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1 Introduction

The low energy dynamics on a stack of N coincident M2 branes on a Zk orbifold is conjec-

tured to be described by the ABJM theory [1], a Chern-Simons field theory, whose gravi-

tational dual is 11D supergravity on backgrounds which are asymptotically AdS4×S7/Zk.
This duality has undergone a number of tests, including the derivation of the famous N3/2

scaling of the degrees of freedom of N coincident M2 branes [2] from the field theory side [3].

ABJM theory can be deformed by relevant operators, including real masses for the

bifundamental scalars and Fayet-Iliopoulos parameters [4–6]. On the gravitational side,

the deformation corresponds to modifying boundary conditions.

In this paper we calculate the Euclidean free energy of ABJM with real mass and FI

deformations both directly in the field theory and via its gravitational dual. The break-

ing of conformal symmetry leads to a partition function which is a nontrivial function

of deformation parameters. Using supersymmetric localisation [7], the path integral for

three-dimensional theories with N ≥ 2 supersymmetry on a three-sphere can be computed

exactly [8–10], resulting in a matrix model. This has enabled a large amount of progress to
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be made, see for instance [11] for a review and extensive references. In particular, it allows

us to write the three-sphere partition function of the deformed ABJM theory as a matrix

model [3, 12].

It was shown in [13] that the matrix model for the undeformed ABJM theory can be

recast as a partition function for a one dimensional gas of N noninteracting fermions with a

complicated Hamiltonian, reducing it to a problem in statistical physics. When adding real

masses to the theory, this Hamiltonian becomes non-Hermitian, creating complications in

the standard techniques for these quantum mechanical systems. However, for certain values

of the deformation parameters, the system is invariant under a combined parity and time

reversal transformation, called PT symmetry [14, 15].1 In such theories, the eigenvalues of

the Hamiltonian are either real (PT invariant states) or come in complex conjugate pairs

(states which map to each other under PT ), and the partition function remains real in both

phases. For general Chern-Simons theories, the three-sphere free energy is a priori complex,

but here PT symmetry forces the imaginary part to vanish. For more general deformation

parameters, while the Hamiltonian is not PT invariant, the spectral Z functions derived

from it are, which again guarantees a real partition function.2

To compare with gravitational results, we are interested in the partition function at

large N and fixed k,3 corresponding to the classical limit of the quantum system. At

leading order in N , we find a perfect agreement between the holographic and the field

theory calculations, which are related to the results of [18, 19] via analytic continuation.

In the field theory, this analytic continuation is subtle, and it requires careful tracking

of the branch cuts of the logarithm over the complex plane during the calculations. Our

derivation is valid for all real values of the mass deformations.

The rest of this paper is outlined as follows: in section 2, we review ABJM theory and

the mass deformations we consider. In section 3 we review the holographic calculation of

F maximisation and relate it, via analytic continuation, to a real mass deformation. In

section 4, using results of the now standard localisation calculations for three-dimensional

N ≥ 2 theories, we rewrite the partition function as a gas of N noninteracting fermions,

and find the corresponding Hamiltonian as a function of the deformation parameters. We

then outline the standard technique to obtain the large N behaviour of the free energy.

As mentioned, our Hamiltonian is however not Hermitian for non-vanishing deformation

parameters, but in some cases it is PT symmetric, and we review the implication of this

in section 5. We are then finally set to compute the three-sphere free energy in the large

N limit in section 6. We conclude with a discussion and open questions in section 7.

As this letter finished preparation the following appeared [20], which has some overlap

with our analysis. Our calculation however requires no saddlepoint approximation and

we see no sign of supersymmetry breaking on either side of the duality. This discrepancy

should be investigated further, particularly in the nonperturbative contributions.

1In some cases this is generalised to a combination of PT and a unitary transformation, called generalised

PT symmetry.
2For more general quiver Chern-Simons theories, there exist real mass deformations which lead to Her-

mitian spectral problems [16], but this is not possible in ABJM.
3For a review of localisation in large N 3d Chern-Simons theories, see [17] and references therein.
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N = 4 N = 2 Components

Vector Vector V = (Aµ, λ, σ,D)

Chiral Φ = (ϕ, χ, FΦ)

Hyper Chiral Z = (Z,Ψ, F )

Chiral W = (W, Ψ̃, F̃ )

Table 1. The field content of N = 4 and N = 2 multiplets in three dimensions.

2 ABJM theory and real mass deformations

ABJM theory is a Chern-Simons theory with gauge group U(N)k × U(N)−k. This theory

has N = 6 supersymmetry [1], though for k = 1, 2, this is enhanced to N = 8 [21]. It will

be convenient for us to work in N = 2 superspace formalism.

The ABJM theory contains one N = 4 vector multiplet transforming in the adjoint

of the respective U(N) gauge groups and two hypermultiplets in the bifundamental. The

components of the multiplets are presented in table 1. (Here χ, λ are two-component Dirac

spinors, σ is a real scalar and ϕ a complex scalar).

