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1 Introduction

Since the first direct detection of gravitational waves (GWs) by the LIGO and Virgo col-

laborations [1], a new interface has arrived in particle physics — its intersection with GW

astronomy. While ground based GW detectors have their best sensitivity at frequencies

∼ O(100) Hertz and their main targets are black hole and neutron star binaries, there is now

growing interest in building space-based interferometer detectors for milli-Hertz or deci-

Hertz frequencies. Many detectors have been proposed, such as the Laser Interferometer

Space Antenna (LISA) [2], the Big Bang Observer (BBO), the DECi-hertz Interferometer

Gravitational wave Observatory (DECIGO) [3], Taiji [4] and Tianqin [5]. The physical

sources of GWs in this frequency band include supermassive black hole binaries [6], ex-

treme mass ratio inspirals [7] and the stochastic background of primordial GWs produced

during first order cosmological phase transitions [8].

This offers tremendous opportunities for theorists, as a new window to the early Uni-

verse opens up. Aspects of dark sector physics and baryon asymmetry can now be framed
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fruitfully in a language that lends itself to data from the GW frontier. The key connection

is phase transitions, which on the one hand are a primary target of future GW experiments,

and on the other are important features of scalar potentials and hence have historically

been the target of collider physics.

The purpose of our work is to explore the complementarity of future GW detectors

and future particle colliders in probing phase transitions in the early Universe — in the

simplest particle physics setting possible, but also with great attention to details within

such a setting. The natural choice is the electroweak phase transition (EWPT) [9] with the

simplest extension of the Higgs sector: the singlet scalar augmented Standard Model or the

xSM.1 This model is capable of providing a strongly first order EWPT through a tree level

barrier and is the simplest model in Class IIA of the tree level renormalizable operators

described in [19] (see refs. [20–64] for related studies on EWPT and GW). It has been

extensively investigated in phenomenological studies [65–68], studies of EWPT [65, 66, 69–

71] and di-Higgs analyses [72] guided by the requirements of EWPT [67], and electroweak

baryogenesis (EWBG).

We perform a detailed scan of this model, shedding light on the following issues: (i) the

EWPT patterns admitted by the model, and the proportion of parameter space for each

pattern; (ii) the regions of parameter space that give detectable GWs at future space-based

detectors; (iii) the current and future collider measurements of di-Higgs production, as

well as searches for a heavy weak diboson resonance, and how these searches interplay with

regions of parameter space that exhibit strong GW signals; and (iv) the complementarity

of collider and GW searches in probing this model.

We first carefully work out and incorporate all phenomenological constraints: bound-

edness of the Higgs potential from below, electroweak vacuum stability at zero temperature,

perturbativity, perturbative unitarity, Higgs signal strength measurements and electroweak

precision observables. Then, we identify the regions of parameter space which give large

signal-to-noise-ratio (SNR) at LISA. We carefully address subtle issues pertaining to the

bubble wall velocity vw, making a distinction between vw, which enters GW calculations,

and the velocity v+ that is used in EWBG calculations. The relation between these two

velocities is determined from a hydrodynamic analysis by solving the velocity profile sur-

rounding the bubble wall. We provide a description of different fluid velocity profiles and

investigate the behavior of the normalized energy released during the phase transition, α,

which primarily determines the SNR, as a function of the model parameters. On the col-

lider side, we identify the subset of points with large SNR at LISA that are most promising

in terms of di-Higgs and weak diboson production studies, setting the stage for future

benchmark points.

Much remains to be understood about the Higgs sector. On the collider side, measuring

the Higgs cubic and quartic couplings through double or triple Higgs production, both non-

resonant as well as resonant, is an extremely difficult but central goal of future experiments

(see e.g., [73–79]). While any deviation of the shape of the Higgs potential from what is

1Hidden sector phase transitions are also being actively investigated [10–14], and exploring complemen-

tarity in such settings is an interesting future direction. We refer to refs. [8, 15–18] for recent work on

these topics.
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expected within the Standard Model (SM) would hint to new physics, the sensitivities

of such collider studies are found to be rather low. The detection of GWs from EWPT

in future experiments can offer a complementary method of probing the currently largely

unknown Higgs potential. Our work is a step in that direction.

The paper is structured as follows. In section 2, we define the Higgs potential and

set the notations. The standard phenomenological analysis is discussed in the following

section 3. The next section 4 discuss the details of the EWPT and GW calculations,

after which the results and discussions from the full scan is presented in section 5 and we

summarize in section 6.

2 The model

In this section, we fix our notation by defining the potential for the gauge singlet extended

SM, known as the“xSM”. This model is defined with the following potential setup [65–67]:

V (H,S) = −µ2H†H + λ(H†H)2 +
a1

2
H†HS

+
a2

2
H†HS2 +

b2
2
S2 +

b3
3
S3 +

b4
4
S4, (2.1)

where HT = (G+, (vEW + h + iG0)/
√

2) is the SM Higgs doublet and S = vs + s the

real scalar gauge singlet. All the model parameters in the above equation are real. The

parameters µ and b2 can be solved from the two minimization conditions around the EW

vacuum(≡ (vEW, vs)),

µ2 = λv2
EW +

1

2
vs(a1 + a2vs),

b2 = − 1

4vs
[v2

EW(a1 + 2a2vs) + 4v2
s(b3 + b4vs)], (2.2)

and λ, a1, a2 can be replaced by physical parameters θ, mh1 and mh2 from the mass matrix

diagonalization:2

λ =
m2
h1
c2
θ +m2

h2
s2
θ

2v2
EW

,

a1 =
2vs
v2

EW

[2v2
s(2b4 + b̃3)−m2

h1 −m
2
h2 + c2θ(m

2
h1 −m

2
h2)],

a2 =
−1

2v2
EWvs

[−2vs(m
2
h1 +m2

h2 − 4b4v
2
s)

+(m2
h1 −m

2
h2)(2c2θvs − vEWs2θ) + 4b̃3v

3
s ], (2.3)

where b̃3 ≡ b3/vs and we have defined the physical fields h1 and h2 as

h1 = cθh+ sθs, h2 = −sθh+ cθs, (2.4)

with a mixing angle θ. We note that h1 is identified as the SM Higgs while h2 is a

heavier scalar. The coupling of h1 with the SM particles is reduced by a factor of cθ while

2Here sθ ≡ sin θ and cθ ≡ cos θ.
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the coupling of h2 with SM particles is (−sθ) times the corresponding SM couplings and

vanishes in the case of zero mixing angle.

With choices of parameter transformations described above, the potential is fully spec-

ified by the following five parameters:

vs, mh2 , θ, b3, b4. (2.5)

The model defined here has several variants in the literature. For example, since the

potential can be defined with a translation in the S direction S → S′ = S − vs, such

that 〈S〉 = 0, the resulting potential will take the same form as eq. 2.1 but with the

addition of a non-zero tadpole term b1S [72]. The potential and physics remain the same

but the parameters in the potential will transform accordingly. The transformation rules

to and from this basis are given in appendix B. There is also a variant where there is a

spontaneously broken Z2 symmetry S → −S; this corresponds to a subset of the parameter

space here where a1 = b3 = 0.

We further note that we do not include CP-violation in this study since the magni-

tude of the CP-violation is typically very constrained by current electric dipole moment

searches (e.g., [37, 80, 81] or the included CP-violation may be large but has little effect

on EWPT [82]).

3 Phenomenological constraints

In this section, we briefly discuss the phenomenological constraints used in our analysis,

following the standard treatments given in refs. [68, 72, 83]. The phenomenological discus-

sion includes boundedness of the Higgs potential from below, EW vacuum stability at zero

temperature, perturbativity, perturbative unitarity, Higgs signal strength measurements

and electroweak precision observables.

First, the potential needs to be bounded from below. Requiring this for arbitrary field

directions gives us the condition [72],3

λ > 0, b4 > 0, a2 > −2
√
λb4. (3.1)

Next, the EW vaccum also needs to be stable at zero temperature. Using physical param-

eters as input will automatically guarantee that the EW vacuum is a minimum. To ensure

that the above EW vacuum is stable, one should require that no deeper minimum exists in

the potential. In our analysis, we find all the minima by firstly solving ∂V/∂φi = 0(φ1 ≡ h,

φ2 ≡ s) and subsequently calculating eigenvalues of the Hessian matrix {∂2V/∂φi∂φj} to

determine the nature of the extrema for each set of parameter input.

