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1 Introduction

Models that extend the Standard Model (SM) to include a composite sector are a pop-

ular way of naturalising the hierarchy between the observed Higgs mass and the mass

one would expect to be generated from quantum loop corrections. The underlying com-

posite behaviour is expected to be described with non-perturbative physics, but be-

low a certain energy scale Λcomposite the physics confines, and the system can be de-

scribed by an effective field theory (EFT) in which the Higgs emerges as a pseudo-

Nambu-Goldstone boson of a spontaneously-broken global symmetry of the composite

sector. The simplest model that is consistent with custodial symmetry, whilst leading

to exactly four Nambu-Goldstone bosons, is based on the symmetry breaking pattern

SO(5)×U(1)X → SO(4)×U(1)X [1, 2], which leads to the Minimal Composite Higgs

Model (MCHM). The EW group SU(2) ×U(1) ∈ SO(4) ≡ SU(2)× SU(2) is gauged, giv-

ing rise to a naturally light (relative to the symmetry breaking scale) pseudo-Nambu-

Goldstone-Boson (pNGB) Higgs.

The precise mechanics of this symmetry breaking have been explored in various con-

texts: studies with no assumptions of the higher scale [3–7], simple assumptions of fun-

damental heavy fermions to give rise to the composite sector [8, 9], and the composite

sector as arising from extra-dimensional effects [1, 2, 10–14]. We will work in the multi-site

effective field formalism known as the 4D Composite Higgs Model (4DCHM), a thorough

review of which can be found in [15]. In this multi-site approach, the non-Higgs SM fields
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are treated as elementary, while the Higgs and heavy composite fields are grouped into

discrete sectors, effectively obeying non-linear sigma models. Coupling between sectors is

achieved with Yukawa-type interactions, and linear couplings of elementary and composite

fermions, leading to partial compositeness of the physical fermions.

While this extension to the SM does provide a natural cut-off to the mass-generating

self-corrections of the Higgs, the various incarnations still require some degree of fine-tuning

to remain compatible with the observed SM-like Higgs boson mass and signal strengths, plus

the lack of observed new particle content at the LHC. One can attempt to reduce the tuning

by expanding the composite sector, for example by coupling the SM to more than one site of

composite quark partners [16, 17]; considering the leptons as partially composite, leading to

naturalness by accidental cancellations [18, 19]; or expanding the set of symmetries obeyed

by the composite sector [20–22]. In previous work, we have performed comprehensive

scans of a variety of MCHMs (distinguished by different fermion embeddings, and different

choices for which fermions are partially composite) [7, 19]. In each case, the regions of

the parameter space consistent with the Higgs VEV, top quark mass and the Higgs mass

were identified and used to obtain current and projected constraints on fine-tuning as a

function of existing and hypothetical limits on the top partner masses, charged vector

boson resonance masses, Higgs coupling deviations and the compositeness scale. We also

presented measures of fine-tuning that accurately count the variety of higher order tunings

that exist in composite Higgs theories, which can result from, for example, tuning the

parameters to obtain a Higgs VEV below the compositeness scale, and then separately

tuning them to ensure that leading and sub-leading contributions to the Higgs potential

are sufficiently matched to break electroweak symmetry.

In this paper, we extend our earlier results to perform a detailed comparison of the

fine-tuning of the MCHM and its minimal extension, the Next-to-Minimal Composite Higgs

Model (NMCHM) based on the symmetry breaking pattern SO(6) → SO(5). This intro-

duces an extra SO(4)-singlet scalar along with the four components of the usual Higgs

doublet. We also include composite fermions in order to render the radiatively generated

Higgs potential finite, and it can be shown using Weinberg sum rules that the minimal num-

ber of composite fermions required is two [22]. Previous works have thoroughly constructed

and explored the naturalness of the two-site NMCHM, both effectively [23] and with UV

completions in the fundamental partial compositeness paradigm [24]. However, its phe-

nomenology has only been tested against naive measures of tuning, using non-convergent

scanning techniques. In this paper, we focus on those qualities of the NMCHM that dif-

ferentiate its higher-order tuning from the MCHM, and explore both models using a novel

scanning technique called “differential evolution” (DE), that allows us to obtain convergent

results where other techniques have previously failed.

This paper is structured as follows. In section 2, we review the NMCHM, before giving

the details of our scanning procedure in section 3. We present our fine-tuning measure and

results in section 4, including a comparison of the MCHM and NMCHM results, and a

discussion of the potential of the scalar singlet to act as a dark matter candidate. Finally,

we present our conclusions in section 5.

– 2 –



J
H
E
P
0
4
(
2
0
1
9
)
0
7
6

2 The Next-to-Minimal Composite Higgs

2.1 Group structure

For details on the formalism of the Minimal Composite Higgs Model (MCHM), we refer

the reader to [1, 2, 10–13, 15]. Here, we shall instead focus on what differentiates the

Next-to-Minimal Composite Higgs Model (NMCHM) from the MCHM. In particular, we

use the two-site construction first described in [17], with its composite fermions and scalar

resonances to render the pNGB Higgs potential finite.

The five pNGBs from the spontaneous breaking of the global SO(6) → SO(5) symmetry

are parameterised as:

Φ = e

√
2
f
iπâ(x)T â

Φ0 =
1

ϕ
sin

ϕ

f

(
h1, h2, h3, h4, s, ϕ cot

ϕ

f

)
(2.1)

where ϕ=
√
hihi+s2, and {T â} are the broken generators, spanning the coset SO(6)/SO(5).

After electroweak symmetry breaking, we can simplify the parameterisation by choos-

ing π1 = π2 = π3 = 0, π4 = h, π5 = s in the unitary gauge. We can use the change of basis

h = ϕ cos(ψ/f), s = ϕ sin(ψ/f) (2.2)

to non-linearly recast the two physical fields h, s into the fields ψ,ϕ. In the unitary gauge,

the GB multiplet is

Φunitary = (0, 0, 0, sϕcψ, sϕsψ, cϕ) (2.3)

noting the shorthand sx = sin x
f , cx = sin x

f .

