
J
H
E
P
0
4
(
2
0
1
8
)
1
4
6

Published for SISSA by Springer

Received: February 4, 2018

Accepted: March 19, 2018

Published: April 27, 2018

Exact moments of the Sachdev-Ye-Kitaev model up

to order 1/N2
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1 Introduction

Although the study of strongly interacting quantum many body systems has a long history,

many aspects still remain poorly understood. One of the difficulties is that the size of the

Hilbert space increases exponentially with the number of particles which severely limits the

scope of numerical studies. This is why analytical studies of even simplified many-body

systems contribute significantly to our understanding of this problem. One such model is

the Sachdev-Ye-Kitaev (SYK) model [1–3] which is a Hamiltonian system with an infinite

range q-body interaction acting on a many-body Hilbert space of Majorana fermions. A

similar model with complex fermions was introduced several decades ago in the context

of nuclear physics where it became known as the two-body random ensemble [4–9]. The

motivation for this model is that the nuclear interaction is mostly a two-body interaction

with matrix elements that appear close to random. It was also known that the level spacing

distribution of nuclear levels can be described by Random Matrix Theory [10–14], while the

overall shape of the nuclear level density does not resemble a semi-circle at all but increases

exponentially as exp(c
√
E) where E is the energy above the ground state [15]. The two-

body random ensemble addressed both of these issues, and has been studied intensively

since then [6, 16–22].

The recent interest in the SYK model [1–3, 23–37] stems from the possibility that its

gravity-dual may be a quantum Anti-de-Sitter space in two bulk dimensions (AdS2) [2]. We

note the possible relation between classical AdS2 geometries and the SYK model was first

proposed in ref. [38]. Both the SYK model and the AdS2 gravity background are maximally

chaotic [2, 3], share the same pattern of soft conformal symmetry breaking [3, 39], and

similar low energy excitations [3, 42, 43] and low temperature thermodynamic properties [3,

25, 40–42]. Since the SYK model is analytically solvable for a large number of particles,

including 1/N corrections [3], this could provide us with a much deeper understanding of

quantum aspects of the holographic duality beyond the usual large N limit.

In previous works [42, 43], two of us have studied both the thermodynamic and spectral

properties of the SYK model for q > 2, and have clearly established that the short-range

spectral correlations are given by random matrix theory which is a necessary ingredient

for the model to be quantum chaotic and therefore to have a gravity-dual with black hole

solutions. Moreover, it was found, by an explicit analytical evaluation of the moments of the

spectral density, that it grows exponentially for low energies, a typical feature of conformal

field theories [44] and therefore of gravity backgrounds with a field theory dual [45, 46].

One of the surprising results of these works is that the spectral density at finite N , even

for relatively small N , is very close to the weight function of the Q-Hermite polynomials.

Rigorous results for the moments of a similar random spin model [47], and very recently

for the SYK model itself [48], show that in the large N limit its spectral density converges to

the weight function of the Q-Hermite polynomials only for q ∝
√
N while in refs. [42, 43]

q was fixed and N was relatively small, so such a good agreement was not expected.

Another surprising feature of the Q-Hermite approximation is that for low temperatures it

reproduces exactly the SYK partition function which in this limit reduces to the Schwarzian

action and it is 1/N exact [3, 26, 29, 30]. This is again rather unexpected because this
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region is in principle controlled by high moments of order N/q2 where deviations from the

Q-Hermite result should be larger.

The main goal of the present paper is to study why the Q-Hermite approximation is

so accurate. This question is addressed in two ways. First, by an analytical computation

of the 1/N2 corrections to all moments which enables us to obtain the density up to that

order for any q, and second, by an exact analytical calculation of the finite-N moments up

to order eight. We note that originally the SYK model was only formulated for even q.

However, it also makes sense for odd q, when the Gaussian-distributed operator becomes

the supercharge of a supersymmetric Hamiltonian [49–53]. Unless stated otherwise, our

results are valid for both even and odd q, and for odd q they refer to the spectral properties

of the supercharge.

We proceed by using the moment method for the spectral density. The 1/N2 correc-

tions are derived in two steps. First, we show that the 1/N2 correction to the Q-Hermite

result for each contraction diagram is proportional to the total number of triangular loops

of the corresponding intersection graph. In the second step, we evaluate the sum over all

diagrams. This is a graph-theoretic problem with combinatorial factors that can be deter-

mined from the exact expressions for the moments for q = 1 and q = 2. The moments can

be summed into a 1/N2 correction to the spectral density.

Finally, we note that other aspects of 1/N expansions in the SYK model were discussed

in [54–56] but they do not overlap with the present work.

This paper is organized as follows: in section 2, we define the SYK model, discuss

the moment method and introduce the graphical representations for the calculation of the

moments. In section 3 the 1/N expansion will be discussed, where we also obtain the

1/N2 correction for a given diagram. In section 4 we obtain a general and exact formula

to evaluate the contraction diagrams. In section 5 we derive triangle counting formulas,

which in turn give us the total 1/N2 correction to moments. After obtaining the 1/N2-exact

moments, the corresponding correction to the spectral density is evaluated in section 6. In

section 7 we compute the exact sixth and eighth moments to further clarify the properties

of the approximations we made. In section 8 we comment on the nature of the obtained

results. Concluding remarks and prospects for future work are discussed in section 9.

