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1 Introduction

Conformal field theories (CFT) have been very well studied, particularly in d = 3, where

they have been central to the understanding of several important phenomena in both

condensed matter physics and holography [1–6]. The three dimensional CFTs are special

in the sense that presence of a Chern-Simons term means that we can consider theories

which violate parity [7, 8]. Conformal invariance then completely fixes the three point

functions of operators, two U(1) currents and a stress tensor, for example, in such theories

upto two parity even and one parity odd independent parameters. Consider the three point

function of two conserved U(1) currents and a conserved stress tensor,

〈jjT 〉 = njs〈jjT 〉free boson + njf 〈jjT 〉free fermion + pj〈jjT 〉parity odd,

where 〈. . .〉free boson, 〈. . .〉free fermion denote the correlator a real free boson and a real free

fermion respectively [9], while 〈. . .〉parity odd refers to the parity odd structure [10]. The
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numerical coefficients njs, n
j
f correspond to the parity invariant sector, while pj is the parity

violating coefficient. The parity violating structure is unique to d = 3 and it appears only

for interacting theories.

Constraints on the parameter space of three point functions of CFTs were first studied

for d = 4 in [11]. The authors consider localized perturbations of CFT in Minkowski space

which spread out in time. The energy measured in a direction, denoted by n̂, is defined by,

En̂ = lim
r→∞

r

∫ ∞
−∞

dt niT ti (t, rn̂), (1.1)

where r is the radius of the circle on which the detector is placed and n̂ is a unit vector

which determines the point on the circle where the detector is placed. The expectation

value of the energy flux measured in such a way should be positive for any state. This led

to constraints on parameters of three point functions 〈TTT 〉 and 〈JJT 〉 [11]. This analysis

was generalized to higher dimensions in [12, 13]. The central assumption to the collider

physics analysis is the average null energy is positive over any state.

Particularly, for d = 3, the collider bounds constrain the parameters to lie within a

circle on the (αj − a2) plane [14].

α2
j + a2

2 ≤ 4,

a2 = −
2(njf − n

j
s)

(njf + njs)
, αj =

4π4pj

(njf + njs)
. (1.2)

Chern-Simons theories coupled to fundamental matter were shown to saturate this bound,

that is they lie at the boundary of the disc [14, 15]. These bounds were obtained using the

assumption of the positivity of the average null energy condition for interacting theories

which were recently proved in [16]. This proof was based on monotonicity of relative

entropy.

On the other hand, causality considerations of the Lorentz invariant Minkowski CFT

can lead to non-trivial constraints on the OPE data of the CFT [17–25]. In [17], the

authors consider a four point function of scalar operators. The crux of the argument relied

on the fact that well-behaved Euclidean theories are in one to one correspondence with

causal Minkowski theories. Starting from an Euclidean correlator, one gets all possible

Lorentzian correlators with desired time-orderings by analytic continuations. Singularities

of the Euclidean theories continue to be the singularities of the Minkowski theories but

now there are branch cuts appearing in the Minkowski theory exactly at the light cone. A

diagnostic of a causal Minkowski theory is the fact that commutators of operators must be

vanishing at space-like separations.

〈ψ|[O(x),O(0)]|ψ〉 = 0, x2 ≥ 0 . (1.3)

It is easy to see that this commutator becomes non-zero when one operator crosses the

light cone of the other and not before that. This imposes restrictions on the behaviour of

the analytic continuations of the Euclidean four point function 〈ψ(0)O(z, z̄)O(1, 1)ψ(∞)〉.
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In short, reflection positivity and crossing symmetry ensures that certain Minkowski corre-

lators, often referred to correlators on the second sheet are analytic within a specific region

of the complex (z, z̄) plane and cannot grow faster than the Euclidean correlator (correlator

on the first sheet). The resulting sum rules constrains the product of OPE coefficients ap-

pearing in the light cone expansion of the aforementioned correlator. This was generalized

to stress tensor exchange corresponding to spinning correlators in [26]. The light cone limit

of spinning correlator for stress tensor exchange is obtained using the differential operator

formalism outlined in [27]. Analyticity and reflection positivity properties of the Euclidean

correlator were used to obtain constraints on the parity even parameters of the three point

functions 〈JJT 〉 and 〈TTT 〉 in d ≥ 3. The analysis of the parity even parameters of the

spinning correlators involved a non-trivial bootstrap decomposition of the correlator into

sum over composite operators in the dual channel to reproduce optimal bounds. The re-

lationship between causality analysis of the Lorentzian theory using bootstrap arguments

and average null energy condition, as used by Maldacena et al. was understood in [19].

Any Lorentz invariant unitary quantum field theory obeys the average null energy condi-

tion. The collider bounds are a direct consequence of this. This also produces the optimal

bounds for the spinning correlators without having to resort to any subtractions as done

in [26]. The method however bypasses solving the crossing equations or the anomalous

dimensions of the high-spin composite operators in the dual channel.

In this paper we study the modifications to the crossing equation due to the presence of

the parity violating terms in the three point functions of 〈JJT 〉 via light cone bootstrap [28]

and extend the causality arguments of [17, 26] to parity violating theories in d = 3. We

consider the following four point function

〈Jµ(x1)Jν(x2)φ(x3)φ(x3)〉. (1.4)

Let us define the cross ratios

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

. (1.5)

In [28], the authors have studied crossing the implications of crossing symmetry of this four

point function in the parity even sector. The s-channel defined by the limit u � v, while

the t-channel is defined by the limit v � u. The contribution of the identity in this channel

can be accounted by the presence of the following two towers of composite operators of

spin l in the t channel.

[jφ]τl = Jν(∂2n)∂µ1∂µ2 · · · ∂µl−1
φ, τ[j,φ] = ∆φ + 1 + 2n, (1.6)

[̃jφ]τ,l = εkνρJ
ν∂ρ(∂2n)∂µ1∂µ2 · · · ∂µl−1

φ, τ
[̃j,φ]

= ∆φ + 2 + 2n.

Here ∆φ is the conformal dimension of the primary φ. The OPE coefficients of these

operators corresponding to the three point function 〈Jφ[jφ]〉 and 〈Jφ[̃jφ]〉 where found

using crossing symmetry. The contributions of the parity even stress tensor exchange in

the s-channel are proportional to log(v) and these terms imply anomalous dimensions for

operators in (1.6). A brief review of the implications of the parity even sector is given
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in beginning of section 3. In this paper we study the implication of crossing symmetry

due to the parity odd sector of the stress tensor exchange in the s-channel. We find that

the parity odd contributions due to the stress tensor exchange in the s channel of the

four point function in (1.4) introduces additional terms in the bootstrap equations. We

show that the crossing symmetry implies that the presence of a new tower of ‘parity-odd’

composite operators Oτ,l of spin l and twist τ = ∆φ + 1. We evaluate the corresponding

OPE coefficients, these coefficients are proportional to the parity odd term pj of the stress

tensor exchange in the s channel. The results for these OPE coefficients 〈JφO〉 are given

in (3.39).

The parity odd as well as the parity even block for the stress tensor exchange in the

s channel are obtained using the embedding formalism developed in [27]. The input to

obtain these blocks is the scalar conformal block but with certain shifts in the conformal

dimensions of the external scalars. Then the spinning conformal block is obtained by the

action of certain differential operators on the scalar conformal block. One of the important

observations we make is that the leading contribution from the parity odd stress tensor

exchange does not involve any terms proportional to log(v) unlike the parity even sector.

This is because the seed scalar conformal blocks for the parity odd and parity even sector

are given respectively by

Geven
d=3 (u, v) =

1

4

√
u(v − 1)2

2F1

(
5

2
,

5

2
, 5; 1− v

)
, (1.7)

Godd
d=3(u, v) =

4
√
u(1− v)2

(
√
v + 1)

4√
v
. (1.8)

Note that in the limit u→ 0, v → 0 the parity even block contains log(v) terms while the

parity odd does not. Due to this absence of the log(v) terms in the parity odd conformal

blocks there is no contribution to the anomalous dimensions of composite operators in the

t-channel. Since our analysis of the parity odd blocks is at the leading order in the light

cone limit, this observation of the absence of the contribution of the parity odd terms to the

anomalous is true at the leading order in the light cone expansion. It will be interesting

to study whether sub leading terms in the light cone expansion of the parity odd term

contribute to the anomalous dimensions in the corresponding double trace operators.1

We then consider the constraints imposed by reflection positivity and crossing sym-

metry on the four point functions of two U(1) currents and two scalars. We show that the

parity odd term contributes to the conformal collider bound through the Cauchy-Schwarz

inequality. The two bounds we obtain can be summarized in the figure 1 on the next page

(page 5).

The bounds obtained using the naive the bootstrap analysis is not optimal, it results

in the larger circle in figure 1. The optimal bound given in (1.2) which agrees with that

from the average null energy condition results by appropriately isolating the contribution

of the two classes of composite operators labelled by different twists as done earlier for

parity even theories by [26]. Furthermore we note that the nature of the singularity of the

light cone limit of the Euclidean parity odd correlator on the second sheet is different from

1We thank Tom Hartman for raising this point.

– 4 –



J
H
E
P
0
4
(
2
0
1
9
)
0
2
3

Figure 1. Comparative study of bounds.

that of the parity even one. To make it more precise, let us consider the light cone blocks

corresponding to the party even and odd OPE coefficients before applying the differential

operators given in (1.7). Conformal invariance allows us to choose the following kinematics

for our four point function

〈ε.J(0)φ(z, z̄)φ(1, 1)ε.J(∞)〉. (1.9)

Under the analytic continuation z → ze−2iπ, both the blocks develop singularities on the

second sheet. While, for the parity even case, the origin of this singularity is due to

the presence of the logarithm term, for the parity odd case such a term is absent but

nevertheless the square roots in the denominator of (1.7) are responsible for the enhanced

singularity on the second sheet.

The organization is as follows. In section 2 and 3, we set up the differential operator

which correctly reproduces the contribution of the stress tensor block in the light cone

limit. The modifications to the crossing equation is discussed in section 3.2. In section 4,

we compute the causality constraints on the four point function of two U(1) currents and

two scalars.

2 Spinning correlator: JJT from φφT

In this section we derive the parity odd contribution to the three point correlation function

involving two U(1) currents, j, of scaling dimension 2 (∆ = 2) and a stress tensor T

(∆ = 3) [10] from the three point function of the stress tensor with two scalar operators φ

with the same scaling dimension of the currents in d = 3 [9]. Following [27], the differential

operator required to obtain the parity odd JJT correlator from φφT is given by,

〈j(P1;Z1)j(P2;Z2)T (P3;Z3) =
(
αD(3)

left + βD(4)
left

)
〈φ(P1;Z1)φ(P2;Z2)T (P3;Z3)〉,

(2.1)
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where we have expressed the correlators in the embedding space formalism.

