsection.

We will also be interested in a variant of eq. (2.25) where the integration is over Q2
p,

the set of p-adic numbers which admit a square-root in Qp:
12

Q2
p ≡ {x ∈ Qp : x = y2 for some y ∈ Qp} . (2.27)

We note that

[Q×p : (Q2
p)
×] =

{
8 for p = 2

4 for p > 2
, (2.28)

where [Q×p : (Q2
p)
×] denotes the index of the multiplicative subgroup (Q2

p)
× in Q×p .13

From eq. (2.28), together with the fact that each non-zero square in Qp has precisely

two square roots in Qp, it follows that

∫
U2
p

dS =
|2|p

2 ζp(1)
=


1

4 ζ2(1)
for p = 2

1

2 ζp(1)
for p > 2

. (2.29)

This, together with a variant of eq. (2.24) for Q2
p leads to the following variants of the

p-adic Schwinger parameter trick written in eq. (2.25):

2

|2|p
ζp(1)

ζp(2∆)

∫
Q2
p

dS

|S|p
|S|∆p γp(xS) =

1

|x|∆p
for x ∈ Q2

p , (2.30)

2

|2|p
ζp(1)

ζp(2∆)

∫
pQ2

p

dS

|S|p
|S|∆p γp(xS) =

1

|x|∆p
for x ∈ pQ2

p , (2.31)

where

pQ2
p ≡ {x ∈ Qp : x = py2 for some y ∈ Qp} . (2.32)

12The real analog of Q2
p is simply R≥0, the set of all non-negative real numbers which was used as the

integration range in eq. (2.26).
13See e.g. p. 131ff of ref. [53]. The real analog of eq. (2.28) is [R× : R×≥0] = 2, where R× = R− {0}.
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(a)
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∆3x3
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u < 1

P1(Qpn)

vr

x1

x2

x4

x3

1

(b)

Figure 3. (a) The bulk 4-point contact Feynman diagram for scalar fields with scaling dimensions

∆i. (b) The coordinate configuration on the Bruhat-Tits tree. Solid lines are geodesics on the

Bruhat-Tits tree, tracing the path joining together the four points on the boundary of the tree,

which is the projective line over the degree n unramified extension of Qp. The figure is drawn for

u < 1 where u, v are defined in eq. (3.7). For the u = v = 1 configuration, the vertices on the

Bruhat-Tits tree, labeled vl and vr, become coincident.

3 From Mellin space to position space: an example

As noted earlier, for large N CFTs, the usual (real) Mellin amplitude for a bulk contact

diagram of scalar primaries is simply a constant, owing to the fact that there are no single-

trace operator exchanges in the intermediate channel, while the double-trace contribution

is precisely reproduced from the poles of the Euler gamma function factors in eq. (1.6). For

the same reason, it is reasonable to expect that the p-adic Mellin amplitude for the same

contact diagram be simply a constant, with the poles of the local zeta function factors in

eq. (1.10) reproducing the double-trace contribution.

For definiteness, let us specialize to the case of the four-point contact diagram with

(external) scaling dimensions ∆1, ∆2, ∆3, and ∆4 (see figure 3(a)). The position space

expression for this diagram was first computed in ref. [39] in the context of p-adic AdS/CFT.

The four-point contact diagram on the Bruhat-Tits tree is given by

A({xi}) =
∑
a∈Tpn

4∏
i=1

K̂∆i(a;xi) , (3.1)

where, just for this section, we use the unnormalized bulk-to-boundary propagators K̂∆i

which were discussed in section 2.1, and label the bulk point a = (z0, z) ∈ Tpn for ap-

propriately chosen (z0, z). In this section, we will reproduce the position space result for

the four-point contact diagram [39] starting from eq. (1.10) and the assumption that the

p-adic Mellin amplitude for the contact diagram is a Mellin variable independent constant,

M(γij) =M.
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We begin by choosing γ12 and γ14 to be the 4×(4−1)
3 = 2 independent Mellin variables,

so that the remaining Mellin variables are given by

γ13 = ∆1 − γ12 − γ14

γ23 =
∆23,14

2
+ γ14

γ24 =
∆124,3

2
− γ12 − γ14

γ34 =
∆34,12

2
+ γ12 , (3.2)

where we have adopted the short-hand

∆i1...ik,ik+1...il ≡
k∑
j=1

∆ij −
l∑

j=k+1

∆ij . (3.3)

The expressions in eq. (3.2) are obtained by solving the constraints eq. (1.2). Further,

we write

xij ≡ xi − xj . (3.4)

The Mellin representation eq. (1.10)

A({xi}) =M
∫

[dγ]
∏

1≤i<j≤4

ζp(2γij)|xij |
−2γij
p , (3.5)

then takes the explicit form

A =M|x13|−2∆1
p |x23|

−∆23,14
p |x24|

−∆124,3
p |x34|

−∆34,12
p

×
∫
dγ14
πi

log p

ζp (2γ14) ζp (2γ14 + ∆23,14) v−2γ14

×
∫
dγ12
πi

log p

ζp (2γ12) ζp (2γ12 + ∆34,12) ζp (2∆1 − 2γ12 − 2γ14)

× ζp (∆124,3 − 2γ12 − 2γ14)u−2γ12 . (3.6)

Here we have defined the conformally invariant cross ratios

u ≡
∣∣∣∣x12x34

x13x24

∣∣∣∣
p

v ≡
∣∣∣∣x14x23

x13x24

∣∣∣∣
p

. (3.7)

Because of the ultrametricity of the p-adic norm, we can assume without loss of generality

that the indices of the external legs are labeled such that u ≤ 1 and v = 1 (see figure 3(b)).14

14If u ≥ 1 we can interchange indices 2 and 3 to make u ≤ 1. Let a = x12x34
x13x24

and b = x14x23
x13x24

such that

u = |a|p and v = |b|p. It is straightforward to check that a + b = 1. But for any triplet of p-adic numbers

{a, b, a+ b}, it holds true that the p-adic norms of two of them must be equal and cannot be smaller than

the norm of the third. Since we’ve enforced |a|p ≤ 1, we must have either that |b|p = 1 or that |a|p = 1 and

|b|p ≤ 1. In the latter case we can interchange indices 2 and 4 to make |a|p ≤ 1 and |b|p = 1.
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Figure 4. Integration contour for γ12 for computing the position space 4-point contact amplitude

starting from its Mellin representation eq. (3.5). The circumference of the cylinder is π
log p .

To evaluate (3.6), we first need to describe the contour prescription for the inside

integral over γ12. The appropriate integration contour is depicted in figure 4: it is a

circular contour along the periodic imaginary direction wrapping around the cylinder, with

the poles at ∆12,34/2 and 0 on one side (on the left in figure 4) and the poles at ∆1 − γ14

and ∆124,3 − γ14 on the other (on the right in figure 4).15 More precisely, thinking of

the cylinder as R × S1, the S1-direction is identified with the imaginary part of γ12, with

the R-direction identified with the real part of γ12. The poles are obtained by setting the

arguments of the local zeta functions in eq. (3.6) to zero. The dichotomy in the position of

the poles originates from looking at the arguments of the local zeta function ζp in the second

line of eq. (3.6): all poles originating from a local zeta function whose argument contains

γ12 with a negative sign lie on one side of the γ12 integration contour, while poles coming

from local zeta functions which contain γ12 with a positive sign lie on the other side. Note

that a consequence of this prescription is that if one translates the integral (3.6) into its

real analog by letting the radius of the cylindrical manifold tend to infinity and replacing

the p-adic local zeta function ζp(z) with the local zeta function at infinity, ζ∞(z), then

the integration contour will lie entirely to the left or right of the semi-infinite sequences of

poles arising from the Euler gamma functions.

As long as the circular contour encounters no poles, we can freely slide it along the

cylinder without affecting the integral. But in moving the contour past poles, we pick up

contributions from the residues of the poles. Specifically, we shift the contour to Re[2γ12] =

−∞ at the cost of 2πi times the sum of the residues at ∆12,34/2 and 0. Since u ≤ 1, the

boundary integral vanishes and carrying out the γ12 integral of (3.6) leaves us with

A =M|x13|−2∆1
p |x23|

−∆23,14
p |x24|

−∆124,3
p |x34|

−∆34,12
p

×
∫ i∞+|ε|

−i∞+|ε|

dγ14
πi

log p

ζp (2γ14) ζp (2γ14 + ∆23,14)

×
[
ζp (∆34,12) ζp(2∆1 − 2γ14)ζp (∆124,3 − 2γ14)

+ ζp (−∆34,12) ζp (∆134,2 − 2γ14) ζp (2∆4 − 2γ14)u∆34,12

]
, (3.8)

15For definiteness, the figure has been drawn for the case where ∆12,34 < 0 and ∆1 < ∆124,3/2, but we

do not assume that in the calculation. However, we do require 0 ,∆12,34/2 < <[∆1−γ14],<[∆124,3/2−γ14].
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where ε is any small number such that the integration contour around the cylindrical

manifold has the poles at 0 and
∆14,23

2 on one side and the poles at ∆1, ∆4,
∆124,3

2 , and
∆134,2

2 on the other. We next carry out the γ14 integral, e.g. by summing over the residues

at 0 and
∆14,23

2 , leaving us with

A =M
∣∣∣∣x24

x14

∣∣∣∣∆1,2

p

∣∣∣∣x14

x13

∣∣∣∣∆3,4

p

1

|x34|
∆34,
p |x12|

∆12,
p

×
[
ζp(2∆1)ζp(2∆2)ζp(∆34,12)ζp(∆123,4)ζp(∆124,3)

ζp(2∆12,)
u∆12,

+ (1↔ 4, 2↔ 3)

]
, (3.9)

where we remind the reader that, for instance, ∆12, = ∆1+∆2 and ∆123,4 = ∆1+∆2+∆3−
∆4, while x12 = x1−x2. This expression reproduces the precise position space dependence

of the four-point contact amplitude computed via geodesic bulk diagram techniques (a.k.a.

geodesic Witten diagram techniques) [39], and in fact matches the overall normalization as

well if we choose

M =
ζp(∆1234, − n)

ζp(2∆1)ζp(2∆2)ζp(2∆3)ζp(2∆4)
. (3.10)

Thus to summarize, we have shown that

A({xi}) =
∑
a∈Tpn

4∏
i=1

K̂∆i(a;xi) =
ζp(
∑4

i=1 ∆i − n)∏n
i=1 ζp(2∆i)

∫
[dγ]

∏
1≤i<j≤4

ζp(2γij)|xij |
−2γij
p .