The Lagrangian of ABJM on S3 (with unit radius) is given by a supersymmetric

Chern-Simons kinetic terms for each of the N = 2 vector multiplets with levels k and −k,

SCS =

∫
d3xTr

(
A ∧ dA+

2i

3
A ∧A ∧A− λ̄λ+ 2Dσ

)
,

where the trace is assumed to be appropriately normalised with the levels to be invariant

under large gauge transformations and standard terms are included for the fermions. The

kinetic terms and interactions for the bifundamental chiral multiplets are given by:

Schiral =

∫
d3x
√
g

(
DµZ̄D

µZ − iΨ̄γµDµΨ +
3

4
Z̄Z − iΨ̄σΨ

+ iΨ̄λZ − iZ̄λ̄Ψ + iZ̄DZ + Z̄σ2Z + F̄F

)
. (2.1)

The famous quartic superpotential is needed to ensure supersymmetry enhancement from

N = 2 to N = 6.

The real mass deformations can be thought of as coupling to background vector

multiplets with a supersymmetric expectation value. Such an expectation value can be

parametrised by one parameter, which, if real, corresponds to giving real masses to the

hypermultiplet scalars via the quadratic coupling in (2.1).4 It is also possible to introduce

Fayet-Iliopoulos terms, modifying the Lagrangian by:

LFI =
k

2π
ζ Tr

(
D(1) +D(2) −

(
σ(1) + σ(2)

))
,

4If this is instead taken to be purely imaginary, the resulting terms in the Lagrangian give a shift to

nonstandard R-charge assignments. The partition function is conjectured to be an analytic function of this

parameter [22].
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where D(1,2) are the auxiliary scalars in the vector multiplets in the two nodes. After

integrating out the auxiliary scalar in the vector multiplet, this acts as a shift in the

expectation value of the vector multiplet scalars via

σ(1) → σ(1) +
ζ

2
, σ(2) → σ(2) − ζ

2
.

By a change of integration variables in the localisation calculation, one can see that

these deformations in the most general case can be thought of as giving two different

masses, m1,2 = m± 2ζ to the dynamical scalars of the theory.

These two parameters incorporates all possible real mass deformations of the theory

which are accessible on S3 via localisation calculations. There is a third mass deformation

which breaks supersymmetry to N = 1.

3 Holographic results

The R-charges of the scalars in the N = 2 chiral multiplets are given in terms of three

parameters δi in [18], and are related to the mass deformations via:

R[Z1] =
1

2
+ δ1 + δ2 + δ3 = imZ1 +

1

2

R[W1] =
1

2
− δ1 + δ2 − δ3 = imW1 +

1

2
(3.1)

R[Z2] =
1

2
+ δ1 − δ2 − δ3 = imZ2 +

1

2

R[W2] =
1

2
− δ1 − δ2 + δ3 = imW2 +

1

2

Note that marginality of the superpotential constrains these deformations to only be a

function of the three parameters δi, two of which are accessible through the localisation

calculation. In our case, the most general deformation corresponds to half of the scalars

having mass ±m1 and the other half ±m2:

mZ1 = m1 , mW1 = −m1

mZ2 = m2 , mW2 = −m2

leading to, as expected, coupling the background theory to two background vector multiplet

where the expectation values of the background scalars are given by iδa such that:

δ1 =
i

2
(m1 +m2) = im , δ2 = 0 , δ3 =

i

2
(m1 −m2) = 2iζ.

In [18] the free energy of the theory deformed by (3.1) was computed holographically for

general δa. The free energy is conveniently expressed in terms of the parameters ca as

F =
πL2

2G4

(
1− c2

1

) (
1− c2

2

) (
1− c2

3

)
(c1c2c3 + 1) 2

related to the deformation parameters δa via

δa =
c3c2c1
ca

+ ca

2 (1 + c1c2c3)
.
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Solving these gives a quadratic expression for the ca’s in terms of the δa’s, which, when

the relation to the real mass deformations is used leads to the following expression for the

free energy:

F =
πL2

2G4

√
(1 + [2m1]2) (1 + [2m2]2). (3.2)

While the calculation in [18] was done in the N = 8 supergravity theory dual to k = 1, it

involved only the metric and scalars neutral under the center of the SO(8) R-symmetry. The

Zk quotient then acts trivially on the 11D solution. We can therefore generalise to arbitrary

k by noting that the quotient simply rescales L and G4, giving πL2

2G4
= π

√
2kN3/2

3 . We will

find that this agrees perfectly with the field theory result in (6.14) at leading order in N .