D(3)
left〈φ(P1;Z1)φ(P2;Z2)T (P3;Z3)〉 =

(
8
{

1̃
}

+ 4
{

2̃
})
,

D(4)
left〈φ(P1;Z1)φ(P2;Z2)T (P3;Z3)〉 =

(
8
{

3̃
}

+ 4
{

4̃
})
,

(2.2)

where
{
ĩ
}

is the differential basis and is given by [27]

{
1̃
}

=
−6ε13H23 + 2ε23H13 − 4ε23V1,23V3,12

64(P1.P2)(P1.P3)3(P2.P3)3
,

{
2̃
}

=
10ε13H23 − 6ε23H13 + 4V3,12(5ε13V2,31 − 2ε23V1,23)

64(P1.P2)(P1.P3)3(P2.P3)3
,

{
3̃
}

=
−2ε13H23 + 6ε23H13 + 4ε13V2,31V3,12

64(P1.P2)(P1.P3)3(P2.P3)3
,

{
4̃
}

=
−10ε23(H1,3 + 2V1,23V3,12) + 6ε13H23 + 8ε13V2,31V3,12

64(P1.P2)(P1.P3)3(P2.P3)3
, (2.3)

where

Hij = −2 [(Zi.Zj)(Pi.Pj)− (Zi.Pj)(Pi.Zj)] ,

Vi,jk =
(Zi.Pj)(Pi.Pk)− (Zi.Pk)(Pi.Pj)

(Pj .Pk)
,

εij = (Pi.Pj)ε(Zi, Zj , P1, P2, P3). (2.4)

Note that Pis and Zis are defined in a five dimensional embedding space. To project into

the real 3 dimensional space, one uses the following projection formulae

Pµi = (1, x2
i , x

µ
i ),

Zµi = (0, 2xi.zi, z
µ
i ),

Pi.Pj → −
1

2
x2
ij ,

Pi.Zj → zj .xij ,

Zi.Zj → zi.zj ,

ε(Zi, Zj , P1, P2, P3) →

∣∣∣∣∣∣∣
0 0 1 1 1

2xi.zi 2xj .zj x
2
1 x

2
2 x

2
3

zµi zνj xρ1 x
σ
2 xγ3

∣∣∣∣∣∣∣ . (2.5)

In order to compare it against the known structure of parity odd three point functions

in literature [7, 10] we re-express the building blocks of the three point functions in the

embedding space i.e. Hij , Vi,jk and εij , in terms of the tensor structures used in [7]

H12 ≡ −2x4
12P̃

2
1 ,

H13 ≡ −2x4
13P̃

2
2 ,

– 6 –
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H23 ≡ −2x4
23P̃

2
3 ,

V1,23 ≡ −
x2

12x
2
31

x2
23

Q̃3,

V2,31 ≡ −
x2

12x
2
23

x2
31

Q̃2,

V3,12 ≡ −
x2

23x
2
31

x2
12

Q̃1,

ε13 ≡ 4
S̃2(|x23||x12||x31|5)

i
,

ε23 ≡ −4
S̃3(|x23|5|x12||x31|)

i
,

ε12 ≡ −4
S̃1(|x23||x12|5|x31|)

i
, (2.6)

where Pi, Qi and Si are defined in [10]. They are related to P̃i, Q̃i and S̃i in the following

manner,

P̃ 2
i = P 2

i |1↔3. (2.7)

The three point function defined in [14] is given by,

〈jjT 〉 = pj
Q̃2

1S̃1 + 2P̃ 2
2 S̃3 + 2P̃ 2

3 S̃2

|x12|x23|x31|
.

(2.8)

Using the identities in equations (2.6) and (2.5) in equation (2.1), we compare it with (2.8).

We use the following identity in getting rid of S̃1 in eq. (2.8)

Q̃2
1S̃1 = (−2P̃ 2

2 + Q̃1Q̃3)S̃3 + (−2P̃ 2
3 + Q̃1Q̃2)S̃2. (2.9)

We find that,

〈j(P1;Z1)j(P2;Z2)T (P3;Z3) =
−ipj
1152

(
D(3)

left +D(4)
left

)
〈φ(P1;Z1)φ(P2;Z2)T (P3;Z3)〉.

(2.10)

3 Spinning conformal blocks and crossing symmetry

The spinning conformal blocks for two U(1) currents and two scalars can be formally

written down as follows,

H(z, z̄) = 〈j(P1, Z1)j(P2, Z2)φ(P3)φ(P4)〉,

=

(
P2.P4

P1.P4

) 1
2σ12

(
P1.P4

P1.P3

) 1
2σ34 ∑

O
λjjOλφφO

∑
k

Qk(Zi, Pi)G
∆1,∆2,∆3,∆4

O,k (u,w)

(−2P1.P2)
1
2 (σ1+σ2)(−2P3.P4)

1
2 (σ3+σ4)

,

u =
P1.P2P3.P4

P1.P3P2.P4
, w =

P1.P2P3.P4

P1.P4P2.P3
, (3.1)
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where σi = ∆i+ li. G
∆1,∆2,∆3,∆4

O,k (u,w) is the conformal block corresponding to exchange of

operator O and Qks are tensor structure that appear due to the external spinning operators.

It will be convenient to define another cross-ratio v, where

v =
u

w
. (3.2)

We will be using both the sets (u, v) and (u,w) throughout the paper. The spinning confor-

mal block is fairly complicated and in practice we will need the leading two exchanges for

our purpose. This was achieved in [27], by applying the differential operator correspond-

ing to the three point function of the two external operators and the exchanged operator

onto the scalar conformal block. Assuming the lowest twist operator after the identity

exchange is the stress tensor, the resulting spinning conformal blocks in the embedding

space formalism are then obtained from the scalar blocks in the following manner [27, 28],

〈j(P1, Z1)j(P2, Z2)φ(P3)φ(P4)〉 = CJ
α1H12

P 3
12P

∆φ

34

+
λφφT√
α2CT

(Deven −Dodd)WT (∆,∆,∆φ,∆φ)

+ · · · ,
(3.3)

where the first term is the identity exchange, and Deven and Dodd are the parity even

and parity odd operators respectively corresponding to stress tensor exchange. The pre

factors have been fixed by comparing the leading term in the conformal block at the limit

u→ 0, v → 1 with the following

〈J(0)J(∞)φ(z, z̄)φ(1, 1)〉 ∼ 〈J(0)J(∞)T (1, 1)〉. (3.4)

The s-channel scalar block with operator O, with dimensions ∆O and spin lO, ex-

changed in the embedding formalism is given by,

WO(∆1,∆2,∆3,∆4) =

(
P2.P4

P1.P4

) 1
2

∆12
(
P1.P4

P1.P3

) 1
2

∆34 G
(∆1,∆2,∆3,∆4)
O (u,w)

(P1.P2)
1
2

(∆1+∆2)(P3.P4)
1
2

(∆3+∆4)

× 1

(−2)
1
2

(∆1+∆2+∆3+∆4)
, (3.5)

where u = P1.P2P3.P4
P1.P3P2.P4

and w = P1.P2P3.P4
P1.P4P2.P3

and the factor (−2)
1
2

(∆1+∆2+∆3+∆4) has been

introduced to match with the scalar block in projected coordinates. The parity even

operators are given by,

DevenWT (∆,∆,∆φ,∆φ) = α3

((
2λjjT−

3CJ
8π

)
D11D22+

(
2λjjT−

9CJ
8π

)
D12D21−2λjjTH12

)
×

1,1∑
WT (∆,∆,∆φ,∆φ),

(3.6)

where λjjT and CJ are the two independent parameters of the three point function of

〈JJT 〉. They are related to the parametrizations of [9] as follows,

c = λjjT , 2Sd(c+ e) = CJ . (3.7)
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The normalization factors α1, α2 are fixed by matching it with the two point function in [9].

α1 = α2 = 1 (3.8)

The three point function coupling λφφT has been fixed as follows. From [28] the three point

function of two scalars and a conserved stress tensor in embedding space is given as follows

〈φ(P1)φ(P2)T (Z3, P3) = λ̂φφT
V 2

3

(P12)(∆φ−1− d
2 )(P13)(

d
2

+1)(P23)(
d
2

+1)
. (3.9)

We demand that in projected coordinates, this matches with the three point function of [9].

λ̂φφT = −
∆φd

(d− 1)sd
, λφφT = −

∆φd

(d− 1)sd
√
α2CT

. (3.10)

The normalization constant α3 is fixed in the following manner. Starting from the three

point function 〈φφT 〉 (after stripping off λ̂φφT ), we need to act the differential operator on

the three point function to get the 〈JJT 〉 of [9]

α3 = 1. (3.11)

The parity odd differential operators are similarly given by,

DoddWT (∆,∆,∆φ,∆φ) = − ipj
1152

(
D(3) +D(4)

)
WT (∆,∆,∆φ,∆φ),

D(3) = 8D̃1D21

1,0∑
+4D̃1D22

0,1∑
,

D(4) = 8D̃2D12

0,1∑
+4D̃2D11

1,0∑
.

(3.12)

The explicit expressions for the differential operators are

D11 = (P1.P2)(Z1.
∂

∂P2
)− (Z1.P2)

(
P1.

∂

∂P2

)
− (Z1.Z2)

(
P1.

∂

∂Z2

)
+ (P1.Z2)

(
Z1.

∂

∂Z2

)
,

D12 = (P1.P2)

(
Z1.

∂

∂P1

)
− (Z1.P2)

(
P1.

∂

∂P1

)
+ (Z1.P2)

(
Z1.

∂

∂Z1

)
,

D̃1 = ε

(
Z1, P1,

∂

∂P1
, P2,

∂

∂P2

)
+ ε

(
Z1, P1,

∂

∂P1
, Z2,

∂

∂Z2

)
,

D̃2 = ε

(
Z2, P2,

∂

∂P2
, P1,

∂

∂P1

)
+ ε

(
Z2, P2,

∂

∂P2
, Z1,

∂

∂Z1

)
.

(3.13)

The other two differential operators D21 and D22 can be obtained from the above

equations by 1 ↔ 2. The operator
∑a,b acts on the scalar block WO(∆,∆,∆φ,∆φ) as

follows

a,b∑
WO(∆,∆,∆φ,∆φ) = WO(∆ + a,∆ + b,∆φ,∆φ). (3.14)
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The action of the differential operators Deven and Dodd are explicitly given in the ap-

pendix A.

Let us review the implications of crossing symmetry for the parity even part of the

four point function 〈J(P1, Z1)J(P2, Z2)φ(P3)φ(P4)〉. The crossing equation can be written

down, in embedding space, as follows [28]

CJ
H12

P 3
12P

∆φ

34

+
λφφT√
CT

DevenWT (2, 2,∆φ,∆φ)

=
∑
τ,l

P[j,φ]τ,lD
t
[j,φ]τ,l

Wt
[j,φ]τ,l

(2, 2,∆φ,∆φ) + P ˜[j,φ]τ,l
Dt

˜[j,φ]τ,l
Wt

˜[j,φ]τ,l
(2, 2,∆φ,∆φ)

+
∑
τ,l

P[j,φ]τ,lγ[j,φ]τ,l∂τD
t
[j,φ]τ,l

Wt
[j,φ]τ,l

(2, 2,∆φ,∆φ)

+P ˜[j,φ]τ,l
γ ˜[j,φ]τ,l

∂τ̃D
t

˜[j,φ]τ,l
Wt

˜[j,φ]τ,l
(2, 2,∆φ,∆φ),

(3.15)

where WO is given by eq. (3.5) and action of the differential operators Deven (eq. (3.6)) is

given in appendix A. The t-channel scalar blocks Wt
O(∆1,∆2,∆3,∆4) are obtained from

eq. (3.5) by 2 ↔ 4. The first term on the l.h.s. denotes the identity exchange in the s-

channel while the second term denotes the first correction to identity. The identity exchange

produces the OPE coefficients P[j,φ]τ,l and P ˜[j,φ]τ,l
on the r.h.s. while the stress tensor

exchange is responsible for the anomalous dimensions γi. Note that in three dimensions,

we have a unique DoddWT (2, 2,∆φ,∆φ) contribution apart from the usual parity even one

which was discussed in [28]. For now we just review the parity even case, we will discuss

implications of this modification to the crossing equation in detail in section 3.2. The

presence of the operators Dt
[j,φ]τ,l

and Dt
˜[j,φ]τ,l

on the r.h.s. is due to the fact that crossing

symmetry implies that the t-channel receives contributions from two families of double

twist operators with twists given by [28],

[j, φ]τ,l = Jν(∂2n)∂µ1∂µ2 · · · ∂µl−1
φ, τ[j,φ] = ∆φ + 1 + 2n,

˜[j, φ]τ,l = εkνρJ
ν∂ρ(∂2n)∂µ1∂µ2 · · · ∂µl−1

φ, τ ˜[j,φ]
= ∆φ + 2 + 2n.

