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Abstract: The standard formulation of the high-energy evolution in perturbative QCD,

based on the Balitsky-Kovchegov equation, is known to suffer from severe instabilities asso-

ciated with radiative corrections enhanced by double transverse logarithms, which occur in

all orders starting with the next-to-leading one. Over the last years, several methods have

been devised to resum such corrections by enforcing the time-ordering of the successive

gluon emissions. We observe that the instability problem is not fully cured by these meth-

ods: various prescriptions for performing the resummation lead to very different physical

results and thus lack of predictive power. We argue that this problem can be avoided by us-

ing the rapidity of the dense target (which corresponds to Bjorken x) instead of that of the

dilute projectile as an evolution time. This automatically ensures the proper time-ordering

and also allows for a direct physical interpretation of the results. We explicitly perform

this change of variables at NLO. We observe the emergence of a new class of double loga-

rithmic corrections, potentially leading to instabilities, which are however less severe, since

disfavoured by the typical BK evolution for “dilute-dense” scattering. We propose several

prescriptions for resumming these new double-logarithms to all orders and find only little

scheme dependence: different prescriptions lead to results which are consistent to each

other to the accuracy of interest. We restore full NLO accuracy by completing one of the

resummed equations (non-local in rapidity) with the remaining NLO corrections.
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1 Introduction

The non-linear evolution equations in QCD at high energy — the Balitsky-JIMWLK1

hierarchy [1–7] and its mean field approximation known as the Balitsky-Kovchegov (BK)

equation [1, 8] — represent an essential ingredient of our current theoretical description of

high-energy hadronic scattering from first principles. To provide a realistic phenomenology

— say, in relation with hadron-hadron collisions at RHIC and the LHC, or electron-nucleus

deep inelastic scattering (DIS) at the Electron-Ion Collider that is currently under study

—, these equations must be known to next-to-leading order (NLO) accuracy at least.

Their versions at leading order (LO), with the inclusion of unitarity corrections, have

been established about two decades ago, but their extension beyond LO appeared to be

extremely subtle. Not only the calculation of the NLO corrections to the BK equation [9]

and, subsequently, to the full B-JILWLK hierarchy [10–13], turned out to be a tour de

force, but when trying to use such NLO results in practice, the situation appeared to be

very deceiving.

The NLO BK equation turned out to be unstable [14], due to the presence of large

and negative NLO corrections enhanced by double collinear logarithms, i.e. corrections of

relative order ᾱs ln2(Q2/Q2
0), where ᾱs ≡ αsNc/π (αs is the QCD coupling and Nc the

number of colors) and Q2 and Q2
0 are the characteristic transverse momentum scales in the

dilute projectile (Q2) and the dense target (Q2
0). Such logarithms are indeed large, since

Q2 � Q2
0 for the “dilute-dense” collisions to which the BK equation is meant to apply.

For instance, for the case of DIS at high energy, or small Bjorken x, Q2 is the virtuality of

the photon exchanged in the t-channel and Q2
0 is an intrinsic scale in the hadronic target

at low energy: Q0 ∼ ΛQCD if the target is a proton, or Q0 ∼ the saturation momentum

in the McLerran-Venugopalan model [15, 16] if the target is a large nucleus. Within the

NLO BK evolution, these double logarithms are generated by integrating over anti-collinear

configurations, where the transverse momentum of the emitted gluon is much smaller than

that of its parent. (In the dipole picture of the evolution, this corresponds to the case where

both daughter dipoles have transverse sizes much larger than that of their parent.) Such

“hard-to-soft” emissions are indeed the typical ones, since the global evolution proceeds

from the hard scale Q2 of the projectile down to the soft scale Q2
0 of the target.

As a matter of fact, this instability of the strict NLO approximation is hardly a surprise

and it has indeed been anticipated [17, 18] on the basis of previous experience with the NLO

version [19–24] of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [25–27] (the linear

version of the BK equation, valid so long as the scattering is weak), where similar problems

were identified and eventually cured [28–33]. In the terminology of ref. [29], the instability

of the NLO BK equation is a consequence of the “wrong choice for the energy scale”. In

a language which is better adapted to our current analysis, this refers to the choice of the

rapidity variable which plays the role of the “evolution time” in the high-energy evolution.

Roughly speaking, this variable must scale like the logarithm of the center-of-mass energy

squared, but its precise definition starts to matter at NLO.

1This acronym stays for Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov and Kovner.
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The rapidity generally used in relation with the BK equation is that of the projectile,

that we shall denote as Y ; this looks indeed natural, given that this equation has been

constructed by following the evolution of the wavefunction of the dilute projectile with

the emission of softer and softer gluons (or, equivalently, with increasing Y ). This is

nevertheless a “bad choice” from the viewpoint of the NLO analysis in ref. [29], in the

sense that the typical (“hard-to-soft”) evolution with Y includes gluon emissions which

violate the correct time-ordering of the fluctuations, i.e. the condition that a daughter

gluon must have a shorter lifetime than its parent. On the other hand, the proper time-

ordering is automatically respected if, instead of Y , one orders the successive emissions

according to the target rapidity, that we shall denote as η. The precise definitions for Y

and η will be given in the next sections, where we shall see that η is indeed a right measure

of the rapidity phase-space available in DIS (since related to Bjorken x, via η = ln(1/xBj)),

whereas Y is always larger than η, namely Y = η + ln(Q2/Q2
0), corresponding to the fact

that the projectile rapidity is overcounting the energy phase-space. The large and negative

NLO corrections enhanced by the double transverse logarithm are intended to compensate

for this overcounting at NLO. Similar corrections, i.e. terms of order [ᾱs ln2(Q2/Q2
0)]n with

n ≥ 1 and with alternating signs, occur in the higher orders and jeopardise the convergence

and also the stability of the perturbative expansion for the evolution equation in Y .

In the context of the BFKL dynamics and for an asymmetric collision with Q2 � Q2
0,

it is natural to associate the whole evolution with the target — that is, to evolve in

η — and thus avoid the complications with the violation of time ordering; this is the

“correct choice for the energy scale” advocated in [29]. But in the framework of the non-

linear evolution, where the NLO corrections to both BK and B-JIMWLK equations were

explicitly computed by studying the evolution of the projectile, it looks more natural to

evolve in Y and try and cure the instability problem via all-order resummations of the

radiative corrections enhanced by the double transverse logarithms. Two methods have

been proposed in that sense [34, 35], which use different recipes for enforcing time-ordering

in the evolution with Y . Ref. [34] has introduced kinematical constraints leading to an

evolution equation which is similar to the LO BK equation (in the sense of having the

same splitting kernel), but is non-local in Y . In ref. [35] on the other hand, the double-

logarithmic corrections have been resummed in the kernel and the ensuing equation, dubbed

“collinearly-improved BK”, is still local in Y . These two methods are equivalent in so far

as the resummation of the leading double transverse logs is concerned, but differ from each

other at the level of subleading terms (i.e. corrections with a larger power for ᾱs than for

the double-log ln2(Q2/Q2
0)). Both procedures solve the instability problem: the associated

numerical solutions are indeed stable, as explicitly demonstrated in [36–38].

Besides the change in the structure of the differential equation, a proper enforcement of

the time-ordering condition should also modify the formulation of the initial value problem

for the evolution in Y . The corresponding modifications have not been properly imple-

mented in the original literature. For instance, [34] failed to recognise that the non-local

version of the BK equation should be solved as a boundary-value problem, rather than

as an initial-value one. Concerning the local resummation in [35], this can be still for-

mulated as an initial-value problem, but the initial value (at Y = 0) itself must receive

– 2 –
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double-logarithmic corrections to all orders, similarly to the kernel. The need for such an

additional resummation was recognised in [35]. However the recipe for the initial condition

that was proposed in [35] is not accurate enough: it is correct in a leading-logarithmic

approximation for the transverse logs (see [35] for details), but not also to full BFKL ac-

curacy. Correcting these inconsistencies in the formulation of the initial value problem for

the resummed evolution in Y represented our original motivation for the present study.

However, during our study, we have discovered even more severe conceptual problems,

which made us understand that the evolution in Y is intrinsically ill-behaved and should

be replaced with an evolution in η — similarly to what was done for the NLO BFKL

equation [29, 31, 32].

To understand the additional difficulties, we first observe that the aforementioned

inconsistencies with the formulation of the initial condition should only affect the evolution

at relatively low values of Y , but not also the asymptotic behavior at large Y . For instance,

different resummation methods should give similar predictions for the saturation exponent

λs, which controls the growth of the saturation momentum with the rapidity. By “similar”

we mean that different predictions must differ by a quantity of O(ᾱ2
s): δλs = cᾱ2

s with

c ∼ O(1). Yet, as we shall shortly explain, this expectation is not met in practice. Note

that, since the “correct” evolution “time” is η (and not Y ), physical quantities like the

saturation exponent, the shape of the saturation front (and the associated property of

geometric scaling [39–43]), or the DIS structure functions at small Bjorken x, should also

be studied in η. Hence, even if one starts by solving the BK equation in Y , one must

re-express the results in terms of η before inferring any physical conclusion.

In this context, figure 1 (right) shows λ̄s — the saturation exponent for the evolution in

η — as obtained from the resummed evolution in Y using three different methods: the “lo-

cal” resummation proposed in [35] and two prescriptions for the “non-local” resummation

in [34] (see section 3.2 for details). In principle, these various methods are equivalent to the

accuracy of interest, so their results for λ̄s should agree with each other up to corrections

of O(ᾱ2
s). Yet, the curves shown in figure 1 (right) appear to strongly deviate from each

other (and also from the corresponding result λ̄0 ' 4.88ᾱs of the LO BK evolution in η)

and this deviation increases with ᾱs: one can write δλ̄s = c(ᾱs)ᾱ
2
s, where c(ᾱs) rises with

ᾱs and is significantly larger than 1 already for ᾱs = 0.25. This strong scheme-dependence

is likely related to the existence of important subleading corrections, beyond the leading

double-logarithms resummed by all these methods.

We thus conclude that, even after performing resummations which are tantamount to

enforcing time-ordering, the evolution in Y is still lacking predictive power. This obser-

vation motivates us to reformulate the (NLO and beyond) BK evolution as an evolution

with the target rapidity η. Instead of going through a tedious NLO computation of gluon

emissions in the background of the dense gluon distribution of the target, we shall deduce

the NLO corrections to the BK equation in η from the corresponding corrections to the

evolution in Y via a mere change of variables. This is a straightforward procedure in (strict)

perturbation theory, to be described in section 4.1 at NLO level. As expected, the main

consequence of this change of variables is to eliminate the double anti-collinear logarithms

responsible for the failure of the NLO BK equation in Y .

– 3 –
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The resulting NLO version of the BK equation in η, presented in section 4.1 (see

eq. (4.5)), is the true starting point of our analysis. (The first 2 sections of this paper

will mainly serve to illustrate the problems with the evolution in Y .) Since time-ordering

is now built-in, one may expect this equation to predict a smooth evolution, which is

well behaved and free of instabilities. However, this turns out not to be the case: as we

will demonstrate in section 4.2, via both analytic and numerical arguments, the NLO BK

evolution in η does still exhibit an instability, albeit somewhat milder (and more slowly

developed) than the one for the respective evolution in Y . This instability is again related

to NLO corrections enhanced by double transverse logarithms, but of a different kind: these

are collinear logarithms associated with “soft-to-hard” emissions in which the transverse

momentum of the emitted gluon is much larger than that of its parent. (In the dipole

picture, one of the daughter dipoles is much smaller than the other one and than their

common parent.) Such emissions are atypical in the problem at hand (which explains why

the associated instabilities are relatively mild), yet they are allowed by the non-locality of

the BFKL (dipole) kernel in the transverse plane, which leads to “BFKL diffusion”, i.e. to

excursions via dipole configurations of any size.

These instabilities could have been anticipated from the experience with the NLO

BFKL equation: in that context too, and after selecting the “correct energy scale” (= evo-

lution variable), the strict NLO approximation is still unstable (e.g. it yields a complex

saddle point leading to oscillating solutions) and calls for collinear resummations (see [44]

for a pedagogical discussion).

In this paper, we shall proceed to resummations of the (leading) double collinear logs

to all orders. The guiding principle for such resummations is the condition that successive

emissions which are ordered in η must be also ordered in their longitudinal momenta2

(i.e. in Y ). As for the evolution with Y [34, 35], we shall propose two strategies for the

collinear resummations — one leading to equations which are non-local in η but with the

standard BFKL kernel (see section 5), the other one leading to a local equation, but with a

kernel which receives all-order corrections (cf. section 7.2). As expected, the (local and non-

local) resummations in η show only little scheme dependence: the respective predictions

for the saturation exponent agree with each other within the expected O(ᾱ2
s)-accuracy (see

figure 6). This confirms the fact that, by trading Y for η as the evolution “time”, we have

restored the predictive power of the (resummed) perturbation theory.

We shall nevertheless discard the local version of the resummation since, as we shall

see, it does not properly encode the approach towards saturation. (The “soft-to-hard”

evolution and the associated resummations in η also impact the non-linear dynamics, un-

like the resummations in Y which matter only at weak scattering; see the discussion in

section 8.2.) The non-local equations in η can be extended to full NLO accuracy by adding

the missing NLO corrections (not enhanced by double collinear logarithms); this will be

explained in section 6.

2This is the counterpart of the condition used in the evolution with Y , namely the fact that the emissions

ordered in Y must be also ordered in their lifetimes, i.e. in η.
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The fact of evolving in η also alleviates the problem of the initial condition that was

present for the evolution in Y : our resummed equations in η can be unambiguously formu-

lated as initial-value problems, although this requires some care due to their non-locality

in the evolution “time” η; this will be explained in section 9.

Among the resummed equations which are non-local in η, we will find it natural to

select one of them, whose expansion to O(ᾱ2
s) shows the closest resemblance to the strict

NLO equation displayed in eq. (4.5). This will be shown in eq. (6.1), that we repeat here

for convenience (see also eqs. (9.1) and (9.3) for other versions of this equation whose

respective virtues will be explained in due time). This is an equation for the dipole S-

matrix S̄xy(η), whose structure is quite similar to that of the LO BK equation, except for

the non-locality in the rapidity arguments of the S-matrices describing the scattering of

the daughter dipoles:

∂S̄xy(η)

∂η
=
ᾱs
2π

∫
d2z (x− y)2

(x− z)2(z − y)2
Θ
(
η − δxyz

)[
S̄xz(η − δxz;r)S̄zy(η − δzy;r)− S̄xy(η)

]
.

(1.1)

In this equation, δxyz = max{δxz;r, δzy;r}, r = |x−y|, and the rapidity shifts are defined as

δxz;r ≡ ln
max{(x−z)2, r2}

(x−z)2
, δzy;r ≡ ln

max{(z−y)2, r2}
(z−y)2

. (1.2)

They are non-vanishing (meaning that the collinear resummation plays a role) only in the

case where the transverse size of one of the daughter dipoles (either |x−z|, or |z−y|) is

much smaller than the size r of the parent dipole.

For this “canonical” equation we shall present a rather complete analysis in sections 7

and 8. Notably, in section 7.1 we shall discuss the relation between our collinear resumma-

tion of the BK equation in transverse coordinate space and the corresponding procedure

(the “ω-shift”) used in the context of the NLO BFKL equation in Mellin space [29–32].

Also, in section 8.1 we shall present rather detailed, semi-analytic and numerical, studies

of the solutions to eq. (6.1), including the pre-asymptotic corrections to the saturation

exponent, the saturation anomalous dimension, the quality of geometric scaling, and the

effects of including a running coupling. We shall find that, as a consequence of the collinear

resummation and of the running of the coupling, the evolution is considerably slowed down:

the effective (η-dependent) saturation exponent takes typical values λ̄s = 0.2÷ 0.3, which

are consistent with the phenomenology (see figure 9. (right)).

2 Balitsky-Kovchegov evolution through NLO: a brief summary

This first section does not contain any new result, but only a collection of informations

about the (leading-order and next-to-leading order) BK equation that will be useful for the

subsequent discussion. This summary will also give us the opportunity to introduce our

notations and explain the kinematics.

– 5 –
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2.1 The Balitsky-Kovchegov equation at leading order

We consider the high-energy scattering between a dilute projectile — a quark-antiquark

color dipole propagating towards the positive direction of the longitudinal axis with a large

momentum q+ — and a dense target — a nucleon or a nucleus moving in the opposite

direction with a longitudinal momentum q−0 (per nucleon). The scattering will be treated

in the eikonal approximation, so that the transverse coordinates x and y of the quark and

the antiquark are not modified by the collision (and hence the same is true for the dipole

transverse size r = |r|, with r = x− y).

The target is characterized by a transverse momentum scale Q0, which plays the role

of a saturation momentum (the typical scale for strong scattering) at low energy: a dipole

with size r ∼ 1/Q0 would strongly scatter off the target already for a low energy q+ ∼
q+

0 , with q+
0 ≡ Q2

0/2q
−
0 . In reality, we are interested in much higher energies q+ � q+

0 ,

where the typical scale for the onset of strong scattering is the Y -dependent saturation

momentum Qs(Y ) and is much harder: Q2
s(Y ) � Q2

0. Here, Y is the (boost-invariant)

rapidity difference between the projectile and the target,

Y ≡ ln
q+

q+
0

= ln
2q+q−0
Q2

0

= ln
s

Q2
0

, (2.1)

with s = 2q+q−0 the center of mass (COM) energy squared, assumed to be very large:

s� Q2
0.

The scale Q2
s(Y ) is rapidly increasing with Y (roughly, like an exponential; see below),

due to quantum evolution, i.e. due to the successive emissions of softer and softer gluons,

which carry only a small fraction of the longitudinal momentum of their parent: each such

an emission occurs with a probability of O(ᾱsY ), with ᾱs = αsNc/π, where αs is the QCD

coupling and Nc the number of colors. Depending upon the choice of a Lorentz frame,

such emissions can be viewed as additional Fock space components in the wavefunction of

the color dipole, or of the dense nucleus, or both. Physical observables like the S-matrix

Sxy(Y ) for elastic scattering, are boost-invariant (they depend only upon the rapidity

difference Y ), but the physical picture of the evolution and the associated mathematical

description depend upon the frame, due to the dilute-dense asymmetry. This picture

becomes much simpler if the evolution is fully associated with the dilute projectile, since

in that case one can neglect non-linear effects like gluon saturation in the evolution of the

dipole wavefunction, but only include them (as unitarity corrections) in the evolution of

the scattering amplitude. That description applies in a frame where the dipole carries

most of the total energy, i.e. q+ � q−0 . This is the description that we shall use throughout

this paper, first to leading-order (LO), then to next-to-leading order (NLO) and ultimately

when performing specific resummations to all orders.

At LO and in a suitable mean-field description of the gluon distribution in the target

(which in particular requires the multi-color limit Nc � 1), the evolution of the elastic

S-matrix with increasing Y is described by the LO BK equation [1, 8], which reads

∂Sxy(Y )

∂Y
=
ᾱs
2π

∫
d2z (x− y)2

(x− z)2(z − y)2

[
Sxz(Y )Szy(Y )− Sxy(Y )

]
. (2.2)

– 6 –
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This equation depicts the dipole evolution at large Nc as the splitting of the original dipole

(x,y) into two new dipoles, (x, z) and (z,y), where the variable z is truly the transverse

coordinate of the emitted gluon at the time where this interacts with the target The kernel

of this equation describes the probability density for dipole splitting. The first term within

the square brackets, which is quadratic in S, describes a situation in which the emitted

gluon (equivalently, the system of two daughter dipoles) exists at the time of scattering, so

both dipoles interact with the target; for brevity, this term will be referred as the “real”

term (in the sense of really measuring the scattering of the soft gluon). The term linear

in S, which is negative and will be referred to as “virtual”, measures the decrease in the

probability to have the original dipole at the time of scattering. Eq. (2.2) should be solved

as an initial value problem: given (generally, a model for) the S-matrix Sxy(Y0) at some

relatively low rapidity Y0, this equation uniquely determines the S-matrix at any Y ≥ Y0.

In this paper, we shall choose Y0 = 0, for simplicity. When the initial condition will be

explicitly needed, we shall mostly use the McLerran-Venugopalan model [15, 16], which

applies (in the sense of a mean field approximation and for relatively low energy) to a large

nucleus with atomic number A� 1. This reads

S
(0)
xy = exp

(
−r

2Q2
A

4
ln

4

r2Λ2
QCD

)
, (2.3)

valid for r2Λ2
QCD

/4 � 1. The scale Q2
A represents the average color charge density of the

valence quarks per unit transverse area and grows with A like Q2
A ∝ A1/3. The saturation

momentum Q2
s in this model is defined by the condition that the exponent be of O(1) when

r = 2/Qs; this implies

Q2
s = Q2

A ln
Q2
s

Λ2
QCD

' Q2
A ln

Q2
A

Λ2
QCD

, (2.4)

showing that Q2
s is strictly larger than the scale Q2

A appearing in the exponent of eq. (2.3).

The elastic S-matrix would be equal to one in the absence of any scattering, so for

discussing the effects of the scattering it is preferable to work with the scattering amplitude

Txy(Y ) ≡ 1 − Sxy(Y ): this is small when the projectile is small enough to resolve the

dilute tail of the target wavefunction, while it approaches the unitarity limit Txy(Y ) = 1

when the projectile is becoming sufficiently large to probe the saturated components of the

target.3 These two regimes are separated by the saturation momentum Qs(Y ), which is an

increasing function of Y , as already mentioned, and whose leading behavior will be given

below. As manifest in eq. (2.2), T = 1 is a fixed point of the BK equation, meaning that

unitarity is indeed preserved.

In the remaining part of this section, we shall assume a homogeneous target so that

the amplitude depends upon the dipole size r of the dipole (but not also upon the impact

3Strictly speaking, this suggestive physical picture, in which the unitarization is related to gluon satu-

ration in the target, holds in a frame where most of the total energy and hence the high-energy evolution

are carried by the target. In the dipole frame in which we shall develop our formalism, Qs(Y ) is simply the

characteristic scale for the onset of unitarity corrections in the dipole-target scattering. This scale “knows”

about both colliding systems: about the target, via the initial condition Q2
0 = Q2

s(Y = 0), and about the

projectile, via the dependence upon Y .

– 7 –
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parameter (x + y)/2); we shall then write Txy(Y ) ≡ T (Y, r). Notice that if this property

is satisfied in the initial condition at Y = 0, then it will be preserved for all Y by the

evolution equation given in (2.2). Although, even in this simplified case, eq. (2.2) has not

been analytically solved, one can construct a piecewise asymptotic solution for ᾱsY � 1

in the two interesting regimes at r2Q2
s(Y )� 1 and r2Q2

s(Y )� 1.

When r2Q2
s(Y )� 1, the amplitude is weak, T (Y, r)� 1, and eq. (2.2) can be linearized

in T , thus yielding the (leading-order) BFKL equation [25–27]

∂Txy(Y )

∂Y
=
ᾱs
2π

∫
d2z (x− y)2

(x− z)2(z − y)2

[
Txz(Y ) + Tzy(Y )− Txy(Y )

]
. (2.5)

Remarkably, one can use this equation also to study the approach towards saturation

and in particular to determine the asymptotic behavior of the saturation momentum at

large Y [40, 41, 45]: to that aim, it suffices to supplement the BFKL equation with the

saturation condition that T (Y, r) ∼ O(1) when r ∼ 1/Qs(Y ) [40, 45], or, more precisely,

with a saturation boundary in the (r, Y ) phase-space [41] (this last construction also allows

for a study of the subasymptotic corrections). The deep reason why such a relatively

simple analysis works is the fact that the growth of the saturation momentum with Y is

driven by the BFKL increase in the dilute tail of the amplitude at r � 1/Qs(Y ) — a

property often referred to as “the pulled front” (or “traveling waves”) and related to a

correspondence between high-energy evolution in QCD and reaction-diffusion problems in

statistical physics [42, 46].

The BFKL equation (2.5) is scale invariant (actually, even conformal invariant), so one

can define a “characteristic” or “eigenvalue” function ω0(γ) by the action of its r.h.s. on

an amplitude which is a pure power, T (r) ∼ r2γ with 0 < γ < 1; this yields [26, 27]

ω0(γ) =
1

r2γ

ᾱs
2π

∫
d2z r2

z2|r − z|2
(
z2γ + |r − z|2γ − r2γ

)

= ᾱs[2ψ(1)− ψ(γ)− ψ(1− γ)] ≡ ᾱsχ0(γ), (2.6)

where ψ(γ) = d ln Γ(γ)/dγ. Then the solution to the BFKL equation can be expressed as

the line integral in the complex-plane

T (Y, r) =

∫ 1
2

+i∞

1
2
−i∞

dγ

2πi
T (Y = 0, γ) exp

[
ᾱsχ0(γ)Y − γρ

]
, (2.7)

where we have also introduce a logarithmic variable for the dipole transverse size: ρ ≡
ln(1/r2Q2

0). Here, T (Y = 0, γ) is the Mellin transform of the initial condition T (Y = 0, r)

and in general we have

T (Y, γ) =

∫ ∞

−∞
dρ T (Y, ρ) exp(γρ). (2.8)

For sufficiently large values of Y , one can estimate the inverse Mellin transform eq. (2.7)

via the saddle point method. Here, we are interested in the special saddle point (to be

denoted as γ0) which controls the approach towards saturation; this is determined by

requiring that both the exponent in eq. (2.7) and its first derivative w.r.t. γ must vanish
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when γ = γ0 (see e.g. ref. [41] for details). One thus finds that γ0 is a number independent

of ᾱs (sometimes referred to as the “saturation anomalous dimension”) that reads [45]

χ′0(γ0) =
χ0(γ0)

γ0
⇒ γ0 ' 0.628. (2.9)

The system of the two aforementioned conditions also determines the leading asymptotic

behavior of the saturation momentum. A more elaborate analysis, which at the same time

takes properly into account the presence of the saturation boundary [41] (or equivalently

by studying the analogy to the traveling waves [43]), also fixes the first preasymptotic term

for large ᾱsY and one finds4

d lnQ2
s

dY
= λ0 −

3

2γ0

1

Y
, λ0 ≡ ᾱs

χ0(γ0)

γ0
. (2.10)

This number λ0 is generally referred to as the “asymptotic saturation exponent” (here,

evaluated to leading order). Via the same methods, one can also obtain an analytic ap-

proximation to the amplitude in the vicinity of the saturation line; this reads [41]

T (Y, r) =
(
r2Q2

s

)γ0

(
ln

1

r2Q2
s

+ c

)
exp

[
− ln2

(
r2Q2

s

)

D0Y

]
, (2.11)

where c is a positive constant of order O(1) and D0 = 2ᾱsχ
′′
0(γ0) is the “diffusion” coeffi-

cient. This approximation is valid in the regime Q2
s � 1/r2 � Q2

s exp(D0Y ). In particular,

when ln(r2Q2
s)�

√
D0Y the diffusive factor in eq. (2.11) can be set equal to unity. Then

the amplitude shows geometrical scaling [39–43], i.e. it becomes a function of just one

variable, the dimensionless quantity r2Q2
s.