(3.11)

While in this section we reproduced the position space amplitude simply by guessing the

p-adic Mellin amplitude by analogy with the real Mellin amplitude, we will derive from first

principles the generalization of eq. (3.11) to arbitrary-point contact diagrams in section 4.1.

4 p-adic Mellin amplitudes

In this section we build on the previously discussed tools and techniques to compute

the p-adic Mellin amplitude of the N -point contact diagram for arbitrary N , followed

by arbitrary-point amplitudes for bulk diagrams with one, two and three internal lines.

4.1 N -point contact diagram

The first Mellin amplitude we will compute is the Mellin amplitude for the contact diagram

for N external scalar insertions. We guessed in the previous section that this amplitude

(for N = 4) is a constant, and used that to reproduce the position space amplitude. In this

section we explicitly derive this result for arbitrary N by re-expressing the position-space

contact amplitude (2.6) in the form (1.10), from which we can simply read off the Mellin

amplitude M.
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Substituting (2.9) with the normalization (2.11) for the bulk-to-boundary propagators

in (2.6), we have

Acon(xi) =
∑

(z0,z)∈Tpn

N∏
i=1

ζp(2∆i)
|z0|∆i

p

|z0, z − xi|2∆i
s

. (4.1)

Using eq. (2.13) to convert the discrete summation to a continuum integral, we obtain

Acon(xi) = ζ(1)

∫
Qp

dz0

|z0|p
|z0|

∑
i ∆i−n

p

∫
Qpn

dz

N∏
i=1

ζp(2∆i)

|z0, z − xi|2∆i
s

, (4.2)

where the domain of the z0 integral has been extended by a measure zero set (recall that

Qp = Q×p t {0}).
At this point it is useful to invoke the p-adic Schwinger-parametrization given in (2.30)

as well as the factorization property (2.16) to re-express Acon(xi) as

ζ(1)
N∏
i=1

(
2ζp(1)

|2|p

∫
Q2
p

dSi
|Si|p

|Si|∆i
p

)

×
∫
Qp

dz0

|z0|p
|z0|

∑
i ∆i−n

p

∫
Qpn

dz

N∏
i=1

(
γp(Siz

2
0)γp(Si(z − xi)2)

)
. (4.3)

Let m be an index such that |Sm|p = sup(|S1|p, . . . , |SN |p). Then the z0 integral above can

immediately be carried out to give,∫
Qp

dz0

|z0|p
|z0|

∑
i ∆i−n

p γp(Smz
2
0) =

ζp(
∑

i ∆i − n)

ζ(1)|Sm|
∑
i ∆i/2−n/2

p

. (4.4)

Turning to the z integral, we first shift the variable z by xm. Note that a factor of γp(Smz
2)

forces Siz
2 to be a p-adic integer for all i = 1, . . . ,N on the support of the integrand, which

implies that γp(Si(z − xim)2) = γp(Six
2
im). So translating z by xm, the only non-trivial

z-dependence in eq. (4.3) comes from the characteristic function γp(Smz
2), and this leads

to an x-independent z-integral,∫
Qpn

dz γp(Smz
2) =

1

|Sm|n/2p

, (4.5)

which can be obtained from the Schwinger parameter identity eq. (2.25). Combining the

previous two results, we get

Acon(xi) = ζp

(∑
i

∆i − n

) N∏
i=1

(
2ζp(1)

|2|p

∫
Q2
p

dSi
|Si|p

|Si|∆i
p

)
1

|Sm|
∑
i ∆i/2

p

∏
i 6=m

(
γp(Six

2
im)

)
.

(4.6)

We now rewrite factors of the characteristic function γp(Six
2
im) as γp(

SiSm
Sm

x2
im). Since

xij = xim + xmj , it follows from the ultra-metricity of the p-adic norm that |xij |p ≤
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max(|xim|p, |xmj |p). Furthermore, |SiSj |p ≤ |SiSm|p, |SjSm|p. It then follows that

γp(
SiSj
Sm

x2
ij) is equal to unity on the support of γp(

SiSm
Sm

x2
im)γp(

SjSm
Sm

x2
jm). We conclude that

∏
i 6=m

γp(Six
2
im) =

∏
1≤i<j≤N

γp

(
SiSj
Sm

x2
ij

)
. (4.7)

At this point we introduce new variables si, defined to be

si ≡
√
|Sm|p Si for i 6= m, sm ≡

√
Sm . (4.8)

We can take square-roots in eq. (4.8) since as is clear from eq. (4.3), Si ∈ Q2
p for all i and

thus admit square-roots in Qp — we will specify precisely which square-root did we mean

in eq. (4.8) shortly. Just like the familiar change of variables over the real or complex

fields, one picks up a Jacobian factor. In this case we pick up a factor of |2sNm |p. It is worth

emphasizing that the change of variables eq. (4.8) makes explicit reference to the index

m, defined below eq. (4.3). Thus the value that m takes is Si dependent, and so varies in

the domain of integration over Si. Therefore, the change of variables is well-defined only

if we partition the original integration domain into subsets each admitting a fixed value

of m, and find new variables si for each such sub-domain. This partitioning is somewhat

concealed by the notation adopted here, but the change of variables remains perfectly valid

nonetheless. We now describe the domain of integration in the new variables si.

We note that the domain of sm is “half” the p-adic numbers, in the sense that it is all

the p-adic numbers with distinct squares. Since Sm ∈ Q2
p has precisely two square-roots,

say x, y such that x2 = y2 = Sm, let us specify which square-root goes in eq. (4.8). First

note that, y = −x. Now the p-adic number x has a unique power series expansion x = pvx̂,

where v ∈ Z and x̂ ∈ Up, i.e. x̂ = x0 + x1p + x2p
2 + · · · with x0 ∈ {1, . . . , p − 1}, and

similarly for y. So y = −x ⇒ y0 = p − x0, which implies that for p > 2, y0 is a square

mod p iff x0 is not. So for p > 2, we prescribe that the square-root in eq. (4.8) is the one

whose units digit is a square mod p. Let’s say this square-root is x, which implies in fact

x̂ ∈ U2
p. Then sm = x = pvx̂ either belongs to Q2

p (for even v) or pQ2
p (for odd v), as we

sweep across the domain of Sm. This is what we meant by “half” the p-adic numbers.

If we restrict sm to the domain Q2
p∪pQ2

p for p = 2, we must also multiply by an overall

factor of two, in light of equation (2.28). The upshot is that we can take the domain of sm
to be Q2

p ∪ pQ2
p provided we introduce a factor of 1/|2|p, which exactly cancels the factor

of |2|p that we pick up from the Jacobian. Now note that it follows from (4.8) that if

sm ∈ Q2
p, then si ∈ Q2

p for all i, and if sm ∈ pQ2
p, then si ∈ pQ2

p for all i. Plugging in the

new variables in eq. (4.6)-eq. (4.7), we obtain an expression for the contact amplitude in

the new variables, where all reference to the index m has vanished entirely,

Acon =
∑

a∈{1,p}

ζp

(∑
i

∆i − n
)∏

i

(
2ζp(1)

|2|p

∫
aQ2

p

dsi
|si|p
|si|∆i

p

)∏
i<j

γp

(
sisjx

2
ij

)
. (4.9)

Now we will invoke the Mellin representation of the characteristic function given

in (2.19). Similarly to the Archimedean case where the Mellin variables are subject to
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N constraints that can be interpreted as momentum conservation in an auxiliary space, we

apply (2.19) to only N (N − 3)/2 of the N (N − 1)/2 factors of γp(sisjx
2
ij) in eq. (4.9). For

concreteness, we pick these factors to be the ones for which i, j ≥ 2 except (i, j) = (2, 3),

though any other choice will work just as well. Doing this, we get

Acon = ζp

(∑
i

∆i − n
) ∏

2≤i<j≤N
(i,j) 6=(2,3)

(
log p

πi

∫
dγij

ζp(2γij)

|xij |
2γij
p

)
23ζp(1)3

|2|3p

×
∑

a∈{1,p}

∫
aQ2

p

ds1

|s1|p
ds2

|s2|p
ds3

|s3|p
|s1|∆1

p |s2|
∆2−

∑N
i=4 γ2i

p |s3|
∆3−

∑N
i=4 γ3i

p γp

(
s1s2x

2
12

)

× γp
(
s1s3x

2
13

)
γp

(
s2s3x

2
23

) N∏
i=4

[
2ζp(1)

|2|p

∫
aQ2

p

dsi
|si|p

(
|si|p

)∆i−
∑N
j=2
j 6=i

γij

γp

(
s1six

2
1i

)]
.

(4.10)

The integrals over si for i = 4, . . . ,N factor out and can be carried out directly using

equations (2.30) and (2.31). If we introduce the following definitions,

γ23 ≡ ∆3 − γ13 −
N∑
j=4

γ3j γ1i ≡ ∆i −
N∑
j=2
j 6=i

γij i = 2, . . . ,N , (4.11)

which are consistent with the constraints eq. (1.2) obeyed by the Mellin variables of an

N -point Mellin amplitude, we can rewrite

Acon =
∑

a∈{1,p}

∏
2≤i<j≤N
(i,j) 6=(2,3)

(
log p

πi

∫
dγij

ζp(2γij)

|xij |
2γij
p

)

×
N∏
i=4

(
ζp(2γ1i)

1

|x1i|2γ1i
p

)
23ζp(1)3

|2|3p
ζp

(∑
i

∆i − n
)

×
∫
aQ2

p

ds1

|s1|p
ds2

|s2|p
ds3

|s3|p
|s1|γ12+γ23

p |s2|γ12+γ13
p |s3|γ13+γ23

p

× γp
(
s1s2x

2
12

)
γp

(
s1s3x

2
13

)
γp

(
s2s3x

2
23

)
. (4.12)

Here it is helpful to do one more change of variables,

T1 ≡ s2s3, T2 ≡ s1s3, T3 ≡ s1s2 . (4.13)

Since we are requiring that all the si belong to either Q2
p or pQ2

p, it follows that the Ti are

squares in Qp. Furthermore, integrating each of T1, T2, and T3 over all of Q2
p will exactly

reproduce the integral of all the si over Q2
p plus the integral of all the si over pQ2

p. We

can therefore lump the a = 1 and the a = p terms in (4.12) together by changing to the Ti
variables. The Ti integrals can then be carried out using (2.30) to give

Acon =
∏

2≤i<j≤N
(i,j) 6=(2,3)

(
log p

πi

∫
dγij

ζp(2γij)

|xij |
2γij
p

) N∏
i=2

(
ζp(2γ1i)

|x1i|2γ1i
p

)ζp(∑i ∆i − n
)
ζp(2γ23)

|x23|2γ23
p

. (4.14)
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This form of the contact diagram reflects the arbitrary choice made in picking which

characteristic functions to express in the Mellin representation (2.19). To re-write the

diagram in a more symmetric fashion, we define16

[dγ] ≡
(

log p

πi

)N (N−3)
2

[ ∏
1≤i<j≤N

dγij

][ N∏
i=1

δ

( N∑
j=1

γij

)]
, γij = γji, γii = −∆i ,

(4.15)

which immediately gives

Acon = ζp

(∑
i

∆i − n
)∫

[dγ]
∏

1≤i<j≤N

ζp(2γij)

|xij |
2γij
p

. (4.16)

We conclude that the Mellin amplitude for the N -point contact diagram for external scalar

insertions is

Mcon = ζp

(∑
i

∆i − n
)
. (4.17)

Readers familiar with the corresponding calculation of the contact amplitude over the reals

may be able to appreciate the similarity with multiple intermediate steps in this derivation.

