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1 Introduction

Schwinger effect is a fascinating effect in quantum field theory [1]. A pair of charged

particles are produced in the vacuum, when the external electric force are strong enough.

If this effect is observed, it will help our theoretical understanding of quantum field theory.

But so far it has not been observed. The main obstacle is that we need E ∼ 1.3 ×
1018V/m [2]. This made us to consider Schwinger effect in astrophysical and cosmological

context [3–5]. In this paper, we focus on searching for the observational signature of

Schwinger effect in inflation.

The existence of a large enough electric field during inflation is conventionally consid-

ered theoretically challenging. This is due to the fact that the energy density of radiation

typically drops with the scale factor as a−4. During inflation, the electric field and mag-

netic field are quickly diluted away with the rapid expansion of the universe. However,

we do observe a large scale magnetic field of order micro Gauss on 10 kpc scale [6–8] and
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10−16 Gauss even on Mpc scale expected in cosmic voids [9–11]. These large scale coherent

magnetic fields can hardly be explained without a primordial origin. A natural setting to

generate the large scale coherent primordial magnetic field is inflation [12]. However, due

to the conformal invariance, the magnetic field also drops as a−4. Lots of efforts have been

made to generate the primordial magnetic field during inflation by breaking the conformal

invariance [13–27]. By far, the best model we know of is still not sufficient to generate

the required amount of primordial magnetic field to explain the large scale magnetic field

today. One encounters the problem of either a backreaction of the electric field or a strong

coupling regime at very early times [28]. This suggests that a background magnetic field

should be continuously generated during inflation to counter the effect that it is diluted

away quickly. Similarly, we would expect that the same mechanism may be used to gener-

ate the electric field to compensate for the fact that the electric field is also diluted away.

Such examples do exist, and they are mainly obtained by the breaking of the conformal

symmetry of the gauge fields. For example, in [29, 30], a dilatonic coupling between the

inflaton and the gauge field in the action of the type f(φ)2FF can generate a constant

electric field with energy density not changing with respect to the expansion of the uni-

verse. It is shown in [31] that this constant electric field is even an attractor solution in

the context of anisotropic inflation.

In this work, we investigate the consequence that the electric field may bring us. We

propose a simple model with a constant electric field with an unchanged energy density in a

physical volume during inflation. In short, we focus on the signatures produced. Schwinger

effect is studied in 2D [32–34] and 4D [35–39] de Sitter space. Unlike the flat space case,

strong electric field is not needed in inflation to produce super light particles. Charged

super light particles will be mainly produced gravitationally during inflation with weak

electric field. This phenomenon is known as “hyperconductivity”.

One way to observe the Schwinger effect during inflation is to measure the properties

of charged fields produced. If the charged fields are coupled to the inflaton, they will decay

to inflatons during inflation, thus leaving signatures on the primordial power spectrum

and bispectrum. The idea stems from the so-called quasi-single field inflation [40–42], or

cosmological collider physics [43], which states that if there exist some massive fields of

mass m ∼ H, they can leave imprints on the squeezed limit of non-Gaussianities. Interest-

ingly, we found that if there exist a constant electric field during inflation, the Schwinger

effect will cause an angular dependence on the primordial power spectrum. This angular

dependence is different from the other mechanisms that produce the angular dependence

on the primordial power spectrum. For example, Bianchi universes such as anisotropic

inflation generated by a vector field background [44–48], Galileons [49] or higher-order of

curvature terms [50–52] can produce an angular dependence cos2 θ (See [53, 54] for reviews

and many more related works there in); inflation with a massive spin-1 field can produce

the angular dependence P1(cos θ). Moreover, since the magnitude of non-Gaussianities is

directly proportional to the number of particles produced during inflation, the bispectrum

has an angular dependence as more charged particles are produced in the direction parallel

with the direction of the electric field.

This paper is organized as follows, in section 2, we introduce the model we are con-

sidering. In section 3, we derive the geodesic equation of a charged scalar particle. In

– 2 –



J
H
E
P
0
4
(
2
0
1
9
)
0
6
6

section 4, we give the primordial power spectrum. In Sectrion 5, we give the bispectrum.

In section 6, we give the result of loop corrections to the bispectrum. We give a conclusion

in section 7.

2 Model

We consider an inflation model where QED is coupled to a pair of charged scalar σ and σ∗

in four dimensional de Sitter space.

S =

∫
d4x
√
−g
[
− gµν(R̃+ σ)(R̃+ σ∗)∂µθ∂νθ

− gµνDµσ
∗Dνσ − Vsr(θ)−m2|σ|2 − 1

4
f(θ)2FµνF

µν

]
, (2.1)

where Dµ ≡ ∂µ + ie(θ0)Aµ. Fµν = ∂µAν − ∂νAµ is the electromagnetic tensor. Note that

this action has a nonzero curvature in the field space. The curvature of the field space

is zero if we use the Cartesian coordinate, while it becomes nonzero if we use the polar

coordinate and make the radial coordinate complex (σ in this case). We cannot make the

radial coordinate complex without introducing curved field spaces. The FRW metric is

ds2 = a2(τ)(−dτ2 + dx2) , (2.2)

where τ is the conformal time. We study effects of backreaction in appendix A. We consider

a constant electric force in the z direction,

e(θ0)Aµ =
Ee0
H2τ

δzµ, E = const , (2.3)

where e0 is a constant defined in appendix A. Thus, the equation of motion for the σ field

in the large R̃ limit is (For the Lagrangian of the free δσ field, please refer to appendix B)

δσ′′ + 2
a′

a
δσ′ − ∂i∂iδσ − 2ie(θ0)Az∂zδσ + e(θ0)

2A2
zδσ + a2m2δσ = 0 . (2.4)

We quantize the δσ field in the following way

δσk = vkak + v∗kb
†
−k , (2.5)

δσ∗k = v∗−ka
†
−k + v−kbk , (2.6)

where ak and a†k are annihilation and creation operators of the positively charged scalar

particle, and bk and b†k are annihilation and creation operators of the negatively charged

scalar particle. They satisfy the commutation relations

[ak, a
†
p] = [bk, b

†
p] = (2π)3δ(3)(k− p) , (2.7)

[ak, ap] = [bk, bp] = [ak, bp] = [ak, b
†
p] = · · · = 0 . (2.8)

We introduce the variables

z ≡ 2kiτ, κ ≡ −ikz
k

e0E

H2
, µ2 ≡ 9

4
− e20E

2

H4
− m2

H2
, (2.9)
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where κ is imaginary. The real part of the parameter κ characterizes the magnitude of the

electric field projected to the direction of the trajectory of the negative charged particle.

In this work, we focus on the parameter regime where e20E
2/H4 +m2/H2 > 9/4, thus µ is

imaginary. Our work can be easily generalized to the e20E
2/H4 +m2/H2 < 9/4 case. The

real part of the parameter µ can be understood as the effective mass of a charged particle

in de Sitter space in Hubble units with correction 9/4 coming from the curved space time

and e20E
2/H2 from the electric field. The mode function satisfies the equation

d2

dz2
(avk) +

{
1

z2

(
1

4
− µ2

)
+
κ

z
− 1

4

}
(avk) = 0 . (2.10)

There are two solutions, which are given by the Whittaker functions Wκ,µ(z) and Mκ,µ(z).

Since in the sub-horizon limit |z| → ∞, the solution must approach to the Minkowski

solution, we obtain the mode function

avk =
eiκπ/2√

2k
Wκ,µ(z) . (2.11)

In the late time limit, the mode function behaves as

avk =
e−|µ|π/2

2
√
k|µ|

{
αkMκ,µ(z) + βk(Mκ,µ(z))∗

}
. (2.12)

The coefficients αk and βk satisfies the normalization condition

|αk|2 − |βk|2 = 1 . (2.13)

The Bogoliubov coefficients can be obtained as

αk = (2|µ|)1/2e(iκ+|µ|)π/2 Γ(−2µ)

Γ(12 − µ− κ)
, βk = −i(2|µ|)1/2e(iκ−|µ|)π/2 Γ(2µ)

Γ(12 + µ− κ)
.

(2.14)

The qualitative feature of |αk|2, |αk||βk|, |βk|2 are plotted in figure 1. We see that as E

increases, both |αk|2 and |βk|2 first decrease exponentially and then eventually approach

to a constant value, with |αk|2 approaching to 2 and |βk|2 approaching to 1. The number

of charged particles being produced with charge e0 and wave number k per comoving three

volume
∫
d3k/(2π)3 is

nk = |βk|2 =
e2iκπ + e−2|µ|π

2 sinh(2|µ|π)
. (2.15)

In the classical limit, the particle production rate is given approximately by

nk ≈ e−SE = e−2π(|µ|±|κ|) = e−S± = e−2π
m̃
H
(
√
1+l2± |kz |

k
l) , (2.16)

where l ≡ e0E/m̃H characterizes the relative magnitude of the electric field and mass.

m̃2 = m2 − 9H2/4 is the effective mass of a neutral particle in de Sitter space. S+ is the
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Figure 1. The left panel of the figure shows the combinations of the Bogoliubov coefficients |αk|2
in black, |αk||βk| in blue and |βk|2 in red as a function of electric field by taking kz/k = 1. For

the right panel, we combine the contribution of the positive charged particles and negative charged

particles to the Bogoliubov coefficients. This contributes to the symmetry of the figure. The solid

and dashed lines correspond to m = 3H/2 and 2H respectively. The dotted line corresponds to

fixing |µ| = 4 and hence the electric field e0E/H
2 cannot exceed 4 as m̃ =

√
m2 − 9/4 ≥ 0. The

right panel of the figure shows the Bogoliubov coefficients as a function of kz/k. The solid, dashed

and dotted lines represents µ = 2i, 3i, 4i, respectively.

action corresponding to the action of the process that the charged particles are produced

but moving to the direction that increases the electric potential energy of itself, whereas

S− corresponds to the action of the process that the charged particles are produced and

moving to the direction that decreases the electric potential energy. It is always the S−
that gives the dominant contribution.

