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1 Introduction

Supersymmetric AdS vacua of 10-/11-dimensional SUGRA play an important role in our
modern understanding of theoretical physics. For example, they have led to many impor-
tant insights into superconformal field theories via the AdS/CFT correspondence. For many
holographic applications, it is useful to have a consistent truncation of 10-/11-dimensional
SUGRA around a supersymmetric AdS vacuum. Such a consistent truncation allows us
to uplift solutions of a lower-dimensional (usually gauged) SUGRA to solutions of 10-/11-
dimensional SUGRA. This makes them a powerful tool in studying deformations of the
AdS vacua, for example those breaking supersymmetry. Moreover, since the AdS radius
of supersymmetric AdS vacua is typically of the same scale as the compactification radius,
lower-dimensional SUGRA theories do not arise by integrating out the Kaluza-Klein tower
of the compactification. Thus, consistent truncations are the only way to study AdS vacua
via lower-dimensional supergravities.

However, constructing consistent truncations is a notoriously difficult task which has
until recently largely eluded a systematic approach. For some purposes, it may even be
enough to know that a consistent truncation of 10-/11-dimensional SUGRA exists, even
without having the explicit truncation Ansétze. Yet, to date there is no classification of
what consistent truncations exist around a given supersymmetric AdS vacuum, although it
is conjectured that for every warped supersymmetric AdSp vacuum of 10-/11-dimensional
SUGRA, there exists a “minimal” consistent truncation to D-dimensional gauged SUGRA
keeping only the gravitational supermultiplet [1], which has been proven in some cases.

Powerful tools in constructing consistent truncations have recently come from excep-
tional field theory (ExFT) [2-5] and exceptional generalised geometry (EGG) [6-8], which



reformulate 10-/11-dimensional SUGRA in a way which unifies the metric and flux degrees
of freedom. In this framework, consistent truncations preserving all supersymmetries arise
as “generalised Scherk-Schwarz” truncations [9-12], generalising consistent truncations on
group manifolds [13] to the more general setting of “generalised (Leibniz) parallelisable
spaces” [14], which includes certain homogeneous spaces. This has led to a proof of the
consistency of the maximally supersymmetric S° truncation of IIB supergravity [14-16],
and to new consistent truncations giving rise to compact and dyonic gaugings [17-23].
Moreover, all currently known maximally supersymmetric consistent truncations, includ-
ing the truncations of 11-dimensional SUGRA on S* and S7 [14, 15], first found in [24-26],
and the truncation of massive ITA on S® [19, 20], first constructed in [27, 28], are nicely
captured by the framework of generalised Scherk-Schwarz truncations.

Recently, [29, 30] has shown how use this framework to define consistent trunca-
tions breaking half of the supersymmetry. Such half-maximal truncations of type II/11-
dimensional SUGRA then lead to a half-maximal gauged SUGRA in lower dimensions.
Furthermore, [30] proved the half-maximal case of the conjecture of [1], i.e. that every half-
maximally supersymmetric warped AdSp vacuum of 10-/11-dimensional SUGRA admits
a consistent truncation to half-maximal D-dimensional gauged SUGRA keeping only the
gravitational supermultiplet.

Moreover, ExFT and EGG lead to a new geometric description of supersymmetric AdS
vacua of 10-/11-dimensional SUGRA where the compactification manifold is characterised
by “generalised holonomy”, or a (weakly) integrable generalised G-structure, [30-35] in
analogy to supersymmetric Minkowski vacua without fluxes arising from special holon-
omy compactifications [36]. Moreover, as showed in [30], once the generalised G-structure
underyling the supersymmetric AdS vacuum is constructed, the “minimal” consistent trun-
cation can be obtained immediately. Therefore, this framework is ideally suited to studying
supersymmetric AdS vacua and their consistent truncations, which we will undertake in
this paper.

In this work, we will focus on supersymmetric AdSy solutions of massive ITA SUGRA
and supersymmetric AdSg solutions of IIB. Building on previous work [37-39], families of
infinitely many such vacua have recently been constructed in the literature [40-44], where
the AdS7 solutions are characterised by a cubic function on an interval [45] and the AdSg
solutions by two holomorphic functions on a Riemann surface.! These AdS vacua admit
a “universal” consistent truncation to pure 7-dimensional SU(2) gauged SUGRA [47] and
6-dimensional F(4) gauged SUGRA [48], which takes the same form for any of the cubic
functions / holomorphic functions defining the AdS vacua [49-51]. In a recent paper [51], we
showed that in ExFT these infinite families of AdS solutions are described by the same uni-
versal generalised half-maximal structure and used this to explain the universal form of the
AdS7 consistent truncations and derive the consistent truncation around the AdSg vacua.

It has remained an interesting open problem to find any consistent truncations around
the AdSe 7 vacua keeping more modes than just the gravitional supermultiplet. Supersym-
metry implies that any extra modes kept will have to form vector multiplets of the 6- and

! An alternative characterisation of the AdSg vacua in terms of a real harmonic function is given in [46].



7-dimensional gauged SUGRA obtained after truncation. Here we will use the framework
of ExFT, and specifically the tools developed in [29, 30], to address this problem: we will
classify all possible consistent truncations with vector multiplets around the supersym-
metric AdSg 7 vacua that are compatible with the Ansatz proposed in [29, 30]. Assuming
the Ansatz of [29, 30] to be the most general Ansatz for consistent truncations with vec-
tor multiplets, our results give a full classification of the consistent truncations around
supersymmetric AdSg 7 vacua. We find that

e there are no consistent truncations with vector multiplets around the supersymmetric
AdS7 vacua of massive [IA SUGRA when the Romans mass is non-vanishing,

e supersymmetric AdSg vacua of IIB SUGRA admit consistent truncations with vector
multiplets when the holomorphic functions characterising them admit certain differ-
ential conditions which we give explicitly. We construct the non-linear consistent
truncation Ansétze that give rise to less than four vector multiplets.

Our paper is organised as follows. First, we give a summary of our results in 1.1. In
section 2, we give a brief introduction to the relevant aspects of ExF'T, while in section 3,
we review the techniques developed in [29, 30] to describe supersymmetric AdS vacua of
10-/11-dimensional SUGRA and their minimal consistent truncations, in which only the
gravitational supermultiplet is kept. In section 4, we review how to define consistent trun-
cations with matter multiplets as described in [29, 30]. Next, we show how to compute the
generalised metric from the half-maximal structure underlying the AdS vacua in section 5.
In sections 6 and 7, we show how one can easily construct the supersymmetric AdS; vacua
of massive ITA SUGRA and AdSg vacua of IIB SUGRA, respectively, using half-maximal
structures of ExFT, before deriving their minimal consistent truncations in 8. Finally, in
section 9 we show that there are no consistent truncation with vector multiplets around
the supersymmetric AdS; vacua of massive ITA and in section 10 we classify all possible
consistent truncations with vector multiplets around the supersymmetric AdSg vacua of
IIB SUGRA. These consistent truncations require the holomorphic functions characterising
the AdSg vacua to satisfy certain differential constraints which we derive. We also explic-
itly construct the non-linear consistent truncation Ansitze yielding less than four vector
multiplets. We conclude with a discussion and outlook in section 11.

1.1 Summary of results

We summarise here our results. In sections 6 and 7 we construct and classify all super-
symmetric AdS7 vacua in mITA theory and AdSg vacua in I1B, respectively. As we review
in section 3.1, for each of them one can construct a consistent truncation to a minimal
half-supersymmetric gauged supergravity with a gravitational supermultiplet, which we
explicitly construct in section 8. Finally, in sections 9 and 10 we analyse the possibility of
having consistent truncations with matter multiplets around these vacua, using the meth-
ods of [29, 30]. From the latter, it follows that we can have at most three (four) vector
multiplets in consistent truncations around supersymmetric AdS7 (AdSg) vacua and, for



the truncation to be consistent, the compactification space has to satisfy certain condi-
tions. These extra conditions imply that there are no consistent truncations with vector
multiplets around AdS; vacua for non-vanishing Romans mass. For the AdSg case, we
find that only a small subset of 6-dimensional half-maximal gauged SUGRAs admitting
supersymmetric AdSg vacua [52] can arise as a consistent truncation of IIB SUGRA, and
we derive explicit differential constraints on the compactification space for the consistent
truncations to exist. More concretely, our findings for each of the cases are the following:

AdS7 in mITA. In section 6 we construct and classify all geometries in mITA theory
consisting of the warped product

AdS; x I x 52, (1.1)

with I an interval, that preserve supersymmetry, the minimal amount being 16 supercharges
in seven dimensions. We encounter that they can be classified in terms of a function ¢(z)
on the interval I satisfying

t=—— and t(z) >0, (1.2)

where equality in the last condition holds on the endpoints of I and ensures that the total
internal space has no boundaries. The parameter m is the Romans mass of mIIA. We study
all possibilities of having consistent truncations with vector multiplets around these vacua
and find that the only possibility is to keep a single vector multiplet in the truncation and
only if m = 0. This consistent truncation is just a consistent subsector of the maximally
supersymmetric consistent truncation around the AdS; x S* solution of 11-dimensional
supergravity dimensionally reduced to IIA supergravity.

AdSg in ITB. Similarly, in section 7 we construct and classify all geometries in IIB theory
consisting of the warped product

AdSg x ¥ x 52, (1.3)

where ¥ is a Riemann surface (with boundaries), that preserve 16 supercharges. We find
that they can be classified in terms of two holomorphic functions f% « = 1,2, on the
Riemann surface. These functions have to satisfy the condition

i10f*0f, >0, r>0, (1.4)

where equality holds on the boundary of ¥, ensuring that the total internal space has no
boundaries. The function r is a real function of the Riemann surface defined up to an
integration constant through the differential equation

dr = —pa dk*, (1.5)

where p* and k% are the real/imaginary parts f* = —p® + i k®. We also study which
consistent truncations with vector multiplets around these vacua exist, and our results are
summarised in table 1. We explicitly construct the consistent truncations containing one,
two and three vector multiplets.



N | SU(2)g rep Consistent truncations with vect. mult. Gauging

1 1 Only if 3g€U(1) s.t. (g f*)ereal functions on X | SU(2)xU(1)

2 1e1 NO (due to global issues) SU(2)x U(1)?

3] 1e1e1 NO N/A

3 3 Only if r dr® = po7P A mg ISO(3)

11e1e1e1 NO N/A

4 3e1 Only if 33 and 31 with g = £+ (p"‘afa> 1SO(3) x U(1)
2 \ppof”

Table 1. Possible consistent truncations with N vector multiplets around supersymmetric AdSg x
S? vacua in IIB and the resulting gauging of the gauged SUGRA. Consistency requires that N <
4 and that the vector multiplets form representations of SU(2)g, the R-symmetry of the AdSg
vacua. The one-forms 7@ are explicitly defined in terms of the background functions f¢, see
equations (10.63) and (10.64).

2 Review of exceptional field theories

In this section, we review the structure of the relevant exceptional field theories. Excep-
tional field theories (ExFTs) are the manifestly duality covariant formulations of maximal
higher-dimensional supergravity theories [5, 53, 54]. For our purposes, we will need the
ExFTs built on the groups Es(5) = SO(5,5) [55], and Ey4) = SL(5) [56], respectively.

The reformulation of the higher-dimensional supergravities is based on the split of their
coordinates into D external coordinates z* and the remaining internal coordinates 3/ , with
the latter embedded into a set of generalised internal coordinates Y™ transforming in a
representation R; of the duality group Egg), with d = 11 — D . Internal diffeomorphisms
and tensor gauge transformations of the higher-dimensional supergravity combine into a
single symmetry structure of generalised diffeomorphisms in the coordinates Y™ [4, 7].
Parametrised by a gauge parameter ¢M in Ry, the generalised Lie derivative of a generalised
vector field VM in Ry reads

L VM = NoyvM — oneM VN Ly MN o onef vk, (2.1)

The constant Eg(4)-invariant tensor YMN 11 encodes the deviation from standard diffeo-
morphisms. Its presence implies that the transformations (2.1) close into an algebra only
after imposing the section constraints

YMNKL oy ®Iny =0, (2.2)

where the internal derivatives act on any pair of fields or gauge parameters. Solutions of
the section constraints restrict the internal coordinate dependence of all fields to linear sub-
spaces of Ry upon which one recovers the standard supergravity theories. The action (2.1)
can be rewritten as

1
LV = <§NaN + g OnEY = aa (1) L Ok ta-> Vi (2:3)



with constant ag, and ¢, labelling the generators of Eg(g) . From this formula one also reads
off the action of generalised Lie derivatives on different representations. Modulo the section
constraints (2.2), the transformations (2.1) close into an algebra defining the E-bracket

61, &M =2¢loney — VMV gp gl ones . (2.4)

The presence of the tensor Y™V i1 implies the existence of trivial gauge parameters and
non-associativity of the algebra. Generalised diffeomorphisms are realised as local symme-
tries of ExFT (i.e. with parameters £ depending on internal and external coordinates) by
introducing covariant external derivatives Dy, = 0, — L 4, with the ExFT vector fields A,
in the R; representation. Non-associativity of the algebra (2.4) implies that the standard
Yang-Mills field strength based on (2.4) is not a tensor w.r.t. the generalised Lie deriva-
tive (2.1). Rather it has to be completed by a coupling to the two-forms B,,, of the theory
following the structure of the tensor hierarchy [57]

Fuw = 28[M.,4V] — [Au A +dB . (2.5)

Here, the bracket [A,, A,] refers to (2.4) while the d operator in the last term denotes a
covariant differential operator from the Ro representation of two-forms into R;. Explicitly,
it takes the form

(dB”V)M = YMNKL 8NBWKL , (2.6)

with the two-forms BWK L living in (a sub-representation of) the symmetric tensor product
Ry C (R1 ® R1)sym - Continuing the tensor hierarchy gives rise to the couplings of three-
forms C,,, C R3, four-forms D,,,,; C Ry, etc., with the lowest non-abelian field strengths
given by

4
Tuwpo = 4DpCopol + 2 Fjuy N Bpo] — dBpu, A Bpop — 3 Ap A (Au A apAa]) (2.7)
1
+ 3 Ap A (Ay A [Ap, Agl) + dDypupo -

Again, the d operator denotes the covariant internal differential operators mapping R, —
R,_1, while the wedge A represents algebraic maps

(R1 ® Ri)sym — R, Ry ® R — R3, (2.8)

etc. Just as p-form field strengths are tensor with respect to the Lie derivative, the field
strengths (2.5), (2.7), are tensors with respect to the generalised Lie derivative.

Let us now make these structures explicit for the theories we will be using in the
following. For d = 4, the E;4) = SL(5) ExFT is based on coordinates yab — ylab]
in the R; = 10 representation of SL(5), with a,b = 1,...,5 labelling the fundamental
representation. The Y-tensor in (2.1) is given by Y/ ,ghab,cd = 6(52{:5; , and induces a
tensor hierarchy of p-forms living in representations R, as

A, %10, Bua:5, Cup®:5, Dupoas: 10. (2.9)



The relevant A products (2.8) and the d operators in (2.5), (2.7) are explicitly given by

1
(A1 A Ao = €apede Arbe Ay (AAB)* = A®By, (2.10)
(B = Le™H 0B, (dC)u =0l (dD)* = DDy (211)

For what follows, it will be similarly useful to define A : Ri® R3 — Rqsand A : Ro® Rg —
1 as

1
("4 A C)ab = Eeabcde -ACdCe 5 BAC = Baca . (212)

Moreover, the theory features 14 scalar fields, parameterising the coset space SL(5)/SO(5),
which are most conveniently described by a group-valued generalised metric My, . The
ExFT dynamics comes from an action [56], giving rise to standard second order field
equations. In particular, the 4-form field strength is dual to the 3-form field strength via
the first order equation

1
j,w/pcra = ? V |g|€;u/pmf)\’r Mab HHATba (213)

with the scalar matrix M | and where |G| is the determinant of the external metric, G,
of the ExFT, which is used to raise/lower the external indices on the field strengths.

For d = 5, the E55) = SO(5,5) ExFT is based on coordinates YM in the R, = 16
spinor representation of SO(5,5), with M = 1,...,16. The Y-tensor in (2.1) is given
by YPQ N = % (YD arn(77)F@ in terms of the SO(5,5) gamma matrices, with the index
I =1,...10, labelling the vector representation, raised and lowered by the constant SO(5, 5)
invariant metric 17y . It induces a tensor hierarchy of p-forms living in representations R, as

AM 16, B':10, Cuprr 16, Dy’ 45, (2.14)
Strictly speaking, the theory also carries additional covariantly constrained 4-forms
D,wpo M, but for our purposes we will only consider equations in which all four-forms

drop out. The relevant A products (2.8) and the d operators in (2.5), (2.7) are explicitly
given by

1 1

(AN AT = 5(fyf)MN AM AN (AAB)m = 5(v)mn AVBT (2.15)
1

(dB)M = (v)MN onB", (dC)r = 5(W)MNaMcN. (2.16)

Once again, it will be useful to also define A : Ry ® Ry — 1 as
By ABy=n1y 61182‘] . (2.17)

Moreover, the theory features 25 scalar fields, parameterising the coset space SO(5,5)/
(SO(5) x SO(5)), which are most conveniently described by a group-valued generalised
metric M sy in the spinor representation, or by a group-valued generalised metric My ;
in the vector representation. The ExFT dynamics comes from a pseudo-action [55], which



has to be supplemented by first order duality and self-duality equations among the p-form
field strengths

1
jm/paM = *\/@E,ul/pan/\MMN J_'%ANv
2 (2.18)

1
/H,ul/pl = _5 V |g‘6,uupm@/\77]JMJK /HJH)\Ka

where G, is the external metric which is used to raise/lower the external indices on the
field strengths and |G| is its determinant.