2 SYK model and moment method

2.1 The SYK Hamiltonian

The q-body SYK Hamiltonian is given by

H(Jα) =
∑
α

JαΓα, (2.1)

where the Γα are defined in terms of 2bN/2c × 2bN/2c dimensional Euclidean gamma

matrices as

Γα = (i)q(q−1)/2γi1γi2 · · · γiq , (2.2)

– 2 –
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with anti-commutation relations1

{γk, γl} = 2δkl. (2.3)

The subscript α represents an index set with q elements: α = {i1, i2, . . . , iq}, with 1 ≤ i1 <
i2 < · · · < iq ≤ N . Hence α can have

(
N
q

)
different configurations. The couplings Jα are

random variables distributed according to

P (Jα) =

√
N q−1

2(q − 1)!πJ2
exp

(
− N q−1J2

α

2(q − 1)!J2

)
, (2.4)

where J is a dimensionful parameter that sets the scale. Note we have included the factor

(i)q(q−1)/2 to make the Γα Hermitian also for odd q, in which case H(Jα) is interpreted as

the supercharge of the so called supersymmetric SYK model [49].

2.2 Moments and Wick contractions

An object of central interest is the spectral density ρ(E):

ρ(E) :=

〈
2b
N
2 c∑

k=1

δ(E − Ek)

〉
, (2.5)

where 〈· · · 〉 denotes the ensemble average over the Gaussian distribution of Jα. After a

Fourier transform of the δ-functions, we can write

ρ(E) =
1

2π

∫ ∞
−∞

dte−iEt
〈
TreiHt

〉
=

1

2π

∫ ∞
−∞

dte−iEt
∞∑
k=0

(it)k

k!

〈
TrHk

〉
.

(2.6)

Hence we can equivalently study the moments
〈
TrHk

〉
. Due to the Jα → −Jα symmetry

of the ensemble, all odd moments must vanish, and thus

ρ(E) =
1

2π

∫ ∞
−∞

dte−iEt
∞∑
p=0

(it)2p

(2p)!

〈
TrH2p

〉
. (2.7)

It will be convenient to factor out the dimensionality of the Hilbert space and study the

2p-th moment defined by

M2p :=
〈
TrH2p

〉
/2bN/2c, (2.8)

and normalize the moments with respect to the second moment

M2p

Mp
2

. (2.9)

1We do not use Majorana convention {γk, γl} = δkl because we prefer γ2
k = 1. We can rescale to the

Majorana convention by redefining the second moment, see equation (6.3).
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α1 α2 α3 α2 α3 α1

(a)

α1 α2 α3 α2 α1 α3

(b)

α1 α2 α3 α1 α2 α3

(c)

Figure 1. Three contraction diagrams contributing to the sixth moment.

It is easy to show

M2 =

(
N

q

)
J2(q − 1)!

N q−1 . (2.10)

Since the average over the Jα’s is a Gaussian integration, the 2p-th moment is given by the

sum of all possible (2p− 1)!! Wick contractions among p pairs of Γ’s. A Wick contraction

of the form, say,

Tr(Γα1Γα2Γα3Γα2Γα3Γα1), (2.11)

where the Einstein summation convention is assumed, can be represented by diagram (a)

in figure 1. We will call diagrams like figure 1 contraction diagrams, which can be equiv-

alently drawn as rooted chord diagrams on a circle [57], and we will use the two terms

interchangeably for such diagrams in this paper.

The matrices Γα’s satisfy

Γ2
α = 1, ΓαΓβ = (−1)q+cαβΓβΓα, (2.12)

where there is no summation over repeated indices in the first equality, and cαβ = |α ∩ β|
is the number of common elements between sets α and β. We can use equation (2.12) to

calculate traces of products of Γαk like in (2.11) by permuting Γαk ’s until every two Γαk ’s

with the same subscript neighbor each other. For intersecting neighboring contractions we

thus have for fixed α(
N

q

)−1∑
β

ΓαΓβΓαΓβ =

(
N

q

)−1 q∑
cαβ=0

(−1)q+cαβ
(
N − q
q − cαβ

)(
q

cαβ

)
1. (2.13)

We thus see that commuting two operators gives rise to the suppression factor

η :=

(
N

q

)−1 q∑
k=0

(−1)q+k
(
N − q
q − k

)(
q

k

)
, (2.14)

which will play an essential role in the calculations of this paper. Using these relations,

the trace in the example (2.11) can be written as

Tr(Γα1Γα2Γα3Γα2Γα3Γα1)/2bN/2c =
∑

α1,α2,α3

(−1)q+cα2α3 =

(
N

q

)3

η. (2.15)

Generically, a contraction with p contraction lines can be written as

(−1)qnc
∑

α1,...,αp

(−1)
∑nc
k=1 cαik

αjk , (2.16)

– 4 –
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α1 α2

α3

(a)
α1 α2

α3

(b)
α1 α2

α3

(c)

Figure 2. Intersection graphs corresponding to the contraction diagrams of figure 1 in the same

order from the left to the right. (a) has V = 3 and E = 1, (b) has V = 3 and E = 2, (c) has V = 3

and E = 3.

where nc is the number of crossings in the contraction diagram, αik , αjk belong to

{α1, . . . , αp} and they label the contraction lines that cross each other.