We note that this result differs from eq. (3.10) in its overall normalization due to the fact

that we used the unnormalized bulk-to-boundary propagators in eq. (3.1).

It is worth remarking that from comparing (4.9) with (4.16), one obtains the p-adic

analog of the Symanzik star integration formula [54] (see also appendix B of ref. [19]),∫
[dγ]

∏
1≤i<j≤N

ζp(2γij)

|xij |
2γij
p

=
∑

a∈{1,p}

N∏
i=1

(
2ζp(1)

|2|p

∫
aQ2

p

dsi
|si|p
|si|∆i

p

) ∏
1≤i<j≤N

γp

(
sisjx

2
ij

)
.

(4.18)

4.2 The split representation of the bulk-to-bulk propagator

In computing the Mellin amplitudes for exchange diagrams, it will be useful to re-express

the p-adic bulk-to-bulk propagator in its split representation in much the same way as the

spectral decomposition of the bulk-to-bulk propagator is a useful first step when computing

real Mellin amplitudes [17]. The p-adic split representation will turn out to be,

G∆(z0, z;w0, w) =
1

2

log p

2πi

∫ iπ
log p

− iπ
log p

dc
ζp
(
∆− n

2 + c
)
ζp
(
∆− n

2 − c
)

ζp(2c)ζp(−2c)

×
∫
Qpn

dxKn
2
−c(z0, z;x)Kn

2
+c(w0, w;x) . (4.19)

In this subsection we will prove this identity.

One starts by computing the following integral,∫
Qpn

dx K̂a(z0, z;x)K̂b(w0, w;x) , (4.20)

16The definition eq. (4.15) is precisely equivalent to the definition given earlier in eq. (1.11).
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where we point out that the bulk-to-boundary propagators above are the unnormalized

propagators defined in eq. (2.9). We plug in the explicit form of the bulk-to-boundary

propagator (2.9) and then use the Schwinger parameter trick (2.25) to re-express all powers,

to get the following equivalent form for the integral (4.20),

ζp(n)2|z0|ap|w0|bp
ζp(2a)ζp(2b)

∫
Qpn

dx

∫
Qpn

dSa
|Sa|np

∫
Qpn

dSb
|Sb|np

|Sa|2ap |Sb|2bp

× γp(Saz0)γp
(
Sa(z − x)

)
γp(Sbw0)γp

(
Sb(w − x)

)
. (4.21)

The integrals over x, Sa, and Sb can be evaluated by splitting the integration domain

into the region where |Sa|p ≥ |Sb|p (obtained by introducing a factor of γp(Sb/Sa) in the

integrand) and the region where |Sb|p ≥ |Sa|p, and finally subtracting off the doubly-

counted region where |Sa|p = |Sb|p. For each of these three parts, the x integral can be

carried out immediately using (2.16) and (2.25). An intermediate result that is useful for

evaluating the remaining Sa and Sb integrals is∫
Qpn

dS

|S|n
|S|∆p γp

(
S

A

)
γp

(
B

S

)
=

[
ζp(−∆)

ζp(n)
|B|∆p +

ζp(∆)

ζp(n)
|A|∆p

]
γp

(
B

A

)
. (4.22)

After some work, (4.21) evaluates to[
ζp(n− 2b) + ζp(n− 2a)− 1

]ζp(2a+ 2b− n)

ζp(2a)ζp(2b)

|z0|ap|w0|bp
|z0, w0, z − |2a+2b−n

s

+
ζp(2b− n)ζp(2a)

ζp(2a)ζp(2b)

|w0|n−bp |z0|ap
|z0, w0, z − w|2as

+
ζp(2a− n)ζp(2b)

ζp(2a)ζp(2b)

|z0|n−ap |w0|bp
|z0, w0, z − w|2bs

. (4.23)

Setting a = n
2 − c and b = n

2 + c, and restoring the normalizations of the bulk-to-boundary

propagators using eq. (2.9), we find that∫
Qpn

dxKn
2
−c(z0, z;x)Kn

2
+c(w0, w;x)

= ζp(2c)ζp(n− 2c)
|w0|

n
2
−c

p |z0|
n
2
−c

p

|z0, w0, z − w|n−2c
s

+ ζp(−2c)ζp(n+ 2c)
|z0|

n
2

+c
p |w0|

n
2

+c
p

|z0, w0, z − w|n+2c
s

.

(4.24)

Using this result we can proceed to calculate the right-hand side of eq. (4.19). It is necessary,

however, to distinguish between the cases where the bulk points (z0, z) and (w0, w) are

coincident and non-coincident.

When (z0, z) = (w0, w), the r.h.s. of eq. (4.19) reduces to

1

2

ζp(n)

ζp(2n)

log p

2πi

∫ iπ
log p

− iπ
log p

dc
ζp
(
∆− n

2 − c
)
ζp
(
∆− n

2 + c
)
ζp(n− 2c)ζp(n+ 2c)

ζp(2c)ζp(−2c)
. (4.25)

The contour can be closed in either direction. One must either sum up the residues at the

poles situated at c = ∆− n
2 , c = n

2 and c = n
2 + iπ

log p , or the residues at the poles situated at

minus these locations. The result is simply ζp(2∆), which exactly equals G∆(z0, z;w0, w)
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for coincident points (z0, z) = (w0, w) (see eq. (2.8)). This verifies the split representa-

tion (4.19) for coincident points.

If (z0, z) 6= (w0, w), then |z0, w0, z −w|s = |z0 −w0, z −w|s and the r.h.s. of eq. (4.19)

is equal to17

1

2

log p

2πi

∫ iπ
log p

− iπ
log p

dc ζp

(
∆− n

2
− c
)
ζp

(
∆− n

2
+ c

)
×
[
ζp(n− 2c)

ζp(−2c)
Ĝn

2
−c(z0, z;w0, w) +

ζp(n+ 2c)

ζp(2c)
Ĝn

2
+c(z0, z;w0, w)

]
. (4.27)

The contour must be closed on the left for the first term and on the right for the second

term since the bulk-to-bulk propagator between two non-coincident points tends to zero

as the scaling dimension tends to zero. Note that we are assuming ∆ > n
2 . The first term

then picks up the residue from the pole at c = −(∆ − n
2 ), and the second term picks up

the residue from the pole at c = ∆ − n
2 . The two terms yield the same result, adding up

to give

ζp(2∆)Ĝ∆(z0, z;w0, w) = G∆(z0, z;w0, w) . (4.28)

This completes the proof of the split representation (4.19).

4.3 Exchange diagrams

With the split representation in hand, we are ready to evaluate exchange diagrams. Con-

sider the diagram:

A

...iL
... iR

A

...iL
... iR

A

...iL

A

... iR

...iL
... iR

A

1

. (4.29)

Generally, the difficulty in computing Mellin amplitudes increases with number of internal

lines but is insensitive to the number of external legs and the dimensions of operators, so

we may as well consider the general case where an unspecified number of external insertions

at the boundary, carrying generic scaling dimensions that are labeled by a dummy index

iL, are incident on the internal leg on the left, while the external legs to the right carry

the dummy index iR. We denote the scaling dimension of the scalar operator exchanged

along the internal line by ∆A. Then, the position space amplitude is given by

Aexc =
∑

(zL0 ,z
L),(zR0 ,z

R)∈Tpn

∏
iL

(
K∆iL

(zL0 , z
L;xiL)

)
×
∏
iR

(
K∆iR

(zR0 , z
R;xiR)

)
G∆A

(zL, zL0 ; zR, zR0 ) . (4.30)

17Here we used the following identity between two distinct bulk points (z0, z) and (w0, w) on the Bruhat-

Tits tree [37],

|z0w0|p
|z0 − w0, z − w|2s

= p−d[z0,z;w0,w] . (4.26)

– 24 –



J
H
E
P
0
4
(
2
0
1
9
)
1
0
1

We re-express G∆A
in its split representation (4.19), so that the integrand takes the form of

a product of two contact diagrams, to which we may apply the result for contact amplitudes

from above, (4.9) to get

Aexc =
1

2

log p

2πi

∫ iπ
log p

− iπ
log p

dc
ζp
(
∆A − n

2 + c
)
ζp
(
∆A − n

2 − c
)

ζp(2c)ζp(−2c)
Ãexc , (4.31)

where Ãexc, which following ref. [35] we will refer to as the (position space) “pre-amplitude”,

is given by

Ãexc =

∫
Qpn

dx
∑

aL∈{1,p}

ζp

(∑
∆iL −

n

2
− c
)∏

iL

(
2ζp(1)

|2|p

∫
aLQ2

p

dsiL
|sL|p

|siL |
∆iL
p

)

×
∏
iL<jL

γp

(
siLsjLx

2
iLjL

)

×
∑

aR∈{1,p}

ζp

(∑
∆iR −

n

2
+ c

)∏
iR

(
2ζp(1)

|2|p

∫
aRQ2

p

dsiR
|siR |p

|siR |
∆iR
−1

p

)

×
∏
iR<jR

γp

(
siRsjRx

2
iRjR

)

× 2ζp(1)

|2|p

∫
aLQ2

p

dtL
|tL|p

|tL|
n
2
−c

p

∏
iL

γp

(
tLsiL(xiL − x)2

)
× 2ζp(1)

|2|p

∫
aRQ2

p

dtR
|tR|p

|t′|
n
2

+c
p

∏
iR

γp

(
tRsiR(xiR − x)2

)
. (4.32)

Note that we are adopting a notational convention where the indices iL, jL represent exter-

nal legs on the left side of the exchange diagram eq. (4.29), while indices iR, jR represent

represent external legs on the right side. We sometimes omit explicitly specifying the do-

main a sum or product is taken over when it should be clear from the summand; e.g. the

sum
∑

∆iL is to be understood as the sum over all the external scaling dimensions of the

external legs that lie to the left of the internal leg.