4 The ABJM matrix model as a Fermi gas

Using standard techniques of supersymmetric localisation [7], one can show that the par-

tition function of N ≥ 2 theories on S3 localises onto constant field configurations for the

vector multiplet scalars, σ. Using the rules presented in for example [3, 8, 12, 23], we

can see that each U(N) vector multiplet, with Chern-Simons level k and FI-parameter ζ,

contributes to the partition function with∫
dNσ

N∏
i<j

[2 sinh (π (σi − σj))]2 eπik
∑N
i=1[σ2

i−2ζσi]

while each N = 4 hypermultiplet with mass m transforming as (r, r̄) of U(N)k × U(N)−k
results in a 1-loop contribution to the partition function

1∏N
i,j 2 cosh

(
π
(
σ

(1)
i − σ

(2)
j −m

)) ,
where σ(1,2) are the vector multiplets in the two nodes. Furthermore, there is an overall

normalisation factor of 1
N ! for each U(N) factor of the gauge group.

We can therefore easily obtain the partition function for the deformed ABJM theory

described in section 2 as:

ZABJM =
1

22N (N !)2

∫
dNσ(1) dNσ(2)

×
∏N
i<j sinh2

(
π
(
σ

(1)
i − σ

(1)
j

))
sinh2

(
π
(
σ

(2)
i − σ

(2)
j

))
∏N
i,j cosh

(
π
(
σ

(1)
i − σ

(2)
j −m

))
cosh

(
π
(
σ

(1)
i − σ

(2)
j +m

))
× e

πik
∑N
i=1

[(
σ
(1)
i

)2
−
(
σ
(2)
i

)2
−2ζ

(
σ
(1)
i +σ

(2)
i

)]
. (4.1)

Using a change of integration variables, µi = σ
(1)
i − ζ, νi = σ

(2)
i + ζ, it is easy to see

that a deformation with both mass m for the hypermultiplets as well as FI term ζ for the

vector multiplet is equivalent to deforming the theory by giving two different masses to the

hypermultiplets: half of them are given mass m1 and the other half m2, defined by

m1 = m+ 2ζ , m2 = m− 2ζ (4.2)
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and the partition function can be written as:

ZABJM =
1

22N (N !)2

∫
dNµdNν

∏N
i<j sinh2 (π (µi − µj)) sinh2 (π (νi − νj))∏N

i,j cosh (π (µi − νj +m1)) cosh (π (µi − νj −m2))

×eπik
∑N
i=1[µ2i−ν2i ]. (4.3)

To make contact with the holographic calculations in section 3, we want to solve the

matrix model of (4.1) at large N for fixed value of k, sometimes known as the M-theory

limit.5 This limit is conveniently accessible by following [13] to recast the matrix model

in (4.1) in terms of a gas of N non-interacting fermions with a complicated Hamiltonian.

The main step for this is to use Cauchy’s determinant identity∏N
i<j sinh (µi − µj) sinh (νi − νj)∏N

i,j cosh (µi − νj)
=
∑
σ∈SN

(−1)σ
1∏

i cosh
(
µi − νσ(i)

)
to rewrite (4.1) as

Z =
1

22NN !

∑
σ

(−1)σ
∫
dNµdNν

eπik
∑N
i=1(µ2i−ν2i )∏

i coshπ (µi − νi +m1) coshπ
(
µi − νσ(i) −m2

) ,
(4.4)

where we have used that the integral only depends on the composition σ ◦ σ′. The sum

over permutations with alternating signs here is the key ingredient to reinterpreting the

problem as a gas of fermions. Using now that 1
cosh is it’s own Fourier transform,

1

cosh (π (µi − νi))
=

∫
dτi

e2πiτi(µi−νi)

cosh (πτi)
,

we can simplify the expression even further. This rewriting turns the integrals over µ and

ν into Gaussians which can be carried out straight-forwardly, resulting in

ZABJM =
1

N !

∑
σ

(−1)σ
∫
dNτ

∏
i

e−πim2τi

(2 cosh (πτi) )1/2

× 1

2k cosh
(
π
k

(
τi − τσ(i) − km1

) ) e−πim2τσ(i)(
2 cosh

(
πτσ(i)

) )1/2 , (4.5)

where in the last step we have used (−1)σ(i) = (−1)σ
−1(i) and the inverse Fourier transform.

The expression (4.5) allows us to interpret the system as an ordinary quantum mechanical

system: that of a gas of N free fermions described by a one-particle density matrix ρ, which

in position space reads:

ρ(x1, x2) =
e−iπm2x1

(2 cosh (πx1) )1/2

1

2k cosh
(
π
k (x1 − x2 − km1)

) e−iπm2x2

(2 cosh (πx2) )1/2
= 〈x1|ρ̂|x2〉.

(4.6)

5For investigations of the mass deformed theory in the ’t Hooft limit, see [20, 24–27].
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We can as usual choose to describe the system in terms of a Hamiltonian H,6

ρ̂ = e−
1
2
U(x)e−T (p)e−

1
2
U(x) = e−Ĥ (4.7)

for operators

U(x) = log [2 cosh πx] + 2πim2x , T (p) = log [2 cosh πp] + 2πim1p,

and x, p canonical conjugate variables with canonical commutation relations where the

Chern-Simons level plays the role of Planck’s constant:

[x, p] = i~ , ~ =
k

2π
.