For details about the ExFT actions and field equations, we refer to [55, 56]. In appen-
dices A and B, we collect/derive the details of the dictionaries between the ExFT fields
and the original ITA /TIB supergravity fields.

3 Half-maximal AdS vacua from ExFT

Generic supersymmetric AdS vacua of 10-/11-dimensional SUGRA have non-trivial fluxes.
Since ExFT unifies fluxes and geometry into generalised tensor fields, it leads to a natural
description of supersymmetric AdS vacua that is largely analogous to special holonomy
spaces in Riemannian geometry, as shown in [30] for the case of 16 supercharges, and in [33]
for 8 supercharges. Thus, having a supersymmetric AdSp x M vacuum is equivalent to the
existence of a nowhere vanishing set of generalised tensor fields on M subject to certain
algebraic compatibility conditions and differential conditions. These conditions ensure
that M admits appropriate Killing spinors for the AdSp vacuum. As shown in [30], for
supersymmetric AdSg and AdS7 vacua the relevant generalised tensors are d — 1 generalised
vector fields .J, € ' (Ry), withw = 1,...,d—1, and a generalised tensor field K € ' (Rp_4),
where d = 11 — D and D denotes the dimension of the AdS vacuum. Here we denote by
R, the generalised vector bundle whose fibres are R,, as listed in (2.9) and (2.14). These
generalised tensors must satisfy the algebraic conditions

1
Ju VAN Jv - ﬁéuyejij = O,

JuANJANK >0, (3.1)
K®K|Rc:0,

with the ExFT A product defined in (2.10), (2.12) and (2.15), (2.17), the u,v =1,...,d—1
indices raised and lowered by d,, and R. = () for D = 7 and R. = 1 for D = 6. This
set of generalised tensors J, and K defines a G = SO(d — 1) structure, because it is
stabilised by SO(d — 1) C Eg(4). This ensures the existence of well-defined spinors on Miys
carrying 16 supercharges,? and we will therefore also call the set .J,,, K satisfying (3.1) a
“half-maximal structure”. The commutant of Gya¢ within the maximal compact subgroup
of Eyq) is itself given by SO(d — 1)g which acts as a R-symmetry group, rotating the

2In 6 dimensions, the above description is equivalent to having 16 non-chiral supercharges. It is also
possible to have a chiral set of 16 supercharges in 6 dimensions, which requires having a different set of
generalised tensors [30]. However, there are no chirally supersymmetric AdS¢ vacua, and so we will not
comment further on this possibility.



well-defined spinors into each other, and similarly the generalised vector fields J,. As we
will show in section 5, one can express the generalised metric, i.e. the scalar fields on M,
in terms of a SO(d — 1) g-invariant combination of the half-maximal structure, J,, and K.

To ensure that the well-defined spinors are Killing spinors of the supersymmetric
AdSg7 vacua, the half-maximal structure J,, K must satisfy the following differential
constraints [30]

['Jujv = _Auvawa

L, K=0,

dK = 3'31\/§6uvauvaz ANJ*, whenD =7,
a %euvaAuvam s when D = 6,

(3.2)

where the generalised Lie derivatives, L, .J,, £ Juf( . and the dK operator are as defined
in equations (2.1), (2.3), (2.11) and (2.16). For D = 7, ie. in the SL(5) ExFT, the
explicit expressions for the generalised Lie derivatives appearing in the first two equations
of (3.2) are

1 1
Ly, ], = 5Jucdachvab — 27,847,497 4 5Jvabachucd,

. 1 o . 1.
L3, K" = ST 00K = KOy + S K OpeJu"™

while for D = 6, i.e. in the SO(5,5) ExFT, they are

1
EJquM — JuNaNJvM - JUNaNJuM + 5 (’YI)MN (’YI)pQ vaaNJuQ ;
(3.4)
Ly K" =J,Moy K + %K‘] (W) () 0p T M.

The objects Ay appearing in (3.2) are totally antisymmetric constants which imply
that the J,’s generate a SU(2) g algebra with respect to the generalised Lie derivative and
that the K is invariant under this SU(2)z symmetry [30]. The cosmological constant, A,
of the AdSg 7 vacuum is encoded in Ay, as

Ao A™Y ~ A, (3.5)

up to numerical factors which we will fix in sections 6 and 7 by comparing with known
supersymmetric AdSg 7 vacua. From (3.2), we see that Ay, breaks the SO(d — 1) sym-
metry of the half-maximal structure to SU(2)g, the R-symmetry of the supersymmetric
AdSe 7 vacua.

Moreover, (3.2) implies that the vector fields, J,, generate, via the generalised Lie
derivative, a SU(2)g € SO(d — 1) rotation on the .J,’s themselves and leave K invariant.
As we will make explicit in the next section, the generalised metric M is constructed from
SO(d — 1) g-invariant combinations of J, and K and thus

L, M=0. (3.6)



Thefore, the J, are generalised Killing vector fields of the background. As made explicit
in appendices A and B generalised vector fields consist of formal sums of spacetime vector
fields and differential forms. Equation (3.6) implies that either the spacetime vector fields
in J,, are Killing vector fields of the spacetime metric and leave the SUGRA field strengths
invariant [30], or that some of the .J,, contain a vanishing spacetime vector field component
and consist of only exact differential forms. We call a generalised Killing vector of the latter
type a trivial Killing vector field. As discussed in more detail in [30], for AdS7 vacua we see
that the SU(2)r symmetry must be generated by the three spacetime vector fields of .J,,
u=1,...,3. On the other hand, for AdSg vacua three of the J,’s contain spacetime Killing
vector fields that generate the SU(2)r symmetry, while the fourth generalised vector field

1
Jr = e AT (3.7)
is given by
Jr = %df(, (3.8)

Ly, =0, (3.9)

when acting on any generalised tensor. We will make use of these general properties of J,,
and K when constructing supersymmetric AdSg 7 vacua in section 6 and 7.

Finally, one can define the following generalised tensor fields from the half-maximal
structure .J,, and K which will be useful to us

Ju A Jy = 0y K, KANK =rP2, Jo=JuANK, (3.10)
where K € I'(R,) and £ is a scalar density of weight 1.

3.1 Minimal consistent truncation

One benefit of constructing or describing half-maximal AdSp vacua by the structures
J, and K is that we immediately obtain a “minimal” consistent truncation around the
vacuum to a half-maximal D-dimensional gauged SUGRA containing only the gravitational
supermultiplet [30]. This is therefore a proof and an explicit realisation of the (half-maximal
subcase of the) conjecture that such a consistent truncation exists for any supersymmetric
warped AdS vacuum of 10-/11-dimensional SUGRA [1]. Moreover, the usually highy non-
linear truncation Ansatz is given by a simple linear factorisation Ansatz on the ExFT
structures. If we denote by Y the internal coordinates and by z* the D-dimensional
external coordinates, then the truncation Ansatz (of the purely internal fields from the
D-dimensional perspective) is given by [29, 30]

Ju(z,Y) = X Hz) J,(Y),

K(z,Y) = X*(x) K(Y). (3.11)

Here X () is the scalar field of the D-dimensional half-maximal SUGRA. For each value of
the scalar field X (z) > 0, Ju(z,Y) and K (z,Y) satisfy the algebraic conditions (3.1) and
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thus a half-maximal structure. This guarantees that the theory obtained after truncation is
half-maximally supersymmetric. However, for X # 1, the differential conditions (3.2) defin-
ing the AdS vacuum are no longer satisfied. Therefore, at X # 1, the theory will not have
a supersymmetric AdS vacuum. Finally, as shown in [30], the differential conditions (3.2)
ensure that the truncation Ansatz (3.11) is consistent.

We will show in section 5 how to construct the generalised metric from the half-maximal
structure. By constructing the generalised metric of 7, and K and using the dictionary
between ExFT and SUGRA, given in appendices A.2 and B.2, we thus obtain the non-linear
truncation Ansatz for the internal supergravity fields.

For the fields of the ExFT tensor hierarchy, the truncation Ansatz is as follows [30].
For the ExF'T vector fields, we have

Ay(z,Y) = A" (x) Ju(Y). (3.12)
In D =7, the truncation Ansatz for the remaining fields is

Buy(,Y) = =By (2) K(Y),
Cuup(lﬂa Y) = ;U/p(x) K(Y) , (313)
Dyvpo(2,Y) = Dpppo" (2) ju(Y) )

where A,"(x), Bu(x), Cup(x) and D,ype®(x) are the fields of the 7-dimensional half-
maximal gravitational supermultiplet. In particular, A, are the 3 vector fields, By, are
the 2-forms, C},,,, are the 3-forms dual to B, and D,,,,»* are the 4-forms dual to the vector
fields. The duality relations between these half-maximal gauged SUGRA fields comes from
the duality relations (2.13) between the ExFT field strengths (2.5), (2.7). Finally, the
truncation Ansatz for the external 7-D ExFT metric is

Guw(z,Y) =Gu(x) KA(Y), (3.14)

with G, (x) the metric of the half-maximal gauged SUGRA.

Similarly, in D = 6, the truncation Ansatz for the tensor hierarchy field is

A~

By (. Y) = By (o) K(Y) = By (o) K (). -
Cuvp(®,Y) = Cuyp"(2) Ju(Y) .

Now, A," are the 4 vector fields of the gravitational supermultiplet, while B, is its 2-
form. B;w is the dual 2-form and C},," are the 3-forms dual to the vector fields. Once
again, the relationship between these objects arises from the duality relation (2.18) between
the ExFT field strengths (2.5), (2.7). Using the truncation Ansatz (3.15) and differential
conditions (3.2), we find that the field strengths factorise as

Fu(x,Y)
Hywp(z,Y)

Iijuvu(x) Ju(Y),

! ) (3.16)
Frapl#) K(Y) = Gl K(Y),

— 11 —



where

- 1
F/,u/u - 28[MAV]U + AuUwA;U«U Auw - §6uvwav’LUx Bl“’ ’

Fyp =30, (3.17)

vp| s

- - 1
Gravp = 30, Byy) + 34" By Agju + A A" A" Ap” = S uria ™™ Cpuy”

and similarly for the higher field strengths of the ExFT. We will use this to derive the
duality relations between B, and BMV explicitly in section 5.2. Similar to D = 7, the
truncation Ansatz for the external ExFT metric is

Gu(z,Y) = \/iGW(x) KA(Y), (3.18)

with G, (z) the 6-dimensional gauged SUGRA metric.

4 Consistent truncations with matter multiplets

As shown in [30], half-maximal consistent truncations with N vector multiplets require a
further reduction of the structure group to SO(d — 1 — N) C SO(d — 1) C Eyg), as well
as differential conditions on the tensors defining the SO(d — 1 — N) structure. In order to
have a SO(d — 1 — N) structure, we require d — 1 + N generalised vector fields, J,, where
a=1,...,d—14 N, satisfying

Jo N Ty = N K, (4.1)

in addition to the K as in (3.1). Here nap is a constant SO(d — 1, N) invariant metric and
K is defined as in (3.10),

1
K=——7J], v, 4.2
d—lJ NJ (4.2)

Therefore, given the d—1 generalised vector fields defining the half-maximal structure of the
AdS vacuum (3.1), we must have a further N generalised vector fields, one for each vector
multiplet. Labelling these extra generalised vector fields by w = 1,..., N, the algebraic
conditions (4.1) become

JaNJy, =0,

(4.3)
Jﬂ /\ Jf, — —(57]1—,[( .

Since these algebraic conditions must hold point-wise, it is easy to show that we can only
have N < d — 1 vector multiplets in a consistent truncation.

Moreover, for the truncation around the supersymmetric AdS vacuum to be consistent,
the SO(d — 1 — N) structure must satisfy the differential conditions

Ly, Jy=—Ffa"Je,

; 4.4
L. K =0, (4.4

where fope = far™4e are totally antisymmetric structure constants with fuuw = Aupw and
fuvw = 0. Here we are considering a special case of the more general conditions given in [30]
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because we want to ensure that the truncation contains a supersymmetric AdS vacuum.
The differential conditions (4.4) can be thought of as the higher-dimensional analogue of
the conditions imposed on the embedding tensor of 6-/7-dimensional half-maximal gauged
SUGRA in [52, 58].

For what follows, it’s useful to note that the first condition of (4.4) implies that the
extra generalised vector fields form a representation under the R-symmetry group

L1, Js=—fu"Ja - (4.5)

Together with the fact that there can be only N < d — 1 vector multiplets, this will allow
us to fully classify the possible consistent truncations with vector multiplets in sections 9
and 10.

4.1 Truncation Ansatz

As shown in [30], given the d — 1 + N vector fields satisfying (4.1) and (4.4), we obtain a
consistent truncation by expanding the fields of the ExF'T as follows.

For the scalar sector, we expand the background SO(d — 1) structure in terms of the
SO(d — 1 — N) structure as

Ju(x,Y) = X H2) b, () Jo(Y), (46)
K(z,Y)=X2(z)K(Y). '
The fields b, must satisfy
buabvbnab = duw y (47)

and are identified up to SO(d — 1) rotations acting on the u,v indices. Therefore, they
parameterise the coset space

SO(d — 1, N)

b € 6= 1) x SOV’

(4.8)

and together with X € R they form the scalar manifold of half-maximal gauged SUGRA
coupled to N vector multiplets

SO(d —1,N)
SO(d — 1) x SO(N)

Mecalar = xR+ . (4.9)

Using the formulae of section 5, in which we show how to construct the generalised metric
from the half-maximal structure, we can then translate the above truncation Ansétze into
the non-linear truncation Ansétze of the internal SUGRA fields.

For D = 7, the remaining fields of the ExF'T are expanded as

.AM(:U, Y) = Aﬂa(x) ‘]a(Y) )
Bu(x,Y)=—B,,(z) K(Y), (4.10)
Guw(2,Y) = Guu(x) (YY),

where A,% are the 3 + IV vector fields, B,,, are the two-form fields and G, the metric of
the seven-dimensional half-maximal gauged SUGRA.

,13,



For D = 6, the other fields of the ExF'T are expanded as

Au(z,Y) = A,%(2) JAa(Y) r

Bm,(x, Y) = Bw,(x) K<AY) - BW(x) K(Y), (4.11)
Cuvp(@,Y) = Cup®(2) Ja(Y),

G (2,Y) = V2G,,(z) K*(Y).

Here G, is the metric, A, are the 44N vector fields, B, are the two-form fields and their
duals BW of the six-dimensional half-maximal gauged SUGRA. C},,,* are the 3-form fields
dual to the A,%, which appear via Stiickelberg coupling in the field strength of BW. To see
this, one can compute the ExFT field strengths (2.7). Using the truncation Ansatz (4.11)

and the differential conditions (3.2) we find

Fu(@,Y) = Fw/a(x) Ja(Y),

5 R 3 (4.12)
Hullp(x7 Y)= FNVp(x) K(Y) - GMV/J(m) K(Y),
where
_ 2
™ =200, A4, + f%e A A + gA“BW ,
Fyyp = 30,B,, (4.13)
3 . 2
Guuvp = 304, B,y + 3A 00 A Nab + Muww A" AV Ap" + 384 Cup”
where we defined .
AT = (A, A7) = <_3!GWMAW, 0) . (4.14)

Clearly, F),,* are the field strengths of the 6-dimensional half-maximal gauged SUGRA
whose gauge group is determined by the structure constants fu,. and Fj,, is the field
strength of the two-form B, of the gauged SUGRA. Using the ExFT/SUGRA dictionary

of appendix B.3.1, we can use the above formulae to read off the consistent truncation
Ansatze for the SUGRA fields.

5 Generalised metric from the half-maximal structure

To obtain expressions for the AdS vacua and their consistent truncations in terms of
SUGRA fields, we need to know how the SUGRA fields are encoded in the ExFT objects
used in the truncation Anséatze of sections 3.1 and 4.1. The SUGRA fields with at least
one external leg are encoded in the ExFT tensor hierarchy fields A, B, , etc. and can be
determined in the usual fashion via the SUGRA / ExFT dictionary, which we give for the
SO(5,5) case in appendix B.3.1. However, the purely internal SUGRA fields are encoded
in the generalised metric of ExFT, via the dictionary we give in appendices A.2 and B.2,
and therefore we must know how to obtain a generalised metric from the half-maximal
structure.

Firstly, it is clear that one can construct a generalised metric from J,, and K. Just like
on a d-dimensional manifold, a Riemannian metric defines a SO(d) C GL(d) structure, a
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generalised metric defines a (generalised) Hy C Eyq) structure, where Hy is the maximal
compact subgroup of Egg). On the other hand, J, and K define a Gyt = SO(d—1) C Hy
structure and, thus, J, and K provide more information than the generalised metric. In
ExF'T, the generalised metric parameterises the coset space

(5.1)

Since J, and K are by construction invariant under Gy = SO(d — 1) C Hy, we must
construct My using an SO(d — 1) g-invariant combination of J,, and K. Therefore, the
generalised metric must be given by

Muyn = AKVG_QDjquuN + B H4_DKMN + C "td-1 (Ju1 R (5.2)

Jarw -
The factors of k are chosen so that M j;n has no weight under generalised diffeomorphisms
and A, B and C are coeflicients which are fixed by requiring M,y to be an element of
Eg(q). The final term schematically denotes an appropriate product of (Rl)d_1 — Ri1®R;.