(3.16)

We restrict our analysis to n = 0 (and therefore τ0) cases. The operators D[j,φ]τ0,l
and

D ˜[j,φ]τ0,l
can be fixed by demanding that they reproduce the correct three point function

〈Jφ[J, φ]〉 and the action of Dt
[j,φ]τ0,l

and Dt
˜[j,φ]τ0,l

on the blocks Wt
O(2, 2,∆φ,∆φ) are given

as follows,

Dt
[j,φ]τ0,l

=

(
−1

l + ∆φ − 1
Dt

11

1,0∑
L

+Dt
12

0,1∑
L

)(
−1

l + ∆φ − 1
Dt

44

1,0∑
R

+Dt
43

0,1∑
R

)
,

Dt
˜[j,φ]τ0,l

= D̃t
1D̃

t
4,

(3.17)
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where the t-channel differential operators Dt
ij and D̃t

i , denoted by the superscript t, are

derived from equation (3.13) by the (2↔ 4).

Dt
11 = (P1.P4)

(
Z1.

∂

∂P4

)
−(Z1.P4)

(
P1.

∂

∂P4

)
−(Z1.Z4)

(
P1.

∂

∂Z4

)
+(P1.Z4)

(
Z1.

∂

∂Z4

)
,

Dt
12 = (P1.P4)

(
Z1.

∂

∂P1

)
−(Z1.P4)

(
P1.

∂

∂P1

)
+(Z1.P4)

(
Z1.

∂

∂Z1

)
,

Dt
44 = (P2.P3)

(
Z2.

∂

∂P3

)
−(Z2.P3)

(
P2.

∂

∂P3

)
−(Z2.Z3)

(
P2.

∂

∂Z3

)
+(P2.Z3)

(
Z2.

∂

∂Z3

)
,

Dt
43 = (P2.P3)

(
Z2.

∂

∂P2

)
−(Z2.P3)

(
P2.

∂

∂P2

)
+(Z2.P3)

(
Z2.

∂

∂Z2

)
,

D̃t
1 = ε

(
Z1, P1,

∂

∂P1
, P4,

∂

∂P4

)
+ε

(
Z1, P1,

∂

∂P1
, Z4,

∂

∂Z4

)
,

D̃t
4 = ε

(
Z2, P2,

∂

∂P2
, P3,

∂

∂P3

)
+ε

(
Z2, P2,

∂

∂P2
, Z3,

∂

∂Z3

)
.

(3.18)

The shifts
∑i,j

R and
∑i,j

L are done as follows

i,j∑
R

Wt
O(∆1,∆2,∆3,∆4) = Wt

O(∆1,∆2 + i,∆3 + j,∆4),

i,j∑
L

Wt
O(∆1,∆2,∆3,∆4) = Wt

O(∆1 + i,∆2,∆3,∆4 + j). (3.19)

We study and obtain the OPE coefficients P[j,φ]τ,l and P ˜[j,φ]τ,l
and obtain the respective

anomalous dimensions. We will be discarding the differential operators subleading in l in

our discussion.

3.1 Parity even and odd

We solve the bootstrap equation in the limit u → 0, v → 0. By conformal symmetry, we

can put our operators as follows.

〈ε.J(0)ε.J(∞)φ(z, z̄)φ(1, 1)〉,
u = (1− z)(1− z̄), v = zz̄. (3.20)

In the limit u � v,2 the closed form expressions for the scalar blocks for an exchange of

operator O of dimensions ∆m and spin lm on the l.h.s. is explicitly known [29],

G
(∆1,∆2,∆3,∆4)
O (u, v) = u

1
2

(∆m−lm)

(
−1

2
(1− v)

)lm
2F1

(
∆m + lm + ∆2 −∆1

2
,

∆m + lm + ∆3 −∆4

2
; ∆m + lm; 1− v

)
.

(3.21)

2Here v = u
w

.
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We evaluate the parity even operators on l.h.s. by explicitly acting on the scalar conformal

block by the differential operators Deven and Dodd. The details of this can be found in

appendix A. We now solve the bootstrap equation to leading order in v. This is formally

solved by summing over the r.h.s. conformal blocks corresponding to the two classes of

double twist operators at large spin [28, 30]. The closed form expression for the large spin

t-channel scalar block for exchange of operator of dimension ∆ and spin l on the r.h.s. is

given by,

G
(∆1,∆2,∆3,∆4)
O′ (v, u) =

√
l2l+τvτ/2u

∆1+∆2−∆3−∆4
4 K∆1+∆2−∆3−∆4

2

(2l
√
u)

√
π

. (3.22)

Note that this is in the limit u� v in the t-channel. We assume the structure of the OPE

coefficients to be
AiB

l
i

2l
. With this ansatz the sums are performed by the following integral∫

dllαKν(2lx) =
x−(α+1)

4
Γ

(
1 + α− ν

2

)
Γ

(
1 + α+ ν

2

)
. (3.23)

For simplification of computation, the sums are performed first over the scalar blocks

before acting on by the differential operators. Instead of directly acting on the parity odd

differential operators in eq. (3.17), we adopt the methodology used in [26, 31] to evaluate

the action of parity odd differential operators on the scalar block.

Dt
˜[j,φ]τ,l
Wt

˜[j,φ]τ,l
(2, 2,∆φ,∆φ) ∼ G(∆1,∆2,∆3,∆4)

τ,l (v, u)

(
m(µν),(1,2) +

2√
v
k(142),µk(213),ν

)
,

(3.24)

where,

m(µν),i,j = ηµν − 2

x2
ij

(xij)
µ(xij)

ν ,

k(ijk),µ =
x2
ij(xik)

µ − x2
ik(xij)

µ

(x2
ikx

2
ijx

2
jk)

1
2

. (3.25)

We obtain the following OPE coefficients and anomalous dimensions [28]

P[j,φ]τ0,l
=

√
πCJ2−∆φ−l+1l∆φ− 1

2

Γ(∆φ)
, P ˜[j,φ]τ0,l

=

√
πCJ2−∆φ−l−1l∆φ+ 1

2

Γ(∆φ)

γ[j,φ]τ0,l
=

32λφφT (3CJ − 8πλjjT )Γ(∆φ)

3π5/2CJ
√
CT lΓ

(
∆φ − 1

2

) , γ ˜[j,φ]τ,l
=

64λφφT (16πλjjT − 3CJ)Γ(∆φ)

3π5/2CJ
√
CT lΓ

(
∆φ − 1

2

) .

(3.26)

The computation was done by looking at the polarizations (++) and (xx). We note that

the anomalous dimensions are a function of the party even OPE coefficients of 〈JJT 〉. The

anomalous dimensions are as a result of the matching the logarithms that one gets due to

the stress tensor exchange block on the l.h.s. with the r.h.s. of the crossing equation. We
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also note that while only the composite operators [j, φ]τ,l contributed to the (++) polariza-

tion, both ˜[j, φ]τ,l and [j, φ]τ,l contributed to the r.h.s. sum for the (xx) polarization [28].

Schematically,

Hs,++
T (v, u) ∼ Ht,++

[j,φ]τ,l
(v, u),

Hs,xx
T (v, u) ∼ Ht,xx

[j,φ]τ,l
(v, u) +Ht,xx

˜[j,φ]τ,l
(v, u). (3.27)

This leads to a non trivial subtraction rule while evaluating the collider bounds from

bootstrap [26]. By demanding that the anomalous dimensions be negative [28], we obtain

the parity even collider bounds in d = 3. We have also checked that the crossing equation

is satisfied for (+−), (−+) and (−−) polarizations.

3.2 Mixed operators

In this section we study the modifications to the crossing equations due to the parity odd

stress tensor exchange in the s-channel. The modifications to the r.h.s. of the crossing

equation due to the presence of the parity odd term on the l.h.s. is as follows

CJ
H12

P 3
12P

∆φ

34

+
λφφT√
CT

(Deven−Dodd)WT (2, 2,∆φ,∆φ)

=
∑
τ,l

P[j,φ]τ,lD
t
[j,φ]τ,l

Wt(2, 2,∆φ,∆φ)+P ˜[j,φ]τ,l
Dt

˜[j,φ]τ,l
Wt(2, 2,∆φ,∆φ)

+
∑
τ,l

P[j,φ]τ,lγ[j,φ]τ,l∂τD
t
[j,φ]τ,l

Wt(2, 2,∆φ,∆φ)+P ˜[j,φ]τ,l
γ ˜[j,φ]τ,l

∂τ̃D
t

˜[j,φ]τ,l
Wt(2, 2,∆φ,∆φ)

+P 11
m,τ,lD

11
mWt

Õ(2, 2,∆φ,∆φ)+P 12
m,τ,lD

12
mWt

Õ(2, 2,∆φ,∆φ)

+P 21
m,τ,lD

21
mWt

Õ(2, 2,∆φ,∆φ)+P 22
m,τ,lD

22
mWt

Õ(2, 2,∆φ,∆φ),

(3.28)

where Õ are spin l double twist operators with twist given by

τÕ = 1 + ∆φ + 2n. (3.29)

The operators Dij
m are modifications to the crossing equations that have not previously

been studied. The differential operators are given to be

D11
m = D̃t

1D
t
43

0,1∑
R

, D12
m = D̃t

1D
t
44

1,0∑
R

D21
m = D̃t

4D
t
12

0,1∑
L

, D22
m = D̃t

4D
t
11

1,0∑
L

.

(3.30)

Their action on the scalar block is given in appendix C. P im,τ,ls are the OPE coefficients

corresponding to the respective differential operators. As we shall see their presence is

essential for the crossing equation to be satisfied in presence of the parity violating terms
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in eq. (3.28). In order to evaluate the contribution of the parity odd operators in the s-

channel to the crossing equation, we look at the polarizations (+x), (x+), (−x) and (x−).

For this choice of polarizations only the tensor structures corresponding to P im,τ,l s are

non-zero and on the l.h.s., DevenWT (2, 2,∆φ,∆φ) also drop out. Thus the inclusion of

these extra structures on the r.h.s. is essential for the crossing equation to be satisfied.

Moreover we have also checked that the l.h.s. parity odd conformal block do not contribute

to the corrections to the OPE coefficients P[j,φ]τ,l and P ˜[j,φ]τ,l
. The crossing equation then

becomes

−λφφT√
CT

DoddW(2, 2,∆φ,∆φ) =∑
τ,l

P 11
m,τ,lD

11
mWt

Õ(2, 2,∆φ,∆φ) + P 12
m,τ,lD

12
mWt

Õ(2, 2,∆φ,∆φ)

+P 21
m,τ,lD

21
mWt

Õ(2, 2,∆φ,∆φ) + P 22
m,τ,lD

22
mWt

Õ(2, 2,∆φ,∆φ),

(3.31)

where the operators Dij
ms are given in eq. (3.30) , while the action of the s-channel Dodd

operators is given in appendix A.2. Note that the differential operators Dodd are funda-

mentally different from their parity even counterpart. Because of the asymmetric shifts in

the differential operators, the light cone block will therefore not have any logarithm term

corresponding to Dodd operator. To be explicit, let us look at the shifted blocks for both

the parity even and parity odd differential operator for stress tensor exchange, before the

action of the differential operator itself. In d = 3 the shifted block corresponding to the

stress tensor exchange in the parity even sector (u� v) is given by

1,1∑
G

(2,2,∆φ,∆φ)
T (u, v) = G

(3,3,∆φ,∆φ)
T (u, v)

=
1

4

√
u(v − 1)2

2F1

(
5

2
,

5

2
; 5; 1− v

)
,

(3.32)

as u → 0, v → 0, this develops a logarithmic singularity. In contrast, for the parity odd

blocks we have closed form polynomial expressions for the shifted blocks for u� v.