In terms of the density matrix, the partition function takes the remarkably simple form:

Z =
1

N !

∑
σ

(−1)σ
∫
dNz

∏
i

ρ(zi, zσ(i)). (4.8)

4.1 The semiclassical limit: WKB expansion

The Hamiltonian defined via (4.7) is very complicated, and it’s energy levels are not known.

In particular, it is not Hermitian, something we will comment on more in the next section.

Let us for now ignore this issue, and review the approach ordinarily taken in this situation:

doing a WKB approximation about ~ = 0. Since the Chern-Simons level k is proportional

to the inverse string coupling, an expansion in small k (or equivalently, ~), corresponds to

a strong-coupling expansion in the string theory dual, so the semiclassical expansion in ~
corresponds to doing a perturbative expansion in 1

N [13]. It is convenient to use Wigner’s

phase space formalism [28], and consider the Wigner transform7 of the density operator,

and then using Baker-Campbell-Hausdorff on the exponential in (4.7) to obtain the Hamil-

tonian. In [13], it was shown that the Wigner-transform of the Hamiltonian takes the form

HW (x, p) = Hcl. −
~2

12
T ′(p)2U ′′(x) +

~2

24
U ′(x)2T ′′(p) +O(~4) (4.9)

where Hcl. is the classical Hamiltonian:

Hcl. = T (p) + U(x). (4.10)

At large N , the leading term will be fully determined by the classical contribution to HW .

It will be convenient to work in the grand canonical ensemble, where the partition

function is obtained from the grand canonical potential, J(µ) by the inverse transform:

Z(N) =
1

2πi

∫
dµ eJ(µ)−µN (4.11)

6We here use eigenstates with the canonical normalisation 〈x|x′〉 = δ(x − x′), 〈p|p′〉 = δ(p − p′) and

〈x|p〉 = 1√
2π~e

ipx/~.
7For a review of phase space approach to quantisation, see for example [29].
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and

J(µ) = −
∑
l≥1

Zl
(−z)l

l
, Zl = Tr e−lH . (4.12)

The Zl are often referred to as spectral Z functions. We identify z = eµ as a fugacity with

corresponding chemical potential µ. This sum is only convergent for small |z|, but can

under favourable conditions be analytically continued to the entire complex plane.

The small |z|-limit here corresponds to small N , but as we wish to make connections

to holography, we are interested in the large N limit. In this case, to avoid the ana-

lytic continuation necessary in (4.12), it is more convenient to consider the Mellin-Barnes

representation of the grand canonical potential J(µ) [30]:

J(µ) = − 1

2πi

∫ c+i∞

c−i∞
dlΓ(l)Γ(−l)Zl elµ. (4.13)

Here, c is a constant that must lie between zero and the (real part of the) first pole of the

integrand in the right half-plane. Provided that the spectral Z functions have no poles in

the right half plane, we have 0 < c < 1. This is not a priori true, and (4.13) is therefore

valid only if the spectral Z functions have the appropriate pole structure. For µ < 0,

one can close the integration contour in the right half plane, and the residue formula then

recovers (4.12), whereas for µ > 0, however, one can close the contour in the left half-plane

instead, obtaining

J(µ) = −
∑

poles with
Re(l)<c

Res
{

Γ(l)Γ(−l)Zl elµ
}
. (4.14)

As µ → ∞, all other poles than at s = 0 are exponentially suppressed in µ, and this will

give us the leading behaviour in N .

The Wigner phase space formalism allows us to, in principle, go beyond the semiclas-

sical limit and compute the partition function to all orders in ~. The quantum corrections

to the Hamiltonian (4.10) arising from the fact that x, p don’t commute results in a series

expansion of the spectral Z functions in ~ as

Zl =
1

~

∞∑
n=0

Z
(n)
l ~2n. (4.15)

In [13], in the undeformed case it was shown that only the first ~2-corrections contribute

to the asymptotic series in 1
N to the free energy.8 In appendix A, we show that the leading

quantum correction is independent of the deformation parameters, and we will therefore

ignore them for now and only consider the semiclassical limit.

Recall that the strict N → ∞ limit corresponds to the classical limit of the quantum

system, and we can use tools from standard classical mechanics. In particular, it will

be useful for us to notice that in this limit, the spectral Z functions Zl are completely

determined by Z(0), and can be computed as an integral over real phase space:

N →∞, Zl =
1

2π~

∫ ∞
−∞
dp

∫ ∞
−∞
dx e−lHcl.(x,p), (4.16)

8For the undeformed theory, all quantum corrections to the grand canonical potential, including non-

perturbative effects, were the result of a combined effort of [13, 31–35] and eventually presented in [36].
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with the only subtlety that this expression is valid for Hermitian Hcl.. Overcoming this

difficulty will be the topic of the next section.