In the following subsections we will give the explicit expressions for the case of SL(5) ExFT
and SO(5,5) ExFT.

5.1 Generalised metric in SL(5) ExFT

In SL(5) ExFT, the generalised metric is often used either in the R; = 10 representation
or its dual representation, or in the fundamental representation, Ry = 5, of SL(5). The
two are related by [3]

Map,cd = 2MgeMapy (5.3)

where a,b = 1,...,5 denote fundamental SL(5) indices. It will be useful to have explicit
expressions for both representations.

The generalised metric in the 10 representation of SL(5) is given as in (5.2) which now
explicitly becomes

Mab,cd =A ”_Sju abjucd +B ﬁ_seabcdeke +C ﬁ_36uvw€abefg€cdhijJuevahiJng ) (54)

where J, 4 is defined as in (3.10), explicitly

~ 1 N
Juab = ZeabcaleJquI(e . (55)

Requiring this to be an SL(5) element fixes A = 802, B = —0? and C = —%,
coefficient 0. Note that the minimal consistent truncation (3.11) corresponds precisely to a

up to a

rescaling 0 — o X. o is determined by the differential conditions (3.2) and can therefore
be fixed by comparison of AdS vacua obtained from the half-maximal structures to known
AdS7 vacua, for example the maximally supersymmetric AdS; x S* vacua of 11-d SUGRA.
This way we find o0 = 1. Thus, the generalised metric and its inverse in the 10 and 10
representations are given by

83 3 _ . 1
Mab,cd =8K 8Juab<]ucd — K 3€abcdeKe N mﬁ

2v/2 A
ab,cd __ —2 7 ab qu,cd —2 abede —12 _uvw _abe cdhi
M =2k “J, T — k%€ KS—TE cwvweabefggedhij g

3€uvw€abefg€cdhij Juef Jvhi Jng ’
(5.6)

evahiJng .
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Similarly, one can show that the generalised metric and its inverse in the 5 and 5
representations of SL(5) are given by

4v/2 - -
Mgy = k4 (KaKb + \3[/{_5 Euvau,ach,dede> )

~ A 242 ~
Mab _ /€_6 (KaKb + \?)f Euvauachdew,cd> )

5.2 Generalised metric in SO(5,5) ExFT

In SO(5,5) ExFT, the generalised metric is often used either in the spinor or vector repre-
sentation of SO(5,5). In the fundamental representation, the generalised metric Mj; must
satisfy

MigMapn™* =np, (5.8)

where I = 1,...,10 labels the 10 representation of SO(5,5) and n;; is the constant
SO(5, 5)-invariant metric with which the I, .J indices are raised/lowered. The generalised
metric in the 16 is related to that in the 10 by

Maurp Mg ()M M = (’YJ)pQ ; (5.9)

where M = 1,...,16 label the 16 representation and (y7)™" and (v1) sy are the SO(5,5)
~y-matrices satisfying
ME( W () np = 201568 (5.10)

()™ (e + (

We thus find the generalised metric and its inverse in the 16 are given by

Mo = Vlé <4 R T g = w7 () K

- R (1) (g () RIS IO s )

un _ 1 —27 M quN _  _—2 . \MN p-I (5.11)
MET = \/§<2” J TN =R ()T K

_ %H_loeuuwx (v VP ()€ (VIJ)S RjupijJijx,S) ,

where J,, 37 is defined in (3.10), and is given explicitly by

A 1 N

Jiar = (v") e KN (5.12)
Similarly, the generalised metric in the 10 is given by

1 . . B o
Mis = <4|6m’wx (v ) ™ (’YJK)p QIMIp T Jog+ 5 KK + K 4K1KJ>
(5.13)
Just as in SL(5), there is a scaling degree of freedom which is generated by the minimal
consistent truncation (3.11). Thus, the coefficients above can only be defined once those
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in the differential conditions (3.2) are fixed, or vice versa. Once one set of coefficients is
fixed, the other can be obtained either by comparison with known AdS vacua, by a careful
analysis of the ExFT BPS equations or by reducing the ExF'T action to that of gauged
SUGRA upon applying the consistent truncation.

We can now explicitly compute the relationship between F,,, and F),,, in (4.13). Using
the expression for the generalised metric (5.13) and the scalar truncation Ansatz (4.6),
we find

(M) Ky =X ) K'(Y),

(MINK; = X*z) KI(Y), (5.14)

where (M) denotes the generalised metric with the truncation Ansatz plugged in, i.e. that
computed from J,, K and K of (4.6). Therefore, the twisted self-duality equation (2.18)
becomes

G(g) =x1 *6 F(g) . (5.15)

6 AdS7; vacua from massive ITA supergravity

As shown in [30] and reviewed in section 3, supersymmetric AdS7 vacua are characterised
by three nowhere-vanishing generalised vector fields J,, € I' (Rq), transforming as a triplet
of SO(3)g, and a nowhere-vanishing generalised tensor & € I'(R3), transforming as a
singlet of SO(3)g. The differential conditions involve a constant totally antisymmetric
3-index tensor A, which therefore takes the form

Ayvw = vV —Ceypw 5 (61)

where the constant c is related to minus the seven-dimensional cosmological constant. The
precise relation between ¢ and the cosmological constant, or, equivalently, the AdS; radius,
can be found from the ExFT BPS equations and using the formula for the generalised met-
ric (5.6), or by comparison to known AdS7 vacua of 10-/11-dimensional SUGRA. By com-
paring to the AdS; x S* vacuum of 11-dimensional SUGRA, we find Ay = 2 V2 R eupw,
where R is the AdS; radius. Plugging this into the differential conditions (3.2), they become

2v/2 w

£Jqu = _? €uwvwd
L, K=0, (6.2)
A 2
dK = = K
R )
where K is defined via
Ju N Jy =0y K . (6.3)

6.1 Half-maximal structure

Here we are interested in studying AdS; vacua of massive IIA supergravity. As we discussed
in section 3, the SO(d — 1) = SO(3) g symmetry must be generated by spacetime Killing
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vectors. This suggests that the vacua are of the form AdS7 x S? x I, with the Killing vectors
on S? generating the SU(2)g symmetry. As we explain in appendix A.1, the generalised
vector fields J, and tensor K are formal sums of internal spacetime vector fields and
differential forms as follows

Ju:Vu+)\u+Uu+¢ua

: (6.4)
K= w(0) + w(2) + w(3)

where Vi, Ay, 0y and ¢, are the vector, 1-form, 2-form and scalar parts of .J,,, while w,
are the p-forms appearing in K. Similarly, K = %Ju AN J* € T'(Rg) is a formal sum of
differential forms

K =) + &) + w3y, (6.5)

where @, are p-forms.
In terms of the above, the wedge products (2.10), (2.12) appearing in the algebraic
conditions (3.1) become

Jlj ATy = 205, Mgy — 2 (A(uqbv) + zv(uav)> — D\ Ay, 66
KANK = w(g)@(g) + w(1) A (D(g) + W(g)@(o) ,

while the quadratic algebraic constraint on K is automatically fulfilled for SL(5).

The differential operators appearing in the differential conditions (6.2) are modified as
described in [19, 20] to capture the Romans mass, m, of massive IIA SUGRA. We explain
in detail how to do this in appendix A.3. Including the Romans mass, and thus using
equations (A.8), (A.10), (A.11), the differential operators appearing in the conditions (6.2)
become

L. Jy = Ly, Vy + Ly, Ay + Ly, 04 + Ly, 0
+ 1y, (MAy — ddy) — 1, (dA) — 1, (dow) + Gy (dAG) + Ay A (MAy — do) |
L, K = Ly,w) + Lv,wa) + Lv,w) (6.7)
— w0y (dAu) — w(o) (dow) — wy A (mAy — dou) ,
dK = —dw(g) + duwg) -

To describe supersymmetric AdS7 vacua, we must therefore find the vector fields and
differential forms satisfying the above algebraic and differential conditions. In doing so, we
will use the differential equations

24/2 N
Ly J, = Rfeuvaw, £, K=0, (6.8)
as a guiding principle. These imply that the .J,,’s must transform as a triplet under SU(2)r
and K as a singlet under SU(2) g, which as we discussed before is generated by the Killing
vector fields on S2. Therefore, we will construct .J,, out of spacetime tensors on S? x I that
are triplets of SU(2)g as generated by the Killing vectors on S2, and similarly K out of
differential forms that are singlets of SU(2)g.
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In fact, the above decomposition (6.4), (6.5) of the generalised tensors in terms of vector
fields and differential forms on the internal space is only true locally, because the generalised
tangent bundles are twisted by the internal gauge potentials of the ITA supergravity, in this
case the three-form potential C', two-form potential, B, and one-form potential, A. The
gauge potentials mix the different components of the generalised tensors, for example, if
A=B=0but C #0, then

oy =0y +1,C, W(3) = W(3) + w(0) C, W) = (fj(g) — W(0) C, (6.9)

where Gy, w(3), @(3) are the globally well-defined 2-forms and 3-forms, respectively, while
ou, w(z) and wg) are only local 2-forms and 3-forms. Therefore, to construct the J, and
K we must understand what the possible form of the gauge potentials is. Since their field
strengths must be invariant under the SU(2)r symmetry, the gauge potentials must take
the form

dB = R® f(z)volg2 Ndz,  dA = R*I(z)volg, (6.10)
for some functions f(z) and I(z), where z labels the coordinate on the interval I and volg2 is

the volume form on S?, see also appendix C for our S? conventions. C is always pure gauge
since the internal space is three-dimensional. Moreover, we can choose a gauge such that

B = R?F(2)volge, (6.11)

with dl;iz) = f(z), so that B is constructed from well-defined differential forms on S? and

I. On the other hand, A cannot be written in terms of well-defined differential forms on S?
since it necessarily breaks the R-symmetry. This implies that we can automatically cater
for the twisting by the two-form potential by writing the most general .J, and K built
of out spacetime tensors on S? and I. On the other hand, the twist by A will break the
SU(2) g symmetry and, therefore, we will keep track of it explicitly.

In particular, we will write ¢, = qgu +wy, A and 0y = 6y + Ay A A and wz) = @3y +
w) N\ A, where bu, 64 and w3y are spacetime tensors on S? x I that respect the SU(2)r
symmetry. In terms of the hatted objects, the differential operators appearing in the
differential conditions become

Ly, Js = Lu, Vo + Ly, A + Lv, 00 + Ly, &,
v, (A v dA = dBy) = 1w, (AN) = 1w, (46 = Ay A dA) + 6y (dN)
+ A A (mAy + 1y, dA — dou) + (Ly, Ao — v, dAu) A A+, v, 1A,

L, K = Ly,wg) + Lv,wa) + Lv,&3) + Lyv,we) A A — wydh, A A (612

— (o) (dA) — w(o) (A6 — A A dA) — wiz) A (m)\u Yy dA — dgz%u) :

dk = —dCU(O) + dW(g) .
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The most general J,, we can construct that is compatible with the SU(2)r symmetry is

zzglégv }%(k(z)yudz—Fg(z)dyu-%7(2)9u)“gip(z)y“

Ju Rty 2

3
+ 16R\/§ (n(2) yyvolgz + h(z) Oy A dz 4+ v(2) dy,, A dz) (6.13)
2v2 R
L2

7 w, A+ 7 (k(2) yudz 4+ g(2) dyy +1(2) 0u) N A,

where k(2), g(z), p(2), n(2), h(2), v(z) and r(z) are at this stage arbitrary functions of z,
the coordinate on I, g, are a triplet of functions on S?, v, are the Killing vector fields on
S? and 6, are 1-forms on S2. The objects on S? are defined in appendix C. The algebraic
conditions impose

2V/2 R [ h(z) R
Jy = — — | - d dyy | — = w
7 vty ( P z+g(z)dy ) 5 P(2)y
R3
+ 673 (p(2) g(2) yy volg2 + h(z) O, A dz + v(2) dyy, A dz) (6.14)
212 R [ h(z)
A+ — | ——=yud dyy A,
+ 7o +4 < p(z)y 2+ g(2) y>/\
such that K defined via
Ju N Ty =0y K, (6.15)
is given by
R Rg(z) h(z)
K =——~n(z)dz + ————=—volg2 Ndz. 6.16
he)dz + =22 ol (6.16)
Furthermore, the most general K constructed from R-symmetry singlets is given by
~ R R3 5
K = —s(z)+ ——= (9(2) s(z) — t(z)) volgz + R’ u(z)volgz N dz
2 16v/2
3 (6.17)
+ z)s(z) —t(z))volga N A.
675 902)3(2) () ol
The algebraic condition J, A J* A K > 0 then becomes
R5
PYW; h(z)t(z)volgz Ndz > 0. (6.18)

While this suggests that we must have h(z)t(z) > 0, this is not true at the endpoints of
the interval parameterised by z. There we can in fact have h(z)t(z) = 0. Thus, we must
impose

h(z)t(z) >0, (6.19)

with possible equality at the boundary. This ensures that the metric is non-singular ev-
erywhere. For holographic applications, we also want to impose that the internal space
is compact by requiring that the S? shrinks at the endpoints of I, which will further re-
fine (6.19). However, to determine the precise conditions, we must first construct the
SUGRA fields of the AdS7 solution.
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With (6.14) and (6.17), the differential conditions (6.12) reduce to
mhy + 1y, dA — dg, =0,
d\, =0,
Aoy — A NdA =10,

5 (6.20)
dW(O) + Ew(l) =0,
d 2 0
W9y — —=W(3) =
2~ R¥G) )
where, as we discussed above, R-symmetry implies that
dA = R?l(z) volge . (6.21)
Explicitly, the differential conditions imply the following set of ODEs
. h . ) . hs P mg
=——, 2pp=mh, s=h, t=——, [=——""—1— —=. 6.22
9=y Pp p Wi sz 0P

Note that the functions u(z) and v(z) do not appear in the differential conditions.
This is due to the fact that they can be removed by gauge transformations of the gauge
potentials A and C, as can be seen from (6.9) and (6.13). Thus, we can, and will, set
u = v = 0 without loss of generality.

Using the ODEs (6.22) and having set v = v = 0 by gauge transformations, the
half-maximal structures simplify to

2+/2 R R R3
u = u —d w) T & du d eu - n l
J 7 vut 7 d(9yu) 2py+16ﬁp((g ) — g Yuvolg2)
22
- ;{lvuz‘l+fd(gyu)/\/1, (6.23)
S R R3 R3
K:58+m(98-t>’00l52+m(gs—t)vol52/\z4,
with )
R m
dA = ——— — lo2 . 6.24
15 (P 5 0) volse (6.24)

Moreover, we can redefine the z coordinate to set h(z) to anything we like. There are
two convenient choices that help us solve the ODEs (6.22).

Choice 1. The first is to take h(z) = p(z) so that we can integrate the equation ¢ = —%
to set ¢ = —z, where we absorb the integration constant by shifting z. Then, the remaining
ODEs are solved by
s =—t, = —t, l=— - —=, 6.25
p NN (6.25)
where ¢(z) must satisfy
=——. 6.26
i=-7 (6.26)
Finally, with this gauge, the regularity condition (6.19) becomes
t(z)t(z) <0. (6.27)
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Choice 2. The second choice is to simply take h(z) = 1 and integrate the equation § = 1
to set s = z without loss of generality. The remaining ODEs now become
. 1 . . z P mg
=, 2pp=m, t=——, l=——2——=. 6.28
g D D 42 82 (6.28)
The functions g and ¢ are therefore determined in terms of p, its integral and its derivatives,
and where p satisfies

6p2
) 2
o =m (6.29)
The regularity condition (6.19) becomes
t(z) >0, (6.30)

with equality only possible at OI.
To compare to the literature, especially the form of AdS7 solutions given in [59], it is
worthwhile to introduce

P 8L
=2 j=-z, \/3_4\&75, (6.31)

which now satisfy

9¢® _ 9 V8

== =—4y— 6.32
ag 2 m Y q y IB/ 9 ( )
where ’ is our shorthand notation for a%. Moreover, we note the following identities
t 14 3269y 9 16_/_ 4p
-—=—-—= t=——— 2pt = — - — 6.33
, sig P T A AR A R (6.33)

which will allow us to recover precisely the description of AdS; vacua given in [59].

6.2 The supersymmetric AdS; vacua

It is now straightforward to compute the SUGRA fields of the supersymmetric AdS; vacua.
We first plug J, and K , given in (6.23), into the generalised metric. We then use the
ExFT / ITA dictionary worked out in [17] and summarised in appendix A.2 to read off the
supergravity fields. In string frame, the warp factor of the AdS; part of the metric is given
by [29, 30]

fr= |gint\71/5m2 eM/5 , (634)

where | gint| is the determinant of the internal metric, 1 is the dilaton and x° = %Ju/\J UAK.