We shall later be interested in the limiting form of the S-matrix deeply at saturation,

i.e. for very large dipoles sizes, such that r2Q2
s � 1. In that regime the S-matrix approaches

the black-disk limit S(Y, r)→ 0, hence we can neglect the term quadratic in S in eq. (2.2).

This is indeed the case so long as the two daughter dipoles are themselves large compared

to 1/Qs, that is, for values of z which obey |x − z|2, |z − y|2 & 1/Q2
s. Moreover, the

integration over z becomes logarithmic if one of the daughter dipoles is much smaller than

the parent dipole, that is, one has either |x − z|2 � r2, or |z − y|2 � r2. Adding both

possibilities, the BK equation reduces to

∂S(Y, r)

∂Y
= −ᾱsS(Y, r)

∫ r2

1/Q2
s

dz2

z2
= −ᾱs ln[r2Q2

s(Y )]S(Y, r). (2.12)

To the accuracy of interest, it is enough to use the dominant Y -dependence of the saturation

scale, that is Q2
s(Y ) ∝ eλ0Y , which in turn implies ln[r2Q2

s(Y )] ' λ0(Y − Ys), with Ys the

rapidity scale at which Q2
s(Ys) = 1/r2. Eq. (2.12) holds only for Y > Ys, hence it can be

integrated to yield

S(Y, r) ' S(Ys, r) exp

{
− ᾱsλ0

2
(Y − Ys)2

}
' exp

{
− ᾱs

2λ0
ln2
[
r2Q2

s(Y )
]}

, (2.13)

4Knowing the functional form of the preasymptotic term is particularly useful when one solves numeri-

cally, as it helps in fitting reliably the numerical data.
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where S(Ys, r) ∼ O(1). From the above derivation, it should be clear that the expo-

nent in eq. (2.13) is known only to double logarithmic accuracy: subleading terms, e.g. of

O(Y − Ys), are not under control. The functional form in eq. (2.13) is generally known

as the Levin-Tuchin formula [47]. Its precise form with λ0 as in eq. (2.10) corresponds to

the prediction of the BK equation (in the large Nc limit) and in fact it has been numeri-

cally confirmed to high accuracy [48]. The coefficient in the exponent is known to receive

finite-Nc corrections [49, 50] and, more importantly, O(1) corrections from dipole number

fluctuations [51, 52]. Given eqs. (2.11) and (2.13), one sees that the amplitude exhibits

geometric scaling everywhere in the region Λ2
QCD

� 1/r2 � Q2
s exp

(√
D0Y

)
, a feature

which is indeed confirmed by numerical solutions.

2.2 NLO BK evolution in Y

At NLO we must also resum terms of size ᾱs(ᾱsY )n in the presence of the strong target

field. This leads to the NLO BK equation [9] which for our purposes reads

∂Sxy(Y )

∂Y
=
ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2

{
1+ᾱs

[
b̄ ln(x−y)2µ2−b̄ (x−z)2−(y−z)2

(x−y)2 ln
(x−z)2

(y−z)2

+
67

36
− π2

12
− 1

2
ln

(x−z)2

(x−y)2 ln
(y−z)2

(x−y)2

]}
[Sxz(Y )Szy(Y )−Sxy(Y )]

+
ᾱ2
s

8π2

∫
d2ud2z

(u−z)4

{
−2+

(x−u)2(y−z)2+(x−z)2(y−u)2−4(x−y)2(u−z)2

(x−u)2(y−z)2−(x−z)2(y−u)2 ln
(x−u)2(y−z)2

(x−z)2(y−u)2

+
(x−y)2(u−z)2

(x−u)2(y−z)2

[
1+

(x−y)2(u−z)2

(x−u)2(y−z)2−(x−z)2(y−u)2

]
ln

(x−u)2(y−z)2

(x−z)2(y−u)2

}

[Sxu(Y )Suz(Y )Szy(Y )−Sxu(Y )Suy(Y )] , (2.14)

where b̄ = (11Nc − 2Nf)/12Nc, with Nf the number of flavors, and where µ is a renormal-

ization scale at which the coupling should be evaluated.

In writing eq. (2.14) we have neglected two types of terms. First, we have not written

terms which involve more complicated (than the dipole) color structures and are 1/N2
c

suppressed and this allows us to deal with a closed equation. Second we have dropped

the terms proportional to Nf/Nc [53, 54] (apart those included in the definition of b̄). The

latter don’t bring any new difficulty and could be easily included in eq. (2.14), however

they vanish in the regime of weak scattering. In any case, both types of terms do not play

any role on the aspects to be discussed in this paper.

To derive the NLO contributions, i.e. those proportional to ᾱ2
s in the r.h.s. of eq. (2.14),

one has considered two consecutive gluon emissions. These are both soft with respect to the

projectile dipole (x,y), but they are not strongly ordered with respect to each other, that

is, they have similar longitudinal momenta. Therefore, although the first emission is taken

as eikonal, the kinematics in the vertex for the second emission must be treated exactly.

(Still, one must notice that the scattering of the ensuing partonic system with the nuclear

target is eikonal.) After the longitudinal integration is performed, the NLO terms can be

collected in two pieces. One piece involves a single (2-dimensional) integration over the

transverse coordinate z, and does not change the structure of the LO BK equation. It is

only the respective kernel which receives corrections of order O(ᾱ2
s), and in particular those

– 10 –



J
H
E
P
0
4
(
2
0
1
9
)
0
8
1

corrections proportional to b̄ which are associated with the running of the QCD coupling. In

the other piece all the partonic fluctuations scatter with the target and hence one remains

with two transverse convolutions, over z and u. There, the structure is SxuSuzSzu, since

we have assumed the large-Nc limit in which the parent dipole and the two daughter gluons

are equivalent to the three dipoles (x,u), (u, z) and (z,y). The virtual structure −SxuSuy
stands for the case that the gluon at z be both emitted and reabsorbed either before or

after the scattering and its presence is necessary to render innocuous the potential UV

singularity due to the 1/(u− z)4 factor of the kernel.

2.3 Large anti-collinear logarithms at NLO in Y -evolution

In principle, one would like to solve eq. (2.14) in order to calculate O(ᾱs) corrections on

top of the LO solution. Nonetheless, this equation as it stands is plagued with various

shortcomings. There are various NLO terms which are enhanced by large logarithms in

certain corners of the transverse space and which eventually render invalid the strict ex-

pansion in ᾱs. The terms proportional to b̄, although they multiply logarithms which can

get large, are very familiar and in fact they do not pose any serious difficulty. Choosing

the running coupling scale µ as the hardest scale of the splitting process, i.e. taking for

example µ2 = r−2
min with rmin = min{|x−y|, |x−z|, |z−y|}, the terms under consideration

when added together never become large.

The remaining transverse logarithms do not (and should not) cancel by an appropriate

choice of µ, since they are of different origin. These “anti-collinear” logarithms arise when

transverse sizes among successive emissions are very disparate and the respective NLO

corrections get large in the regime where the scattering is still weak, i.e. when T � 1.

More precisely we consider the strongly ordered regime

1/Qs � |z − x| ' |z − y| ' |z − u| � |u− x| ' |u− y| � |x− y| = r, (2.15)

which means the parent dipole is the smallest one, a gluon is emitted very far away from

it at u and a second one even further at z, but all the formed dipoles have sizes smaller

than the inverse saturation scale and thus scatter weakly with the target nucleus. In this

hard-to-soft evolution the dominant NLO contribution in the single integration piece in

eq. (2.14) comes from the double logarithm which becomes

− 1

2
ln

(x− z)2

(x− y)2
ln

(y − z)2

(x− y)2
' −1

2
ln2 (x− z)2

r2
. (2.16)

At the same time, since we are in the linear regime, and since larger dipoles interact much

stronger than smaller ones, we can approximate

SxzSzy − Sxy ' −Txz − Tzy + Txy ' −2Txz, (2.17)

i.e. only the real terms matter. Moreover, the first line in the square bracket in the double

integration in eq. (2.14) leads to a single collinear logarithm when the integration over u

is done in the regime (2.15) [36]. Putting everything together and letting for convenience
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|x− z| → z, we arrive at

∂T (Y, r)

∂Y
= ᾱs

∫ 1/Q2
s

r2

dz2 r
2

z4

[
1− ᾱs

(
1

2
ln2 z

2

r2
+

11

12
ln
z2

r2

)]
T (Y, z) (2.18)

valid in the collinear regime in eq. (2.15). Now it becomes apparent that when the daughter

dipoles are sufficiently large, the NLO corrections get comparable to (or larger than) the

LO contribution. Thus, the perturbative expansion in ᾱs has no predictive accuracy and

this is one of the major shortcomings of eq. (2.14). For example, let us assume a GBW

type initial condition with the dilute tail T (Y = 0, r) = r2Q2
s, and perform just a single

iteration in eq. (2.18). The integration becomes logarithmic and gives

∆T (Y, r) = ᾱsY r
2Q2

s ln
1

r2Q2
s

(
1− ᾱs

6
ln2 1

r2Q2
s

− 11

12

ᾱs
2

ln
1

r2Q2
s

)
. (2.19)

Thus, when r2Q2
s gets small, not only ∆T becomes large, but it is also negative and thus

the solution will develop an instability, as indeed seen in numerical studies [14]. In this

work we shall deal only with the double logarithms, which are obviously the dominant

ones. Still, eventually one needs to take care of the single logarithms as well. The latter

are related to DGLAP physics, as can be inferred from the value 11/12 of the coefficient;

a procedure for their resummation has been proposed in [36].

3 Time ordering and collinear resummation in the dipole evolution

with Y

In this section, we shall analyse the physical origin of the time-ordering of successive

emissions and its consequences for the high-energy evolution of the right-moving projectile

(the dipole) with increasing Y . We shall first discuss the double-logarithmic approximation

(DLA) where the implementation of the time-ordering (TO) condition is unambiguous and

naturally leads to an evolution equation formulated as a boundary value problem non-

local in Y . Alternatively, this equation can be equivalently rewritten (modulo an analytic

continuation) as an initial-value problem local in Y , where both the kernel and the initial

condition at Y = 0 resum to all orders radiative corrections enhanced by double anti-

collinear logarithms. Last but not least, the DLA evolution in Y with TO will be shown to

be equivalent with the standard (unconstrained) DLA evolution with decreasing Bjorken

x, or increasing the rapidity η ≡ ln(1/xBj) of the left-moving target: the two evolutions are

simply related to each other via a change of variables from Y to η.

Then we will study the possibility to extend the evolution in Y with TO to the full BK

dynamics, including the LO BFKL kernel and the non-linear effects responsible for gluon

saturation in the target and the unitarization of the scattering amplitude. We will present

and amend previous proposals in that sense, which build upon either the non-local [34], or

the local [35], version of the DLA equation. Such extensions are unavoidably ambiguous,

but one may hope that the scheme dependence remains small — say, an effect of O(α2
s)

on the value of the saturation exponent. As explained in the Introduction, the physical

information can only be read from the evolution with η, so it will be appropriate to compare
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the respective saturation exponents after changing the rapidity variable from Y to η. This

comparison however turns out to be deceptive: the various resummation schemes that we

shall consider are found to lead to widely different predictions for the saturation exponent

in the evolution with η.

3.1 Time ordering in the double logarithmic approximation

Before we discuss the physical origin of time ordering, let us briefly explain the emergence

of the double logarithmic approximation (DLA) in the context of the LO BK equation

for dipole-hadron scattering. DLA is formally the leading order pQCD approximation

to the BFKL equation (the linearized version of the BK equation (2.2)) in the regime

where both the phase-space for the high-energy evolution, as measured by the rapidity

difference Y , and the phase-space for transverse momentum (or virtuality) evolution, as

measured by the “collinear” logarithm ρ ≡ ln(Q2/Q2
0) are large, in the sense that Y � 1,

ρ � 1 and ᾱsY ρ � 1. Its “naive” formulation which neglects time-ordering resums to all

orders the radiative corrections of order (ᾱsY ρ)n. These corrections are associated with

“soft” and “anti-collinear” gluon emissions, i.e. emissions such that both the longitudinal

momentum and the transverse momentum of the emitted gluon are strongly decreasing

from one emission to the next one:

q+ � k+
1 � k+

2 � · · · � q+
0 , Q2 � k2

1⊥ � k2
2⊥ � · · · � Q2

0 , (3.1)

with obvious notation. In the transverse coordinate representation in which the BK equa-

tion is most naturally written, this corresponds to daughter dipoles which are much larger

than the parent one, at each successive dipole splitting. Normally, such anticollinear split-

tings are disfavored by the rapid decay of the dipole kernel for large daughter dipoles (recall

that r = |x− y|)

(x− y)2

(x− z)2(z − y)2
' r2

(z − x)4
when |z − x| ' |z − y| � r , (3.2)

but in the context of the BFKL evolution this decrease is compensated by the fact that

the dipole scattering amplitude Txy(Y ) ≡ 1−Sxy(Y ) is rapidly increasing with the dipole

size, due to “color transparency” for small dipoles: Txy ∝ r2γ , where γ = 1 at tree-level

(e.g. in the MV model) and it remains equal to one when the evolution is computed at

DLA (see below). Starting with the LO BFKL equation (2.5), the “naive” (in the sense

of no time-ordering) version of DLA is obtained by, first, factorizing out the dominant r2

behavior of the dipole amplitude, via the rewriting

Txy(Y ) ≡ r2Q2
0A(Y, r2) , (3.3)

and then performing approximations which exploit the fact that the daughter dipoles are

much larger than the parent one. That is, the dipole kernel is simplified as in eq. (3.2)

and for the dipole amplitudes one can keep just the two “real” terms, which describe the

scattering of the daughter dipoles and which give equal contributions to DLA: Txz(Y ) '
Tzy(Y ) = z̄2Q2

0A(Y, z̄2), where z̄ ≡ |z − y| ' |z − x| � r. Notice that, for the time
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being, we ignore the dependence of the reduced amplitude A(Y, r2) upon the dipole impact

parameter b ≡ (x + y)/2, to simplify notations. (This dependence will be restored when

going beyond DLA, later on.) We thus find a simple equation,

A(Y, r2) = A(0)(r2) + ᾱs

∫ Y

0
dY1

∫ 1/Q2
0

r2

dz̄2

z̄2
A(Y1, z

2) , (3.4)

that we have directly written in integral form. The inhomogeneous term in the r.h.s. is

the tree-level amplitude and plays the role of an initial condition for the evolution with

increasing Y : A(0)(r2) = A(Y = 0, r2). This integral equation can be solved (at least,

formally) via iterations: A =
∑∞

n=0A(n), with A(n) of order ᾱns . For instance, for the

simple initial condition A(0, r2) = 1, one finds

A(Y, ρ) =
∑

n≥0

(ᾱsY ρ)n

(n!)2
= I0(2

√
ᾱsY ρ) , (3.5)

where ρ ≡ ln 1/(r2Q2
0) and I0 is a modified Bessel function.

Implicit in the above argument is the fact that all the gluons produced up to a given

step in the evolution can act as sources for new emissions in the subsequent steps. This

in turn requires that successive emissions be strictly ordered in time, i.e. any fluctuation

should have a lifetime smaller than its predecessors. In general, the lifetime of a right

moving fluctuation is given by τk ∼ 1/k− = 2k+/k2
⊥. Accordingly, the time-ordering (TO)

condition amounts to

2q+

Q2
� 2k+

1

k2
1⊥
� 2k+

2

k2
2⊥
� · · · � 2q+

0

Q2
0

, (3.6)

where the leftmost inequality is the condition that the lifetime of the first gluon fluctuation

be much smaller than the coherence time τq = 2q+/Q2 of the incoming dipole. Similarly,

the rightmost inequality shows that, in order to significantly scatter, a fluctuation must

live (much) longer than the width τ0 ' 1/q− = 2q+
0 /Q

2
0 of the left-moving target. When

computing the Feynman graphs for soft gluon emissions, this time-ordering is effectively

enforced by the energy denominators (see e.g. the discussion in [34, 35]). But clearly, this

condition is violated by the solution to the DLA equation (3.4), which involves unrestricted

integrations over the phase-space (3.1). To enforce TO to the accuracy of interest, it suffices

to modify the integration limits in eq. (3.4) according to eq. (3.6), that is,

A(q+, Q2) = A(0)(Q2) + ᾱs

∫ Q2

Q2
0

dk2
⊥

k2
⊥

∫ q+(k2
⊥/Q

2)

q+
0 (k2
⊥/Q

2
0)

dk+

k+
A(k+, k2

⊥), (3.7)

where we temporarily use the momentum variables k+ and k2
⊥ ≡ 1/z̄2 (instead of Y1 and

z̄2), together with obvious notations like Q2 = 1/r2 and A(q+, Q2) ≡ A(Y, r2), to better

emphasize the relation to the TO conditions (3.6).

Yet, at DLA, it is more economical to use logarithmic variables for both the longitudinal

and the transverse phase-space: recalling the notations ρ = ln(Q2/Q2
0) and Y = ln(q+/q+

0 )
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and similarly defining ρ1 ≡ ln(k2
⊥/Q

2
0) and Y1 ≡ ln(k+/q+

0 ), we can rewrite eq. (3.7) as:5

A(Y, ρ) = A(0)(ρ) + ᾱs

∫ ρ

0
dρ1

∫ Y−ρ+ρ1

ρ1

dY1A(Y1, ρ1), (3.8)

where a step function Θ(Y −ρ), standing for the TO condition between the two end points

in eq. (3.6), is implicitly assumed. It is very important to notice that, in the context of this

equation, the tree-level (reduced) amplitude A(0)(ρ) plays the role of a boundary condition

at Y = ρ,

A(0)(ρ) = A(Y = ρ, ρ), (3.9)

which means that we are actually dealing with a boundary value problem. (Notice that,

within the integrand, the function A(Y1, ρ1) is also needed only for Y1 > ρ1, so this bound-

ary value problem is indeed well defined.) Moreover, eq. (3.8) is non-local in the projectile

rapidity Y , because of the transverse dependence in the limits of the Y1 integration. This

becomes perhaps clearer after taking a derivative w.r.t. Y to deduce a differential version

of this equation:

∂A(Y, ρ)

∂Y
= ᾱsΘ(Y − ρ)

∫ ρ

0
dρ1A(Y − ρ+ ρ1, ρ1). (3.10)

Despite being formulated as a boundary value problem, the DLA evolution with TO is

still simple enough to be solved (at least for sufficiently simple expressions for the function

A(0)(ρ)) by iterating the integral equation (3.7) (or (3.8)). But this is actually not needed:

by inspection of the above equations, it is easy to see that the boundary value problem

with TO can be equivalently rewritten as an initial value problem without TO — i.e. as

the “naive” DLA equation — via the following change of the rapidity variable and the

corresponding redefinition of the amplitude:

Y → η ≡ Y − ρ , Ā(η, ρ) ≡ A(Y = η + ρ, ρ). (3.11)

The new function Ā(η, ρ) obeys the simple equation (for η ≥ 0 of course)

Ā(η, ρ) = A(0)(ρ) + ᾱs

∫ ρ

0
dρ1

∫ η

0
dη1Ā(η1, ρ1), (3.12)

which is similar to the “naive” DLA equation (3.4), except for the replacement of Y by η.

In particular, it describes an initial-value problem, with the initial condition Ā(η = 0, ρ) =

A(0)(ρ).

The fact that the DLA evolution becomes local when reformulated in terms of η is easy

to understand: ordering in η is tantamount to ordering in the lifetime of the fluctuations;

e.g. the integration variable η1 in eq. (3.12) is recognized as

η1 = Y1 − ρ1 = ln
k+

1

q+
0

− ln
k2

1⊥
Q2

0

= ln
τk
τ0
, (3.13)

5On this occasion, we would like to correct a mistake in one of earlier works [35]: in that paper, the

lifetime of a fluctuation was ordered w.r.t. to its parent dipole, but not also w.r.t. the target size; that is,

the lower limit on k+ in the analog of eq. (3.7) — which is eq. (16) from ref. [35] — was incorrectly written

as q+
0 ; similarly, the lower limit in the integral over Y1 in eq. (3.8) was taken to be zero (see eq. (17) in

ref. [35]) instead of the correct value ρ1. .

– 15 –



J
H
E
P
0
4
(
2
0
1
9
)
0
8
1

and similarly η = ln(τq/τ0). Hence by integrating η1 over the interval 0 < η1 < η, one

ensures the proper ordering τ0 � τk � τq for the respective time scales. In other terms, by

ordering the quantum fluctuations of the right-moving projectile in η and k2
⊥ (rather than

Y and k2
⊥), the respective phase-space is properly counted, including all the kinematical

constraints that matter to DLA.

Alternatively, since τk = 1/k−, the ordering in η is also equivalent to an ordering in

the variable k−, which is increasing from the projectile towards the target. This variable

is the light-cone energy of the fluctuations of the right-moving projectile, but can also be

viewed as the longitudinal momentum for the fluctuations of the left-moving target. Thus,

one can also interpret eq. (3.12) as the standard DLA evolution of the target, as formulated

in the variables k− and k2
⊥: k− is strongly decreasing, while k2

⊥ is strongly increasing, from

one emission to the next one. This collinear evolution needs no special constraint since

time-ordering in the corresponding LC time, i.e. x−, is automatically satisfied: the lifetime

∼ 2k−/k2
⊥ of the fluctuations is strongly decreasing along the evolution.

As well known, the target rapidity is also the right variable to study DIS, since directly

related to the kinematical variable xBj ≡ Q2/s (Bjorken x) used in the experiments. One

has indeed

η = Y − ρ = ln
q+

q+
0

− ln
Q2

Q2
0

= ln
2q+q−0
Q2

= ln
s

Q2
= ln

1

xBj

. (3.14)

In particular, the condition η ≥ 0 (i.e. Y ≥ ρ) corresponds to the kinematical boundary

xBj ≤ 1. So, by solving an evolution equation in η, one can directly use the results to

make predictions for observables like the DIS structure functions. On the contrary, when

working in the Y variable, one needs to re-express the final results in terms of η ≡ Y −ρ in

order to make contact with the phenomenology and, more generally, to have a meaningful

physical interpretation.

This discussion makes clear that, at the level of DLA, there is no real advantage in

working in the Y -representation: the evolution equation looks simpler in η and this is

also the variable in terms of which we need the final results. But here we are interested

in a dynamics which is much more complicated than DLA, namely the BK evolution at

next-to-leading order (NLO) accuracy and even beyond. At leading-order (LO), one can

still use the LO BK equation and merely interpret the associated rapidity variable as the

target rapidity η, despite the fact that this equation has been constructed by studying the

evolution of the dipole projectile.6 But the NLO corrections are only known for the dipole

evolution with Y and they include the problematic double-(anti)collinear logarithm which

leads to instabilities, as we have seen. As already recognized in the literature [34, 35], this

double collinear logarithm, together with similar corrections which occur in higher orders

6As an additional argument in this sense, one may recall the fact that the LO BK equation also fol-

lows from the JIMWLK evolution of the gluon distribution of the target. But this argument is not fully

compelling in cases where the difference ρ = Y − η is large, as in the problem at hand. Indeed, when

constructing the JIMWLK equation for a left-moving target, the quantum fluctuations have not been or-

dered in the light-cone momentum k− — as one would naturally do in the context of the linear, BFKL,

equation — but rather in the light-cone energy k+ = 2k−/k2
⊥. (This was more convenient for the treatment

of multiple scattering off the strong background field representing saturated gluons.) So, in that sense, also

the JMWLK equation has been obtained by working in Y , and not in η.
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— namely, corrections to the BK kernel that are of relative order (ᾱsρ
2)n with n ≥ 1 — are

related to the time-ordering of the successive gluon emissions and they can be resummed

to all orders by simply enforcing TO in the LO BK equation. In what follows we shall

present a couple of strategies in that sense, which also allow to match with the remaining

NLO corrections.

But before that, it is useful to use DLA in order to convince ourselves that the double

collinear logs which appear at NLO are indeed related to time-ordering. As we shall

shortly see, this relation is quite subtle, due to a fundamental difference in the way that

these corrections are encoded in the NLO BK equation and in our above treatment of the

DLA evolution, respectively: in the first case, they appear as corrections to the kernel,

cf. section 2.2; in the second, the DLA kernel remains unchanged, but the TO condition

modifies the phase-space for the evolution.