0,1∑
G

(2,2,∆φ,∆φ)
T (u, v) = G

(2,3,∆φ,∆φ)
T (u, v)

=
4
√
u(1− v)2

(
√
v + 1)

4√
v
. (3.33)

This does not have a logarithmic singularity as u → 0, v → 0. Proceeding similarly as

before, with the epsilon tensors evaluated with the help of appendix B and the following

ansatz for the OPE coefficients,

P 11
m,τ,l =

BlA

2l
, P 12

m,τ,l =
B2l

A2

2l

P 21
m,τ,l =

Y lX

2l
, P 22

m,τ,l =
Y2l

X2

2l
(3.34)
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we have for the (+x) polarization,

2pju
1
2−∆φλφφT√
CT

=
−iB2−1+τΓ

(
1
2 (A−∆φ+5)

)
Γ
(

1
2 (A+∆φ+2)

)
u

1
2 (−A−∆φ)v

τ−∆φ
2

√
π

+
iB22−1+τΓ

(
1
2 (A2−∆φ+6)

)
Γ
(

1
2 (A2+∆φ+1)

)
u

1
2 (−A2−∆φ−1)v

τ−∆φ
2

√
π

−i
Y 2−1+τu

1
2 (−∆φ−X−2)v

1
2 (−∆φ+τ−1)Γ

(
1
2 (X−∆φ+7)

)
Γ
(

1
2 (X+∆φ+2)

)
√
π

−i
Y22−2+τ (∆φ+τ−3)u

1
2 (−∆φ−X2−1)v

1
2 (−∆φ+τ−1)Γ

(
1
2 (X2−∆φ+6)

)
Γ
(

1
2 (X2+∆φ+1)

)
√
π

.

(3.35)

Similarly for the (x+) polarization we have

−2pju
1
2
−∆φλφφT√
CT
√
v

=
−iB(v−1)2−1+τΓ

(
1
2(A−∆φ+7)

)
Γ
(

1
2(A+∆φ+2)

)
u

1
2

(−A−∆φ−2)v
1
2

(−∆φ+τ−2)

√
π

+i
B22−2+τΓ

(
1
2(A2−∆φ+6)

)
Γ
(

1
2(A2+∆φ+1)

)
u

1
2

(−A2−∆φ−1)v
1
2

(−∆φ+τ−2)(∆φ+τ−3)
√
π

+i
Y 2−1+τu

1
2

(−∆φ−X)v
1
2

(−∆φ+τ−1)Γ
(

1
2(X−∆φ+5)

)
Γ
(

1
2(X+∆φ+2)

)
√
π

−i
Y22−1+τu

1
2

(−∆φ−X2−1)v
1
2

(−∆φ+τ−1)Γ
(

1
2(X2−∆φ+6)

)
Γ
(

1
2(X2+∆φ+1)

)
√
π

.

(3.36)

For the (−x) polarization,

−
2pju

1
2
−∆φλφφT√
CT
√
v

=
−i(−1+v)B2−1+τΓ

(
1
2(A−∆φ+5)

)
Γ
(

1
2(A+∆φ+2)

)
u

1
2

(−A−∆φ−2)v
1
2

(−∆φ+τ−2)

√
π

−i
B22−1+τΓ

(
1
2(A2−∆φ+6)

)
Γ
(

1
2(A2+∆φ+1)

)
u

1
2

(−A2−∆φ−1)v
1
2

(−∆φ+τ−2)

√
π

+i
Y 2−2+τ (∆φ−τ−1)u

1
2

(−∆φ−X−2)v
1
2

(−∆φ+τ−3)Γ
(

1
2(X−∆φ+5)

)
Γ
(

1
2(X+∆φ+2)

)
√
π

+i
(2v−1)Y22−1+τu

1
2

(−∆φ−X2−3)v
1
2

(−∆φ+τ−3)Γ
(

1
2(X2−∆φ+6)

)
Γ
(

1
2(X2+∆φ+3)

)
√
π

.

(3.37)
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For the (x−) polarization,

2pju
1
2
−∆φλφφT√
CT

= i
B2−2+τ (−∆φ+τ+1)Γ

(
1
2(A−∆φ+5)

)
Γ
(

1
2(A+∆φ+2)

)
u

1
2

(−A−∆φ−2)v
1
2

(−∆φ+τ−2)

√
π

+i
B22−1+τΓ

(
1
2(A2−∆φ+6)

)
Γ
(

1
2(A2+∆φ+3)

)
u

1
2

(−A2−∆φ−3)v
1
2

(−∆φ+τ−2)

√
π

−i
Y 2−1+τu

1
2

(−∆φ−X−2)v
1
2

(−∆φ+τ−1)Γ
(

1
2(X−∆φ+5)

)
Γ
(

1
2(X+∆φ+2)

)
√
π

+i
Y22−1+τu

1
2

(−∆φ−X2−1)v
1
2

(−∆φ+τ−1)Γ
(

1
2(X2−∆φ+6)

)
Γ
(

1
2(X2+∆φ+1)

)
√
π

. (3.38)

A solutions for these set of equations is obtained with c τ0 = ∆φ + 1 and

P 11
m,τ,l = −P 21

m,τ,l = −
√
π2−∆φ+1ipjλφφT

Γ
(
∆φ − 1

2

) l(∆φ−3)

√
CT 2l

,

P 12
m,τ,l = −P 22

m,τ,l =

√
π2−∆φ+1ipjλφφT

Γ
(
∆φ − 1

2

) l(∆φ−4)

√
CT 2l

. (3.39)

The parity odd contribution on the l.h.s. of the crossing equation is fundamentally different

from its parity even counterpart. While as seen from the crossing equation eq. (3.15) and

discussions henceforth, the parity even part of the stress tensor exchange block contributes

at one order lower than the identity exchange. It is directly responsible for the anomalous

dimensions of the operators in eq. (3.16). On the other hand the parity odd terms are

responsible for a new set of OPE coefficients corresponding to the tower of operators Õ
(τ = 1 + ∆φ + 2n) in the t-channel exchange. The essential difference is due to the fact

that there are no logarithm terms at this order in the u → 0, v → 0 expansion of the

parity odd conformal blocks corresponding to the stress tensor exchange. A simple reason

for the absence of logarithmic terms in the parity odd block is that it can be considered as

a transition between a double trace operators of opposite parity in the t channel. This is

an off diagonal term and logarithms occur only in the diagonal term on expanding vτ .3

4 Positivity constraints

In this section we will study the implications of reflection positivity and crossing symmetry

on the euclidean four point function. Following [17, 28], we define in light cone coordinates,

G(z, z̄) = 〈ε.J(0)φ(z, z̄)φ(1, 1)ε.J(∞)〉, (4.1)

where, ε denotes the polarization tensor associated with the currents. The t-channel stress

tensor exchange for this correlator, we can get from eqs. (3.3), (3.5), (3.6) and (3.12) by

3We thank David Simmons-Duffins for this argument.
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the exchange of 2 ↔ 4. The operators O1, O3 and O4 have been inserted at a space like

separation τ = 0, while the operator O2 is taken at an arbitrary euclidean time.

x1 = (0, 0, 0) x2 = (τ, y2, 0, 0), x3 = (0, 1, 0), x4 = lim
a→∞

(0, a, 0).

(4.2)

Under the exchange 2 ↔ 4, using the projection formulae eq. (2.5), the cross ratios now

become,

ũ =
x2

14x
2
32

x2
13x

2
24

, w̃ =
x2

14x
2
32

x2
12x

2
43

. (4.3)

The light cone coordinates are defined as z = y + iτ and z̄ = y − iτ . With the chosen

kinematics, the cross-ratios become,

ũ = (1− z)(1− z̄), w̃ =
(1− z)(1− z̄)

zz̄
. (4.4)

In this analysis we will be interested in the limit z̄ → 1 while z is held fixed. Note that this

limit is different from the limit used in the analysis of the crossing equation in the previous

section. Let us define

z = 1 + σ, z̄ = 1 + ησ, (4.5)

where σ is complex with Im(σ) ≥ 0 and |σ| ≤ R, while η is real and satisfies 0 < η � R� 1.

Excluding the origin, this is a small disc in the complex σ plane and we refer to this as the

region D. The light cone limit translates to η → 0 with σ held fixed [17]. We define the

following normalized four point function following [28],

Gµνη (σ) =
〈Jµ(0)φ(z, z̄)φ(1, 1)Jν(∞)〉

〈φ(z, z̄)φ(1, 1)〉
,

Ĝµνη (σ) =
〈Jµ(0)φ(ze−2πi, z̄)φ(1, 1)Jν(∞)〉

〈φ(z, z̄)φ(1, 1)〉
.

(4.6)

Following [17, 28], we summarise the arguments for the bounds in the following manner.

The Euclidean correlator, eq. (4.6), has convergent expansions in the various OPE channels

(s, t and u-channels). The crux of the argument lies in the fact that, using reflection

positivity in s-channel and u-channel expansions, it can be shown that the correlator Ĝµνη (σ)

is analytic in the region defined as D as well as

Re
(
Gµνη (σ)− Ĝµνη (σ)

)
≥ 0, σ ∈ [−R,R].

Using these two conditions we obtain a bound on the OPE coefficients appearing in the

t-channel expansion of eq. (4.6) in the light cone limit. We proceed by evaluating the
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leading term in the t-channel stress tensor exchange of Ĝµνη (σ) in the light cone limit. The

light cone limit of the blocks G(u,w) for operator O(∆m, lm) exchange are defined as [29],

G(∆1,∆2,∆3,∆4)(ũ, w̃) = ũ
1
2

(∆m−lm)

(
−1

2

(
1− ũ

w̃

))lm
2F1

(
∆m+lm+∆4−∆1

2
,

∆m+lm+∆3−∆2

2
; ∆m+lm; 1− ũ

w̃

)
,

(4.7)

where, ∆is indicate the dimension of the scalar operators at position Pis after the shifts

due to the differential operators. For our purposes, we consider stress tensor exchange of

∆m = 3, lm = 2.

4.1 Parity even

In this section we present the analysis for the parity even collider bounds. We look at the

parity even part of the differential operator eq. (3.6) (to be precise with 2↔ 4). For going

round the cut we apply the following analytic continuation formula

lim
ε→0+

2F1(a, b; c;x+ iε) = e2iπ(a+b−c)
2F1(a, b; c;x)

+
2iπΓ(c)eiπ(a+b−c)

2F1(a, b; a+ b− c+ 1; 1− x)

Γ(c− a)Γ(c− b)Γ(a+ b− c+ 1)

x > 1 .

(4.8)

We have checked that applying the differential operators before going round the cut is

identical to applying the differential operators on the conformal blocks, after going round

the cut. Technically the latter is simpler and we look at the polarizations G++ and Gxx,

for which there is no contribution from the parity odd differential operators eq. (3.12). On

the first sheet, G++ and Gxx have no poles as η → 0 with σ held fixed. On the second

sheet, the correlator Ĝµνη (σ) is

Ĝ++
η (σ) = lim

a→∞
−2CJ
a4

+
256i
√
ηλφφT (8πλjjT − 3CJ)

3π2a4
√
CTσ

,

Ĝxxη (σ) = lim
a→∞

CJ
a4
−

256i
√
ηλφφT (CJ − 8πλjjT )

3π2a4
√
CTσ

,

(4.9)

where λφφT = − ∆φd

(d−1)sd
√
CT

.

We see that the correlators develop singularities on the second sheet after going round

the branch cut. The above expressions for t-channel light cone singularity do not lead to the

most optimal bounds. As illustrated using crossing symmetry in section 3, a subtraction is

needed and the reason for it is the following, if we consider crossing symmetry of the four

point function 〈JJφφ〉, we find that in the dual channel, the large l limit is dominated by

two classes of composite operators indicated by two different twists given by eq. (3.16)4 [28].