Without fixing h(z) we therefore find the following SUGRA fields in string frame

t R? [t pt h?
dsty = \[~dshus, + 1| = | 7 dste + —d2*
°10 \/; Sasy + 8 \/;<52+2pt 852+pt )

" ¢ 3/4 1 ( )
V== (= _— 6.35
<p> V82 +2pt

2
R
R? st
B (—g+ -1 Yoo
8@( g+52+2pt>1}0527
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with 2-form field strength F, = dA — m By and 3-form field strength H = dB given by

R? mst
Fy=——_(2p+—""") ol
2 8ﬁ<p+52+2pt>U082’
R? ht 3p mst
H; = — | = —
8v2 p \s?+2pt (s2+2pt)

2 t —1/4 ms t 3/4
== - - (= !
7 \° <p> s242pt (p> oM

where volys, denotes the volume form on the internal manifold with the metric (6.35).

2) volgz A\ dz (6.36)

Note that we have the opposite sign convention for our B field to [40] so that the Bianchi
identity of Fy is
dF2 = —mHg. (637)

Choice 1. With the choice h(z) = p(z), the expressions for the AdS; vacua (6.35) re-

duce to
d510 =\~ dSAds7 —- dssz +dz ) ,

3/4
R t Vi2 =214t
R? tt
Bzi — L e l P
3v3 <z t2—2tt>v052
with field strengths
2 . m
= —12t lg2,
’ 8ﬂ< —2 >UO o
R? mt*i i Lo nd
°T8V2 (2 —2t4)° 2 -2ti otsz a2 (6.39)
2 A mi £\ /4
- = _- | —= l
R < t> —2tt< t) VO
where the function t satisfies
'if'z—%, t>0, (6.40)

with t = 0 at I so that the internal space has no boundaries. For every such function
t there is a supersymmetric AdS; vacuum of massive IIA supergravity. This matches the
infinite family of supersymmetric AdSy vacua of [40] when we set the AdS radius to R = 2,
and where our variables are related to those of [45] by a rescaling

4+/2
t—8\1[04, =227z, (6.41)
where we denote the “z” coordinate of [45] by Z to distinguish it from our z coordinate.
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Choice 2. With the choice h(z)=1 and using (6.33), the AdS7 vacua (6.35) are given by

/ / / 4 1 ld—Q
10 = dSAdS7 _iRQ 4IBB/B/ dS%Q — 16B18yy > y

(—p'/9)"*
6v4B8 -7y’

_ 8 g\ m_ (8
H3—R<‘/af> (“mww-m v

N2
Fy = f < +(B)> UOlsz,

_ g
(6.42)

4 a 185458 —p'
Here volyy, is the internal volume form with respect to the full internal metric in (6.42),
and [ satisfies the ODE

0> 9 VB
a—g:§m, with ¢ = -4y — 5

This matches the AdS vacua in the coordinates of [59] when the AdS radius is set to R = 2.

(6.43)

7 AdSg vacua from IIB supergravity

As we reviewed in section 3 and was shown in [30], supersymmetric AdSg vacua are de-
scribed in ExFT by four nowhere-vanishing generalied vector fields J, € I'(R;), trans-
forming as a 4 of SO(4), and a nowhere-vanishing generalised tensor KeTl (R3) which is
invariant under SO(4).

Upon defining A% = 1 1€ Ay, the differential conditions (3.2) become

ﬁJ Jy = _fuvw:prAx7

u

Ly, K =0, (7.1)
A 2
R = 2\, |
3

We can use a SO(4)r rotation to write, without loss of generality,

Ay <000 fR) (7.2)

with R the AdSg radius. The numerical coefficient in front of R have been fixed by com-
paring the solutions with known supersymmetric AdSg vacua of IIB [41].

Ay breaks the SO(4) symmetry to the SO(3)r R-symmetry of AdSg vacua. Let us
therefore write u = (A,4) with A = 1,2, 3 labelling the vector representation of SO(3)g.
With respect to (A4,4) the differential conditions become

3
[/JAJB = _\/iR 6ABCJC7

£JAJ4 = 0,
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Note that the conditions £y,.J, = 0 and £;, K = 0 are automatically satisfied by J; o
dK [30].

7.1 Half-maximal structure

We will now construct the half-maximal structures on the internal space that yields an AdSg
vacuum. To do this, we will guide ourselves by the differential equations (7.3) determining
the AdS vacuum. Recall from section 3 that these imply that the J,,’s are generalised Killing
vector fields and therefore either consist of a Killing vector field plus a compensating gauge
transformation, or consist of a trivial gauge transformation. The latter can be written as
dB for some B € I' (R2) and will always generate a vanishing generalised Lie derivative on
any vector field. We see from (7.3) that J, generates such a trivial gauge transformation,
while J4 must generate the SU(2)r symmetry of the AdS vacuum and therefore have non-
vanishing vector components which generate this symmetry. The generalised tenors K and
J4 must be invariant under this R-symmetry.

To generate the SU(2)p symmetry we take the internal space to contain an S? and
on the remaining two-dimensional space, the Riemann surface ¥, we introduce coordinates

¥ o = 1,...,2. We will raise/lower « in a Northwest/Southeast convention by the
SL(2)-invariants e,5 = £1 and €*® = £1 with
€ Tegy = 03 . (7.4)
Thus we write
= ePrg, To =1 eg, . (7.5)

In IIB SUGRA with the conventions in appendix B.1, the .J,’s and K become formal
sums of spacetime vector fields and differential forms as follows
_ o
Jf‘*VZJFA“JFU“’a (7.6)
K = Wiy T W) T Wy,
where V,, A\, and o, denote the vector, 1-form and 3-form parts of .J,,, while w, are p-
forms appearing in K. With our conventions B.1, the wedge products and tensor products
appearing in the algebraic conditions (3.1) become

1
Ju Ny = V2 (%A% + AL Aoy + <—2V(uav) = 3hup A Af)) :

K®K|p, = w(2) A w(2) + 2W(0)a W(y) - (7.7)
K ANK = w) Aoy + Wo)a @y + D0)a Wiy »
where we defined K = %Ju ANJY = G)&)) + W) + G)&). Moreover, the differential operators
appearing in the differential conditions (7.1) become
Ly, Jy =Ly, V, + Ly, 00 + Ly, Ay
—ay,d\S — 1y, doy, — Ny N AN
Ly K= Ly, w(o) + Lv,w(2) + Lv,w(y (7.8)
+ wioys AN, — Wity doy — wizy A dAY
dK = —\/idw(g) + \/idwfé) .
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As discussed above, the J4’s will need to be formed out of vector fields and differential
forms forming SU(2) triplets, while .J; and K will need to be constructed from SU(2)z-
invariant vector fields and differential forms. We will now construct the most general Jy
and K , up to gauge transformations, which transform as an SU(2)-triplet and singlet, and
satisfy their algebraic conditions. We then calculate Jy from dK and impose its algebraic
condition Jy A Jy = %J ANJqand Jy A J4 =0 and finally solve the remaining differential

conditions
3
Ly, Jg=— JC .
JaJB \/iRGABC
Ly, Ji=0, (7.9)
Ly, K=0.

Just like for AdS7 vacua, we must first ascertain whether the gauge fields of the super-
gravity can be chosen in a way that respects the SU(2)r symmetry and will thus naturally
appear in the most general structures we write down, or whether the gauge fields necessar-
ily break the SU(2)g symmetry and need to be included by hand as a “twist” term. Since
we are considering [IB SUGRA with an internal four-manifold, we will only have 3-form
field strengths dC® which must necessarily be SU(2)g singlets. Therefore, they must be
given by

dC® = b* ANwvolgz , (7.10)

for some 1-forms 0% on Y. Therefore, we can choose a gauge such that locally
C% = c"volg2 , (7.11)

for functions ¢®* on ¥ which are SU(2) g singlets. Hence, the gauge potentials can be chosen
to be SU(2) g invariant and will naturally appear in the most general structures we write
down. This is in contrast with the mIIA AdS; vacua we studied in section 6, where the
R-R 1-form potential had to be included via a “twist” term.

The most general J4 we can construct as an SU(2)g-triplet is

16 ¢ R?

3 yah A volg2

1 3
Jy=—|—=v4+4cg Rk“dys +4cg Rysm™ +n%04 +
A ﬂ(R A 6 Yya 6L1YA A

7.12
+16 ¢ R? (7-12)

3 ZGA/\vongrfdyA/\volz> )

where v, are the Killing vectors, 64 are 1-forms and volge is the volume form on S? as
defined in appendix C and

1
voly, = ieagdxa Adz? . (7.13)

[, k% and n® are at this stage arbitrary functions on X, while h = hodz® and m® = m“g dz”
are 1-forms on Y. c¢g is a constant. It and the other numerical coefficients in front of R have
been introduced for later convenience. We can further simplify (7.12) by using generalised
diffeomorphisms, i.e. a combination of diffeomorphisms and gauge transformations: we can

use the generalised vector field
V =xAwvolg2, (7.14)
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where y is a one-form on ¥ satisfying

dx = —gfvolg , (7.15)

to remove the term in J, that depends on the function f by acting with Ly J4. In fact
by working out the explicit twisting of the generalised tangent bundle by gauge potentials,
e.g. using appendix E of [60], one sees that this generalised diffeomorphism corresponds to
a gauge transformation of the R-R 4-form.

We now impose the algebraic conditions (3.1) such that the functions appearing in Jy4
are now no longer all independent. As a result, we find

16 ¢ R?

1 /73
JA:<UA+4CGR(yAma+kadyA)+ 3

V2 \R

(]m| 04 A voly, — yAkﬁmg A volsz>> ,
(7.16)

where |m| = Smaam®.

Next, we construct K such that is an SU(2) g-invariant and satisfies KAK =0 and
JaNJANK > 0. We find the unique combination
. B

1 2 cg R? 16 c2R? Psq
K = E (4 C6 Pa + %qavolsz A vols, — ?? (T + pgk:ﬁ) voly + 7"+BWUOZE) ,

(7.17)

in terms of r, p, and ¢, which are so far arbitrary functions of ®. However, just as for Ju
we can use gauge transformations to further simplify this expression. A particular class of
gauge transformations corresponds to shifts of K by d-exact terms,

K~ K +dQ, (7.18)

where @ € I' (R3). Taking
Q = Q%volge A dzg, (7.19)

with 83@0‘5 ~ q% (with appropriate coefficients) we see that we can remove the functions
q“ in (7.17). Thus, we are left with the general K up to gauge transformations given by

.1 16 cgR? 5
_ N _ 2
K 7 (4 C6 Pa 3 (r + pgk ) v0l2> (7.20)

The algebraic condition J, A J“ A K>0is equivalent to J4 A JA A K > 0 once we impose
the remaining algebraic conditions. Therefore, we require

Ja AN JANK =128 ¢ERYr m| volgz A wvols > 0, (7.21)
which implies that r |m| > 0 with equality at the points on ¥ where the S? degenerates.
From K we find

R . 1
NG \/§< o

16 2R3
3

d (r + pﬁkﬁ) A volsz) . (7.22)
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The algebraic conditions

1
J4/\J4:§JA/\JA, JiNJa=0, (7.23)
now impose
ma ANdp® =0,
m® AmP = dp® A dp” (7.24)
dr 4+ padk® = 0.

Note that the final condition can be used to simplify the expression of J,

1 16 ;g R
Jy=—= (4cgRdp® — —2—
4 2 ( eLrap

Finally, we are left to solve the differential conditions (7.9). Using the explicit ex-
pression of the generalised Lie derivative (7.8) and the fact that .J4, J; and K are SU(2)

triplets, singlet and singlets, respectively, these equations reduce to

kg dp® A vol52> . (7.25)

w,dA\g =0,
ZVAdUB 4+ Aa A d)\% =0,
Mo NdXG =0, (7.26)

W(O)ad)\% =0,
w&))dUA +wi) A d\3 =0

For our J4’s and K these further simplify to

d\G =doy =0, (7.27)
which implies m® = —dk®.
Thus, we find that
1 2 D3
Ja = 7 (;vA +4cgRd (k% ya) + chR d (k%04 N dka)> ,
1 16 2R3
Ji= = (4ceRdp® — —5=" kg dp® Aol 7.28
4 \/§<CG P 3 B ap U052>7 ( )
L1 16 ¢gR? 5
K—\/§<406pa— 3 (T+p5k )’UOlSZ ,

where k% and p® are any SIL(2)-doublets of functions on ¥ subject to the differential
conditions
dk® A dkP = dp® A dp? dk® A dpy, =0, (7.29)

and r is defined up to an integration constant by

dr = —po, dk* . (7.30)
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The condition (7.21) implies
r|dk|vols, A volg2 > 0, (7.31)

where |dk| = 19,kg0“kP. This seems to suggest that r|dk| > 0 but care needs to be taken
at the boundaries of ¥. Instead, we must have

rldk| =0, (7.32)

with equality only possible at the boundaries of X. In fact, as discussed in [41, 43], and as
will become appart from the explicit SUGRA solution given in section 7.2 in order for the
internal four-manifold not to have a boundary, we must have

on 0%.

At this stage, one might wonder how the quadratic differential conditions (7.29) can
underlie supersymmetric AdS vacua, which ought to be described by a first-order BPS
equation. The answer is that we still have residual diffeomorphism symmetry on the
Riemann surface ¥ that can be used to turn (7.29) into first-order differential equations.
We will show how to do this after calculating the supergravity fields from the structures.

We conclude this section by giving the explicit expressions for the objects K = iJu/\J v
and k= K A K , which appear in the truncation Ansatz (4.11). They are given by

2

dcegR
K = —8V2c}R?|dk| (volz + 2%

128 4
K = ?CGR r|dk|volg2 A volsy; .

volgz A volg) ,
(7.34)

7.2 The supersymmetric AdSg vacua

We will now compute the supergravity background corresponding to the half-maximal
structures (7.28). The supergravity fields are encoded in the generalised met-
ric (5.11), (5.13) as detailed in appendix B.2. Moreover, the AdSg part of the metric
is warped by the factor [30]

fo = lgime| 7K. (7.35)

Thus, we find the following background

4754 AV4 g R? [3 |dk:]2
2 _ 6 2 «
05 = 3 g2 [ Ashasy T x5 + gk ®dpa] =
4 cgR? gk O
0(2)a = — CZR UOlSQ <ka -+ W|dk|) ) (736)

1 (|dk| )
H, Paps + 3v/7 0y k0 d
Yoo <\f pp +3Vr Ps

where )
A = 37|dk|* + |dk|p,psO, kY0P, |dk| = iaakﬂaakﬂ. (7.37)
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The solutions are completely determined by the two pairs of functions p® and k% on X
satisfying
dk® A dKP = dp® A dp” | dk® A dpy = 0. (7.38)

r is defined in terms of these functions as
dr = —padk® . (7.39)

In order to have a compact internal space, we must require that the S? shrinks on the
boundary of ¥ while the warp factor and the metric on ¥ remain non-singular. From the
explicit metric (7.36), one can easily see that this requires

r=|dk| =0, (7.40)

on 0X.

We will now show that the differential equations for £“ and p® can be turned into
first-order PDEs by coordinate choices. In particular, we can always use diffeomorphisms
to make the metric on ¥ conformally flat. From (7.36) we see that this requires

81k:0‘61pa 5 agka82pa s 81kaagpa =0. (7.41)

Together with (7.29), and imposing the condition (7.32), the differential conditions become
the Cauchy-Riemann equations
dk® = I - dp” (7.42)

where Ig = 5a7675 is a complex structure on Y. Therefore, p® and k% are the real and
imaginary parts of two holomorphic functions on ¥

fo=—p® ik” (7.43)

We now recover the description of supersymmetric AdSg vacua of [41] by identifying
our holomorphic functions with the A of [41] via

Ar =i fl 4 f2. (7.44)

We present a dictionary between our objects and those of [41], as well as [50], in appendix D.
As discussed in [42-44] these local solutions can be extended to globally regular solutions
by including a boundary of the Riemann surface on which the holomorphic functions f¢
have poles, and by introducing SL(2) monodromies.

8 Minimal consistent truncations

As shown in [30] and reviewed in section 3.1, given the half-supersymmetric structures
describing an AdS vacua, one can automatically construct a consistent truncation around
it containing a gravity multiplet and a scalar. This method was applied in [51] to construct
the minimal consistent truncations around the supersymmetric AdS; and AdSg vacua, for
the case where only the scalar fields of the lower-dimensional gauged SUGRA are turned
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on and are constant, agreeing with the consistent truncations found in [49] and [50] for
the AdS; and AdSg vacua, respectively. Furthermore, as described in section 3.1, using
the exceptional field theory tensor hierarchy and the dictionaries in appendix B.3.1, one
can construct the uplift of all the fields of the minimal half-maximal gauged supergravity,
including the p-forms. In the following, we summarise the results for the the minimal
consistent truncations around AdS; and AdSg. For the latter, we show explicitly how to
construct the full ten-dimensional uplift, including all the fields of the 6-dimensional gauged
SUGRA. This result will be generalised in section 10 to construct uplifts of half-maximal
gauged supergravities around AdSg including matter multiplets.