Specifically, we shall compare the perturbative estimates for the dipole amplitude to

O(ᾱ2
s) as produced, on one hand, by the DLA evolution with TO and, on the other hand,

by the NLO BK evolution in eq. (2.18) (in which we shall keep only the double collinear

logarithm, for consistency with DLA). We use the simplest expression for the tree-level

amplitude, namely A(0)(ρ) = 1. For the DLA evolution, the NLO result can be obtained

either via two iterations of the integral equation (3.8), or by first solving the corresponding

problem in η, which is simpler and has the advantage of also giving the all-order result,

and then replacing η = Y − ρ. Using the second method together with eq. (3.5), one finds

(for Y > ρ)

A(Y, ρ) = I0(2
√
ᾱs(Y − ρ)ρ) = 1 + ᾱs(Y − ρ)ρ+

(ᾱs(Y − ρ)ρ)2

4
+O(ᾱ3

s) . (3.15)

It is convenient to first look at the terms linear in Y , that should naively correspond to

one step in the NLO BK evolution (evaluated at DLA of course):

∆A(Y, ρ) = ᾱsY ρ

(
1− ᾱsρ

2

2

)
. (3.16)

After multiplication by r2Q2
0, this should be compared to eq. (2.19), in which one can

replace Qs → Q0 for that purpose. Clearly, there is a mismatch between the coefficients

in front of the double collinear logarithm in these two expressions: this is equal to −1/2

in (3.16) but to −1/6 in (2.19). This mismatch might suggest that our present DLA

calculation, which looks indeed very simple, is unable to correctly capture the double-

collinear log at NLO. But this is actually not true: the correct result for A(Y, ρ) to O(ᾱ2
s)

is the one appearing in eq. (3.15). This does not imply the existence of an error in the NLO

calculation of the BK kernel: the latter is correctly given by eq. (2.18) to the accuracy of

interest. What went wrong though, is the fact that, in obtaining eq. (2.19), the NLO BK

equation in eq. (2.18) has been solved as an initial value problem with the initial condition

formulated at Y = 0, i.e. A(Y = 0, ρ) = 1. However, from our present discussion in this

section, we know that, as a consequence of time-ordering, the evolution in Y starts being

effective only for Y > ρ and hence it must be formulated as a boundary value problem

at Y = ρ. That is, a step function Θ(Y − ρ) with ρ = ln(1/r2Q2
s) must be implicitly
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understood in the r.h.s. of eq. (2.18). If one solves this boundary value problem with the

boundary condition A(Y = ρ, ρ) = 1, then eq. (2.19) gets replaced by (we factor out an

overall factor r2Q2
s to comply with the present conventions)

∆A(Y, ρ)
∣∣∣
1-step

= ᾱs

∫ Y

ρ
dY1

∫ ρ

0
dρ1

(
1− ᾱsρ

2
1

2

)
= ᾱs(Y − ρ)ρ

(
1− ᾱsρ

2

6

)
. (3.17)

This is still not the same as eq. (3.16), but it does not have to: (3.16) is just a piece of the

complete result to O(ᾱ2
s) as appearing in eq. (3.15). To obtain the corresponding result for

the “NLO” BK equation, i.e. eq. (2.18) interpreted as a boundary value problem, one must

also perform the second iteration, which contributes to O(ᾱ2
s) as well. To the accuracy of

interest, this can be computed with the LO kernel and must involve only the O(ᾱs) piece

of the result given by the first iteration, that is A(1)(Y, ρ) = ᾱs(Y − ρ)ρ. (Incidentally, this

piece has been properly reproduced by the first iteration in eq. (3.17), as expected.) One

thus finds:

∆A(Y,ρ)
∣∣∣
2-step

= ᾱ2
s

∫ Y

ρ
dY1

∫ ρ

0
dρ1 (Y1−ρ1)ρ1 = ᾱ2

s(Y −ρ)ρ

(
ρ(Y +ρ)

4
− ρ

2

3

)
. (3.18)

It is now easy to check that the sum of the results (3.17) and (3.18) produced after 2

iterations coincides, as it should, with the NLO prediction of the DLA evolution with TO,

cf. eq. (3.15).

This example illustrates the fact that only a part of the radiative corrections associated

with time-ordering — namely, that part corresponding to the relative TO of the successive

gluon emissions — can be encoded into a renormalization of the kernel of the evolution

equation, which is computable in perturbation theory.7 But the corrections associated

with the global time constraints — the absolute upper limit τq = 2q+/Q2 introduced by

the coherence time of the incoming dipole and the absolute lower limit τ0 = 2q+
0 /Q

2
0

representing the width of the target — can only be taken into account by reformulating

the evolution as a boundary-value problem, instead of an initial-value one. In particular,

eq. (3.15) also contains terms which are independent of Y and start already at LO —

notice the O(ᾱs)-correction (−ᾱsρ2) — and which could not be generated by an initial

value problem formulated at Y = 0. Such terms are manifestly introduced by the global

time constraints alluded to above.

This being said, it is intuitively clear that for sufficiently high energies, such that ᾱs(Y−
ρ) � 1, the effects of the global time constraints should be comparatively less important

and that the asymptotic behavior at large Y (and ρ still large enough, ᾱsρ
2 & 1, for the

collinear resummation to be important) is rather controlled by the properly-resummed

kernel alone — or, equivalently (at least at DLA) by the rapidity shift Y → Y − ρ+ ρ1 in

the argument of the dipole amplitude in the r.h.s. of eq. (3.10).

7When computing the second iteration of the integral equation (3.8), it is easy to distinguish the effects

of the global time constraints from those of the relative time ordering between the 2 gluon emissions. One

can then check that the NLO effect of the latter is indeed equal to the double-collinear logarithm occurring

in the NLO BK kernel, as exhibited in eq. (2.18); see e.g. eq. (13) in [35] and the related discussion.
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3.2 BK equation with time-ordering

In this section, we shall construct a generalization of the non-local equation (3.10) which

correctly accounts for the leading-order BK dynamics and at the same time resums all-

orders radiative corrections enhanced by double collinear logarithms. As at DLA, this gen-

eralized (“collinearly-improved”) BK equation will be obtained by enforcing time-ordering

for the successive gluon emissions. A similar construction has been originally presented

in [34], which however missed the importance of formulating the ensuing non-local equation

in Y as a boundary-value problem.

The main difference w.r.t. the previous discussion of the DLA evolution is the fact

that the successive soft gluon emissions are not ordered in transverse momenta (or sizes)

anymore: the daughter dipoles can be either larger, or smaller, than the parent one —

although the typical evolution for the “dilute-dense” physical problem at hand is still a

“hard-to-soft” (or “anticollinear”) evolution with increasing dipole sizes. But of course the

emissions are still strongly ordered in longitudinal momenta and they will be required to

be strongly ordered in lifetimes as well. As usual, we shall use x, y and z to denote the

transverse coordinates of the parent quark, antiquark, and emitted gluon respectively. For

a collinear splitting in which one of the two daughter dipoles is much smaller than the

other one, it is the size of this smallest dipole which should be related to the transverse

momentum of the emitted gluon, via the uncertainty principle:

k2
⊥ '

1

r2
<

with r< = min(|z − x|, |z − y|) . (3.19)

Indeed, if e.g. |z − x| � |z − y| ' |x− y|, then the gluon has most likely been emitted by

the quark at x. With this identification, the strong ordering conditions for the first gluon

emission read

q+ � k+ � q+
0 ,

2q+

Q2
� 2k+

k2
⊥
� 2q+

0

Q2
0

. (3.20)

As in the case of DLA, these constraints are most naturally implemented at the level of

the integral version of the BK equation (recall eqs. (3.7) and (3.8)). Consider first the lower

limits in the two inequalities in eq. (3.20), i.e. k+ � q+
0 and k+ � q+

0 (k2
⊥/Q

2
0); using our

usual logarithmic variables, that is, ρ1 ≡ ln(k2
⊥/Q

2
0) and Y1 ≡ ln(k+/q+

0 ), we can rewrite

these conditions as

Y1 > 0 & Y1 > ρ1 ⇐⇒ Y1 > Θ(ρ1)ρ1 . (3.21)

Consider similarly the upper limits, which involve the momenta q+ and Q2 of the parent

dipole; they amount to

Y > Y1 & Y − ρ+ ρ1 > Y1 ⇐⇒ Y −Θ(ρ− ρ1)(ρ− ρ1) > Y1 . (3.22)
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These considerations immediately suggest the following integral form for the BK equation

with TO:

Sxy(Y ) = S
(0)
xy +

ᾱs
2π

∫
d2z (x− y)2

(x− z)2(z − y)2

Y−Θ(ρ−ρ1)(ρ−ρ1)∫

Θ(ρ1)ρ1

dY1

[
Sxz(Y1)Szy(Y1)− Sxy(Y1)

]
,

(3.23)

where S
(0)
xy denotes the respective estimate at tree-level (say, as given by the MV model)

and we recall that ρ1 stands for ρ1 = ln(1/r2
<Q

2
0).

For the integral term in the r.h.s. of the above equation to be non-zero, the upper limit

of the rapidity integral must be larger than the lower limit, Y −Θ(ρ−ρ1)(ρ−ρ1) > Θ(ρ1)ρ1,

which in turn implies three different conditions depending upon the value of ρ1:

(i) if ρ1 > ρ, meaning r< � r (one small daughter dipole) =⇒ Y > ρ1;

(ii) if ρ > ρ1 > 0, meaning r � r< � 1/Q0 (large daughter dipoles) =⇒ Y > ρ;

(iii) if ρ1 < 0, meaning r< � 1/Q0 (very large daughter dipole) =⇒ Y − ρ > |ρ1|.

In all these three cases, Y must be larger than ρ, similarly to our previous finding at

DLA. As in that case, eq. (3.23) represents a boundary-value problem, with the boundary

condition formulated at Y = ρ: Sxy(Y = ρ) = S
(0)
xy . For given values Y and ρ satisfying

Y > ρ, the additional conditions above introduce limitations on the minimal value (con-

dition (i)) and respectively the maximal value (condition (iii)) of the size r< of the

smallest daughter dipole.

Taking a derivative in eq. (3.23) w.r.t. Y and taking into account the constraints

aforementioned, we arrive at a differential equation non-local in rapidity:

∂Sxy(Y )

∂Y
=
ᾱs
2π

Θ(Y −ρ)

∫
d2z (x−y)2

(x−z)2(z−y)2
Θ(Y −Θ(ρ1−ρ)ρ1)Θ(Y −Θ(−ρ1)(ρ+|ρ1|))

×
[
Sxz(Y −∆xyz)Szy(Y −∆xyz)−Sxy(Y −∆xyz)

]
, (3.24)

where the rapidity shift ∆xyz is defined as

∆xyz ≡Θ(ρ−ρ1)(ρ−ρ1) = Θ(r<−r) ln
r2
<

r2
= max

{
0, ln

min{(x−z)2,(z−y)2}
(x−y)2

}
. (3.25)

The various rewritings in the r.h.s. of eq. (3.25) are intended to emphasize that this shift

is non-zero if and only if the daughter dipoles are (much) larger than the parent one.

Eq. (3.24) can be further simplified to the accuracy of interest by neglecting the rapid-

ity shift in the “virtual” term, that is, by replacing Sxy(Y −∆xyz)→ Sxy(Y ). Indeed, we

know that this virtual term does not contribute to DLA, hence the Taylor-series expansion

of the shift ∆xyz in its rapidity argument cannot generate radiative corrections enhanced

by double-collinear logs. (This can be checked via techniques that we will later develop

in the η-representation; see also the discussion in [34].) This discussion points towards an

ambiguity inherent in our present construction of the collinearly-improved BK equation:
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the resummation of higher order corrections that is performed by this equation is ambigu-

ous beyond the double-logarithmic accuracy. This ambiguity can in principle be fixed,

order by order in perturbation theory, by comparing the strict perturbative expansion of

eq. (3.24) — as obtained via a Taylor expansion of the rapidity shift — to the perturbative

calculation of the BK kernel to the order of interest [34]. Later on, we shall explicitly

perform such a matching to NLO, i.e. to O(ᾱ2
s), but only in the η-representation, which is

more useful in practice.

A similar ambiguity applies to the value ∆xyz of the rapidity shift: in the previous

arguments, this was merely constrained via the uncertainty principle, so its value is not

unique: any function which, for large daughter dipoles, is approximately equal to ln(r2
</r

2)

and which rapidly vanishes for r< � r, would be acceptable in that sense. Changing

one such a function for another should result in a correction of O(ᾱ2
s) (without double-

logarithmic enhancement), or higher. We shall shortly consider a different choice for the

shift, with the purpose of numerically studying the scheme dependence of this non-local

BK equation.

Returning to eq. (3.24), it is useful to notice that the product of the first two step

functions can be more compactly written as

Θ(Y − ρ)Θ (Y −Θ(ρ1 − ρ)ρ1) = Θ(Y − ρmin), (3.26)

where ρmin is the largest among ρ and ρ1, meaning that it is built with the smallest among

the three dipoles involved in the splitting:

ρmin ≡ ln
1

r2
minQ

2
0

with rmin = min{|x−y|, |x−z|, |y−z|}. (3.27)

Also, the third step function, which is effective only when ρ1 < 0, can be safely ignored in

the problem at hand: negative values for ρ1 correspond to very large daughter dipoles, with

size r< � 1/Q0. Such dipoles are at saturation already at tree-level, so they will be deeply

at saturation after allowing for the evolution with Y . Accordingly, their contribution to the

evolution is strongly suppressed and can be neglected. We are finally led to the following,

non-local, version of the BK equation:

∂Sxy(Y )

∂Y
=
ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2
Θ(Y −ρmin)

[
Sxz(Y −∆xyz)Szy(Y −∆xyz)−Sxy(Y )

]
,

(3.28)

Eq. (3.28) looks similar to the one derived in [34], but it differs from the latter in the

argument of the step-function, which in [34] was written as Θ(Y −∆xyz). This amounts

to treating the analog of eq. (3.28) as an initial-value problem, with the initial condition

formulated at Y = 0, rather than as a boundary-value problem. This difference should be

important for the evolution at the early stages, but not for its asymptotic properties at

ᾱs(Y − ρ)� 1.

A boundary-value problem like that exhibited in eq. (3.28), where the definition of the

boundary is dynamical, i.e. it depends upon other variables (here, dipole sizes) that are

modified by the evolution, represents a formidable mathematical problem which is very
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difficult to solve in practice. However, so long as we are interested only in asymptotic

properties of the solution at large Y , such that ᾱs(Y − ρ)� 1, one can replace eq. (3.28)

by the initial-value formulation proposed in [34]. In what follows we shall perform such

a numerical study — namely, we shall compute the asymptotic value of the saturation

exponent — with two prescriptions for the rapidity shift: the one shown in eq. (3.25) and

the one obtained by replacing the “real” term in eq. (3.28) as follows

Sxz(Y −∆xyz)Szy(Y −∆xyz) −→ Sxz(Y −∆xz;r)Szy(Y −∆zy;r), (3.29)

where

∆xz;r ≡ max

{
0, ln

(x−z)2

r2

}
. (3.30)

For each of these 2 prescriptions, we have numerically solved eq. (3.28) as an initial-value

problem with the initial condition given by the GBW model: Sxy(Y = 0) = e−r
2Q2

0/4. The

solutions are stable, as expected, and the asymptotic speed λs of the saturation fronts is

considerably reduced as compared to the LO BK solution in Y , due to the reduction of the

evolution phase-space introduced by the rapidity shift. However, as already mentioned,

the physical interpretation and also the applications to the phenomenology involve the

saturation fronts in η, that is, the function

S̄xy(η) ≡ Sxy(Y = η + ρ). (3.31)

Hence, after solving the non-local BK equation in Y , we have replotted the results in terms

of η = Y −ρ and extracted the corresponding saturation exponent, to be denoted as λ̄s. In

figure 1 we display the asymptotic results for the saturation exponents divided by ᾱs for

the saturation fronts in Y (left figure) and respectively in η (right figure) as functions of ᾱs.

In practice, these values have been extracted by fitting the numerical results for lnQs(Y )

with the function shown in eq. (2.10) within the range 5 < ᾱsY < 25 (and similarly for

the evolution in η). We also show for comparison the corresponding prediction of the LO

BK equation in η: in the right figure, this corresponds to the flat dotted line λ̄0/ᾱs ' 4.88,

whereas in the left figure it shows a rather strong dependence upon ᾱs, as introduced by

the change of variables from η to Y . The additional curve in these figures, denoted as

“collBK”, will be discussed in the next section.

At this point, we open a parenthesis to present an analytic argument relating the

(asymptotic) values of λ̄s and λs of the saturation exponent in the two representations.

To that aim, we recall from section 2.2 that the saturation fronts exhibit geometric scaling

within a wide range of ρ around the saturation scale ρs ' λsY ; for ρ & ρs, the dipole

amplitude can be approximated as

T (Y, ρ) ≈ exp
[
− γs(ρ− λsY )

]
. (3.32)

Via the variables change Y = η+ ρ, we find that an analogous scaling form holds in terms

of η and ρ:

T̄ (η, ρ) ≡ T (Y = η + ρ, ρ) ≈ exp
[
− γs(ρ− λs(Y + η))

]
= exp

[
− γ̄s(ρ− λ̄η)

]
, (3.33)
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Figure 1. Left: the asymptotic speed of the front (divided by ᾱs) in the Y -evolution as a function

of ᾱs and for three different evolution schemes: cf. eq. (3.28) (blue solid curve), eqs. (3.29)–(3.30)

(red short-dashed curve) and eq. (3.43) (green long-dashed curve denoted as “CollBK in Y ”). The

black dotted line represents the result of the LO BK evolution in η re-expressed in terms in Y .

Right: the asymptotic speed of the same fronts when re-expressed in terms of η. These results are

consistent with eq. (3.34). The LO result (black dotted line) is λ̄0/ᾱs ' 4.88.

with the following values for the asymptotic speed and slope of the front in η:

λ̄s =
λs

1− λs
and γ̄s = γs(1− λs). (3.34)

Since λs is proportional to ᾱs, we see that for extremely small ᾱs there is only a tiny

difference between the two representations, consistent with the fact that a change in the

rapidity variable (or equivalently in the energy scale) is a NLO effect. However, for the

typical values of ᾱs relevant for phenomenology, the relations in eq. (3.34) lead to substan-

tial differences between the two sets of values: they predict that the front in η is faster

(λ̄s > λs) and less steep (γ̄s < γs) than the front in Y .

We have checked that the relations (3.34) are indeed well satisfied by our findings in

figure 1 (we shall later present numerical estimates for the slope γ̄s).

We now close the parenthesis and return to a comparison between the numerical results

obtained with the two prescriptions for ∆, as displayed in figure 1. Looking first at the

left figure, which refers to fronts in Y , it looks like the respective curves are relatively

close to each other and also to the LO result in η (replotted in terms of Y , of course); in

particular, all these three curves lie well below the LO result in Y , that is, λ0/ᾱs ' 4.88, and

the deviation from the latter is monotonically increasing with ᾱs. However, after changing

variable from Y to η, the differences between the various curves are amplified by the division

with 1− λs, cf. eq. (3.34) — a relatively small number which decreases with ᾱs. (Notice

that λs is increasing with ᾱs for all the curves in figure 1 (left), even though this increase is

slower than linear.) As a consequence, the results for λ̄s predicted by the two prescriptions

for ∆ look very different from each other. The one in eq. (3.30) predicts an evolution which

is considerably slower than at LO, with the difference (λ̄0−λ̄s)/ᾱs increasing monotonically
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with ᾱs. On the contrary, the original prescription in eq. (3.25) yields a value for λ̄s which

stays closer to the LO result and, especially, is not monotonous with ᾱs: it first slightly

decreases and then increases and shoots over λ̄0 for ᾱs & 0.35. This is unphysical and we

shall explain in section 5 why it happens. Moreover, the difference between the respective

predictions is considerably larger than the expected scheme dependence ∼ O(ᾱ2
s): e.g., for

ᾱs = 0.3, figure 1 (right) shows a difference δλ̄s ' 1.7ᾱs ' 5.6ᾱ2
s, where the coefficient 5.6

is unnaturally large.

As we shall discover in the next section, the situation becomes even less satisfactory

after also considering the local version of the collinear resummation in Y .

3.3 BK equation with collinearly-improved kernel

In this section, we shall describe an alternative formulation of the collinear resummation,

originally proposed in [35], which is closer in spirit to the usual philosophy of the per-

turbation theory and also to the corresponding treatment of the NLO BFKL equation.

This method leads to an equation which is local in Y and formulated as an initial-value

problem, but where both the kernel and the initial condition at Y = 0 include all-order re-

summations of the double-collinear logarithms. However, this method meets with a serious

difficulty concerning the formulation of the initial condition beyond the double-logarithmic

approximation, that was overlooked in the original analysis in [35] and which hinders its

applications in practice.

To explain the general idea, let us first observe that the explicit solution to the DLA

equation with TO that we have obtained in eq. (3.15) (for the special boundary condition

A(Y = ρ, ρ) = 1) admits an analytic continuation in the non-physical regime at 0 ≤ Y < ρ,

as given by its series expansion:

A(Y,ρ)≡
∑

n≥0

[ᾱs(Y −ρ)ρ]n

(n!)2
= Θ(ρ−Y )J0(2

√
ᾱs(ρ−Y )ρ) + Θ(Y −ρ)I0(2

√
ᾱs(Y −ρ)ρ) ,

(3.35)

where J0(x) is the ordinary Bessel function of the first kind and is the analytic continuation

of the modified Bessel function to purely imaginary values of its argument: J0(x) = I0(ix),

with real x. The r.h.s. of eq. (3.35) represents the physical amplitude only for Y ≥ ρ, but

we use the same notation A(Y, ρ) also for its analytic continuation to Y < ρ, to avoid a

proliferation of symbols.

Recall that the physical amplitude obeys the non-local evolution equation (3.10) that

for the present purposes will be rewritten in integral form:

A(Y, ρ) = A(0)(ρ) + ᾱs

∫ Y

ρ
dY1

∫ ρ

0
dρ1A(Y1 − ρ+ ρ1, ρ1). (3.36)

By continuity, it is easy to understand that its analytic continuation (3.35) will obey the

following integral equation (notice the change in the lower limit of the integral over Y1),

A(Y, ρ) = A(Y = 0, ρ) + ᾱs

∫ Y

0
dY1

∫ ρ

0
dρ1A(Y1 − ρ+ ρ1, ρ1), (3.37)
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which is an initial-value problem with an initial condition that follows from eq. (3.35):

A(Y = 0, ρ) = J0(2
√
ᾱsρ2). Clearly, a similar equation must hold for any choice for the

physical tree-level amplitude A(0)(ρ) (the corresponding initial condition will be shortly

displayed). Moreover, as demonstrated in [35], the above equation can be equivalently

rewritten in a form which is local in Y :

A(Y, ρ) = A(Y = 0, ρ) + ᾱs

∫ Y

0
dY1

∫ ρ

0
dρ1KDLA(ρ− ρ1)A(Y1, ρ1). (3.38)

The kernel in the above equation is given by

KDLA(ρ) ≡ J1

(
2
√
ᾱsρ2

)
√
ᾱsρ2

= 1− ᾱsρ
2

2
+
ᾱ2
sρ

4

12
− · · · , (3.39)

with J1 the respective Bessel function of the first kind. In particular, the first non-trivial

contribution to KDLA(ρ), of O(ᾱs), plays the role of a NLO correction to the overall kernel.

So, it is reassuring to notice that this correction agrees indeed with the double-logarithmic

piece of the full NLO correction to the BK kernel, cf. eq. (2.18).

Given a generic (physical) tree-level amplitude A(0)(ρ), the (unphysical) initial con-

dition A(Y = 0, ρ) can be explicitly constructed due to our ability to exactly solve the

evolution equation at DLA. This construction involves the following four steps: (i) start

with the usual DLA equation in the η variable, that is, eq. (3.12), and write down the

general solution in terms of a Green’s function; (ii) deduce the corresponding solution in

the Y -representation (which involves TO) via the change of variables η = Y −ρ; (iii) use

the series expansion of the latter to construct its analytic continuation to Y < ρ, and (iv)

take the limit Y = 0 of the last result above. Clearly, steps (ii)–(iv) can be short-cut

by simply letting η → −ρ in the analytic continuation of the general solution obtained in

the first step. Specifically, the general solution to eq. (3.12), can be written as

Ā(η, ρ) =

∫ ρ

0
dρ1 f̄(η, ρ− ρ1)A(0)(ρ1), (3.40)

where the Green’s function f̄(η, ρ) is the solution to eq. (3.12) with the initial condition

A(0)(ρ) = δ(ρ). This Green’s function can be easily constructed via iterations or via a

Mellin transform [35], and reads

f̄(η, ρ) = δ(ρ) +

√
ᾱsη

ρ
I1

(
2
√
ᾱsηρ

)
, (3.41)

where I1 is the respective modified Bessel function. The function f̄ is a priori defined for

η > 0 but can be extended to negative η by using the series expansion of I1. After also

taking the limit η → −ρ, one eventually finds for A(Y = 0, ρ) = Ā(η = −ρ, ρ) the following

expression:8

A(Y = 0, ρ) = A(0)(ρ)−
∫ ρ

0
dρ1

√
ᾱsρ

ρ− ρ1
J1(2

√
ᾱsρ(ρ− ρ1))A(0)(ρ1) . (3.42)

8We would like to stress that this is not the same as the limit Y = 0 of eq. (29) appearing in our earlier

work [35]: that equation — and hence its implication in eq. (31) — were incorrect for the reason already

discussed in footnote 5.
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One can check that when A(0)(ρ) = 1, the r.h.s. of the above equation reduces indeed

to J0(2
√
ᾱsρ2). It is interesting to observe how the resummation of the double-collinear

logarithms is reorganized at the level of the local evolution equation. Both the kernel

KDLA(ρ) and the initial condition A(Y = 0, ρ) rapidly oscillate for large values of ρ, thus

removing the potentially dangerous contributions due to very large daughter dipoles, which

would violate the TO constraint.

So long as we remain at the level of the DLA, the above manipulations may look

redundant and not very useful: in order to deduce the local form of the DLA equation in

eq. (3.38), we used the fact that its solution is a priori known. But what is interesting

about eq. (3.38), is that it can be promoted to full BK accuracy and thus provide an

initial-value formulation which is local in Y for the BK evolution with time-ordering. More

precisely, as shown in [35], this extension is possible and also rather unambiguous for the

kernel of the equation, but not also for its initial condition.

When written as a differential equation, this collinearly-improved version of the BK

equation (collBK) reads

∂Sxy(Y )

∂Y
=
ᾱs
2π

∫
d2z (x− y)2

(x− z)2(z − y)2
KDLA(ρxyz) [Sxz(Y )Szy(Y )− Sxy(Y )] . (3.43)

The only non-obvious difference w.r.t. its DLA counterpart in eq. (3.38) refers to the

argument of the kernel KDLA, which now reads

ρ2
xyz = ln

(x− z)2

(x− y)2
ln

(y − z)2

(x− y)2
. (3.44)

This choice is motivated by the matching onto the NLO BK equation: the first non-trivial

term in the expansion (3.39) of KDLA(ρxyz), that is, −ᾱsρ2
xyz/2, precisely coincides with the

NLO piece involving a double-collinear logarithm in the NLO BK equation (2.14). Hence,

eq. (3.43) achieves an all-order resummation of the double-collinear logs while precisely

including the respective piece from the NLO BK kernel (and nothing more than that). This

makes it easy to extend eq. (3.43) to full NLO accuracy by simply adding the remaining

ᾱ2
s pieces in the NLO kernel in eq. (2.14). As at DLA, the solution ∂Sxy(Y ) to eq. (3.43)

represents the physical S-matrix only for Y ≥ ρ, with ρ = ln(1/r2Q2
0) and r = |x− y|.