5 PT symmetric quantum and statistical mechanics

We will now tackle the issue of Hermiticity. For nonzero deformation parameters m1 and m2

(which are related to mass and FI parameters via (4.2)), the Hamiltonian defined via (4.7)

is not Hermitian. Hermitian versions of our systems have been studied previously in the

literature [16, 19], but the analytic continuations are subtle at best, and it is interesting

to study the complex Hamiltonian (4.7) directly. Normally, the Hermiticity of the density

matrix (or Hamiltonian) is used to guarantee real eigenvalues, but this is not a necessary

condition. There are also families of non-Hermitian Hamiltonians with real eigenvalues,

perhaps the most famous one being the deformation of the harmonic oscillator, p2 +x2(ix)ε

(ε ≥ 0). These Hamiltonians are invariant under the combination of parity and time

reversal, and as such said to be PT symmetric [14]. The parity P and time reversal T
operators act on x̂, p̂ as:

Px̂P = −x̂ P p̂P = −p̂ , T x̂T = x̂ T p̂T = −p̂

and furthermore

T iT = −i , [P, T ] = 0.

For PT symmetric Hamiltonians, eigenvalues are either real or part of a complex conjugate

pair, depending on whether the eigenstate in question breaks PT . The thermodynamics

of such systems were studied in [37], and this extra symmetry allows us to make physical

sense of some (possibly slightly modified) techniques from quantum and classical statistical

mechanics. Of particular interest for us will be that these systems have real partition

functions, which is easily seen since it can be expressed completely in terms of real spectral

Z functions

Zl = Tr e−lH =
∑
i

e−lλi =
1

2

∑
i

(
e−lλi + e−lλ

?
i

)
. (5.1)

However, the semiclassical expression for Zl given by (4.16) is no longer a priori true. The

integration over the real line is not automatically convergent for PT symmetric hamilto-

nians, and the integration contour may need to be deformed in the complex plane [37].

Provided that this can be done, this indeed allows us to consider the thermodynamics of

a system in this way without requiring Hermiticity of the Hamiltonian. The particulars

of the integration contour in our case will be further discussed below. A wide range of

literature on PT symmetric quantum mechanics exists, for a pedagogical introduction see

for example [38] and for a more recent review, see [39].

5.1 Generalised PT symmetry

The density matrix (and Hamiltonian) is invariant under PT symmetry for certain values

of the deformation parameters m1 and m2. The easiest such case is m1 = 0, m2 6= 0.

– 9 –
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2 x

C0

divergent

CRe

Figure 1. The integration contour in the complex x-plane. The blue contour, C0 lies along the real

axis, whereas the green contour, CRe is deformed such that the density matrix, and therefore also

the integrand in the expression for the spectral Z functions in (4.16), explicitly remains real along

the entire contour, here plotted for m2 = 0.5 (and m1 = 0). The shaded red region corresponds to

the region where the integrand diverges as |x| → ∞. By closing the contours in the lower half plane,

and realising that the arc lies completely in the region where Hcl. → 0 as |x| → ∞, it is clear that

these two integration contours gives the same result since the deformation does not cross any poles.

In some cases, the density matrix is not invariant under PT , but rather goes to another

density matrix which is related to the original one via a canonical transformation,

PT ρT −1P−1 = ρ̃
can.−→

transf.
ρ.

One example is the case m1 = m2, where the Hamiltonian is invariant under PT symmetry

followed by the canonical transformation x→ p, p→ −x. If such a canonical transforma-

tion exists, generated by a unitary operator U , then these systems are invariant under the

antiunitary operator PT U , which is a straightforward generalisation of PT symmetry. As

long as our canonical transformation raised to some even power gives unity, U2k = 1, the

eigenvalues will still split into conjugate pairs [15] and we can safely compute the spectral

Z functions using (4.16), provided we can find a suitable integration contour.

6 Mass deformations at large N

In this section, we will compute the spectral Z functions for two cases with (generalised)

PT symmetry, and obtain the large N expression for the free energy of the deformed ABJM

theory. The first case corresponds to only turning on masses for half of the hypermultiplet

scalars, whereas the second case corresponds to either a pure mass or pure FI deformation.

These latter situations preserve half of the original supersymmetries. We finish by analysing

the case with no apparent PT symmetry.
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6.1 The simplest PT symmetric case, m1 = 0

We will start by analysing our model in the simplest case where the PT symmetry is

explicit: m1 = 0 and m2 6= 0.9 We then have:

U(x) = log [2 cosh πx] + 2πim2x , T (p) = log [2 cosh πp] .

In this case, it is straight-forward, though tedious, to show that there exists a contour

in the lower half plane of x = u+iv ∈ C such that the integrand of (4.16) remains real along

the entire contour. Explicitly, this contour takes the form of v = − i
π arctan

[
tan(2πm2|u|)

tanh(πu)

]
for the appropriate choice of branch cut for the arctan.10 By closing the contour in the

lower half plane as illustrated in figure 1, it is clear that in the semiclassical approximation,

the Hamiltonian can be recast in a way such that it remains purely real, and as such, PT
symmetry is unbroken, and all eigenvalues are real.