Next, Higgs signal strength measurements in various channels require the couplings

of h1 to be not far from the SM Higgs couplings. In the xSM, the couplings of h1 to

SM particles are reduced by a factor of cos θ, therefore the Higgs signal strength is given

3Note that these tree level relations will change when loop corrections are taken into account. However

due to the way of calculating the effective potential in eq. (4.1), these relations suffice to guarantee that

the potential is bounded from below when T → 0 in eq. 4.1.
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by µH = cos2 θ. Experimentally, the most recent ATLAS and CMS combined fit of this

value is µH = 1.09+0.11
−0.10 [84] and a χ2 analysis shows that | sin θ| > 0.33 are excluded at

95% CL [85].

Moreover, unitarity puts constraints on the high energy behavior of particle scatter-

ings. Requiring further the perturbativity of these scatterings at high energy will lead to

constraints on the model. This tree level perturbativity requirement is quantified as the con-

dition that the partial wave amplitude al(s) for all 2→ 2 processes satisfies |Re al(s)| . 1/2

for
√
s→∞. We consider all channels of scalar/vector boson 2→ 2 scatterings at the lead-

ing order in the high energy expansion, with details of the S-matrix given in appendix. A.

Electroweak precision measurements, which mainly include the W boson mass mea-

surement [86] and the oblique EW corrections [87, 88], put further constraints on the model.

The W boson mass mW can be calculated given experimentally measured values of GF ,

mZ and the fine structure constant at zero momentum transfer α(0) [86]. The function

relating mW and these three parameters depends on the loop corrections of the vector

boson self-energies. Comparing this calculated mW with the experimental measurement

mexp
W = 80.385±0.015GeV [89–91] highly constrains the modification of the loop corrections

by new physics effects. In this model, the modified loop corrections result from reduced

Higgs couplings and from the presence of the heavier scalar h2 and are only dependent

on (θ,mh2) at one-loop level. The same parameter dependence enters the oblique S, T, U

parameters and it turns out that the W -mass constraint is much more stringent than that

from the oblique corrections [68, 86].

To give the reader a flavor of the above phenomenological constraints, we fix mh2 =

300 GeV, θ = 0.2, b4 = 4 and show the various bounds on the remaining two parameters

(vs/vEW, b3/vEW) in figure 1. This choice of mh2 and θ evades the constraints from the W -

mass as well as the oblique EW corrections and regions outside the color-shaded regions are

excluded by the remaining constraints. It can be seen from this figure that the least con-

straining condition comes from the perturbative unitarity requirement for this parameter

choice. The bounded-from-below condition is more restrictive and also separates the plane

into two disconnected regions while the stability of the EW vacuum at zero temperature

shrinks the allowed parameter space even more. We also overlaid on this plot the points

which pass the various EWPT requirements and give GW signals with varying SNR. More

details are given in the caption and in the following section.

4 EWPT and gravitational waves

4.1 Effective potential

EWPT is an essential step4 in generating the observed baryon asymmetry in the universe

by providing an out-of-equilibrium environment, one of the three Sakharov conditions [92],

in the framework of electroweak baryogenesis (see [93] for a recent review). Augmented

with the rapid baryon number violating Sphaleron process outside the electroweak bubbles

4Other mechanisms generally do not need EWPT to generate the baryon asymmetry. For example, in

leptogenesis, the out-of-equilibrium requirement is provided by the expanison of the universe and the lepton

asymmetry is converted to the baryon asymmetry through the weak Sphaleron process.
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Figure 1. An illustrative plot showing various phenomenological constraints. The shaded regions

are allowed by requirements of unitarity, boundedness of the potential from below, and stability

of EW vacuum at zero temperature. Points are also overlapped on this plot where various EWPT

criteria are fulfilled and with SNR > 50 (red), 50 > SNR > 10 (green) and SNR < 10 (blue). The

diamond-shaped points give two-step EWPT.

and the CP-violating particle scatterings on the bubble walls, a net baryon number can be

produced inside the bubbles. Aside from the particle interactions, which are used in EWBG

calculations, the cosmological context that characterizes the dynamics of the EWPT can

be calculated from the finite temperature effective potential. The standard procedure

of calculating it includes adding the tree level effective potential, the Coleman-Weinberg

term [94] and its finite temperature counterpart [95] as well as the daisy resummation [96,

97]. Since the EWPT in this model is mainly driven by the cubic terms in the potential and

out of concern of a gauge parameter dependence [98] of the effective potential calculated in

the above standard procedure, we take here the high temperature expansion approximation,

which is gauge invariant, in line with previous analyses of this model [65–67, 69, 99]. This

effective potential is then given by5

V (h, s, T ) = −1

2
[µ2 −Πh(T )]h2 − 1

2
[−b2 −Πs(T )]s2

+
1

4
λh4 +

1

4
a1h

2s+
1

4
a2h

2s2 +
b3
3
s3 +

b4
4
s4, (4.1)

5We also note that we have neglected a tadpole term proportional to T 2s, which originates from the a1
and b3 terms in the potential in eq. 2.1, since it comes with a factor vs/vEW and is suppressed for most of

the parameter space giving detectable GWs, to be presented in later sections. Indeed its effect has been

found to be numerically negligible from previous studies [65, 66].
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where Πh(T ) and Πs are the thermal masses of the fields,

Πh(T ) =

(
2m2

W +m2
Z + 2m2

t

4v2
+
λ

2
+
a2

24

)
T 2,

Πs(T ) =

(
a2

6
+
b4
4

)
T 2, (4.2)

where the gauge and Yukawa couplings have been written in terms of the physical masses

of W , Z and the t-quark. With this effective potential, the thermal history of the EW

symmetry breaking can be analyzed. It depends mainly on the following key parameters:

Tc, Tn, α, β, vw. (4.3)

Here Tc is the critical temperature at which the metastable vacuum and the stable one

are degenerate. Below Tc, the phase at the origin in the field space becomes metastable and

the new phase becomes energetically preferable. The rate at which the tunneling happens

is given by [100]

Γ ∼ A(T )e−S3/T , (4.4)

where S3 is the 3-dimensional Euclidean action of the critical bubble, which minimizes

the action

S3(~φ, T ) = 4π

∫
r2dr

1

2

(
d~φ(r)

dr

)2

+ V (~φ, T )

 , (4.5)

and satisfies the bounce boundary conditions

d~φ(r)

dr

∣∣∣
r=0

= 0, ~φ(r =∞) = ~φout. (4.6)

Here ~φout denotes the two components vev of the fields outside the bubble, which is not nec-

essarily the origin for two-step EWPT. The prefactor A(T ) ∝ T 4 on dimensional grounds.

Its precise determination needs integrating out fluctuations around the above static bounce

solution (see e.g., [101, 102] for detailed calculations or [103] for a pedagogical introduc-

tion). For the EWPT to complete, a sufficiently large bubble nucleation rate is required

to overcome the expansion rate. This is quantified as the condition that the probabil-

ity for a single bubble to be nucleated within one horizon volume is O(1) at a certain

temperature [104]:∫ tn

0
ΓVH(t)dt =

∫ ∞
Tn

dT

T

(
2ζMPl

T

)4

e−S3/T = O(1), (4.7)

where VH(t) is the Horizon volume, MPl is the Planck mass and ζ ∼ 3× 10−2. From this

equation, it follows that S3(T )/T ≈ 140 [105] and the temperature thus solved is defined

as the nucleation temperature Tn. Expanding the rate at Tn, one can define the duration

of the EWPT in terms of the inverse of the third parameter β [105]:

β ≡ HnTn
d(S3/T )

dT

∣∣∣∣
Tn

, (4.8)

where Hn is the Hubble rate at Tn.
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Next, α is the vacuum energy released from the EWPT normalized by the total radi-

ation energy density (≡ ρR) at Tn [106]:

α =
∆ρ

ρR
=

1

ρR

[
−V (~φb, T ) + T

∂V (~φb, T )

∂T

] ∣∣∣∣∣
T=Tn

, (4.9)

where ρR = g∗π
2T 4

n/30 with g∗ ≈ 100 and ~φb denotes the two components vev of the broken

phase. In this expression, the first term is the free energy from the effective potential and

the second term denotes the entropy production. Finally, vw is the bubble wall velocity.