In order to solve eq. (3.43), one also needs its initial condition at Y = 0 and this turns

out to be difficult to construct beyond DLA. Indeed, the function Sxy(Y = 0) must be

chosen in such a way that its evolution from Y = 0 up to Y = ρ according to eq. (3.43)

reproduces the desired physical S-matrix at tree-level: Sxy(Y = ρ) = S
(0)
xy . Hence, in

order to obtain Sxy(Y = 0), one must solve a boundary-value problem with the boundary

condition at the upper limit Y = ρ. As already mentioned, we do not know how to solve

this problem in general. Instead of that, one can try and use the DLA version of the initial

condition, say as obtained by exponentiating T0(ρ) ≡ e−ρA(Y = 0, ρ) with the function

A(Y = 0, ρ) given by eq. (3.42). Such an approximation would entail some loss of accuracy

in the calculation of the amplitude itself, but it should not affect the calculation of its

asymptotic properties at large Y , like the asymptotic value of the saturation exponent,

which is sensitive only to the kernel.
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Motivated by this, we have solved eq. (3.43) with two different initial conditions,

namely the standard GBW model Sxy(Y = 0) = exp(−r2Q2
0/4) and the collinearly-

improved version of this model, with the collinear resummation performed at the level

of DLA: Sxy(Y = 0) = exp[−T0(r)] with T0(r) = r2Q2
0J0(2

√
ᾱsρ2)/4. The corresponding

results for the dipole amplitude are of course very different — in particular, the solution

corresponding to the resummed initial condition shows oscillations in the unphysical do-

main at large ρ > Y , which however become less and less important with increasing Y —,

but the corresponding predictions for the asymptotic value of λs agree very well with each

other, as expected. These predictions are shown too in figure 1, as the curve “collBK”.

As before, the most interesting plot is the one on the right, which refers to the saturation

fronts in η. One sees that, except for very small ᾱs . 0.15, the predictions of collBK

strongly deviate from those of the non-local equation in Y that we discussed in the previ-

ous section. Furthermore, for values ᾱs & 0.2, which are moderately small, the extracted

λ̄s is unphysical since it overshoots the LO result λ0.

The strong dispersion in the “collinearly improved” results that is manifest in figure 1

(right) strongly suggests a failure of the resummation program for the radiative corrections

associated with TO: the resummed evolution is indeed stable, but it lacks predictive power.

In our opinion, this is related to the fact that the double collinear logarithms are typically

very large, ᾱsρ
2 � 1, so the higher-order contributions generated by the interference be-

tween these very large corrections and the formally subleading ones, of order ᾱsρ or ᾱs,

are numerically important as well. This problem cannot be cured by extending the resum-

mation program to full NLO accuracy (i.e. by adding the missing NLO corrections from

eq. (2.14)). Indeed, two prescriptions for “collinear improvement” which are equivalent to

NLO accuracy would differently treat the large higher-order corrections and most likely

result in different physical predictions. In the next section, we shall demonstrate that the

η-representation — i.e., the projectile evolution with increasing target rapidity — offers a

better framework for collinear resummations.

4 Dipole evolution in η at NLO

Given the difficulties with constructing a meaningful perturbative formulation for the dipole

evolution with Y and the fact that most of the complications can be attributed to the per-

turbative treatment of the time-ordering condition, it looks natural to try and reformulate

the problem as an evolution in which the successive emissions are directly ordered accord-

ing to their lifetimes. The relevant evolution rapidity is then η = ln(τk/τ0) and is formally

the same as the rapidity of the target.

We should emphasize from the beginning that we will not attempt to follow the evo-

lution of the target. That would be a very difficult problem to study, since our target is a

nucleus and in general its wavefunction is saturated for modes softer than the saturation

scale. We will just use “mixed” variables to describe the evolution of the projectile: the

transverse coordinates will still correspond to the transverse momentum of a gluon emis-

sion, while for the longitudinal variable, we shall use the lifetime τk = 2k+/k2
⊥ of the gluon

fluctuation instead of k+. Also, we shall not propose to compute the Feynman graphs
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directly in terms of τk (or η) instead of k+ (or Y ): k+ is still the best variable for that pur-

pose, since it is not modified by the multiple scattering off the nuclear target. Rather, we

shall use the change of variables η ≡ Y −ρ to transform the results of (strict) perturbation

theory from the Y -representation to the η-representation.

Strictly speaking, such a change of variables is a non-perturbative operation — it mixes

terms of all orders in the weak coupling expansion, as we have seen in the previous section

—, but its effects can be formally expanded in powers of αs in order to construct the NLO

BK kernel in η from the corresponding kernel in Y . This construction will be performed

in the first part of this section.

In the second part, we shall study the NLO BK evolution in η and notably its linearized

(BFKL) version w.r.t. stability issues. Since the evolution in η is properly time-ordered by

construction, one may not expect any such an issue — that is, one may expect the strict

weak coupling expansion to be well behaved. Somewhat surprisingly though, we shall

discover that this is not the case: the NLO corrections in η include a double transverse

logarithm of a different kind: a genuinely collinear double-log, associated with emissions

where one of the daughter dipoles is much smaller than the parent one. Such “soft-to-

hard” emissions are atypical in the physical problem at hand: they do not exist at the

level of DLA, but in the general case they are allowed by the non-locality of the BFKL

(dipole) kernel. They are responsible for the phenomenon known as “BFKL diffusion”

— a random walk in ρ occurring on top of the typical “hard-to-soft” evolution. Albeit

less troublesome than the anti-collinear double logs which appear in the Y -representation,

these collinear double logs eventually entail a failure of the weak coupling expansion, that

we shall analyse via both analytical and numerical studies in this section. This in turn

calls for resummations to be discussed in section 5.

4.1 Building the NLO BK equation in η

Our starting point is the NLO BK evolution in Y , that is eq. (2.14), which we succinctly

recall here by highlighting only those terms which are relevant to our presents purposes:

∂Sxy(Y )

∂Y
=
ᾱs
2π

∫
d2z (x− y)2

(x− z)2(z − y)2
[Sxz(Y )Szy(Y )− Sxy(Y )]

− ᾱ2
s

4π

∫
d2z (x− y)2

(x− z)2(z − y)2
ln

(x− z)2

(x− y)2
ln

(y − z)2

(x− y)2
[Sxz(Y )Szy(Y )− Sxy(Y )]

+ ᾱ2
s × “regular”. (4.1)

In writing the r.h.s. we have separated the LO term from the NLO ones and we have

explicitly displayed only the NLO piece containing the double anti-collinear logarithm. All

the other NLO terms (including the running coupling corrections and the single transverse

logarithms expressing DGLAP physics) have been collectively denoted as “regular”. We

now change variables according to eq. (3.11), that is, η = Y − ρ with ρ = ln(1/r2Q2
0), and
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rewrite the various S-matrices in the η-representation, as

Sxy(Y ) = Sxy(η + ρ) ≡ S̄xy(η) (4.2)

Sxz(Y ) = Sxz(η + ρ) = Sxz

(
η + ρxz + ln

(x− z)2

(x− y)2

)
= S̄xz

(
η + ln

(x− z)2

(x− y)2

)
, (4.3)

with the obvious notation ρxz ≡ ln[1/(x − z)2Q2
0]; clearly, a similar rewriting holds for

Szy. Upon substitution of the above into eq. (4.1) we would get an equation non-local in

η. Nevertheless, when working strictly at NLO in ᾱs, one can treat the rapidity shift in

the argument of S̄xz as a quantity of order O(1), which is typically much smaller than

the rapidity η itself (recall that we are eventually interested in large values of η such that

ᾱsη & 1) and hence can be expanded out in a Taylor series. Recognizing the fact that

each rapidity-derivative of the S-matrix like ∂S̄xz/∂η is formally suppressed by a power

of ᾱs — since one derivative expresses the effect of one step in the η evolution (per unit

η) —, it becomes clear that to the desired order of accuracy, it is enough to keep the first

non-trivial term in this expansion, which is linear in the shift:

S̄xz

(
η+ln

(x−z)2

(x−y)2

)
' S̄xz(η)+ln

(x−z)2

(x−y)2

∂S̄xz(η)

∂η

' S̄xz(η)+
ᾱs
2π

∫
d2u(x−z)2

(x−u)2(u−z)2
ln

(x−z)2

(x−y)2

[
S̄xu(η)S̄uz(η)−S̄xz(η)

]
,

(4.4)

where in evaluating the derivative term it was sufficient to use the LO BK equation in η.

Thus a shift in the rapidity argument, which originates from the change of the rapidity

variable for the daughter dipoles, is equivalent to adding a term of order O(ᾱs). Within the

strict perturbative logic that we are temporarily pursuing, the rapidity shift is therefore

important only in the LO piece in the r.h.s. of eq. (4.1), in which case it can be expanded

out as in eq. (4.4). In all the NLO terms, the rapidity shift can be safely neglected, so one

can replace e.g. Sxz(Y ) → S̄xz(η). Using also the property that the LO term is invariant

under x− z → z − y in order to combine some terms, we arrive at

∂S̄xy(η)

∂η
=
ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2

[
S̄xz(η)S̄zy(η)−S̄xy(η)

]

− ᾱ
2
s

4π

∫
d2z (x−y)2

(x−z)2(z−y)2
ln

(x−z)2

(x−y)2
ln

(y−z)2

(x−y)2

[
S̄xz(η)S̄zy(η)−S̄xy(η)

]

+
ᾱ2
s

2π2

∫
d2zd2u(x−y)2

(x−u)2(u−z)2(z−y)2
ln

(u−y)2

(x−y)2
S̄xu(η)

[
S̄uz(η)S̄zy(η)−S̄uy(η)

]

+ ᾱ2
s×“regular”. (4.5)

The third term in the r.h.s. has been generated by expanding out the rapidity shift within

the LO term, according to eq. (4.4). (In writing this term we relabelled the integration

variables according to u↔ z, in order to conform with the notation used in earlier sections.)

Remarkably, the S-matrix structure of this last term is identical to the one appearing in

the double-integration term in eq. (2.14).
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Eq. (4.5) is the NLO BK equation for the evolution in η. It is a local equation in

rapidity and differs (functionally) from the corresponding evolution in Y given in eq. (4.1)

only by an extra term, the one appearing in the third line in eq. (4.5).

From the discussion in the previous section, we expect the main effect of the change of

rapidity variable from Y to η to be the elimination of the double anti-collinear logarithms

from the perturbative expansion. It is instructive to explicitly check this property at NLO,

on the basis of eq. (4.5). To that aim, we need to compare to the terms of O(ᾱ2
s) that are

explicitly shown in the r.h.s. of eq. (4.5), in the weak scattering regime where these terms

can be linearized. The transverse integrations in these terms look very different from each

other, but after linearization they can both be diagonalized via a Mellin transform. Hence,

it is convenient to compare the contributions brought by these two terms to the BFKL

characteristic function ω(γ) (the Mellin transform of the BFKL kernel).

Consider therefore the term introduced by the change of variables and which involves

a double integration over transverse coordinates. After linearization, this term (to be

denoted as ∆T̄xy) becomes

∆T̄xy =
ᾱ2
s

2π2

∫
d2z d2u (x− y)2

(x− u)2(u− z)2(z − y)2
ln

(u− y)2

(x− y)2

(
T̄uz + T̄zy − T̄uy

)
, (4.6)

where the rapidity argument η is implicit. To compute the respective contribution, denoted

as ∆ω(γ), to the characteristic function, one must insert a power-like Ansatz for the dipole

amplitude within the r.h.s. of eq. (4.6): T̄uz = |u− z|2γ with 0 ≤ <(γ) ≤ 1. One finds

∆ω(γ) =
1

r2γ

ᾱ2
s

π

∫
d2u r2

u2|r − u|2 ln
(r − u)2

r2

1

2π

∫
d2z u2

z2|u− z|2
(
z2γ + |u− z|2γ − u2γ

)

︸ ︷︷ ︸
χ0(γ)u2γ

= 2ᾱ2
sχ0(γ)

d

dγ

{
1

2π

∫
d2u r2

u2|r − u|2
[

(r − u)2

r2

]γ}
= ᾱ2

sχ0(γ)χ′0(γ), (4.7)

with χ0(γ) the LO characteristic function. This result is indeed consistent with the ex-

pected form for the change in ω(γ) due to a change in the energy (rapidity) scale in the

BFKL evolution [23, 24]. It is important to study the behavior near the collinear pole at

γ = 0 and, respectively, the anti-collinear one at γ = 1:

χ0(γ)χ′0(γ) =





− 1

γ3
+ 2ζ3 +O(γ2) when γ → 0,

− 1

(1− γ)3
+ 2ζ3 +O

[
(1− γ)2

]
when γ → 1.

(4.8)

As expected, the triple pole at γ = 1 which is introduced by the change of variable is

such that it precisely cancels the respective pole associated with the double anti-collinear

logarithm, i.e. the second term in the r.h.s. of eq. (4.5). Accordingly, the NLO BFKL

kernel for the evolution in η has no triple pole at γ = 1, but it exhibits a triple pole at

γ = 0 (cf. also below eq. (4.15)). We also notice that the change of variables introduces no

additional poles (neither double, or single) at γ = 0 or γ = 1.
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It is also instructive to see the cancellation of the double anti-collinear log directly in

coordinate space. This is indeed possible in the linear approximation, since one of the two

integrations in eq. (4.6) for ∆T̄xy can be explicitly performed. In appendix A.1, we find

∆T̄xy =
ᾱ2
s

4π

∫
d2z (x−y)2

(x−z)2(z−y)2
ln

(x−z)2

(x−y)2
ln

(z−y)2

(x−y)2

(
T̄xz+T̄zy

)

− ᾱ
2
s

4π

∫
d2z (x−y)2

(x−z)2(z−y)2

[
ln

(x−y)2

(x−z)2
ln

(z−y)2

(x−z)2
T̄xz+ln

(x−y)2

(z−y)2
ln

(x−z)2

(z−y)2
T̄zy

]
.

(4.9)

The first term in the above r.h.s. exactly cancels the “real” piece (which contains the double

anti-collinear logarithm) in the linearized version of the second term in the r.h.s. of eq. (4.5).

The second term in eq. (4.9) vanishes for large daughter dipoles, but its kernel develops

a large double logarithm when either z → x or z → y, i.e. when one of the daughter

dipoles is much smaller than their parent (equivalently, for very disparate in size daughter

dipoles). This collinear double logarithm corresponds in Mellin space to the triple pole at

γ = 0 exhibited in eq. (4.8).

To summarize, the NLO BFKL equation for the evolution with the target rapidity η

can be written in the coordinate representation as

∂T̄xy(η)

∂η
=
ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2

[
T̄xz(η)+T̄zy(η)−T̄xy(η)

]

− ᾱ2
s

4π

∫
d2z (x−y)2

(x−z)2(z−y)2

[
ln

(x−y)2

(x−z)2 ln
(z−y)2

(x−z)2 T̄xz(η)+ln
(x−y)2

(z−y)2 ln
(x−z)2

(z−y)2 T̄zy(η)

]

+
ᾱ2
s

4π

∫
d2z (x−y)2

(x−z)2(z−y)2 ln
(x−z)2

(x−y)2 ln
(z−y)2

(x−y)2 T̄xy(η)

+ ᾱ2
s×“regular”. (4.10)

The NLO corrections explicitly shown in the r.h.s. include two “real” terms, proportional

to the dipole amplitudes T̄xz and respectively T̄zy for the daughter dipoles, and one “vir-

tual” term, which involves the amplitude T̄xy of the parent dipole. In the “real” terms,

the amplitudes are multiplied by double transverse logarithms which become large in the

collinear regime, i.e. when one of the daughter dipoles is much smaller than the other one

(and than its parent). Interestingly though, this is only the case for the double logarithm

multiplying the scattering amplitude of the smallest dipole. For instance, when |x−z| → 0,

the double-logarithmic factor in front of T̄xz becomes large, ∼ ln2[r2/(x− z)2], while that

in front of T̄zy approaches to zero. This is likely related to the fact that there is a large

phase-space for transverse evolution between the parent dipole and the small daughter

dipole alone.

The “virtual” term involves a double anti-collinear logarithm, which by itself becomes

large for large daughter dipoles. Yet, the corresponding integral over z brings no specially

large contribution, because it is not amplified by the dipole amplitude (in contrast to what

was happening for the “real” terms in the first line of eq. (4.9)). Indeed, this integral yields

a pure number,

ᾱ2
s

4π

∫
d2z (x− y)2

(x− z)2(z − y)2
ln

(x− z)2

(x− y)2
ln

(z − y)2

(x− y)2
T̄xy = ᾱ2

sζ3T̄xy, (4.11)
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which confirms that this virtual term is a “regular” NLO piece, on the same footing as

the other NLO corrections that have been omitted in writing eq. (4.10). Accordingly, in

what follows, we shall mainly focus on the “real” NLO corrections in eq. (4.10) and the

associated double collinear logarithms.

4.2 An instability in the evolution in η at NLO

The fact that the NLO corrections to the BFKL kernel for the evolution in η include a

piece enhanced by a double collinear logarithm may look at a first sight disturbing: the

corresponding piece for the evolution in Y represents a source of instabilities associated

with violations of time-ordering, but such instabilities should not exist in the evolution with

η, where the proper time-ordered is a priori guaranteed. But a bit of thinking reveals that

the consequences of the double transverse logarithms are indeed very different in the two

cases. In the evolution with Y , the anti-collinear logarithms become large in the typical,

hard-to-soft, evolution of the dipole amplitude: their contribution is enhanced by the fact

that large daughter dipoles scatter stronger than their parent. On the contrary, in the

evolution with η, the effects of the collinear logarithms are suppressed by the scattering,

which strongly disfavors the soft-to-hard evolution, i.e. the emission of very small dipoles.

Let us present a simple calculation supporting the above arguments. Consider the

emission of a very small daughter dipole with transverse size much smaller than r and keep

only the dominant contributions to eq. (4.10) in the limit where either z → x, or z → y;

one finds
∂T̄ (η, r2)

∂η
' ᾱs

∫ r2

0

dz2

z2

(
1− ᾱs

2
ln2 r

2

z2

)
T̄ (η, z2) , (4.12)

where z denotes the size of the smaller daughter dipole (either |z−x|, or |z−y|) and T̄ (η, z2)

is the corresponding scattering amplitude. We shall estimate the integral in the r.h.s. with

the power-like Ansatz T̄ (z2) ∝ z2γ , with 0 < γ ≤ 1 to account for color transparency and

also for a possible BFKL “anomalous dimension”. A simple calculation yields

∆T̄ (η, r2)

T̄ (η, r2)
' ᾱsη

(
1

γ
− ᾱs
γ3

)
, (4.13)

a result that could have been anticipated on the basis of eqs. (4.6)–(4.8). Unlike for the

corresponding analysis in Y , cf. eqs. (2.18)–(2.19), in the present case the presence of

double transverse logarithms in the NLO kernel does not entail similar double-logarithmic

corrections in the evolution ∆T̄ of the dipole amplitude. Rather, the NLO piece in the

r.h.s. of eq. (4.13) is a pure-O(ᾱs) correction.

From the above discussion, one may conclude that the double collinear logarithms

visible in the r.h.s. of eq. (4.10) should be innocuous in practice. However, this conclusion

is too strong and must be nuanced, as we shall explain in the remaining part of this section:

these collinear logs are troublesome too, in the sense of triggering an instability which calls

for all-order resummations.

With reference to eq. (4.13), the emergence of such an instability can be understood

as follows: although the evolution in η does not give rise to large double logarithms in the

solution, it will generate an anomalous dimension γ < 1 after some steps, typically when
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η & 1/ᾱs. We shall later find that this effect is substantial: the value of γ which is relevant

for the saturation fronts in η is in fact not far from 1/2. Hence, the NLO piece in the r.h.s.

of eq. (4.13) is a correction of relative order ᾱs/γ
2 ∼ 4ᾱs, which is of O(1) for the relevant

values of ᾱs. Since moreover this correction is negative, it is clear that it will have a large

impact on the solution and it has indeed the potential to trigger an instability.

In what follows, we shall first study the emergence of this instability (via analytic

methods) at the level of the linear (BFKL) equation, where its consequences turn out to

be dramatic: they prevent the construction of meaningful numerical solutions. Later on,

we shall argue that this instability is somewhat tamed, albeit not fully washed out, by

the non-linear effects encoded in the BK equation. Our proof in that sense will not be

rigorous, since we shall not attempt to solve the full NLO BK equation in η. Rather,

we shall numerically solve a simplified version of this equation, in which the NLO double

collinear logarithm is simply added to the LO kernel (see below for details).

To start with, we shall construct an explicit solution to the NLO BFKL equation in

η using the standard technique of the Mellin transform. For the present purposes, it is

enough to consider a truncation of this equation which includes only the NLO terms that

are explicitly written in the r.h.s. of eq. (4.10). The characteristic function associated with

this truncated equation, as obtained by acting on an amplitude which is a pure power and

using eqs. (4.11) and (A.8), reads

ω̄(γ) = ᾱsχ0(γ) +
ᾱ2
s

4

[
4ζ3 + 2χ0(γ)χ′0(γ)− χ′′0(γ)

]
, (4.14)

and is displayed (together with its derivative) in figure 2, for three interesting values of ᾱs
(see the discussion below). It admits the following expansions near the two poles:

ω̄(γ) =





ᾱs
γ
− ᾱ2

s

γ3
+ ᾱ2

sζ3 +O(γ2) when γ → 0,

ᾱs
1− γ − ᾱ

2
sζ3 +O

[
(1− γ)2

]
when γ → 1.

(4.15)

Assuming as usual that T̄xy depends only on r, the general solution to eq. (4.10) reads

T̄ (η, ρ) =

∫ c+i∞

c−i∞

dγ

2πi
T̄0(γ) exp [ω̄(γ)η − γρ] , (4.16)

with 0 < c < 1 and where we recall ρ = ln(1/r2Q2
0). In eq. (4.16), T̄0(γ) is the Mellin

transform of the initial condition at η = 0, that is

T̄0(γ) ≡ T̄ (η = 0, γ) =

∫ ∞

−∞
dρ exp(γρ) T̄ (η = 0, ρ), (4.17)

but its precise form is not important for what follows. Since we are interested in the

solution for r2Q2
0 � 1 and hence ρ > 1, one must close the integration contour on the

right hemisphere. In particular this means that only the single pole at γ = 1 is enclosed

by the contour and there will be no large logarithms in the solution due to the cubic pole

at γ = 0. This is of course in agreement with our previous study of eq. (4.12), but the

present analysis will allow us to be more precise.
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Figure 2. Left: the NLO characteristic function ω̄(γ) computed according to eq. (4.14) for various

values of the coupling ᾱs. Right: its first derivative ω̄′(γ).

To that aim, we shall assume that η and/or ρ are large enough for the saddle point

method to be a good approximation. First let us denote by E(γ) the exponent in eq. (4.16),

that is

E(γ) ≡ ω̄(γ)η − γρ =

(
ᾱs
γ

+
ᾱs

1− γ −
ᾱ2
s

γ3
+ regular

)
η − γρ, (4.18)

where we displayed again the pole structure of ω̄(γ), as it will be useful for the subsequent

discussion. A saddle point represents an extremum of this function, that is, a solution to

the following equation

E ′(γ) ≡ ω̄′(γ)η − ρ = 0. (4.19)

For any such a solution γ∗, the saddle point approximation to the amplitude is obtained

by expanding the exponent E(γ) to quadratic order around γ∗ and performing the ensuing

Gaussian integral over γ. (Within the initial condition T̄0(γ), one can simply replace

γ → γ∗.)

This method provides a sensible (stable and physically acceptable) approximation to

the asymptotic amplitude at large η and generic values of ρ provided the saddle point lies

on the real axis, 0 < γ∗ < 1. To study the existence of such a saddle point, it is useful to

consider the shape of the derivative ω̄′(γ) of the characteristic function, that is

ω̄′(γ) = − ᾱs
γ2

+
ᾱs

(1− γ)2
+

3ᾱ2
s

γ4
+ regular. (4.20)

As visible from the plot in figure 2 (right), this function has a unique minimum in the

interval 0 < γ < 1, to be denoted as γc, which depends upon ᾱs. So long as the value

ω̄′(γc) of the function at its minimum is negative, the saddle point condition (4.19) admits

two real solutions for any ρ > 0. It is the rightmost one which is physically acceptable since

it continuously reduces to the LO saddle point when ᾱs → 0. As also visible in figure 2

(right), this situation occurs so long as ᾱs is small enough — smaller than a critical value

ᾱcr
s for which ω̄′(γc) = 0. Hence, ᾱcr

s and the associated value γcr = γc(ᾱ
cr
s ) of γc are

simultaneously determined by the conditions

ω̄′(γ) = 0 & ω̄′′(γ) = 0 =⇒ ᾱcr
s ' 0.032. (4.21)
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This critical value ᾱcr
s turns out to be extremely small,9 so for all the physically relevant

values of ᾱs we are in the opposite situation, where the function ω̄′(γ) is positive at its

minimum, ω̄′(γc) > 0. In that case, the saddle point condition (4.19) admits real solutions

only when ρ is larger than the minimum value of the function ω̄′(γ)η. This requires

ρ > ρ̂(η), where

ρ̂(η) ≡ ω̄′(γc)η with ω̄′′(γc) = 0 & ᾱs > ᾱcr
s . (4.22)

(More precisely, this is just the leading term in the asymptotic expansion of ρ̂(η) for large η;

subleading corrections will be computed later.) Specifically, so long as ρ > ρ̂(η), there are

two real saddle points and the physically acceptable one is the largest one. But for ρ < ρ̂(η),

eq. (4.19) has only complex-valued solutions and the corresponding approximation to the

amplitude will develop an oscillating behavior, both as a function of η and as a function of ρ.

To gain more insight in this behavior, let us display here some numerical values cor-

responding to ᾱs = 0.2, which is not far from the typical value for the physical problem

at hand: solving ω̄′′(γc) = 0 for ᾱs = 0.2, we find γc ' 0.576 and ω̄′(γc) ' 1.57 ' 7.85ᾱs,

which leads to an extremely fast growth of the scale ρ̂(η). Indeed, such an intercept is

significantly larger than the intercept λ0 ' 4.88ᾱs controlling the LO growth of the satu-

ration momentum. This argument also suggests that this instability cannot be cured by

saturation (although it is alleviated by it, as we shall see): for large enough η, the region

of instability extends in the region of linear evolution at ρ > λsη.

Although the saddle point approximation gives a meaningful (positive and monotonous)

result for T̄ (η, ρ) for large enough values of ρ, the fact that this result shows oscillations (and

in particular it takes negative values) at ρ < ρ̂(η) means that this solution is not physically

acceptable. In other terms, the NLO BFKL evolution in η turns out to be unstable for

the physically interesting values of the (fixed) coupling ᾱs. Even though we have used the

saddle point approximation, this conclusion remains true for the exact solution, as we have

checked via the numerical calculation of the Mellin transform in eq. (4.16).