8.1 AdSy

We can now use (3.11), (4.10) to construct the consistent truncation Ansatz of IIA SUGRA
around the supersymmetric AdS; vacua of section 6 to the pure 7-dimensional half-maximal
SU(2) gauged SUGRA [47]. Here we will consider the truncation Ansatz where only the
scalar fields of the 7-dimensional gauged SUGRA have been turned on and are constant.
Thus, we compute the generalised metric of J,(z,Y) and K(z,Y) given in (3.11) and use
the ExFT/ITA dictionary of appendix A.2 to find the supergravity expressions. This way,
we obtain the truncation Ansatz in string frame

h?
1/2 X5/2 2 —5/2 2
=X \/>d + \/>[ 552 5 tdsSQ + X ptdz ,

3/4
i () e
R P X524+ 2pt

2 n X% st .
=— (- — o
82 g X552+ 2pt 5%

and field strengths

I R? 9+ X5mst )

=——F 55— | vo

2 8\/§ p X582+2 t S2
m s

~1/4
H3:3 ! /X*5/4 L. P (8.2)
R \p pX5s2+4+2pt Ms

2 [\ M* 4dpt t ms
2 (= X4 (1 - X5) (1- - -
+R<p> ( ) X532+2pt+p)(532+2pt YOy

where vol ;. denotes the volume form of the internal 3-manifold with the metric (8.1).

Let us now evaluate the truncation Ansatz for our two gauge choices.

Choice 1. With h(z) , the truncation Ansatz becomes

t 2 t
1/2 5/2
dsO_X/,/ 7+— % X5t2 dss + X~ /dz},
3/4
ewzzxw( ?.) R S
R t \/X5t2—2tt

B R? Xott l
=——2— ————— | volg2,
8v2 X542 _92ti) %

(8.3)
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and field strengths

R? .. X5mtt
F=—— 2+ 2" ) volge,
? 8\/5( X5t2—2tt>UOSQ

o\ 1/4 .
2 t mt
Hee = (%) x-5/4(g_" " Vol 8.4
s R< t) (3 tX5t2—2tt>voM3 (8.4)
42 i 1/4X_5/4(1X5) 1+ Lt ! mi vol -
R\ t X5{2—2tt { X5 —2ti Ms -

Choice 2. We now take h(z) =1 and find

5/2 ! 72
_ 1/2 44 v /_E X 5/4 _ 75/25 dy

(_ 5/4
/45 X5 5/

_RyVB X*m  (8)°
FQ—TF <4+ 183} 4B—X55/g>v0l82’

_ 2 B L —5/4 m (5')2
wo=g(55) X0 B )t

6 AN —5/4 5 83 m (8)? N
5 (-5) 03 (1o e e )
(8.5)

e — R 1X5/4

The truncation Ansatz is completely determined by the function ¢(z) satisfying (6.40)
for gauge choice 1 and 5(y) satisfying (6.32) for choice 2, and corresponds to the truncation
Ansatz found in [49] in the coordinates of [45] and [59], respectively. Upon truncation, X
becomes the scalar field of the minimal 7-dimensional gauged SUGRA [47] and all of the
supersymmetric AdS vacua correspond to the same vacuum of the 7-dimensional theory.

8.2 AdSs

We can similarly use (3.11) to find the minimal consistent truncation corresponding to
the supersymmetric AdSg vacua of IIB SUGRA described in section 7. For example, the
internal fields can be read off from the generalised metric (5.11), while the remaining fields
can be determined using the truncation Ansatz (3.15). Recall that the AdS vacua are
characterised in terms of two holomorphic functions f¢, with real/imaginary parts k%, p®,
and a real function r defined through (7.39).

As before, we will denote by X the scalar field and A4, A4 the SU(2)g and U(1) gauge
fields of the 6-dimensional gauged SUGRA, the so-called pure F(4) gauged SUGRA [48],
obtained from the consistent truncation. In terms of these objects, we find that the metric
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in Einstein frame, the axio-dilaton and the 2-forms are given by

1
X272

45 AV R [ 3 X2 |dk|?
2 __ 6 2 2
ds® = S]] 12 [R2rd56 + ~—dsé, +

A
1 [ X*|dk| >
H,3 = — aP3 + 331 O ka7 ,
3 TA( 7 Pabs V' 0ykadpg

dk® ® dpa} ;

4 cgR? X*rp, 0gkY 0°p® -
Coy* = -2 <ka LD \dk|> volgs +2v2¢gR AN A (yadk® + K Dys )
+2v2¢gRA* N dp® + 4 ¢ B p® — 3Cﬁka€ABCyAAB A AY
(8.6)
where
A =37 |dk|* + X* |dk| ppsd k07 p° . (8.7)
Moreover,
- 3
Dy" = dy” + ABC Apye, (8.8)

V2R

is the SU(2) covariant derivative of y*, in terms of which the SU(2)p covariant S? metric
and S? volume form are defined as

dsg. = dapDy” @ Dy”,

1 ~ - (8.9)
volgy = ieAchADyB A Dy .

After applying a gauge transformation, the two-forms can equivalently be written as

4 cR? X*rp, 05k7 0%p™ 2 2
0(2)0‘ _ g <ka 4 P Aﬁ p ’dk‘|> ’UOZSQ + 2\/§CGR (kaF(Q)AyA + F(2)4p04> 3
(8.10)
where
F(Q)A = dA* + 2\/3§R€ABCAB NAc,
Y (8.11)
Font=dA*+X°B
(2) + R b

are the 2-forms of the 6-dimensional gauged SUGRA as defined in (3.17) and using equa-
tions (7.1), (7.2).

The five-form field strength can easily be computed from (3.15) and using its self-
duality. We find

Fs) = Fag) + Fea) + Fuy (8.12)
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where F{, ;) are the parts of the 5-form with p external and ¢ internal legs, appropriately
SU(2) g-covariantised. Explicitly, they are given by

8vV2 g R? |dk| X4 r|dk|

Flog) =

< (2 )A/\éA/\UOlg—l- Pa (yA F( 2) /\dp ( ) /\dka> /\v0l52> ,

3 A
2 2 r? |dk]| - -4, F
F3.9)= 16 cgR”|dk]| TF(g) ANvolg + X" x¢ F(z)y Avols |
F(471) = 8\/§C%RX2 (—’F *6 F(Q)A A DyA + Pa (*GF(2)4 A dp® 4+ ya *¢ F(Q)A A dka)> ,

(8.13)

where Fiy 3) and Fi39) can be read off directly from (3.17) and F{4 ;) can be obtained from
Fla,3) by self-duality of the 5-form field strength. Above % refers to the Hodge dual of the
metric of the six-dimensional gauged SUGRA, and F(g) is, as defined in (3.17), the field
strength of the 2-form potential

F3) = dBy). (8.14)

Moreover, we have used (5.15) to replace é(g) by X% x¢ F(3). A non-trivial check of the
truncation Ansatz is that the component F(3 ) is self-dual.

In deriving these relations, we used the fact that the 10-dimensional Hodge dual is
related to the 6-dimensional Hodge dual and the Hodge dual on S? and ¥ as

*10F(2) A Oy Avols = ﬁ *g2 O4 /\*6F(2) R

J;%; (8.15)
*10F(2) Aw Avolgz = TSQ *yw A *6F(2) ,
for any 1-form w € Q) (X) and where
3 |dk| X2|dk|?
fGva fzzwv fs2 = A ) (8~16)

denote the relative factors of the 6-dimensional, $? and Riemann surface metric in (8.6).

Also,
*y dk® = —|dk| dp®™ , *xndp® = |dk|dk® . (8.17)

After the consistent truncation, all the 10-dimensional AdS vacua correspond to the
same vacuum of the 6-dimensional gauged SUGRA. Our truncation Ansatz includes the
previously-found consistent truncation of a particular AdSs vacuum in this family [61] as a
particular example. This arises by using the form of the holomorphic function given in [50].

9 Consistent truncations with vector multiplets for AdS~,

Here we will now search for consistent truncation with vector multiplets around the su-
persymmetric AdS; vacua of massive ITA SUGRA. There are in fact many 7-dimensional
half-maximal gauged SUGRAs that contain supersymmetric AdS; vacua [58] and could, in
principle, arise as a consistent truncation of 10-dimensional SUGRA. We will see that in
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fact only the pure SU(2) gauged SUGRA [47] and coupled to one vector multiplet can be
uplifted, where in the latter case the Romans mass must vanish.

As we discussed above, we can only have N < 3 vector multiplets in a consistent
truncation and the corresponding generalised vector fields must form representations of
the SU(2)g symmetry group generated by the .J,, of the AdS; vacua. Therefore, we must
consider generalised vector fields that are singlets or triplets under SU(2)g, and satisfy
the algebraic conditions (4.1) as well as the differential conditions (4.4). Doublets under
SU(2)r do not lead to fup. of the form required in (4.4). Moreover, plugging in the form
of the J, for the AdS; vacua, we have

Ly, Js=2V2R L, Js, (9.1)

where on the right-hand side we have the usual three-dimensional Lie derivative generated
by v, acting on the vector, scalar, 1-form and 2-form parts of J; separately. This implies
that the Jz must form a representation of SU(2)r under the Lie derivative generated by
the SU(2)g Killing vector fields on S2.

In the following, we choose the gauge h(z) = p(z) so that the AdS vacua are described
by a cubic function ¢(z).

9.1 Singlets under SU(2)p

For the J; to form singlets under SU(2) g, they must take the general form
Ju = fu(2) 0z + gu(2) + la(2)ta. A + ha(z) dz + ku(2) volgz + ra(z) dz N A. (9.2)

Plugging the above parametrisation into the algebraic conditions (4.3), we find they can
be solved by only one generalised vector field which is unique (up to an overall sign which
just amounts to a redefinition of the scalar field in the truncation Ansatz)

R R R3

Ji=—t+—dz+
1= 9 4 16v2

Therefore, the algebraic conditions already restrict us to having at most 1 vector multiplet

t zvoly + % dzNA. (9.3)

that transforms as a singlet under SU(2) . However, we must now also check the differential
conditions (4.4) but find that

4

EJIK = —m;;/%volg Adz # 0 unless m = 0. (9.4)

Therefore, if the Romans mass is non-vanishing, it is impossible to have a consistent trun-
cation with singlet vector multiplets.

For vanishing Romans mass the existence of this consistent truncation is not surprising.

In this case the vacuum lifts to a AdS; x S* solution of 11-dimensional SUGRA, where

the S* is written as a S® fibred over an interval. It is known that there is a maximally

supersymmetric consistent truncation of 11-dimensional SUGRA around this vacuum with

gauge group SO(5). This truncation of 11-dimensional SUGRA can be further consistently

truncated to a consistent truncation with gauge group SU(2) x U(1) C SO(5) by keeping
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only the singlets under a Cartan U(1) C SU(2)r C SU(2)r x SU(2)g C SO(5). Moreover,
the generators of SU(2) x U(1) are independent of one of the four internal coordinates,
which can be identified with the Hopf fibre of S when writing S* as a S3 fibred over
an interval, see for example [14] for an explicit realisation of the SO(4) generators on S3,
albeit in O(3, 3) generalised geometry. Thus we find a consistent truncation of ITA SUGRA
giving rise to SU(2) x U(1) gauge group, which corresponds precisely to the above setup.

9.2 Triplets under SU(2)gr

We repeat the above analysis but consider Jz with « = 1,...,3 forming a triplet un-
der SU(2)g, which implies they must take the general form (6.13). The algebraic condi-
tions (4.3) then lead to (up to an overall sign)

24/2 . 24/2
Jg = —\[v@ — € E tya + —\[LU,A — E(zdya + eypdz)
R 2 R 4
3 (9.5)

R3 . R
+——=1ts - u - u u A,
16\@75(0 Ndz —ezygVolge) 1 (zdyg + €yadz) A

where ¢ = +1. Finally, one needs to check the differential conditions (4.4). However,
we find

. 2 : R*(met+2tt
EJﬂK:%(l—e)tdyuAdz— (met+ )

yg volg2 N\ dz
32V2 (9.6)

R? .
+— (1 —¢€)tdygNdzNA.

8
Looking at the two form part of (9.6) we observe that it can only vanish when ¢ = 1, since
t cannot vanish for non-zero Romans mass. In this case, (9.6) vanishes if the condition

(mt+2¢tt) =0, (9.7)
is satisfied. However, by taking a z-derivative of this condition we find that it implies
t=0, (9.8)

which can never be satisfied for m # 0 due to the condition (6.26). We therefore conclude
that, if the Romans mass is non-vanishing, consistent truncations with a SU(()2)g triplet
of vector multiplets do not exist.

Moreover, even when m = 0, the truncation is only consistent if ¢ = 1 and {¢ = 0
and hence requires t = 0, or ¢ = —1 and ¢ = ¢ = 0. However, from (6.27) we see that
for the AdS7 solution to be non-singular requires ¢ < 0 with equality only allowed at O1I.
Therefore, if + = 0, the AdS7 solutions would be badly singular, as is also apparent by
direct inspection of (6.38). Therefore, there are no consistent truncations around AdS;
vacua of ITA with a triplet of vector multiplets.
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10 Consistent truncations with vector multiplets for AdSg

We now turn to consistent truncations with vector multiplets around AdSg vacua of 11B.
In principle there are a large number of 6-dimensional half-maximal gauged SUGRAs (con-
taining vector multiplets) that contain supersymmetric AdSg vacua [52], and which could
thus arise from a consistent truncation of AdSg vacua of I1B. Here we will now address the
question of which of these 6-dimensional gauged SUGRAs can be uplifted to IIB.

Since we can only keep N < 4 vector multiplets in a consistent truncation and the
generalised vector fields corresponding to the vector multiplets must transform as repre-
sentations under the SU(2)r we have the following possibilities:

e up to 4 singlets,
e a triplet,
e a triplet plus singlet.

Once again, doublets under SU(2) g are forbidden by (4.4).
Just as for AdS; vacua, the form of the generalised Lie derivative simplifies when
plugging in the form of the J, for the AdSg vacua. We find
3
—— Ly, Ja,s
V2R " (10.1)
‘CJ4 J’E = 07

EJAJ'E —

where in the first equation on the right-hand side we have the usual four-dimensional Lie
derivative generated by v, acting on the vector, 1-form and 3-form parts of Jy separately.
This implies that the J; must form a representation of SU(2)r under the Lie derivative
generated by the SU(2)y Killing vector fields on S2.

10.1 One singlet under SU(2)y

We first consider a single vector multiplet whose corresponding generalised vector field
satisfies the differential conditions

Ly, J1=0,
Ja Al (10.2)
LpK=0.
Note the algebraic conditions (4.1) together with the above immediately imply that
LyJa=0, (10.3)
while J; oc dK implies
Ly Ji=0. (10.4)

The corresponding consistent truncation will lead to a half-maximal gauged SUGRA with
one vector multiplet and gauge group SU(2) x U(1).
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The most general Ansatz we can write for a generalised vector field that transforms as
a singlet under SU(2)p is

16 R3 c%

Ji = \2 <w(z) +4Rcen®(z) +

where w(z) is a vector field on ¥ and n®(z) is an SL(2)-doublet of 1-forms on 3 and [(z)

is a 1-forms on . The algebraic conditions (4.3) now impose that

1(z) A v0l52> , (10.5)

w(z) =0, 1(z) = ka(2)n*(2) , (10.6)
and further imposes on n, that

na Ndk® =ng ANdp® =0,

(10.7)
Ng A% = —dky, N dE .
Thus, the generalised vector field simplifies to
1 16 R3 cZ
Jg=—(4Rcgn™ + 6 kon® A vol > . 10.8
1= 5 (18 . (10,8

The conditions (10.7) fix n® up to one degree of freedom. The explicit form of n®
depends on the precise relation between dk® and dp®. For example, if we impose the
Cauchy-Riemann equations (7.42), then n® can be nicely expressed in terms of the holo-
morphic function f¢ = —p® + i k“ and complex coordinate z = 1 + i 19 on X

1 1_--
n® = igafo‘dé—i— igafo‘dz. (10.9)

Here g € U(1) is the single degree of freedom left in n®.
The differential condition
LK =0, (10.10)

imposes that we must have
dn® =0. (10.11)

If we impose the Cauchy-Riemann equations then together with (10.9) this becomes
0(gof*) —cc=0, (10.12)

where c.c. stands for complex conjugate. Eq. (10.12), with g valued in U(1), is a sufficient
and necessary condition for having a consistent truncation with a single vector multiplet.

10.1.1 Uplift formulae

By computing the generalised metric using (5.11), (5.13) and using the ExFT / IIB SUGRA
dictionary (B.13), (B.16), we can read off the consistent truncation Ansatz for the purely
internal components of the metric, 2-form, 4-form and axio-dilaton. The components with
some external legs can be read off from the ExFT fields of the tensor hierarchy, A, and
B,., and using their IIB parameterisation given in section B.3.1. Moreover, we can also
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compute the field strengths of IIB supergravity from the ExFT field strengths (2.7), which
become (4.13) upon plugging in the truncation Ansatz.

It is now straightforward to read off the uplift formulae for the consistent truncation
including a vector multiplet by using the ExFT/IIB dictionary B.3. The result is best
expressed in terms of the scalar fields

me = (Mma, myg, ms) , (10.13)

which satisfy
man®my = —1. (10.14)

Therefore, they parameterise the coset space

M € SSOC()?LL;), (10.15)

and are the scalar fields of the half-maximal gauged SUGRA. They are related to the b,*
of the truncation Ansatz (4.6) up to SO(3) transformations. In particular, they satisfy
mm? = §"b,"b," — 0™, (10.16)

so that m, and b,* parameterise the same coset space SO, Moreover, we define
SO(4)

m-y=may?, (10.17)
and the SU(2)-covariant derivative in the 3 representation of SU(2)

- 3
Dy = dy* + —=—e"PCAp yo,

V2R

A, A A 3 aBc (10.18)
Dm*” =dm +ﬁ€ Apmc.
Similarly, we define the SU(2)-covariantised 1-forms
04 = capcy® Dy°, (10.19)
and the SU(2)-covariantised volume on 52
volgy, = %eABCyA Dy® A Dy© . (10.20)

In all our uplift formulae, we will throughout impose the Cauchy-Riemann equa-
tions (7.42) on k% and p®, so that n® is given by (10.9), although one can use the above
method to derive the uplift formulae in a different gauge as well. Then, with the above
conventions, the metric is given by

s Acg REr/4dk[P2 [ 3A
- 33/4A3/ R2r|dk|?