Given that a first order EWPT can proceed and complete, the baryon asymmetry is

generated outside the bubbles and then captured by the expanding bubble walls. When

the EWPT finishes, the universe would be in the EW broken phase with non-zero baryon

asymmetry. To ensure that these baryons would not be washed out, the Sphaleron rate

needs to be sufficiently quenched inside the bubbles. This condition is known as the strongly

first order EWPT (SFOEWPT) criterion [93, 107]:

vH(T )

T

∣∣∣
T=Tn

& 1. (4.10)

The conventional choice of the temperature at which the above condition is evaluated is

Tc, but a more precise timing is the nucleation temperature Tn(see e.g., refs. [9, 108, 109]),

which we use here. Since generally Tn < Tc and vh(Tn) > vh(Tc), it might seem at first

glance that the above condition is weaker when implemented at Tn than at Tc. However

the implicit assumption associated with the former requires the capability of the EWPT to

successfully nucleate, i.e., the condition eq. 4.7 should be satisfied in the first place, which

is typically a more stringent requirement of the potential.

The presence of two scalar fields gives a richer pattern of EWPT and makes it possible

to complete the EWPT with more than one step [104, 110, 111]. One can immediately

imagine mainly the following EWPT types:

(A) : (0, 0)→ (vH 6= 0, vS 6= 0)

(B) : (0, 0)→ (vH = 0, vS 6= 0)→ (vH 6= 0, vS 6= 0)

(C) : (0, 0)→ (vH 6= 0, vS = 0)→ (vH 6= 0, vS 6= 0)

where the last vacuum configuration (vH 6= 0, vS 6= 0) in each case would eventually evolve

to the EW vacuum at T = 0.6 Here pattern (A) is a one step EWPT from the origin

in field space to the EW symmetry breaking vacuum directly, due mainly to the negative

cubic term in the effective potential. This one step phase transition results in a typical

GW spectrum as shown in the left panel of figure 3. Quite differently, patterns (B) and (C)

are two-step EWPT, which differ only in how the vacuum transits for these two steps. For

example, in case (B), the universe first goes to a vacuum which has non-zero vev for the

singlet field and then transits to the would-be EW vacuum at high temperature. Case (C)

6More exotic patterns might appear but should be of negligible parameter space. For an example, see

ref. [112].
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is different in that it breaks the EW vacuum first and then further goes to the would-be

vacuum in a subsequent step of phase transition. For each transit of the vacuum, it can

be either first or second order, depending on whether there is a barrier separating the

two vacua. We note that for case (C), baryon production generally needs to occur in the

first step, otherwise, the exponentially reduced Sphaleron rate would greatly suppress the

baryon number violating process in the second step as the EW symmetry is already broken

outside the bubbles. Therefore the SFOEWPT criterion is imposed in the first step for

this case.

We note that with the aid of the analytical methods presented in refs. [70, 104], it is

possible to locate the region of the parameter space that gives exactly one specific type

of EWPT by imposing various conditions on the input parameters. However, our task

here is to reveal the overall behavior of the parameter space concerning EWPT and GW.

Therefore we adopt here a scan-based analysis which covers the entire parameter space and

for each scanned parameter space point, we determine its pattern of EWPT and calculate

GW properties. This way, we can determine the most probable pattern of EWPT admitted

by this model.

4.2 Hydrodynamics

Successful EWBG usually requires a subsonic vw to give sufficient time for chiral asym-

metry propagation ahead of the wall and for conversion to baryon asymmetry through the

Sphaleron process. On the other hand, a larger vw generally leads to more energy be-

ing released to the kinetic energy of the plasma and therefore a stronger GW production.

Therefore a tension may arise between successful EWBG and a loud GW signal production.

This problem can potentially be solved when the hydrodynamic properties of the fluid are

taken into account [113]. This is because the expanding wall stirs the fluid surrounding

the bubble wall and a non-zero velocity profile exists for the plasma ahead of the wall

(see ref. [114] for a recent combined analysis). In the bubble wall frame, this means the

plasma outside the bubble will head towards the bubble wall with a velocity (≡ v+) that

can be different from vw. Therefore it is v+ rather than vw that should be used in EWBG

calculations. While the above argument still needs to be scrutinized taking into account

the particle transport behavior around the bubble wall in the process of EWBG, we assume

tentatively that this is true in this work.

This hydrodynamic treatment hinges on solving the fluid velocity profile v(r, t) around

the bubble wall given inputs of (α, vw), where r is the distance from the bubble center

and t is counted from the onset of the EWPT. Due to the properties of the problem here,

v is a function solely of r/t ≡ ξ. The differential equation governing the velocity profile

is derived from the conservation of the energy momentum tensor describing the fluid and

scalar field [114]:

2
v

ξ
=

1− vξ
1− v2

[
µ2

c2
s

− 1

]
∂ξv, (4.11)

where cs = 1/
√

3 is the speed of sound in the plasma and µ(ξ, v) = (ξ − v)/(1 − ξv) is

a Lorentz boost transformation. Far outside the bubble and deep inside the bubble, the

– 9 –



J
H
E
P
0
4
(
2
0
1
9
)
0
5
2

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

De
fla
gra

tio
n

Hybrid

Detonation

Figure 2. A set of fluid velocity profiles obtained when vw is increased from small to large

values(from left to right), for α = 0.1. Three modes of profiles are obtained, deflagration (blue

dashed), supersonic deflagration (aka hybrid, magenta solid) and detonation (brown dotted).

plasma will not be stirred, that is v → 0 serves as the boundary condition. At the phase

boundary, the velocity of the plasma inside and outside the bubble wall are denoted as

v− and v+ in the bubble wall frame, both heading towards the bubble center. The same

energy momentum conservation, when applied across the bubble wall, gives a continuity

equation connecting v− with v+. Therefore the whole fluid velocity profile can be solved

from the center of the bubble to far outside the bubble where the plasma is unstirred.

The solutions of the fluid profiles can be classified into three modes depending on the

value of vw. A set of profiles v(ξ) are shown in figure 2 for α = 0.1. For vw < cs, a

deflagration mode is obtained, in which case, the plasma ahead of the bubble wall flows

outward while it remains static inside the bubble, corresponding to the profiles with blue-

dashed lines. It can also be seen from this figure that as vw increases in this mode, a

discontinuity in v(ξ) appears outside the bubble and v(ξ) jumps to zero. This is the

location of the shock front, and beyond this point the solution of eq. 4.11 is invalid and a

shock front develops such that v(ξ) goes to zero consistently. When vw surpasses cs but is

less than a certain threshold ξJ(α), a supersonic deflagration mode [115] appears (magenta

solid profiles) where the plasma inside the bubble has a non-zero profile, while still taking

the form of deflagration outside the bubble. Here ξJ(α), as a function of α, corresponds

to the Jouguet detonation [116], used in earlier studies. It is also evident that in this

mode, as vw increases, the shock front becomes closer to the bubble wall until it coincides

with the bubble wall, where vw = ξJ(α) and the fluid enters the third, detonation mode

(brown dotted profiles). In this mode, the plasma outside the bubble has zero velocity

and therefore v+ = vw. If a subsonic velocity is required in EWBG, we conclude that the

– 10 –



J
H
E
P
0
4
(
2
0
1
9
)
0
5
2

deflagration mode will not work for EWBG. On the contrary, v+ < vw in the deflagration

and supersonic deflagration modes and a solution for the tension between EWBG and GW

might be achieved.

Therefore, instead of treating vw as a free parameter in the GW calculations, we

require, given a certain input of α, the corresponding v+ to have subsonic value, taken to

be 0.05 here, a choice usually used in EWBG calculations [82, 117–120]). The procedure

of achieving the above goal is as follows: for each given α we iterate over vw and solve the

whole fluid profile until v+ = 0.05 is reached. The resulting vw is used in GW calculations.7

With v(ξ) obtained, one can also calculate the bulk kinetic energy normalized by the

vacuum energy released during the EWPT [114]:

κv =
3

∆ρ v3
w

∫
ω(ξ)

v2

1− v2
ξ2dξ, (4.12)

where ω(ξ) is the enthalpy density, varying as function of ξ, and can be solved once v(ξ) is

found. The remaining part 1 − κv ≡ κT gives the fraction of the vacuum energy going to

heat the plasma. Therefore a reheating temperature can be defined as

T∗ = Tn(1 + κTα)1/4. (4.13)

This leads to an increase in entropy density and thus a dilution of the generated baryon

asymmetry [110]. Typically in EWBG calculations, the wall curvature is neglected and

the transport equations depend on a single coordinate z̄ in the bubble wall rest frame,

where z̄ > 0 (< 0) corresponds to broken (unbroken) phase. The solved baryon asymmetry

density nB is a constant inside the bubbles(see, e.g., [121]):

nB =
3Γws

Dqλ+

∫ −∞
0

nL(z̄)e−λ−z̄dz̄ , (4.14)

where s(T ) = 2g∗π
2T 3/45 is the entropy density, Γws ≈ 120α5

wT is the weak Sphaleron

rate in the EW symmetric phase [122], λ± = (v+ ±
√
v2

+ + 15ΓwsDq)/(2Dq) with Dq the

diffusion constant for quarks [122] and nL is the chiral asymmetry of left-handed doublet

fields which serves as a source term in baryon asymmetry generation. The determination

of nL is a key part in EWBG calculations and is decoupled from the analysis of EWPT

dynamics here. In above expression, we have replaced vw by v+, to take into account the

distinction between these two velocities. If the temperature at which nB is calculated is

Tn, then after the bubbles have collided, the temperature of the plasma is given, to a good

approximation, by T∗ rather than Tn or Tc, which are conventionally used. The diluted

baryon asymmetry is then given by
nB
s
|T=T∗ = ξD

nB
s
|T=Tn , (4.15)

where ξD ≡ (1 + κTα)−3/4 captures the dilution effect of the generated baryon asymmetry

by reheating of the plasma. We then need to make sure that ξD does not become too small,

since otherwise a stronger CP-violation will be needed, which might be excluded by the

stringent limits from electric dipole moment searches [123, 124].