There are two interesting limits that we can discuss this problem quite intuitively. The

first limit is the weak electric field limit, where l � 1. The classical actions S± in (2.16)

can be approximated as

S± = 2π

(
m̃

H
± |kz|

k

e0E

H2

)
. (2.17)

The first term can be understood as the usual Boltzman factor coming from the production

of neutral massive particles of effective mass m̃. From the point of view of a geodesic

observer, de Sitter space is associated with a thermal bath with the Hawking temperature

T = H/(2π). The second term is understood as the chemical potential from the electric

field. This chemical potential can assist the production of charged particles along the

direction of decreasing potential. Since in this limit, the electric field is very weak, the

dominant contribution comes from the first term. Hence, although the particles are charged,

they are mainly produced gravitationally due to the expansion of the universe. In [55–

57], other examples of the chemical potential is also discussed in the context of fermion

production in inflation.

The other limit is the large electric field limit, where l � 1. In this limit, the electric

field is so strong that the modes do not feel the curvature of the spacetime. The classical

actions S± can be approximated as

S+ = 2π
e0E

H2

(
1 +
|kz|
k

)
S− = 2π

(
e0E

H2

(
1− |kz|

k

)
+

m̃2

2e0E

)
. (2.18)
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If we consider the charged particle pairs moving along the z direction, the second term

dominates. As we can see, it also reproduces the flat spacetime result.

In order to study the time scale of mass production of charged particles, it is useful to

consider the WKB approximation of solution (2.11).

avk =
1√

2|wk|
exp

{
− i
∫ τ

dτ |wk|
}
, (2.19)

where wk is the effective frequency given by

w2
k = (kz + e(θ0)Az)

2 + k2x + k2y + a2m2 − a′′

a

=
1

τ2

(
e20E

2

H4
+
m2

H2
− 2

)
+

2

τ

kze0E

H2
+ k2 , k ≡ (k2x + k2y + k2z)

1/2 . (2.20)

Then the adiabatic parameter is evaluated as∣∣∣∣w′kw2
k

∣∣∣∣ =

∣∣∣∣ H2(e20E
2 + e0EH

2kzτ − 2H4 +H2m2)(
e20E

2 + 2e0EH2kzτ − 2H4 +H2m2 + k2H4τ2
)3/2

∣∣∣∣ . (2.21)

It is around the time

τ ∼ −1

k

(
|µ|2 +

1

4

)1/4

, (2.22)

that the quantity w′k/w
2
k approaches its maximum. This means that most particles are

produced at this time scale.

Now we observe the production of the particle via the Schwinger effect during inflation.

One may think about the mechanism in the context of quasi-single field inflation. The

charged particles can decay into the primordial curvature perturbations, thus leaving an

imprint on the primordial power spectrum and bispectrum. ζ is the primordial curvature

perturbation. The second order action of the primordial curvature perturbation can be

written down following the procedure in [58, 59]

Sζ = M2
p

∫
dt

d3k

(2π)3
ε(a3ζ̇2 − k2aζ2) . (2.23)

Quantizing it in the following way

ζk = ukck + u∗kc
†
−k , (2.24)

where c†k, ck are the creation and annihilation operators satisfying the usual commutation

relations

[ck, c
†
p] = (2π)3δ(3)(k− p) . (2.25)

The mode function satisfies the following equation of motion

ζ̈ + (3 + η)Hζ̇ +
k2

a2
ζ = 0 . (2.26)

– 6 –
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To the lowest order in slow roll parameter, the solution is

uk(τ) =
H

2
√
εMpl

1

k3/2
(1 + ikτ)e−ikτ . (2.27)

We consider the following coupling between the primordial curvature perturbation and the

positive charged scalar fields

Lδσζ′ = c2

∫
d3xdτa3δσζ ′, Lδσζ′ζ′ = c3

∫
d3xdτa2δσζ ′ζ ′ , (2.28)

c2 = −2Rθ̇20
H

, c3 =
θ̇20R

H2
. (2.29)

The coupling between the inflaton and the negative charged scalar fields are

Lδσ∗ζ′ = c∗2

∫
d3xdτa3δσ∗ζ ′, Lδσ∗ζ′ζ′ = c∗3

∫
d3xdτa2δσ∗ζ ′ζ ′ , (2.30)

c∗2 = −2Rθ̇20
H

, c∗3 =
θ̇20R

H2
, (2.31)

and the coupling between the primordial curvature perturbation and the positive and

negative charged scalar fields are

Lδσδσ∗ζ′ = c′2

∫
d3xdτa3δσδσ∗ζ ′, Lδσδσ∗ζ′ζ′ = c′3

∫
d3xdτa2δσδσ∗ζ ′ζ ′ , (2.32)

c′2 = − θ̇
2
0(σ0 +R)

Hσ0
, c′3 =

θ̇20
H2

, (2.33)

where c2, c3, c
∗
2, c

∗
3, c

′
2 and c′3 are some constants. Here we pick some of the possible

interacting terms in (2.28), (2.30) and (2.32) (For the full analysis of the Lagrangian,

please refer to appendix B). For c3, c
∗
3, c

′
2 and c′3, we only show the leading order term

involved. We can also see that (2.28) and (2.30) do not conserve the charge of δσ. They

correspond to cases where the phase symmetry of δσ is broken, for example, in an Abelian

Higgs model (see [60] for discussion of a similar case). In other words, the gauge invariance

is broken. The breaking of U(1) gauge invariance can have some benefits. For example, the

strong coupling problem and backreaction can be evaded [26], though the mechanism to

obtain it is still an open problem. In this case, tree level contribution dominates correction

to the spectra. Equation (2.32) corresponds to the case where charge is conserved. In

this case, loop diagrams has to be computed. One may worry that these background

values contribute to the mass of the gauge field and it won’t be able to support a long

range force. But now we are considering very small coefficients. In order to calculate the

primordial spectrums, we used the Schwinger-Keldysh formalism (For the application in

quasi-single field inflation, see [61]). Now we derive the four types of free propagators for

both the curvature perturbation and the massive charged scalar fields. For the curvature

perturbation sector, the generating functional can be written as

Z0[J+, J−] ≡
∫
Dζ+Dζ− exp

[
i

∫ τf

τ0

dτd3x

(
L0[ζ+]− L0[ζ−] + J+ζ+ − J−ζ−

)]
. (2.34)
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The four propagators can be generated using

−i∆ab(τ1,x1; τ2,x2) =
δ

iaδJa(τ1,x1)

δ

ibδJb(τ2,x2)
Z0[J+, J−]

∣∣∣∣
J±=0

, a, b = ± . (2.35)

Fourier transforming it into momentum space gives

Gab(k; τ1, τ2) = −
∫
d3xe−ik·x∆ab(τ1,x; τ2,0) . (2.36)

The four types of propagators are given as the following

G++(k, τ1, τ2) = θ(τ1 − τ2)uk(τ1)u
∗
k(τ2) + θ(τ2 − τ1)u∗k(τ1)uk(τ2)

G+−(k, τ1, τ2) = u∗k(τ1)uk(τ2)

G−+(k, τ1, τ2) = uk(τ1)u
∗
k(τ2)

G−−(k, τ1, τ2) = θ(τ1 − τ2)u∗k(τ1)uk(τ2) + θ(τ2 − τ1)uk(τ1)u
∗
k(τ2) . (2.37)

For charged massive scalar pairs, we need to introduce two more sources J∗+ and J∗− to

source the complex conjugate of the σ field

Z0[J+, J−, J
∗
+, J

∗
−] ≡

∫
Dδσ+Dδσ−Dδσ∗+Dδσ∗− exp

[
i

∫ τf

τ0

dτd3x

(
L0[δσ+, δσ∗+]

− L0[δσ−, δσ∗−] + J+δσ+ − J−δσ− + J∗+δσ
∗
+ − J∗−δσ∗−

)]
.

(2.38)

The four propagators can be generated using

−i∆ab(τ1,x1; τ2,x2) =
δ

iaδJa(τ1,x1)

δ

ibδJ∗b (τ2,x2)
Z0[J+, J−, J

∗
+, J

∗
−]

∣∣∣∣
J±=0,J∗±=0

, a, b = ± .

(2.39)

Then we have(
D++(k, τ ; k′, τ ′) D+−(k, τ ; k′, τ ′)

D−+(k, τ ; k′, τ ′) D−−(k, τ ; k′, τ ′)

)
= i

(
〈Tδσk(τ)δσ∗k′(τ

′)〉 〈δσ∗k(τ)δσk′(τ
′)〉

〈δσk(τ)δσ∗k′(τ
′)〉 〈T̄ δσ∗k(τ)δσk′(τ

′)〉

)
.