- - 1
ds ds% + X2 <5ABDyA®DyB—|— WRW — T—Qpapgna ®n5>

dk® ® dps — ina ® (mg dk® —m -y dp®) |,

+X2T2|dk\2 X2y

(10.21)
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where
A = X*dk| pa ps (m587k°‘87p’8 + n*7 <(m -y) Dyp° — m487k’3))
+ 37 |dkf? (m2 = md — (m-y)?) |
A = 3rms|dk|? + X dk|papsd, k“07p" | (10.22)

- 1

_ A
w=my Dy” + ﬁpa0a7
o =3r(msn® —mydp® —m-ydk®) — X4pap5*2nﬁ.
Here *9n® denotes the Hodge dual of n® with respect to the flat metric on the Riemann
surface.

The axio-dilaton is given by

X4p2p? |dk| 3r

= ——F— +\/ < (m55) ka7 pP 4 n (m -y dyp” — myd k*3>> . (10.23)
V3ra AN " "

and the 2-form by

HP

406R2 406R2 ‘dkP ~ A
Cip* =———wolg (k* + L) — ———-0“NOam
@ 3 3 A (10.24)

+2V2¢csR <ko‘ Foytya+p" Fpy* + AL A n“) ;

where we have defined the SL(2)-doublet function

X*r|dk
Lo = Z' | g [mg)avkﬁmpa + 0P (m -y d,p* — m487k:°‘)} . (10.25)
Moreover,
_ 3
Fiyd =dA2 + ———eABC A A A,
(2) 2\/§R6 B c
3 V2 (10.26)
Fopt=dA*+ =B
@ ) T RP
F(Q)l == dAl 5

are the 6-dimensional two-form field strengths as defined in (4.13), using (7.1) and (7.2).
In constructing C(5)® from the truncation Ansatz (4.6) and (4.11), we have performed a
gauge transformation to write the 2-form in terms of the field strengths of the 6-dimensional
gauged SUGRA, just like we did in the minimal case in going from (8.6) to (8.10). When
n® is exact (it must always be closed), i.e. n® = dx®, e.g. if H) (X) = 0, we can perform
a further gauge transformation to write the 2-form as
a 406R2 o o 4CGR2 ‘dk|2 @ ~ A
C(Q) = _TUOZSQ (k" + L) — 3 A c* NOam (10.27)
+ 2\/§CGR (k}a F(Q)AyA +p“ F(2)4 +x“ F(g)l) .

The self-dual 5-form of IIB supergravity is given by

Foy = Faa) + Fog) + a2 + Fay + Fs o), (10.28)
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16 CgR4 ‘dk’s r ABC
—€

Fua = 3 A yamp Dme Avolg, Avols,
Floz) = M [ (2) AN 04 Avols
|dk‘ < 7 |dk| (2 m - y) ya +ma) Foy* +my Fgy* +ms F(2)1)
+X"* papp <n K (3 kP Floy* — 049" ya F(Q)A> + 8, ko7’ F(z)i» A vols, A O mP
+ X4TA’dk|pa (F(2)A A (YaA® +maxan®) — F(2)4 Ap© + F(g)i A *gaa) Awvolgs ,

r2|dk|? ~
Fi30) =16 c2R? ’A " g Fy A ((m% —m2—(m- y)2) volgy —w A GBmB)
416 2R2|dk| X (*Gﬁ(g)) Awvols

Fla) = *10F2,3)

F(570) =48 c%reABCyA mp *g DmA ,
(10.29)
where
AY = mg dp® — myn®,
AP (10.30)
p* =msdk® — (m - y)n® — my *on®,
and
*00% = mgzxon® + (m - y) dp® — my dk*, (10.31)

is the Hodge dual of 0% with respect to the flat metric on 3. F{,, are the SU(2)g
covariantised components of the 5-form field strength with p external and ¢ internal legs.
*10 refers to the Hodge dual operator with respect to the full 10-dimensional metric (10.21),
while x¢ refers to the Hodge dual operator of the metric of the six-dimensional gauged
SUGRA whose line element is ds?. ]3'(3) is as defined in (3.17) the field strength of the
two-form

Fg) = dBy) . (10.32)

In the above, we have used (5.15) to replace é(g) by X4 x¢ F(g). The self-duality of the

five-form relates the components Fi, .y to F{ )-In particular, it implies that F{3 )

6—p,d—q
should be self-dual, which can easily be checked using (10.21). This provides a non-trivial
check of the truncation Ansatz. Moreover, we have used the self-duality of the 5-form to
compute Fi5 ) and F4 1) from F{; 4y and F{, 3) rather than using the truncation Ansatz of

section 4.1.

10.2 Multiple singlets under SU(2)p

We next consider the situation where we have N < 4 vector multiplets transforming as
singlets under SU(2)z. The corresponding consistent truncation will lead to a half-maximal
gauged SUGRA with gauge group SU(2) x G, where as we will see we can only have G =
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U(1) or G = U(1)2. Following the same logic as in the case for one single vector multiplet,
the most general solution to the algebraic conditions (4.1) and differential conditions

Ly, Ja=0, L. K=0, Ly Js=—fu" T, (10.33)
is

1
Ji = —=(4Rcegng™ +
\/§< ’

where the ng® have to satisfy

16 R3 ¢2
3

kang® A v0l52> , witha=1,...,N, (10.34)

Nga NdE® =ngo Ndp* =0,

(10.35)
Ng o VAN n{,a = —(S{“j dk’a A dk’a s

as well as
dnga =0. (10.36)

As in the one vector multiplet case, we can solve the algebraic conditions (10.35) by
[ 1 o Jz 1— AWe]
ng® = §gﬂ3f dz+§ga3f dz, (10.37)
with gz € U(1). But the second of the conditions (10.35) now imposes that
9a9s + Jugs = 2 0w - (10.38)

It is easy to check that these conditions can only be solved when N < 2, which implies that
consistent truncations with N = 3, 4 vector multiplets which are singlets under SU(2)r
cannot exist. For the case N = 2, the condition is solved by

g5 = +1 91, g1 € U(l) . (10.39)

Without loss of generality, we can take g5 = i g7, by suitably redefining the scalar fields of
the truncation Ansatz. In this case, the differential conditions (10.36) implies

9(910f*) =0, (10.40)
which admits non-trivial solutions only in the cases where
afr = oft, (10.41)

with A a constant. In this case,

icéfl _ 7LC5JE2

where c is a real integration constant.
Recall that J; o< dK immediately implies
Ly Ju=0, (10.43)
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while one can also easily check that
Ly, Js=0. (10.44)

Therefore, the consistent truncation leads to a SU(2) x U(1)? gauged SUGRA.

One can then wonder whether AdSg vacua described by two holomorphic functions
satisfying the relation 9f? = AOf! exist. Firstly, we see that this rules out having SL(2)
monodromies. Moreover, we observe that, in this situation,

|dk| = %z’afa Ofa = %z’(x — N of". (10.45)

However, as explained in section 7.2 and [42-44], any globally regular vacuum must be
described by functions satisfying the condition » > 0 and |dk| > 0, with equality on the
boundary of the Riemann surface ¥. The latter ensures that the total space has no bound-
ary. For (10.45) this condition implies that A # X\ and that df! = 9f? = 0 on the boundary
of 3. However, since ¥ is compact, we must have 9f! = 0f% = 0 everywhere. Therefore,
although the differential and algebraic conditions for consistent truncations with two vec-
tor multiplets can be locally solved, there are no half-supersymmetric compactifications
to AdSg vacua with an internal space without boundaries that allow such a consistent
truncation.

10.2.1 Uplift formulae for two singlets under SU(2)r

As we discussed above, a consistent truncation with two vector multiplets and gauge group
SU(2) around an AdSg vacua of IIB SUGRA necessarily requires the internal space to
have a boundary. Although this is not particularly interesting from a holographic per-
spective, we can nonetheless use the formalism described in [30] to derive the consistent
truncation. For simplicity, we will only give the truncation Ansatz which preserves the
full SO(5,2) symmetry of the AdS vacuum since this is sufficient for a wide variety of
applications. Therefore, we will consider the case where only the scalar fields of the six-
dimensional gauged SUGRA are non-zero and depend only on the internal four coordinates.
Moreover, as in the case of only one SU(2)g singlet, we will impose the Cauchy-Riemann
equations (7.42) on k% and p® throughout. However, it is straightforward to obtain the
uplift formulae in a different gauge.

The scalar manifold of the six-dimensional SUGRA obtained from the consistent trun-

cation is S0(4,2)
M, =— 1 10.46
scalar SO(4> < SO(Q) ; ( )
and can be parameterised by m;* with @ = 1,...,6 labelling the vector representation of
SO(4,2) and i = 1,2 the doublet of SO(2). The m;* must satisfy
mim; na = —8ij (10.47)
and are related to the b,% of (4.6) by
§9m;%m;b = b, b, — n. (10.48)
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Moreover, we can decompose SO(4,2) — SO(3) x SO(2) such that
6— (3,1)@(1,1) @ (1,2). (10.49)

We accordingly write
mi“ - (miA, my, )\Z‘ﬂ) s (10.50)

where \;" are constrained by (10.47), i.e
)\iﬂ)\jﬁéaf, = miAijéAB +mymj + 0ij - (10.51)
The uplift formulae can be conveniently formulated in terms of
n;® = A" ng®,
w;® = (m; - y) dk* + m; dp™
w; = m; dya — %pa Wi = —pami®,
o = (M| — s (g 3) (10.52)
A = X4 |dk| paps (aa KAOTpP — elin o wﬁy) + 37 |dk[? [m?
el (< AN b (mgmy + (mi - ) (m; - )+ mimg (m =) (ma- ) |

where |\| denotes the determinant of the 2 x 2 matrix \;%. Just as in the singlet vector
multiplet case, we use the shorthand

mi-y=miya. (10.53)

The metric is given by

deg B2 r*dkP2 T 3A
e 33/453'/4 | [R2r G156+ X (andy” @ dyf +6Vwi @ w)
3 (10.54)
+xz7 (o + 2 mim;"y,) dk* @ dpa + € nia @ Wja)] ,
the axio-dilaton by
S 33?7" - \/:( 0k’ EZJ”iaijﬁv) ) (10.55)
and the 2-form by
Aol X r|dk )
C(Q)a — Ce 1)0152 <k.a + TA||p,3 |:o' a,yk;ﬁa’}’pa B eljnlﬂ’}’ Wjafy}>
dcg R?|dE|? ) B
CGSA|‘ (X4p0‘ p,BeZJ + 3?”5% 51]) (Ldjﬂ + n]ﬂ) A @AmiA (10.56)
2c6 R2|dk|?
_ 63A|| (EABCE mkAmlByC) ( ia+nia) Aw; .

Since we are considering the subsector of the truncation where only the scalar fields are
turned on and are constant, the IIB five-form field strength vanishes

F5)=0. (10.57)
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10.3 Triplet under SU(2)p

We next move to the case where we have N = 3 vector multiplets transforming as a triplet

of SU(()Q)R, ie. 5

2
\/§R AB
where A = 1,2,3. As we will see shortly, this leads to a ISO(3) gauged SUGRA. Equa-

tion (10.58) implies that the most general ansatz for the fields Jz must be of the form
given in (7.12). The algebraic conditions (4.3) then fix J; to be

Ly, Jp= “Ja (10.58)

1 /3 o o
J:ﬂ<RUA+4CGRyA7T +4ce RE“dyg

16 2R3

. 16 2 R3

5 YA kom® Avolg2 —

|70 /\volg), (10.59)

where || = %770‘ 57raﬁ and 7 is a SL(2)-doublet of one-forms on ¥ satisfying the algebraic
conditions

Ta Ndk® =71 Ndp® =0,

To A® = —dko A dk®. (10.60)
Furthermore, in order to satisfy the differential condition
Ly, K=0, (10.61)
one needs to impose the conditions
Do = padk®
dr® = %pa g A B (1062)
As in the case of the singlet vector multiplet, conditions (10.60) can are solved by
T = %gﬂ of*dz + %gﬂ af%dz, (10.63)

where again g, € U(1). In this case, however, the first condition of (10.62) fixes the phase
gr to

gr =1 , (10.64)
T pgdff
thereby fixing the one-forms 7® completely. The second equation in (10.62) then give an
extra differential condition on f¢ that has to be satisfied for the vacua to allow consistent
truncations with a SU(()2)g triplet of vector multiplets.
Using (10.59) and the above differential conditions, we find

32 A 3

Ly Jg= —Tegf—;cz}@ + ﬁRéggch, L,J;=0, (10.65)




where A and A are raised/lowered with 655 and dap, respectively. Together with the

relations
3
Ly, J — € Jo,
JaYB R AB JC
3 _
Ly, Jp = —7\/§R€ABCJ‘ ) (10.66)

LjJa=Ly,Js=0,

this implies that the gauge group of the six-dimensional half-maximal gauged SUGRA
is ISO(3).

10.3.1 Uplift formulae

Just as for the case of two vector multiplets forming SU(2) singlets, we will here only give
the consistent truncation Ansatz preserving the SO(5,2) symmetry of the AdSg vacuum,
i.e. where the scalar fields are the only non-zero fields of the six-dimensional half-maximal
gauged SUGRA and are constant. The full consistent truncation Ansatz including general
values for all gauge fields of the six-dimensional gauged SUGRA can be obtained as dis-
cussed above 4.1 and demonstrated explicitly for the case of a single vector multiplet in
section 10.1.1.
The scalar manifold of the six-dimensional half-maximal gauged SUGRA is

SO(4,3)

Mycatar = SO() x S003) x RT. (10.67)
We will parameterise the coset space % by
mr® = (mr* = A, mr, A (10.68)
where I = 1,23 and which satisfies
mym ey = 61 - (10.69)
The m;® are related to the b,* of (4.6) by
my®m 28" = b,%b, 6" — nab. (10.70)

The uplift formulae can be conveniently expressed in terms of
wr = (mI : y) Pa Ak + mp po dp®
o7 = (A1 y) pa dp™ = my po dk*
A = papp 0,k*07p"

- (10.71)
A = XA |my?|dEk|

1 2
— 37 |dk|? (\mIA\ mrt =2 (A y) vyt + 1 (eapce”Empytm BmgC) > ;

with
(mr-y) =miya,  (Ar-y)=A"ya. (10.72)
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The metric, axio-dilaton and 2-form are given by

@2:4%R%Wﬂﬂﬁﬂ 3A s
33/4A3/4 R2r|dk[2™°
+X2 (myAdys — - By — 2ot X dp® ® dp®
Iaya— wr ® | m TdyB oW +r2pap,3p®p
3 |dk
XL AL (ImIAlpapﬁ (dka ® dkP — dp® dp’8>
1
+§€ABC€IJKyAmJBmKCpa (of @ dp® +dp® @ U;F)ﬂ ’
1 X4ldk] 237
HY = — —~ m||dk[? ) p*p” + V37 [m?|0, k207"
V3r I .
+ﬂ\dk’6“K6AchAmech ox’ (p 0,p° + pPo.p ) ,
X o V3 |dk N
VAH PCap = 2\|/7: | {— " Km M\ awi70,p

+2p° \dk|e”Km1mJA)\KB (0aB — yAyB)}Uolg
(0%

2
+ V37 |dk|eTE mpA dy 4 A [ipg |dk| (mJB)\KC (6pc — ypyc) dk”

+2|dk|my (mx® — AP yp dpﬁ) +mi? (myyp dk® + N\ dpa)]

N V3r < B 2 X4|dk| p®

B _ U B oy 1.
5 3, <r+l<: p,g) |m;"|kz0yp” 0Tk

Ap* |dk|?
+ p/‘x|p5k5\mi“\>volsz

V3r|dk 2
— 32| (ko‘ mr + Kpo‘ Ufﬁk78’8p7> K A mg B dya N dyp,
(10.73)

and the five-form vanishes by our assumption that the scalar fields are the only non-
vanishing fields and they are constant.

10.4 Triplet plus singlet under SU(2)p

We finally consider the possibility of having consistent truncations with four vector multi-
plets forming a triplet and a singlet of SU(()2)g, i.e.

Ly, )= “Ja, Ly, Ji=0. (10.74)

3
Y e
V2R 4P

Since J; o dK we automatically have

L, Ja=0. (10.75)
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For a vacuum to allow such consistent truncations around it, it must allow both a truncation
with a single vector multiplet, characterised by (10.9), and a truncation with a triplet of
vector multiplets, characterised by (10.63). The resulting gauge group will clearly be
ISO(3) x U(1). Futhermore, in order to have both simultaneously, we need to satisfy the
condition

JiNJ;=0, (10.76)

where A = 1,2,3 labels the triplet and 4 the extra singlet. Similar to the case of two
singlets, the above condition fixes the phase g that characterises the singlet to be (as
before, up to a sign which can be absorbed by a field redefinition of the scalar fields in the
truncation)
g=—ige =22
ppof?