The GBs interact with the gauge sector through the covariant derivative

f2

2
(DµΦ)T (DµΦ) =

f2

2

[(
0, 0, 0,

∂µϕ

f
cϕcψ −

∂µψ

f
sϕsψ,

∂µϕ

f
cϕsψ +

∂µψ

f
sϕcψ,−

∂µϕ

f
sϕ

)
− igW aL

µ T aLΦ− ig′BµT aRΦ

]2

(2.4)

=
1

2
(∂ϕ)2 +

1

2
(∂ψ)2s2

ϕ +
f2

8
s2
ϕc

2
ψ

(
g2W 2 + g′2B2 + 2gg′BµW

µ,(3)
)

−
(
∂µϕ

f
cϕcψ −

∂µψ

f
sϕsψ

)(
g

2
Wµ,(3) − g′

2
Bµ

)
sϕcψ (2.5)

where aL runs from 1, 2, 3, so Wµ,(3) is the third W field. The third term in equation (2.5)

can be used to match to the SM Higgs-EW Lagrangian

LHiggs-EW = (DµΦSM)†(DµΦSM) = (∂H)2 +
1

4
(v +H)2 (2g2W−µ W

+µ + (g′Bµ − gA3
µ)2
)

(2.6)

We can then identify

v = f sin
〈ϕ〉
f

cos
〈ψ〉
f

(2.7)
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To make the match to the SM complete requires embedding these fields in SU(2)L×SU(2)R
notation, and then we can redefine

W 2 SU(2)×SU(2)−−−−−−−−→ (W 1
L)2 − (W 2

L)2 + (W 3
L)2 = 2W+W− + (W 3

L)2 (2.8)

matching the SM coefficient. It is useful to define a “vacuum misalignment” — the degree

to which the electroweak vacuum expectation value vector misaligns with the original SO(6)

vacuum expectation value:

ξ ≡ v2

f2
= sin

〈ϕ〉
f

cos
〈ψ〉
f

(2.9)

2.2 Matter content

It is a well-known feature of CHMs that the gauge contribution to the NGB Higgs poten-

tial does not provide the correct sign for EWSB. Additionally, it is well-known that this

potential contains divergent integrals unless some arbitrary cut-off is imposed, or some

additional phenomenon regularises them. The solution to these problems is to include

elementary and composite fermion sectors. They should both be embedded in some repre-

sentation of G0 = SO(6), and in this work we choose the fundamental representation. The

embedding of the third generation quarks in 6 looks like:

ψL =
1√
2



bL
−ibL
tL
itL
0

0


, ψR =



0

0

0

0

tRe
iδ cos θ

tR sin θ


(2.10)

The two sectors interact via mixing terms in the fermionic lagrangian, which is the

most minimal set of interactions required to generate the SM Yukawas, in the unitary

gauge (i.e. using the gauge symmetry to choose, 〈hi〉 = 0, i = {1, 2, 3}, giving Φ according

to equation (2.3)):

Lf = ψ̄Li /DψL+ψ̄Ri /DψR+∆tLψ̄LΨT
R+∆tRψ̄RΨT̃

L

+Ψ̄T
L(i /D−mT )ΨT

R+Ψ̄T̃
L(i /D−mT̃ )ΨT̃

R−YT Ψ̄T
LΦΦ>ΨT̃

R−mYT Ψ̄T
LΨT̃

R+h.c.
(2.11)

Note the absence of terms Ψ̄T
RΦΦ>ΨT̃

L, Ψ̄T
LΦΦ>ΨT

R and Ψ̄T̃
LΦΦ>ΨT̃

R. We impose this

absence in order to keep the Higgs potential finite. These terms could be introduced, in

general, however the number of sites would then need to be extended from this minimal

case, in order to cancel divergences in accordance with the Weinberg-like sum rules [25].

The elementary-composite mixing terms ∆tL/tR have mass dimension one, as they contain

the dynamics of the scalar link field. We now draw attention to features that differ-

entiate this model from the MCHM. These include two elementary embeddings of the

partially composite top quark. Under SO(4) ≈ SU(2)L × SU(2)R, we have the decom-

position (2,2)⊕ (1,1)⊕ (1,1). The left-handed top quark is embedded into the (2,2),
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which protects the ZbLb̄L coupling, whilst the right-handed top quark is embedded as a

linear combination in both singlets. δ appears due to a choice of this top coupling. It is

not a physical parameter, and can be removed by a phase transformation under the SO(2)

subgroup of SO(6), taking eiδ → i. θ is however an important artefact of the NMCHM,

and appears from the choice of composite partner embedding within the SO(2) subgroup.

As in previous work, we include only the top quark and heaviest quark doublet in the anal-

ysis. We do not consider partially composite leptons in this study, such as were previously

studied in the context of the MCHM in [18, 19].

The elementary terms1 appear in an effective Lagrangian, coming from decomposing

the GB and fermion multiplets in the unitary gauge under SU(2) × SU(2), given in [21]

Lfermion = q̄LΠq(p
2,ψ,ϕ)/pqL+ t̄RΠt(p

2,ψ,ϕ)/ptR+q̄LMt(p
2,ψ,ϕ)tR+h.c

= q̄L

(
∆2

(∆tL)2
+ΠqL,0(p2)+

1

2

s2
ϕ

ϕ2
ΠqL,1(p2)HcHc

)
/pqL

+ t̄R

(
∆2

(∆tR)2
+ΠuR,0(p2)+s2

θΠuR,1(p2)+
[
s2
ϕ(c2

θs
2
ψ−s2

θ)
]
ΠuR,1(p2)

)
/ptR

+q̄L
Mu,1√

2

sϕ
ϕ
Hc (icθsϕsψ+sθcϕ) tR+h.c

(2.12)

where qL and Hc are the SM quark doublet and charge conjugate of the normalised SM

Higgs doublet, respectively,

qL = (tL, bL)T , Hc =
1

h
iσ2

(
h1 − ih2

h3 − ih4

)∗
=

1

h

(
−(h1 + ih2)

h3 + ih4

)
(2.13)

The form factors Πi are given in full in appendix A. Here, the elementary bare quark

mass terms ∆2

(∆tL/tR
)2

can be understood as canonically normalised. That is, there is some

common scale ∆ that can be factored out once the form factors are found.

A final distinction of the NMCHM is the relevance of only one choice of representa-

tion (although many composite partners and resonances could be added in this representa-

tion) [20]. In brief, the three smallest representations under SO(6) ≈ SU(4) are the 4, the 6,

and the 10. The 4 does not contain a bidoublet when decomposed under SU(2)L×SU(2)R,

and thus cannot contain a representation that couples with the SM quark doublet, which

must also be incompletely embedded into a 4. The symmetric traceless 10 does contain

such a bidoublet, however upon embedding the SM quarks in a simple way, we see that

there remains a U(1)s symmetry protecting the scalar singlet. In this case, the singlet will

correspond to an electroweak axion, with properties that have been excluded experimen-

tally. Less minimal 10 embeddings have been shown in Reference [26] to produce a massive

singlet and evade exclusion. Thus, this leaves the 6 as the simplest representation for the

quark partners, and we thus focus on the NMCHM6.