(2.40)

The four types of propagators in the Schwinger-Keldysh formalism are

D++(k, τ1, τ2) = θ(τ1 − τ2)vk(τ1)v
∗
k(τ2) + θ(τ2 − τ1)v∗k(τ1)vk(τ2)

D+−(k, τ1, τ2) = v∗k(τ1)vk(τ2)

D−+(k, τ1, τ2) = vk(τ1)v
∗
k(τ2)

D−−(k, τ1, τ2) = θ(τ1 − τ2)v∗k(τ1)vk(τ2) + θ(τ2 − τ1)vk(τ1)v
∗
k(τ2) . (2.41)
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3 The geodesic equation

To understand the charged particles motion in inflation, we solve the geodesic equation as

an intuitive understanding. Following from our metric in (2.2), the following geodesic equa-

tion for a massive charged particle can be written down following the standard procedure

(see text books [62, 63]).

d2xµ

ds2
= −Γµαβ

dxα

ds

dxβ

ds
+
e(θ0)

m
Fµβ

dxα

ds
gαβ , gαβ

dxα

ds

dxβ

ds
= −1 , (3.1)

where the connection is

Γλαβ =
1

2
gλτ
(
∂gτα
dxβ

+
∂gτβ
∂xα

−
∂gαβ
∂xτ

)
. (3.2)

Here, we would like to observe the change in the physical velocity of the massive charged

particle. We would like to solve the following geodesic equation:

d2x(t)

dt2
= −2

ȧ

a

dx(t)

dt
+
e0
m
a−1E . (3.3)

The initial condition we would choose is ẋ(t0) = 0, which means that the particles are

produced at zero velocity. The solution to this equation subjected to the initial condition is

x(t) =
Ee0
mH2

e−Ht
(

cosh(H(t− t0))− 1

)
. (3.4)

The velocity of the particle is

ẋ(t) =
Ee0
mH

(
e−Ht − eHt0−2Ht

)
. (3.5)

At first, the force from electric field dominates over the Hubble friction and the parti-

cle starts to accelerate. Later, the particle decelerates due to the Hubble friction. The

maximum velocity occurs in the subhorizon.

4 Power spectrum

In this section, we study the correction to the power spectrum of our model, which can be

shown in figure 3. It can be evaluated using the Schwinger-Keldysh formalism [61]

〈ζkζ−k〉′ = |c2|2
∑
a,b=±

ab

∫ 0

−∞

∫ 0

−∞

dτ1
(−Hτ1)3

dτ2
(−Hτ2)3

∂τ1Ga+(k, τ1, 0)

×Dab(k, τ1, τ2)∂τ2Gb+(k, τ2, 0) + (κ→ −κ) , (4.1)

where G(k, τ1, τ2) and D(k, τ1, τ2) are defined by (2.37) and (2.41) respectively. Here, we

need to do a sum over of all the + and − modes. The ′ means the momentum conserving

delta function (2π)3δ(3)(k + k′) is stripped from the two point function.
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Figure 2. The comoving velocity of the particle with respect to the physical time t. We take

the Hubble parameter to be 1 in making the plot. We choose the initial time to be t0 = −30

and tf = 30 to ensure 60 e-folds. We here plot the evolution of the velocity in the subhorizon

level. Initially, the velocity of the particle is zero. Through the acceleration from the electric field,

the velocity of the particle increases and the direction depends on the charge of the particle. For

stronger electric fields,the maximum velocity attained is much larger. After some time, the particle

starts to decelerate and its velocity slowly decreases to zero due to the Hubble expansion of the

universe. We can see the velocity has decreased to zero at subhorizon level. Hence, the change

in the frequency of the oscillatory signal in the bispectrum can’t be observed as the bispectrum is

imprinted at late times.

There are two contributions, the first is

〈ζkζ−k〉′(1) = 2|c2|2
eiπκ

32k3M4
plε

2

∣∣∣∣ ∫ ∞
0

dx1
eix1Wκ,µ(−2ix1)

x1

∣∣∣∣2 + (κ→ −κ) . (4.2)

The indefinite integral can be integrated directly, which yields

I =

∫
dx
eixWκ,µ(−2ix)

x
= G2,1

2,3

(
−2ix

∣∣∣∣∣ 1,−κ+ 1
1
2 − µ, µ+ 1

2 , 0

)
, (4.3)

where G is the Meijer function defined through the Gamma function in the following way

Gm,np,q

(
x

∣∣∣∣∣ a1, . . . , apb1, . . . , bq

)
≡ 1

2πi

∫
γL

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏p

j=n+1 Γ(aj − s)
∏q
j=m+1 Γ(1− bj + s)

xsds . (4.4)

At x = 0, the integral I gives 0. At x→∞, it gives

Γ(12 − µ)Γ(12 + µ)

Γ(1− κ)
. (4.5)

The second contributions is

〈ζkζ−k〉′(2) = − 4|c2|2
eiπκ

32k3M4
plε

2
(4.6)

× Re

[ ∫ ∞
0

dx2
e−ix2W−κ,−µ(2ix2)

x2

∫ x2

0
dx1

e−ix1Wκ,µ(−2ix1)

x1

]
+(κ→−κ) .
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This integral is difficult to evaluate, thus, we use series expansion to calculate the analytical

expression for the integral. The detailed calculation of the power spectrum is presented in

appendix D

〈ζkζ−k〉′(2) = −4|c2|2
eiπκ

32k3M4
plε

2
Re[I2] + (κ→ −κ) , (4.7)

where I2 = P1 + P2 + P3 + P4. We present the expression of each component explicitly

P1 =
Γ(2µ)Γ(−2µ)

Γ(12 + µ+ κ)Γ(12 − µ− κ)

∞∑
n=0

∞∑
m=0

(−1)
1
2
+µ+n+2m2

n!m!(12 + µ+m)
Γ(1 +m+ n) (4.8)

× 2F1

(
−n,−µ+ κ+

1

2
; 1− 2µ; 2

)
2F1

(
−m,µ− κ+

1

2
; 2µ+ 1; 2

)
× 2F1

(
1 +m+ n,

1

2
+ µ+m;

3

2
+ µ+m;−1

)
,

P2 =
Γ(2µ)Γ(2µ)

Γ(12 + µ+ κ)Γ(µ− κ+ 1
2)

∞∑
n=0

∞∑
m=0

(−1)
1
2
−µ+n+2m21−2µ

n!m!(12 − µ+m)
Γ(1− 2µ+m+ n) (4.9)

× 2F1

(
−n,−µ+ κ+

1

2
; 1− 2µ; 2

)
2F1

(
−m,−µ− κ+

1

2
; 2µ+ 1; 2

)
× 2F1

(
1− 2µ+m+ n,

1

2
− µ+m;

3

2
− µ+m;−1

)
,

P3 =
Γ(−2µ)Γ(−2µ)

Γ(−µ+ κ+ 1
2)Γ(12 − µ− κ)

∞∑
n=0

∞∑
m=0

(−1)
1
2
+µ+n+2m21+2µ

n!m!(12 + µ+m)
Γ(1 + 2µ+m+ n) (4.10)

× 2F1

(
−n, µ+ κ+

1

2
; 1− 2µ; 2

)
2F1

(
−m,µ− κ+

1

2
; 2µ+ 1; 2

)
× 2F1

(
1 + 2µ+m+ n,

1

2
+ µ+m;

3

2
+ µ+m;−1

)
,

P4 =
Γ(−2µ)Γ(2µ)

Γ(−µ+ κ+ 1
2)Γ(µ− κ+ 1

2)

∞∑
n=0

∞∑
m=0

(−1)
1
2
−µ+n+2m2

n!m!(12 − µ+m)
Γ(1 +m+ n) (4.11)

× 2F1

(
−n, µ+ κ+

1

2
; 1− 2µ; 2

)
2F1

(
−m,−µ− κ+

1

2
; 2µ+ 1; 2

)
× 2F1

(
1 +m+ n,

1

2
− µ+m;

3

2
− µ+m;−1

)
.

We can see that m = 0, n = 0 of P1 contributes to the leading order term of I2 in

figure 13. We then would apply this approximation in calculating I2,

I2 ≈
Γ(2µ)Γ(−2µ)

Γ(12 + µ+ κ)Γ(12 − µ− κ)

(−1)
1
2
+µ2

(12 + µ)
2F1

(
0,−µ+ κ+

1

2
; 1− 2µ; 2

)
(4.12)

× 2F1

(
0, µ− κ+

1

2
; 2µ+ 1; 2

)
2F1

(
1,

1

2
+ µ;

3

2
+ µ;−1

)
=
ie−iπµ

2µ
csc(2πµ) cos(π(κ+ µ))

(
ψ(0)

(
µ

2
+

1

4

)
− ψ(0)

(
µ

2
+

3

4

))
.
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Figure 3. The Feynman diagram we are considering for the correction to the power spectrum.

This diagram involves the interaction of δσ with the inflaton. For the total correction, we need to

include the correction from δσ∗.

The power spectrum Pζ is obtained as

〈ζkζ−k〉′ = 〈ζkζ−k〉′(1) + 〈ζkζ−k〉′(2) ≡
2π2

k3
Pζ(k) . (4.13)

From here and the following, when making the plot, we set c2 = c3 = Mpl = ε = H = 1.

We plot the angular dependence of the power spectrum in figure 4. The produced charged

particles can leave non trivial angular dependence on the power spectrum. The power

spectrum grows exponentially as the quantity kz/k increases. This signature is understood

as the production of virtual particles increases exponentially when the momentum of the

positive charged massive scalar particle is aligned with the electric field E whereas the

momentum of the negative charged massive scalar particle is opposite to the direction of

the electric field E. This signature is a unique signature which cannot be generated by

other mechanisms to the knowledge we know of.

We also plot the dependence of the power spectrum on electric field strength in figure 5

and the dependence of the power spectrum on the mass of massive field in figure 6.