4Equivalently, the stress tensor exchange in the t-channel of 〈JφφJ〉 correlator is reproduced by an

infinite tower of composite operators in s-channel [26].
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For the polarization (++), the s-channel stress tensor exchange is reproduced in the dual

channel by just the symmetric composite operator of twist τ = 1 + ∆φ but for the polar-

ization (xx), both the classes of twists contribute. Following [26], in order to isolate the

contribution of the antisymmetric part in Ĝxx, we subtract in the following manner. The

subtraction for the leading divergent part is −1
4 times Ĝ++ and the subleading contribution

is −1
3 times that of Ĝ++. This subtraction scheme has been discussed in detail in [26].5 One

aspect of this subtraction is that the it was only the relative normalisation of the Ĝ++ in

comparison with Ĝxx that [26] was careful about, since the over all normalisation was not

crucial. However to get the bounds including the parity odd we should also be careful of

the overall normalization of the subtraction. We will see that Ĝxx and Ĝ++ can be thought

of as inner products in radial quantization. Therefore the normalization on performing the

subtraction is given by

ˆ̃Gxxη (σ) =


(
Ĝxxη,leading(σ) + 1

4Ĝ
++
η,leading(σ)

)
(1 + 1

4)
+

(
Ĝxxη,sub-leading(σ) + 1

3Ĝ
++
η,sub-leading(σ)

)
(1 + 1

3)

 .

(4.10)

Essentially we have divided each of the subtraction by the sum of the coefficients linear

combination considered. This is what would one would expect to do if one thinks of Ĝxx

and Ĝ++ as norms (see section 4.3 and in particular discussions around eq. (4.23)). We will

see that this normalisation prescription as well the subtraction procedure reproduces the

conformal collider bounds including the parity odd term as obtained using the average null

energy condition. Performing this subtraction together with the normalisation we obtain

Ĝ++
η (σ) = lim

a→∞
−2CJ
a4

+
256i
√
ηλφφT (8πλjjT − 3CJ)

3π2a4
√
CTσ

,

ˆ̃Gxxη (σ) = lim
a→∞

2CJ
5a4

+
128i
√
ηλφφT (16πλjjT − 3CJ)

3a4π2
√
CTσ

.

(4.11)

In terms of the collider parameter introduced in, [11]

λjjT = −
CJ(d− 2)dπ−

d
2

(
a2 − d2 + d

)
Γ
(
d
2

)
4(d− 1)3

, (4.12)

the contributions become

Ĝ++
η (σ) = lim

a→∞

−2CJ
a4

−
32CJ i(a2 + 2)

√
ηλφφT

a4π2
√
CTσ

,

ˆ̃Gxxη (σ) = lim
a→∞

2CJ
5a4
−

32CJ i(a2 − 2)
√
ηλφφT

a4π2
√
CTσ

. (4.13)

Note that the normalization of the sub-leading term of (xx) polarization matches with the

(++) one. The subtraction together with the normalization in (4.10) ensures this.

5See section 4.1 and 4.4 of [26].
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4.2 Parity odd

In this section we study the contribution of the parity odd terms to collider bounds. We

derive the singular contribution of the parity odd conformal blocks in the light cone limit.

We note that the light cone limit of the shifted stress tensor exchange conformal block

appearing in eq. (3.6), are completely different from the ones in eq. (3.12). The difference

arises due to the asymmetric shift operators in the two different cases. Let us illustrate

with an example. Let us consider the t-channel light cone block for stress tensor exchange

for a four point function of scalars in d = 3 The analysis is carried out by taking the limit

z̄ → 1 first.

lim
z̄→1

G(ũ, w̃) =
1

4

√
(z − 1)(z̄ − 1)(z − 1)2

2F1

(
5

2
,

5

2
; 5; 1− z

)
. (4.14)

As z → ze−2iπ, this develops a singularity in the second sheet due to the logarithmic branch

cut in the hypergeometric function. In contrast, for the parity odd blocks we have closed

form polynomial expressions for the shifted blocks in the light cone limit.

G(3,∆φ,∆φ,2)(ũ, w̃) =
1

4

√
ũ

(
1− ũ

w̃

)2

2F1

(
2,

5

2
; 5; 1− ũ

w̃

)

=
4
√
ũ
(√

ũ√
w̃
− 1
)2

(√
ũ√
w̃

+ 1
)2 ,

G(2,∆φ,∆φ,3)(ũ, w̃) =
4
√
ũ
(√

ũ√
w̃
− 1
)2

(√
ũ√
w̃

+ 1
)4 √

ũ√
w̃

. (4.15)

For the 〈jxφφj+〉 correlator, acting on by the differential operators we have (by apply-

ing 2 ↔ 4 to the structures in appendix A.2 and appendix D), before going round the

branch cut,

− ipjI
odd
1

1152
=

(
1

9a4
√
zz̄(zz̄−1)4

pj(z̄−1)z̄

√
(z−1)(z̄−1)

√
1

zz̄

(
z
(
z3z̄2

(
−2
√
zz̄+z̄+12

)
+z2z̄

(
z̄
(
−4
√
zz̄−4z̄+5

)
−28
√
zz̄+32

)
+z
(
z̄
(

2z̄
(

9
√
zz̄−16

)
−5
)
−18
√
zz̄+4

)
+4z̄

(
7
√
zz̄−3

)
+4
√
zz̄−1

)
+2
√
zz̄
))

,

− ipjI
odd
2

1152
=

1

18a4
√
zz̄(zz̄−1)4

pj(z−1)
√

(z−1)(z̄−1)
(
z̄
(
z3z̄2(z̄+4)

+z2z̄
(
z̄
(

2z̄
(√

zz̄−6
)
−4
√
zz̄+5

)
−18
√
zz̄+32

)
+z
(
−28
√
zz̄

+z̄
(

4z̄
(

7
√
zz̄−8

)
−5
)

+12
)

+4
√
zz̄+2z̄

(
9
√
zz̄−2

)
−1
)
−2
√
zz̄
)
,
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− ipjI
odd
3

1152
=

(
1

9a4
√
zz̄(zz̄−1)3

pj
√

(z−1)(z̄−1)
(
z̄
(
z
(
zz̄2
(
−2
√
zz̄

+z+7
)
−2z̄

(
z
√
zz̄+4

√
zz̄+z−1

)
+8
√
zz̄−7

)
+2
√
zz̄−1

)
+2
√
zz̄
))

,

− ipjI
odd
4

1152
=

(
1

18a4
√
zz̄(zz̄−1)3

pj z̄
√

(z−1)(z̄−1)

√
1

zz̄

(
z
(
z̄
(
z2z̄

(
2
√
zz̄+z̄−9

)
+2z

(
z̄
(

7−3
√
zz̄
)

+8
√
zz̄−7

)
−16
√
zz̄+9

)
+6
√
zz̄−1

)
−2
√
zz̄
))

.

(4.16)

Note that the singularity structure for the parity odd case is different from the parity even

one due to the absence of log z terms in the expression. Here it is due the presence of the

square root branch cut. To see the origin of the singularity of going round the branch cut

with the prescription z → ze−2iπ, let us examine the asymmetrically shifted scalar blocks

in (z, z̄).

lim
z̄→1

G(2,∆φ,∆φ,3)(ũ, w̃) =
4 (
√
z − 1)

2√
(z − 1)(z̄ − 1)

(
√
z + 1)

2√
z

. (4.17)

Under the transformation z → ze−2iπ, the above expression picks up a pole on the second

sheet, due to the square root in the denominator. We systematically apply this procedure

to the parity odd blocks given in (4.16). Parametrizing the coordinates z, z̄ as given in

equation (4.5), we obtain the light cone limit of the parity odd sector

Ĝx+
η (σ) = lim

a→∞

8
√
ηλφφT pj

a4
√
CTσ

Ĝ+x
η (σ) = lim

a→∞

8
√
ηλφφT pj

a4
√
CTσ

.

(4.18)

This pole structure is independent of the way the differential operators are acted on the

scalar block. We can perform the analytic continuation and then act on by the differential

operators or vice-versa. We obtain the same result for both the cases.

4.3 Collider bounds

Now we have all the ingredients to formulate our bounds using the sum rule. Following [17,

31] we use the arguments of reflection positivity to bound the four point functions that we

have obtained in the previous section. Let us begin by reviewing the sum rule that one
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gets for the scalar case [17].

Gsη(σ) =
〈O(0)φ(z, z̄)φ(1, 1)O(∞)〉

〈φ(z, z̄)φ(1, 1)〉
,

Ĝsη(σ) =
〈O(0)φ(ze−2πi, z̄)φ(1, 1)O(∞)〉

〈φ(z, z̄)φ(1, 1)〉
.

(4.19)

One can construct the following state in radial quantization by smearing the φ insertion

over an unit disc [17].

|f〉 =

∫ 1

0
dr1

∫ 2π

0
dθ1f(r, θ1)φ(r1e

iθ1 , r1e
−iθ1)O(0)|0〉. (4.20)

Reflection positivity states that 〈f |f〉 ≥ 0. Reflection positivity of the correlator, eq. (4.19),

in the s and u channels allows us to write the following sum rule for the t-channel when

the exchanged object is a conserved stress tensor,

Re
(
Gsη(σ)− Ĝsη(σ)

)
≥ 0,∮

∂D
dσ
(
−Gsη(σ) + Ĝsη(σ)

)
= 0, (4.21)

where the contour D is the closed region spanned by a semicircle S in the complex σ plane

of radius R centering the origin. We can decompose the sum rule as follows

Re

∫
S
dσ
(
−Gsη(σ) + Ĝsη(σ)

)
= Re

∫ R

−R
dσ
(
Gsη(σ)− Ĝsη(σ)

)
≥ 0, (4.22)

where we have used the reflection positivity constraint in the second line. Note that the

contour is to be traversed in S is counter clockwise. The integral over S can be now used to

isolate the singularities in the Ĝsη(σ). This works out in the following way. While leading

terms of Gsη(σ) and Ĝsη(σ) cancel each other, the subleading terms of Gsη(σ) are analytic in

σ but the first subleading term of Ĝsη(σ) has a pole in σ. The integral precisely picks out

residue of this pole and this leads to certain positivity constraints on the residue. Similar

arguments holds for the spinning external correlators. For reflection positivity, we consider

the following states

|f〉 =

∫ 1

0
dr1

∫ 2π

0
dθ1f(r, θ1)φ(r1e

iθ1 , r1e
−iθ1)jµεµ(0)|0〉. (4.23)

The corresponding ket state involves the inversion operator Iµν(x) = ηµν − 2x
µxν

x2 and this

leads to some additional signs which one has to be careful about [28]. Let us denote the

state created by the ε+ = 1 as |+〉 state and that created by εx = 1 as the |x〉 state.

Reflection positivity implies that

〈+|+〉 ≥ 0, 〈x|x〉 ≥ 0. (4.24)

This leads to the sum rules corresponding to eq. (4.13) [28]. We note that the reflection

positivity stated above cannot capture the parity odd coefficient. This is due to the fact
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that the parity odd blocks do not contribute in the light cone limit for such a choice

of polarizations. We now consider the positivity and analyticity of the following state

|v〉 = (|+〉+ α|x〉). Reflection positivity implies,

〈v|v〉 ∼ 〈+|+〉+ α〈+|x〉+ α∗〈x|+〉+ αα∗〈x|x〉 ≥ 0,

∼ Re
(
Gvvη (σ)− Ĝvvη (σ)

)
≥ 0, σ ∈ [−R,R].

(4.25)

Reflection positivity also implies analyticity of G++ and Gxx correlator in the region D,∮
∂D

dσ
(
Gvvη (σ)− Ĝvvη (σ)

)
= 0. (4.26)

Separating this integral over the semicircle and the real line, and considering the real part

we obtain,

Re

(
−
∫
s
dσ
(
−G++

η (σ) + Ĝ++
η (σ)

)
− α

∫
s
dσ
(
−G+x

η (σ) + Ĝ+x
η (σ)

)
+α∗

∫
s
dσ
(
−Gx+

η (σ) + Ĝx+
η (σ)

)
+ αα∗

∫
s
dσ
(
−Gxxη (σ) + Ĝxxη (σ)

))
= Re

(
−
∫ R

−R
dσ
(
G++
η (σ)− Ĝ++

η (σ)
)
− α

∫ R

−R
dσ
(
G+x
η (σ)− Ĝ+x

η (σ)
)

+α∗
∫ R

−R
dσ
(
Gx+
η (σ)− Ĝx+

η (σ)
)

+ αα∗
∫ R

−R
dσ
(
Gxxη (σ)− Ĝxxη (σ)

))
≥ 0,

(4.27)

where the inequality in the final line is a consequence of reflection positivity for the Gvv

state. Minimising with respect to α, we obtain Cauchy-Schwartz inequality

Re
(
R++Rxx −R+xRx+

)
≥ 0, (4.28)

where Rijs are described below.