First, we show in figure 3 the logarithm of the modulus of T̄ (η, ρ) as a function of η

for fixed ρ = 5 and ᾱs = 0.2, as obtained via two calculations: the numerical evaluation

of eq. (4.16) (left figure) and the saddle point approximation (right figure).10 The saddle

point analysis relevant for large η and fixed ρ is given in full detail in appendix B. The

two sets of results are qualitatively similar: they both show spikes corresponding to the

zeros of T̄ (η, ρ), where the amplitude changes from positive values (represented in blue)

to negative ones (represented in red). The precise positions of these spikes as well as the

absolute values of the amplitude are somewhat different in the calculations.

Second, when ρ is in the vicinity of ρ̂(η) (which means that ρ is not fixed any more as

it grows with η), it is useful to expand the characteristic function ω̄(γ) around its inflexion

9This value will of course change after including the remaining NLO corrections, i.e. the “regular” terms

of O(ᾱ2
s) in eq. (4.10). However, it is very unlikely that it will change a lot, since these regular terms

(modulo the DGLAP corrections) do not vary much in the interval [0, 1] and thus their first and second

derivatives, which control the value of ᾱcr
s , cannot give a substantial contribution.

10As mentioned also in appendix B, just for the convenience of the numerics, we take into account only

the pole structure of the characteristic function in eq. (4.18) and for a proper comparison we use the same

simplification for the saddle point solution. The same applies to the solutions shown later on in figure 4.
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Figure 3. The amplitude (divided by α2
s) as a function of the target rapidity η and for fixed ρ > 0,

as determined from eqs. (4.16) and (4.18). Left: exact numerical solution. Right: saddle-point

solution corresponding to eq. (B.10).

point at γc: by truncating this series, one obtains an approximation to the exponent E(γ).

The general expansion will be discussed in appendix C. Here, we shall restrict ourselves to

the third order in this expansion (the second order term vanishes by definition), i.e.

ω̄(γ) = ω̄(γc) + (γ − γc)ω̄
′(γc) +

1

6
(γ − γc)

3ω̄′′′(γc) + · · · . (4.23)

In this approximation, the exponent in eq. (4.16) becomes

E(γ) ' ω̄(γc)η − γcρ− (γ − γc)[ρ− ω̄′(γc)η] +
1

6
(γ − γc)

3ω̄′′′(γc)η. (4.24)

At this point, it is convenient to define the diffusion constant

Dc ≡
[

2

ω̄′′′(γc)

]1/3

, (4.25)

and to change the integration variable from γ to t, according to

γ − γc ≡
Dct

η1/3
. (4.26)

Then the amplitude in eq. (4.16) becomes

T̄ (η, ρ) =
T̄0(γc)Dc

η1/3
exp [ω̄(γc)η − γcρ]

∫
dt

2πi
exp

[
−
{
Dc[ρ− ω̄′(γc)η]

η1/3

}
t+

t3

3

]
. (4.27)

The above integration can be performed exactly since it is recognized as a representation

of the Airy function, namely

T̄ (η, ρ) =
T̄0(γc)Dc

η1/3
exp [ω̄(γc)η − γcρ] Ai

(
Dc[ρ− ω̄′(γc)η]

η1/3

)
. (4.28)

This expression for the amplitude allows us to deduce a better estimate for ρ̂(η) as compared

to the one in eq. (4.22): this is conveniently defined as the largest value of ρ at which the

amplitude vanishes. By inspection of eq. (4.28), it is clear that to the present accuracy
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Figure 4. Left: the growth of ρ̂(η). The index in the parenthesis refers to the number of included

preasympotic terms when expanding in inverse powers of η1/3, cf. eq. (C.9). Right: the amplitude

(divided by α2
s) as a function of ρ, in the vicinity of ρ̂(η) and for fixed target rapidity η. Numeri-

cally (denoted by exact) determined from eqs. (4.16) and (4.18) while the approximate analytical

expression is given in eq. (C.10).

ρ̂(η) is determined by the rightmost zero of the Airy function, that is a1 = −2.338 . . . ;

this yields

ρ̂(η) = ω̄′(γc)η +
a1

Dc
η1/3. (4.29)

For ρ sufficiently close to ρ̂(η), eq. (4.28) can be further simplified: defining the deviation

ξ ≡ ρ− ρ̂(η), then for ξ � η1/3 one can expand the Airy function as follows

Ai

(
Dc[ρ− ω̄′(γc)η]

η1/3

)
= Ai

(
a1 +

Dcξ

η1/3

)
' Ai′(a1)Dcξ

η1/3
, (4.30)

so that we are finally led to

T̄ (η, ρ) =
T̄0(γc)D

2
cAi′(a1)ξ

η2/3
exp [ω̄(γc)η − γcρ̂(η)− γcξ] . (4.31)

At this point, it is interesting to notice that the appearance of the Airy function in solutions

to the BFKL dynamics is quite unusual in the context of a fixed coupling — in general, it

rather appears when the coupling is running. Moreover, the η-dependence of the saturation

momentum in BK evolution with running coupling is identical to the one of ρ̂(η) if in the

latter we let η → √η.

The results in eqs. (4.29) and (4.31) provide a rather good approximation for the

asymptotic value of the scale ρ̂(η), but they are still not accurate enough to be compared

to the numerical results for the amplitude. For the purpose of such a comparison, in

appendix C we calculate two successive preasymptotic corrections to eqs. (4.29) and (4.31),

with the results exhibited in figure 4: the curves denoted as ρ̂(0)(η), ρ̂(1)(η) and ρ̂(2)(η) in

figure 4 (left) refer respectively to the asymptotic expression in (4.29) and the two successive

improvements of it as obtained by adding only one or both of the subasymptotic corrections

shown in eq. (C.9). Similarly, in figure 4 (right) we compare the exact results for T̄ (η, ρ)

(as a function of ρ for η = 15 and ᾱs = 0.2) with our analytic approximation shown in

eq. (C.10). On both figures, we observe an excellent agreement between the exact results

and our best analytic estimates.
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Figure 5. Left: the front for small values η as obtained by the numerical solution to eq. (4.32).

As in the case of BFKL evolution, the solution seems to be physically meaningful in this rapidity

regime. Right: the front for larger values of η as obtained from the same equation. Again, as in

the BFKL case, an instability is formed and renders the solution unphysical.

We conclude this section with a model-dependent numerical study of the instability in

the non-linear evolution in η at NLO. This is “model-dependent” because we shall not use

the full NLO BK equation (4.5), but only a drastic approximation to it in which, on top of

the LO BK terms, we shall keep only a particular NLO correction to the BK kernel which is

enhanced by a double-collinear logarithm. Specifically, we shall use the following equation

∂S̄xy(η)

∂η
=
ᾱs
2π

∫
d2z (x− y)2

(x− z)2(z − y)2

[
1− ᾱs

2
ln2 (x− z)2

(z − y)2

] [
S̄xz(η)S̄zy(η)− S̄xy(η)

]
,

(4.32)

which in fact represents the expansion to NLO of an equation to be motivated later on, in

section 7.2 (see eq. (7.21)). The linearized version of this equation properly includes the

double-collinear logarithms in the relevant limit, that is, when one of the daughter dipoles is

much smaller than the other one. This may not be obvious when comparing with eq. (4.10):

in the latter, the double-collinear logs are important only when they multiply the scattering

amplitude of the smallest dipole; for instance, when |x− z| � |y − z| ' r, then there is a

large double-collinear log only for the “real” term proportional to T̄xz in the second line of

eq. (4.10). On the contrary, in eq. (4.32), the NLO term from the square brackets a priori

multiplies all the S-matrices from the integrand. Yet, after linearization and in the collinear

limit where, say, |x−z| → 0, the contribution to scattering due to the large daughter dipole

cancels against the virtual term, T̄zy − T̄xy → 0, so we are only left with a contribution

from the small daughter dipole, multiplied by the same double-collinear log as in eq. (4.10).

This confirms that eq. (4.32) is indeed correct in the collinear limit and in the weak

scattering regime. In section 7.2 we shall argue that this equation is not right anymore

in the approach towards saturation, so it is not a reliable approximation to the actual

non-linear dynamics in η at NLO. Yet, by lack of a better equation which is tractable, we

have numerically solved eq. (4.32) and searched for potential instabilities. The results for

the saturation fronts, as displayed in figure 5, show indeed a clear instability, which needs a

few units of rapidity (about 8 units for ᾱs = 0.2, while it would be 5÷6 units for ᾱs = 0.3)
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in order to develop. Interestingly, the instability first manifests itself in the vicinity of

saturation, i.e. in the region where T̄ ' 1. Even though, as just mentioned, eq. (4.32)

is not really trustable in that region, we believe that this instability is a real feature of

the NLO BK equation in η and moreover it should indeed be triggered by configurations

involving relatively large dipoles, near saturation, as suggested by the numerical results in

figure 5. Indeed, this is the region in phase-space where the (effective) anomalous dimension

γ of the BK solution becomes very small (recall the discussion after eq. (4.13)). A further

argument towards instability in the NLO BK evolution in η will be presented in section 8.2.

5 Non-local BK evolution in η

In the previous section, we have seen that the BK evolution in η also receives NLO cor-

rections enhanced by a double collinear logarithm which lead to instabilities — albeit not

as severe as for the corresponding problem in Y . We have not yet discussed the physical

origin of these corrections (this will be done shortly), but given the experience with the

Y -evolution, one may anticipate that similar corrections will appear in higher orders and

that they need to be resummed in order to obtain a stable evolution. This will lead us to a

resummation scheme in η which is formally similar to the one developed in section 3.2 for

the evolution in Y — that is, a version of the BK equation which is non-local in rapidity

— but which differs from the latter in that it is significantly less sensitive to changes in

the resummation prescription.

As we now explain, the double collinear logarithms in the evolution with η are related

to an ordering problem as well — not to time-ordering (which is satisfied by construction in

this framework), but rather to the ordering of the successive emissions in their longitudinal

momentum k+. Indeed, the physical constraints on the high-energy evolution of the right-

moving projectile are the same in both representations (Y and η): the successive gluon

emissions must be simultaneously ordered in longitudinal momenta and in lifetimes. These

constraints, that were originally written for the evolution with Y (or k+) in eq. (3.20), must

be now rewritten for the evolution with η (or τk); using η = ln(τk/τ0) with τk = 2k+/k2
⊥,

one easily finds

τqQ
2 � τkk

2
⊥ � τ0Q

2
0 , τq � τk � τ0 . (5.1)

The second condition above is automatically satisfied by the evolution with η; but the first

condition, which represents the ordering in longitudinal momenta, might be violated when

the emitted gluon is either too hard (k2
⊥ � Q2), or too soft (k2

⊥ � Q2
0). This argument

sheds light on the typical configurations which violate these constraints and hence lead to

instabilities (in the context of the linear, BFKL, evolution, at least): these are evolutions

in which one first creates a very large daughter dipole, with size r � 1/Q0, which then

evolves by radiating much smaller dipoles. This also explains why the non-linear physics of

saturation reduces this particular instability: saturation suppresses the large dipole with

sizes r � 1/Qs(Y ) ≥ 1/Q0 and thus the phase-space for soft-to-hard evolution decreases.

The integral version of the BK equation obeying the constraints in eq. (5.1) can now

be constructed along the same lines as the corresponding equation for the evolution in Y ,
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that is, eq. (3.23). First, we notice that the inequalities in eq. (5.1) imply the following

integration range in the rapidity η1 ≡ ln(τk/τ0) of the fluctuation:

min

{
η, η − ln

k2
⊥
Q2

}
> η1 > max

{
0, ln

Q2
0

k2
⊥

}
, (5.2)

where we kept the notation η ≡ ln(τq/τ0) for the rapidity of the incoming dipole (i.e. the

overall range for the evolution with η1). Moving to transverse coordinates as appropriate

for the dipole picture and recalling the relation k2
⊥ = 1/r2

< with r< the size of the smallest

daughter dipole, cf. eq. (3.19), we deduce the following properly-ordered version of the BK

equation in η:

S̄xy(η) =S
(0)
xy +

ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2

η−Θ(ρ1−ρ)(ρ1−ρ)∫

Θ(−ρ1)|ρ1|

dη1

[
S̄xz(η1)S̄zy(η1)−S̄xy(η1)

]
,

(5.3)

where ρ1 = ln(1/r2
<Q

2
0) and S

(0)
xy denotes, as before, the tree-level estimate for the ampli-

tude. By taking a derivative w.r.t. η, one finally obtains a differential equation which is

non-local in η:

∂S̄xy(η)

∂η
=
ᾱs
2π

∫
d2z (x− y)2

(x− z)2(z − y)2
Θ
(
η − δxyz

)
Θ
(
η −Θ(−ρ1)|ρ1|

)

×
[
S̄xz(η − δxyz)S̄zy(η − δxyz)− S̄xy(η − δxyz)

]
, (5.4)

with the new rapidity shift δxyz defined as

δxyz ≡ Θ(ρ1 − ρ)(ρ1 − ρ) = Θ(r − r<) ln
r2

r2
<

= max

{
0, ln

(x−y)2

min{(x−z)2, (z−y)2}

}
.

(5.5)

The two step-functions within the integrand in eq. (5.4) express the condition that the

upper limit in the integral over η1 in eq. (5.3) be larger than the respective lower limit for

any value of ρ1.

As expected, the rapidity shift δxyz as well as the first step-function introduce con-

straints on the soft-to-hard evolution: they are effective only when the smallest daughter

dipole is (much) smaller than the parent one. In particular, the step-function Θ(η − δxyz)

effectively acts as an “ultraviolet cutoff”: it implies a lower limit on r<, namely r2
< ≥ r2e−η.

(But the ultraviolet divergences also cancel in the standard way, between the “real” and

“virtual” pieces within the square brackets.) The second step-function Θ
(
η −Θ(−ρ1)|ρ1|

)

forbids the emission of very large dipoles, with sizes r< ≥ eη/Q2
0 � 1/Q2

0. This step func-

tion is rather superfluous in the context of the BK equation (5.4), where large dipoles are

already cut off at the shorter scale 1/Qs(η) introduced by saturation. But it might be im-

portant in relation with the linearized version of eq. (5.4), i.e. the non-local BFKL equation.

Eq. (5.4) represents the counterpart of eq. (3.24) for the evolution in η. Unlike the

latter, this is not a boundary-value problem anymore, but an initial-value problem with
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initial condition S̄xy(η = 0) = S
(0)
xy . Indeed, due to the step-function inside the integrand,

the r.h.s. of this equation involves the function S̄xy(η) only for positive values η > 0 of the

rapidity. This being said, the initial-value formulation is complicated by the non-locality

in η: strictly speaking, eq. (5.4) is a delay differential equation, due to the shift in the

rapidity arguments and to the step-functions which limit the evolution at small η. As we

shall explain in section 9, some care must be taken when trying to start the evolution with

an initial condition formulated at some different rapidity η0 > 0.

At this stage, the relation between the non-local equation (5.4) and the NLO correc-

tions containing the double logarithms in eq. (4.10) is not yet obvious. In the next section,

we shall show that these corrections are indeed correctly encoded into eq. (5.4), in the

“collinear” limit of interest, i.e. when one of the daughter dipoles is much smaller than the

parent one. This argument also shows that the detailed structure of the equation is not

unique (which should be expected, given our previous experience with the non-local evo-

lution in Y ): any rapidity shift which coincides with δxyz in the collinear limit and drops

to zero when none of the daughter dipoles is small is equally acceptable to the accuracy

of interest.

It is one of our main points in this paper to demonstrate that the resummed evolution

in η shows relatively little scheme dependence — considerably less than the correspond-

ing evolution in Y and at the level of the expected accuracy (given the approximations),

i.e. O(ᾱ2
s). To that aim, we will show results obtained with two other prescriptions for the

rapidity shift. (We have also considered other choices and found similar results.) The first

one is obtained by replacing the S-matrices in the r.h.s. of eq. (5.4) by

S̄xz(η − δxyz)S̄zy(η − δxyz)− S̄xy(η − δxyz) −→ S̄xz(η − δxz;r)S̄zy(η − δzy;r)− S̄xy(η),

(5.6)

where

δxz;r ≡ max

{
0, ln

r2

(x−z)2

}
(5.7)

and similarly for δzy;r. There are two differences w.r.t. eq. (5.4): (i) the rapidity shifts

in the “real” S-matrices are different for the two daughter dipoles and (ii) there is no

such a shift in the “virtual” term. These two modifications are consistent with eq. (5.4)

to the accuracy of interest and also with each other. Indeed, with the new prescription,

the shift in the “real” S-matrices is important only for the smallest daughter dipole; e.g.,

if one has |x−z| � r ' |z−y|, then δzy;r ' 0. Similarly, with the original prescription in

eq. (5.4), the effect of the shift cancels out (in this limit |x−z| � r) between the “real”

term associated with the largest daughter dipole and the “virtual” term.

This being said, the new prescription appearing in eqs. (5.6)–(5.7), which distinguishes

between the two daughter dipoles, appears to be favoured by the structure of the NLO

corrections, as discussed after eq. (4.10): e.g., when |x−z| → 0, the double-logarithmic

factors multiplying the scattering amplitudes T̄zy of the large daughter dipole and T̄xy of

the parent dipole do separately cancel — similarly to what happens with the rapidity shifts

in eq. (5.6).
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λ̄s/ᾱs

ᾱs

non-local in η, δ=max
{
0, ln (x−y)2

min{(x−z)2,(z−y)2}
}

non-local in η, δ=ln max{(x−z)2,(x−y)2}
(x−z)2

non-local in η, δ=ln max{(x−z)2,(y−z)2}
(x−z)2

CollBK in η

Figure 6. The asymptotic speed of the front (divided by ᾱs) in the η-representation as a function

of ᾱs and for different evolution schemes: cf. eqs. (5.4)–(5.5) (blue solid curve), eqs. (5.6)–(5.7) (red

short-dashed curve), eq. (5.8) (green long-dashed curve) and eq. (7.21) (brown dotted-dashed curve

denoted “CollBK in η”). All lines are physically acceptable in that they differ from each other and

also from the respective result at LO by a correction of relative order ᾱs.

The final prescription for the rapidity shift in η that we shall explicitly consider is

obtained via

S̄xz(η−δxyz)S̄zy(η−δxyz)−S̄xy(η−δxyz) −→ S̄xz

(
η−ln

r2
>

(x−z)2

)
S̄zy

(
η−ln

r2
>

(z−y)2

)
−S̄xy(η),

(5.8)

where r2
> ≡ max{(x−z)2, (z−y)2} is the largest of the two daughter dipoles. Clearly, this

prescription has the same collinear limits as that in eq. (5.6), whereas for larger daughter

dipoles r2
> & r2, the rapidity shifts in (5.8) are smoothly switched off. An overall step-

function Θ
(
η − ln(r2

>/r
2
<)
)

(ensuring that the rapidity arguments of all the S-matrices

remain positive) is now implicitly understood.

Using these three prescriptions for the rapidity shift, we have solved the non-local

equation up to very high values of η and extracted the asymptotic value of the saturation

exponent λ̄s, with the results displayed in figure 6. These results should be compared to

those in figure 1 (right) and notably to the curves denoted there as “non-local” (which,

we recall, have been obtained by solving the non-local equation in Y with two different

prescriptions and then reinterpreting the results in terms of η). Clearly, the non-local

evolution in η shows much less scheme dependence than the one in Y : the various curves

shown in figure 6 do all show the same trend and they stay relatively close to each other,

within the limits expected in view of our approximations. E.g., for ᾱs = 0.3, the difference

between the most “extreme” predictions in figure 6 — those obtained with the prescriptions

in eq. (5.4) and eq. (5.7), respectively — is δλ̄s ' ᾱs ' 3ᾱ2
s, which is half the corresponding

difference in figure 1 (right). Also, the ratio δλ̄s/λ̄s between the variance and the average
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value λ̄s ' 3ᾱs is δλ̄s/λ̄s ' 0.3 ' ᾱs, as expected for a set of calculations which should

differ only at NLO. Equally important, the variance δλ̄s grows only slowly with ᾱs in

figure 6, whereas it grows much faster in figure 1 (right). One must also add that none of

the curves in figure 6 has an inflection point and that they all stay below the LO result

(contrary to what was happening in figure 1 for some of the curves).

The comparison between figure 6 and figure 1 (right) also reveals that the curves

corresponding to the prescription (5.7) for the evolution in η and respectively (3.30) for

the evolution in Y yield results which look similar by eye and in fact turn out to be identical.

This is not a coincidence: one can check that, with these two particular prescriptions, the

non-local evolution in Y can be exactly mapped onto the corresponding evolution in η

via our standard change of rapidity variables and functions, Y = η + ρ and S̄xy(η) =

Sxy(Y = η + ρ). But to some extent, the very existence of such an “ideal” change of

variables is an accident: if one starts with any other of the prescriptions that we have

used so far, e.g. eq. (5.4) or (5.8) for the evolution in η, and one makes the change of

variables η → Y , one finds an equation in Y which has some pathologies — typically the

rapidity arguments of the various S-matrices can become smaller than ρ in some corners

of the phase-space. (Vice-versa, if one starts with a generic prescription in Y , the change

of variables to η produces rapidity arguments which can become negative: η < 0. This is

why, for moderately small values of ᾱs, eq. (3.25) was leading to an intercept larger than

the LO one after converting the results in terms of η.). This ultimately reflects the fact

that, after the resummation of the double transverse logarithms, the non-local evolution

in η is more stable (in the sense of less scheme-dependent) than that in Y .

In section 3.3, in the context of the evolution with Y , we described an alternative

strategy for performing resummations where the “collinearly improved” equation remains

local in rapidity but the corresponding kernel receives double logarithmic corrections to

all orders. It is interesting to study whether a similar construction is also possible for the

evolution with η. This will be discussed in detail in section 7.2, where we shall see that such

a local reformulation is “almost” possible. That is, one can indeed construct a resummed

version of the BFKL kernel which includes the double collinear logs to all orders: this is in

fact identical to the corresponding kernel for the evolution in Y , cf. eq. (3.43), up to the

replacement of the (double) anti-collinear logs by collinear ones (see eq. (7.22)). But the

natural non-linear completion of this equation, which is shown in eq. (7.21) and has the

same structure as eq. (3.43), does not correctly describe the approach towards saturation

(the Levin-Tuchin law) — as we shall check by comparing with the respective behavior of

the non-local equation (5.4).

This being said, the fact that this local equation is correct in the BFKL regime together

with the “pulled” nature of the saturation front guarantees that this equation is in fact

appropriate for most purposes: it correctly predicts the shape and speed of the saturation

front at all points except very close to the unitarity limit T̄ = 1. To check that, we have

also plotted in figure 6 the respective prediction for the asymptotic saturation exponent

(denoted as “collBK”); as one can see, this is indeed close to the results obtained from

the non-local equation and, perhaps accidentally, almost identical to the corresponding

prediction of the original prescription for the rapidity shift in eq. (5.4). This stability should
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be contrasted to what happens for the resummed evolution in Y , where the “collBK” curve

in figure 1 (right) rapidly deviates from all the other predictions when increasing ᾱs.

Another drawback of the local resummation as compared to the non-local one is the

fact that for the former, unlike for the latter, we do not know how to systematically include

all the other NLO corrections, i.e. the “regular” terms of O(ᾱ2
s) in eq. (4.10). This will be

further discussed in the next section.

6 Matching to NLO BK in η

Our purpose in this section is twofold. First, we will explicitly check that the non-local

version of the BK equation in η, as constructed in the previous section, contains indeed

the NLO corrections enhanced by double-collinear logarithms (as visible in the second line

in the r.h.s. of eq. (4.10)). Second, we shall extend this non-local equation to full NLO

accuracy, by matching onto the NLO BK equation given in (4.5). As a result, we shall

obtain an equation which is non-local in η, which is perturbatively correct up to O(ᾱ2
s)

and which performs an all-order resummation of the kernel corrections enhanced by double-

collinear logarithms, while missing “regular” terms starting with O(ᾱ3
s). The subsequent

discussion applies to the two prescriptions for the rapidity shift shown in eqs. (5.6)–(5.7)

and respectively (5.8), which share with the full NLO result the fact that the rapidity

shift is non-zero only for the scattering amplitude associated with the smallest daughter

dipole. For definiteness, we shall write our formulae for the case of the prescription in

eqs. (5.6)–(5.7), to be referred to as the “canonical” one. Thus, our starting point is the

following equation

∂S̄xy(η)

∂η
=
ᾱs
2π

∫
d2z (x− y)2

(x− z)2(z − y)2
Θ
(
η − δxyz

)[
S̄xz(η − δxz;r)S̄zy(η − δzy;r)− S̄xy(η)

]
.

(6.1)

We first identify the O(ᾱ2
s) piece in the r.h.s. of eq. (6.1). Similar to what we have done

in eq. (4.4), we start by expanding the real terms to linear order in the shift and then use

the leading-order BK equation in η to deduce, e.g.

S̄xz (η − δxz;r) ' S̄xz(η)− δxz;r
∂S̄xz(η)

∂η

' S̄xz(η)− ᾱs
2π

∫
d2u (x− z)2

(x− u)2(u− z)2
δxz;r

[
S̄xu(η)S̄uz(η)− S̄xz(η)

]
, (6.2)

with an analogous expression for S̄zy. The step function in eq. (6.1) does not play any

role in perturbation theory for η > 0, so it will be replaced by unity. Then, after some

convenient relabelling of the integration variables, we find that the O(ᾱ2
s) contribution

contained in the r.h.s. of eq. (6.1) reads

− ᾱ2
s

2π2

∫
d2z d2u (x− y)2

(x− u)2(u− z)2(z − y)2
δuy;r S̄xu(η)

[
S̄uz(η)S̄zy(η)− S̄uy(η)

]
. (6.3)
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In the second step we subtract this O(ᾱ2
s)-piece from eq. (6.1), while in the third step we

add all the NLO terms of the BK equation in (4.5) to finally get

∂S̄xy(η)

∂η
=
ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2 Θ
(
η−δxyz

)[
S̄xz(η−δxz;r)S̄zy(η−δzy;r)−S̄xy(η)

]

− ᾱ2
s

4π

∫
d2z (x−y)2

(x−z)2(z−y)2 ln
(x−z)2

(x−y)2 ln
(y−z)2

(x−y)2

[
S̄xz(η)S̄zy(η)−S̄xy(η)

]

+
ᾱ2
s

2π2

∫
d2zd2u(x−y)2

(x−u)2(u−z)2(z−y)2

[
ln

(u−y)2

(x−y)2 +δuy;r

]
S̄xu(η)

[
S̄uz(η)S̄zy(η)−S̄uy(η)

]

+ ᾱ2
s×“regular”, (6.4)

which is one of the main results in the current work. Notice that we have combined the

term generated by the rapidity shift in eq. (6.3) with the third term in eq. (4.5) respectively,

and that the sum in the square bracket is just the Y -shift ∆uy;r defined in eq. (3.30). By

construction, eq. (6.4) reduces to the full NLO BK equation in η when expanded to order

ᾱ2
s, meaning that the associated error is now of O(ᾱ3

s). The structure of the equation and

the associated error would remain unchanged if one were to use the prescription (5.8) for

the rapidity shift instead of the “canonical” one in eqs. (5.6)–(5.7).