1After expanding the 6-plets, one can group the left-handed terms {tL, bL} into their regular SM

doublet qL.
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2.3 Goldstone boson vacuum behaviour

After EWSB, we can write the low energy effective potential for the interactions of the

Higgs boson and scalar singlet with gauge fields and fermions [27]

Leff =
1

2
(∂µh)2 +

1

2
(∂µs)

2 − V (h, s) +
v2

4
Tr
[
DµΣ†DµΣ

](
1 + 2ah

h

v
+ bh

h2

v2
+ bs

s2

v2
+ . . .

)
−miψ̄LiΣ

(
1 + ch

h

v
+ . . .

)
ψRi −miψ̄Li

(
cs
s

v
+ . . .

)
ψRi + h.c. (2.14)

where the GBs eaten by the W and Z bosons are parameterised by Σ = exp(iχaσa/v).

The couplings of a, b and c can be obtained as:

ah =
√

1− ξ, bh = 1− 2ξ, bs = 1, ch =
1− 2ξ√

1− ξ
, cs = i

ξ

1− ξ
cot θ (2.15)

To compute the vacuum misalignment ξ and therefore the coupling terms, we need to

explore the effective potential of the Goldstone bosons. This is generically given by the

Coleman-Weinberg formula for the gauge boson and top quark contributions, where the

form factors are given in appendix A

Vfermionic =
9

2

∫
d4p

(2π)2
log ΠW − 2Nc

∫
dp4

(2π)4
ln
(
p2ΠtLΠtR −Π2

tLtR

)
(2.16)

As in the MCHM, we require this potential to have a minimum such that it reproduces

the electroweak vacuum expectation value (VEV). We can attempt to do this at leading

order, which would lead to a natural EWSB potential. For example, the potential in

equation (2.16) can be expanded at leading order in the MCHM Goldstone field as

V (h) = α sin2 h

f
+O(s4

h) (2.17)

This has possible minima2 at integer multiples of 〈h〉 = fπ
2 , which is far too high. The case

of 〈h〉 = 0 leads to no EWSB. The same obstacle applies to the NMCHM potential, which

at leading order in ϕ,ψ is

V (ϕ,ψ) = sin2 ϕ

f

(
c1 + c2 sin2 θ − c3 sin2 θ

)
+O(s4

ϕ, s
4
ψ) (2.18)

where the expressions for the integral terms ci are given in appendix A. This has stationary

points at integer multiples of 〈ϕ〉 = fπ
2 . Again, this is problematic, as we need the EW

VEV v = f sin 〈ϕ〉f cos 〈ψ〉f to be at a much lower scale than the typical symmetry breaking

scale f = f sin π
2 cos 0.

Therefore, as in the MCHM, we must break EW symmetry by considering higher-order

terms that must cancel precisely, requiring the notorious composite Higgs double tuning.

2Depending on the sign of α.
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We include higher order terms, up to quartic in sin ϕ
f sin ψ

f ,3

V (ψ,ϕ) = c1 sin2 ϕ

f
cos2 ψ

f
+ c2 sin2 ϕ

f

(
sin2 θ − cos2 θ sin2 ψ

f

)
− c3 sin2 ϕ

f
cos2 ψ

f

(
cos2 θ sin2 ϕ

f
sin2 ψ

f
+ sin2 θ cos2 ϕ

f

)
+O(sin10

ϕ , sin
8
ϕ sin2

ψ, . . . , sin
10
ψ )

(2.19)

To find the classical expectation value, we solve for

∂V

∂ψ

∣∣
ϕ=〈ϕ〉,ψ=〈ψ〉 = 0 (2.20)

∂V

∂ϕ

∣∣
ϕ=〈ϕ〉,ψ=〈ψ〉 = 0 (2.21)

where zeroes will be found both from trivial extrema (i.e. integer multiples of ϕ,ψ = fπ
2 )

and double tuning extrema (cancellations between terms, requiring tuning of c1, c2, c3).

It can be shown that the surface 〈ψ〉 = 0 or 〈ϕ〉 = fπ
2 always contains an extremum of

the potential, and either (but not both) can be chosen such that EWSB may still occur

realistically.

We take 〈ψ〉 = 0 to give a stationary point and thus give the singlet no VEV. See

Reference [21] for a discussion of the validity of this choice. For this choice, a potential

extremum is found for

sin
〈ϕ〉
f

=

√
c3s2

θ − c1 − c2s2
θ

2c3s2
θ

(2.22)

=⇒ ξ =
v2

f2
=
c3s

2
θ − c1 − c2s

2
θ

2c3s2
θ

(2.23)

using the definition in equation (2.7). This implies that 0 <
c3s2θ−c1−c2s

2
θ

2c3s2θ
< 1, in order

to achieve a non-trivial VEV. This can be used as a constraint to rescale f for correct

EWSB behaviour.4 To better illustrate the possible behaviour of the potential, we show

it in figure 1 for two different sets of {c1, c2, c3, sθ}. The first plot shows the typical case

encountered in much of the parameter space where the extrema are given only by integer

multiples of ϕ,ψ = fπ
2 , leading to no EWSB. The second plot shows an example of the

fine cancellations which occur in a small region of the parameter space, corresponding to

the solution in equation (2.22). This gives additional minima and maxima, which are a

condition of EWSB.

3We include such seemingly high order terms since ξ2 ∝ s2〈ϕ〉s
2
〈ψ〉, and must therefore include each field

up to consistent order. Note that to obtain equations (2.22) and (2.24), it is sufficient to expand to quadratic

order V = s2ϕ(c1 + c2s
2
θ − c3s2θ) − s2ϕs2ψ(c1 + c2c

2
θ − c3s2θ) + s4ϕc3s

2
θ. The singlet mass, on the other hand,

requires corrections given by the quartic-order potential.
4Note that this constraint is not sufficient for EWSB — it only corresponds to an extremum. The Higgs

mass must be found to be positive, to ensure that this solution is a local minimum.

– 7 –
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Figure 1. Two examples of the GB potential. On the left, c1 = 1, c2 = 1, c3 = −0.1, sθ = 0.7 with

ξ = 15.7, corresponding to no EWSB. On the right, c1 = 0.1, c2 = −0.2, c3 = 0.1, sθ = 0.7, with

ξ = 0.48. Satisfying the condition ξ < 1 allows for the possibility of EWSB.