7For two-step EWPT, a small v+ is not necessarily required for both steps of EWPT. However since vw
is otherwise an almost free parameter, we stick to the choice v+ = 0.05 for both steps.
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4.3 Stochastic gravitational waves

During the EWPT, bubbles of EW broken phase expand and collide with each other,

which destroys the spherical symmetry of a single bubble, thus leading to the emission of

gravitational waves [106]. Due to the nature of this process and according to the central

limit theorem, the generated gravitational wave amplitude is a random variable which

is isotropic, unpolarized and follows a Gaussian distribution. This therefore allows the

description of gravitational wave amplitude using its two-point correlation function and is

parametrized by the gravitational wave energy density spectrum ΩGW(f), as a function of

frequency f . A natural consequence is that the GWs produced during the EWPT, when

redshifted to the present, give a peak frequency at around the milli-Hertz range [9], falling

right within the band of future space-based gravitational wave detectors.

It is now well known that there are mainly three sources of gravitational wave produc-

tion in this process: bubble wall collisions [125–130], sound waves in the plasma [131, 132]

and magneto-hydrodynamic turbulence (MHD) [131, 132]. The total energy density spec-

trum can be obtained approximately by adding these contributions:

ΩGWh
2 ' Ωcolh

2 + Ωswh
2 + Ωturbh

2. (4.16)

Recent studies suggest that the energy deposited in the bubble walls is negligible, despite

the possibility that the bubble walls can run away in some circumstances [133]. Therefore

while a bubble wall can reach relativistic speed, its contribution to gravitational waves can

generally be neglected [134]. We thus include only the contribution of sound waves and

turbulence in the gravitational wave spectrum calculations.

The dominant contribution comes from sound waves. By evolving the scalar-field and

fluid model on 3-dimensional lattice, the gravitational wave energy density spectrum can

be extracted, with an analytical fit formula available [132]:

Ωswh
2 = 2.65× 10−6

(
H∗
β

)(
κvα

1 + α

)2(100

g∗

)1/3

×vw
(
f

fsw

)3( 7

4 + 3(f/fsw)2

)7/2

. (4.17)

Here H∗ is the Hubble parameter at T∗ when the phase transition has completed. It

has a value close to that evaluated at the nucleation temperature Tn for sufficiently short

EWPT [8]. We take T∗ to be the reheating temperature, defined earlier in eq. 4.13. More-

over, fsw is the present peak frequency which is the redshifted value of the peak frequency

at the time of EWPT (= 2β/(
√

3vw)):

fsw = 1.9× 10−5 1

vw

(
β

H∗

)(
T∗

100GeV

)( g∗
100

)1/6
Hz, (4.18)

where κv is defined in eq. 4.12 and can be calculated as a function of (α, vw) by solving the

velocity profiles described in section 4 [114]. It should be noted that a more recent numerical

simulation by the same group [135, 136] shows a slightly enhanced Ωswh
2 and reduced peak

frequency fsw. We also note that the results from these simulations are currently limited
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Figure 3. Examples showing GW energy density spectra from one step (left) and two-step (right)

EWPT. For the left panel, the individual contributions from sound waves and magnetohydrody-

namic turbulence are shown with their sum denoted by the green solid line. For the right panel, the

total contributions from both the first step and second step are shown and with their sum denoted

by the green solid line.

to regions of small vw and α and therefore their validity for ultra-relativistic vw and large

α (say α & 1) remains unknown. In the absence of numerical simulations for these choices

of parameters at present, we assume that the results shown here apply for these cases and

remind the reader to keep the above caveats in mind.

The fully ionized plasma at the time of EWPT can result in the formation of MHD

turbulence, which gives another source of gravitational waves. The resulting contribution

can also be modelled similarly with a fit formula [137, 138],

Ωturbh
2 = 3.35× 10−4

(
H∗
β

)(
κturbα

1 + α

)3/2(100

g∗

)1/3

×vw
(f/fturb)3

[1 + (f/fturb)]11/3(1 + 8πf/h∗)
, (4.19)

where fturb is the peak frequency and is given by,

fturb = 2.7× 10−5 1

vw

(
β

H∗

)(
T∗

100GeV

)(
g∗

100

)1/6

Hz. (4.20)

Here the factor κturb describes the fraction of energy transferred to the MHD turbulence

and is given roughly by κturb ≈ εκv with ε ≈ 5 ∼ 10% [132]. We take ε = 0.1 in this study.

In both eq. 4.17 and 4.19, the value of vw is found by requiring that v+ = 0.05 by

solving the velocity profiles, as discussed in the previous section. For the two-step EWPT,

as discussed in last section, if both steps in case (B) and (C) are first order, then there would

be two subsequent GW generation at generally different peak frequencies and amplitudes,

corresponding to the example shown in the right panel of figure 3.
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The detectability of the GWs is quantified by the signal-to-noise ratio (SNR), whose

definition is given in ref. [8]:

SNR =

√
δ × T

∫ fmax

fmin

df

[
h2ΩGW(f)

h2Ωexp(f)

]2

. (4.21)

Here h2Ωexp(f) is the experimental sensitivity and corresponds to the lower boundaries of

the color-shaded regions in figure 3 for the shown detectors.8 T is the mission duration

in years for each experiment, assumed to be 5 here. The factor δ comes from the number

of independent channels for cross-correlated detectors, which equals 2 for BBO as well

as UDECIGO and 1 for the others [139]. In our numerical analysis, we stick to the most

mature LISA detector with the C1 configuration, defined in ref. [8]. To qualify for detection,

the SNR needs to be larger than a threshold value, which depends on the details of the

detector configuration. For example, for a four-link LISA configuration, the suggested

value is 50 while for a six-link configuration, this value can be much lower (SNR = 10),

since in this case a special noise reduction technique is available based on the correlations

of outputs from the independent sets of interferometers of one detector [8].

As an example, we scan over the EW vacuum stability regions in the plane

(vs/vEW, b3/vEW) of figure 1 and found the regions which can give successful bubble nucle-

ations, satisfy the SFOEWPT criterion and generate GWs. These regions are plotted with

blue (SNR < 10), green (50 > SNR > 10) and red (SNR > 50). Here most of the points

give type (A) EWPT with only several points for type (B) or (C), denoted by diamond

shapes.

5 Results and discussions

In this section, we perform a full scan of the parameter space to address the following

questions:

(a) What kind of EWPT patterns can this model admit and in what proportion of the

parameter space for each pattern?

(b) What is the region of parameter space that can give strong detectable gravitational

waves at future space-based gravitational wave detectors?

(c) Do current collider measurements of double Higgs production and searches for a

heavy resonance decaying to weak boson pairs exclude the points that give strong

gravitational waves and could future high luminosity LHC (HL-LHC) at 3 ab−1 probe

the parameter space giving strong gravitational waves?

(d) How will a future space-based gravitational wave experiment complement current

and future searches for a heavy scalar resonance?

8There are possible astrophysical foregrounds coming from, e.g., the superposition of unresolved (i.e.,

low SNR) gravitational wave signals of the white dwarf binaries in our Galaxy [6]. Including these will

slightly reduce the SNR calculated here.
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Figure 4. The physical parameters characterizing the dynamics of the EWPT: in the plane of

(α, β/Hn) (left), (vw, Tn) (middle) and (α,∆ρV /∆ρ) (right). In all these plots, the colors denote

SNR > 50 (red), 50 > SNR > 10 and SNR < 10 (blue). Points depicted here pass all phenomeno-

logical constraints and give successful bubble nucleations.