From the discussion after eq. (4.5), we already know that the double anti-collinear

logarithm visible in the second term in eq. (6.4) is cancelled in the relevant regime (i.e. for

large daughter dipoles) by a corresponding piece generated by the integral over u in the

third term. Moreover, given the definition of the shift in eq. (5.7), it should be clear that

the third term in eq. (6.4) is also free of double collinear logs (i.e. those appearing for

small daughter dipoles). Thus, taken together, the two O(ᾱ2
s)-terms which are explicit in

the r.h.s. of eq. (6.4) do not contain any large contributions that may cause instabilities.

However, one should be careful when numerically integrating this equation, because one

expects large cancellations between these two terms in the anti-collinear regime.11

At this point, one may observe that the previous discussion implicitly demonstrates

the other point that we would like to make in this section, namely the fact that the non-

local equation (6.1) properly includes the NLO corrections enhanced by double-collinear

logarithms. Indeed, we have just shown that (i) eqs. (6.4) and (4.5) are equivalent to

O(ᾱ2
s), and (ii) the NLO corrections which are explicit in the r.h.s. of eq. (6.4) do not

include double-collinear logs anymore. It follows that these double logs are fully included

in the first term in the r.h.s. of eq. (6.4), which is the non-local BK equation in η. For

completeness, in appendix A.2 we shall also verify this via an explicit calculation starting

with eq. (6.3).

11We also point out that these two terms are structurally equivalent to the respective terms appearing

in [34] where one is evolving in Y . This is as expected, since “regular terms” of order ᾱ2
s have the same

functional form in Y - and η-representation. The main difference when compared to the result in [34], as

extensively discussed earlier, is in the first term in eq. (6.4) and in the fact that it represents an evolution

in η, which is an initial value problem and with a resummation which is under control.
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7 The effective characteristic function

Although it is well defined and poses no special problems for numerical studies, the equa-

tion (6.1) is quite special in that it is non-local in the evolution “time” η. So, it is perhaps

less obvious how to adapt to this equation methods that were traditionally used in the

past for the analytic studies of the BFKL or the BK equations. In this section, we shall

nevertheless show that this equation has an underlying mathematical structure which is

not too far away from that of the more familiar equations aforementioned, which are local

in η. Its linearized version can be studied in Mellin space, similarly to the BFKL equation;

this analysis, to be presented in section 7.1, features a special characteristic function, which

has already appeared in the original studies of the collinear resumations of the NLO BFKL

equation [29–32]. Moreover, to the accuracy of interest (i.e. in so far as the resummation of

the double collinear logs is concerned) and with some caveat deep at saturation to be dis-

cussed, this non-local equation can also be rewritten in a local form, as already mentioned

at the end of section 5; this local version will be constructed in section 7.2 below.

7.1 Asymptotic eigenvalue branch

We start with the “canonical” form of the non-local evolution equation in η, as given in

eq. (6.1). Linearizing and using the symmetry under x− z ↔ z − y, we obtain

∂T̄xy(η)

∂η
=
ᾱs
2π

∫
d2z (x− y)2

(x− z)2(z − y)2
Θ
(
η − δxyz

)[
2T̄xz(η − δxz;r)− T̄xy(η)

]
. (7.1)

We define the Laplace transform of the amplitude according to

T̄xy(ω) =

∫ ∞

0
dη e−ωη T̄xy(η) (7.2)

and by taking the Laplace transform of eq. (7.1), we deduce

ωT̄xy(ω)− T̄xy(η = 0) =
ᾱs
2π

∫
d2z (x− y)2

(x− z)2(z − y)2

∫ ∞

δxyz

dη e−ωη
[
2T̄xz(η − δxz;r)− T̄xy(η)

]
.

(7.3)

Note there is some complication which has prevented us to identify the Laplace transform

of the amplitude in the r.h.s. of the above equation. For the real term this due to the fact

that the lower limit is different than the shift, while for the virtual one it is simply because

this limit is non-zero. Yet, as we shall show in appendix D, this is irrelevant for the present

purposes; that is, one can equally well replace eq. (7.3) by

ωT̄xy(ω)− T̄xy(η = 0) =
ᾱs
2π

∫
d2z (x− y)2

(x− z)2(z − y)2

[
2e−ωδxz;r T̄xz(ω)− T̄xy(ω)

]
. (7.4)

We further take a Mellin transform w.r.t. the dipole size (cf. eq. (2.8)) and eq. (7.4) becomes

ωT̄ (ω,γ)−T̄ (η= 0,γ) = T̄ (ω,γ)
ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2

{
2e−ωδxz;r

[
(x−z)2

(x−y)2

]γ
−1

}
. (7.5)
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We shall now focus on the integration over the transverse coordinate z, which simply gives

a function of γ and ω. Including a factor of 1/2π for convenience, we call this function

χ(γ, ω) and we split it in two pieces according to

χ(γ, ω) =
1

2π

∫
d2z (x− y)2

(x− z)2(z − y)2

{
2

[
(x− z)2

(x− y)2

]γ
− 1

}

+
1

π

∫
d2z (x− y)2

(x− z)2(z − y)2

[
(x− z)2

(x− y)2

]γ (
e−ωδxz;r − 1

)
. (7.6)

The first term in the above is recognized as the LO characteristic function χ0(γ). Given

the definition of the shift in eq. (5.7), it is clear that the second term, to be called δχ(γ, ω),

has support only for |x−z| < r. As usual we first let z → x−z and then we easily perform

the angular integration (which is unrestricted) since the only respective dependence is in

the denominator factor (r − z)2. We find

δχ(γ, ω) = 2

∫ 1

0

dz

z

z2(γ+ω) − z2γ

1− z2
= ψ(γ)− ψ(γ + ω), (7.7)

where in writing the first equation we have also made use of the fact that the integral is

scale invariant. Notice that the integration is finite, since the numerator vanishes as z → 1.

Now it is straightforward to see that

χ(γ, ω) = 2ψ(1)− ψ(γ + ω)− ψ(γ). (7.8)

Such an expression has been known for a long time, cf. [29]. It is the characteristic function

of a linear equation for the unintegrated gluon distribution, where one has enforced the

appropriate kinematic constraints in the BFKL equation in order to match the correct

DGLAP double logarithmic limit for both soft-to-hard and hard-to-soft evolution [55].

One can now solve eq. (7.5) to obtain

T̄ (ω, γ) =
T̄ (η = 0, γ)

ω − ᾱsχ(γ, ω)
. (7.9)

Thus, we can write the solution to eq. (7.1) as the double integral

T̄ (η, r) '
∫ ω0+i∞

ω0−i∞

dω

2πi

∫ 1
2

+i∞

1
2
−i∞

dγ

2πi

T̄ (η = 0, γ)

ω − ᾱsχ(γ, ω)
eωη
(
r2Q2

0

)γ
, (7.10)

where ω0 is such that all the singularities of the integrand are on the left of the correspond-

ing contour. The approximate equality sign in eq. (7.10) is meant to recall that we have

made some approximation in going from eq. (7.3) to eq. (7.4), whose consequences will be

discussed in appendix D.

The denominator in eq. (7.10) gives rise to an infinite number of single poles in the

ω-plane, however one can show that there is a unique pole on the positive real axis. This is

important as it implies that the dominant behavior of the amplitude at large η is controlled

by this unique pole, that we shall denote as ω̄. This pole is clearly defined by

ω̄ − ᾱsχ(γ, ω̄) = 0 & ω̄ > 0, (7.11)
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and the corresponding approximation to the amplitude, valid at large η, reads

T̄ (η, r) ≈
∫ 1

2
+i∞

1
2
−i∞

dγ

2πi
T̄ (η = 0, γ) eω̄(γ)η

(
r2Q2

0

)γ
, (7.12)

where we have also neglected the residue associated with the pole ω̄(γ).

Now we would like to check the pole structure (in the γ-plane) of ω̄(γ) order by order

in perturbation theory. Solving iteratively eq. (7.11) we find

ω̄(γ) = ᾱsχ0(γ)− ᾱ2
sχ0(γ)ψ′(γ) + ᾱ3

s

{
χ0(γ)

[
ψ′(γ)

]2 − χ2
0(γ)ψ′′(γ)

2

}
+ · · · . (7.13)

The assumption that the LO term in the above is ᾱsχ0(γ), automatically picks the positive

ω̄(γ) solution in eq. (7.11). Expanding eq. (7.13) around γ = 0 we get

ω̄(γ) =
ᾱs
γ
− ᾱ2

s

(
1

γ3
+
π2

6γ

)
+ ᾱ3

s

[
2

γ5
+O

(
1

γ3

)]
+ · · · , (7.14)

while around γ = 1 we have

ω̄(γ) =
ᾱs

1− γ −
π2

6

ᾱ2
s

(1− γ)
+ ᾱ3

s O
(

1

(1− γ)2

)
+ · · · . (7.15)

The main features of this pole structure could have been anticipated in view of our

previous discussions in sections 4.1 and 4.2. The dominant poles at γ = 0, of the type

∼ ᾱκs/γ2κ−1, are associated with the emission of very small daughter dipoles. (In coordinate

space, they correspond to kernel corrections enhanced by double collinear logarithms.) We

had already checked that for the cubic pole ∼ ᾱ2
s/γ

3 occurring at NLO: in eq. (4.13), this

pole was generated by integrating over small daughter dipoles with size z � r. There are

no corresponding poles at γ = 1 (e.g. no cubic pole ∼ ᾱ2
s/(1− γ)3), in agreement with the

fact that for the evolution in η there are no double transverse logarithms associated with

the emission of very large dipoles.

It is furthermore interesting to notice the absence of sub-leading poles, of the type

∼ ᾱκs/γ
2κ−2 (and similarly ∼ ᾱκs/(1− γ)2κ−2): this guarantees that we are not interfering

with the NLO corrections due to DGLAP evolution. For example, that would not have

been the case if the subleading term in δxz;r was a constant as z → x. In this sense, our

choice in eq. (5.7) is indeed optimal.

The remaining poles of lower orders, and for any power of ᾱs, are not unique; they

depend on the specific choice for the rapidity shift, i.e. upon the prescription used for the

resummation. This is in particular the case for all the poles γ = 1, except of course for the

leading-order one. In particular, with our “optimal” choice δxz;r for the rapidity shift, we

still generate single NLO poles at both γ = 0 and γ = 1 (and with residue −π2/6 for both

of them). This is at variance with the discussion of the NLO approximation in section 4.1

(notably after eq. (4.8)), where we have seen that the change of variables Y → η introduces

no additional poles (neither double, or single) at γ = 0 or γ = 1. There is of course no

contradiction, since the resummation (i.e. the rapidity shift) is only meant to deal with the
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dominant respective poles, i.e. the cubic poles at NLO. This being said, it is interesting

to notice that one can “fine-tune” the resummation in such a way to also remove these

single poles: this cannot be done by merely readjusting the rapidity shift (the latter is

fixed by the condition to avoid the NLO double-poles as alluded to above), but it can be

achieved by also introducing a shift in the virtual term, as explained in appendix E. This

is of course not compulsory and in what follows we shall stick to our “canonical” version

of the resummation, cf. eq. (6.1).

7.2 A local equation with a resummed kernel

Comparing eqs. (7.8) and (2.6), it is quite clear that the effect of the resummation at BFKL

level merely amounts to a shift

ψ(γ)→ ψ(γ + ω) (7.16)

in the argument of one piece from the LO characteristic function χ0(γ) — that piece which

includes the simple pole at γ = 0. As a matter of facts, one can check that, for the purpose

of resumming the double-collinear logarithms in the BFKL kernel, it suffices to perform

this shift in the pole term alone [29]:

1

γ
→ 1

γ + ω
. (7.17)

That is, instead of eq. (7.8), on could as well use the following version for the resummed

characteristic function:

χ(γ, ω) =
1

γ + ω
+

[
χ0(γ)− 1

γ

]
, (7.18)

in which there is no shift in the regular (no-pole) piece of the LO characteristic function.

Via the positive-pole condition (7.11), this would generate a solution ω̄(γ) with the same

global properties as those discussed in relation with eqs. (7.13)–(7.15): the dominant poles

at γ = 0 are properly included to all orders and there are no subleading (DGLAP-like) poles.

In this section, we shall consider yet another alternative for the resummed characteristic

function, which is different from both (7.8) and (7.18) (albeit equivalent to them to the

accuracy of interest and in the BFKL regime) and which has the virtue to allow for a

reformulation of the evolution equation which is local in η but with a resummed kernel.

As we shall shortly see, this is the counterpart in the η-representation of the “collBK” (the

collinearly-improved version of the BK equation) discussed in section 3.3 in the context of

the evolution with Y .

This alternative version for χ(γ, ω) will in fact be implicitly defined by the resummed

evolution equation that we shall derive in what follows. To that aim, we start with a study

of the evolution in the collinear regime, where one of the daughter dipoles is very small.

For that purpose, it suffices to keep only the dominant poles at γ = 0, as generated by the

would-be pole piece of the characteristic function alone, i.e. χ(γ, ω) = 1/(γ + ω). Then the

pole condition (7.11) reduces to a quadratic equation for ω̄ that can be easily solved:

ω ' ᾱs
γ + ω

=⇒ ω̄ ' 1

2

(
−γ +

√
γ2 + 4ᾱs

)
=
ᾱs
γ
− ᾱ2

s

γ3
+

2ᾱ3
s

γ5
− · · · , (7.19)
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where we have kept only the positive solution. The last equality shows the formal expansion

of ω̄ in powers of ᾱs: as anticipated, this correctly reproduces the dominant poles at γ = 0

to all orders. On the other hand, the complete solution has a finite limit when γ → 0,

namely ω̄(0) =
√
ᾱs.

It is a straightforward exercise to show that the above function ω̄(γ) is the exact

eigenvalue corresponding to the local evolution equation12

∂T̄ (η, r2)

∂η
= ᾱs

∫ r2

0

dz2

z2
KDLA

(
ln
r2

z2

)
T̄ (η, z2), (7.20)

where KDLA has been defined in eq. (3.39). But even though it involves the same kernel as

the equation (3.38) describing (resummed) DLA evolution in Y , the above equation differs

from eq. (3.38) in an essential way: the integral over z in eq. (7.20) is restricted to small

daughter dipoles with z2 < r2, whereas the corresponding integral in eq. (3.38) rather runs

over large dipoles with z2 > r2.

At this level, it is possible to follow a strategy similar to that employed in section 3.3

in order to extend eq. (7.20) to a local evolution equation which encompasses the LO BK

equation (and reduces to it in the absence of the collinear resummation). In fact, simply

by analogy with eq. (3.43), it is quite clear that the following equation looks like a natural

generalization of eq. (7.20) to the full BFKL dynamics and also to the non-linear regime:

∂S̄xy
∂η

=
ᾱs
2π

∫
d2z (x− y)2

(x− z)2(z − y)2
KDLA(ρ̄xyz)

(
S̄xzS̄zy − S̄xy

)
. (7.21)

This looks formally similar to eq. (3.43), but it differs from it in so far as the argument of

KDLA is concerned: this is now defined as (compare to eq. (3.44))

ρ̄2
xyz ≡ ln2 (x− z)2

(z − y)2
. (7.22)

Clearly, ρ̄xyz reduces to ln(r2/z2), as it should, when one of the two daughter dipoles (whose

size is denoted as z) is much smaller than the other one, while it dies away when the two

daughter dipoles have comparable sizes. Hence, as expected, the resummation performed

by KDLA is only effective for the soft-to-hard evolution (in contrast to eq. (3.43), where

a similar kernel but with a different argument performs the anti-collinear resummation

applicable to the hard-to-soft evolution).

Although it looks appealing — for the same reasons as its counterpart, eq. (3.43), in the

evolution with Y , namely, the fact that it has the same non-local and non-linear structure

as the LO BK equation — eq. (7.21) is not fully right, not even in the approximations

of interest. Specifically, this equation is an acceptable resummation in the linear, BFKL,

regime, where it generates a characteristic function with all the good properties previously

discussed in relation with eqs. (7.8) and (7.18). (This can be checked order by order in ᾱs,

by using the perturbative expansion of KDLA, cf. eq. (3.39).) But it becomes incorrect in the

12A simple way to see this consists in expanding the kernel KDLA as shown in eq. (3.39) and then acting

with each term in this expansion on the power-like amplitude T̄ ∝ z2γ to reconstruct the series in the r.h.s.

of eq. (7.19).
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non-linear regime and more precisely in the approach towards saturation, as we now explain.

The collinear (small daughter dipole) resummation is indeed relevant in this regime, since

the soft-to-hard evolution controls the approach of the dipole S-matrix towards the black

disk limit S̄ = 0, known as the Levin-Tuchin formula13 [47, 52]. Let us briefly review the

argument and derive in the process the corresponding prediction of eq. (7.21).

Assume that the measured dipole with size r is deeply at saturation, r2Q̄2
s(η) � 1.

Then, clearly, its S-matrix is only tiny, S̄(η, r2) � 1, but we would like to know how it

approaches to 0 when further increasing η and/or r. To study this evolution based on

eq. (7.21), one can (i) restrict oneself to smaller daughter dipoles, but which are still at

saturation, namely such that 1/Q̄2
s(η) � z2 � r2 (indeed, the contributions from even

smaller daughter dipoles, with size z2 � 1/Q̄2
s, cancel between real and virtual terms) and

(ii) keep just the virtual term, which is linear in S̄ (the real term, involving the product

of two S-matrices for two large dipoles, is even smaller). This yields

∂S̄(η, r2)

∂η
= −ᾱsS̄(η, r2)

∫ r2

1/Q̄2
s

dz2

z2
KDLA

(
ln
r2

z2

)
' −√ᾱs S̄(η, r2), (7.23)

where the final result in the r.h.s. holds up to corrections of relative order
√
ᾱs to the

prefactor. Note that this final result is independent of the saturation scale Q̄s: indeed,

when the size z of the daughter dipole is small enough, such that ρ̄ ≡ ln(r2/z2) becomes

of O(1/
√
ᾱs), the function KDLA — which we recall is proportional to the Bessel function

J1

(
2
√
ᾱsρ̄2

)
— oscillates very fast and effectively kills the contribution from even smaller

daughter dipoles. Hence the effective range for the integration over z2 is r2 exp(−1/
√
ᾱs)�

z2 � r2, where the lower limit is indeed much larger than 1/Q̄2
s(η) for η large enough.

Eq. (7.23) is easily seen to imply a power-like behavior

S̄(η, r2) ∝ e−
√
ᾱs(η−ηs) ∝

[
r2Q̄2

s(η)
]−√ᾱs

λ̄s , (7.24)

where ηs is the value of the rapidity at which Q̄2
s(ηs) = 1/r2 and we have also used

Q̄2
s(η) ∝ eλ̄sη.

The result in eq. (7.24) is very different (in particular, it has a different functional

form) from the LO prediction in eq. (2.13) and as a matter of facts it is not correct: as

we shall see in section 8.2, the respective prediction of the non-local equation (6.1) has the

same functional structure as the LO result (2.13), but with a modified coefficient in front of

the exponent. The above derivation of eq. (7.24) also gives us a hint about what may have

gone wrong: the peculiar power-like behavior visible in eq. (7.24) is clearly a consequence

of the fact that the virtual term in eq. (7.21) is multiplied by KDLA, that is, this term

too is affected by the resummation. This property contradicts the actual structure of the

NLO corrections to the BK equation in η: as discussed after eq. (4.10), the double collinear

logarithms occurring at NLO are important only for the scattering of the smallest daughter

dipole; but they are absent both in the scattering of the other, large, daughter dipole, and

in the virtual term.
13Incidentally, this also explains why the anti-collinear (large daughter dipoles) resummation is unimpor-

tant for that issue (we mean of course the evolution with Y ): eq. (3.43) predicts exactly the same result

for the Levin-Tuchin formula as the LO BK equation.
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8 Saturation fronts in η

This section will be devoted to the “phenomenology” of the non-local equation (6.1) for

the evolution with η, that is, to its predictions for interesting quantities like the satura-

tion exponent and the anomalous dimension (including their dependence upon η prior to

asymptotics) and for phenomena like geometric scaling and the approach towards satura-

tion. For the case of a fixed coupling, we will be able to address all these issues via analytic

calculations, with results that will be then confirmed by the numerics. For the case of a

running coupling, we shall present only numerical results which confirm that the effects of

the resummation (non-locality) are important in that case too.

8.1 Saturation saddle point and geometric scaling

In order to study the speed and the shape of the saturation fronts in η, we will follow

the same strategy as for the LO BK equation in section 2.1. This is indeed possible

since (i) the analytic study in section 2.1 relied only on the linearized version of the

evolution equation, and (ii) after linearization, the non-local equation (6.1) admits a

similar mathematical treatment (in particular, the construction of explicit solutions via

the Mellin representation), as we have seen in section 7.

Specifically, we start with the BFKL solution expressed as an inverse Mellin transform

in eq. (7.12). This involves the characteristic function ω̄(γ) which is defined by the so-

lution to eq. (7.11). Even though the latter cannot be analytically inverted, it is just an

algebraic equation which can be easily solved numerically in order to construct ω̄(γ). For

our purposes, even this is not necessary, as we now explain. The saturation saddle point

is determined as explained in section 2.1, that is, this is solution (to be denoted as γ̄s) to

the following equation:
dω̄(γ)

dγ
=
ω̄(γ)

γ
. (8.1)

Using eq. (7.11) and the chain differentiation rule, we immediately deduce

dω̄

dγ
= ᾱs

∂χ(γ, ω̄)

∂γ
+ ᾱs

∂χ(γ, ω̄)

∂ω̄

dω̄

dγ
⇒ dω̄

dγ
=

ᾱs∂χ(γ, ω̄)/∂γ

1− ᾱs∂χ(γ, ω̄)/∂ω̄
, (8.2)

and we thus see that eq. (8.1) is equivalent to

∂χ(γ, ω̄)/∂γ

1− ᾱs∂χ(γ, ω̄)/∂ω̄
=
χ(γ, ω̄)

γ
. (8.3)

With χ(γ, ω) defined in eq. (7.8) and for a given ᾱs, it is a trivial numerical exercise

to solve eqs. (7.11) and (8.3) and determine the asymptotic slope γ̄s and the asymptotic

speed λ̄s = ω̄(γ̄s)/γ̄s of the front. The amplitude above the saturation line is given by an

expression analogous to eq. (2.11), in which we replace Y → η, Qs → Q̄s, γ0 → γ̄s and

D0 = 2ᾱsχ
′′
0(γ0)→ D̄s ≡ 2ω̄′′(γ̄s), that is

T (η, r) =
(
r2Q̄2

s

)γ̄s
(

ln
1

r2Q̄2
s

+ c

)
exp

[
− ln2

(
r2Q̄2

s

)

D̄sη

]
. (8.4)
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ᾱs λ̄s γ̄s D̄s

→ 0 4.88ᾱs 0.628 97.0ᾱs

0.1 0.384 = 3.84ᾱs 0.589 6.18 = 61.8ᾱs

0.2 0.657 = 3.29ᾱs 0.565 9.74 = 48.7ᾱs

0.3 0.876 = 2.92ᾱs 0.548 12.4 = 41.3ᾱs

0.4 1.058 = 2.65ᾱs 0.535 14.6 = 36.4ᾱs

Table 1. Asymptotic speed, slope and diffusion coefficient for the non-local equation (6.1) for

various values of the coupling constant ᾱs.
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λ̄s(η)/ᾱs
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ᾱs = 0.3
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Figure 7. Left: the front speed (divided by ᾱs) as a function of η, obtained from the numerical

solution to eq. (6.1) for two different δ-shifts: cf. eqs. (5.6)–(5.7) (red short-dashed curve) and

eq. (5.8) (green long-dashed curve). The analytic asymptotic expansion for the “canonical” shift

and the LO result are also shown. Right: the slope as a function of η, obtained from the same

equation and with the same two prescriptions for the rapidity shift.

Notice that the second derivative ω̄′′(γ) can be calculated in terms of partial derivatives

of χ(γ, ω), just by extending what we did for the first derivative in eq. (8.2). The range

of validity for eq. (8.4) and the corresponding geometric scaling are as described below

eq. (2.11). In table 1 we give the values of λ̄s, γ̄s and D̄s for some representative values of

ᾱs. We have checked that these values are indeed very well reproduced by the numerical

solutions to eq. (6.1) (recall in particular the numerical results for λ̄s in figure 6); they

are furthermore in agreement with the numerical results for ᾱs = 0.3 that are displayed in

figure 7 and will be discussed shortly.

Regarding the speed of the front, we can also indicate the η-dependence in the approach

towards the asymptotic behavior at η → ∞. This is given by an expression analogous to

eq. (2.10) which adapted to the present notations becomes

λ̄s(η) ≡ d ln Q̄2
s

dη
' λ̄s −

3

2γ̄s

1

η
. (8.5)
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Figure 8. Left: the amplitude obtained from the non-local equation (6.1) plotted as a function of

the scaling variable ρ− ρs. Right: the same for the amplitude obtained by solving LO BK. In both

cases the amplitude exhibits geometric scaling. The non-local equation leads to a front which is a

bit less steep.

In figure 7 we show the η-dependence of both the front speed λ̄s(η) and the anomalous

dimension γ̄s(η), as obtained from numerical solutions to eq. (6.1) with ᾱs = 0.3. The

function λ̄s(η) is defined as in eq. (8.5) with the saturation scale Q̄2
s(η) extracted from the

numerical data. As for γ̄s(η), this is obtained simultaneously with the diffusion coefficient

D̄s(η) by fitting the numerical saturation fronts with the Ansatz in eq. (8.4). In figure 7

(left) we also show the pre-asymptotic behavior predicted by eq. (8.5), which turns out to

provide an excellent fit down to η = 7÷ 8.

In figure 8 (left) we study the quality of geometric scaling for the numerical solutions

to eq. (6.1) (for ᾱs = 0.3); that is, we plot the amplitude as a function of the difference

ρ − ρ̄s(η) ≡ ln[1/r2Q̄2
s], with Q̄2

s(η) itself determined by the numerics. For the sake of

comparison, we also show the respective curves for the LO BK equation (in the right panel).