5 Bispectrum

In this section, we study the bispectrum of this model, which is shown in figure 7. For

the bispectrum, using the Schwinger-Keldysh formalism [61], the bispectrum can be ex-

pressed as

〈ζk1ζk2ζk3〉′ = c2c
∗
3

∑
a,b=±

ab

∫ 0

−∞

∫ 0

−∞

dτ1
(−Hτ1)3

dτ2
(−Hτ2)2

∂τ1Ga+(k3, τ1, 0)

×Dab(k3, τ1, τ2)∂τ2Gb+(k1, τ2, 0)∂τ2Gb+(k2, τ2, 0)

+ (κ→ −κ, c2 → c∗2, c
∗
3 → c3) . (5.1)

There are three contributions

〈ζk1ζk2ζk3〉′ = 〈ζk1ζk2ζk3〉′(1) + 〈ζk1ζk2ζk3〉′(2) + 〈ζk1ζk2ζk3〉′(3)

+ 5 Permutations + (κ→ −κ, c2 → c∗2, c
∗
3 → c3) , (5.2)

where 〈ζk1ζk2ζk3〉′(1), 〈ζk1ζk2ζk3〉′(2) and 〈ζk1ζk2ζk3〉′(3) are computed as

〈ζk1ζk2ζk3〉′(1) = − 2c2c
∗
3

H3eiπκ

128ε3k1k2k43M
6
pl

×
∫ ∞
0

dx1
eix1Wκ,µ(−2ix1)

x1

∫ ∞
0

dx2x2e
−i k1+k2

k3
x2W−κ,−µ(2ix2) .
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Figure 4. We here make a comparison on the analytical (line plot) and numerical (dotted plot)

results for different electric field strength. At different electric field strength, the power spectrum

has different angular dependence. We set the mass of massive field to be 3H/2. When the orientation

is aligned to the orientation of the field, the power spectrum is much larger. If the orientation is

perpendicular to the orientation of the field, although the electric field is strong, Schwinger effect

is weak and the effective mass is large enough to suppress the power spectrum, hence, the power

spectrum can be small with strong electric field strength. At the orientation parallel to the field’s

orientation, the Schwinger effect is strong enough to get a large power spectrum.

0 1 2 3 4

0.01
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106

Ee0/H2

P
k
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H
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m
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m

H
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2

m

H
= 33
2

m

H
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2

Figure 5. We set kz/k = 1 and the mass of the massive field to be 3H/2, 9H/2, 15H/2, 21H/2,

27H/2, 33H/2, 39H/2 respectively. The power spectrum increases exponentially with respect to the

electric field strength.
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Figure 6. We set kz/k = 1 and κ = 0,−i,−2i,−3i,−4i,−5i,−6i respectively. For small electric

field strength, the power spectrum decreases following the power 1/|µ|2, whereas when the electric

field strength increases, the power spectrum decays exponentially when the mass increases.

⇣k1

⇣k2

⇣k3
��k3

Figure 7. The Feynman diagram of the bispectrum that involves the interaction of δσ with the

inflaton. For the total contribution, we need to include the correction from δσ∗.

〈ζk1ζk2ζk3〉′(2) = 2c2c
∗
3

H3eiπκ

128ε3k1k2k43M
6
pl

× Re

[ ∫ ∞
0

dx2x2e
−i k1+k2

k3
x2W−κ,−µ(2ix2)

∫ x2

0
dx1

e−ix1Wκ,µ(−2ix1)

x1

]
.

〈ζk1ζk2ζk3〉′(3) = 2c2c
∗
3

H3eiπκ

128ε3k1k2k43M
6
pl

× Re

[ ∫ ∞
0

dx2
e−ix2W−κ,−µ(2ix2)

x2

∫ x2

0
dx1x1e

−i k1+k2
k3

x1Wκ,µ(−2ix1)

]
.

We can define the bispectrum in the form of dimensionless shape function S(k1, k2, k3) [57],

defined as,

〈ζk1ζk2ζk3〉′ ≡ (2π)4S(k1, k2, k3)
1

(k1k2k3)2
P

(0)2
ζ , (5.3)

where P
(0)
ζ = 1

8π2M2
pl

H2

ε is the power spectrum for the curvature perturbation without the

correction coming from massive fields.
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x
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z
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k3k3z

Figure 8. This figure shows how we measure the non-Gaussianity. The z direction denotes the

direction of the electric field. When we measure the non-Gaussianity, we should fix the ratio of

the long wavelength momentum and the short wavelength momentum k1/k3. In the meanwhile, we

measure the angular dependence of the non-Gaussianity for different k3z/k3. k3z is the magnitude

of the long wavelength momentum projected onto the z direction.

-1.0 -0.5 0.0 0.5 1.0

10-5

0.01

10

k3 z/k3

S(
k
1
,k
2
,k
3
)X

k
1
/k
3

μ=2i

μ=3i

μ=4i

Figure 9. This figure shows the amplified shape function S(k1, k2, k3)× k1/k3 as a function of the

angular dependence of the soft momentum k3z/k3. In this figure, we set m = 3H/2 and k1/k3 = 100.

When the orientation is aligned to the orientation of the field, the amplitude of the bispectrum is

much larger. At the orientation perpendicular to the field’s orientation, although the electric field

strength is strong, Schwinger effect is weak and the effective mass is large enough to suppress the

bispectrum. At the orientation parallel to the orientation of the field, the Schwinger effect is strong

enough to generate a bispectrum of large amplitude.

The bispectrum can be evaluated using numerical integration. We plot the angular

dependence of the amplified bispectrum shape function (k1/k3)×S(k1, k2, k3) as a function

of k3z/k3 in figure 9. The bispectrum increases exponentially with increasing absolute value

of k3z/k3. When k3z/k3 is positive, the main contribution comes from the positive charged
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Figure 10. The figure shows the clock signal from the bispectrum. Here we set the momentum

to be in the z-direction and hence we set k3z/k3 = 1. We can see the suppression of the clock

signal as the electric field increases. The frequency of the clock signal remains unchanged as the

change in velocity of the produced particles occurs in the subhorizon and remains stationary during

horizon crossing. Hence, no change in frequency of the oscillatory signal would be seen. However,

the amplitude of the oscillatory signal would increase as the magnitude of the electric field strength

increase.

particles whereas when k3z/k3 is negative, the main contribution comes from the negative

charged particles.

We plot the clock signals of the squeeze limit of the bispectrum with fixed effective

mass µ in figure 10 and with fixed mass m in figure 11. In both cases, we see that the clock

signal is less obvious when the strength of the electric field increases. In the case of fixing

the effective mass µ case, the absolute value of the clock signal increases with increasing

electric field strength due to the enhanced particle production rate. However, the relative

amplitude between the clock signal and the contribution of the non-oscillating part coming
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Figure 11. The figure shows the clock signal from the bispectrum for m = 4H2. Here we set

k3z/k3 = 1 again. We can see the suppression of the clock signal as the electric field increases.

from some local process decreases. This is because the contribution of the non-oscillating

part increases faster than the clock signal when the electric field strength increases. For

the fixed mass m case, when the electric field strength increases, the amplitude of the

clock signal relative to the non-oscillating part decreases more dramatically compared with

the fixed effective mass case. This is because the electric field strength contributes to the

effective mass of the charged massive scalar particles. The energy needed to produce a

particle increases accordingly. The combination of these two effect causes the amplitude of

the clock signal relative to the non-oscillating part barely observable starting from κ = 4i.

The analytical expression of the clock signal in the large mass and small electric field

strength can be obtained in appendix E. We are particularly interested in the squeezed
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limit where k1 ∼ k2 � k3. In this limit, the shape function is

S(k1, k3) =
1

HM2
plε

Re

[
2µ−9/2c2c

∗
3f(µ, κ)

(
k1
k3

)−1/2−µ]
+ (κ→ −κ, c2 → c∗2, c

∗
3 → c3) ,

(5.4)

with the prefactor given by

f(µ, κ) ≡ eiπκ
Γ(−2µ)2Γ

(
1
2 + µ

)
Γ
(
5
2 + µ

)
Γ(12 − µ− κ)Γ(12 + µ− κ)

(1 + sin (πµ)) , (5.5)

where the full derivation can be obtained in appendix F. We can see that in the large

mass limit, all the Γ functions contribute a factor of e−2π|µ| and sin(πµ) would give a

contribution of eπ|µ|. Hence, the Boltzmann suppression factor e−π|µ| is recovered in this

limit. At the end of this section, we would like to compare several mechanisms that can

generate large clock signals even if the mass of the σ field are large. There are a few

categories of mechanisms listed as the following.

• The presence of a new scale. In [64], non-adiabatic production of very heavy fields

is studied. The signatures of this model can be large due to the existence of another

scale φ̇ with φ as the inflaton.

• Finite temperature effect. In [65], the clock signal of the quasi-single field inflation

is studied in the context of warm inflation. The particle production rate can be

unsuppressed when the effective mass of the particle is changed due to the finite

temperature effect.

• The presence of chemical potential. In [55–57], the effect of the chemical potential

is studied. The chemical potential can assist the production of the massive particles

during inflation thus leaving a less suppressed clock signal. The mechanism we studied

here also belongs to this category. However, our studies shows that although it is

promising to generate a larger clock signal, one may worry that the contribution from

the non-oscillating part will also increase.

• Non-trivial sound speed. The non-trivial sound speed of the massive field is studied

in [66]. The magnitude of the clock signal can also be larger than expected when the

ratio of sound speed of the massive field and the inflaton is less than one. In [67, 68],

the non-trivial sound speed of the inflaton is studied. It is shown in [68] that when

the sound speed of the inflaton is close to zero, there will also be a change in the

suppression factor of the clock signal.