The full scan is performed using the input of the tadpole basis parameters with the

following ranges for parameters:

b4 ∈ [0.001, 5], b3/vEW ∈ [−10, 10],

a2 ∈ [−2
√
λb4, 25], θ ∈ [−0.35, 0.35],

mh2 ∈ [260, 1000], (5.1)

where the lower range of a2 is determined by the requirement that the potential is bounded

from below. The scan takes into account the previously discussed theoretical and phe-

nomenological requirements. Points which pass these selection criteria are fed into a modi-

fied version of CosmoTransitions [140] for calculating the thermal history and the param-

eters relevant for EWPT.9 Those which can give a successful EWPT by meeting the bubble

nucleation criteria are further scrutinized for the EWPT type and SFOEWPT conditions.

The final remaining points are used to calculate the gravitational wave spectra, the SNR

and collider observables.

5.1 EWPT and GW

We first give the answer to question (a): what kind of EWPT patterns can this model admit

and in what proportion of the parameter space for each pattern ?

We find, of the xSM parameter space where a successful EWPT can be obtained,

about 99% gives type (A) EWPT and the remaining slightly less than 1% can give type

(B) EWPT. We do not observe type (C) EWPT. For type (A), 22% (19%) gives SNR larger

than 10 (50). So there is a sufficiently large parameter space which can give detectable

GW production.

9Other packages include Bubbleprofiler [141] and AnyBubble [142]. It should also be noted that

there generically exists a difficulty for solving bounce solutions in very thin-walled cases, the discussion of

which can be found in above paper of Bubbleprofiler and also in ref. [143] where the neural networks is

introduced to solve the bounce solutions. We have verified that the majority of the points we used are not

very thin-walled.
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The strength of the stochastic GW background is mainly governed by the two param-

eters α and β/Hn, where a larger α and a smaller β/Hn gives stronger GW SNR, as shown

in the left panel of figure 4, where the colors denote SNR < 10 (blue), 50 > SNR > 10

(green) and SNR > 50 (red). We observe that the points which give detectable GWs lie in

the bottom right region of the population.

Physically, α quantifies the amount of energy released during the EWPT and therefore

a larger α gives stronger GW signals. In addition, for fixed vw, a larger α leads to a

larger fraction of energy transformed into the plasma kinetic energy, quantified by κv, and

therefore a further gain in GW production. A further enhancement for larger α comes from

the fact that since we fixed v+ = 0.05, increasing α also increases vw. It should be noted,

even without an explicit calculation, that for each fixed value of α, the allowed values of

vw are limited to a certain range (see e.g., figure 1 in ref. [99]). This comes from two

considerations: (1) admitting consistent hydrodynamic solutions of the plasma imposes

a lower limit on vw; (2) vw larger than ξJ(α) gives a detonation mode of the velocity

profile, in which case vw = v+ > cs and therefore v+ is too large for EWBG to work. We

further note that for α & 1 and vw ∼ 1, the calculations of the GW spectra may become

unreliable for the following reasons: (i) While the study of ref. [134] suggests that the

energy stored in the scalar field kinetic energy is negligible, a very large α might lead to a

non-negligible contribution from the bubble collisions. Therefore a better understanding of

the energy budget for this region is needed; (ii) the numerical simulations are all performed

for relatively small α as well as vw and thus the use of these results for large α and vw
may not be applicable; (iii) The universe is no longer radiation dominated at the EWPT

but rather vacuum energy dominated. This has the consequence that bubbles might never

meet to finish the EWPT and the universe would be trapped in the metastable phase

(see ref. [144] for a recent analysis). Despite these issues, we find 49% of points with

SNR > 10 have α < 1 and removing the points with α > 1 does not change the main

findings of our work.

We now turn to the parameter β/Hn, which roughly characterizes the inverse time

duration of the EWPT. A smaller β/Hn or equivalently a longer EWPT generates stronger

GW signals. This is due to the particular feature of the GWs coming from the sound waves

in the plasma. As was found in the original papers on the importance of sound waves in

generating the GWs [131, 132], one enhancement comes from 1/(β/Hn) compared with the

conventional bubble collision contribution. As long as the mean square fluid velocity of the

plasma is non-negligible, GWs will continue being generated and the energy density of the

GW is thus proportional to the duration of the EWPT. It should be noted that β/Hn also

determines the peak frequency of the GW spectra.

The bubble wall velocity vw also plays an important role here and the dependence of

the SNR on vw is shown in the middle panel of figure 4, where the vertical axis is chosen

to be Tn. It is clear that points with larger SNR have larger vw since, for fixed v+, a larger

α implies a larger vw. It can also be seen from this plot that the SNR increases as Tn
decreases. This is easily understood, since a smaller Tn typically implies a larger amount

of supercooling and therefore a larger α. The supercooling can be quantified by the fraction

of the first term(≡ ∆ρV ) of eq. 4.9 in the total released vacuum energy, which we plot in

– 16 –
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Figure 5. Figures showing the dilution effect of the baryon asymmetry. The left panel shows two

different definitions of the dilution factor and the right panel shows the dilution factor ξD defined

in eq. 4.15 versus Tn.

the right panel. We can see from this figure that larger SNR indeed implies larger amount

of supercooling. However the amount of supercooling as quantified by ∆ρV /∆ρ is less than

0.6 for most of the parameter space. The remaining part comes from the second term of

the definition of α.

The entropy production, if sizeable, can pose a problem for baryon asymmetry genera-

tion, as it will effectively dilute the baryon asymmetry nB/s by increasing s. In section 4.2,

we encode this effect in a dilution factor ξD. Here since κT is a function of vw and α while

vw is also a function of α when v+ is fixed, we find ξD is solely a function of α. This

functional relation is shown as the magenta line in the left panel of figure 5 and all points

from the scan fall on this line. The message from this figure is that most of the points have

ξD & 0.65 and those with a smaller α have a dilution factor closer to 1. In particular, the

points with α . 1 for which GW can be reliably calculated, the dilution effect is rather

small as ξD & 0.8. Given the current relatively large uncertainties in the EWBG calcu-

lations, the dilution effect poses no real problem for the baryon asymmetry generation.

Note that previous studies [110] used a different quantification of the dilution factor, with

the definition:

ξ
(2)
D =

s

s+ ∆s
, (5.2)

where s is the entropy density at Tn and ∆s is calculated from the second term in the

definition of α in eq. 4.9. To compare with the factor ξD, what we use here, we show

values of this factor in the same plot of ξD for every point that gives detectable GWs. It

is evident from this figure that these two factors are roughly the same and both decrease

linearly for α . 0.4. For α & 0.4, ξ
(2)
D gives an overestimation of the dilution effect while

ξD firstly increases a little bit before slowly dropping. Since the dilution factor we use

here is based on a faithful hydrodynamic analysis, it gives a more precise description of the

– 17 –
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Figure 6. Points depicted here pass all phenomenological constraints and give successful bubble

nucleations, along with detectable GWs at LISA (SNR > 10). We show them in the planes of

the input parameters: in plane (b3, vs)/vEW (left) and (sin θ,mh2
) (middle). We distinguish those

points which give SNR > 50 (red) with those of 50 > SNR > 10 (green) in these two plots. The

right panel shows all the points in the plane (α, β/Hn) with the colors denoting the values of mh2 ,

as shown in the legend.

dilution effect. We also show ξD calculated for all the points versus Tn as a scatter plot in

the right panel of figure 5, from which we find a larger dilution effect appears for typically

smaller Tn and those with α . 1 fall in the high Tn region.

The two-step EWPT, for which type (B) is the only observed here, constitutes about

one percent of all the surviving parameter space. Of this tiny parameter space, more than

half the points give detectable GWs.

5.2 Parameter space giving detectable GWs

With a summary of the points described in previous section, we give in this section the

answer to question (b), which, we recall, was: What is the region of parameter space that

can give strong detectable gravitational waves at future space-based gravitational wave de-

tectors?