As one can see, the scaling provided by the non-local equation is still good, albeit slightly

less so than at LO, and it becomes better and better with increasing η (the successive

curves corresponding to larger and larger values of η approach a common shape in a region

in ρ− ρ̄s(η) which extends with η, via BFKL diffusion).

Finally, in figure 9 we present the predictions of the running coupling version of

eq. (6.1), with the “minimal dipole size” prescription for the running coupling, ᾱs(rmin)

where rmin = min{|x−y|, |x−z|, |y−z|}. In the left panel, we show the saturation fronts

for various rapidities (for comparison, the respective fronts at LO are shown too, with

dashed lines). In the right panel, we show the η-dependence of the saturation exponent as

predicted by the LO BK equation and by the non-local equation with two prescriptions for

the rapidity shift. The first observation is that the running of the coupling is dramatically

slowing down the evolution, with or without the collinear resummation: the typical values

of the saturation exponent are smaller by roughly a factor of 3 as compared to the case

of a fixed coupling ᾱs = 0.3. This being said, the reduction in the value of λ̄s(η) due to

the collinear resummation is still visible: the results for λ̄s(η) corresponding to the two
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Figure 9. Left: the amplitude as obtained from running coupling evolution (and where the scale

in the coupling is set to run with the smallest of the sizes of the three dipoles). Thick lines stand

for the solutions to the non-local equation (6.1), while thin lines stand for those obtained from LO

BK. Right: the speed of the fronts as a function of η, for running coupling evolution according to

the non-local equation (6.1) (for two different δ-shifts) and for LO BK.

prescriptions for the rapidity shift are rapidly converging to each other with increasing η,

but they remain visibly smaller than the respective LO result, up to rapidities as large

as η = 50.

8.2 The solution below Qs: the Levin-Tuchin formula with resummation

As a final application of the non-local evolution equation (6.1), let us use it in order

to determine the limiting form of the dipole S-matrix deeply at saturation, i.e. for very

large dipole sizes r2Q̄2
s(η) � 1. As already stressed in previous discussions, where we

have studied the same problem, first, for the LO BK equation, cf. eq. (2.13), and then

for the local form of the collinear resummation in η, cf. eq. (7.24), this study allows for

two important simplifications (to the leading double-logarithmic accuracy): (i) one can

neglect the term quadratic in S̄ in the evolution equation and (ii) the integration over

the daughter dipole size z becomes logarithmic when z is much smaller than the parent

dipole size r. The only change in the argument w.r.t. the respective discussion of the LO

BK equation in section 2.1 is the non-locality of the “real” term (the term quadratic in S̄)

in rapidity.

In the interesting regime, where one of the two daughter dipoles is much smaller than

the other one, this non-locality is important only for the S-matrix associated with that

smaller dipole. Hence, to the accuracy of interest, eq. (6.1) reduces to

∂S̄(η, r2)

∂η
' ᾱsS̄(η, r2)

∫ r2

0

dz2

z2
Θ

(
η − ln

r2

z2

)[
S̄

(
η − ln

r2

z2
, z2

)
− 1

]
, (8.6)

where the r.h.s. includes a factor of 2 to account for the fact that the small dipole with

size z can be any of the two daughter dipoles. As already mentioned, the integration over
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z2 is logarithmic only for the virtual term. But the range for this integration is controlled

by the condition that the “real” S-matrix S̄
(
η − ln r2

z2 , z
2
)

(corresponding to the “large”

daughter dipole) be negligibly small. This happens for z2 larger than a typical value that

we shall denote as 1/Q̃2
s, for which this S-matrix is close to the saturation line. Clearly,

this scale Q̃s plays the role of the saturation momentum, but evaluated at a special value

of the rapidity, which is itself dependent upon Q̃s; namely, this saturation condition reads

S̄
(
η − ln r2Q̃2

s, 1/Q̃
2
s

)
∼ O(1) =⇒ Q̃2

s ' Q̄2
s(η − ln r2Q̃2

s) ' Q2
0eλ̄s(η−ln r2Q̃2

s) (8.7)

where we have assumed the asymptotic behavior Q̄2
s(η) = Q2

0 eλ̄sη. Eq. (8.7) is readily

solved to give

r2Q̃2
s = (r2Q̄2

s)
1/(1+λ̄s). (8.8)

The integration in eq. (8.6) can now be easily done to the leading logarithmic accuracy of

interest:

∂S̄(η, r2)

∂η
' −ᾱsS̄(η, r2)

∫ r2

1/Q̃2
s

dz2

z2
= −ᾱs S̄(η, r2)

ln(r2Q̄2
s)

1 + λ̄s
= − ᾱsλ̄s

1 + λ̄s
(η − ηs), (8.9)

where ηs obeys the condition Q̄2
s(ηs) = 1/r2. The final integration over η ≥ ηs yields

S̄(η, r2) ' exp

[
− ᾱsλ̄s

2(1 + λ̄s)
(η − ηs)2

]
= exp

[
− ᾱs

2λ̄s(1 + λ̄s)
ln2
[
r2Q̄2

s(η)
]]
. (8.10)

Thus, the functional form of the S-matrix is similar to the one obtained at LO, cf. eq. (2.13),

except that the coefficient in the exponent gets the extra multiplicative factor 1/(1 + λ̄s).

Recalling that λ̄s ∼ O(ᾱs), one concludes that the NLO modification in the exponent of

the Levin-Tuchin formula should be a multiplicative factor equal to 1− λ̄s. This can indeed

be checked on the basis of the NLO BK equation in η, as discussed in section 4.1. This

argument also suggests that the NLO BK equation should develop an instability in the

saturation regime if ᾱs is large enough so that λ̄s > 1.

Finally, as a consistency check of our work, let us show how eq. (8.10) arises from the

corresponding result for the evolution in Y . Strictly speaking, one should use a resummed

version of the BK equation in Y , which includes the effects of time-ordering (e.g. the non-

local equation (3.28)). Note however that the TO constraint in Y -evolution is relevant only

for large daughter dipoles, i.e. for the hard-to-soft evolution, therefore it has no incidence

on the Levin-Tuchin formula, which therefore preserves the same form after resummation

as at LO order, that is, eq. (2.13), where however the saturation momentum is affected

by the resummation: Q2
s(Y ) = Q2

0 eλsY with λs the asymptotic intercept of the saturation

momentum in the presence of TO, as exhibited (as a function of ᾱs) in figure 1 (left).

Using the relation between the two rapidities, that is, Y = η+ ln(1/r2Q2
0) and the formula

λs = λ̄s/(1 + λ̄s) between the corresponding saturation exponents, cf. eq. (3.34), we get

r2Q2
s(Y ) =

[
r2Q̄2

s(η)
]1/(1+λ̄s) (8.11)

and then eq. (2.13) leads to eq. (8.10), as it should. Eqs. (8.7) and (8.11) make clear that

the scale Q̃2
s is nothing else but Q2

s(Y ).
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9 More insights on the initial condition and the rapidity shift

In the previous sections, we have noticed that the non-local equations in η (and unlike the

corresponding equations in Y ) are formally well-defined as initial-value problems. With

reference to our “canonical” equation (6.1), it is quite clear that, once the initial condition

is given at η = 0, that is, S̄xy(η = 0) = S
(0)
xy , then this equation allows us to determine the

function S̄xy(η) for all positive values η > 0. This crucially relies on the presence of the

step-function in the integrand of eq. (6.1), which ensures that the shifted rapidity arguments

remain positive semi-definite even for very small daughter dipoles. In this section, we would

like to discuss more general formulations of the initial-value problem and also the physical

meaning of this step-function and of the rapidity shift itself.

Notice first that η = 0 corresponds to a value xBj = 1 for Bjorken x, which is clearly

not a good choice for formulating the initial condition for the high-energy evolution. One

should rather start at a much lower value x0
Bj � 1, but such that ᾱsη0 � 1 as well, in

order for the early evolution, up to η0 ≡ ln(1/x0
Bj), to be indeed negligible and for the

small-x approximations to apply at η > η0. By inspection of eq. (6.1), it is quite clear that

this equation cannot be solved with the initial value formulated at some generic η0 > 0:

indeed, for a sufficiently small daughter dipole, the rapidity argument of the corresponding

S-matrix, i.e. η − ln(r2/r2
<) with r2

< � r2 can become smaller than η0. (We recall that

r< = min(|z − x|, |z − y|) and in this section we shall often use the simpler notation

r< ≡ z.) This can be avoided by modifying the argument of the step-function as follows:

∂S̄xy(η)

∂η
=
ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2
Θ
(
η−η0−δxyz

)[
S̄xz(η−δxz;r)S̄zy(η−δzy;r)−S̄xy(η)

]
.

(9.1)

Interestingly though, the equation itself depends upon the initial rapidity η0: this is un-

avoidable when working with a delay equation which is non-local in the evolution “time”.

At this point, it becomes interesting to gain some more insight into the physical mean-

ing of the rapidity shift and, related to that, of the constraint introduced by the step-

function in the above equation. Let us first recall from section 3 that η is a direct measure

of the lifetime of a fluctuation: one can write (cf. eq. (3.13))

η ≡ ηr = ln
τr
τ0

=⇒ η − ln
r2

z2
= ln

τz
τ0

= ηz (9.2)

where the subscripts, r or z, on lifetimes or rapidities refer to the transverse size of the

respective dipole fluctuation and we recall that we consider a small daughter dipole with

size z � r (hence ηz < η). That is, the shifted rapidity is a measure of the actual lifetime

of the daughter dipole. This shows that, in general the S-matrix does not depend upon the

kinematical rapidity η of the fluctuation, but rather upon its lifetime τ . When the emitted

dipole is much smaller than its parent z � r, it also has a much shorter lifetime τz � τr,

and its scattering amplitude must properly be evaluated at the longitudinal scale set by

this lifetime τz.

Furthermore, the step-function visible in eq. (9.1), that for the present purposes can

be rewritten as Θ
(
η− η0− ln(r2/z2)) = Θ

(
ηz − η0), has the role to eliminate those small-z
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fluctuations whose lifetime τz is smaller than some fixed scale introduced by the initial

rapidity η0. This scale is largely arbitrary — it is a part of our model for the initial

condition — but a better understanding of it, together with an improved formulation of

the initial condition, can be reached for the particular case where the target is a large

nucleus described by the MV model.

To that aim, consider the evolution at early stages, say for a (parent-dipole) rapidity

η such that η − η0 . 1. Then the constraint introduced by the step-function in eq. (9.1)

removes from the evolution all the emissions of very small dipoles with z � r: such dipoles

would have lifetimes much smaller than the characteristic scale introduced by η0. For a large

nucleus, this characteristic scale is the longitudinal extent of the target, that we shall denote

as L. (In the target rest frame and in a mean field approximation in which the nucleus is

assumed to be homogeneous, L = RA ' A1/3R0, where R0 is the radius of a nucleon and

RA that of the nucleus.) It is then natural to choose η0 = ln(L/τ0) = ln(RA/R0), which

holds in any frame.

In the context of the LO BK equation, which is local in rapidity, it seems appropriate

to encode the effect of all the fluctuations with lifetimes smaller than L into a model

for the initial condition S(0)(r) at η0; e.g., in the MV model one simply ignores all such

fluctuations. However, beyond LO, the non-local evolution couples fluctuations with widely

different lifetimes and the same happens at early stages, where the evolution includes effects

from fluctuations with lifetimes smaller than the target width. Such fluctuations do not

contribute to leading logarithmic accuracy — they do not provide contributions of O(ᾱsη)

when ᾱsη & 1 —, which explains why they were ignored in writing eq. (9.1). Yet, they

are a part of the complete physical picture and they might influence the evolution at early

stages. It is therefore interesting to estimate their contribution to the early evolution in

more detail. In this study, one can treat the scattering between the short-lived fluctuations

and the nucleus within the semi-classical approximation, that is, within the MV model.

Let us start by anticipating the final result of this study: this is a modified version of

eq. (9.1), which reads

∂S̄xy(η)

∂η
=

ᾱs
2π

∫
d2z (x− y)2

(x− z)2(z − y)2

[
S̄xz(η − δxz;r)S̄zy(η − δzy;r)− S̄xy(η)

]
. (9.3)

As compared to eq. (9.1) there is no step-function anymore (hence, no explicit dependence

upon η0) but it is understood that the dipole S-matrices in the r.h.s. are given by the MV

model whenever their rapidity arguments are smaller than η0. With this prescription, (9.3)

represents indeed a well-defined initial value problem with the initial condition formulated

at η = η0. For instance, the S-matrix S̄xz(η − δxz;r) is given by the solution to this

equation when η− δxz;r > η0 and by the MV-model estimate S
(0)
xz whenever η− δxz;r ≤ η0.

In other terms, the MV model is not used locally in η, at η = η0, as in a traditional initial

value problem; it is also used at smaller rapidities η < η0, i.e. for gluon fluctuations whose

lifetimes are much smaller than L. This goes beyond the usual validity range of this model

— which, we recall, is intended for a color dipole whose coherence length is comparable to

L [15, 16] — and requires some explanation.
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Before developing our argument, let us observe that the difference between eqs. (9.3)

and (9.1) is important only at early rapidities η & η0, as expected on physical grounds.

Indeed, the conditions η− ln(r2/z2) < η0 < η impose a strong limitation on the size of the

smallest daughter dipole, z2 � r2 exp[−(η−η0)]; for such small values of z, the combination

of S-matrices inside the integrand of (9.3) is rapidly vanishing, due to color transparency

and to real vs. virtual cancellations.

A rigorous derivation for eq. (9.3) can be given by using the generalisation of the BK

equation to the case of an extended target, as presented in the context of jet quenching [56,

57]. Here however we shall present a simplified argument, which replaces most of the formal

manipulations in [56, 57] by heuristic considerations.

The question that we would like to address is as follows: given a dipole with size r

and rapidity η & η0, how is its scattering modified by the emission of soft gluons with

very small sizes z � r and hence short lifetimes τz � L? The interesting case is when the

parent dipole is not too large, r . 1/Qs, where Qs = Qs(η0) is the saturation momentum

in the MV model. Indeed, larger dipoles with r � 1/Qs are in the black disk regime

already at tree-level and this cannot change after including the effects of the radiation.

The small daughter dipole with z � r . 1/Qs will be in the color transparency regime and

its S-matrix can be computed in the single scattering approximation. This is an important

simplification. Based on it, we would like to argue that the contribution of such small

fluctuations to the change of the S-matrix for the parent dipole can be evaluated as

∂S̄(η, r)

∂η

∣∣∣∣
η&η0

= −2
ᾱs
2π

∫
d2z r2

z2(r − z)2
Θ
(
η0 − η + ln

r2

z2

)[
S(0)(r)T (0)(z)

]
, (9.4)

where the overall factor of 2 accounts for the fact that the “small dipole” with size z can

be any of the two daughter dipoles (in the notations of eq. (9.3), one either has z = |x−z|,
or z = |z − y|). The step-function limits the integration to the short-lived fluctuations of

interest for the problem at hand. The S-matrix S(0)(r) and the single-scattering amplitude

T (0)(z) which occur in the r.h.s. are computed according to the MV model, as appropriate

for η ∼ η0.

The S-matrix S(0)(r) is the probability for the parent dipole to survive the medium in

a color singlet state and without radiating; this is shown in eq. (2.3) that we conveniently

rewrite here as

S(0)(r) = e−
1
4
Lq̂r2

. (9.5)

Our present notation is meant to emphasise that the saturation scale in the exponent is

proportional to the width L of the medium: Q2
s = q̂L. (The proportionality coefficient q̂ is

logarithmically dependent upon r, as shown in eq. (2.3), but this dependence is inessential

for the present purposes.) Furthermore, T (0)(z) is the scattering amplitude for a small

dipole with size z � 1/Qs which propagates throughout the whole medium:

T (0)(z) =
1

4
Lq̂z2 . (9.6)

The emergence of this global amplitude may look surprising in view of the fact that the

fluctuation has only a very short lifetime τz ' 2q+z2 � L. But in the context of eq. (9.4),
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the quantity T (0)(z) is not meant to represent the scattering amplitude of just one fluctua-

tion, but the cumulated effect of an arbitrary number of such fluctuations which can occur

anywhere inside the medium.

To better understand that, it might be useful to have a glance at figure 10 which

illustrates the dynamics under consideration: the dipole with size r undergoes successive

independent scatterings off the color sources (“valence quarks”) in the nucleus and also

radiates a very short-lived gluon fluctuation, which can overlap in the longitudinal direction

(and interact) with only one such a color source. But this fluctuation can be emitted

anywhere inside L, that is, it can renormalize the scattering between the dipole and any of

the color sources. The change in the dipole S-matrix associated with a fluctuation localized

around the color source i can be estimated as

∆S(r) = SLt2(r)St2t1(z)St2t1(|r − z|)St10(r)− SL0(r) ' SL0(r)
[
St2t1(z)− 1

]

' −S(r)
1

4
τz q̂z

2 (9.7)

in rather schematic notations where t1 (t2) is the time14 when the fluctuation is emitted

(reabsorbed), with t1 < ti < t2, t2 − t1 = τz is the gluon lifetime, St10(r) is the S-matrix

accummulated by the dipole of size r during its propagation from t = 0 up to t = t1, etc;

so, in particular SL0(r) = S(r). (We have omitted the upper script (0) on the MV-model

S-matrices, to simplify notations.) Furthermore, we have used the fact that, in the interval

t1 < t < t2, the original dipole is replaced by the two daughter dipoles, which however

are very asymmetric: |r − z| ' r � z. Hence, St2t1(|r − z|) ' St2t1(r), which enabled

us to reconstruct SL0(r) as SL0(r) = SLt2(r)St2t1(r)St10(r) in the first, “real”, term in the

r.h.s. of eq. (9.7). The final estimate in eq. (9.7) follows after using the single-scattering

approximation for St2t1(z). This final result is independent of the position ti of the source

i and can be used to deduce the rate for the change in the S-matrix:

dS

dt
' ∆S

τz
= −S(r)

1

4
q̂z2 (9.8)

The global change integrated over all times 0 < t < L is obtained by multiplying this rate

by a factor of L and thus yields the product S(r)T (z) visible in the integrand of eq. (9.4).

To finally justify eq. (9.3), we observe that for early rapidities and short-lived fluctua-

tions, such that η − ln(r2/z2) < η0 . η, the combination of S-matrices in the integrand of

eq. (9.3) is indeed equivalent to that in eq. (9.4) to the accuracy of interest.

Eq. (9.3) is one of our main results in this paper: this is the physically most complete

version of our resummation of double-collinear logarithms in the BK evolution with respect

to the target rapidity η. Clearly, the extension of this new equation to full NLO accuracy is

the same as presented in section 6: it suffices to replace the “BK-like” equation appearing

in the first line of eq. (6.4) by eq. (9.3).

In practice though, we do not expect significant changes when using eq. (9.3) instead

of (9.1) (including at NLO accuracy). Indeed, as already stressed, the difference refers

14These “time” variables are truly values of the light-cone coordinate x+, which plays the role of a time

for the right-moving projectile.
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Figure 10. Pictorial representation of the quantum evolution of the dipole scattering amplitude via

the emission of a small-size, short-lived, soft gluon fluctuation. The dipole with size r propagates

through the target with longitudinal extent L and scatters off the valence quarks via 2-gluon

exchanges (in the spirit of the MV model). The gluon fluctuation with size z � r undergoes a

single scattering off the valence quark that it overlaps with in time.
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Figure 11. Comparing the numerical solutions to the “canonical” non-local equation (6.1) (the

same as (9.1) with η0 = 0) and the new eq. (9.3), for ᾱs = 0.3. Left: the respective predictions

for the dipole amplitude: thick lines correspond to eq. (9.3) and thin lines to eq. (6.1). Right: the

speed of the fronts as a function of η; for illustration, we also show the respective prediction of the

LO BK equation.

at most to the very early evolution. To demonstrate that, we compare the numerical

solutions to eqs. (9.3) and (9.1) in figure 11. One can see a small difference in the speed

of the saturation fronts at early rapidities η . 4, but the asymptotic predictions for λ̄s are

indeed the same, as expected. In appendix F we study a 0-dimensional toy-model with

delay and show indeed that the asymptotic speed does not depend on the detailed way

that one starts the evolution.
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10 Conclusions and perspectives

Our main observation in this paper is that, when studying the high-energy evolution in

pQCD beyond leading-order, the BK equation for dilute-dense scattering must be formu-

lated as an evolution with respect to the rapidity η of the dense target, and not with the

rapidity Y of the dilute projectile.

This is first of all needed for the physical interpretation of the results. For instance,

the structure functions for deep inelastic scattering must be computed in terms of Bjorken

x to admit their standard interpretation in terms of parton distributions in the target.

Similarly, the variable x for the evolution of the saturation momentum Qs(x) must refer

to the longitudinal momentum of the target in order to have a meaningful interpretation

in terms of non-linear effects in the gluon distribution of the target.

However, our present analysis shows that the choice of a rapidity variable goes beyond

such issues of physical interpretation: the use of the target rapidity η is already compulsory

in the formulation of the evolution equation at NLO and beyond. This is due to the fact that

the perturbative expansion for the evolution with Y is afflicted with severe instabilities,

whose consequences remain out of control — in the sense of showing a strong scheme-

dependence after translating the results in terms of η — even after the resummation of

the dominant radiative corrections — those enhanced by anti-collinear double logarithms.

The ultimate reason why perturbation theory in Y is so ill-behaved is because the effects

of the anti-collinear logarithmic corrections to the BK kernel are amplified by the typical,

“hard-to-soft”, evolution for dilute-dense scattering.

Besides this fundamental problem, we have identified additional difficulties with the

anti-collinear resummations in Y , which refer to the formulation of the initial-value problem

in the presence of the constraint of time-ordering. Albeit of more “technical” nature, these

difficulties have a serious impact on the applications to the phenomenology (they affect the

results at low and intermediate rapidities) and we have not been able to offer solutions to

them in practice.

We have shown that all these difficulties can be circumvented by working directly with

the rapidity η of the dense target. The general idea is indeed natural, given that the

evolution in η guarantees the proper time-ordering of the soft gluon emissions and thus

avoids the emergence of anti-collinear double-logarithmic corrections. But albeit natural,

this strategy is still highly non-trivial, as it requires several clarifications and developments

that we have successively addressed in this paper.

First, one needs the NLO BK equation for the evolution in η; in section 4.1, we have

shown that this can be easily obtained via a change of variables from the corresponding

equation in Y , which is known. Second, albeit void of double anti -collinear logarithms,

the NLO corrections to the BK equation in η contain double collinear logs, which mat-

ter for the atypical, “soft-to-hard”, emissions permitted by the BFKL diffusion. Their

effects accumulate with increasing η and eventually lead to instabilities, which are however

milder than for the evolution with Y (cf. the discussion in section 4.2). In section 5, we

have demonstrated that the evolution in η stabilises after all-order collinear resummations,

which are formally similar to the anti-collinear ones in Y , but differ from the latter in
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two important aspects: (i) they lead to well-posed initial-value problems (up to minor

subtleties related to the non-locality in rapidity, which are clarified in section 9), and (ii)

their predictions show a reasonably small scheme-dependence, of the order of the expected

perturbative accuracy for the resummations.

Interestingly, we found that the collinear resummations in η affect not only the linear

dynamics in the BFKL (or weak scattering) regime, but also the non-linear dynamics in

the vicinity of unitarity/saturation. This observation allowed us to discard one of the

resummed equations — the only one to be local in η, cf. eq. (7.21) —, which is not correct

in the approach to saturation. Furthermore, among the non-local (in η) versions of the

resummation that we proposed, and which differ from each other in the precise structure

of the rapidity shift, we have selected only two: those which match better the detailed

structure of the NLO corrections in η (cf. section 5 and the beginning of section 6). For these

two prescriptions, we have also presented the extension of the corresponding resummed

equation to full NLO accuracy: this is eq. (6.4), which may be seen as our main new result

in this paper.

In order to gain more insight in the physical consequences of the resummation, we

performed rather exhaustive analytic and numerical studies using one of the non-local

evolution equations aforementioned, namely the “canonical” equation displayed in eqs. (6.1)

or (9.3). These two equations differ from each other only in the formulation of the initial

value problem, which is indeed subtle in the presence of a non-locality in the evolution

“time” η. Eq. (9.3) is more complete on physical grounds (see section 9 for details), but

in practice the differences w.r.t. eq. (6.1) are only tiny, as demonstrated by the numerical

comparison in figure 11.

Via analytic studies of eq. (6.1) in the BFKL regime, in section 7, we have clarified the

relation between our present approach and the collinear resummations performed earlier,

in the context of the NLO BFKL equation. In section 8 we have studied the solution to

eq. (6.1), via both analytic and numerical methods, and found that the resummation has

indeed important effects in slowing down the evolution and also changing the shape of the

saturation front (the “anomalous dimension at saturation”), while keeping the property of

geometric scaling. These effects remain sizeable in the presence of a running coupling and

contribute to producing an effective (η-dependent) saturation exponent which is consistent

with the phenomenology (see figure 9. (right)).

To summarize, our preliminary studies based on the collinearly-improved version of the

BK equation alone — where by “collinear improvement” we now mean the collinear resum-

mations in η leading to eqs. (6.1) or (9.3) — already look promising for the phenomenology.

It would be of course very interesting to confirm such good expectations via explicit ap-

plications of this equation to the phenomenology of deep inelastic scattering at HERA

and that of particle production at forward rapidities in proton-proton and proton-nucleus

collisions at the LHC. The results thus obtained (say, in terms of the parametrisation of

the initial condition for the resummed equation) could then serve as a basis for predictions

for future studies of semi-hard processes at the Electron-Ion Collider.

But the ultimate test of the usefulness of these resummations and, more generally, of

our current understanding of the high-energy evolution in perturbative QCD would consist
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in solving the resummed equation with full NLO accuracy, that is, eq. (6.4), for which we

expect a very good accuracy and hence highly reliable predictions: for a fixed coupling,

one expects an error of O(α3
s) in the prediction for the saturation exponent, meaning that

the relative error δλ̄s/λ̄s ' ᾱ2
s should be only ∼ 10% for ᾱs = 0.3. Of course, solving this

full NLO equation would be a much more challenging task than our current solutions to

the collinearly-improved BK equation (6.1), due to the complicated non-linear and non-

local (notably in the transverse plane) structure of eq. (6.4). Yet, this should be doable in

practice, since eq. (6.4) does not look more complicated than the respective equation for

the evolution with Y [36] and which has been numerically solved in ref. [38].
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A Integrals for the BFKL evolution at NLO in the η-representation

A.1 NLO BFKL

In the first part of this appendix we show how one goes from eq. (4.6) to eq. (4.9) (the latter

being necessary to obtain the NLO BFKL equation in the η-representation), by performing

one of the two 2-dimensional integrations.