The masses of the two scalars can be found using the second derivatives of equa-

tion (2.19), and the solution for 〈ϕ〉 in equation (2.22)

m2
ϕ = m2

h =
−4c1c2 − 2c2

1/s
2
θ + 2(c2

3 − c2
2)s2

θ

c3f2
(2.24)

m2
ψ = m2

s =
c1 − (c2 + c3)s2

θ

s2
θf

2
c2θ (2.25)

Note that we have changed the basis from ϕ,ψ to h, s, but that the masses are the same due

to 〈ψ〉 = 0 being a stationary point. This can be laboriously shown with liberal application

of the chain rule.

We can thus analyse the Higgs mass expression as a function of each of the integral

terms. This also gives our top mass term, which can be found by diagonalising the low-

energy Lagrangian in equation (2.12)

|mt|2 =
[Mu

1 (0)]2

ΠtL(0)ΠtR(0)
s2
〈ϕ〉c

2
〈ψ〉

(
c2
θs

2
〈ϕ〉s

2
〈ψ〉 + s2

θc
2
〈ϕ〉

)
(2.26)

=
[Mu

1 (0)]2

ΠtL(0)ΠtR(0)
s2
θξ(1− ξ) (2.27)

3 Scan details

The NMCHM as parameterised in equations (2.11) and (2.12) (with the correlators given

in the appendix), contains the following 10 independent parameters:

• The bare masses of the lightest scalar resonances mρ,ma ∈ [0.3, 10] TeV;

• The ratio of composite-elementary mixing in the gauge sector tθ = g2
gρ
∈ [0, 1];

• The on-diagonal bare masses of the top partners mT ,mT̃ ∈ [0.3, 10] TeV;

– 8 –
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• The off-diagonal bare mass of the top partners mYT ∈ [0.3, 10] TeV;

• The proto-Yukawa couplings YT ∈ [−10, 10] TeV;

• The extent to which the observed SM quark doublet and top singlet are composite

dQ, dT = ∆q,t/mT,T̃ ∈ [0, 3];

• The top quark eigenstate angle in the SO(2) subgroup θ ∈ [0, π2 ];

In order to produce a well-sampled analysis of the model’s fine tuning, we use the

Diver implementation of the differential evolution algorithm to find physical regions of the

model’s parameter space [28, 29]. This has proved particularly useful in finding optimum

regions in difficult likelihood functions, such as those encountered in Higgs portal dark

matter and supersymmetric examples [30–32].

The algorithm first randomly seeds the parameter space with a population of NP

vectors {Xg
i }, where i indexes the members of the population, and g indexes the genera-

tion. Subsequent generations of the population are then obtained by performing mutation,

crossover and selection steps, and these are repeated at each future generation.

The mutation step produces a set of donor vectors {Vi} from the current population

of vectors {Xg
i }. The production of each donor vector Vi occurs by choosing three random

vectors Xr1, Xr2 and Xr3 from the current population (on the condition that none of these

are the same, and that none of them matches Vi). Vi is then taken to be:

Vi = Xr1 + F (Xr2 −Xr3) (3.1)

where F is a parameter that controls the strength of the differential variation.

The crossover step is then used to produce a set of trial vectors {Ui} that will po-

tentially form the next generation of vectors. For the kth component of the trial vector

Ui, a random number between 0 and 1 is chosen. If this number is less than or equal to

a parameter Cr (chosen in advance of the scan), then the component is taken from the

corresponding donor vector Vi. Otherwise, the component is taken from the corresponding

vector in the previous generation. After all of the components of Ui have been chosen,

one component is reassigned, thus ensuring that the trial vectors and their corresponding

vectors in the current generation are always different. A component l of the vector is chosen

at random, and the trial vector component is set to the donor vector value, irrespective of

its previous value.

Finally, a selection step is used to choose the vectors for the next generation. The value

of the likelihood function for each vector in the current generation Xj
i is compared with

the likelihood for the correspondng trial vector Ui, and the points with higher likelihood

are retained for the next generation.

We use a multivariate Gaussian likelihood function that takes as inputs three values.

The first two are physical observables we wish to reproduce: the masses of the SM Higgs

mh and top quark mt. The particular values for the observables Oi used in this scan were

O1 = mexp
h = 125 ± 1 GeV and O2 = mexp

t = 155 ± 1 GeV; where the uncertainties are

not chosen to reflect the known experimental uncertainties, instead being used to control
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how precisely the central values are reproduced by our scanning method.5 The third value

is the measure of higher-order tuning ∆ defined in the next section. We are interested in

exploring areas of low tuning, and so penalise parameter points with a function of ∆. The

cost function (which also defines the likelihood L) is then

L = exp

(
−(125−mh)2

2
− (155−mt)

2

2
− ∆2

2× 10002

)
(3.2)

The cost of tuning is heavily scaled down, since the tuning has a minimum at O(10), and

this cost factor would dominate the scan otherwise.

This Diver package optimises the differential evolution algorithm further by allowing

Cr and F to evolve, called Adaptive Differential Evolution. This occurs in the intuitive

way — by sampling Cr and F uniformly in the seeding step, and subsequently propagating

those values that lead to lower cost function outputs. We enabled this adaptivity, and

in doing so found a suitable set of parameter points (i.e., giving valid EWSB, with SM

masses within two σ of the measured values) significantly faster than with other scanning

techniques (based on our previous experience with Markov Chain Mote Carlo algorithms

and nested sampling).