The results are shown in terms of the three plots in figure 6. As was discussed in the

previous section, a large α and small β/Hn leads to loud GW signals. Even though the

relation between (α, β/Hn) and the physical input parameters is not transparent as many

numerical details are involved, it can still be revealed by the plots in figure 6. From the left

panel in figure 6, we can see that the majority of the points are concentrated in two regions

of parameter space where vs is rather small. In particular, we find 20 GeV . |vs| . 50 GeV

for most points, with a peak distribution at around 20 GeV. The appearance of two regions

comes from the bounded-from-below requirement of the potential, similar to figure 1. While

phenomenological constraints have the effect of shrinking both the regions, the appearance

of points far outside the two regions indeed shows that the main cause of the narrow

regions comes from the requirements of EWPT and GWs. Therefore it is fair to say that

the region that gives detectable GWs from a type (A) EWPT mainly comes from the

parameter space with smaller vs. On the other hand, the regions which provide type (B)

EWPT are dramatically different from these regions, since most of the diamonds lie beyond

the two narrow regions, as can be seen from the figure.
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Figure 7. Representative resonant (left) and non-resonant (middle and right) Feynman diagrams

contributing to di-Higgs production.

The middle figure shows these regions in the (mh2 , sin θ) plane. It is clear that the

points are concentrated around the region with larger mh2 . For smaller mh2 , the density

of points becomes much smaller. To have a better understanding of the role of mh2 in GW

production, we show in the right panel its role in determining (α, β/Hn), denoted by the

colors. In this figure, the points are separated into different bands characterized by the

value of mh2 . For fixed β/Hn, a larger mh2 gives a larger α, thus larger SNR. This explains

the concentration of the points in the mh2 direction in the middle figure. In the sin θ

direction, the value of θ is more constrained for larger mh2 . The outer boundary comes

mainly from the W -mass constraint. The requirements from EWPT and larger GW signals

also show their effects in this plot. For example, very small values of θ give rarer points.

We also overlaid on this plot the various sensitivity projections from colliders in probing

the value of θ, which includes HL-LHC, ILC with two configurations (ILC-1: 250 GeV,

250 fb−1, ILC-3: 1 TeV,1 ab−1) and future circular e+e− colliders (240 GeV, 1 ab−1), all

taken from ref. [66]. We see that HL-LHC can barely probe any points; ILC-1 can probe a

fraction of the small mh2 points as well as a few large mh2 points; ILC-3 can probe about

a half of both light and heavy h2 points; the future circular colliders can probe even more

of the parameter space. We also can see that most of the points coming from the two-step

EWPT lie at the very small θ region, even though a few do have larger θ. Therefore GW

detections serve as a complementary probe of this region. We also note that for very small

values of θ and mh2 , the search for long lived particles can be used to probe this region

(eg., the MATHUSLA detector) [145].

5.3 Correlation with double Higgs production searches

Exploring possible deviations from the expected SM value of the cubic Higgs coupling

through di-Higgs production is an important target of the HL-LHC. New physics scenarios,

especially those designed for providing a SFOEWPT for baryon asymmetry generation,

typically modify this coupling. Therefore di-Higgs production is correlated with EWPT

and thus GW production. Future GW and collider experiments can then operate in a way

that complement each other in exploring new physics scenarios. With the parameter space

giving detectable GW identified in the previous section, we can find the correlation by

calculating the corresponding di-Higgs cross sections and compare it with present di-Higgs

measurements and with future projections.

The leading order Feynman diagrams for double Higgs production occur at one-loop

and consist of both the resonant and non-resonant channels, as shown in figure 7. The non-

resonant channel includes the box diagrams and a triangle diagram involving the vertex

– 19 –
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Figure 8. Resonant contribution to the cross section for di-Higgs production, versus the total

cross-section. The left plot shows the correlation of the two cross sections, with the colors denoting

values of mh2
. The middle plot has the colors switched to the branching ratio of h2 → h1h1. The

right plot shows this branching ratio versus the trilinear coupling h2h1h1, where the color denotes

mh2 . In the left two plots, the dashed line denotes the place where these two cross sections are

the same.

h1h1h1. The resonant channel is the production of a on-shell h2 which subsequently decays

into two Higgs, thus including the h2h1h1 vertex. The amplitude at leading order was given

in the early papers [146, 147] with the result expressed in terms of Passarino-Veltman scalar

integrals. This result has also been implemented into MadGraph [148] taking into account

the presence of a heavier SM-like scalar.10 which we use for calculating the corresponding

cross sections for each point shown here. This takes as input the modified Higgs top Yukawa

coupling, the Higgs trilinear coupling, the heavy scalar top coupling, the h2h1h1 coupling

and the mass as well as the decay width of h2. Since h2 decays into SM particles with

reduced coupling (− sin θ) as compared with the SM Higgs and also decays to a pair of h1,

the total width is simply given by:

Γh2 = sin2 θ ΓSM(h2 → XSM) + Γ(h2 → h1h1), (5.3)

where ΓSM(h2 → XSM) denotes an exact SM Higgs-like h2 decaying into the SM particles.

For the di-Higgs production, if the resonant production of h1h1 via the h2 resonance

dominates the cross section, then the cross section can be written in the narrow width

approximation as

σ(pp→ h1h1) = σ(pp→ h2)BR(h2 → h1h1). (5.4)

In reality, interference effects between the resonant and non-resonant diagrams may be

important and lead to constructive or destructive effect on the final full cross section [85].

We thus compare, for each scanned point, the obtained cross section for both the full

calculation and the above approximation from the purely resonant production. This is

shown in the left and middle plots of figure 8 for σ(pp→ h1h1) versus σ(pp→ h2 → h1h1)

for all the points which give detectable GW signals, that is, those with SNR > 10. These

cross sections are both calculated at leading order but we have added a common K-factor

10https://cp3.irmp.ucl.ac.be/projects/madgraph/wiki/HiggsPairProduction
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Figure 9. The upper limits on di-Higgs resonant production cross section from ATLAS and CMS

combined searches, shown as solid green and brown lines for ATLAS and CMS, respectively. The

dashed lines denote the corresponding future projections for 3 ab−1 of data at the HL-LHC (13 TeV).

As in the other plots, we distinguish those points which give SNR > 50 (red) and those of 50 >

SNR > 10 (green).

of 2.27 [149] to take into account of higher order corrections. The colors in the left panel

denote the values of mh2 and those in the middle denote BR(h2 → h1h1). It is clear from

these figures that the resonant cross section is always less than the full one-loop result and

drops sharply as mh2 is increased (left panel). Since, as we have seen in previous sections,

the points with large SNR are concentrated around the region with larger mh2 , most of the

points with detectable GWs turn out to give small di-Higgs production and even negligible

resonant production. The colors in the left panels make it clear that most of the points

which have larger mh2 (and larger SNR) tend to give very small di-Higgs production, with

a cross section of O(10)fb, while smaller mh2 gives O(100)fb. Moreover, there is a sharp

drop of the resonant production cross section. From the middle panel, we can see that the

color of decreasing branching ratio h2 → h1h1 coincides partly with increasing mh2 for the

very large mh2 points. The small branching ratio is found for a majority of points and is

due to the smallness of λ211. This can be seen from the right panel, where this correlation

is shown with the color denoting mh2 . It is found that a majority of points which have

large mh2 give small branching ratio. This can partly explain the cause of the drop of the

resonant production.

On the experimental side, both the ATLAS and CMS collaborations have recently

published their search results for non-resonant and resonant di-Higgs productions using

the data collected in 2016 at 13 TeV, with nearly the same integrated luminosity. The

CMS search result is based on the 35.9fb−1 data, in the di-Higgs decay channels bb̄γγ [150],
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bb̄τ+τ− [151], bb̄bb̄ [152–155] and bb̄WW/ZZ [156], with a recent combination given in [157].

ATLAS used 36.1fb−1 data and searched in channels γγbb̄ [158], bb̄τ+τ− [159], bb̄bb̄ [160],

WW (∗)WW (∗) [161] and bb̄WW ∗ [162], with also a combination of the first three chan-

nels [163]. We use the ATLAS and CMS combined limits in the resonant production

channels and show them with green and brown solid lines respectively in figure 9. For the

points giving detectable GWs, we calculate the resonant cross sections from gluon fusion

at NNLO+NNLL using the available result in ref. [164]. We can see that none of the

points with detectable GW gives cross section above this limit. With the anticipation of

HL-LHC at a luminosity of 3 ab−1 (13 TeV), we can get the future projections of this limit

by a simple rescaling and obtain the two dashed lines. For this projection, the region with

lower mh2 . 550 GeV can be partly explored by CMS and a little bit higher for ATLAS,

while the high mass region remains out of reach for di-Higgs searches. Yet, Some points of

the scanned parameters space with observable SNR show a promising di-Higgs production

cross section of 50 fb or more at the LHC which, in principle, can be probed with 3 ab−1.

Therefore GW measurements can complement collider searches by revealing the high mh2

region of the xSM model.