6 Loop correction to bispectrum

In this section, we investigate loop corrections coming from the extra massive fields to

the primordial non-Gaussianities. The technique of dealing loop correction in quasi-single

field inflation can be found in [43, 69–72]. The non-oscillatory part of the diagram is
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Figure 12. The Feynman diagram we are considering for the loop correction to the bispectrum.

usually UV divergent and we need a systematic way of regularization and renormalization

following [73–77]. Luckily, the clock signal is free from UV divergence and we can evaluate

it easily.

Using the Schwinger-Keldysh formalism, the bispectrum corresponding figure 12 can

be obtained as

〈ζk1ζk2ζk3〉′ = c′2c
′
3

∑
a,b=±

ab

∫ 0

−∞

∫ 0

−∞

dτ1
(−Hτ1)3

dτ2
(−Hτ2)2

∂τ1Ga+(k3, τ1, 0)

×
∫

d3q

(2π)3
Dab(p, τ1, τ2)Dba(q, τ2, τ1)

× ∂τ2Gb+(k1, τ2, 0)∂τ2Gb+(k2, τ2, 0) + (κ→ −κ) , (6.1)

where p and q are the loop momentum that satisfies the constraint p + q = k3. After

evaluation, we get

〈ζk1ζk2ζk3〉′ = c′2c
′
3Re

[
g(µ, κ)

2−1−8µH5

k1k2k412M
6
plε

3

(
k12
k3

)2µ]
+ (κ→ −κ) ,

with the prefactor given by

g(µ, κ) = e2iπκ
Γ(2− 2µ)Γ(4− 2µ)Γ(−2µ)4

Γ(1/2− µ− κ)2Γ(1/2 + µ− κ)2
(sin(πµ))2 , (6.2)

and with the definition of the shape function S(k1, k2, k3) in (5.3) and taking the limit

k1 = k2 � k3, we can obtain the expression for the shape function

S(k1, k1, k3) = c′2c
′
3Re

[
g(µ, κ)

23−8µH

M2
plε

(
2k1
k3

)2µ−2]
+ (κ→ −κ) . (6.3)

We can see that from the loop diagram, the massless curvature modes resonates with two

pairs of massive fields and generate two sets of clock signals. The final clock signal would

be contributed from the interference of these two clock signals and hence has a frequency

doubled of the tree level diagram. The total Boltzmann suppression factor is of e−2πµ

where all the Γ functions contribute e−4πµ in total and the sin functions contribute a factor

of e2πµ. The suppression for the loop correction is the square of the tree-level case due to

the excitation of the two massive fields in the loop diagram.
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7 Conclusion and outlook

In this work, we consider the imprints of the Schwinger effect on the primordial power

spectrum and bispectrum. Both the power spectrum and bispectrum obtained an angular

dependence due to the fact that the electric field can assist the production of charged

massive particles by adding a chemical potential to them. This angular dependence differs

from other models that can too cause an angular dependence on the primoridial power

spectrum and bispectrum. As a result, the production rate aligned or opposite to the

direction of the charged particles gets enhanced. On the other hand, the production rate

perpendicular to the direction of the electric field is suppresed due to the contribution of

the electric field strength to the effective mass of the charged scalar particles.

There are many interesting possibilities to explore. We list a few of them and hope to

address some of these possibilities in the future.

• The influence of the primordial magnetic field on the power spectrum and bispectrum

in the context of quasi-single field inflation. The pair production of the charged

scalar field in the presence of a constant electric and magnetic field is studied in [78].

We would like to couple the charged particles with the inflaton and see what kind

of signature these particles would imprint on the primordial power spectrum and

bispectrum of the curvature perturbations. These signatures on the power spectrum

and bispectrum will provide supporting evidences to the existence of the primordial

magnetic field.

• The signature from other fields produced by Schwinger effect during inflation.

Schwinger effect not only produces charged scalar particles, but charged fermions

too [79]. The production rate is very similar. However, the production of fermions

may lead to other types signatures on the power spectrum and bispectrum.

• Other sources like SU(2) gauge fields [80–82]. In this case, the production rate is

suppressed as the interaction strength increases. However, some signal of cosmological

collider type can be generated by the spin-2 field which is required by this type

of model.
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A Backreaction due to conformal coupling

We investigate the effect of the backreaction on the background equations of motion. This

effect is also studied in (1+1)D in [83] and general dimension in [84, 85]. We consider a
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modified quasi-single field inflation model where a charged isocurvaton (σ) is coupled to

the inflaton (θ) [40, 41].

S =

∫
d4x
√
−g
[
− gµν(R̃+ σ)(R̃+ σ∗)∂µθ∂νθ

− gµνDµσ
∗Dνσ − Vsr(θ)−m2|σ|2 − 1

4
f2(θ)FµνF

µν

]
, (A.1)

where Dµ ≡ ∂µ + ie(θ0)Aµ. Here we consider the charge to be dependent on the inflaton

field. Fµν = ∂µAν − ∂νAµ is the electromagnetic tensor. We consider the FRW metric as

stated previously. The dilatonic coupling f(θ) would prevent the decay of the gauge field

energy density from the expansion of the universe. We consider the background gauge field

to have the form (0, 0, 0, Az(t)). We now have the following Hubble and continuity equation

3M2
plH

2 = θ̇20R
2 +m2σ20 + Vsr +

1

2

f(θ0)
2

a2
Ȧ2
z +

e(θ0)
2σ20A

2
z

a2
,

−M2
plḢ = θ̇20R

2 +
1

2

f(θ0)
2

a2
Ȧ2
z , (A.2)

where R = R̃ + σ0. We can see that in the absence of the charge of the complex scalar

field, the gauge fields act as radiation. The equation of motion reads

σ0 = constant, θ̇20R = m2σ0 +
e(θ0)

2σ0A
2
z

a2

R2θ̈0 + 3R2Hθ̇0 +
V ′sr
2

=
1

2

f(θ0)f
′(θ0)Ȧ

2
z

a2
− e(θ0)e

′(θ0)σ
2
0A

2
z

a2
. (A.3)

We can also vary (A.1) with respect to the gauge field and obtain the corresponding

Maxwell equation,

∂t(f(θ0)
2aȦz) = −2e(θ0)

2σ20aAz . (A.4)

From (A.2), we can define the ratio of energy density of gauge fields to the inflaton,

R1 =
Ȧ2
zf(θ)2

2a2m2σ20
, R2 =

e(θ0)
2A2

z

a2m2
. (A.5)

Since we require inflation to last for a long enough period of time, we require the gauge field

energy density to be much smaller than the total energy density. This is because inflation

has to be mainly driven by the inflaton itself and we require R1, R2 � 1 to prevent inflation

from ceasing [54, 86]. From (A.4), we can see that e(θ0)
2σ20A

2a−2 must be negligible in

order for inflation to persist, hence, we can directly solve (A.4) to obtain

Ȧz =
c0

f(θ0)2a
. (A.6)

In order for R1, R2 to be constant and small throughout inflation, f(θ0) = a−2 in the

classical limit, where here we consider the normalization of the constant. The physical

electric field is given by the following in the presence of the dilatonic coupling:

Ephys = −fa−1dAz
dt

. (A.7)
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Since A ∝ a3 and we require Ephys = E, where E is a constant, we would have

Az = − E

3H
e3Ht . (A.8)

Here, we can also roughly solve for e(θ0). In order for R2 in (A.5) to have the same

order of magnitude as R1, we can set e(θ0) = a−2e0 where e0 is the initial amount of

charge at the beginning of inflation. Previous studies [26] mentioned that to generate a

large enough electromagnetic field, we would encounter backreaction and strong coupling

problems. However, we consider non gauge-invariant coupling to avoid these problems.

B Lagrangian up to the third order

We use the ADM formalism to derive the full Lagrangian (A.1) up to the third order. We

first review the ADM formalism. The full action is given by

S = Sg + Sm =
1

2

∫
d4x
√
−gR+

∫
d4x
√
−gLm . (B.1)

Using the ADM metric,

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) , (B.2)

we can decompose the action into

S =
1

2

∫
d4x
√
hN(R(3) + 2Lm) +

1

2

∫
d4x
√
hN−1(EijE

ij − E2) . (B.3)

Here, the 3d metric hij is used to lower the index of N i and R(3) is the 3d Ricci scalar

constructed from hij . We define Eij and E explicitly:

Eij =
1

2
(ḣij −∇iNj −∇jNi) , (B.4)

E = Eijh
ij . (B.5)

We here choose the uniform inflaton gauge,

θ(x, t) = θ0(t), σ(x, t) = σ0 + δσ(x, t), σ∗(x, t) = σ0 + δσ∗(x, t) , (B.6)

hij(x, t) = a2e2ζ(x,t)δij . (B.7)

The constraint equations for the Lagrangian multipliers N and Ni are

R(3) + 2Lm + 2N
∂Lm
∂N

− 1

N2
(EijE

ij − E2) = 0 , (B.8)

∇i[N−1(Eij − hijE)] +N
∂Lm
∂Ni

= 0 . (B.9)

In order to expand the action up to third order in perturbations, we need to solve the

Lagrangian multipliers N and Ni up to the first order in perturbations. We then expand,

N = 1 + α1, Ni = ∂iψ1 + Ñ
(1)
i , (B.10)
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where ∂iÑ
(1)
i = 0. Plugging (B.10) into (B.3), we can obtain the following expressions:

α1 =
ζ̇

H
, Ñ

(1)
i = 0 , (B.11)

∂i∂iψ1 =
−e(θ0)Aσ0Im[∂zδσ]− 2a2Rθ̇0Re[δσ] + εa2Hζ̇ − ∂i∂iζ

H
. (B.12)

We plug these solutions back into the action and expand them up to the third order action:

L2 = a3εζ̇2 − aε(∂iζ)2 + a3 ˙δσ ˙δσ∗

+

(
a∂i∂iδσ −

R̃

R
(a3m2 + ae(θ0)

2A2)δσ

)
δσ∗ + 2ae(θ0)AIm[δσ∂zδσ

∗]

+ 6ae(θ0)Aσ0Im[∂zδσ
∗]ζ +

(
−4

a3Rθ̇20
H

Re [δσ] +
2ae(θ0)Aσ0

H
Im[∂zδσ

∗]

)
ζ̇ , (B.13)

L3 = a3 ˙δσ ˙δσ∗

(
3ζ − ζ̇

H

)
− a

(
3ζ +

ζ̇

H

)
∂iδσ∂iδσ

∗

+
Hζ + ζ̇

2aH3

(
−H2(∂i∂jψ1)

2 − a2(m2σ20 − θ̇20σ0R)Im[∂zδσ]2 + (∂i∂iζ)2
)

+
(∂jψ1)

2∂i∂iζ

a
+ aζ(∂iζ)2 + ε

(
3a3ζζ̇2 − a3ζ̇3

H
− aζ̇

H2
(Hζ + ζ̇)∂i∂iζ

)

+
a3θ̇20 ζ̇(2σ0Rζ̇Re[δσ]−H(σ0 +R)δσδσ∗)

H2σ0
+ · · · (B.14)

We here would like to make a comment on (B.13). We can use it to derive the equation

of motion for the perturbations ζ, δσ and δσ∗ while neglecting the interacting terms that

are shown in the second line of (B.13) and taking σ0 � R̃. We here have neglected the

higher order terms (ε2, A,A2, A4) in expressing the third order action (B.14). We also can

see that in the absence of the electric field, (B.11), (B.12), (B.13), (B.14) reduced to the

expression similar to the ones of quasi-single field inflation [41].

C Angular power spectrum due to vector field perturbations

Here we like to explicitly show the contribution of the vector field perturbations on the

angular dependence of the power spectrum. We consider the similar action as (A.1) except

that we consider the temporal (A0) component and the spacial (A) component of the

vector field Aµ. We also consider σ0 = constant, f = a−2 and e(θ0) = e0a
−2. We obtain

the following equations of motion,

∇ · Ȧ−∇2A0 + 2a2e20σ
2
0A0 = 0 , (C.1)

Ä− 3HȦ− ∇
2A

a2
+ 2e20σ

2
0A = −2H∇A0 . (C.2)

Here we have use the antisymmetry property of Fµν (∂µ∂νF
µν = 0) in obtaining (C.2).

We explicitly show the second order Lagrangian that is contributed by the vector field
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perturbations,

LδA =
1

2
af2(∂iδA0)

2 − af2∇δA0 · ˙δA +
1

2
a3m2

AδA
2
0 +

1

2
af2 ˙δA

2

− 1

2
am2

AδA
2 − f2

2a
(∇× δA)2 − af2(∇δA0) · ˙δA , (C.3)

where m2
A = 2e(θ0)

2σ20. Hence, we have

∇ · ˙δA +
(
2a2e20σ

2
0 −∇2

)
δA0 = 0 , (C.4)

for the equation of motion of the temporal gauge. For the spacial gauge, we like to introduce

the physical vector field,

δW =
fδA

a
. (C.5)

We obtain the following second order Lagrangian for the spacial gauge

LδW =
1

2
af2

(
ȧδδW

f
+
aẆ

f
− aḟδW

f2

)2

− 1

2
a3
m2
A

f2
δW2

− 1

2
a(∇× δW)2 + (aȧf + 2a2ḟ)(∇δA0) · δW + a2f∇ ˙δA0 · δW . (C.6)

We finally obtain the equation of motion for the spacial gauge,

¨δW + 3H ˙δW +

(
m2

0 −
∇2

a2

)
δW = −2H

a3
(∇δA0) , (C.7)

where m2
0 = 2e20σ

2
0. To investigate the quantum properties of the vector field perturbations,

we introduce the following annihilation/creation operators for each polarisation,

δW(t,x) =
∑

λ=L,R,‖

∫
d3k

(2π)3

(
eλ(k̂)d̂λ(k)wλ(t, k)eik·x + e∗λ(k̂)d̂†λ(k)w∗λ(t, k)e−ik·x

)
, (C.8)

where L,R, ‖ denotes left and right transverse and longitudinal polarisations respectively.

The polarisation vectors are

eL =
1√
2

(1, i, 0), eR =
1√
2

(1,−i, 0), e‖ = (0, 0, 1) , (C.9)

and d̂λ, d̂
†
λ satisfy the usual commutation relations

[d̂α(k), d̂†β(k′)] = (2π)3δ(k− k′)δαβ . (C.10)

We introduce the expansion (C.8) to (C.7), we finally get the equations of motion for the

transverse and longitudinal mode functions

ẅL,R + 3HẇL,R +

(
m2

0 +
k2

a2

)
wL,R = 0 , (C.11)

ẅ‖ +

(
3 +

8

1 + r2

)
Hẇ‖ +

24

1 + r2
H2w‖ +

(
m2

0 +
k2

a2

)
w‖ = 0 , (C.12)
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where r2 = a2m2
0/k

2. If we consider (C.11), (C.12) to be expressed in terms of conformal

time and r2 � 1,

w′′L,R −
2

τ
w′L,R +

(
k2 +

m2
0

H2τ2

)
wL,R = 0 , (C.13)

w′′‖ −
(

2

τ
+ 8τ

k2H2

m2
0

)
w′‖ +

(
k2 + 24

k2H2

m2
0

+
m2

0

H2τ2

)
w‖ = 0 . (C.14)

The solution for the mode functions is given by

wL,R = −iei(ν+1/2)π/2

√
π

2
H(−τ)3/2H(1)

ν (−kτ) , (C.15)

and

w‖ = ei(−ν+1/2)π/2

√
π

2

2νk−νH(−τ)3/2−ν

Γ(1− ν)sin(πν)
1F1

(
− m2

0

16H2
− ν

2
− 3

4
; 1− ν;

4H2k2τ2

m2
0

)
+ (ν → −ν) , (C.16)

where ν =
√

9/4−m2
0/H

2. The normalization of (C.15) is chosen that it recovers the

Bunch Davies vacuum when the momentum k/a is larger than the Hubble constant H and

the mass of gauge field m0 [40, 41],

wL,R → i
H√
2k
τe−ikτ . (C.17)

This is because (C.15) is the exact solution of (C.13). For (C.16), we just require it to

recover to (C.15) in the large mass mA limit. If we consider r2 � 1, the mode function

w‖ decays in the superhorizon limit. From the above mode functions, we can obtain the

power spectra in the superhorizon limit. In our model, we consider r2 � 1 and hence,

PL,R = (δWL,R)2 =

(
H

2π

)2

, P‖ = (δW‖)
2 = 0 . (C.18)

As shown in [87–89], the vector perturbations contribute to the curvature power spectrum

through the following term

PζA(k) =
4Ω̂2

A

9W 2

(
PL,R + (P‖ − PL,R)(Ŵ · k̂)2

)
, (C.19)

where Ŵ = W/W , W = |W| and Ω̂A = 3ΩA/(4 − ΩA) ∼ ΩA = ρA/ρ, where ρA is the

density of the vector field. We can see that in our model, PζA is not isotropic as we are

considering the vector field to have a weak mass m0.

D Analytical expression for the power spectrum

In this section, we compute the analytical expression for the power spectrum by series

expansion. In order to calculate the power spectrum, we like to evaluate∣∣∣∣∣
∫ ∞
0

dx1
eix1Wκ,µ(−2ix1)

x1

∣∣∣∣∣
2

, (D.1)
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and

Re

[∫ ∞
0

dx2
e−ix2W−κ,−µ(2ix2)

x2

∫ x2

0
dx1

e−ix1Wκ,µ(−2ix1)

x1

]
. (D.2)

We can expand the Whittaker W as the following

Wκ,µ(z) =
Γ(−2µ)z

1
2
+µ

Γ(12 − µ− κ)

∞∑
m=0

(−1
2)m

m!
2F1

(
−m,µ− κ+

1

2
; 2µ+ 1; 2

)
zm (D.3)

+
Γ(2µ)z

1
2
−µ

Γ(µ− κ+ 1
2)

∞∑
m=0

(−1
2)m

m!
2F1

(
−m,−µ− κ+

1

2
; 2µ+ 1; 2

)
zm .

The calculation of (D.1) is trivial as it is similar to (4.3):∣∣∣∣∣
∫ ∞
0

dx1
eix1Wκ,µ(−2ix1)

x1

∣∣∣∣∣
2

=

∣∣∣∣∣Γ(12 − µ)Γ(12 + µ)

Γ(1− κ)

∣∣∣∣∣
2

. (D.4)

We calculate the first layer of (D.2)

I1 =

∫ x2

0
dx1

e−ix1Wκ,µ(−2ix1)

x1
, (D.5)

I1 =
Γ(−2µ)

Γ(12 − µ− κ)

∞∑
m=0

(−1
2)m(−2)

1
2
+µ+m

m!
(D.6)

× 2F1

(
−m,µ− κ+

1

2
; 2µ+ 1; 2

)∫ x2

0
dix1e

−ix1(ix1)
− 1

2
+µ+m

+
Γ(2µ)

Γ(µ− κ+ 1
2)

∞∑
m=0

(−1
2)m(−2)

1
2
−µ+m

m!