In the following section, we choose to study the subset of points that are in the vicinity

of the correct SM behaviour by applying observable cuts as follows:

{120, 140, 800} GeV ≤ {mh,mt, f} ≤ {130, 170,∞} GeV (3.3)

and we also require all parameters with mass dimension to be less than 4πf , to be within

the perturbative limit. We then calculate the spectrum of resonances and the expected

deviations from the SM Higgs couplings. The latter are parameterised as a fraction of the

composite Higgs-χ-χ coupling c (where χ is any of the SM states that the Higgs can couple

to) with the SM Higgs-χ-χ coupling cSM,

rχ =
c(hχχ)

cSM(hχχ)
. (3.4)

4 Fine-tuning

4.1 Fine-tuning measure

To calculate the fine-tuning of our parameter points, we use a more accurate measure than

the usual Barbieri-Giudice (BG) measure. This concept was developed in Reference [7],

and further generalised in Reference [19], and we here provide a brief summary.6

Consider the usual BG measure

∆BG = max
i,a

∣∣∣∣ xiOa ∂Oa∂xi

∣∣∣∣
O=Oexp

. (4.1)

5The values are not precisely the experimentally determined values. They have strong and electroweak

RGE running applied, as outlined in [33].
6See [34] for a derivation of the measure from Bayesian reasoning.
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That is, the maximum tuning over each observable Oa, with respect to each parameter xi,

evaluated at the experimental values. While a useful heuristic, this measure does not appro-

priately punish models that decrease their fine-tuning by increasing the number of param-

eters. To account for this, one can simply treat the tuning for each observable as a vector,

∇O =
xi
O
∂O
∂xiO=Oexp

, (4.2)

before defining an overall first-order of tuning as the average over the magnitudes of these

tuning vectors,

∆Oa1 =
∣∣∇Oa∣∣ =⇒ ∆1 =

1

nO

nO∑
a=1

∣∣∇Oa∣∣ (4.3)

However, one can see that this still doesn’t account for the often complex interdepen-

dencies between parameters or observables, e.g. a Higgs mass and top quark mass that may

depend on some common parameters. A new measure can account for this higher order

tuning using the determinant of the set of observable vectors

∆ab
2 =

∣∣∣∣∣∇Oa · ∇Oa ∇Oa · ∇Ob∇Oa · ∇Ob ∇Ob · ∇Ob

∣∣∣∣∣
1
2

O=Oexp .

(4.4)

and these sum up to give a full “double” tuning,

∆2 =
1

2
(∆ab

2 + ∆bc
2 + ∆ca

2 ) . (4.5)

This generalises to more than three observables in a straight-forward way (see Reference [19]

for details). The full tuning ∆ is then the sum of all orders of tuning,

∆ =

nO∑
a=1

∆a. (4.6)

4.2 Fine-tuning results

We now present the scan results in terms of the fine-tuning found at each viable parameter

point. The tuning of each point is shown against the lightest vector-boson resonance mass

mρ, the lightest top partner resonance mass, the mass of the SO(6) scalar singlet, the Higgs

coupling ratios rχ and the vacuum misalignment ξ = v2/f2. A convex hull is provided

to understand the general limits of minimal fine-tuning (note that given the logarithmic

scale, the hull may not always appear to be convex). In all coupling correction plots,

several predicted bounds are included, based on the anticipated precision of the future

International Linear Collider (ILC) [35]. Two bounds are included — a pessimistic bound

at the 250GeV baseline ILC, and an optimistic bound from a high-energy, high-luminosity

upgrade. These bounds are given in table 1.

Before analysing our results, we note that an earlier study (Reference [22]) demon-

strated that higher top partner masses may be achieved in the NMCHM, with no fine-

tuning penalty, through a process dubbed “level repulsion”. If the doublet and singlet in
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Plot 250GeV (red) 500GeV (green) 1TeV HL (blue)

rb 5.3% 2.3% 0.66%

rZ 1.3% 1.0% 0.51%

rγ 18% 8.4% 2.4%

Table 1. A selection of Higgs coupling deviation exclusion bounds, as predicted in [35]. These are

forecasts for ILC precision relative to the SM prediction.

Figure 2. Comparison of each model’s lightest top partner vs. naive tuning.

the pNGB sector both get VEVs, the model exhibits a tree-level doublet-singlet mixing. If

the singlet state is heavier, then the mixing can result in pushing down the dominantly dou-

blet eigenstate to match the observed Higgs mass at 125 GeV. Before mixing, the masses

of both of the states can conceivably be larger, which makes the theory more natural. This

earlier result may naively appear to conflict with the results of the previous section, but in

fact there is no contradiction once one compares the different scope of the studies and the

fine-tuning measure used. The requirement that both the doublet and singlet get a VEV

corresponds to θ being close to π/2, and thus this is a special limit of the more general

theory (one that would in fact appear as a fine-tuning contribution in a proper analysis).

We assume in our study that the singlet does not acquire a VEV, meaning that there is

no overlap between our results and the previous study. Indeed, if we examine the naive

tuning measure of 1/ξ as a function of the lightest top partner (LTP) mass in our study,

we find no tuning gain for the NMCHM vs the MCHM (see figure 2).

In figure 3 we show the higher-order tuning as a function of the modification to the

Higgs-gluon, Higgs-top and Higgs-bottom couplings, for both the MCHM and NMCHM

models. As one would expect, the minimum fine-tuning available in each model would

increase if one were able to measure the Higgs couplings more precisely (assuming that

they remain at the SM values). In both models, the impact of a 250 GeV ILC is minimal,
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Figure 3. Comparison of higher-order tuning (defined in equation (4.6)) in the Higgs-gluon, -top

and -bottom coupling deviation (as defined in equation (3.4)) between the minimal and next-to-

minimal models. Precision bounds (denoted by coloured lines) are defined in table 1. The red line

shows the expected precision of a 250 GeV ILC, green a 500 GeV ILC, and blue a high-luminosity

1 TeV ILC.

but the high-luminosity 1 TeV ILC would increase the minimum fine-tuning by roughly an

order of magnitude. We also observe a slightly higher fine-tuning in the NMCHM model,

relative to the MCHM model, regardless of future measurements of the Higgs couplings.

This can be attributed to a small punishment for increasing the parameter set from nine

to ten. A thorough discussion of parameter set scaling in the higher order tuning measure

can be found in reference [19]. This agrees with a first-order expectation, since NMCHM

observables are generically proportional to MCHM observables according to mNMCHM ∝
mMCHM sin θ, and θ is a free parameter.

To understand the different contributions to the higher-order tuning, we show in

figures 4 to 6 various first-order tuning contributions (defined in equation (4.3)), again

plotted as a function of the modification to the Higgs-gluon, Higgs-top and Higgs-bottom

couplings. For any given value for the modification of the couplings, we see that tuning

contribution from the Higgs mass is higher than that arising from the top mass and vacuum

misalignment contributions. This can be understood from the leading-order relationship

between each observable. By equations (2.24) and (2.27), for ξ � 1, mh ∝ ξ2, while mt ∝ ξ
(recalling that 1

f2
= ξ

v2
). Thus the first order tuning is expected to be ∇mh ∼ 2∇mt ∼ 2∇ξ,

which agrees with figures 4 to 6.