On changing variables in eq. (4.32) by introducing SiL ≡
siL
tL

and SiR ≡
siR
tR

, one is

left with an x-integral that can be evaluated using the same reasoning as the z integral

in (4.3). Then Ãexc reduces to:

ζp

(∑
∆iL −

n

2
− c
)∏

iL

(
2ζp(1)

|2|p

∫
Q2
p

dSiL
|SiL |p

|SiL |
∆iL
p

) ∏
iL<jL

γp

(
SiLSjL
t2L

x2
iLjL

)

×
∏
iL

γp

(
SiLx

2
iLm

)
× ζp

(∑
∆iR −

n

2
+ c

)∏
iR

(
2ζp(1)

|2|p

∫
Q2
p

dSiR
|SiR |p

|SiR |
∆iR
p

)
×
∏
iR<jR

γp

(
SiRSjR
t2R

x2
iRjR

)∏
iR

γp

(
SiRx

2
iRm

)
× 22ζp(1)2

|2|2p

∑
aL,aR

∫
aLQ2

p

dtL
|tL|p

|tL|
n
2
−
∑

∆iL
−c

p

∫
aRQ2

p

dtR
|tR|p

|tR|
n
2
−
∑

∆iR
+c

p |Sm|
−n

2
p , (4.33)
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where, as in section 4.1, m is an index such that |Sm|p = sup|Si|p where i runs over all values

that iL and iR take. By changing variables so that tL → SmtL and tR → SmtR and then

changing the variables Si to new variables si analogously to the change of variables (4.8),

one finds that Ãexc is equal to

ζp

(∑
∆iL −

n

2
− c
)
ζp

(∑
∆iR −

n

2
+ c

)
×
∫
Qp

dtL
|tL|p

∫
Qp

dtR
|tR|p

|tL|
n
2
−
∑

∆iL
−c

p |tR|
n
2
−
∑

∆iR
+c

p

× ζp(1)2
∑

a∈{1,p}

∏
iL

(
2ζp(1)

|2|p

∫
aQ2

p

dsiL
|siL |p

|siL |
∆iL
p

)∏
iR

(
2ζp(1)

|2|

∫
aQ2

p

dsiR
|siR |p

|siR |
∆iR
p

)

×
∏
iL,jL

γp

(
siLsjL

(
1,

1

t2L

)
s

x2
iLjL

) ∏
iR,jR

γp

(
siRsjR

(
1,

1

t2R

)
s

x2
iRjR

)
×
∏
iL,jR

γp

(
siLsjRx

2
iLjR

)
. (4.34)

Using the p-adic Symanzik star integration formula eq. (4.18) to further simplify the pre-

amplitude, we obtain

Ãexc = ζp(1)2ζp

(∑
∆iL −

n

2
− c
)
ζp

(∑
∆iR −

n

2
+ c

)∫
[dγ]

∏
i<j

[
ζ(2γij)

|xij |
2γij
p

]
×
∫
Qp

dtL
|tL|p

∫
Qp

dtR
|tR|p

|tL|
n
2
−
∑

∆iL
−c

p |tR|
n
2
−
∑

∆iR
+c

p

×
∣∣∣∣1, 1

tL

∣∣∣∣−2
∑
iL<jL

γiLjL

s

∣∣∣∣1, 1

tR

∣∣∣∣−2
∑
iR<jR

γiRjR

s

(4.35)

where [dγ] is defined in (4.15). Further, in the following, we will often abbreviate sums like∑
iL<jL

γiLjL with
∑
γiLjL , so that such sums do not double-count terms. For the tL and

tR integrals, one may note that∫
Qp

dt

|t|p
|t|ap |1, t|

b
s =

ζp(a)ζp(−a− b)
ζp(1)ζp(−b)

, (4.36)

using which we conclude that

Ãexc =

∫
[dγ]

∏
i<j

[
ζ(2γij)

|xij |
2γij
p

]
ζp

(∑
∆iL −

n

2
− c
)
ζp

(∑
∆iR −

n

2
+ c

)

×
ζp(
∑

∆iL − n
2 + c)ζp(2

∑
γiLjL −

∑
∆iL + n

2 − c)
ζp(2

∑
γiLjL)

×
ζp(
∑

∆iR − n
2 − c)ζp(2

∑
γiRjR −

∑
∆iR + n

2 + c)

ζp(2
∑
γiRjR)

. (4.37)

Having worked out the position space pre-amplitude, all that remains in determining the

Mellin exchange amplitude is to carry out the contour integral in (4.31). Because of the

– 26 –



J
H
E
P
0
4
(
2
0
1
9
)
1
0
1

delta functions in the integration measure [dγ] given in eq. (4.15), on the support of the

integrand we have that ∑
γiLjL −

∑
∆iL =

∑
γiRjR −

∑
∆iR . (4.38)

The contour integral we need to compute over the complex cylinder can be evaluated using

the identity

log p

2πi

∫ iπ
log p

− iπ
log p

dc
ζp(A+c)ζp(A−c)ζp(B+c)ζp(B−c)ζp(C+c)ζp(C−c)ζp(D+c)ζp(D−c)

ζp(2c)ζp(−2c)

= 2
ζp(A+B)ζp(A+ C)ζp(A+D)ζp(B + C)ζp(B +D)ζp(C +D)

ζp(A+B + C +D)
,

(4.39)

which, assuming A,B,C,D > 0, can be straightforwardly verified, e.g. by closing the

contour to the right and summing over the residues of the poles at c equal to A, B, C, and

D. Using eq. (4.39), we arrive at the result

Aexc = ζp

(∑
∆i − n

)
ζp

(
∆A +

∑
∆iL − n

)
ζp

(
∆A +

∑
∆iR − n

)
×
∫

[dγ]
∏
i<j

[
ζp(2γij)

|xij |
2γij
p

]
ζp(2

∑
γiLjL + ∆A −

∑
∆iL)

ζp(2
∑
γiLjL + ∆A +

∑
∆iR − n)

, (4.40)

from which we extract the Mellin amplitude,

Mexc = ζp

(∑
∆i − n

)
ζp

(
∆A +

∑
∆iL − n

)
ζp

(
∆A +

∑
∆iR − n

)
× ζp(2

∑
γiLjL + ∆A −

∑
∆iL)

ζp(2
∑
γiLjL + ∆A +

∑
∆iR − n)

. (4.41)

It is instructive to write the Mellin amplitude in an alternate mathematically equiva-

lent form,

Mexc = −ζp
(

∆A +
∑

∆iL − n
)
ζp

(
∆A +

∑
∆iR − n

)
×
(
ζp

(∑
∆iL − 2

∑
γiLjL −∆A

)
− ζp

(∑
∆i − n

))
. (4.42)

Unlike the contact Mellin amplitude, we see that the exchange diagram Mellin ampli-

tude has explicit dependence on Mellin variables {γiLjL} via the Mandelstam variable (see

eq. (1.5))

sL ≡ s{iL} =
∑

∆iL − 2
∑

γiLjL . (4.43)

We remind the reader that the sum in the first term in the final equality above is over all

possible values that the index iL can take, i.e. all external legs to the left of the internal

line, and the sum in the second term is over all such iL and jL with the condition iL < jL.
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4.4 Diagrams with two internal lines

Next we consider a generic bulk diagram with two internal lines:

A B

...iL
... iR

...
iU

1

. (4.44)

Concretely, in terms of a product over propagators with three dummy bulk vertices summed

over the entire Bruhat-Tits tree, the position space amplitude A2−int is defined to be

∑
(zL0 ,z

L),(zU0 ,z
U ),(zR0 ,z

R)∈Tpn

(∏
iL

K∆iL
(zL0 , z

L;xiL)

)
G∆A

(zL, zL0 ; zU , zU0 )

×

(∏
iU

K∆iU
(zC0 , z

C ;xiU )

)
G∆B

(zU , zU0 ; zR, zR0 )

×

(∏
iR

K∆iR
(zR0 , z

R;xiR)

)
, (4.45)

where iL runs over external legs on the left of the diagram, iR runs over external legs

to the right, and iU runs over external legs incident to the centre vertex of the diagram.

Applying the split representation to, say, the ∆A bulk-to-bulk propagator, the diagram

decomposes into a contour integral over a contact diagram times an exchange diagram.

Applying the results for contact and exchange amplitudes (4.9) and (4.34) from above to

these components, we may re-write the position space amplitude as a contour integral of a

certain ratio of local zeta functions times a pre-amplitude, that is,

A2−int =
∏

I∈{A,B}

[
1

2

log p

2πi

∫ iπ
log p

− iπ
log p

dcI
ζp(∆I − n

2 + cI)ζp(∆I − n
2 − cI)

ζp(2cI)ζp(−2cI)

]
Ã2−int , (4.46)

with the pre-amplitude Ã2−int given by∫
Qpn

dxL
∑

aL∈{1,p}

ζp

(∑
∆iL −

n

2
− cA

)∏
iL

(
2ζp(1)

|2|p

∫
aLQ2

p

dsiL
|siL |p

|siL |
∆iL
p

)

×
∏
iL<jL

γp

(
siLsjLx

2
iLjL

)
2ζp(1)

|2|p

∫
aLQ2

p

du

|uL|p
|uL|

n
2
−cA

p

∏
i

γp

(
uLsiL(xiL − xL)2

)

× ζp
(∑

∆iC + cA − cB
)
ζp

(∑
∆iR −

n

2
+ cB

)
×
∫
Qp

dtU
|tU |p

dtR
|tR|p

|tU |
−

∑
∆iU
−cA−cB

p |tR|
n
2
−
∑

∆iR
+cB

p

× ζp(1)2
∑

aR∈{1,p}

∏
iU

(
2ζp(1)

|2|

∫
aRQ2

p

dsiU
|siU |p

|siU |
∆iU
p

)∏
iR

(
2ζp(1)

|2|p

∫
aRQ2

p

dsiR
|siR |p

|siR |
∆iR
p

)
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× 2ζp(1)

|2|p

∫
aRQ2

p

duU
|uU |p

|uU |
n
2

+cB
p

∏
iU<jU

γp

(
siU sjU

(
1,

1

t2U

)
s

x2
iU jU

)

×
∏
iR<jR

γp

(
siRsjR

(
1,

1

t2R

)
s

x2
iRjR

) ∏
iU , jR

γp

(
siU sjRx

2
iU jR

)
×
∏
iU

γp

(
uUsiU (xL − xiU )2

(
1,

1

t2U

)
s

)∏
iR

γp

(
uUsiR(xL − xiR)2

)
. (4.47)