(10.77)

Therefore, a vacuum allows a consistent truncation with four vector multiplets only in the
case where it allows a consistent truncation with a SU(()2)r triplet of vector multiplets
and a consistent truncation with a single vector multiplet characterised precisely by the
phase (10.77).

11 Conclusions

In this paper, we showed how to use ExFT to easily recover the infinite families of super-
symmetric AdS; and AdSg solutions of massive ITA and IIB SUGRA, respectively, known
in the literature [40, 41, 43, 44]. The ExFT description of these vacua allowed us to imme-
diately construct the “minimal” consistent truncation of 10-dimensional SUGRA around
these solutions [49-51, 61], in which we keep only the gravitational supermultiplet of the
lower-dimensional gauged SUGRA. We then analysed whether it is possible to construct
consistent truncations around the supersymmetric AdS vacua keeping more modes, which
would result in lower-dimensional gauged SUGRAs coupled to vector multiplets. Assum-
ing the method developed in [29, 30] is the most general one for constructing consistent
truncations with vector multiplets, we found that

e there are no consistent truncations with vector multiplets around AdS; vacua of
massive ITA, unless the Romans mass vanishes. For vanishing Romans mass, there is
a consistent truncation that is itself a truncation (and dimensional reduction) of the
maximally supersymmetric consistent truncation of 11-dimensional SUGRA on S*,

e there are consistent truncations with vector multiplets of IIB SUGRA around its
supersymmetric AdSg solutions. In this case, the holomorphic functions describing
the AdSg solutions must satisfy further differential constraints.

In particular, we found that the only consistent truncations with vector multiplets of IIB
SUGRA around the supersymmetric AdSg vacua yield N < 4 vector multiplets with gauge
group SU(2) x U(1), SU(2) x U(1)2, ISO(3) and ISO(3) x U(1), when the holomorphic
functions f¢ satisfy the following differential conditions.
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Consistent truncation with one vector multiplet. The differential condi-
tion (10.12) is
d(gof*) —cc.=0, (11.1)

for some function g € U(1), where c.c. denotes the complex conjugate. While we will
not attempt to find general solutions of (11.1) that are holomorphic and satisfy (7.33)
and (7.32), it is easy to show that if one of the holomorphic functions is linear in the
complex coordinate z, i.e. f' = Ay + A; 2, then the other function must be quadratic, i.e.
f? = Bg+ By 2+ By 22, where Ay, Ay, By, By and By are constant complex numbers. This
implies that the Abelian T-dual to the Brandhuber-Oz solution [62], which is described by
a linear and quadratic holomorphic function [41, 63], admits a consistent truncation with a
single vector multiplet, while the non-Abelian T-dual to the Brandhuber-Oz solution [37],
which is described by a linear and cubic holomorphic function [50, 63], does not. The
consistent truncation Ansatz is given in section 10.1.1 and leads to F(4) gauged SUGRA
coupled to one vector multiplet.

Consistent truncation with two vector multiplets. The differential condition that
the holomorphic functions must satisfy is now

afr = oft, (11.2)

for some constant A\. As we discussed in section 10.2, this necessarily implies that the
internal space of the AdSg solutions has a boundary. While such solutions are not interest-
ing from a holographic perspective, we can nonetheless compute the consistent truncation
Ansatz, which we have given in 10.2.1, and which leads to F(4) gauged SUGRA coupled
to two Abelian vector multiplets.

Consistent truncation with three vector multiplets. To allow for a consistent trun-
cation with three vector multiplets, the following differential condition must be satisfied:

dr® = %po‘ mg AP, (11.3)
where _
o - L;pa0 5 po g 1,000 5pay (11.4)
2" ps0 7 2" psd f?
and dr = —kodp® with p®, k“ the real/imaginary parts of the holomorphic functions
fe=—p*+ik“. For any pair of holomorphic functions f* satisfying the above condition,

there is a consistent truncation of IIB SUGRA around that AdSg solution to 6-dimensional
half-maximal ISO(3) gauged SUGRA. The uplift formulae for the scalar fields is given
in section 10.3.1. It is unclear whether there are globally regular supersymmetric AdSg
solutions satisfying the differential conditions (11.3).

Consistent truncation with four vector multiplets. To admit a consistent trunca-
tion with four vector multiplets, the AdSg vacua must satisfy the differential condition for
the triplet, i.e. (11.3) with 7 as in (11.4), as well as

578
) (Z’jg;y afa> . =0. (11.5)
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For any pair of holomorphic functions f¢ satisfying the above, the corresponding AdSg
solution admits a consistent truncation to 6-dimensional half-maximal ISO(3) x U(1) gauged
SUGRA. Once again, it is unclear whether there are such globally regular supersymmetric
AdSg solutions of IIB SUGRA.

It would be interesting to classify for which Riemann surfaces 3 these consistent trun-
cations exist, i.e. for which Riemann surfaces one can have holomorphic functions f which
satisfy the above differential conditions and lead to closed internal manifolds, thus also sat-
isfying (7.32) and (7.33), or even to find a complete list of such holomorphic functions. For
example, it would be interesting to see whether some of the examples studied in [64, 65] for
the case where the Riemann surface is a disc allow for consistent truncations with vector
multiplets. The dual SCFTs have large global symmetry groups and one might hope that
a subset of these symmetries could be captured via a consistent truncation.

For now, we are able to say that the Abelian T-dual of the Brandhuber-Oz solution
admits a consistent truncation with one vector multiplet, the non-Abelian T-dual does
not, and there are no globally regular solutions that admit a consistent truncation with
two vector multiplets. Moreover, the only possible gauge groups in six dimensions are
SU(2) x U(1), SU(2) x U(1)2, ISO(3) and ISO(3) x U(1). This is only a subset of all possible
6-dimensional half-maximal gauged SUGRAs that admit supersymmetric AdS vacua [52].
The other six-dimensional gauged SUGRAs do not have uplifts to IIB SUGRA.

Our results can be used to uplift the 6-dimensional solutions found in [66-69]% and to
complete their holographic study, while they also suggest that there are no IIB uplifts of
the 6-dimensional solutions [70] which requires the six-dimensional gauge group SU(2) x
SU(2) (xU(1)). Similarly, we found that of all the 7-dimensional half-maximal gauged
SUGRASs that admit a supersymmetric AdS; vacuum [58], only the pure SU(2) gauged
SUGRA [47] and it coupled to an Abelian vector multiplet can be uplifted to ITA SUGRA,
where in the latter case the Romans mass is necessarily zero. This suggests that the other
7-dimensional gauged SUGRAs with supersymmetric AdS; vacua are lower-dimensional
artifacts without a clear relation to 10-dimensional SUGRA. However, as suggested in [71],
one may also wonder whether it would be possible to construct consistent truncations of
10-/11-dimensional SUGRA coupled to DBI actions to obtain lower-dimensional gauged
SUGRAs with higher-derivative terms. We leave this open challenge for the future.
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A SL(5) ExFT conventions and ExFT/ITA dictionary

A.1 Embedding ITA into SL(5) ExFT

To embed ITA SUGRA in SL(5) ExFT we decompose SL(5) — GL(4)T — GL(3)* x
RT, where GL(n)™ = SL(n) x R*. The GL(4) is the geometric group realised by the
internal manifold of a 11-dimensional compactification, which is broken to GL(3) x R by
reducing to ITA SUGRA. Accordingly, we decompose an object in the fundamental SL(5)
representation as

F* = (F', F*, F°), (A1)

where a = 1,...,5 is the SL(5) fundamental index and i = 1,2, 3 labels the fundamental
of GL(3).

We will need to decompose the generalised tensors of the half-maximal structure, i.e.
generalised vector fields and generalised tensors in the 5 and 5 representation. A generalised
vector field, A%, decomposes as

AP =i Al — _ ik Wk A — %Eijk Wik A% W) (A.2)
a generalised tensor field B, in the 5 as
B = %Eijkw@)ﬂw B = %gjkw(:%)ijk, B’ = w(), (A.3)
and a generalised tensor field C® in the 5 as
Ci = w(i, Ca = w(0) » Cs = %61% W(3)ijk 1 (A.4)

where V' are spacetime vector fields, w(,) are spacetime p-forms and €% = 41 denotes the

p)
three-dimensional alternating symbol, i.e. the tensor density.

Just as in the above, we also decompose the SL(5) “extended derivatives” as
Oab = (035, 0ij, Oja, O15) , (A.5)

These derivatives 0;5 # 0 are the usual ITA internal spacetime derivatives, and solve the
SL(5) ExFT section conditions

8[abacd] =0. (A.6)

A.2 TIIA parameterisation of the generalised metric

The ITA parameterisation of the SL(5) generalised metric is given in [17]. Here we translate
the parameterisation given there to the string-frame metric which we use in section 6 when
describing the supersymmetric AdS7 vacua. The components of the generalised metric
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M are parameterised as
MY = |g2/3e24/5 (g 4 |g| 1 B BY)
Mt = |g[2/520/5 (_Ai +lg 7' B C)
MPB = _|g|35e20/5 Bl
MM = [gP/e20/5 (720 4 gy ATAT + 1971 C2)
M — _|g| 352150
M = |g| 33620/

(A7)

where g;; is the internal 3-dimensional ITA string frame metric, A; is the 1-form, B;; is
the 2-form and Cjj; is the 3-form. The 2- and 3-form appear as B = %eijkBjk and
C= %eijkCijk where €7% = +1 is the alternating symbol, i.e. a tensor density.

A.3 Including the Romans mass

As discussed in [19, 20], the Romans mass of IIA SUGRA appears like a deformation of the
differential structure of ExFT and EGG, similar to a gauging of lower-dimensional gauged
SUGRAs. In particular, the generalised Lie derivative (2.1) now takes the form

1
[{Vab = LéO)V“b + §Z0d’[avb]e§fg€cdefg ) (AS)

where £(©) is the undeformed generalised Lie derivative (2.1) and Z%¢ satisfies Z1%:9 = 0
and encodes the deformation of the generalised Lie derivative. For the Romans mass m,
the only non-vanishing component of Z%:< is

294 = (A.9)

The deformation Z%¢ generates an SL(5) transformation and thus can easily be worked
out for the generalised Lie derivative acting in another representation. In particular, to
describe AdS7 vacua, we require the massive generalised Lie derivative acting in the 5
which is 1

LB = LB — 72" B¢ ehcaes (A.10)

The differential operators d of (2.11) are also modified. Their deformations by Z%<
can be determined by requiring them to be covariant under the deformed generalised Lie
derivative (A.8). In fact, the d operator appearing in the differential conditions remains
unmodified

dc, = d%¢, (A.11)
where d© is the unmodified d : T' (R3) — T'(Ry) given in (2.11).
B SO(5,5) ExFT conventions and ExFT /IIB dictionary

B.1 Embedding IIB into SO(5,5) ExFT

To connect the SO(5,5) ExFT with IIB SUGRA we decompose SO(5,5) — SL(4) x
SL(2)s x SL(2)4, where SL(2)g corresponds to S-duality while SL(2)4 is an accidental
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symmetry in the decomposition relevant to six dimensions and which will be broken by
the TIB solution to the section condition [53, 72]. For our purposes, we will need the
decomposition of the 16 and 10 representations of SO(5,5) which is

16 — (4,2,1) & (4,1,2) ,

(B.1)
10 — (1,2,2)® (6,1,1) .
Thus, a generalised vector field becomes
AM = (AYE A%) | (B.2)

where we use i = 1,...,4 for the SL(4) spatial indices, = 1,2 as SL(2)g indices and
U,V =+, — for the SL(2)4 indices. We identify these components with spacetime tensors
as follows

) . iy 1. a a
At = Ve, A = 56 gkl W(3)jkl > A% = W) i (B.3)

where V' is a spacetime tensor, w,) are spacetime p-forms, « is as before a fundamental
SL(2)s index and €7* is the 4-dimensional alternating symbol, i.e. tensor density.

Similarly, a tensor in the 10 decomposes as B! = (BU’C‘, B ) which contain the space-
time tensors

_ 1 .. .. 1 ..
B =we®, BY= FW Wayige,  BY = Qew W(2)kl (B.4)

where w(,) are p-forms and o = 1,2 is an SL(2)s index.
Furthermore, with these conventions the SO(5,5) invariant metric is given by

0
N = (WWV ) , (B.5)

0 €ju

B8.UV
IJ Ea € 0

We employ the following summation convention over the 10 indices

with inverse

1.
B By 1y = Bi'Bay = BiYBayo + 55’1”32@‘ . (B.7)

The identity matrix in the 10 takes the following form due to the summation conven-

tion (B.7)
S35V 0
J o
(5[ = < OU 25“) ) (B.8)
ij

kil 1 k sl L Sk
where 68 =} (51. 5k — 51.5j).

)M N_matrices are given by

(Yav)V" P ;= V2686 6%,
(i) = 2v/2e Vgl (B.9)
(i )? 1 = =V 2eim€”7

Finally, the (7

— 53 —



and the (v7),,;y-matrices are

(’Ya U)Vi 5j = \/EEaBGUV(Sij )
(Vij)y kw1 = \/ifvwﬁijkl ) (B.10)
(i)t = —2vabes,

With the above decomposition, the “extended derivatives” are given by
v = (O, 9a') (B.11)
with only 04 ; # 0. This corresponds to the IIB solution of the section condition (2.2)
(v)"™N oy @ dn =0, (B.12)
which we use.

B.2 IIB parameterisation of the generalised metric

Here we give the IIB parameterisation of the SO(5,5) generalised metric in the 16 and 10
representations. The generalised metric in the 16 is given by

_ 1
Mgy =g+ e (C(24) 9ii + 5 Cika 5kmcﬂ'swﬁsmgﬁ>

1 o o
- 56_3/20(4) (gir CieaB ™ + (i & J)) +e'/2 Cipa Cj1y g™ HY

) 1 .
e 8/ <C(4) Gij — §Cika/8kl Qlj) ;
M_i_j =g,

_ ; 1 . .
e 3/2 (C(4) ik /Bjka - 5 iky /Bkl’y Jdim B]ma> - el/ZCimgijVa )

<
ey
d

I

(B.13)

<

s

Q
<
[

M o0 = e gy 5%,
Myigl = 61/2gina6 432k 85 g1

Here g;; is the internal 4-d Einstein-frame metric, Cy) = %eij klcz'jkl is the dual of the fully
internal 4-form, Cj;, denotes the SL(2)-dual of R-R 2-forms and B9, = %eijklckla is its
dual. Throughout we dualise with €/% = +1, the four-dimensional alternating symbol, i.e.
the tensor density. H,gp is the SL(2) matrix parameterised by the axio-dilaton 7 = eV +i Cy,

1 ]7\2 Ret
Ho,3=— . B.14
A ImT (RGT 1 ) ( )

All our SL(2)g indices are raised/lowered by the SL(2) invariant €,5 = ¢*’ = +1 in a
Northwest /Southeast convention. The e,3’s are normalised as

€ane?? =08

(B.15)
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The generalised metric in the 10 is given by

Miats = % (¢ + ) Has + 4% * (Cja A Cayy) * (Cays A Craps) H?
+ (/;(2) (Han * (Clayp A Crays) €° + (a ﬁ)) + gC(Q)ij i Comip 9% 9",
Mia_p= C;(;)Hag + % * (C2ya NC2)Y) Hyp
Mo s = Has,
Mo = % (0(4)Haﬁ + % * (Caya A C2?) Hw) 81328 4 e g% g1 Clyy i
M, 1 = % s B8

M kl _ e (glkg]l - gzlg]k) + E/B’LJOC ﬁklﬁ Haﬂ )
(B.16)

B.3 1IB parameterisation of the ExFT tensor hierarchy

To complete the embedding of type IIB supergravity into exceptional field theory, one
needs to embed the supergravity fields with legs along both the internal and external di-
rections. These are encoded into the the ExFT tensor hierarchy fields A,, By, ...The
map between supergravity and ExFT fields can be obtained by comparing how both trans-
form under gauge transformations or by comparing their corresponding field strengths.
We summarise the findings in the next section B.3.1 and give details of the derivations in
sections B.3.2-B.3.4.

B.3.1 Summary of IIB parameterisation

The 10-dimensional IIB metric is given by
dsty = giyDy' Dy’ + guvdatdz” (B.17)

where g;; is the internal four-dimensional metric as computed from the generalised met-
ric (B.13), (B.16) and

Dy’ = dy' + (zAudyi)dx“ , (B.18)

are the Kaluza-Klein covariantised derivatives of the internal coordinates with Aui the
Kaluza-Klein vector field. The “external” metric g, is related to the ExF'T metric G,,, by

g;w = guu|gint’_1/4 s (B-lg)

where |gin¢| denotes the determinant of the internal metric g;;.