In figure 7, we show the higher-order tuning as a function of the deviation of the

Higgs-vector boson couplings. In this case, the impact of the future linear collider is not

as pronounced, with a less pronounced increase in the fine-tuning even after the antici-

pated results of the high-energy, high-luminosity ILC. The situation is even worse for the

Higgs-photon coupling (shown in figure 8), where the relative lack of precision of ILC mea-

surements of rγ relative to the other couplings means that there is essentially no impact
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Figure 4. Comparison of the first-order tuning (as defined in equation (4.3)) contribution from

the Higgs mass, in the Higgs-gluon, -top and -bottom coupling deviation. The red line shows the

expected precision of a 250 GeV ILC, green a 500 GeV ILC, and blue a high-luminosity 1 TeV ILC.

Figure 5. Comparison of the first-order tuning contribution from the top mass, in the Higgs-gluon,

-top and -bottom coupling deviation. The red line shows the expected precision of a 250 GeV ILC,

green a 500 GeV ILC, and blue a high-luminosity 1 TeV ILC.
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Figure 6. Comparison of the first-order tuning contribution from the vacuum misalignment ξ, in

the Higgs-gluon, -top and -bottom coupling deviation. The red line shows the expected precision

of a 250 GeV ILC, green a 500 GeV ILC, and blue a high-luminosity 1 TeV ILC.

Figure 7. Comparison of higher-order tuning in the Higgs-vector boson coupling deviation, between

the minimal and next-to-minimal models. The red line shows the expected precision of a 250 GeV

ILC, green a 500 GeV ILC, and blue a high-luminosity 1 TeV ILC.
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Figure 8. Comparison of higher-order tuning in the Higgs-photon (loop) coupling deviation,

between the minimal and next-to-minimal models. Future ILC bounds are below the cut-off f >

800 GeV.

Figure 9. Comparison of the lightest vector resonance mass vs higher-order tuning, between

models.

on the fine-tuning of the model expected from future measurements. This tells us that it is

future measurements of the Higgs-gluon, Higgs-top and Higgs-bottom couplings that will

be most important in disfavouring composite Higgs scenarios on aesthetic grounds.

Measurements of the Higgs couplings are, of course, only one way to constrain the

fine-tuning of the MCHM and NMCHM. One can also search directly for the fermion and

vector resonances. In figure 9, we show the higher order tuning as a function of the lightest

vector resonance mass, mρ. A lower bound on this mass would translate directly into a

lower bound on the fine-tuning. In this case, the rise in fine-tuning with an increasing lower
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Figure 10. Comparison of the lightest fermionic resonance mass vs higher-order tuning, between

models. Note that the lightest resonance may be either the singlet (yellow) or doublet (maroon).

Figure 11. Comparison of vacuum misalignment vs higher-order tuning, between models.

mass limit is less pronounced for the NMCHM, although one would have to have a fairly

stringent lower bound to make this difference significant. A steeper rise is apparent in the

plots of higher order tuning vs top partner mass mT shown in figure 10, although there

is not much difference in the behaviour in the NMCHM relative to the MCHM. Lower

limits of around 5 TeV and 9.5 TeV can be expected after 3000 fb−1 of 33 TeV and 100 TeV

collisions at a future proton-proton collider, respectively [36–38], which will substantially

increase the minimum fine-tuning of both the MCHM and NMCHM.

Finally, we show a comparison of our higher-order tuning measure with less sophis-

ticated tuning measures in figure 11, which shows the fine-tuning for the NMCHM as a
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function of the breaking scale ratio ξ. Our measure gives higher values for fine-tuning

relative to the single tuning ∆1 as defined in equation (4.3), which is to be expected.

Before concluding, let us briefly examine the behaviour of the singlet mass in our

scan results. Apart from a dependence on the potential integral terms, it depends on the

decay constant f and the embedding angle of the right-handed top quark in the SO(2)

subgroup of SO(6), θ. We see that there is a critical point determined by the cos 2θ factor

in equation (2.25), with the limits

m2
S →

{
− c1−c2+c3

f2
, as sin θ → 1

0, as sin θ →
√

2
2 ≈ 0.7

(4.7)

The zero mass case corresponds to the right top embedding being SO(2) symmetrical, leav-

ing this group unbroken and the singlet as a true NGB. It has been shown in Reference [20]

that two-loop contributions from the gauge sector will still give the singlet a small mass,

appearing as an electroweak axion. This would be ruled out by experiment.

The sin θ = 1 limiting case is more interesting. Here, the elementary top quark does

not couple with the singlet eigenstate, and equations (2.5) and (2.12) become (considering

only the subset of terms containing the ψ field)

Lψ
θ→π/2−−−−→ (∂ψ)2 +

g2f2

4
sin2 ϕ

f
cos2 ψ

f
W 2 (4.8)

ψ→−ψ
= Lψ (4.9)

This Z2(ψ) symmetry is explored in Reference [39], where it is simply assumed. It

requires all interactions to preserve s-number, which protects the scalar singlet from decay

hence making it a suitable candidate for dark matter. In that work, the authors consider

four regions of interest: low mass (mS < 50GeV), resonant (mS ≈ mH/2), cancellation

(mS ∼
√

λ
2f) and high mass (mS �

√
λ
2f). Here, λ is the four-point coupling of ψ,ϕ,

appearing in equation (2.19). In our notation, λ→ c1 − c3, since

V (ψ,ϕ)
s2ϕ,s

2
ψ�1

−−−−−→ (c1 + c2 − c3)ϕ2 − (c1 − c3)ϕ2ψ2 + c3ϕ
4 − c3ϕ

4ψ2 (4.10)

In figure 12, we show both our higher order fine-tuning measure, and the naive measure

1/ξ, vs sin θ for our selected scan points. We see that the NMCHM provides points with

low fine tuning even as sin θ → 1, and hence a dark matter candidate can easily emerge

naturally within this framework. In figure 13, we show our higher-order tuning measure

vs the singlet mass, with the deviation of the singlet couplings to quarks and gluons from

SM Higgs-like couplings shown on the z-axis (this deviation is defined in equation (A.14)).

Higher values on the z-axis correspond to a stronger coupling between the singlet and

quarks and gluons. We see that obtaining couplings as high as the SM Higgs requires a

fine-tuning that is two orders of magnitude greater than the most natural coupling scenario

of small coupling.

It is instructive to separate our scan points into the region that has θ < π/4, and that

which has θ > π/4. Moving from one choice to the other requires a change in the sign of
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(a) (b)

Figure 12. The top quark mixing parameter sin θ vs (top row left) higher order tuning and (top

row right) naive tuning.