× 2F1

(
−m,−µ− κ+

1

2
; 2µ+ 1; 2

)∫ x2

0
dix1e

−ix1(ix1)
− 1

2
−µ+m

=
Γ(−2µ)

Γ(12 − µ− κ)

∞∑
m=0

(−1
2)m(−2)

1
2
+µ+m

m!

× 2F1

(
−m,µ− κ+

1

2
; 2µ+ 1; 2

)
γ

(
1

2
+ µ+m, ix2

)
+

Γ(2µ)

Γ(µ− κ+ 1
2)

∞∑
m=0

(−1
2)m(−2)

1
2
−µ+m

m!

× 2F1

(
−m,−µ− κ+

1

2
; 2µ+ 1; 2

)
γ

(
1

2
− µ+m, ix2

)
.

Here, we have the following formula to expand the incomplete gamma function

γ(s, x) =

∫ x

0
ts−1e−tdt = xs

∞∑
j=0

(−x)j

j!(s+ j)
. (D.7)
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The result of (D.5) is of the following

I1 =
Γ(−2µ)

Γ(12 − µ− κ)

∞∑
m=0

(−1
2)m(−2)

1
2
+µ+m

m!
(D.8)

× 2F1

(
−m,µ− κ+

1

2
; 2µ+ 1; 2

) ∞∑
j=0

(−1)j
(ix2)

1
2
+µ+m+j

j!(12 + µ+m+ j)

+
Γ(2µ)

Γ(µ− κ+ 1
2)

∞∑
m=0

(−1
2)m(−2)

1
2
−µ+m

m!

× 2F1

(
−m,−µ− κ+

1

2
; 2µ+ 1; 2

) ∞∑
j=0

(−1)j
(ix2)

1
2
−µ+m+j

j!(12 − µ+m+ j)
.

We perform the following calculation

I2 =

∫ ∞
0

dx2
e−ix2W−κ,−µ(2ix2)

x2
I1 , (D.9)

Here, we use (D.3) to expand W−κ,−µ(2ix2) and I2 can be expressed as the following

I2 =
Γ(2µ)

Γ(12 + µ+ κ)

∞∑
n=0

(−1
2)n2

1
2
−µ+n

n!
(D.10)

× 2F1

(
−n,−µ+ κ+

1

2
; 1− 2µ; 2

)∫ ∞
0

dix2e
−ix2(ix2)

1
2
−µ+n−1I1

+
Γ(−2µ)

Γ(−µ+ κ+ 1
2)

∞∑
n=0

(−1
2)n2

1
2
+µ+n

n!

× 2F1

(
−n, µ+ κ+

1

2
; 1− 2µ; 2

)∫ ∞
0

dix2e
−ix2(ix2)

1
2
+µ+n−1I1

=
Γ(2µ)

Γ(12 + µ+ κ)

∞∑
n=0

(−1
2)n2

1
2
−µ+n

n!
2F1

(
−n,−µ+ κ+

1

2
; 1− 2µ; 2

)

×

(
Γ(−2µ)

Γ(12 − µ− κ)

∞∑
m=0

(−1
2)m(−2)

1
2
+µ+m

m!

× 2F1

(
−m,µ− κ+

1

2
; 2µ+ 1; 2

) ∞∑
j=0

(−1)j
Γ(1 +m+ n+ j)

j!(12 + µ+m+ j)

+
Γ(2µ)

Γ(µ− κ+ 1
2)

∞∑
m=0

(−1
2)m(−2)

1
2
−µ+m

m!

× 2F1

(
−m,−µ− κ+

1

2
; 2µ+ 1; 2

) ∞∑
j=0

(−1)j
Γ(1− 2µ+m+ n+ j)

j!(12 − µ+m+ j)

)

+
Γ(−2µ)

Γ(−µ+ κ+ 1
2)

∞∑
n=0

(−1
2)n2

1
2
+µ+n

n!
2F1

(
−n, µ+ κ+

1

2
; 1− 2µ; 2

)

– 27 –



J
H
E
P
0
4
(
2
0
1
9
)
0
6
6

×

(
Γ(−2µ)

Γ(12 − µ− κ)

∞∑
m=0

(−1
2)m(−2)

1
2
+µ+m

m!

× 2F1

(
−m,µ− κ+

1

2
; 2µ+ 1; 2

) ∞∑
j=0

(−1)j
Γ(1 + 2µ+m+ n+ j)

j!(12 + µ+m+ j)

+
Γ(2µ)

Γ(µ− κ+ 1
2)

∞∑
m=0

(−1
2)m(−2)

1
2
−µ+m

m!

× 2F1

(
−m,−µ− κ+

1

2
; 2µ+ 1; 2

) ∞∑
j=0

(−1)j
Γ(1 +m+ n+ j)

j!(12 − µ+m+ j)

)
.

We then perform the following summation to simplify I2

∞∑
j=0

(−1)j
Γ(p+ j)

j!(q + j)
=

Γ(p) 2F1 (p, q; q + 1;−1)

q
. (D.11)

So, I2 can be expressed in following form,

I2 =
Γ(2µ)

Γ(12 + µ+ κ)

∞∑
n=0

∞∑
m=0

(−1)
1
2
+n+2m21−µ

n!
2F1

(
−n,−µ+ κ+

1

2
; 1− 2µ; 2

)
(D.12)

×

(
Γ(−2µ)Γ(1 +m+ n)

Γ(12 − µ− κ)(12 + µ+m)

(−2)µ

m!
2F1

(
−m,µ− κ+

1

2
; 2µ+ 1; 2

)
× 2F1

(
1 +m+ n,

1

2
+ µ+m;

3

2
+ µ+m;−1

)
+

Γ(2µ)Γ(1− 2µ+m+ n)

Γ(µ− κ+ 1
2)(12 − µ+m)

(−2)−µ

m!
2F1

(
−m,−µ− κ+

1

2
; 2µ+ 1; 2

)
× 2F1

(
1− 2µ+m+ n,

1

2
− µ+m;

3

2
− µ+m;−1

))

+
Γ(−2µ)

Γ(−µ+ κ+ 1
2)

∞∑
n=0

∞∑
m=0

(−1)
1
2
+n+2m21+µ

n!

× 2F1

(
−n, µ+ κ+

1

2
; 1− 2µ; 2

)
×

(
Γ(−2µ)Γ(1 + 2µ+m+ n)

Γ(12 − µ− κ)(12 + µ+m)

(−2)µ

m!
2F1

(
−m,µ− κ+

1

2
; 2µ+ 1; 2

)
× 2F1

(
1 + 2µ+m+ n,

1

2
+ µ+m;

3

2
+ µ+m;−1

)
+

Γ(2µ)Γ(1 +m+ n)

Γ(µ− κ+ 1
2)(12 − µ+m)

(−2)−µ

m!
2F1

(
−m,−µ− κ+

1

2
; 2µ+ 1; 2

)
× 2F1

(
1 +m+ n,

1

2
− µ+m;

3

2
− µ+m;−1

))
.
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To perform a better analysis on I2, we divide I2 into four parts as the following,

P1 =
Γ(2µ)Γ(−2µ)

Γ(12 + µ+ κ)Γ(12 − µ− κ)

∞∑
n=0

∞∑
m=0

(−1)
1
2
+µ+n+2m2

n!m!(12 + µ+m)
Γ(1 +m+ n)

× 2F1

(
−n,−µ+ κ+

1

2
; 1− 2µ; 2

)
2F1

(
−m,µ− κ+

1

2
; 2µ+ 1; 2

)
(D.13)

× 2F1

(
1 +m+ n,

1

2
+ µ+m;

3

2
+ µ+m;−1

)
,

P2 =
Γ(2µ)Γ(2µ)

Γ(12 + µ+ κ)Γ(µ− κ+ 1
2)

∞∑
n=0

∞∑
m=0

(−1)
1
2
−µ+n+2m21−2µ

n!m!(12 − µ+m)
Γ(1− 2µ+m+ n)

× 2F1

(
−n,−µ+ κ+

1

2
; 1− 2µ; 2

)
2F1

(
−m,−µ− κ+

1

2
; 2µ+ 1; 2

)
(D.14)

× 2F1

(
1− 2µ+m+ n,

1

2
− µ+m;

3

2
− µ+m;−1

)
,

P3 =
Γ(−2µ)Γ(−2µ)

Γ(−µ+ κ+ 1
2)Γ(12 − µ− κ)

∞∑
n=0

∞∑
m=0

(−1)
1
2
+µ+n+2m21+2µ

n!m!(12 + µ+m)
Γ(1 + 2µ+m+ n)

× 2F1

(
−n, µ+ κ+

1

2
; 1− 2µ; 2

)
2F1

(
−m,µ− κ+

1

2
; 2µ+ 1; 2

)
(D.15)

× 2F1

(
1 + 2µ+m+ n,

1

2
+ µ+m;

3

2
+ µ+m;−1

)
,

P4 =
Γ(−2µ)Γ(2µ)

Γ(−µ+ κ+ 1
2)Γ(µ− κ+ 1

2)

∞∑
n=0

∞∑
m=0

(−1)
1
2
−µ+n+2m2

n!m!(12 − µ+m)
Γ(1 +m+ n)

× 2F1

(
−n, µ+ κ+

1

2
; 1− 2µ; 2

)
2F1

(
−m,−µ− κ+

1

2
; 2µ+ 1; 2

)
(D.16)

× 2F1

(
1 +m+ n,

1

2
− µ+m;

3

2
− µ+m;−1

)
.