5.4 Higgs cubic and quartic couplings

Future precise measurements of the Higgs cubic and quartic self-couplings can be used

to reconstruct the Higgs potential to confirm ultimately the mechanism of EW symmetry

breaking11 and shed light on the nature of the EWPT. The measurements of above double

Higgs production can be used to determine the cubic coupling and there have been exten-

sive studies on this topic [75, 165, 166]. The best sensitivities obtained for these future

colliders is typically at O(1). Despite the more formidable challenges with the quartic

coupling measurement, there is now growing interest in it. Several different methods have

been proposed and studied: through triple Higgs production measurement [76], through

double Higgs production at hadron colliders where the quartic coupling enters gg → hh at

two-loop [78] or renormalizes the cubic coupling, and at lepton colliders(via Z-associated

production e+e− → Zhh and VBF production e+e− → ννhh), where the quartic coupling

is involved in the V V hh coupling at one loop [79]. For example, ref. [79] found a pre-

cision of measurement of ∼ ±25 for (500 GeV, 4 ab−1 + 1 TeV, 2.5 ab−1) and ∼ ±20 for

(500 GeV, 4 ab−1 + 1 TeV, 8 ab−1) at 1σC.L., when the cubic coupling is marginalized in

their χ2 analysis.

In the xSM, both the Higgs cubic and quartic couplings are modified compared with

their SM counterparts:

iλh1h1h1 = 6

[
λvc3

θ +
1

4
c2
θsθ (2a2vs + a1) +

1

2
a2vcθs

2
θ +

1

3
s3
θ (3b4vs + b3)

]
, (5.5)

iλh1h1h1h1 = 6(λc4
θ + a2s

2
θc

2
θ + b4s

4
θ). (5.6)

In the absence of mixing of the scalars(θ = 0), these couplings reduce to the corresponding

SM values iλh1h1h1 = 3m2
h1
/v and iλh1h1h1h1 = 3m2

h1
/v2. When θ 6= 0, we parametrize the

11The Lorentz structure of hWW coupling already gave us some insight about the nature of EW symmetry

breaking at the leading order.
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Figure 10. The Higgs cubic and quartic couplings (∆κ3,∆κ4) for parameter space points giving

detectable GW. Here the green points give SNR > 10 and the red gives SNR > 50. The bars denote

the sensitivity of ∆κ3 from a global analysis of future colliders in ref. [75], for various detector

scenarios shown on the right side of the figures. The brown solid and blue dashed lines are the

1σ contours for two different ILC scenarios taken from ref. [79]. The bottom panel is a zoomed-in

version of the top one.

deviations of these couplings from the SM values as:

∆L = −1

2

m2
h1

v
(1 + δκ3)h3

1 −
1

8

m2
h1

v2
(1 + δκ4)h4

1, (5.7)

and show in figure 10 these values for the points that give detectable GWs. The features

that we can read from this figure are: (1) both δκ3 and δκ4 are positive; (2) both variations
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are O(1) as δκ3 ∈ (0, 1) and δκ4 ∈ (0, 4); (3) a correlation exists δκ4 ≡ ηδκ3, with η ≈ 2.8

for δκ3 . 0.4 and most points fall within η ∈ (2, 4). To understand these, we note, since

phenomenological constraints requires a small θ, we expect the second feature to follow

naturally. The other features can be understood by Taylor expanding the couplings for

small θ and we find:

δκ3 = θ2

[
−3

2
+

2m2
h2
− 2b3vs − 4b4v

2
s

m2
h1

]
+O(θ3),

δκ4 = θ2

[
−3 +

5m2
h2
− 4b3vs − 8b4v

2
s

m2
h1

]
+O(θ3). (5.8)

In the above square brackets, the terms proportional to m2
h2
/m2

h1
dominate for the majority

of the points since vs is concentrated at small values; b3 is at most ∼ 10vEW, b4 . 5 from the

scan and mh2 & 500 GeV generally holds. Then the above approximations show positive

δκ3 and δκ4 and give δκ4/δκ3 ≈ 2.5, which is fairly close to η = 2.8. For relatively large

θ, high order corrections need to be taken into account and above linear correlation would

be changed.

To compare with the direct measurements of these couplings at future e+e− colliders

and the HL-LHC, we added in figure 10 the precisions of these measurements from studies

in the literature. The two elliptical 68%CL closed contours are taken from ref. [79] which

focuses on the quartic coupling, for two possible scenarios of the ILC. The bars are the

precisions that can be reached from various considerations of future colliders, labelled on

the right of the figure, taken from ref. [75] (for other studies, see e.g. [78, 165–167, 167–

170]). Here the inner and outer bar regions denote the 68%CL and 95%CL results. We

can see, it is generically very hard for colliders to probe the cubic coupling at a precision

that can reveal the points giving detectable GWs with high confidence level(say 95%).12

The most precise comes from the ILC when all possible runs at different luminosities are

combined and with the data of HL-ILC included, which gives 0.4 ∼ 0.5 uncertainty on the

measurement of δκ3 at 95%CL. While the analysis in ref. [75] does not include the quartic

coupling, the contours from ref. [79] do give a hint on its measurement and show that it

is infeasible for the colliders to probe the parameter space giving detectable GWs. For

the trilinear and quartic coupling deviations that we found, the impact on the triple Higgs

cross section is mild for hadron colliders even for a future pp collider at 100 TeV [76, 77],

however, resonant contributions in xSM might enhance the cross section up to a factor of

O(10) [171].

Therefore we expect future GW measurements can make a valuable complementary

role in determining the Higgs self-couplings, especially the quartic coupling. While we do

12It should be noted that both studies used some versions of the effective field theory approach to quantify

the modification of the SM couplings due to possible new physics effects. Therefore the precisions overlaid in

figure 10 might not be what the colliders can achieve if the xSM model was used in their studies. However we

expect the two contours, taken from ref. [79], to be largely unaffected since the heavier scalar contribution

in their framework is suppressed by extra powers of sθ. We also expect that the bar regions, taken from

ref. [75], would get tighter since the set of parameters used in their study are highly correlated here and

the resonant contribution was not included in their analyses.
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Figure 11. The branching ratios of h2 in h1h1 and V V final states, where V V = WW,ZZ,WW +

ZZ, with the color denoting the value of mh2
.

not have a statistical analysis here, figure 10 does tell us that δκ4 is equally important as

δκ3 on GW signal generation since η is at most 4. Thus we expect a full statistical analysis

would yield roughly the same precision on the determination of δκ3 and δκ4, which is well

improved compared with the situation at colliders.

5.5 Diboson resonance search limits at colliders

The WW and ZZ branching ratios become sizeable in parts of the parameter space where

the trilinear coupling λ211 is relatively small, as one can see from the rightmost panel of

figure 8. In figure 11, we show the branching ratios of the h2 → WW,ZZ and h2 → h1h1

channels. We see that the WW,ZZ channels can be as big as 90% for a large range of h2

masses which could show up at searches for weak diboson resonances. Combined, WW,ZZ

and h1h1 correspond to nearly all the decays of h2, which make them the best search

channels for h2 resonances at colliders.

Besides the di-Higgs production measurements, which can be used to extract the Higgs

cubic and quartic couplings, there also exist generic scalar resonance searches at the LHC.

In particular, ATLAS and CMS have performed extensive analyses in the searches for

a heavier SM-like scalar resonance in V V and V H decay channels of the heavy scalar

(V = W/Z). ATLAS gives a recent combination of all previous analyses in bosonic and

leptonic final states at
√
s = 13 TeV with 36fb−1 data collected in 2015 and 2016 [172]. The

limits are drawn for h2 production cross section in gluon fusion and vector boson fusion

production channels. These two limits are shown in the left and right panels, respectively,

in figure 12 with green solid lines, together with the detectable GW points. For cross
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Figure 12. Combined limits from ATLAS (solid line) and future HL-LHC projections (dashed

line) for searches of a heavy SM-like resonance in the WW/ZZ channel from gluon fusion (left) and

vector boson fusion production (right). As in the other plots, we distinguish those points which

give SNR > 50(red) and those of 50 > SNR > 10(green).

section calculations, we use the set of result calculated to NNLO precision for VBF and

for gluon fusion, we use NNLO+NNLL, as also used before in figure 9.