The key point is to make a suitable change of variables, so that all three terms in

eq. (4.6) involve, for example, T̄zy. To this end, in the first term we let z → u+ y − z, in

the third one we let z ↔ u, while we leave the second one as it is. Then one sees that the

first two terms become identical and putting all three terms together we have

∆T̄xy =
ᾱ2
s

2π2

∫
d2z (x−y)2

(x−z)2(z−y)2
T̄zy

∫
d2u

(u−z)2

[
(x−z)2

(x−u)2
ln

(u−y)4

(x−y)4
− (z−y)2

(u−y)2
ln

(z−y)2

(x−y)2

]
.

(A.1)

Each of the two terms in the above integration over u is singular, thus we will try to

reshuffle the terms in order to get integrations that individually converge. To this end, we

decompose the logarithm appearing in the first term in eq. (A.1) as

ln
(u− y)4

(x− y)4
= ln

(u− y)4

(x− y)2(z − y)2
+ ln

(z − y)2

(x− y)2
. (A.2)
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Employing eq. (143) in [58], or equivalently eq. (A.26) in [59], we get

∫
d2u (x− z)2

(x− u)2(u− z)2
ln

(u− y)4

(x− y)2(z − y)2
= π ln2 (z − y)2

(x− y)2
. (A.3)

Notice that although the integration gives two individual singularities originating from

u = x and u = z, they eventually cancel each other leaving a finite integral. One could see

this directly at the level of the integrand, by splitting the logarithm into two equal parts

and making the change of variable u→ x+z−u in one of the two parts. Since the dipole

kernel is invariant under this change, one finds

∫
d2u(x−z)2

(x−u)2(u−z)2
ln

(u−y)4

(x−y)2(z−y)2
=

∫
d2u(x−z)2

(x−u)2(u−z)2
ln

(u−y)2(x−y+z−u)2

(x−y)2(z−y)2
,

(A.4)

in which it is clear that the logarithm cancels the singularities at u = x and u = z. Now,

by using eq. (A.22) in [59] we have

ln
(z−y)2

(x−y)2

∫
d2u

[
(x−z)2

(x−u)2(u−z)2
− (z−y)2

(z−u)2(u−y)2

]
=−2π ln

(z−y)2

(x−y)2
ln

(z−y)2

(x−z)2
.

(A.5)

The two terms in eqs. (A.3) and (A.5) are combined together to give for the u-integration

in eq. (A.1)

∫
d2u · · ·=π ln

(z−y)2

(x−y)2
ln

(x−z)2

(x−y)2
−π ln

(z−y)2

(x−y)2
ln

(z−y)2

(x−z)2
. (A.6)

By further symmetrizing the z-integrand in eq. (A.1) in x−z and z−y, we finally arrive at

eq. (4.9). One can calculate the characteristic function of each of the two terms in eq. (4.9)

to find

∆ω(1) =
ᾱ2
s

2
χ0(γ)χ′0(γ) +

ᾱ2
s

4
χ′′0(γ), (A.7)

∆ω(2) =
ᾱ2
s

2
χ0(γ)χ′0(γ)− ᾱ2

s

4
χ′′0(γ), (A.8)

and their sum agrees with eq. (4.8) as it should.

A.2 NLO piece of the local equation (6.1)

In the second part of this appendix we uncover the double logarithm for small daughter

dipoles which is contained in the non-local equation eq. (6.1) at order ᾱ2
s.

We start from eq. (6.3), we linearize to get the equation for the amplitude and then we

follow the exact same steps described above eq. (A.1). It becomes obvious that we arrive at

an equation very similar to eq. (A.1), except that the logarithms are replaced by δ-shifts,

more precisely we have

∆T̄xy =
ᾱ2
s

2π2

∫
d2z (x−y)2

(x−z)2(z−y)2
T̄zy

∫
d2u

(u−z)2

[
−2

(x−z)2

(x−u)2
δuy;r+

(z−y)2

(u−y)2
δzy;r

]
. (A.9)
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Figure 12. The transverse coordinates in the strongly ordered regime defined in eq. (A.10), which

in the end leads to the double logarithmic contribution. The points x, y and z are fixed and

are such that |z − y| � r. The point u should be well outside the small (red) circle with radius

∼ |z − y|. At the same time it should stay inside the larger (green) circle whose radius is much

smaller than r but much larger than |z − y|.

In the regime where the shifts are non-zero, the above is identical to eq. (A.1). However

the two equations are very different in the regime of large dipoles. Since the shift simply

vanishes, eq. (A.9) does not lead to any large double logarithms. On the contrary, eq. (A.1)

does contain such logs, which in fact are necessary to cancel those in the second term in

eq. (4.5) (when linearized).

Let us consider the integration over u in eq. (A.9). Each of the two terms there is

singular, the first when u = z and the second when u = z or u = y. Nevertheless,

it is rather easy to see that these singularities cancel when summed, and therefore the

u-integration leads to a finite function of x, y and z. Although it appears difficult to

perform exactly the integration with the shift in eq. (5.7), we can make progress by looking

at small daughter dipoles, and after all this is the regime that we are interested in.

Thus, since T̄zy appears on the r.h.s. of eq. (A.9), we assume |z − y| � r. Then the

dominant contribution to the u-integration arises from the strongly ordered regime

|z − y| � |u− y| � r, (A.10)

and in particular this leads to the approximate equalities

|x− z| ' |x− u| ' r & |u− z| ' |u− y|. (A.11)

An example of such a configuration and the allowed integration region are shown in

figure 12. We now see that only the first term in the square bracket in eq. (A.9) leads

to a logarithmic integration and we have

∫
d2u · · · ' −2π

∫ r2

|z−y|2

d|u− y|2
|u− y|2 ln

r2

|u− y|2 = −π ln2 r2

|z − y|2 , (A.12)

which is in agreement with the z → y limit of eq. (A.6) as it should. Finally, using the

above, eq. (A.9) leads to

∆T̄ (r2) ' − ᾱ
2
s

2

∫ r2

0

dz2

z2
ln2 r

2

z2
T̄ (z2), (A.13)

where in the integrand we have let |z−y| → z. This is indeed the double logarithmic NLO

correction to the kernel in the η-representation as exhibited in eq. (4.12).

– 66 –



J
H
E
P
0
4
(
2
0
1
9
)
0
8
1

B Oscillations of the BFKL solution at large η

In this appendix we start from the general BFKL solution given in eq. (4.16) and we

perform a saddle-point integration in order to find an analytical expression valid in the

regime 0 < ρ� η.

This is the regime of the Pomeron intercept problem and we will see that the solution

is unstable in the sense that it develops oscillations in η (and also in ρ), except in the

case that ᾱs is extremely small.15 In the asymptotic regime of interest, one must solve the

saddle point condition

ω̄′(γP) = 0. (B.1)

At leading order γP = 1/2 with ω̄(γP) = 4(ln 2)ᾱs. At NLO, at the level of eq. (4.14), and

given the structure in eq. (4.20), one readily sees that there is a real solution only for very

small values of ᾱs. More precisely, when ᾱs is smaller than the critical value ᾱcr
s ' 0.032 in

eq. (4.21), then eq. (4.16) admits a well-defined solution. When ᾱs > ᾱcr
s , the asymptotic

dynamics is dominated by two complex solutions to eq. (B.1) which are conjugate to each

other and thus guarantee that the solution is real. It suffices to consider only one of the two

saddle points, calculate the respective contribution and then add its complex conjugate.

We approximate the exponent in eq. (4.16) as

E(γ) ' ω̄(γP)η +
ω̄′′(γP)η

2
(γ − γP)

2 − γρ. (B.2)

We follow the integration contour

γ = γP + reiθP ⇒ dγ = eiθPdr (B.3)

where θP is a fixed angle to be shortly determined. In order to have a compact notation let

us also define

ω̄(γP) ≡ ω̄P (B.4)

ω̄′′(γP) = |ω̄′′(γP)|eiβP ≡ DPe
iβP . (B.5)

To avoid any confusion we point out that γP and ω̄P are complex, while DP and βP are real.

These constants are fixed by the saddle point condition and they will all appear in the

solution. Now eq. (B.2) reads

E(γ) ' ω̄Pη − γPρ+
DPη

2
ei(βP+2θP)r2 − ρeiθPr. (B.6)

The steepest descent method requires that the amplitude decreases as fast as possible as

we move away from the saddle point (while obviously staying on the contour, here defined

15One may argue that neither Y , nor η are the correct rapidity variables. In fact the correct choice

should be (Y + η)/2 = ln(s/QQ0), with Q ∼ 1/r. With such a choice γP is complex, but ω̄P is real due to

the symmetry of the kernel under γ ↔ 1 − γ. Thus, there are no oscillations in Y , but only in ρ (since

γP is still complex) [60]. In fact this happens only for large values of ρ, so the issue is kind of milder, but

in principle the oscillation is not a nice feature anyway. Still, in the saturation problem, one has to solve

ω̄′(γ) = ω̄(γ)/γ which is asymmetric in γ ↔ 1− γ, no matter what the choice of the energy scale is.
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in eq. (B.3)). This condition uniquely selects θP as

βP + 2θP = π ⇒ θP =
π

2
− βP

2
& eiθP = ie−iβP/2 (B.7)

and eq. (B.6) becomes

E(γ) ' ω̄Pη − γPρ−
DPη

2
r2 − ie−iβP/2ρr. (B.8)

The next step is to shift the integration variable r in such a way that the linear term

in eq. (B.8) vanishes. This can be achieved by letting r → r + ie−iβP2ρ/(DPη) and the

exponent becomes

E(γ)→ ω̄Pη − γPρ−
eiβPρ2

2DPη
− DPη

2
r2. (B.9)

We are finally able to perform the integration in eq. (4.16). Putting everything together,

including the prefactor evaluated at γP, we arrive at

T̄ (η, ρ) = T̄0(γP)e
−iβP/2

e
− eiβPρ2

2DPη√
2πDPη

eω̄Pη−γPρ + c.c. (B.10)

where c.c. stands for complex conjugate.

For simplicity, let us assume the initial condition T̄0(γ) = α2
s/[γ

2(1−γ)2], which corre-

sponds to dipole-dipole scattering averaged over the target dipole area. For the convenience

of the numerics when solving eq. (4.16), we retain only the pole structure of the charac-

teristic function, that is, we shall neglect the regular pieces in eq. (4.18). Then, using

the same simplified characteristic function for a proper comparison, we readily obtain the

saddle point solution from eq. (B.10). As we have already shown in figure 3 the agreement

of the two oscillating solutions is excellent in the regime of validity. Notably, let us take

(for example) ᾱs = 0.2 for which we find ω̄P = 0.591 + 0.225i. From the dominant expo-

nential in eq. (B.10) we easily determine the half period of the oscillation in η which is

τη = π/=ω̄P = 13.9 which is clearly seen in both solutions in figure 3.

C The BFKL solution around ρ̂(η)

In this appendix we would like to improve our BFKL solution in the regime ρ > ρ̂(η).

To this end, we shall extent the calculation done in section 4.2 and obtain two subleading

terms to be added on the r.h.s. of eqs. (4.29) and (4.31).

Starting from eq. (4.16) we now expand ω̄(γ) around γc to all orders, i.e.

ω̄(γ) = ω̄(γc) + (γ − γc)ω̄
′(γc) +

1

6
(γ − γc)

3ω̄′′′(γc) +
∞∑

m=4

(γ − γc)
mω̄(m)(γc)

m!
. (C.1)

Similarly we expand the initial condition T̄0(γ) as

T̄0(γ) = T̄0(γc) +

∞∑

l=1

(γ − γc)
mT̄

(l)
0 (γc)

l!
. (C.2)
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We furthermore introduce for our convenience the variable

z ≡ Dc[ρ− ω̄′(γcη]

η1/3
, (C.3)

and by using the integration variable t defined in eq. (4.26) in the main text we write the

amplitude as

T̄0(η,ρ) =
T̄0(γc)Dc

η1/3
exp[ω̄(γc)η−γcρ]

∫
dt

2πi

(
1+

∞∑

l=1

blt
l

ηl/3

)
exp

(
−zt+ t3

3

)
exp

( ∞∑

m=4

κmt
m

η
m−1

3

)
.

(C.4)

The expansion coefficients appearing in the above are defined as

bl =
T̄

(l)
0 (γc)D

l
c

T̄0(γc)l!
and κm =

ω̄(m)(γc)D
m
c

m!
. (C.5)

No approximation has been done so far, that is, eq. (C.4) is the exact generalization of

eq. (4.27) to all orders in the relevant Taylor expansion. Now from the two series in eq. (C.4)

we neglect terms which fall faster than 1/η2/3 as η becomes large, so we have for these two

factors
(

1+
b1t

η1/3
+
b2t

2

η2/3

)
exp

(
κ4t

4

η1/3
+
κ5t

8

η2/3

)
' 1+

b1t+κ4t
4

η1/3
+

1

η2/3

[
b2t

2+(b1κ4+κ5)t5+
κ2

4

2
t8
]
.

(C.6)

Using the identity ∫
dt

2πi
tn exp

(
−zt+

t3

3

)
= (−1)n

dnAi(z)

dzn
(C.7)

and the fact that all derivatives of the Airy function can be expressed in terms of Ai(z)

and Ai′(z), since Ai′′(z) = zAi(z), it is not difficult to show that the amplitude reads

T̄0(η,ρ) =
T̄0(γc)Dc

η1/3
exp[ω̄(γc)η−γcρ]

{
Ai(z)+

1

η1/3

[
κ4z

2Ai(z)+(2κ4−b1)Ai′(z)
]

+
1

η2/3

[
b2zAi(z)−(b1κ4+κ5)

[
4zAi(z)+z2Ai′(z)

]
+
κ2

4

2

[(
28z+z4

)
Ai(z)+12z2Ai′(z)

]]}
.

(C.8)

Now it is possible to find at which z the above vanishes. In turn, this determines ρ̂(η) up

to order 1/η1/3, and we find

ρ̂(η) = ω̄′(γc)η +
a1

Dc
η1/3 +

b1 − 2κ4

Dc
+

(κ5 − 4κ2
4)a2

1

Dc

1

η1/3
. (C.9)

It is a matter of tedious, but straightforward, algebra to expand the solution in eq. (C.8)

around its zero, and in terms of ξ = ρ− ρ̂(η) we finally arrive at

T̄ (η, ρ) =
T̄0(γc)D

2
cAi′(a1)ξ

η2/3
exp [ω̄(γc)η − γcρ̂(η)− γcξ]

[
1 +

κ4a
2
1

η1/3

+
a1

2η2/3

(
− b21 + 2b2 + 32k2

4 + a3
1κ

2
4 − 12κ5

)
+

2a1κ4Dcξ

η2/3
+
a1D

2
cξ

2

6η2/3

]
. (C.10)
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It is also worthwhile to note in eq. (C.9) for ρ̂(η) that the coefficient of the 1/η1/3 is

universal, since it depends only on the constants κm which are related to the kernel, but not

on the constants bl which are fixed by the initial condition. On the contrary the constant

term is not universal. All this is natural since universal terms should not be affected by

an arbitrary shift η → η + η0. Since there is no η2/3 term in the expansion in eq. (C.9),

a shift cannot induce a change in the 1/η1/3 term. On the contrary, a shift in the very

leading term proportional to η gives rise to a change in the constant term. Using the same

reasoning, one does not expect to find more universal terms in eq. (C.9). The next term

would be ∼ 1/η2/3 and it would be affected by a shift in the η1/3 term.

D The remainder in eq. (7.5)

In this appendix we would like to show that the approximations involved in going from

eq. (7.3) to eq. (7.4) are indeed harmless for the purposes of the discussion in section 7.1.

To be more precise, we will show that the terms neglected when writing eq. (7.4) do not

modify the asymptotic eigenvalue branch of the non-local equation with the “canonical”

shift and thus they do not affect the (exponent of the) asymptotic behavior of the solution.

To that aim, we return to eq. (7.3), and evaluate the r.h.s. without any approximation:

we first shift the rapidity integration variable in the real term and then we isolate an

integration from 0 to ∞, both in the real and in the virtual term, to reconstruct the

Laplace transform of the amplitude; we thus find

ωT̄xy(ω)−T̄xy(η= 0) =
ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2

[
2e−ωδxz;r T̄xz(ω)−T̄xy(ω)

]

− ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2

[
2

∫ δxyz−δxz;r

0
dη e−ω(η+δxz;r)T̄xz(η)−

∫ δxyz

0
dη e−ωηT̄xy(η)

]
.

(D.1)

The second term in this equation has been neglected in writing eq. (7.4); we shall refer to

it as the “remainder”. After taking a Mellin transform of eq. (D.1), the remainder to be

added to the r.h.s. of eq. (7.5) is

− ᾱs
2π

∫
d2z (x−y)2

(x−z)2(z−y)2

{
2

[
(x−z)2

(x−y)2

]γ∫ δxyz−δxz;r

0
dη e−ω(η+δxz;r)T̄ (η,γ)−

∫ δxyz

0
dη e−ωηT̄ (η,γ)

}
.

(D.2)

One can already suspect that the above cannot affect the asymptotics, since the

η-integration does not extend all the way to infinity. For simplicity, we shall work to

lowest order in ᾱs, which means we can set ω = 0. By further expanding T̄ (η, γ) around

η = 0, the remainder becomes

− T̄ (η = 0, γ)
ᾱs
2π

∫
d2z (x− y)2

(x− z)2(z − y)2

{[
2

(x− z)2

(x− y)2

]γ (
δxyz − δxz;r

)
− δxyz

}

− T̄ ′(η = 0, γ)
ᾱs
4π

∫
d2z (x− y)2

(x− z)2(z − y)2

{[
2

(x− z)2

(x− y)2

]γ (
δxyz − δxz;r

)2 − δ2
xyz

}
− · · · .

(D.3)
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In a given line in the above, the real and the virtual terms are individually divergent,

however their sum is finite and the remainder to lowest order in ᾱs gives

ᾱsf0(γ)T̄ (η = 0, γ) + ᾱsf1(γ)T̄ ′(η = 0, γ) + · · · . . . (D.4)

where fi(γ) are regular functions of γ in the interval [0, 1]. Similarly for higher orders in

ᾱs. Thus, the remainder can only modify the numerator in eq. (7.10) by changing the

coefficient of T̄ (η = 0, γ) and adding terms proportional to the derivatives T̄ (n)(η = 0, γ),

but it does not modify the asymptotics determined by the positive eigenvalue ω̄(γ) defined

in eq. (7.11).

E Shifting the virtual term

In this appendix we shall study a modification to our non-local equation with the “canon-

ical” shift given in (6.1) which leads to certain attractive features.

Focusing on the NLO terms in eqs. (7.14) and (7.15), we see that there is a single

pole with residue −π2/6 both at γ = 0 and at γ = 1. Now recall that when we match to

NLO BK, we must subtract the O(ᾱ2
s) of the shift to avoid double counting, cf. the piece

proportional to δuy;r in the third term in eq. (6.4). Hence such poles, now with a positive

residue, remain as part of the total eigenvalue. They are presumably very weak to cause

any potential problems, nevertheless, since they do not exist in NLO BFKL, it may be

desirable to construct a scheme in which they are absent. This can be done, for example,

by changing the virtual term in eq. (6.1) as follows

S̄xy(η)→ Θ(η − 2∆xz;r)S̄xy(η − 2∆xz;r), (E.1)

where ∆xz;r is defined in eq. (3.30) and is significant only for large daughter dipoles. In

order to match to NLO BK in the η-representation, we must add to the r.h.s. of eq. (6.4)

the opposite of the ᾱ2
s piece induced by eq. (E.1), that is

− ᾱ2
s∆

2π

∫
d2z (x− y)2

(x− z)2(z − y)2

[
S̄xz(η)S̄zy(η)− S̄xy(η)

]
, (E.2)

which nicely combines with the second term there. For our convenience, in the above we

have defined the integral of the shift (weighted by the dipole kernel)

∆ =
1

π

∫
d2z (x− y)2

(x− u)2(u− y)2
∆xu;r =

π2

6
. (E.3)

Therefore, it is clear that the single poles associated with eq. (E.2) will precisely cancel the

aforementioned single poles due to the last term in eq. (6.4).

Staying at the level of matching to LO BK, the modification in eq. (E.2) leads to the

addition of the extra term

− T̄ (ω, γ)
ᾱs
2π

∫
d2z (x− y)2

(x− z)2(z − y)2

(
e−2ω∆xz;r − 1

)
(E.4)
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to the r.h.s. of eq. (7.5). The respective “remainder”, like the one originating from the

real terms and studied in appendix D, does not play any role in the asymptotics. One

can perform the integration in eq. (E.4) and the characteristic function analysis done in

section 7.1 remains unchanged, except that now we must replace eq. (7.8) by

χ(γ, ω) = 2ψ(1)− ψ(γ + ω)− ψ(γ) +
ψ(2ω + 1)− ψ(1)

2
. (E.5)

It is straightforward to show that the positive solution to ω = ᾱsχ(γ, ω), with χ(γ, ω) given

in the above, does not contain any single poles at order ᾱ2
s as expected.

F Delay differential equations

In this appendix we study a simple example of a delay differential equation, i.e. an equation

in which the derivative of the unknown function at a certain “time” depends on the values

of the function at earlier times. To some extent, the problem that we consider here is

realistic enough in the sense that it is the zero dimensional analog of the evolution equation

discussed in the main text of the present work. The main features confirmed in this simple

setup are: a) the delay (shift) slows down the evolution b) the coupling is not any more

a good expansion parameter, but there is an effective parameter which depends also on

the delay and c) the “intercept” determining the asymptotic exponential growth does not

depend on the details of the initial condition. We shall study three variations of the same

problem, which practically differ only on the way we start the evoltuion.

(i) We start with the simplest case defined by

df(Y )

dY
= αf(Y −∆) with f(0) = f0, (F.1)

and where we shall assume that ∆ > 0. This can be immediately solved and gives

f(Y ) = f0 exp(ωY ), (F.2)

where the “intercept” ω is determined by the real solution to the transcendental equation

ω = α exp(−ω∆). (F.3)

Since ∆ > 0, the above implies that ω < α. That is, the intercept in the delayed evolution

is smaller than the intercept in the absence of a delay. It is also instructive to mention

that an iterative solution to eq. (F.3) can be constructed and reads

ω = α

(
1−∆α+

3

2
∆2α2 + · · ·

)
. (F.4)

This makes clear that the effective parameter is ∆α: even when the “coupling” α is small,

the fixed order expansion in eq. (F.4) will not be valid when ∆α & 1. (Notice that

the effective parameter in the QCD problem is α∆2, where the additional factor of ∆ is

generated by the eventual transverse integration on the r.h.s. of the evolution equation.)
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(ii) Second, we consider the problem

df(Y )

dY
= αΘ(Y −∆)f(Y −∆) with f(0) = f0, (F.5)

and for which we would like to determine the solution when Y > 0. This has to be solved

interval by interval in Y in steps of ∆. When 0 ≤ Y < ∆, the r.h.s. vanishes due to the

presence of the step function and thus f(Y ) remains constant, that is

f(Y ) = f0 for 0 ≤ Y ≤ ∆. (F.6)

In the second interval ∆ ≤ Y < 2∆, the r.h.s. is determined by the solution to the previous

interval and therefore it is constant. Requiring continuity of the solution when Y = ∆, we

readily obtain

f(Y ) = f0 + αf0(Y −∆) for ∆ ≤ Y ≤ 2∆. (F.7)

Let us explicitly do one last interval and find the solution when 2∆ ≤ Y < 3∆. The

r.h.s. is fixed by the branch in eq. (F.7) evaluated at Y −∆, and by integrating over Y and

requiring continuity at Y = 2∆ we arrive at

f(Y ) = f0 + αf0(Y −∆) +
α2

2
f0(Y − 2∆)2 for 2∆ ≤ Y ≤ 3∆. (F.8)

It becomes clear that the solution at any interval reads

f(Y ) = f0

n∑

κ=0

ακ(Y − κ∆)κ

κ!
for n∆ ≤ Y ≤ (n+ 1)∆. (F.9)

At first glance, it seems that eq. (F.9) does not have much in common with the solution

of case (i) given in eq. (F.2). Nevertheless, when Y is sufficiently large, the summation

in eq. (F.9) is dominated by terms for which κ is large, but smaller than n. Then the

summation can be approximated by an integration and using Stirling’s formula for the

factorial, we find

f(Y ) ' f0

∫
dκ√
2πκ

exp {κ [ln (αY − κα∆)− lnκ+ 1]} , (F.10)

which can be performed by employing the method of the steepest descend. Calling E(κ)

the exponent in the above, we can find the location of the saddle point by solving

E ′(κ0) = 0 ⇒ ln
αY − κ0α∆

κ0
=

κ0∆

Y − κ0∆
. (F.11)

It is not difficult to see in the above that κ0 scales with Y and, by using a notation

convenient for our purposes, we find that

κ0 =
ωY

1 + ω∆
, (F.12)

where ω is precisely the one solving eq. (F.3). (Since Y ' n∆, notice that κ0 is smaller

than n as it should.) The integration in eq. (F.10) becomes

f(Y ) =
f0 exp[E(κ0)]√

2πκ0

∫
dκ exp

[
−1

2

∣∣E ′′(κ0)
∣∣(κ− κ0)2

]
=
f0 exp[E(κ0)]√
κ0

∣∣E ′′(κ0)
∣∣
. (F.13)
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We easily find

E(κ0) = ωY and E ′′(κ0) = −(1 + ω∆)3

ωY
, (F.14)

so that finally the solution to eq. (F.5) for large Y is given by

f(Y ) ' f0 exp(ωY )

1 + ω∆
. (F.15)

(iii) Last, we take the case

df(Y )

dY
= αf(Y −∆) with f(Y ≤ 0) = f0. (F.16)

The construction of the exact solution is similar to the one in case (ii) and one finds

f(Y ) = f0

n+1∑

κ=0

ακ[Y − (κ− 1)∆)]κ

κ!
for n∆ ≤ Y ≤ (n+ 1)∆. (F.17)

It is not hard to be convinced that the asymptotic form of the above can be obtained by

letting Y → Y + ∆ in the corresponding expression of case (ii), that is

f(Y ) ' f0 exp(ω∆) exp(ωY )

1 + ω∆
. (F.18)

Therefore we see that, although the exact solution to the three variations of the problem

is different, the asymptotic solution is very similar. Eqs. (F.2), (F.15) and (F.18) share the

same “intercept” ω, determined by eq. (F.3) and they differ only in the overall prefactor.

Open Access. This article is distributed under the terms of the Creative Commons
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