Figure 13. Mass of the singlet in GeV, with singlet-quark coupling deviation (as defined in

equation (A.14)) as the third dimension.

the c1 − (c2 + c3)s2
θ term to guarantee a real singlet mass. Specifically, by removing f as

a factor in the mass term using the solution for ξ, we get the regions in terms of only the

integral expressions

Region 1: θ ∈ {0, π/4}, =⇒
c2

2s
4
θ − (c1 − c3sθ)

2

2c3
> 0

Region 2: θ ∈ {π/4, π/2}, =⇒
c2

2s
4
θ − (c1 − c3sθ)

2

2c3
< 0 (4.11)
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(a) (b)

Figure 14. The singlet mass (in GeV) vs (a) higher order tuning and (b) naive tuning with sin θ

as the third dimension, for points with θ ∈ {π/4, π/2}.

(a) (b)

Figure 15. The singlet mass (in GeV) vs (a) higher order tuning and (b) naive tuning with sin θ

as the third dimension, for points with θ ∈ {0, π/4}.

In figure 14, we show our higher-order tuning measure, and the naive tuning measure,

vs mS for points with θ ∈ {π/4, π/2}, indicating that the points of lowest tuning have

sinθ values close to 1. This implies that the Z2 symmetry exists to stabilise a dark matter

candidate. Equivalent plots for our θ ∈ {0, π/4} points are shown in figure 15, in which

the contour of lowest fine tuning now exists such as to minimise sinθ. In both cases,

the features are pronounced only when considering the higher-order tuning measure which

– 20 –



J
H
E
P
0
4
(
2
0
1
9
)
0
7
6

Figure 16. Top partner masses vs. full tuning, broken into region 1 (left) and region 2 (right), as

defined by equation (4.11).

counts multiple contributions to the total fine-tuning properly. We note that the lowest

fine-tuning overall is usually encountered for points with θ ∈ {0, π/4}, but that there is not

a large difference between the overall fine-tuning vs mass for the two θ regions. A final note

regarding the dark matter candidacy of the singlet; the natural limit of sin θ ≈ 1 suggested

by figure 14 is based only on considerations of SM mass values. It is not an indication of

fine tuning based on cosmological values. Indeed, to achieve the correct relic density of the

DM candidate, one may need to be arbitrarily close to the Z2 limit. In this sense, enforcing

the limit could be considered a separate source of fine tuning. It is beyond the scope of

this paper to provide relic density limits on the singlet-fermion coupling terms. Suffice it to

say that given the effective next-to-minimal model, particularly for higher singlet masses,

the sin θ ≈ 1 region is preferred by particle mass tuning considerations, and one would be

well-motivated to search for UV completions that included this Z2 symmetry explicitly.

In figure 16, we show the higher-order tuning vs the lightest top partner mass, showing

by the colour of each point which of the two top partners is the lightest. The left-hand

plot contains only the points with θ ∈ {0, π/4}, whilst the right-hand plot shows the points

with θ ∈ {π/4, π/2}. Our results suggest that a collider observation of a lightest top

partner with hypercharge 2/3 will always allow the identification θ ∈ {π/4, π/2} under

the assumption that the NMCHM is a valid explanation, whereas any observation of the

hypercharge will allow the identification of the θ region for a lightest top partner mass in

excess of 3.5TeV. In turn, this would allow one to infer the singlet’s phenomenology, if one

were to construct the model with the minimum fine-tuning.

5 Conclusions

We have performed a detailed comparison of the fine-tuning of the NMCHM and the

MCHM, with, in each case, partially composite third generation quarks embedded in the

fundamental representation of the relevant global symmetry group. Using a new scanning

technique, differential evolution, we were able to accurately map the regions of the whole
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parameter space that simultaneously give the correct SM Higgs mass, Higgs VEV and SM

top quark mass, whilst minimising our novel measure of fine-tuning that correctly counts

multiple sources of fine-tuning. By showing the fine-tuning as a function of the resonance

masses and deviations to the Higgs couplings, we were able to assess the impact that future

collider measurements on these quantities will have on the minimum fine-tuning available

in either model.

In general, we find little difference in the behaviour of the MCHM and NMCHM,

beyond a slight increase in the fine-tuning of the NMCHM which results from our measure

penalising the extra complexity of the latter model. As a benchmark, the MCHM had a

minimum tuning of ∆ ∼ 26, while the NMCHM had a minimum tuning of ∆ ∼ 45. Future

high-luminosity measurements of the Higgs coupling to third-generation quarks and gluons

at a 1 TeV ILC can be expected to increase the fine-tuning of the MCHM and NMCHM

by approximately one order of magnitude relative to the best present-day precision of

only ∼ 9% (for gluons [40, 41]), as could a bound on the lightest top partner mass of

≈ 4− 5 TeV. In the NMCHM, we find that the ability of the extra scalar to act as a dark

matter candidate, through the realisation of a Z2 symmetry that prevents it from decaying,

does not come with a fine-tuning penalty. On the contrary, the Z2 symmetric limit of the

theory is associated with parameter values that are amongst the least finely-tuned.
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A Fermion representation expressions

Here we present the explicit low-energy expressions derived from the high-energy

Lagrangian (equation (2.11)). All broken form factors can be expressed in the formulas

Π̂[m1,m2,m3] =
(m2

2 +m2
3 − p2)∆2

p4 − p2(m2
1 +m2

2 +m2
3) +m2

1m
2
2

, (A.1)

M̂ [m1,m2,m3] =
m1m2m3∆2

p4 − p2(m2
1 +m2

2 +m2
3) +m2

1m
2
2

(A.2)

In terms of these formulas, the broken factors are given by

Π̂qL
0 = Π̂[mT ,mT̃ ,mYT ], Π̂qL

1 = Π̂[mT ,mT̃ ,mYT + YT ]− Π̂[mT ,mT̃ ,mYT ], (A.3)

Π̂uR
0 = Π̂[mT̃ ,mT ,mYT ], Π̂uR

1 = Π̂[mT̃ ,mT ,mYT + YT ]− Π̂[mT̃ ,mT ,mYT ], (A.4)

M̂u
0 = M̂ [mT ,mT̃ ,mYT ], M̂u

1 = Π̂[mT ,mT̃ ,mYT + YT ]− Π̂[mT ,mT̃ ,mYT ]. (A.5)
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These broken form factors contribute to the full form factors present in the electroweak

EFT Lagrangian (2.12)