No subtraction. Let us proceed at first naively and assume no subtractions and not use

the inner product constructed in (4.10). From equation (4.9) and (4.18) we obtain

R++ = −
∫
S
dσ
(
−G++

η (σ) + Ĝ++
η (σ)

)
,

=
−32CJ

√
ηλφφT (a2 + 2)

π
√
CT

,

R+x = −
∫
S
dσ
(
−G+x

η (σ) + Ĝ+x
η (σ)

)
,

=

(
−π
i

)
(−8pj)λφφT

√
η

√
CT

,
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Figure 2. Circle with no subtraction.

Rx+ =

∫
S
dσ
(
−Gx+

η (σ) + Ĝx+
η (σ)

)
,

=

(
−π
i

)
(8pj)λφφT

√
η

√
CT

,

Rxx =

∫
S
dσ
(
−Gxxη (σ) + Ĝxxη (σ)

)
,

=
32CJ

√
ηλφφT (−10 + 3a2)

3π
√
CT

.

(4.29)

Note that λφφT is negative and we have also scaled out the term a4. Putting these back

into eq. (4.28), we obtain

(
a2 −

2

3

)2

+ α2
j ≤

64

9
, (4.30)

where we have used

α2
j =

π4p2
j

16C2
J

. (4.31)

This bound is drawn in figure 2. The bounds that we get proceeding naively are not optimal

and do not coincide with that obtained using the average null energy condition. We do not

consider the subtractions as outlined in section 3.

Optimal bound. The optimal bound is obtained by taking the subtracted parity even

G̃xx given in eq. (4.13). Our inequality therefore becomes

Re
(
R++R̃xx −R+xRx+

)
≥ 0, (4.32)
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Figure 3. Optimal bounds.

where the individual components are described as,

R++ = −
∫
S
dσ
(
−G++

η (σ) + Ĝ++
η (σ)

)
,

=
−32CJ

√
ηλφφT (a2 + 2)

π
√
CT

,

R+x = −
∫
S
dσ
(
−G+x

η (σ) + Ĝ+x
η (σ)

)
,

=

(
−π
i

)
(−8pj)λφφT

√
η

√
CT

,

Rx+ =

∫
S
dσ
(
−G+x

η (σ) + Ĝ+x
η (σ)

)
,

=

(
−π
i

)
(8pj)λφφT

√
η

√
CT

,

R̃xx =

∫
S
dσ
(
−G̃xxη (σ) + ˆ̃Gxxη (σ)

)
,

=
32CJ

√
ηλφφT (a2 − 2)

π
√
CT

.

(4.33)

Note that λφφT is negative and as one would expect for a theory with no parity violating

terms, R̃xx is positive. Putting these back into eq. (4.28), we obtain

a2
2 + α2

j ≤ 4. (4.34)

This can be pictorially represented in figure 3.

These observations can be summarized in the figure 1.

Note that we have obtained the causality sum rules eq. (4.27) for different subtrac-

tion schemes in this section. We find that the optimal bounds coincide with the collider
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constraints evaluated in [14]. Obtaining this involved the subtraction symmetric traceless

tensor exchange in the (xx) component of the parity even contributions as well as a nor-

malisation as given in (4.10). Reflection positivity holds even after subtraction since all

we have done by the subtraction is to isolated the anti-symmetric tensor exchange. We

would like to have a more first principle method of arriving at the normalisation used

in (4.10). Performing the same analysis for the 〈TTφφ〉 to obtain similar bounds on the

OPE coefficients of the stress tensor will give us a clue.

Finally we note the fundamental difference between the nature of the singularity of the

light cone block on the second sheet for the parity even case and the parity odd case. While

for the parity even conformal block, it results from the logarithm of the hypergeometric

function, for the parity odd case this results from a square root branch cut. The absence

of logarithms at this order in the light cone expansion in the parity odd conformal block

can be technically understood as due to the asymmetric shifts in the scalar blocks due

to the Dodd operators of equation (3.12). This is also manifests itself in modifications

to the crossing equation, the parity odd corrections to the stress tensor exchange in the

s-channel give rise to new OPE coefficients (3.39) corresponding to a new class of double

twist operators rather than anomalous dimensions.

5 Conclusions

In this paper we have studied the modifications to the crossing equation for a four point

function of two U(1) currents and two scalars due to the presence of a parity violating term

in the stress tensor exchange in the s-channel. We find that for the crossing equations to

be satisfied, there exists a tower of new double trace operators in the t-channel. We find

the requisite differential operators which can give rise to such operator exchanges. An

infinite sum over such double trace operators reproduces the parity odd contribution in the

s-channel. We find that due to the structure of the parity odd blocks, such an exchange

contributes to the OPE coefficients rather than the anomalous dimensions of operators in

the t-channel. We also study constraints imposed by causality considerations on such a

four point function. We find that using reflection positivity and crossing symmetry we

can formulate a Cauchy Schwartz inequality which leads to the exact parity odd conformal

collider bounds that was studied previously [14]. For this purpose it was necessary to

look at the parity odd blocks in the light cone limit after certain analytic continuations.

The nature of singularity on the second sheet for the parity odd blocks is fundamentally

different from that of the parity even blocks [17, 26] even though the singularity structure

is the same. This again boils down to the differences in the structure of the party odd and

parity even conformal blocks which was responsible for absence of anomalous dimensions in

the crossed channel. Our results provide insight on how the constraints imposed on parity

odd three point function parameters by conformal collider physics emerge from reflection

positivity, analyticity and crossing symmetry. The fact that the bounds seen in collider

physics can be obtained this way resonates with the fact that any causal theory including

parity odd ones must satisfy average null energy condition [19] and hence the collider

bounds.
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There are several future directions. A naive generalization of this analysis to a corre-

lator of two stress tensors and two scalars should lead to conformal collider constraints on

the parity violating three point function of the stress tensors. Moreover similar to the four

point function considered in this paper, the crossing equation of the four point function

of stress tensors and scalars will be modified due to the presence of the parity violating

term in the stress tensor exchange in the s-channel. Differential operators for stress tensor

exchange in four point functions of four U(1) currents also have this parity odd term which

has not been considered before [28]. It will be interesting to see the modifications to the

crossing equation of this correlator because of the presence of the parity odd term.
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A Differential operators on r.h.s. for stress tensor exchange

The spinning conformal blocks have been expressed in terms of differential operators acting

on the scalar blocks eq. (3.5). There are two contributions to the final result. Explicit action

of the differential blocks on the scalar blocks can be grouped into parity even and parity

odd contributions.

A.1 Parity even

DevenW(2, 2,∆φ,∆φ) = α3

((
2λjjT−

3CJ
8π

)
D11D22+

(
2λjjT−

9CJ
8π

)
D12D21−2λjjTH12

)

×
1,1∑
W(2, 2,∆φ,∆φ)

=

((
2λjjT−

3CJ
8π

)
Ieven

1 +

(
2λjjT−

9CJ
8π

)
Ieven

2 −2λjjT I
even
3

)
(A.1)

where the terms Ieven
i s are given by

Ieven
1 = D11D22

1,1∑
W(2, 2,∆φ,∆φ)

=
α3

(−2)3+∆φ

1

(P1.P2)3(P3.P4)∆φ

(
(V1,23V2,13+V1,24V2,14)uw∂u∂w+V1,23V2,14(w∂w)2

+V1,24V2,13(u∂u)2−1

2
H12 (u∂u+w∂w)

)
G

3,3,∆φ,∆φ

O (u,w) (A.2)
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Ieven
2 = D12D21

1,1∑
W(2, 2,∆φ,∆φ)

=
α3

(−2)3+∆φ

1

(P1.P2)3(P3.P4)∆φ

(
(V1,23V2,13+V1,24V2,14)uw∂u∂w+

wV2,13V1,24

u
(w∂w)2

+
uV2,14V1,23

w
(u∂u)2−1

2
H12 (u∂u+w∂w)

)
G

3,3,∆φ,∆φ

O (u,w) (A.3)

Ieven
3 = H12

1,1∑
W(2, 2,∆φ,∆φ)

=
α3

(−2)3+∆φ

H12

(P1.P2)3(P3.P4)∆φ
G

3,3,∆φ,∆φ

O (u,w) .

(A.4)

A.2 Parity odd

DoddW(2, 2,∆φ,∆φ) =
−ipj
1152

(
D(3) +D(4)

)
W(2, 2,∆φ,∆φ)

=
−ipj
1152

(
Iodd

1 + Iodd
2 + Iodd

3 + Iodd
4

)
.

(A.5)

Where the terms Iodd
i are given by,

Iodd
1 = 8D̃1D21

1,0∑
W(2, 2,∆φ,∆φ)

=

(
− 2εabcdeZ

a
1P

b
1P

c
3P

d
2 P

e
4

(P1.P2) 5/2P1.P3 (P2.P3) 2 (P2.P4) 3

(
P2.P4

P1.P4

)
3/2 (P3.P4)−∆φ

(
wP1.P3P2.P4

(
P2.P3P2.P4P1.Z2

(
3∂wG

(3,2,∆φ,∆φ)(u,w)+6u∂u∂wG
(3,2,∆φ,∆φ)(u,w)

+4w
(

3∂2
wG

(3,2,∆φ,∆φ)(u,w)

+w∂3
wG

(3,2,∆φ,∆φ)(u,w)+u∂u∂
2
wG

(3,2,∆φ,∆φ)(u,w)
))
−P1.P2

(
2P2.P4P3.Z2(

2w2∂3
wG

(3,2,∆φ,∆φ)(u,w)+9w∂2
wG

(3,2,∆φ,∆φ)(u,w)

+6∂wG
(3,2,∆φ,∆φ)(u,w)

)
+P2.P3P4.Z2

(
−3∂wG

(3,2,∆φ,∆φ)(u,w)−2w∂2
wG

(3,2,∆φ,∆φ)(u,w)

+6u∂u∂wG
(3,2,∆φ,∆φ)(u,w)

+4uw∂u∂
2
wG

(3,2,∆φ,∆φ)(u,w)
)))

+uP1.P4P2.P3

(
P1.P2

(
2P2.P4wP3.Z2

(
∂u∂wG

(3,2,∆φ,∆φ)(u,w)

+2u∂2
u∂wG

(3,2,∆φ,∆φ)(u,w)
)

+P2.P3P4.Z2

(
3∂uG

(3,2,∆φ,∆φ)(u,w)+4u
(

3∂2
uG

(3,2,∆φ,∆φ)(u,w)

+u∂3
uG

(3,2,∆φ,∆φ)(u,w)
)))

−P2.P3P2.P4P1.Z2

(
∂uG

(3,2,∆φ,∆φ)(u,w)+2w∂u∂wG
(3,2,∆φ,∆φ)(u,w)

+4u
(

2∂2
uG

(3,2,∆φ,∆φ)(u,w)

+w∂2
u∂wG

(3,2,∆φ,∆φ)(u,w)+u∂3
uG

(3,2,∆φ,∆φ)(u,w)
)))))
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+

(
−8εabcdeZ

a
2P

b
1P

c
3P

d
2 Z

e
1

(P1.P2) 5/2P2.P3

√
P2.P4

P1.P4
(P3.P4)−∆φw∂wG

(3,2,∆φ,∆φ)(u,w)

)

+

(
4εabcdeZ

a
2P

b
1P

c
4P

d
2 Z

e
1

(P1.P2) 5/2P2.P4

√
P2.P4

P1.P4
(P3.P4)−∆φ

(
G(3,2,∆φ,∆φ)(u,w)−2u∂uG

(3,2,∆φ,∆φ)(u,w)
))