In this form eq. (4.47) the symmetry with respect to the two internal propagators of the

diagram is no longer apparent, but it will become manifest later. Changing to variables

SiL =
siL
uL

, SiU =
siU

uU (1,t−2
U )s

, and SiR =
siR
uU

, the xL integral can be carried out just as in

sections 4.1 and 4.3 leading to a result that makes explicit reference to an index m given by

|Sm|p = sup |Si|p (where i now runs over all values that iL, iU , and iR take). But just like

in those sections, one can then do a change of variables from Si to new variables si, which

eliminates explicit reference to the index m. The pre-amplitude is then expressed as

Ã2−int = ζp

(∑
∆iL −

n

2
− cA

)
ζp

(∑
∆iC + cA − cB

)
ζp

(∑
∆iR −

n

2
+ cB

)
×

∑
a∈{1,p}

∏
i

(
2ζp(1)

|2|p

∫
aQ2

p

dsi
|si|p
|si|∆i

p

)
ζp(1)4

∫
Qp

duL
|uL|p

dtU
|tU |p

dtR
|tR|p

duU
|uU |p

× |uL|
∑

∆iL
−n

2
+cA

p |tU |
∑

∆iU
+cA+cB

p |tR|
∑

∆iR
−n

2
−cB

p |uU |
∑

∆iU
+
∑

∆iR
−n

2
−cA

p

×
∏
iL<jL

γp

(
siLsjL (1, uL)2

s x
2
iLjL

) ∏
iU<jU

γp

(
siU sjU

(
1, uU , uU tU , t

2
U

)2
s
x2
iU jU

)
×
∏
iL,iU

γp

(
siLsiU (1, tU )2

sx
2
iLiU

) ∏
iL,jR

γp

(
siLsjRx

2
iLjR

)
×
∏
iU ,jR

γp

(
siU sjR (1, uU , tU )2

s x
2
iU jR

) ∏
iR<jR

γp

(
siRsjR (1, uU , uU tR)2

s x
2
iRjR

)
.

(4.48)

Using the Symanzik star integration formula (4.18), the pre-amplitude can now be written

with the integrals over si variables replaced by integrals over the Mellin variables γij . The

remaining integrals over uL, tU , tR, and uU still need to be worked out. After using

eq. (4.18), the uL integral factors out, and with a suitable change of variables, the tR
integral can also be made to factor out. Both these integrals can then be immediately

performed using (4.36), resulting in

Ã2−int = ζp

(∑
∆iL −

n

2
− cA

)
ζp

(∑
∆iU + cA − cB

)
ζ

(∑
∆iR −

n

2
+ cB

)
×
∫

[dγ]
∏
i,j

[
ζp(2γij)

|xij |
2γij
p

]
ζp(
∑

∆iL − n
2 + cA)ζp(2

∑
γiLjL −

∑
∆iL + n

2 − cA)

ζp(2γiLjL)

×
ζp(
∑

∆iR − n
2 − cB)ζp(2

∑
γiRjR −

∑
∆iR + n

2 + cB)

ζp(2γiRjR)
I(sL, sR,∆iU , cA, cB) ,

(4.49)
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where we have lumped together the remaining tU and uU integrals into

I(sL, sR,∆iU , cA, cB), defined to be

I(sL, sR,∆iU , cA, cB) ≡ ζp(1)2

∫
Qp

dtU
|tU |p

|tU |
∑

∆iU
+cA+cB

p

∫
Qp

duU
|uU |p

|uU |
∑

∆iU
+cB−cA

p

× |1, tU |
sR−sL−

∑
∆iU

s |1, uU , tU |
sL−sR−

∑
∆iU

s |1, uU |
sR−n2−cB
s ,

(4.50)

and we have identified the Mandelstam-like variables

sL ≡
∑

∆iL − 2
∑

γiLjL sR ≡
∑

∆iR − 2
∑

γiRjR , (4.51)

where like before, it is understood that in the sum over Mellin variables γiLjL (γiRjR) the

sum is restricted to iL < jL (iR < jR). The Mandelstam variables satisfy

sL = sR +
∑

∆iU − 2
∑

γiU jU − 2
∑

γiU iR

sR = sL +
∑

∆iU − 2
∑

γiU jU − 2
∑

γiU iL , (4.52)

where the sum over the Mellin variables γiU jL and γiU jR is unrestricted in the indices. This

integral can be performed by, for example, partitioning the integration domain into regions

where tU , uU or 1 have the largest p-adic norm, thus simplifying the integrand. We find

I(sL, sR,∆iU , cA, cB) = ζp

(
sL −

n

2
− cA

)
ζp

(
sR −

n

2
+ cB

)
− ζp

(∑
∆iU + cA + cB

)[
ζp

(
sL −

n

2
− cA

)
− ζp

(∑
∆iU + cB − cA

)]
− ζp

(∑
∆iU − cA − cB

)[
ζp

(
sR −

n

2
+ cB

)
− ζp

(∑
∆iU + cB − cA

)]
− ζp

(∑
∆iU + cB − cA

)
. (4.53)

With the pre-amplitude in hand, we are ready to carry out the two contour integrals

in (4.46) to obtain the full Mellin amplitude. One way to do this is to close both contours

to the right, and sum over the residues in the cA plane, which occur at

cA =

{
∆A −

n

2
,
∑

∆iL −
n

2
, 2
∑

γiLjL −
∑

∆iL +
n

2
,
∑

∆iU + cB,
∑

∆iU − cB
}
,

(4.54)

and then sum over the residues in the cB plane, occurring at

cB =

{
∆B −

n

2
,
∑

∆iL +
∑

∆iU −
n

2
,
∑

∆iU + ∆B −
n

2
,
∑

∆iR −
n

2
,

2
∑

γiRjR −
∑

∆iR +
n

2

}
. (4.55)
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We omit the details of this step, which leads to the final expression for the diagram

with two internal lines. From this we easily extract the closed-form expression for the

Mellin amplitude,

M2−int = ζp

(∑
∆iL + ∆A − n

)
ζp

(∑
∆iU + ∆A + ∆B − n

)
ζp

(∑
∆iR + ∆B − n

)
×
[
ζp(sL −∆A)ζp(sR −∆B)− ζp

(∑
∆i − n

)
− ζp

(∑
∆iR +

∑
∆iU + ∆A − n

)(
ζp(sL −∆A)− ζp

(∑
∆i − n

))
− ζp

(∑
∆iU +

∑
∆iL + ∆B − n

)(
ζp(sR −∆B)− ζp

(∑
∆i − n

))]
.

(4.56)

The Mellin-Barnes integral representation of this amplitude may be easily extracted from

eq. (4.46), eq. (4.49) and eq. (4.53).

4.5 Diagrams with three internal lines

Finally, we now provide a first principles derivation of the Mellin amplitudes of the bulk

diagrams with three internal lines. The Mellin amplitudes of these diagrams can be com-

puted using essentially the same methods by which the exchange diagram and the diagram

with two internal lines were derived above, although the intermediate steps are more cum-

bersome. One new feature, though, that appears at three internal lines is the existence of

two different diagrammatic topologies: the three internal lines can be arranged in series or

meet at a centre vertex.

Using the split representation of the bulk-to-bulk propagator on an internal leg, di-

agrams with three internal lines can be split into the product of a contact diagram and

a diagram with two internal lines or two diagrams each with one internal line, and these

two diagrams are connected via a boundary integral. Applying equation (4.46) to the

component with two internal legs then leads to the representation

A3−int =
∏

I=A,B,C

[
1

2

log p

2πi

∫ iπ
log p

− iπ
log p

dcI
ζp(∆I − n

2 + cI)ζp(∆I − n
2 − cI)

ζp(2cI)ζp(−2cI)

]
Ã3−int, (4.57)

where the pre-amplitude Ã3−int can be found by invoking equations (4.9) and (4.48). As

for the exchange diagrams from section 4.3, one can, by performing a series of suitable

change of variables, carry out the boundary integral that connects the contact diagram

and two-internal-line diagram components of the Mellin amplitude M3−int, and then use

the Symanzik star integration formula eq. (4.18) to write the pre-amplitude as a Mellin

integral. Thereafter, one will need to carry out six integrals over auxiliary variables, similar

to the uL, tU , tR, and uU integrals from section 4.4, to obtain the final result for M3−int.

We demonstrate this procedure explicitly for diagrams with three internal lines, start-

ing with the diagram where the internal lines arrange in a series configuration.
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Diagram with three internal lines in a series. The arbitrary-point diagram with

three internal lines arranged in a series is represented diagrammatically as

A B C

...iL
... iR

...

il

...

ir

1

. (4.58)

Written explicitly in terms of bulk-to-bulk and bulk-to-boundary propagators, this diagram

is given by

A3−int, line =
∑

(zL0 ,z
L),(zl0,z

l),

(zR0 ,z
R),(zr0 ,z

r)∈Tpn

(∏
iL

K∆iL
(zL0 , z

L;xiL)

)
G∆A

(zL, zL0 ; zl, zl0)

×

(∏
il

K∆il
(zl0, z

l;xil)

)
G∆B

(zl, zl0; zr, zr0)

×

(∏
ir

K∆ir
(zr0, z

r;xir)

)
G∆C

(zr, zr0; zR, zR0 )

×

(∏
iR

K∆iR
(zR0 , z

R;xiR)

)
, (4.59)

where the summation symbol in front denotes the four bulk integrations (more precisely,

tree summations) over the four bulk vertices, and the indices iL, il, ir, iR run over different

external legs as depicted in eq. (4.58).