6.1.1 The strict thermodynamic limit

Before we move on to trying to compute the integral in (4.16) and J(µ) explicitly, let us

first consider the strict thermodynamical limit of the system, corresponding to the leading

order in N . Consider the classical Hamiltonian in the limit of large |x|, |p|:

HN→∞
cl. = π

(
|p|+ x(sign [Re(x)] + 2im2)

)
(6.1)

Following [37], we keep p to be real but analytically continue x to the entire complex plane,

i.e. x = u+ iv. This gives us the Hamiltonian in p, u, v-space as:

HN→∞
cl. = π

(
|p|+ |u| − 2m2v + isign [u] (v + 2m2|u|)

)
Restricting to the contour where the Hamiltonian is real, CRe, as discussed under eq (4.16)

gives us an expression for v in terms of u as:

v = −|u|2m2 (6.2)

so

HN→∞
cl. = π

(
|p|+ |u|

(
1 + [2m2]2

) )
≤ E. (6.3)

Therefore, the volume of the region of (u, p)-space, (which is equivalent to the volume

in (x, p)-space), with an energy less than or equal to E is given by:

vol(E) =
2

π2

E2(
1 + [2m2]2

) . (6.4)

By standard thermodynamical arguments, the number of states with energy less than

or equal to E is then given by

n(E) =
vol(E)

2π~
=

2E2

π2k
(

1 + [2m2]2
) . (6.5)

9Or, by carrying out the canonical transformation x 7→ p, p 7→ −x, equivalently m2 = 0.
10Careful analysis of the branch structure avoids the apparent singularity at tan π.
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Figure 2. Fermi surfaces for varying deformation m2 and CS-level k = 1 plotted as πp/E, πu/E.

As the deformation increases, the diamond is ‘squashed’.

The grand canonical potential can equivalently be written in terms of the energy using

the density of states ρ(E) = n′(E) = 2CE with C = 2
π2k

1

(1+[2m2]2)
:

J(µ) =

∫ ∞
0

dE ρ(E) log
(
1 + e−E+µ

)
= −2C Li3(−eµ)

µ→∞≈ C

3
µ3

where Lin(z) is a polylogarithm. This allows us to find the saddle point of the integral

representation of the partition function in (4.11) which occurs at:

N = ∂µJ(µ) = −2C Li2(e−µ)
µ→∞≈ Cµ2,

which defines µ∗(N) =
√
N√
C

, leading to the free energy as

F = − log(Z)
µ→∞≈ − (J(µ∗)−Nµ∗) =

2

3

N3/2

√
C
.

Therefore we find a free energy given by

F (N)
N→∞≈ π

√
2k

3
N3/2

√
1 + [2m2]2. (6.6)

6.1.2 Beyond leading order: Airy function behaviour

There are now two kinds of corrections to our results we should take into account: the first

one arises from the classical approximation of the Hamiltonian, and the second from the

approximation of this Hamiltonian in the thermodynamic limit. This first kind of these

corrections will give rise to an expansion of the grand canonical potential in ~ as:

J(µ) =
1

~
J (0)(µ) + ~J (1)(µ) + . . . , (6.7)

where the first-order correction can be shown to be independent of the mass parameters

(see appendix A), and we expect higher order corrections to be exponentially suppressed

– 12 –
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Figure 3. The integration contour in the complex l-plane and the poles of the integrand in (4.14)

from the Gamma functions both in (4.13) and from Z
(0)
l from (4.16). The figure is plotted for

m1 = 0, m2 = 1/2. As m2 increases, the complex poles from Z
(0)
l (red) form a wider angle in the

left half-plane. The real poles from Z
(0)
l are plotted in blue, whereas the green poles arise from the

gamma functions in (4.14).

as in the undeformed case. The second type of corrections will modify J (0) by computing

the spectral Z functions exactly rather than the approximate volume of (complex) phase

space. Let us now consider the corrections arising by exact calculation of the semiclassical

spectral Z functions, corresponding to finding subleading corrections in N . These can be

obtained in closed form via evaluating the integrals in (4.16), i.e.

Zl
semiclassical

=
1

2π~

∫ ∞
−∞
dp

1

(2 cosh(πp))l

∫ ∞
−∞
dx

e2πim2xl

(2 cosh(πx))l
, (6.8)

using the relation∫ ∞
−∞
dx

e2πim2xl

(2 cosh(πx))l
=

Γ
(

1
2 l(1− 2im2)

)
Γ
(

1
2 l(1 + 2im2)

)
2πΓ(l)

.

This gives the spectral Z functions:

Zl ≈
1

~
Z

(0)
l

where

Z
(0)
l =

1

(2π)3

Γ
(
l
2

)2
Γ
(
l
2 (1− 2im2)

)
Γ
(
l
2 (1 + 2im2)

)
Γ(l)2

. (6.9)

This will always be real, since Γ(z) = Γ(z), ensuring real free energy for our system.