We can see that each Γ(±nµ + · · · ) induces a factor of e−n|µ| and any hypergeometric

function 2F1 does not induce such a factor. We can plot each term of the series expansion

of (D.12) in figure 13. We can see that the main contribution comes from the m = 0, n = 0

term of P1. This is because the coefficient of P1 of the summation series dominates the

other 3 terms (P2, P3, P4) and for large m and n, the terms are exponentially suppressed.

We then can make the following approximation to I2.

I2 ≈
Γ(2µ)Γ(−2µ)

Γ(12 + µ+ κ)Γ(12 − µ− κ)

(−1)
1
2
+µ2

(12 + µ)
2F1

(
0,−µ+ κ+

1

2
; 1− 2µ; 2

)
(D.17)

× 2F1

(
0, µ− κ+

1

2
; 2µ+ 1; 2

)
2F1

(
1,

1

2
+ µ;

3

2
+ µ;−1

)
=
ie−iπµ

2µ
csc(2πµ) cos(π(κ+ µ))

(
ψ(0)

(
µ

2
+

1

4

)
− ψ(0)

(
µ

2
+

3

4

))
.

We can easily generalized the analytic expression of the power spectrum to the case large

mass limit. Similar results can be obtained in [90–98].
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Figure 13. By setting κ = i , µ = 5i , we can see that the leading order term in I2 is given by the

m = 0, n = 0 term. This further simplifies our calculation for the power spectrum.

E Bispectrum in the large mass limit

In this section, we derive the analytical expression for the bispectrum in the large mass

limit. The large mass limit of the bispectrum in the quasi-single field model with neutral

scalar particles is obtained in [99]. After integrating out the massive field, an equilateral

non-Gaussianity is obtained. This part contains no clock signal, however, it is the dominant

contribution in the large mass limit since it is only suppressed by 1/|µ|2 whereas the clock

signal is supressed by exp(−π|µ|) in the large mass limit. In this section, we would like to

derive the bispectrum by integrating out the massive charged scalar particles.

First, we calculate the second term of the bispectrum, we can write it as

〈ζk1ζk2ζk3〉′(2) = 2c2c
∗
3

H3eiπκ

128ε3k1k2k43M
6
pl

× Re

[ ∫ ∞
0

dx1
e−ix1Wκ,µ(−2ix1)

x1

∫ ∞
x1

dx2x2e
−i k1+k2

k3
x2W−κ,−µ(2ix2)

]
+ (κ→ −κ, c2 → c∗2, c

∗
3 → c3) . (E.1)

We expand the Whittaker function in the limit x → 0, the first layer of integral is evalu-

ated to

∫ ∞
x1

dx2x2e
−i k1+k2

k3
x2 (2ix2)

1/2−µΓ(2µ)

Γ
(
κ+ µ+ 1

2

) ∼ −(2i)
1
2
−µ Γ(2µ)

Γ(κ+ µ+ 1
2)

(x1)
5
2
−µ

−µ+ 5
2

e
−i k1+k2

k3
x1 .

(E.2)
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Inserting it into the second integral∫ ∞
0

dx1
e−ix1

x1

(−2ix1)
1/2+µΓ(−2µ)

Γ
(
−κ− µ+ 1

2

) (−1)(2i)
1
2
−µ Γ(2µ)

Γ(κ+ µ+ 1
2)

(x1)
5
2
−µ

−µ+ 5
2

e
−i k1+k2

k3
x1

= (2i)(−1)
3
2
+µ Γ(2µ)Γ(−2µ)

Γ(κ+ µ+ 1
2)Γ(−κ− µ+ 1

2)(−µ+ 5
2)

∫ ∞
0

dx1x
2
1e
−ix1 k1+k2+k3

k3

= 2(−1)
1
2
+µ csc(2πµ) cos(π(κ+ µ))

µ(µ− 5
2)

(
k3

k1 + k2 + k3

)3

. (E.3)

Hence, the second term of the bispectrum in the large mass limit can be expressed as

〈ζk1ζk2ζk3〉′(2) = 2c2c
∗
3

H3eiπκ

128ε3M6
plk1k2k3(k1 + k2 + k3)3

× Re

[
2(−1)

1
2
+µ csc(2πµ) cos(π(κ+ µ))

µ(µ− 5
2)

]
+ (κ→ −κ, c2 → c∗2, c

∗
3 → c3) . (E.4)

We can get the third term of the bispectrum in the large mass limit in the similar way.

〈ζk1ζk2ζk3〉′(3) = 2c2c
∗
3

H3eiπκ

128ε3M6
plk1k2k3(k1 + k2 + k3)3

× Re

[
2(−1)

1
2
−µ csc(2πµ) cos(π(κ+ µ))

µ(µ− 1
2)

]
+ (κ→ −κ, c2 → c∗2, c

∗
3 → c3) . (E.5)

F Analytical expression for the clock signal

In this section, we compute the analytical expression for the clock signal following the

standard approach developed in [43]. In order to calculate the clock signal of primordial

bispectrum analytically, we first simplify the propagators D++, D+−, D−+, and D−− in

the following way. Using the late time behavior (2.12) and focusing on the non-local terms

vk(τ1)v
∗
k(τ2) =

e−π|µ|

a(τ1)a(τ2)4k|µ|
(F.1)

×
(
|α|2Mκ,µ(2kiτ1)(Mκ,µ(2ikτ2))

∗ + αβ∗Mκ,µ(2kiτ1)Mκ,µ(2ikτ2)

+ α∗β(Mκ,µ(2kiτ1))
∗(Mκ,µ(2ikτ2))

∗ + |β|2(Mκ,µ(2kiτ1))
∗Mκ,µ(2ikτ2)

)
,

v∗k(τ1)vk(τ2) =
e−π|µ|

a(τ1)a(τ2)4k|µ|
(F.2)

×
(
|α|2(Mκ,µ(2kiτ1))

∗Mκ,µ(2ikτ2) + αβ∗Mκ,µ(2kiτ1)Mκ,µ(2ikτ2)

+ α∗β(Mκ,µ(2kiτ1))
∗(Mκ,µ(2ikτ2))

∗ + |β|2Mκ,µ(2kiτ1)(Mκ,µ(2ikτ2))
∗
)
,
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from where we know that only |α|2 and |β|2 terms are different. However, the |α|2 and |β|2

terms are local, and hence, do not contribute to the clock signal.In order to understand

the bispectrum in the squeeze limt ( αβ∗ and α∗β ), the four types of propagators D++,

D+−, D−+ and D−−, defined in (2.41) becomes identical.

D(k, τ1, τ2) ≡ D++(k, τ1, τ2) = D−+(k, τ1, τ2) = D+−(k, τ1, τ2) = D−−(k, τ1, τ2)

=
e−π|µ|

a(τ1)a(τ2)4k|µ|

(
αβ∗Mκ,µ(2kiτ1)Mκ,µ(2ikτ2)

+ α∗β(Mκ,µ(2kiτ1))
∗(Mκ,µ(2ikτ2))

∗
)
. (F.3)

The squeezed limit bispectrum can be calculated for all orders in the (k1/k3) expansion.

However, for simplicity, we focus on the first order (k1/k3) expansion, where the Whittacker

M is expanded as

Mκ,µ(z) = zµ+1/2 +O(zµ+3/2) . (F.4)

Taking the effective mass to be e20E
2/H4 + m2/H2 > 9/4. The charged massive scalar

propagator becomes

D(k, τ1, τ2) ≡ D++(k, τ1, τ2) = D−+(k, τ1, τ2) = D+−(k, τ1, τ2) = D−−(k, τ1, τ2)

=
e−π|µ|

a(τ1)a(τ2)4k|µ|

(
α∗β(−4k2τ1τ2)

−µ+1/2 + c.c

)
. (F.5)

The bispectrum is further simplified to

〈ζk1ζk2ζk3〉′ = 2c2c
∗
3Re

[ ∫ 0

−∞

∫ 0

−∞

dτ1
(−Hτ1)3

dτ2
(−Hτ2)2

[∂τ1G++(k3, τ1, 0)−∂τ1G−+(k3, τ1, 0)]

×D(k3, τ1, τ2)∂τ2G++(k1, τ2, 0)∂τ2G++(k2, τ2, 0)

]
+ (κ→ −κ, c2 → c∗2, c

∗
3 → c3) . (F.6)

After evaluation, the bispectrum becomes

〈ζk1ζk2ζk3〉′ = c2c
∗
3Re

[
f(µ, κ)

22µH3

16k1k2k
3/2
3 k

5/2
12 M

6
plε

3

(
k1 + k2
k3

)−µ]
(F.7)

+ (κ→ −κ, c2 → c∗2, c
∗
3 → c3) , (F.8)

where the prefactor is given by

f(µ, κ) ≡ eiπκ
Γ(−2µ)2Γ

(
1
2 + µ

)
Γ
(
5
2 + µ

)
Γ(12 − µ− κ)Γ(12 + µ− κ)

(1 + sin (πµ)) . (F.9)

The shape function is

S(k1, k2, k3) =
c2c
∗
3

HM2
plε

Re

[
f(µ, κ)

22µ−2k1k2k
1/2
3

k
5/2
12

(
k1 + k2
k3

)−µ]
+ (κ→ −κ, c2 → c∗2, c

∗
3 → c3) . (F.10)
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