It is evident that the current limits from diboson searches are rather loose as most

points fall under this line, with gluon fusion limit being able to touch a fraction of the

lighter h2 point. For the HL-LHC with ∼ 3 ab−1, we obtain estimates of future projections

by a simple scaling factor and obtain the dashed lines for ∼ 3 ab−1 at 13 TeV (while HL-

LHC would probably run at 14 TeV). We can see in all cases that the HL-LHC will probe

a larger fraction of the parameter space for both ggH and VBF channels. For ggH, this

region covers a range from low to high masses. For VBF, it can cover a region of relatively

heavy h2. Both channels are sensitive to h1h1 cross section times branching ratio down to

∼ 1 fb in some favorable points of the parameters space. The points that can be probed by

HL-LHC serve as promising targets for both colliders and GW detectors but a majority of

the parameter space will probably be left to GW detectors.

6 Summary

In this paper, we embarked on a study of the singlet-extended SM Higgs sector. A de-

tailed scan of the parameter space of this model was performed, incorporating all relevant

phenomenological constraints, and regions with large SNR at LISA were identified. Sub-

tle issues pertaining to the bubble wall velocity were discussed, and a range of velocity

profiles described.

Our main findings are the following. For the parameter space that satisfies all phe-

nomenological constraints, gives successful EWPT and generates GWs, 99% leads to a

one-step EWPT with the remaining to two-step EWPT and 22% generates detectable

GWs(SNR > 10) at LISA. The main features of the parameter space that gives detectable
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GWs is: 20 GeV . |vs| . 50 GeV, where vs is the vev of the singlet field; it is more

concentrated in the large mh2 region, where mh2 is the mass of the heavier scalar h2;

θ . 0.2 for the majority of the space. Di-Higgs searches at both ATLAS and CMS are

currently unable to probe this parameter space, but HL-LHC will be able to probe the

lighter h2 region while the heavier h2 region will remain elusive. Weak diboson resonance

searches cannot constrain xSM much either but the HL-LHC will be able to probe a large

fraction of its parameters space in this channel. The Higgs cubic and quartic couplings

are at O(1) deviations from the SM values and obey a relation δκ4 ≈ (2 − 4)δκ3, where

δκ4 and δκ3 are the relative deviations of the quartic and cubic couplings from their SM

counterparts respectively.

Our results broadly indicate that high energy colliders and GW detectors are going

to play complementary roles in probing the parameter space of scalar sectors. Several

future directions can be contemplated. It would be interesting to understand how this

complementarity plays out in two Higgs doublet models, as well as other scalar sector

extensions classified in [19]. It would also be interesting to investigate the complementarity

of GW and collider probes for phase transitions in the dark sector. We leave these questions

for future study.
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A Perturbative unitarity S matrix

We consider a total of eleven 2 → 2 channels of scalars and longitudinal

gauge bosons scatterings. These are grouped into seven charge neutral channels

(h1h1, h2h2, h1h2, h1Z, h2Z,ZZ,W
+W−), three charge-1 channels (h1W

+, h2W
+, ZW+)

and one charge-2 channel (W+W−). The leading partial wave amplitudes of these scat-

terings are given collectively by a symmetric matrix, which itself is a direct sum of the

matrices from these three groups: S = S0
⊕
S1
⊕
S2. The tree level perturbative unitar-

ity requires that the absolute value of each eigenvalue of this matrix is less than (1/2×16π).

The non-zero elements of the 7 × 7 matrix S0 is listed as follows(see e.g., ref. [173] for a

detailed calculation):

S11 = −3
(
a2c

2
θs

2
θ + b4s

4
θ + λc4

θ

)
,

S12 =
1

8
(3 cos(4θ) (−a2 + b4 + λ)− a2 − 3b4 − 3λ) ,

S13 =
3 sin(2θ) (cos(2θ) (−a2 + b4 + λ)− b4 + λ)

2
√

2
,
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S16 = −1

2
a2s

2
θ − λc2

θ,

S17 = −
a2s

2
θ + 2λc2

θ√
2

,

S22 = −3
(
a2c

2
θs

2
θ + b4c

4
θ + λs4

θ

)
,

S23 = −3 sin(2θ) (cos(2θ) (−a2 + b4 + λ) + b4 − λ)

2
√

2
,

S26 = −1

2
a2c

2
θ − λs2

θ,

S27 = −
a2c

2
θ + 2λs2

θ√
2

,

S33 =
1

4
(3 cos(4θ) (−a2 + b4 + λ)− a2 − 3b4 − 3λ) ,

S36 =
(2λ− a2) cθsθ√

2
,

S37 = (2λ− a2) cθsθ,

S44 = −a2s
2
θ − 2λc2

θ,

S45 = (2λ− a2) cθsθ,

S55 = −a2c
2
θ − 2λs2

θ,

S66 = −3λ,

S67 = −
√

2λ,

S77 = −4λ. (A.1)

For charge-1 channels, we have:

S1 =

 −2λc2
θ − a2s

2
θ (2λ− a2) cθsθ 0

(2λ− a2) cθsθ −a2c
2
θ − 2λs2

θ 0

0 0 −2λ

 .
For the charge-2 channel with only one process, the matrix is simply given by S2 = (−2λ).

B Connection with potential where vs = 0

The potential in eq. 2.1 can be written into a different form by translating the coordinate

system of (H,S) such that the EW vacuum has 〈S〉 = 0 (see e.g., [72]). In this basis,

there will generally be an additional tadpole term (b1S). Making this translation of field

variables leads to the same potential being represented with different potential parameters,

without changing the physics [70]. So the scalar couplings as well as their masses and

mixing angles wont be affected by this translation. For easy comparison between these two

representations, we show here the transformation rules between these two bases. Given

potential parameters in the non-tadpole basis in eq. 2.1, the parameters in the basis where

b1 6= 0 (denoted with a prime) can be obtained:

b′1 = vs(b2 + vs(b3 + b4vs)),
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b′2 = b2 + vs(2b3 + 3b4vs),

b′3 = b3 + 3b4vs,

µ2′ = µ2 − 1

2
vs(a1 + a2vs),

a′1 = a1 + 2a2vs, (B.1)

while a2, λ, b4 remains unchanged. On the other hand, given parameters in the tadpole

basis where vs = 0 and b1 6= 0, the parameter set in the basis used in this work can

be found:

vs = x,

b2 = b′2 − x(2b′3 − 3b′4x),

b3 = b′3 − 3b′4x,

µ2 = µ2′ +
1

2
x(a′1 − a′2x),

a1 = a′1 − 2a′2x, (B.2)

where x is to be solved from the cubic equation

b′1 − b′2x+ b′3x
2 − b′4x3 = 0, (B.3)

which might give more than one solutions. In the basis vs = 0, the degree of freedom

carried by vs in the basis vs 6= 0 is transformed to a different parameter. For example, one

can choose it to be a2 and then the full set of independent parameters can be chosen as

a2, mh2 , θ, b3, b4. (B.4)

We note further there are also studies of this model where a Z2 symmetry in the S fields

are imposed and are spontaneously broken [68, 83, 85]. This specific model correspond to

a special limit of the potential here.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[78] W. Bizoń, U. Haisch and L. Rottoli, Constraints on the quartic Higgs self-coupling from

double-Higgs production at future hadron colliders, arXiv:1810.04665 [INSPIRE].

[79] T. Liu, K.-F. Lyu, J. Ren and H.X. Zhu, Probing the quartic Higgs boson self-interaction,

Phys. Rev. D 98 (2018) 093004 [arXiv:1803.04359] [INSPIRE].

[80] S. Inoue, M.J. Ramsey-Musolf and Y. Zhang, CP-violating phenomenology of flavor

conserving two Higgs doublet models, Phys. Rev. D 89 (2014) 115023 [arXiv:1403.4257]

[INSPIRE].

[81] C.-Y. Chen, H.-L. Li and M. Ramsey-Musolf, CP-Violation in the two Higgs doublet model:

from the LHC to EDMs, Phys. Rev. D 97 (2018) 015020 [arXiv:1708.00435] [INSPIRE].

[82] H.-K. Guo et al., Lepton-flavored electroweak baryogenesis, Phys. Rev. D 96 (2017) 115034

[arXiv:1609.09849] [INSPIRE].

[83] G.M. Pruna and T. Robens, Higgs singlet extension parameter space in the light of the LHC

discovery, Phys. Rev. D 88 (2013) 115012 [arXiv:1303.1150] [INSPIRE].

[84] ATLAS, CMS collaboration, Measurements of the Higgs boson production and decay rates

and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp

collision data at
√
s = 7 and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].

[85] M. Carena, Z. Liu and M. Riembau, Probing the electroweak phase transition via enhanced

di-Higgs boson production, Phys. Rev. D 97 (2018) 095032 [arXiv:1801.00794] [INSPIRE].
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