In the large N limit, the Mellin-Barnes representation of the grand canonical poten-

tial (4.13) offers us a convenient way to obtain the perturbative part of J (0)(µ) by only

taking into account the residue at the origin,

J
(0)
pert(µ) =

2µ3

3π2k

1(
1 + [2m2]2

) +
µ

3k

(
1− 1

2 [2m2]2
)

(
1 + [2m2]2

) +
2ζ(3)

kπ2

(
1 + 1

2 [2m2]2
)

(
1 + [2m2]2

) . (6.10)
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This allows us to compute the partition function via equation (4.11), where the integral is

evaluated exactly using the integral representation of the Airy function,

1

2πi

∫
C
dµ e

C
3
µ3+(B−N)µ+A = eAC−1/3Ai

[
C−1/3(N −B)

]
,

giving us:

Zpert.(N) = eAC−1/3Ai
[
C−1/3(N −B)

]
where

C =
2

π2k

1(
1 + [2m2]2

) , B =
1

3k

(
1− 1

2 [2m2]2
)

(
1 + [2m2]2

) , A =
2ζ(3)

kπ2

(
1 + 1

2 [2m2]2
)

(
1 + [2m2]2

) .

This gives the free energy as

F = − log(Zpert(N))
N→∞→ π

√
2k

3
N3/2

√
1 + [2m2]2−

√
N

π

3
√

2k

(
1− 1

2 [2m2]2
)

√
1 + [2m2]2

+O(logN)

(6.11)

where the first term precisely reproduces the result given by the polygonal approximation

in equation (6.6).

6.2 The maximally supersymmetric deformation: m1 = m2 = m

As discussed in section 5.1, the Hamiltonian has generalised PT symmetry for m1 = m2 =

m. This represents the case where all hypermultiplet scalars are given the same mass, and

preserves N = 6 supersymmetry, breaking only the conformal part of the algebra.11 Recall

by equation (4.7), we have:

ρ = e−
1
2
U(x)e−T (p)e−

1
2
U(x) = e−Ĥ

where now U(x), T (p):

U(x) = log [2 cosh πx] + 2πimx , T (p) = log [2 cosh πp] + 2πimp.

In this case, the classical Hamiltonian is symmetric in x, p and given by:

Hcl. = log 2 coshπx+ log 2 coshπp+ 2πim(x+ p).

Repeating the calculation of section 6.1 gives

Z
(0)
l =

1

(2π)3

Γ2
(
l
2 (1− 2im)

)
Γ2
(
l
2 (1 + 2im)

)
Γ(l)2

where we again can use the Mellin-Barnes representation to obtain the perturbative part

of the partition function as

Zpert.(N) = eAC−1/3Ai
[
C−1/3(N −B)

]
11Another, equally symmetric, situation would be the case of pure FI deformation, where m1 = −m2 = 2ζ.
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but now with the parameters

C =
2

π2k

1(
1 + [2m]2

)2 , B =
1

3k

(
1− [2m]2

)
(

1 + [2m]2
)2 , A =

2ζ(3)

π2k

1(
[2m]2 + 1

) .
This gives the free energy as

F = − log(Zpert(N))
N→∞→ π

√
2k

3
N3/2

(
1 + [2m]2

)
− π

3
√

2k

√
N

(
1− [2m]2

)
(

1 + [2m]2
) +O(logN)

(6.12)

where
√
N -term will receive corrections from the next-to-leading order in the WKB ap-

proximation, which are independent of m, and higher-order corrections will be of at least

order one.

6.3 Beyond PT symmetry

The integrals for computing the semiclassical spectral Z functions in (4.16) actually con-

verge for all values of m1, m2. However, the physical interpretation of this situation is

more subtle. We obtain spectral Z functions

Z
(0)
l =

1

(2π)3

Γ
(
l
2 (1− 2im1)

)
Γ
(
l
2 (1 + 2im1)

)
Γ
(
l
2 (1− 2im2)

)
Γ
(
l
2 (1 + 2im2)

)
Γ(l)2

(6.13)

leading to an Airy function behaviour of the partition function, but now the parameters

A,B and C as expected depend on both m2 and m1 via:

C =
2

π2k

1(
1 + [2m1]2

)(
1 + [2m2]2

)
B =

1

3k

(
1− 1

2

[
[2m1]2 + [2m2]2

])
(

1 + [2m1]2
)(

1 + [2m2]2
) , A =

2ζ(3)

π2k

(
1 + 1

2

[
[2m1]2 + [2m2]2

])
(

1 + [2m1]2
)(

1 + [2m2]2
) .

For the partition function, we as before get

Zpert(m2,m1) = eAC−
1
3 Ai
[
C−

1
3 (N −B)

]
and the free energy in the large N limit as

Fpert =
2N3/2

3
√
C
− B
√
N√
C

+
1

4
log
(
16π2CN

)
−A+O

(
1√
N

)
.