The pre-amplitude for this diagram is given by

Ã3−int, line =

∫
[dγ]

∏
i<j

[
ζ(2γij)

|xij |
2γij
p

]
I(sL, sc,∆l, cA, cB) I(sc, sR,∆r, cB, cC)

× ζp
(

∆L −
n

2
− cA

)
ζp(∆l + cA − cB)ζp(∆r + cB − cC)ζp

(
∆R −

n

2
+ cC

)
×
(
ζp

(
∆L −

n

2
+ cA

)
− ζp

(
sL −

n

2
+ cA

))
×
(
ζp

(
∆R −

n

2
− cC

)
− ζp

(
sR −

n

2
− cC

))
, (4.60)

where the function I is given in equation (4.53), the Mandelstam invariants sL and sR of

the left and right legs are given in (4.51), while that of the center internal leg is given by

sc = ∆L + ∆l − 2
∑
iL<jL

γiLjL − 2
∑
iL,jl

γiLjl − 2
∑
il<jl

γiljl

= ∆r + ∆R − 2
∑
ir<jr

γirjr − 2
∑
ir,jR

γirjR − 2
∑
iR<jR

γiRjR . (4.61)
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In eq. (4.60)-eq. (4.61) we have introduced a shortened notation,

∆L ≡
∑
iL

∆iL ∆l ≡
∑
il

∆il ∆r ≡
∑
ir

∆ir ∆R ≡
∑
iR

∆iR . (4.62)

One can carry out the three contour integrals over the pre-amplitude by closing all contours

to the right and summing over the residues at

cA =

{
∆A −

n

2
; ∆L −

n

2
;
n

2
− sL; ∆l + cB; ∆l − cB

}
, (4.63)

and then summing over the residues at

cC =

{
∆C −

n

2
; ∆R −

n

2
;
n

2
− sR; ∆r + cB; ∆r − cB

}
, (4.64)

followed by summing over the residues at

cB =

{
∆B −

n

2
; ∆A + ∆l −

n

2
; ∆l + ∆L −

n

2
;
n

2
− sc; ∆C + ∆r −

n

2
; ∆r + ∆R −

n

2

}
.

(4.65)

This leads to the final result for the Mellin amplitude,

M3−int, series = − ζp
(

∆AL, − n
)
ζp

(
∆ABl, − n

)
ζp

(
∆BCr, − n

)
ζp

(
∆CR, − n

)
×
{
ζp(sL −∆A)ζp(sc −∆B)ζp(sR −∆C)− ζp(

∑
∆i − n)

− ζp(∆BLl, − n)
[
ζp(sc −∆B)ζp(sR −∆C)− ζp(

∑
∆i − n)

− ζp(∆CLlr, − n)
(
ζp(sR −∆C)− ζp(

∑
∆i − n)

)
− ζp(∆BrR, − n)

(
ζp(sc −∆B)− ζp(

∑
∆i − n)

)]
− ζp(∆BrR, − n)

[
ζp(sL −∆A)ζp(sc −∆B)− ζp(

∑
∆i − n)

− ζp(∆AlrR, − n)
(
ζp(sL −∆A)− ζp(

∑
∆i − n)

)
− ζp(∆BLl, − n)

(
ζp(sc −∆B)− ζp(

∑
∆i − n)

)]
− ζp(∆AClr, − n)

[
ζp(sL −∆A)ζp(sR −∆C)− ζp(

∑
∆i − n)

− ζp(∆CLlr, − n)
(
ζp(sR −∆C)− ζp(

∑
∆i − n)

)
− ζp(∆AlrR, − n)

(
ζp(sL −∆A)− ζp(

∑
∆i − n)

)]
− ζp(∆CLlr, − n)

[
ζp(sR −∆C)− ζp(

∑
∆i − n)

]
− ζp(∆AlrR, − n)

[
ζp(sL −∆A)− ζp(

∑
∆i − n)

]
− ζp(∆BLl, − n)ζp(∆BrR, − n)

[
ζp(sc −∆B)− ζp(

∑
∆i − n)

]}
. (4.66)
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Star diagram with three internal lines. The star diagram, which is the other type

of diagram with three internal lines, can be depicted diagrammatically as

A B

C

...iL
... iR

...
iU

...
iD

1

. (4.67)

Explicitly, this diagram corresponds to the position space amplitude,

A3−int, star =
∑

(zU0 ,z
U ),(zL0 ,z

L),

(zR0 ,z
R),(zD0 ,z

D)∈Tpn

(∏
iL

K∆iL
(zL0 , z

L;xiL)

)
G∆A

(zL, zL0 ; zU , zU0 )

×

(∏
iR

K∆iR
(zR0 , z

R;xiR)

)
G∆B

(zR, zR0 ; zU , zU0 )

×

(∏
iD

K∆iD
(zC0 , z

C ;xiD)

)
G∆C

(zD, zD0 ; zU , zU0 )

×

(∏
iU

K∆iU
(zU0 , z

U ;xiU )

)
. (4.68)

We introduce one more shorthand and a Mandelstam invariant,

∆D ≡
∑
iD

∆iD sD = ∆D − 2
∑
iD<jD

γiDjD . (4.69)

In terms of these, the pre-amplitude is given by

Ã3−int, star = ζp

(
∆L −

n

2
− cA

)
ζp

(
∆R −

n

2
+ cB

)
× ζp

(
∆D −

n

2
− cC

)
ζp

(
∆U +

n

2
+ cC + cA − cB

)
×
∫

[dγ]
∏
i<j

[
ζ(2γij)

|xij |
2γij
p

](
ζp

(
∆L −

n

2
+ cA

)
− ζp

(
sL −

n

2
+ cA

))
J

×
(
ζp

(
∆D −

n

2
+ cC

)
− ζp

(
sD −

n

2
+ cC

))
×
(
ζp

(
∆R −

n

2
− cB

)
− ζp

(
sR −

n

2
− cB

))
, (4.70)

where sL, sR are as given in eq. (4.51). The symbol J is a shorthand for an integral over

the three auxiliary variables associated with the center vertex of the diagram. This integral
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is a more complicated version of the integral (4.50) and naturally appears if one attempts

to compute the star diagram by the method described above. The integral is given by

J ≡ ζp(1)3

∫
Qp

dt

|t|p
du

|u|p
dm

|m|p
|t|e1p |u|e2p |m|e3p |1, t|e4s |1, u|e5s

× |1,m|e6s |1,m,mu|e7s |1, u,m,mu,mut|e8s , (4.71)

where the exponents assume the following values:

e1 = ∆U +
n

2
+ cA + cB + cC ,

e2 = ∆U +
n

2
+ cB + cC − cA ,

e3 = ∆U +
n

2
+ cc − ca − cb ,

e4 = −n
2
−∆U + cB − cA − cC ,

e5 = −sR −∆U − cA − cC ,
e6 = sD − sL − sR −∆U ,

e7 = sL −
n

2
+ cA ,

e8 = sR −
n

2
− cB . (4.72)

By carefully partitioning the domain of the integral (4.71) according to which of u, t, m,

or 1 has the biggest p-adic norm, one can explicitly compute J to find that

J =

{
− ζp

(
sL −

n

2
− cA

)
ζp

(
sR −

n

2
+ cB

)
ζp

(
sD −

n

2
− cC

)
+ ζp

(
∆U +

n

2
+ cB,AC

)
+ ζp

(
∆U+

n

2
+cA,BC

)[
ζp

(
sL −

n

2
− cA

)
ζp

(
sR −

n

2
+ cB

)
−ζp

(
∆U +

n

2
+ cB,AC

)
− ζp

(
∆U +

n

2
+ cAB,C

)(
ζp

(
sL −

n

2
− cA

)
− ζp

(
∆U +

n

2
+ cB,AC

))
− ζp

(
∆U +

n

2
− cABC,

)(
ζp

(
sR −

n

2
+ cB

)
− ζp

(
∆U +

n

2
+ cB,AC

))]
+ ζp

(
∆U+

n

2
+cC,AB

)[
ζp

(
sR −

n

2
+ cB

)
ζp

(
sD −

n

2
− cC

)
−ζp

(
∆U +

n

2
+ cB,AC

)
− ζp

(
∆U +

n

2
− cABC,

)(
ζp

(
sR −

n

2
+ cB

)
− ζp

(
∆U +

n

2
+ cB,AC

))
− ζp

(
∆U +

n

2
+ cBC,A

)(
ζp

(
sD −

n

2
− cC

)
− ζp

(
∆U +

n

2
+ cB,AC

))]
+ ζp

(
∆U+

n

2
+cABC

)[
ζp

(
sL −

n

2
− cA

)
ζp

(
sD −

n

2
− cC

)
−ζp

(
∆U +

n

2
+ cB,AC

)
− ζp

(
∆U +

n

2
+ cAB,C

)(
ζp

(
sL −

n

2
− cA

)
− ζp

(
∆U +

n

2
+ cB,AC

))
− ζp

(
∆U +

n

2
+ cBC,A

)(
ζp

(
sD −

n

2
− cC

)
− ζp

(
∆U +

n

2
+ cB,AC

))]
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+ ζp

(
∆U +

n

2
+ cAB,C

)[
ζp

(
sL −

n

2
− cA

)
− ζp

(
∆U +

n

2
+ cB,AC

)]
+ ζp

(
∆U +

n

2
− cABC,

)[
ζp

(
sR −

n

2
+ cB

)
− ζp

(
∆U +

n

2
+ cB,AC

)]
+ ζp

(
∆U +

n

2
+ cBC,A

)[
ζp

(
sD −

n

2
− cC

)
− ζp

(
∆U +

n

2
+ cB,AC

)]}
, (4.73)

where we used the short-hand

ci1...ik,ik+1...i` ≡
k∑
j=1

cij −
∑̀
j=k+1

cij . (4.74)

With the pre-amplitude Ã3−int, star in hand, we are in a position to evaluate the three-fold

contour integral in eq. (4.57). The contour integral can, if one chooses to close the contour

on the right, be computed by summing over the residues in the cC plane, at

cC =

{
∆C −

n

2
; ∆D −

n

2
;
n

2
− sD ; ∆U +

n

2
+ cAB, ; ∆U +

n

2
+ cA,B ;

∆U +
n

2
+ cB,A ; ∆U +

n

2
− cAB,

}
, (4.75)

followed by summing over the residues in the cA plane, at

cA =

{
∆A −

n

2
; ∆L −

n

2
;
n

2
− sL ; ∆CU, + cB ; ∆CU, − cB ; ∆UD, + cB ; ∆UD, − cB

}
,

(4.76)

and finally summing over the residues in cB plane, at

cB =

{
∆B −

n

2
; ∆R −

n

2
;
n

2
− sR ; ∆ACU, −

n

2
; ∆CLU, −

n

2
;

∆AUD, −
n

2
; ∆LUD, −

n

2

}
. (4.77)

When the dust settles, the Mellin amplitude of the star diagram is extracted to be

M3−int, star = ζp

(
∆AL, − n

)
ζp

(
∆ABCU, − n

)
ζp

(
∆CD, − n

)
ζp

(
∆BR, − n

)
×
{
− ζp(sL −∆A)ζp(sR −∆B)ζp(sD −∆C) + ζp(

∑
∆i − n)

+ ζp(∆ABUD, − n)
[
ζp(sL −∆A)ζp(sR −∆B)− ζp(

∑
∆i − n)

− ζp(∆AUDR, − n)
(
ζp(sL −∆A)− ζp(

∑
∆i − n)

)
− ζp(∆BLUD, − n)