For the remainder of this appendix, we will follow the conventions of [73] and denote
the 10-dimensional type IIB supergravity gauge fields by a hat, i.e. C’(Q)a and CA'(ZL), unlike
in the main part of this paper. We will reserve the unhatted objects for later purposes in
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this appendix. Under the splitting of the 10 dimensions into six external and four internal
directions, we write them as

C Crin®Dy™ A Dy, (B.20)

DN | —

1_ _ -
(Q)O‘ = §C’w,ad:z:”‘ Ndz” 4 Cppdat N Dy™ +

and, analogously, for CA’(;l). The fields C’Wa, CWO‘, ... are the components of the KK-
redefined form-fields C,,, (y*, Cp,(1)®, ... defined in (B.39). The barred fields that are
totally internal, i.e. C(® and C(y), are embedded into ExFT through the generalised
metric (B.13), (B.16). The rest can be read off from the ExFT tensor hierarchy fields as

(see (B.58))

Ay = (A )
Cuy™ = (A,
(@) = V2 (Bu)( " Mg (A ) (B.21)
Cus) = (Au)s) + Ea,BC 1> ACo)”,
_ 1 _
Cuv 2y = —V2(Buw)(2) + U)o (A ) + 5a8C1m (0)*C”
where (Au) @), (Au))® -5 (Buw)©)® --- are components of the tensor hierarchy fields

A, and B,,,. The fields C_’Wp(l) and Cquo (0) involve further fields of the tensor hierarchy.
However, they can also be determined (up to gauge transformations) from C_‘(4), C

- I
Ciw 2

3y and
(2) through the self-duality condition of the 10-dimensional four-form. Y
In addition to the dictionaries between tensor hlerarchy and supergrav1ty gauge fields,
one can also embed the supergravity field strengths F( )a and F( 8) into the ExFT field
strengths. As in the case of gauge fields, we write the 10-dimensional field strengths as
nRe 1 n a 1 n «a
F(g) =3 Flupdat N dx” N dx? + - 5 Flym®dat A\ dx” A Dy™ B.2)

+ fﬁumnadx” A Dy™ A Dy™ +

5 anpaDy /\Dy ADy ,

3!
and analogously for F )" The barred F fields are the components of the form-fields (B.45).
Since the internal space is four-dimensional, the only 10-dimensional field strength with a
totally internal part is E (3)0‘, given by

F(g)a - dé(g)a 5 (B23)

with C'(Q)O‘ the internal part of the 10-dimensional two-form, which is embedded into the
ExFT through the generalised metric. Since all ExFT field strength have at least two
external indices, the components of the 10-dimensional field strengths with one external
leg can only be obtained directly from the gauge fields. These are (see (B.50) and (B.54))

n « KK~ « ~ «
Fu@® =Dy Cg® —dCum)”,

— KK A~ 1 — B 1 =, a — B (B24)
Fu@y =Dy Cray = dCu 3) = 5€apC2)* A Fu)” = 5€asCuy® A iy
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The rest of the components can be read off from the field strengths of the ExFT tensor
hierarchy fields as (see (B.60))

F/U’ = (‘FMV>(U) 5
Fom® = (Fuw))® +r,C2)",

Fuup (O)a - \/i (HMVP)(O)a ’ (B25)
_ L _ 1, ~
Fiu3) = (Fur) @) + €asFuw )" A Cy” + 17,0 Clay + 5€asCi)* N Cy”

Fuvp2) = —V2 Huvp)2) + €apFup(2*C2)”

where F),, is the field strength of the KK gauge field A, (see (B.40)) and (Fyw)w), -5

(pr)(o)a, ... are the components of the ExFT field strengths F,, and H,,, defined
in (2.5) and (2.7). As for the gauge fields, the components If’uvm,(l) and Fw,pm;,(o) can be

obtained from the 10-dimensional self-duality condition for F 5)"

B.3.2 Tensor hierarchy of SO(5,5) exceptional field theory

The tensor hierarchy of SO(5,5) ExFT containts the fields A, By, Cuup, - .. as listed in
equation (2.14). As discussed in section B.1, taking the type IIB solution to the section
constraint [53, 72| these decompose into

Ap=Ap ) + A + Aus) s

B;w = B;w (O)a + B,uu (2) + B,uz/ (4)a ) (B26)
Cuvp = Cuvp (1) + Cup (1) + Cuvp(3)a-

The gauge variations of A, and By, are given by

SA, =D,A—dE,,

(B.27)
0B, = 2Dy By + AN Fuy — Ay AN6A,) —d Oy,

where A € 16, 2, € 10 and ©,,, € 16 are generalised gauge parameters, the derivative D,,
is defined as
Dy=0u—La,, (B.28)

and F,, is the field strength of A, defined in (2.5).

Gauge variations and field strength of \A,,. In the type IIB solution of the section
constraint, the variation 0.4,, decomposes as

_ KK
0Aw) = Dy Ay
Ie% KK « Ie% — Ie%
64" =D Ay + Lo, Au )™ — dEu )%, (B.29)
KK a =
0Au(3) = Dy "Ny + L,y Aus) — €apdAu® ANy’ + dE, ),

where now L is the usual Lie derivatives, the derivative fo K is defined as

DI =08, —La (B.30)

w(v) 2
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and the fields éu (0" and éu (2) are

20 ()" = V25,0 + g Auq) (B31)
Eu@) = V2Eu(2) — th Au)

with 2, 0)* and £, (9) being the zero- and two- form components of the gauge parameter
Z,. The field strength F,,,, defined in (2.5), decomposes as

(‘7:#1/)(1)) = 28[;//41/] (v) — [Au (v)~7 A, (U)] )
(Fuw ))® = 2D Ay () + dB, )7, (B.32)
KK ® o
(Fur)3) = 2D(," Ay (3) — dBy 2) — €ap Ay AdA 1)

where, analogously to (B.31), the fields BW 0" and B y are defined as

uv (2

By )" = V2B )" + tay o A ™

: (B.33)
By (2) = V2B (2) = 1Ay, ) A (3)

with B, )" and By, (2) components of Bj,,.

Gauge variations and field strength of B,,,,. The fields B/w (0" and B/w (2) transform
under gauge variations as

6B 0)* = V2 (6Byu) ) + tsa,

KKZ o B o @
= 2D[H ‘—‘l/} (0) + LA(U) B;Lll (0) + L(]‘—,uu)(v)A(l) ’

0By (2) = V2 (6Byu) o) — toa,

. 1 - -
_ KK [ = ey B as
= 2Dy, <~u} (2 ~ 5¢as i (1) /\Au)) + €apdAp 1)*E0) 0)7 + L Buw )

Ay)® +eay, 004 1)°

w(v)

w1 (3) T b )04 9)

1 o ~
Ag) = 5eas(Fu))® A )’ +dOp, 1y

1 o ~
= 5€ah)” A dBu ) = uF) 5
(B.34)

2 (v)

where the field é;w(l) is a redefinition of the one-form part of ©,,. Finally, the field
strengths of the fields B;w 0 and B/w (2) can be obtained from the field strength H,,,
(without tilde), defined in (2.7), as

r] a « KK p « «

Hyup ()" = V2 (Huup) 0" = 3D Buy 0" = 347,00 A0 0

Hiyp2) = V2 (Huuvp) 2)
KK « KK
= 3D{ 5 By 2) + 3uF) ) Anl 3) + 3€asAp ) A DAL )

+3€ap AL (1) Buy) (0)° + dChup (1) 5

(B.35)

where éuyp(l) is again some redefinition of the one-form part of éuup-
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B.3.3 KK decompositon of type IIB supergravity

The bosonic field content of type IIB supergravity is given by a metric field g, an axio-
dilaton field H, a SL(2)-doublet of two-form fields C5)® and a four-form field C(3). The
sub-index (p) indicates that the object is a p-form from the 10-dimensional point of view.
The gauge variations of C'(Q)a and a CA'(ZL) are

8Cu" = dA\ )",
. . 1 < - (B.36)
(SCﬂ,;ﬁ& d)\(3) + 5606/3)\(1) A F(S) ,
and their field strengths
Fig" = dC)",
(B.37)

. . 1 . .
= P e B
F(5) == dC(4) 26QBC(2) VAN dC(Q) .

Next we split the 10-dimensional space into a six-dimensional external and a four-
dimensional internal spaces. Throughout the rest of this section, we will use the field
redefinitions of [73]. Our conventions for the coordinates are: 2 are the ten dimensional
coordinates, z# are the external ones and y" the internal, with g =1,...,10, u=1,...,6
and n=1,...,4. The two-forms fields C’(Q)a decomposes under this splitting as

A« L a g [l 1%
C(Q) = §Cﬂl) dxt A dx
1

| — N

R X 1.
Cdat N da¥ + Cpp“dat A dy™ + iCmno‘dym A dy™ (B.38)

= 201“/ (O)Qdﬂfu Adz” + dxt A C’M(l)a + é(z)a s

where now the subscript (p) indicates that the object is a p-form from the point of view of
the internal space. The four-form C’( i) decomposes in an analogous way. Next, in a standard
Kaluza-Klein manner, we redefine these form-fields by projecting the 10-dimensional curved
indices into six-dimensional ones using the projector Pﬂﬂ = e“aeaﬂ, where a are the external
flat indices and eﬂ& is the 10-dimensional metric vielbein in a frame where it is upper-
triangular. We obtain

Cun® = Cu)® = 14,00)"
Cov 0 = Cru @ + 24,0 ()™ = 14,04,C(2),
Cuy = Cay (B.39)
Cu) = Cue — 4,0

where A, is the KK gauge field, with field strength
F =20, A, — [Au, Al (B.40)
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For computational purposes it is worth noticing that the 10-dimensional two-forms (B.38)

can now be written as

~

1. _ _ _ . -
C(Q)O‘ = §Cw,°‘dx“ Ndz” 4 Cppdat N Dy" + = Cppn*Dy™ A Dy™, (B.41)

DO | —

with

Dy" = dy" + (1a,dy") dz", (B.42)
and analogously for any other 10-dimensional form. Furthemore, because of the Chern-
Simons term in the five-form field strength, the four-form needs some extra redefinitions

(see for instance [73, 74]), namely

_ 1 -
Cay=Cly»  Cu =Cue — 56a8Cu)” A Cy”

) 1 ) (B.43)
Cur (2) = Cur (2) — 5€a8Ch (0 0" Ca)”.
For completeness, we also define

Co"=Co% G =Cn"  Cuwo®=Cuwo® (B.44)

Analogous definitions apply also for the field strengths. In particular, now,

Figy® = F»)
Fuo)® = Fuo)® —a,Fg®,

(B.45)

where we recall that there is no internal five-form because the internal space is four-

dimensional. Furthermore,

F)" = Fy",  Fue®=Fe  Foo® = oo —wm.Ce,

. (B.46)
Fiu3) = Fu 3) = €asFuw () A C2)” = 17, Clay + 5€asCi2)” A 15 Cra)”

Fuvp(2) = Fuup(2) = €apFrvp0)*Cra)”
where F),, is the KK field strenght (B.40).

Gauge variations and field strength of é(ﬁ)o‘. Following the above redefinitions,

the fields coming from the decomposition of C’(Q)a transform under the gauge transforma-
tions (B.36) as

50(2)(1 - d)\(l)a 5
oC (1)a = DKK)\(l)a —d\, (O)Q , (B.47)

0Cy (0 = 2D, Mj0)® + Lr A
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where F),, is the KK field strength (B.40) and the derivative fo K is, as above, defined as

DR =0, —La,.
Analogous to the gauge fields, the A\-parameters are defined as
A=A =p)”,
M) = A = A" A
After redefinitions, the field strengths coming from F(g)o‘ become
Fiz)" = dCp”,
F® = D" Cip™ = dCpu0),
Fl )™ = 2Dy (1) +dC (0)"

[w
« KK o a
Fuvp©® = 3D Cog0)" = 3tr,, Coj ()™

(B.48)

(B.49)

(B.50)

Gauge variations and field strength of é(&)- The redefined fields coming from 0(21)

transform under gauge transformations as
1 (03
50(4) = d/\(g) + 560,5)\(1) A F(3)5,
0Cu (3 = Dy "A@)= dAu @) + €apd)® A dCu )

oC

2

where the new \-fields are defined, analogous to the gauge fields, as

_ 1 -,
A@) = @)~ 5 A C)”

_ 1 - _
Au(2) = Au(2) ~ 5B (Au) NG + M Ce” ) )

_ 1,
Ay (1) = Aw (1) — 5€apA() Chv0)”

together with

Il
P

(3)>

A3)
Mi(2) = Ap(2) ~ LA A@)

>

Il
p

M (1) = Naw (1) F 204, 0] (2) = LALLAAG)

After redefinitions, the field strengths coming from F ) become

1 1
KK « «
Fyua) = D" Cay = dCpuz) — 5€a8C)* A Fu)” + 5€asCip)® N dCpu)”

KK o
Fl(3) = 2D Cyj 3) + dCpuy 2) = €apClu)™ A dCyy1)”
F

[
pvp
= 3eagClu” A D Cp )
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1
KK «@
v (2) = 2D, (M (2) T 5€asAm)” A Cy )’ ) T dM\w (1) F LR AB)

1 (e} « o
+ 5easA0* A Fu )" = 200)*dC,) (1) + dCu )™ A Ay”) s

KK a
2 = 3Dy Cupj2) = dChrp 1) = 345, Gyl (3) — 3€apdClus 0)° N Cpj 1)

(B.51)

(B.52)

(B.53)

(B.54)



Summary of variations. Combining the results above together with diffeomorphism
variations along a vector y in the internal space one finally obtains

50(2)01 — d)\(l)a + LXC(Q)a 5

3C,m* = D M Ay = dXu )" + LyCun)™ (B.55)
6Cu () = QD{;K)\V](O)O‘ + th, A1)+ LyCrw (00
and
1 [0
50(4) = d)\(g) + §€a5)\(1) A F(g)ﬁ + LXC(4) ,
0C, 3 = D A3 = dAu2) + €apAn)® AdC, 1) + LxClu(3)

1
KK «@
0Cu (2) = 2Dy, <M (2) T 5€asAm)” A Cy) W’ > T dA\w 1) T LR AB)

1
+ 5eapA)™ A Fuu (1) = 2000 dCy (17 + dC ()" A AW)?) + LyCu (2)

2
(B.56)
The KK gauge field A, transforms as
5A, =Dy (B.57)
B.3.4 Dictionaries SO(5,5) ExFT — IIB supergravity
By comparing (B.29) and (B.34) with (B.55) and (B.56) we can identify
A= Ae)> G =AW Cw©® = Buw©"® (B.58)
Cu) =A@, Cuwe = —Buwe);
and analogously for the gauge parameters
=Awy, A" =A% Ao*=Z.0"
X (v) (1 (1) 1(0) 1(0) (B.59)

Ay =A@, M@ = "Eue)-

We can also establish dictionaries between field strenghts. Comparing (B.32), (B.35),
(B.50) and (B.54) we obtain

Fu = (Fur) ) » Fowm®=Fuw)n®  Fup” = Hup)® (B.60)
Fuv @) = (Fuw)e) Fuvp@) = —Huwp(2) -
C 52 conventions
We describe the S? by three functions y,, u = 1,. .., 3 satisfying
yuyu =1, (Cl)
where we raise/lower u,v = 1,...,3 indices with J,,. In terms of these functions, the round
metric on S? and its volume form are given by
1
dsze = dy,dy" volge = §euva“ dy” N dy" . (C.2)
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The Killing vectors of the round S? are given by
Ui = gijfuvav ij s (C?’)

where 7,7 = 1,2 denote a local coordinate basis and ¢ is the inverse metric of the round
S2. Alternatively, the Killing vectors can be defined as in [14].
We also make repeated use of the 1-forms that are Hodge dual to dy, with respect to
the round metric (C.2)
Oy = *dyy = €ypy’dy® . (C.4)

These form a “dual span” of the T%(S5?) to the Killing vectors, i.e.
20,00 = Ouv — Yu Yo - (C.5)
Note that the 1-forms dy,, 6, and Killing vectors v, satisfy
Yudy" = yu" = y,v" = 0. (C.6)

All the objects we introduced above transform naturally under the SU(2)z symmetry
generated by the Killing vector fields.

Lvuvv = —Cuvw v y
Lvuyv = —€uow yw s
Lvudyv = —Cuvw dyw y

Lvuev = _6uvw9w

D Dictionary between AdSg conventions

Upon imposing the Cauchy-Riemann equations (7.42) and identifying the holomorphic
functions as in (7.44), we find the following match between our objects and those of [41].

1 1 361G <
S dk| = ~K2 A="7D D.1
r=g9  ldkl=28% 128 77 (D-1)
where, as in [50],
. 210G/
D=1 . D.2

Here, to differentiate our x from the objects denoted by the same symbols in [41] we denoted
theirs by an underline: k.
Our SL(2) doublet of 2-forms, C(5)%, are related to the complex 2-form, C(s), of [41] by

C(Q) = —0(2)1 +iO(2)2 . (D.S)
Similarly, our axio-dilaton, H®? is mapped to the complex scalar B of [41] via

9 1+ (H12)2 -+ (H22)2

B = .
1+ (Hyig + 1 Hy)?

(D.4)
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We can similarly match our minimal consistent truncation with that found in [50]. To
differentiate between our scalar field X, gauge fields A%, A*, two-form fields B(3) and those
of [50], we will denote the objects of [50] by an underline, i.e. X, A*, A* B. We use the
same notation for the field strengths, i.e. our objects are F(Q)A, F(2)4 and F(g) and those
of [50] are E(Z)A, E(2)4 and E(g). The map is now given by

X=X, w=Y2ur giopt Bop,
’ (D.5)
7 V25 o4 oA _ 4 2 2 .
A
Fo" = 5 E@", Fo =Ly  Fg =Ly,

and our function A is related to D of [50] by

A _ 3ﬁ4g

X 4D. )
128 = b (D-6)
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