+

 4εabcdeZ
a
2P

b
1P

c
4P

d
3 Z

e
1

(P1.P2) 3/2P1.P3 (P1.P4) 2P2.P3

√
P2.P4
P1.P4

(P3.P4)−∆φ
(
P1.P3P2.P4w

(
3∂wG

(3,2,∆φ,∆φ)(u,w)+2w∂2
wG

(3,2,∆φ,∆φ)(u,w)
)

−P1.P4P2.P3u
(
∂uG

(3,2,∆φ,∆φ)(u,w)+2u∂2
uG

(3,2,∆φ,∆φ)(u,w)
))

× 1

(−2)
5
2

+∆φ

(A.6)

Iodd
2 = 4D̃1D22

0,1∑
W(2, 2,∆φ,∆φ)

=

(
εabcdeZ

a
1P

b
1P

c
3P

d
2 P

e
4

(P1.P2) 5/2 (P1.P3) 2 (P1.P4) 3P2.P3

(
P1.P4

P2.P4

)
3/2 (P3.P4)−∆φ

(
P2.P4 (P1.P3) 2(−w)

(P2.P4P1.Z2−P1.P2P4.Z2)
(

3∂wG
(2,3,∆φ,∆φ)(u,w)+4w

(
3∂2
wG

(2,3,∆φ,∆φ)(u,w)

+w∂3
wG

(2,3,∆φ,∆φ)(u,w)
))

+P1.P4P1.P3u
(
P2.P3P2.P4P1.Z2

(
−3∂uG

(2,3,∆φ,∆φ)(u,w)−2u∂2
uG

(2,3,∆φ,∆φ)(u,w)

+4w
(
∂u∂wG

(2,3,∆φ,∆φ)(u,w)

−w∂u∂2
wG

(2,3,∆φ,∆φ)(u,w)+u∂2
u∂wG

(2,3,∆φ,∆φ)(u,w)
))

+P1.P2

(
2P2.P4wP3.Z2(

∂u∂wG
(2,3,∆φ,∆φ)(u,w)

+2w∂u∂
2
wG

(2,3,∆φ,∆φ)(u,w)
)

+P2.P3P4.Z2

(
3∂uG

(2,3,∆φ,∆φ)(u,w)

−6w∂u∂wG
(2,3,∆φ,∆φ)(u,w)+2u∂2

uG
(2,3,∆φ,∆φ)(u,w)

−4uw∂2
u∂wG

(2,3,∆φ,∆φ)(u,w)
)))

+2 (P1.P4) 2P2.P3u (P2.P3P1.Z2−P1.P2P3.Z2)(
6∂uG

(2,3,∆φ,∆φ)(u,w)

+u
(

9∂2
uG

(2,3,∆φ,∆φ)(u,w)+2u∂3
uG

(2,3,∆φ,∆φ)(u,w)
))))

+

(
2εabcdeZ

a
2P

b
1P

c
3P

d
2 Z

e
1

(P1.P2) 5/2P1.P3P1.P4P2.P3

√
P1.P4

P2.P4
(P3.P4)−∆φ

(
P1.P4P2.P3u

(
∂uG

(2,3,∆φ,∆φ)(u,w)+2u∂2
uG

(2,3,∆φ,∆φ)(u,w)
)
−P1.P3P2.P4w

(
∂wG

(2,3,∆φ,∆φ)(u,w)+2w∂2
wG

(2,3,∆φ,∆φ)(u,w)
)))
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+

 2εabcdeZ
a
2P

b
1P

c
4P

d
2 Z

e
1

(P1.P2) 5/2P1.P3

√
P1.P4
P2.P4

(P2.P4) 2
(P3.P4)−∆φ

(
P1.P3P2.P4

(
w
(

2w∂2
wG

(2,3,∆φ,∆φ)(u,w)

−∂wG(2,3,∆φ,∆φ)(u,w)
)

+G(2,3,∆φ,∆φ)(u,w)
)
−P1.P4P2.P3u

(
3∂uG

(2,3,∆φ,∆φ)(u,w)

+2u∂2
uG

(2,3,∆φ,∆φ)(u,w)
))

× 1

(−2)
5
2

+∆φ

(A.7)

Iodd
3 = 8D̃2D12

0,1∑
W(2, 2,∆φ,∆φ)

=

(
2εabcdeZ

a
2P

b
1P

c
3P

d
2 P

e
4

(P1.P2) 5/2 (P1.P3) 2 (P1.P4) 3P2.P3

(
P1.P4

P2.P4

)
3/2 (P3.P4)−∆φ

(
P2.P4 (P1.P3) 2(−w)

(
P1.P4P2.Z1

(
∂wG

(2,3,∆φ,∆φ)(u,w)+2u∂u∂wG
(2,3,∆φ,∆φ)(u,w)

+4w
(

2∂2
wG

(2,3,∆φ,∆φ)(u,w)

+w∂3
wG

(2,3,∆φ,∆φ)(u,w)+u∂u∂
2
wG

(2,3,∆φ,∆φ)(u,w)
))
−P1.P2P4.Z1

(
3∂wG

(2,3,∆φ,∆φ)(u,w)

+4w
(

3∂2
wG

(2,3,∆φ,∆φ)(u,w)+w∂3
wG

(2,3,∆φ,∆φ)(u,w)
)))

+P1.P4P1.P3u
(
P1.P2(

2P2.P4wP3.Z1

(
∂u∂wG

(2,3,∆φ,∆φ)(u,w)

+2w∂u∂
2
wG

(2,3,∆φ,∆φ)(u,w)
)

+P2.P3P4.Z1

(
3∂uG

(2,3,∆φ,∆φ)(u,w)−6w∂u∂wG
(2,3,∆φ,∆φ)(u,w)

+2u∂2
uG

(2,3,∆φ,∆φ)(u,w)

−4uw∂2
u∂wG

(2,3,∆φ,∆φ)(u,w)
))

+P1.P4P2.P3P2.Z1

(
3∂uG

(2,3,∆φ,∆φ)(u,w)

+6w∂u∂wG
(2,3,∆φ,∆φ)(u,w)

+4u
(

3∂2
uG

(2,3,∆φ,∆φ)(u,w)+w∂2
u∂wG

(2,3,∆φ,∆φ)(u,w)+u∂3
uG

(2,3,∆φ,∆φ)(u,w)
)))

−2P1.P2 (P1.P4) 2P2.P3uP3.Z1

(
6∂uG

(2,3,∆φ,∆φ)(u,w)+u
(

9∂2
uG

(2,3,∆φ,∆φ)(u,w)

+2u∂3
uG

(2,3,∆φ,∆φ)(u,w)
))))

+

(
−8εabcdeZ

a
2P

b
1P

c
3P

d
2 Z

e
1

(P1.P2) 5/2P1.P3

√
P1.P4

P2.P4
(P3.P4)−∆φu∂uG

(2,3,∆φ,∆φ)(u,w)

)

+

(
4εabcdeZ

a
2P

b
1P

c
4P

d
2 Z

e
1

(P1.P2) 5/2P1.P4

√
P1.P4

P2.P4
(P3.P4)−∆φ

(
G(2,3,∆φ,∆φ)(u,w)

−2w∂wG
(2,3,∆φ,∆φ)(u,w)

)
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+

 4εabcdeZ
a
2P

b
2P

c
4P

d
3 Z

e
1

(P1.P2) 3/2P1.P3P2.P3

√
P1.P4
P2.P4

(P2.P4) 2
(P3.P4)−∆φ

(
P1.P3P2.P4w

(
∂wG

(2,3,∆φ,∆φ)(u,w)

+2w∂2
wG

(2,3,∆φ,∆φ)(u,w)
)
−P1.P4P2.P3u

(
3∂uG

(2,3,∆φ,∆φ)(u,w)+2u∂2
uG

(2,3,∆φ,∆φ)(u,w)
))

× 1

(−2)
5
2

+∆φ

(A.8)

Iodd
4 = 4D̃2D11

1,0∑
W(2, 2,∆φ,∆φ)

=

(
εabcdeZ

a
2P

b
1P

c
3P

d
2 P

e
4

(P1.P2) 5/2P1.P3 (P2.P3) 2 (P2.P4) 3

(
P2.P4

P1.P4

)
3/2 (P3.P4)−∆φ

(
P1.P3P2.P4w

(
P1.P2

(
2P2.P4P3.Z1

(
2w2∂3

wG
(3,2,∆φ,∆φ)(u,w)+9w∂2

wG
(3,2,∆φ,∆φ)(u,w)

+6∂wG
(3,2,∆φ,∆φ)(u,w)

)
+P2.P3P4.Z1

(
−3∂wG

(3,2,∆φ,∆φ)(u,w)−2w∂2
wG

(3,2,∆φ,∆φ)(u,w)+6u∂u∂wG
(3,2,∆φ,∆φ)(u,w)

+4uw∂u∂
2
wG

(3,2,∆φ,∆φ)(u,w)
))

+P1.P4P2.P3P2.Z1

(
3∂wG

(3,2,∆φ,∆φ)(u,w)+2w∂2
wG

(3,2,∆φ,∆φ)(u,w)

+4u
(
−∂u∂wG(3,2,∆φ,∆φ)(u,w)

−w∂u∂2
wG

(3,2,∆φ,∆φ)(u,w)+u∂2
u∂wG

(3,2,∆φ,∆φ)(u,w)
)))
−2 (P1.P3) 2 (P2.P4) 2wP2.Z1(

6∂wG
(3,2,∆φ,∆φ)(u,w)

+w
(

9∂2
wG

(3,2,∆φ,∆φ)(u,w)+2w∂3
wG

(3,2,∆φ,∆φ)(u,w)
))

+P1.P4P2.P3u
(
P1.P4P2.P3P2.Z1(

3∂uG
(3,2,∆φ,∆φ)(u,w)

+4u
(

3∂2
uG

(3,2,∆φ,∆φ)(u,w)+u∂3
uG

(3,2,∆φ,∆φ)(u,w)
))
−P1.P2

(
2P2.P4wP3.Z1(

∂u∂wG
(3,2,∆φ,∆φ)(u,w)

+2u∂2
u∂wG

(3,2,∆φ,∆φ)(u,w)
)

+P2.P3P4.Z1

(
3∂uG

(3,2,∆φ,∆φ)(u,w)+4u
(

3∂2
uG

(3,2,∆φ,∆φ)(u,w)

+u∂3
uG

(3,2,∆φ,∆φ)(u,w)
))))))

+

(
2εabcdeZ

a
2P

b
1P

c
3P

d
2 Z

e
1

(P1.P2) 5/2P1.P3P2.P3P2.P4

√
P2.P4

P1.P4
(P3.P4)−∆φ

(
P1.P3P2.P4w

(
∂wG

(3,2,∆φ,∆φ)(u,w)+2w∂2
wG

(3,2,∆φ,∆φ)(u,w)
)
−P1.P4P2.P3u

(
∂uG

(3,2,∆φ,∆φ)(u,w)+2u∂2
uG

(3,2,∆φ,∆φ)(u,w)
))
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 2εabcdeZ
a
2P

b
1P

c
4P

d
2 Z

e
1

(P1.P2) 5/2 (P1.P4) 2P2.P3

√
P2.P4
P1.P4

(P3.P4)−∆φ

(
P1.P4P2.P3

(
u
(

2u∂2
uG

(3,2,∆φ,∆φ)(u,w)−∂uG(3,2,∆φ,∆φ)(u,w)
)

+G(3,2,∆φ,∆φ)(u,w)
)

−P1.P3P2.P4w
(

3∂wG
(3,2,∆φ,∆φ)(u,w)+2w∂2

wG
(3,2,∆φ,∆φ)(u,w)

))
× 1

(−2)
5
2

+∆φ
.