(
ζp(sR −∆B)− ζp(

∑
∆i − n)

)]
+ ζp(∆BCUL, − n)

[
ζp(sR −∆B)ζp(sD −∆C)− ζp(

∑
∆i − n)

− ζp(∆BLUD, − n)
(
ζp(sR −∆B)− ζp(

∑
∆i − n)

)
− ζp(∆CLUR, − n)

(
ζp(sD −∆C)− ζp(

∑
∆i − n)

)]
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+ ζp(∆ACUR, − n)
[
ζp(sL −∆A)ζp(sD −∆C)− ζp(

∑
∆i − n)

− ζp(∆AUDR, − n)
(
ζp(sL −∆A)− ζp(

∑
∆i − n)

)
− ζp(∆CLUR, − n)

(
ζp(sD −∆C)− ζp(

∑
∆i − n)

)]
+ ζp(∆AUDR, − n)

[
ζp(sL −∆A)− ζp(

∑
∆i − n)

]
+ ζp(∆BLUD, − n)

[
ζp(sR −∆B)− ζp(

∑
∆i − n)

]
+ ζp(∆CLUR, − n)

[
ζp(sD −∆C)− ζp(

∑
∆i − n)

]}
. (4.78)

The pre-amplitudes of the previous two diagrams are easily read off of the intermediate

steps of the derivation. Further, as can be seen, the amplitudes develop poles precisely when

the Mandelstam-like variables equal the dimension of the single-trace operators exchanged

along the internal lines. While it is certainly possible to evaluate the p-adic Mellin ampli-

tudes of tree-level bulk-diagrams with more than three internal lines using the techniques

described in this section (and obtain closed-form expressions), we believe no fundamen-

tally new tricks or techniques are required to extend the presentation of this section. One

may wonder if there are other fundamentally different but more efficient techniques to re-

construct such Mellin amplitudes, such as perhaps recursion relations similar to the ones

known for real Mellin amplitudes. The answer to this question turns out to be in the

affirmative [55].

5 Discussion

5.1 Comparison between p-adic and real Mellin amplitudes

The new results of this paper comprise the formulation and the first principles computation

of p-adic Mellin amplitudes. We proposed the definition of p-adic Mellin amplitudes in

section 1.1. To obtain p-adic Mellin amplitudes, which was our main goal, we started with

position space amplitudes such as those written in eq. (2.6) and eq. (2.7) and used various

manipulations to rewrite them in the form given in eq. (1.10), from which we could simply

read off the Mellin amplitudes.

For example, the computation of the p-adic scalar N -point contact Mellin amplitude

Mcontact was similar in spirit to the analogous calculation over the reals and was detailed

in section 4.1. The end result of a non-trivial calculation was that

Mcontact = ζp

(∑
∆i − n

)
, (5.1)

where
∑

∆i represents the sum over all external dimensions. As in the real case, the contact

amplitude is a constant, i.e. independent of Mellin variables γij . We note further that for a

suitable normalization of the bulk-to-boundary propagators,18 and for the definition of M

18We have chosen the normalizations for the bulk-to-bulk and bulk-to-boundary propagators in line with

the choice we made for the corresponding p-adic propagators in eq. (2.11) but different from the convention
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as given in eq. (1.6) (but with the factors of Γ(γij) replaced by the corresponding factors

of ζ∞(2γij) in the definition eq. (1.6)), the real contact Mellin amplitude is given by [17]

Mcontact =
1

2
ζ∞

(∑
∆i − n

)
, (5.4)

where the local zeta function ζ∞ was defined in eq. (1.9). Equations eq. (5.1) and eq. (5.4)

provide an example of how, for reasons not yet fully understood, many formulas in p-adic

AdS/CFT look almost exactly identical to their real counterparts, when expressed in terms

of the right functions.19,20

Indeed, the local zeta functions ζp and ζ∞ are related via number theory. A product

over all the finite places p of the local zeta function gives (via the Euler product formula)

the Riemann zeta function,

ζ(z) =

∞∑
n=1

1

nz
=

∏
p prime

ζp(z) , (5.5)

which has a simple pole at z = 1. The infinite sum in eq. (5.5) converges for <(z) > 1,

and then ζ(z) is extended to the entire complex plane via meromorphic continuation. The

Euler gamma function Γ, and the local zeta functions ζp can be combined together to define

the “completed zeta function” (also referred to as the “adelic zeta function”) via

ζA(z) ≡ π−z/2 Γ
(z

2

)
ζ(z) = ζ∞(z)

∏
p

ζp(z) , (5.6)

which satisfies the functional equation

ζA(z) = ζA(1− z) . (5.7)

used in ref. [17]. Specifically, we have here

G∆(Z,W ) =
ζ∞(2∆)

(Z −W )2∆ 2F1

(
∆,∆− n

2
+

1

2
; 2∆− n+ 1;− 4

(Z −W )2

)
, (5.2)

where Z,W ∈ Mn+1,1 are embedding space coordinates in (n+ 2)-dimensional Minkowski space satisfying

Z2 = W 2 = −1, and

K∆(Z,P ) =
ζ∞(2∆)

(−2P · Z)∆
, (5.3)

where P ∈ Mn+1,1 and P 2 = 0, so that P can be thought of as a coordinate on the conformal boundary of

the AdS hyperboloid.
19 The factor of 2 mismatch between the real and p-adic results also manifests itself in position space

expressions [37], and may be thought of as resulting from the choice of normalization of integration mea-

sures: the p-adic Haar measure is conventionally normalized such that
∫
|x|p≤1

dx = 1, while over the reals∫
|x|≤1

dx = 2.
20It may be mentioned at this point that the Barnes lemmas also admit p-adic analogs, providing two

separate but related examples of formulas displaying the parallel roles played by the local zeta functions

ζ∞ and ζp and by the complex plane and complex cylindrical manifold. We refer the reader to appendix A

for more details.
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∆

n
2

+ c n
2
− c

x

1

=

∫
dc

2πi
f∆(c)

∫
∂Tpn

dx

∆

n
2

+ c n
2
− c

x

1

Figure 5. The split representation eq. (5.8).

It is clear from eq. (5.6) that the completed zeta function treats the Euler gamma function

Γ(z/2) (more precisely, the local zeta function ζ∞(z)) on the same footing as each of the

local zeta functions at finite places, ζp(z).21

For bulk diagrams with one or more internal lines, in the standard AdS/CFT setup it is

useful to apply the split representation [17] (also referred to as the spectral representation

or the harmonic expansion) of the bulk-to-bulk-propagator. The split representation re-

expresses the bulk-to-bulk propagator as a contour integral over a product of two bulk-to-

boundary propagators connected to the same boundary point, which is to be integrated over

the whole boundary, thereby permitting one to recast any tree-level (or even higher-loop)

diagram with internal exchanges as a multi-dimensional contour integral over a product of

appropriate contact interactions. In section 4.2 we derived the p-adic version of the split

representation (see also figure 5), rewritten in a more suggestive manner as

G∆(z0, z;w0, w) =
νp
2
ζp(2∆− n)

∫ iπ
log p

− iπ
log p

dc

2πi/(2 log p)

1

ζp(2c)ζp(−2c)

1

m2
∆ −m2

n/2−c

×
∫
∂Tpn

dxKn
2
−c(z0, z;x)Kn

2
+c(w0, w;x) , (5.8)

where

2νp ≡ p∆+ − p∆− =
p∆

ζp(2∆− n)
(∆+ = ∆ ,∆− = n−∆) , (5.9)

where the bulk-to-bulk and bulk-to-boundary propagators G∆ and K∆ were given in

eq. (2.8) and eq. (2.9), the conformal boundary is given by ∂Tpn = P1(Qpn), and m2
∆

obeys eq. (2.4).

Interestingly, by comparison, the real analog of eq. (5.8) (in embedding space) is given

by [17]

G∆(Z,W ) =
ν∞
2
ζ∞(2∆− n)

∫ i∞

−i∞

dc

2πi

1

ζ∞(2c)ζ∞(−2c)

1

m2
∆ −m2

n/2−c

21The tree-level N -tachyon amplitudes in (p-adic) open string theory [43–45, 47, 56] can be expressed

entirely in terms of the local zeta functions described here, and in fact the functional equation eq. (5.7)

plays an important role in the context of adelic strings [44, 46], as it is central to the simple product rule

satisfied by the channel symmetric Veneziano amplitude [44]: A
(4)
∞ (ki)

∏
pA

(4)
p (ki) = 1, where A

(4)
∞ is the

ordinary channel-symmetric Veneziano amplitude and A
(4)
p is the corresponding Veneziano amplitude in

p-adic string theory.
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×
∫
∂AdS

dP Kn
2
−c(Z,P )Kn

2
+c(W,P ) , (5.10)

where

2ν∞ ≡ ∆+ −∆− = 2∆− n (∆+ = ∆ ,∆− = n−∆) , (5.11)

and now m2
∆ = ∆(∆− n).22 We have chosen to express eq. (5.10) in a non-standard way,

using the local zeta function ζ∞ and the mass-squared of the bulk scalar field to emphasize

the similarity with the corresponding p-adic result eq. (5.8). However it is worth noting

that eq. (5.10) is simply a repackaging of e.g. equation (121) of ref. [17] with the choice of

normalization given in footnote 18.

With eq. (5.8) in hand, we could compute the p-adic Mellin amplitudes for arbitrary-

point tree-level diagrams with one, two or three internal lines. For example, we showed in

section 4.3 that the Mellin amplitude for the exchange diagram eq. (2.7) is given in the

so-called Mellin-Barnes contour integral representation by

Mexch = 2νp
ζp(2∆− n)

ζp(
∑

iL
∆iL − s)ζp(

∑
iR

∆iR − s)

∫ iπ
log p

− iπ
log p

dc

2πi/(2 log p)

`n
2
(c)`n

2
(−c)

m2
∆ −m2

n/2−c
, (5.12)

where νp is given in eq. (5.9), m2
∆ is given by eq. (2.4), and we have defined

`n
2
(c) ≡

ζp(c+ n/2− s)ζp(
∑

iL
∆iL + c− n/2)ζp(

∑
iR

∆iR + c− n/2)

2 ζp(2c)
. (5.13)

The Mandelstam-like variable s is defined to be

s ≡
∑
iL

∆iL − 2
∑
j<k
j,k∈iL

γjk =
∑
iR

∆iR − 2
∑
j<k
j,k∈iR

γjk . (5.14)

We obtained the Mellin-Barnes integral representation above by comparing eq. (4.31) and

eq. (4.37) with eq. (1.10).