The free energy in terms of the deformation parameters is

Fpert =
π
√

2k

3
N3/2

√(
1 + [2m1]2

)(
1 + [2m2]2

)
− π

3
√

2k

√
N

1− 1
2

[
[2m1]2 + [2m2]2

]
√(

1 + [2m1]2
)(

1 + [2m2]2
) +O(logN). (6.14)

As noted in section 3, the leading term agrees with the results of [18, 19].
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7 Discussion

In this paper we have computed the free energy of real mass deformed ABJM theory without

analytic continuation using generalised PT symmetry. The final results are compatible

with previous results from F maximisation under the simple assumption that the partition

function is analytic in deformation parameters. An interesting aspect is that the partition

function remains real even when generalised PT symmetry is not present at the level of

the free fermion Hamiltonian.

A related work came out the same time as this letter [20], which claims to find super-

symmetry breaking for large enough values of the deformation parameters. This analysis

is carried out in the ’t Hooft limit of the theory, where N
k is kept fixed as N →∞ and the

resulting integrals are computed by saddle point approximation. They note that the saddle

point vanishes for certain deformation parameters. In our analysis, we work in the limit

N → ∞ and k fixed, where we compute the integrals exactly, and find no breakdown for

any values of the mass deformations. In [20], the authors claim that some nonperturbative

effects are no longer suppressed in this regime. Our analysis can not see these effects,

and it would be interesting to study nonperturbative corrections further. From our bulk

perspective, which is strictly at large N , our analysis shows no sign of SUSY breaking, and

it would be very interesting to see if there was any signature away from infinite N .

In the case that has PT symmetry, m1 = 0, we explicitly show in appendix A that

the first quantum correction to the Hamiltonian is also PT invariant. Noting that the full

quantum Hamiltonian only contains even powers of ~, one can show that for general T (p)

and U(x) such that T (p) is real and U(x) = feven(x) + ifodd(x), this symmetry persists to

all orders in ~. This guarantees that the full quantum Hamiltonian is PT symmetric when

m1 = 0.

We also demonstrate in appendix A that the first quantum correction to the spectral

Z function is real for all values of the deformation parameters, even though there is no

obvious generalised PT symmetry. It would also be extremely enlightening to have a

physical explanation of the reality of the partition function in this case.

An obvious extension of our work would be to investigate deformations of more general

quiver theories and see whether generalised PT symmetry plays a role there as well. It

would also be interesting to consider results at finite N .
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A Quantum corrections

The leading quantum corrections to the free energy will be independent of the deformation

parameters, which we can see by explicit calculation of the first-order quantum corrections

to the spectral Z functions in (4.15). In [13], it was shown that for a general Hamiltonian

defined via (4.9), the quantum corrections can be obtained in a systematic way using a

generalisation [40, 41] of the standard Wigner-Kirkwood expansion [28, 42]. The first order

quantum to the spectral Z functions is given by:

Z
(1)
l =

l

2π

∫ ∞
−∞
dp

∫ ∞
−∞
dxe−lHcl.(x,p)

(
1

24
U ′(x)2T ′′(p)− 1

12
T ′(p)2U ′′(x)

)
(A.1)

+
1

2π

∫ ∞
−∞
dp

∫ ∞
−∞
dxe−lHcl.(x,p)

[
l3

24

(
U ′(x)2T ′′(p)+U ′′(x)T ′(p)2

)
− l

2

8
U ′′(x)T ′′(p)

]
.

This can be computed for our general Hamiltonian using the following integrals:

π2

2l

∫ ∞
−∞
dz

e−2πim lz

(coshπz)l
(2im+ tanh(πz))2 =

2π

l

Γ
(
l
2(1 + 2im) + 1

)
Γ
(
l
2(1− 2im) + 1

)
Γ(l + 2)

π2

2l

∫ ∞
−∞
dz

e−2πim lz

(coshπz)l+2
= 2π

Γ
(
l
2(1 + 2im) + 1

)
Γ
(
l
2(1− 2im) + 1

)
Γ(l + 2)

,

together with

T ′(p)2 = π2 (2im2 + tanh(πx)) , U ′(x)2 = π2 (2im1 + tanh(πp))

T ′′(p) =
π2

cosh2(πp)
, U ′′(x) =

π2

cosh2(πx)
.

Combining all of this, we use (A.1) to find

Z
(1)
l = −

π4(l − 1)l2
(

1 + [2m1]2
)(

1 + [2m2]2
)

24(l + 1)
Z

(0)
l

where Z
(0)
l is given by (6.13). Using the Mellin-Barnes representation to compute the grand

canonical potential, (4.14), in the large N limit gives a correction to the grand canonical

potential via (6.7), giving J (1)(µ) as:

~J (1)(µ) = −~ Resl=0

{
Γ(l)Γ(−l)Z(1)

l elµ
}

= µ
k

24
− k

12
,

precisely reproducing the result of [13], with no dependence on the deformation parameters.
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