(A.9)

B Epsilon tensors

For polarisations corresponding to 〈jxj+φφ〉, the epsilon tensors are,

εabcfeZ
a
1P

b
1P

c
3P

f
2 P

e
4 =

(a− 1)a(z − z̄)

2i
,

εabcfeZ
a
2P

b
1P

c
3P

f
2 P

e
4 = 0,

εabcfeZ
a
2P

b
1P

c
3P

f
2 Z

e
1 =

(a− 1)a

i
,

εabcfeZ
a
2P

b
1P

c
4P

f
2 Z

e
1 =

az̄(a− z)

i
,

εabcfeZ
a
2P

b
1P

c
4P

f
3 Z

e
1 =

az̄ − z(a+ z̄ − 1)

i
,

εabcfeZ
a
2P

b
2P

c
4P

f
3 Z

e
1 = −(a− 1)(z̄ − 1)(a− z)

i
. (B.1)

For polarisations corresponding to 〈j+jxφφ〉

εabcfeZ
a
1P

b
1P

c
3P

f
2 P

e
4 = 0,

εabcfeZ
a
2P

b
1P

c
3P

f
2 P

e
4 =

(a− 1)a(z − z̄)

2i
,

εabcfeZ
a
2P

b
1P

c
3P

f
2 Z

e
1 = −(a− 1)a

i
,

εabcfeZ
a
2P

b
1P

c
4P

f
2 Z

e
1 =

az(z̄ − a)

i
,

εancbeZ
a
2P

b
1P

c
4P

f
3 Z

e
1 =

z(z̄ − 1)

i
,

εabcfeZ
a
2P

b
2P

c
4P

f
3 Z

e
1 =

(a− 1)(a(z − 1)− zz̄ + z)

i
(B.2)

For polarisations corresponding to 〈j−jxφφ〉

εabcfeZ
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c
3P

f
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e
4 = 0,

εabcfeZ
a
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b
1P

c
3P

f
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e
4 = −(a− 1)a(z − z̄)

2i
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εabcfeZ
a
2P

b
1P

c
3P

f
2 Z

e
1 =

(a− 1)a

i
,

εabcfeZ
a
2P

b
1P

c
4P

f
2 Z

e
1 = −az̄(z − a)

i
,

εabcfeZ
a
2P

b
1P

c
4P

f
3 Z

e
1 =

(z − 1)z̄

i
,

εabcfeZ
a
2P

b
2P

c
4P

f
3 Z

e
1 = −(a− 1)(a(z̄ − 1)− zz̄ + z̄)

i
(B.3)

For polarisations corresponding to 〈jxj−φφ〉

εabcfeZ
a
1P

b
1P

c
3P

f
2 P

e
4 =

(a− 1)a(z − z̄)

2i
,

εabcfeZ
a
2P

b
1P

c
3P

f
2 P

e
4 = 0,

εabcfeZ
a
2P

b
1P

c
3P

f
2 Z

e
1 = −(a− 1)a

i
,

εabcfeZ
a
2P

b
1P

c
4P

f
2 Z

e
1 = −az(a− z̄)

i
,

εabcfeZ
a
2P

b
1P

c
4P

f
3 Z

e
1 = −(−z̄(a+ z) + az + z̄)

i
,

εabcfeZ
a
2P

b
2P

c
4P

f
3 Z

e
1 =

(a− 1)(z − 1)(a− z̄)

i
(B.4)

C Action of Dt
[j,φ]τ0,l

In this section we study the effect of differential operators Dt
[j,φ]τ0,l

on the conformal blocks

Dt
[j,φ]τ0,l

W(∆j ,∆j ,∆φ,∆φ) =

(
−1

l + ∆φ − 1
Dt

11

1,0∑
L

+Dt
12

0,1∑
L

)
(

−1

l + ∆φ − 1
Dt

44

1,0∑
R

+Dt
43

0,1∑
R

)
W(∆j ,∆j ,∆φ,∆φ) .

(C.1)

The kinematics of the four point function is

J(0, Z1)J(∞, Z2)φ(z, z̄)φ(1, 1)

u = (1− z)(1− z̄), v = zz̄ . (C.2)

In the subsequent analysis, where we sum over the spins, the effect of the terms sub-

leading in the spin l can be ignored.

Dt
12

0,1∑
L

Dt
43

0,1∑
R

W(∆j ,∆j ,∆φ,∆φ)

=
1

4 (P1.P2) 4

(
P1.P2

P1.P3

)
1
2 (−∆j+∆φ+3) (P1.P4)

1
2 (−∆j−∆φ−1) (P2.P3)

1
2 (−∆j−∆φ−1)
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0
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(
P2.P4

P1.P2

)
1
2 (∆j−∆φ−3)

(
P1.P2P1.P4P3.Z1

(
P1.P2

(
P2.P4P3.Z2

(
(−∆j+∆φ+1)2G(v, u)

−2
(
u(∆j−∆φ−1)∂uG(v, u)+2v

(
∂vG(v, u)+v∂2

vG(v, u)+u∂u∂vG(v, u)
)))

+P2.P3P4.Z2(
G(v, u)(−∆j+∆φ+1)2+4

(
∂2
vG(v, u)v2+(−∆j+∆φ+2)∂vG(v, u)v+u ((−∆j+∆φ+2)

∂uG(v, u)+2v∂u∂vG(v, u)+u∂2
uG(v, u)

))))
−2P1.Z2P2.P3P2.P4

(
G(v, u)(−∆j+∆φ+1)2

+2v∂vG(v, u)(−∆j+∆φ+1)+u
(
(−3∆j+3∆φ+5)∂uG(v, u)+2

(
v∂u∂vG(v, u)+u∂2

uG(v, u)
))))

+P1.P3 (P1.P2P4.Z1 (2P1.Z2P2.P3P2.P4 (2uv∂u∂vG(v, u)−(∆j−∆φ−1) ((∆j−∆φ−1)G(v, u)

+2v∂vG(v, u)−u∂uG(v, u)))+P1.P2

(
P2.P4P3.Z2

(
G(v, u)(−∆j+∆φ+1)2

+4v
(
(∆j−∆φ)∂vG(v, u)+v∂2

vG(v, u)
))

+P2.P3P4.Z2

(
(−∆j+∆φ+1)2G(v, u)

−2
(
u(∆j−∆φ−1)∂uG(v, u)+2v

(
∂vG(v, u)+v∂2

vG(v, u)+u∂u∂vG(v, u)
)))))

−2P1.P4

(
2P1.Z2P2.P3P2.P4P2.Z1

(
−∂2

uG(v, u)u2−(∆j−∆φ−1) ((∆j−∆φ)G(v, u)

−2u∂uG(v, u)))+P1.P2 (P2.P4 (P2.Z1P3.Z2 ((∆j−∆φ−1) ((∆j−∆φ−1)G(v, u)

+2v∂vG(v, u)−u∂uG(v, u))−2uv∂u∂vG(v, u))−2P2.P3Z1.Z2 ((−∆j+∆φ+1)G(v, u)

+u∂uG(v, u)))+P2.P3P2.Z1P4.Z2

(
G(v, u)(−∆j+∆φ+1)2+2v∂vG(v, u)(−∆j+∆φ+1)

+u
(
(−3∆j+3∆φ+5)∂uG(v, u)+2

(
v∂u∂vG(v, u)+u∂2

uG(v, u)
)))))))

(C.3)

where G(v, u) ∼ G(∆j ,∆j ,∆φ+1,∆φ+1)(v, u). For conserved currents ∆j = 2 in d = 3.

D Action of D11
m

D̃t
1D

t
43

0,1∑
R

Wt
Õ(∆j ,∆j ,∆φ,∆φ)

=
1

8 (P1.P3) 2 (P2.P4) 3P3.P4

(
P1.P2

P1.P3

)
1
2 (−∆j+∆φ−1) (P1.P4)

1
2 (−∆j−∆φ) (P2.P3)

1
2 (−∆j−∆φ−1)

(
P2.P4

P1.P2

)
1
2 (∆j−∆φ+2)εabcfeP

a
1 P

b
2P

c
3P

f
4 Z

e
1(

P3.P4

(
P2.P4P3.Z2

(
(∆j−∆φ)G(v, u)(−∆j+∆φ+1)2+2

(
2(−∆j+∆φ+6)∂2

vG(v, u)v2

−v
(
(∆j−∆φ)2−3

)
∂vG(v, u)−u(2∆j−2∆φ−3)(∆j−∆φ−1)∂uG(v, u)

+2
(
2∂3
vG(v, u)v3+u

(
u(∆j−∆φ−1)∂2

uG(v, u)+v (5∂u∂vG(v, u)

+4v∂u∂
2
vG(v, u)+2u∂2

u∂vG(v, u)
)))))

+P2.P3P4.Z2 ((∆j−∆φ−2)(∆j−∆φ−1)

(∆j−∆φ)G(v, u)−2
(
6(−∆j+∆φ+3)∂2

vG(v, u)v2+3(−∆j+∆φ+2)2∂vG(v, u)v

+3u(−∆j+∆φ+2)2∂uG(v, u)+2
(
2∂3
vG(v, u)v3+u

(
2∂3
uG(v, u)u2+3(−∆j+∆φ+3)

∂2
uG(v, u)u+6v(−∆j+∆φ+3)∂u∂vG(v, u)+6v

(
v∂u∂

2
vG(v, u)+u∂2

u∂vG(v, u)
))))))

(P1.P2) 2+P2.P4 (2uP1.P3 (P2.P4P3.Z2 ((∆j−∆φ−1)(2∆j−2∆φ−3)∂uG(v, u)
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(
v(2∆j−2∆φ−3)∂u∂vG(v, u)+u(−∆j+∆φ+1)∂2

uG(v, u)−2uv∂2
u∂vG(v, u)

))
+P2.P3P4.Z2 ((∆j−∆φ−2)(2∆j−2∆φ−3)∂uG(v, u)+2v(−2∆j+2∆φ+3)∂u∂vG(v, u)

+2u
(
(−3∆j+3∆φ+7)∂2

uG(v, u)+2
(
v∂2
u∂vG(v, u)+u∂3

uG(v, u)
))))

+P1.Z2P2.P3P3.P4

(
2
(
2(−2∆j+2∆φ+1)∂2

vG(v, u)v2+(2∆j−2∆φ−3)(2∆j−2∆φ−1)

∂vG(v, u)v+u
((

5∆2
j−(10∆φ+13)∆j+∆φ(5∆φ+13)+9

)
∂uG(v, u)

+2
(
3v(−2∆j+2∆φ+3)∂u∂vG(v, u)+2

(
∂u∂

2
vG(v, u)v2

+u
(
2(−∆j+∆φ+2)∂2

uG(v, u)+2v∂2
u∂vG(v, u)+u∂3

uG(v, u)
)))))

−(2∆j−2∆φ−1)(∆j−∆φ−1)(∆j−∆φ)G(v, u)))P1.P2+2uP1.P3P1.Z2P2.P3 (P2.P4) 2

(
(2∆j−2∆φ−3)

(
(−2∆j+2∆φ+1)∂uG(v, u)+4u∂2

uG(v, u)
)
−4u2∂3

uG(v, u)
)) 1

(−2)
5
2 +∆φ

− 1

4 (P1.P3) 2P2.P4P3.P4

(
P1.P2

P1.P3

)
1
2 (−∆j+∆φ−1) (P1.P4)

1
2 (−∆j−∆φ) (P2.P3)

1
2 (−∆j−∆φ+1)

(
P2.P4

P1.P2

)
∆j−∆φ

2 εabcfeP
a
1 P

b
3P

c
4Z

f
1Z

e
2

(
P1.P2P3.P4

(
4
(
u2∂2

uG(v, u)+v2∂2
vG(v, u)

+2uv∂u∂vG(v, u))+2v(−2∆j+2∆φ+3)∂vG(v, u)+2u(−2∆j+2∆φ+3)∂uG(v, u)

+(∆j−∆φ−1)(∆j−∆φ)G(u, v))−2P1.P3P2.P4u ((−2∆j+2∆φ+3)∂uG(v, u)

+2u∂2
uG(v, u)

)) 1

(−2)
5
2 +∆φ

(D.1)

where G(v, u) ∼ G(∆j ,∆j ,∆φ+1,∆φ)(v, u)
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