The Mellin amplitude for the real analog of eq. (2.7) takes an almost identical form in

its Mellin Barnes representation [17], and can be written as

Mexch = ν∞
ζ∞(2∆− n)

ζ∞(
∑

iL
∆iL − s)ζ∞(

∑
iR

∆iR − s)

∫ i∞

−i∞

dc

2πi

`n
2
(c)`n

2
(−c)

m2
∆ −m2

n/2−c
, (5.15)

where m2
∆ = ∆(∆ − n), ν∞ is given in eq. (5.11), `n

2
(c) is defined exactly as in eq. (5.13)

except with ζp replaced by ζ∞, and s is given by eq. (5.14). The amplitude eq. (5.15)

is simply a rewriting of equation (46) in ref. [17] (suppressing overall coupling constant

factors) in terms of ζ∞ and m2
∆, except with a choice of normalization for propagators as

noted in footnote 18 and a choice of normalization for M as prescribed by a modification

of eq. (1.6) where the explicit factors of Γ(γij) have been replaced by the corresponding

22For a discussion on the relation between the overall factors νp and ν∞ see sections 5.1-5.2 of ref. [37],

where precisely the same factors make an appearance.
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factors of ζ∞(2γij). The pole structure of the p-adic and real Mellin amplitudes in the

Mandelstam variable s, in eq. (5.12) and eq. (5.15) respectively, takes a particularly similar

form; the only difference arises from the fact that the ζ∞ functions have a semi-infinite

sequence of poles while only the first pole in this semi-infinite sequence survives as a pole

of ζp. This observation captures the essence of the general wisdom that p-adic and real

amplitudes are closely related, yet the p-adic case is decidedly simpler. Indeed, equations

eq. (5.1)-eq. (5.15) already provide strong evidence for a connection between real and p-adic

Mellin amplitudes.

5.2 Outlook

We have seen in this paper that Mellin space, which has proven to be a useful tool in the

computation of correlators in conventional AdS/CFT, can also be defined in the context

of p-adic AdS/CFT, where it proffers the same benefits compared with position space. For

instance, arbitrary-point tree-level bulk diagrams can be evaluated relatively straightfor-

wardly, are expressible in a compact form as meromorphic functions of Mellin variables,

with poles corresponding to the exchange of solely single-trace operators. We have also

seen that the expressions for p-adic Mellin amplitudes exhibit a close resemblance to their

real counterparts, sharing almost identical functional forms in the Mellin-Barnes contour

integral representation, reflective of the fact that the intermediate steps of the computa-

tions closely parallel each other. Indeed, we have established the p-adic analogs of the

split representation of the bulk-to-bulk propagator and the Symanzik star-integration for-

mula, which are both used in the evaluation of bulk diagrams. One conspicuous difference,

though, is that it is not necessary to pass to an embedding space formalism, due to the

simple forms the bulk-to-bulk and bulk-to-boundary propagators already assume in p-adic

AdS/CFT [37]. Nevertheless, it would be interesting to undertake a closer analysis of a

p-adic analog of the embedding space formalism — which over the reals owes its existence

to the Euclidean n-dimensional conformal algebra SO(n+ 1, 1) — perhaps along the lines

of refs. [57, 58].

Just like for real Mellin amplitudes, the Mellin variable dependence in p-adic Mellin

amplitudes enters solely via the Mandelstam-like invariants associated with internal lines.

In the Mellin-Barnes integral representation, where the amplitude is expressed as a contour

integral over lower-point contact amplitudes, these appear as arguments of local zeta func-

tions, ζp and ζ∞ in the p-adic and real cases respectively, and dictate the pole structure of

the amplitude. In both the real and p-adic cases, the complex contours in this representa-

tion correspond to complex-shifting the internal dimensions of the bulk diagram. However,

the complex manifold in the p-adic case is an infinite cylinder with the imaginary direction

periodically identified, such that for each simple pole in the integrand in the p-adic case,

the real analog features, in addition to the same pole, a semi-infinite sequence of poles

corresponding to exchange of descendants.

Consequently, due to the finite number of poles in the p-adic case, any Mellin am-

plitude is always expressible as a finite sum of ratios of elementary functions (precisely,

the local zeta function ζp), unlike the real case where closed-form expressions are typically

not available and one must restrict to expressing the amplitudes in terms of increasingly
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intricate infinite sums or the Mellin-Barnes integral representation with unevaluated inte-

grals [18, 19].

The careful reader may have noticed that the closed-form expressions for the p-adic

Mellin amplitudes computed in this paper, given in eq. (4.17), eq. (4.42), eq. (4.56),

eq. (4.66) and eq. (4.78), appear to be hinting at a hidden structure obeyed by these

amplitudes. A closer look at the expressions for the pre-amplitudes for each of these Mellin

amplitudes also suggests that the pre-amplitudes themselves seem to be expressible in a

structural form not very different from the full Mellin amplitudes. These observations turn

out to be not mere coincidences, but can be formalized to reveal powerful recursion rela-

tions obeyed by the closed-form Mellin amplitudes as well as pre-amplitudes of arbitrary

bulk diagrams at tree-level [55].

While in this paper we restricted our attention to p-adic Mellin amplitudes arising from

bulk theories with polynomial couplings, amplitudes resulting from theories with derivative

couplings may be readily extracted from the results obtained in this paper. This is because

for a bulk action on the Bruhat-Tits tree, a polynomial coupling appears as a contact in-

teraction vertex, while derivative couplings appear as nearest-neighbor interaction vertices.

For this reason, any diagram constructed from derivative-couplings can be obtained from

the sub-leading term of an exchange diagram in the limit where the internal operator is

made infinitely heavy, see e.g. ref. [39]. Furthermore, it would be interesting to extract and

interpret the flat-space limit [12, 17, 21, 59–62] of p-adic Mellin amplitudes, especially in

light of the fact that not much is known about p-adic theories which could describe such

flat-space amplitudes.

We further restricted ourselves to only scalar fields in this paper. It would be interesting

to relate and extend the results of this paper to theories of particles with non-zero spin.

This has been a topic of much interest and recent progress in conventional AdS/CFT,

see e.g. refs. [25, 33, 34, 63–67]. On the p-adic front, however, it is at present not well

understood how to describe spinning degrees of freedom in a discrete bulk geometry. A

conceptual understanding of this is a natural next step worth pursuing.23

Another promising avenue is the study of p-adic Mellin amplitudes at loop level. Study-

ing p-adic AdS/CFT at loop-level brings to fore the question of sub-AdS dynamics. Likely,

a proper treatment should go beyond the discrete bulk tree geometry which was suffi-

cient for our purposes here. In fact in this paper, in the explicit calculation of Mellin

amplitudes we passed to a continuum pAdSn+1 space [37] (see also ref. [58] for a related

continuum construction), which is a refinement of the Bruhat-Tits tree, but purely for

computational convenience since we restricted ourselves to a bulk-to-bulk propagator de-

fined on the course-grained Bruhat-Tits tree. A natural generalization of the bulk-to-bulk

23There are indications [68] (see also refs. [56, 69, 70]) that the coefficients of fermionic correlators

may, analogous to the scalar case, be expressed in terms of local factors associated with the Dirichlet L-

function (i.e. the “local Dirichlet L-functions at finite p” and the “local Dirichlet L-function at infinity”).

The Dirichlet L-function is the simplest generalization of the Riemann zeta function, and it generalizes

the infinite sum in eq. (5.5) by weighting each term in the series by a simple non-trivial multiplicative

character (see e.g. ref. [47] for a simple introduction to the Dirichlet L-function). The Riemann zeta

function corresponds to the choice of the trivial multiplicative character as the weight factor.
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propagator sensitive to sub-AdS length scales would possibly involve the chordal distance

function of ref. [37]. Indeed some work on constructing such an object recently appeared

in ref. [71], and provided evidence for non-trivial contributions to position-space loop am-

plitudes from small scales. It would be interesting to investigate this line of direction from

the point of view of the formalism presented in this paper.
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A Barnes lemmas: real and p-adic

As part of the motivation for why it was natural to have Mellin variables living on a

complex cylindrical manifold, we mentioned that the Barnes lemmas [72, 73] find close

p-adic analogues in terms of contour integrals on the “complex cylinder” (see section 1.1

for a description of the complex cylinder). The analogy is most striking when these lemmas

are re-expressed in terms of local zeta functions eq. (1.8) and eq. (1.9), as we present below.

The first Barnes lemma.∫ i∞

−i∞

dz

2πi
ζ∞(a+ z)ζ∞(b+ z)ζ∞(c− z)ζ∞(d− z)

= 2
ζ∞(a+ c)ζ∞(a+ d)ζ∞(b+ c)ζ∞(b+ d)

ζ∞(a+ b+ c+ d)∫ iπ
log p

− iπ
log p

dz

2πi
ζp(a+ z)ζp(b+ z)ζp(c− z)ζp(d− z)

=
1

log p

ζp(a+ c)ζp(a+ d)ζp(b+ c)ζp(b+ d)

ζp(a+ b+ c+ d)
. (A.1)

The two above equations hold true when a, b, c, and d are positive numbers so that the

poles at z = −a and z = −b lie to the left of the contour and the poles at z = c and z = d

lie to the right.

The second Barnes lemma.∫ i∞−|ε|

−i∞−|ε|

dz

2πi

ζ∞(a+ z)ζ∞(b+ z)ζ∞(c+ z)ζ∞(d− z)ζ∞(−z)

ζ∞(a+ b+ c+ d+ z)

= 2
ζ∞(a)ζ∞(b)ζ∞(c)ζ∞(a+ d)ζ∞(b+ d)ζ∞(c+ d)

ζ∞(b+ c+ d)ζ∞(a+ c+ d)ζ∞(a+ b+ d)∫ iπ
log p
−|ε|

− iπ
log p
−|ε|

dz

2πi

ζp(a+ z)ζp(b+ z)ζp(c+ z)ζp(d− z)ζp(−z)

ζp(a+ b+ c+ d+ z)

=
1

log p

ζp(a)ζp(b)ζp(c)ζp(a+ d)ζp(b+ d)ζp(c+ d)

ζp(b+ c+ d)ζp(a+ c+ d)ζp(a+ b+ d)
. (A.2)
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The above two equations hold true when a, b, c, and d are positive numbers so that the

poles at z = −a, z = −b, and z = −c lie to the left of the contour while the poles at z = 0

and z = d on lie the right. ε is any non-zero real number such that |ε| is less than a, b,

c, and d.

The p-adic versions of the Barnes lemmas presented above can be straightforwardly

verified by an application of Cauchy’s theorem by closing the contours to the left and

summing over the enclosed residues.
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