Πq
0 =

1

y2
tL

+ Π̂qL
0 , Πq1

1 = Π̂qL
1 , (A.6)

Πu
0 =

1

y2
tR

+ Π̂uR
0 + s2

θΠ̂
uR
1 , Πu

1 = −2Π̂uR
1 , (A.7)

Mu
1 = M̂u

1 . (A.8)

The Higgs-singlet potential is presented to quartic order in section 2.3. We repeat it here

V (ϕ,ψ) ≈ c1s
2
ϕc

2
ψ + c2s

2
ϕ(s2

θ − c2
θs

2
ψ)− c3s

2
ϕc

2
ψ(c2

θs
2
ϕs

2
ψ + s2

θc
2
ϕ) (A.9)

with the integral terms given by

c1 = −Nc

∫
d4p

(2π)4

Πq1
1

Πq
0

+ V (h)gauge, c2 = −Nc

∫
d4p

(2π)4

Πu
1

Πu
0

, (A.10)

c3 = −Nc

∫
d4p

(2π)4

(Mu
1 )2(

Πq
0 + s2

ϕc
2
ψΠq1

1 /2
)(

Πu
0 + s2

ϕc
2
ψs

2
θΠ

u
1/2
) , (A.11)

where

V (h)gauge ≈
9

64π2

g2
0

g2
ρ

m4
ρ(m

2
a1 −m

2
ρ)

m2
a1 −m2

ρ(1 + g2
0/g

2
ρ)

ln

[
m2
a1

m2
ρ(1 + g2

0/g
2
ρ)

]
(A.12)

The masses of the fermion partners are given by the poles and roots of the following form

factors

Πq
0(m2

21/6
) = 0

1

ΠqL
0 (m2

27/6
)

= 0 Πu
0(m2

12/3
) = 0 (A.13)

The following are the leading order deviations from the SM Yukawa couplings, as defined

by equation (3.4)

rhtt,hbb,hgg =
1− 2ξ√

1− ξ
rstt,sbb,sgg =

√
ξ

1− ξ
cot θ

rhV V =
√

1− ξ rhγγ =
A1rhV V + 4

3A1/2rhtt

A1 + 4
2A1/2

(A.14)

where A1 ≈ −8.324 and A1/2 ≈ 1.375.
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[38] M. Chala, R. Gröber and M. Spannowsky, Searches for vector-like quarks at future colliders

and implications for composite Higgs models with dark matter, JHEP 03 (2018) 040

[arXiv:1801.06537] [INSPIRE].

– 25 –

https://doi.org/10.1088/1126-6708/2009/09/070
https://arxiv.org/abs/0901.3595
https://inspirehep.net/search?p=find+J+%22JHEP,0909,070%22
https://doi.org/10.1007/JHEP10(2012)166
https://doi.org/10.1007/JHEP10(2012)166
https://arxiv.org/abs/1205.0232
https://inspirehep.net/search?p=find+J+%22JHEP,1210,166%22
https://doi.org/10.1103/PhysRevD.96.035040
https://arxiv.org/abs/1703.08011
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D96,035040%22
https://doi.org/10.1007/JHEP04(2017)117
https://arxiv.org/abs/1611.09356
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.09356
https://arxiv.org/abs/1809.09146
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.09146
https://doi.org/10.1007/JHEP08(2012)013
https://arxiv.org/abs/1205.0770
https://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0770
https://doi.org/10.1007/JHEP09(2015)176
https://arxiv.org/abs/1506.05110
https://inspirehep.net/search?p=find+J+%22JHEP,1509,176%22
https://doi.org/10.1007/JHEP05(2010)089
https://arxiv.org/abs/1002.1011
https://inspirehep.net/search?p=find+EPRINT+arXiv:1002.1011
https://doi.org/10.1140/epjc/s10052-017-5274-y
https://arxiv.org/abs/1705.07959
https://inspirehep.net/search?p=find+J+%22Eur.Phys.J.,C77,761%22
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1140/epjc/s10052-017-5167-0
https://doi.org/10.1140/epjc/s10052-017-5167-0
https://arxiv.org/abs/1705.07935
https://inspirehep.net/search?p=find+J+%22Eur.Phys.J.,C77,824%22
https://doi.org/10.1140/epjc/s10052-017-5196-8
https://doi.org/10.1140/epjc/s10052-017-5196-8
https://arxiv.org/abs/1705.07917
https://inspirehep.net/search?p=find+J+%22Eur.Phys.J.,C77,879%22
https://doi.org/10.22323/1.282.0118
https://arxiv.org/abs/1611.05065
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.05065
https://doi.org/10.1103/PhysRevD.77.113016
https://arxiv.org/abs/0712.1419
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D77,113016%22
https://doi.org/10.1103/PhysRevD.86.125029
https://arxiv.org/abs/1204.4940
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D86,125029%22
https://doi.org/10.1016/j.nuclphysBPS.2015.09.127
https://inspirehep.net/search?p=find+%22Nucl.Part.Phys.Proc.,273,826%22
https://arxiv.org/abs/1311.0299
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.0299
http://collider-reach.web.cern.ch/
https://doi.org/10.1007/JHEP03(2018)040
https://arxiv.org/abs/1801.06537
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.06537


J
H
E
P
0
4
(
2
0
1
9
)
0
7
6

[39] M. Frigerio, A. Pomarol, F. Riva and A. Urbano, Composite Scalar Dark Matter, JHEP 07

(2012) 015 [arXiv:1204.2808] [INSPIRE].

[40] ATLAS collaboration, Combined measurements of Higgs boson production and decay using

up to 80 fb−1 of proton-proton collision data at
√
s = 13 TeV collected with the ATLAS

experiment, ATLAS-CONF-2018-031.

[41] Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018)

030001 [INSPIRE].

– 26 –

https://doi.org/10.1007/JHEP07(2012)015
https://doi.org/10.1007/JHEP07(2012)015
https://arxiv.org/abs/1204.2808
https://inspirehep.net/search?p=find+J+%22JHEP,1207,015%22
http://cds.cern.ch/record/2629412
https://doi.org/10.1103/PhysRevD.98.030001
https://doi.org/10.1103/PhysRevD.98.030001
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D98,030001%22

	Introduction
	The Next-to-Minimal Composite Higgs
	Group structure
	Matter content
	Goldstone boson vacuum behaviour

	Scan details
	Fine-tuning
	Fine-tuning measure
	Fine-tuning results

	Conclusions
	Fermion representation expressions