2.3 Intersection graphs

The chord diagrams that contribute to the 2V -th moment all have V contraction

lines/chords. An intersection graph for a chord diagram with V chords is defined as follows:

• Represent each chord by a vertex.

• Connect two vertices with an edge if and only if there is a crossing between the two

chords that these two vertices represent.

We denote by G a generic intersection graph, by V the number of vertices and by E

the number of edges of an intersection graph. Therefore, in the notation of the previous

section, V = p and E = nc. We give some examples of such diagrams in figure 2.

Motivated by the combinatorial factors that enter in the scaled moments (2.9), we

define the following object associated with each contraction diagram and hence with each

intersection graph, contributing to the scaled 2V -th moment,

ηG := (−1)Eq
(
N

q

)−V ∑
α1,...,αV

(−1)c(G), (2.17)

where c(G) =
∑E

k=1 cαikαjk , the αikαjk are all the edges in G and cαikαjk = |αik ∩ αjk |.
It is clear that an intersection graph G completely determines the value of ηG. With the

above definitions, we have

M2p

Mp
2

=

(2p−1)!!∑
i=1

ηGi (2.18)

by Wick’s theorem, where Gi’s are the intersection graphs with p vertices.

Notice that in the language of intersection graphs, η defined in eq. (2.14) corresponds

to a V = 2, E = 1 graph, that is, a single edge connecting two vertices.

2.4 Q-Hermite approximation

Generally, a contraction diagram cannot be reduced to an expression only involving η as we

did in (2.13). The reason is that indices in more complicated contraction patterns cannot

– 5 –
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be treated as being independent. However, we obtain an important approximation if we

nevertheless treat all crossings as independent: if a diagram has E crossings the result is

then simply given by [43]

ηG ≈ ηE . (2.19)

This approximation expresses ηG of an intersection graph G by a product of its edges.

This approximation is in fact at least 1/N -exact, as will be discussed in detail in section 3

and appendix A. It is exact for chord diagrams where multiple crossings are indeed in-

dependent (having tree graphs as intersection graphs, see appendix D). The approxima-

tion (2.19) allows us to use the Riordan-Touchard formula [58, 59] to sum over all inter-

section graphs [27, 42]:

M2p

Mp
2

=

(2p−1)!!∑
i=1

ηGi ≈
(2p−1)!!∑
i=1

ηEi =
1

(1− η)p

p∑
k=−p

(−1)kηk(k−1)/2
(

2p

p+ k

)
, (2.20)

where Ei denotes the number of edges of Gi. The unique spectral density that gives the

moments (2.20) is the weight function of Q-Hermite polynomials [60]:

ρQH(E) = cN
√

1− (E/E0)2
∞∏
k=1

[
1− 4

E2

E2
0

(
1

2 + ηk + η−k

)]
, (2.21)

with cN a normalization constant and E0 a scale factor that drops out of the ratio (2.9).

For this reason we refer to this approximation as the Q-Hermite approximation and also

introduce the Q-Hermite moments

MQH
2p

Mp
2

:=
1

(1− η)p

p∑
k=−p

(−1)kηk(k−1)/2
(

2p

p+ k

)
. (2.22)

We take equations (2.19), (2.20) and (2.21) as the first approximation to ηG, the

moments and the spectral density respectively, and we use this as the starting point to

investigate further 1/N2 corrections. We stress again that Q-Hermite approximation al-

ready contains many higher order terms in 1/N , although the approximation is only exact

to order 1/N .

3 1/N expansion

The goal of this paper is to understand better why the Q-Hermite result discussed in the

previous section is such a good approximation to the spectral density of the SYK model.

This section is a step in this direction as we show that indeed there are no 1/N corrections

to the Q-Hermite moments, and give an argument that the 1/N2 corrections are determined

by the total number of triangles in an intersection graph. In appendix A, we rigorously

demonstrate this statement.

The scaled Q-Hermite moments MQH
2p /Mp

2 only depend on η which has the 1/N

expansion

η = (−1)q
(

1− 2q2

N
+

2q2(q − 1)2

N2

)
+O

(
1

N3

)
. (3.1)

– 6 –
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Keeping only the leading power in q at each order of 1/N , it can be shown that this

simplifies to (see appendix B)

η = (−1)q
∞∑
k=0

1

k!

(
−2q2

N

)k
= (−1)qe−2q

2/N . (3.2)

The Q-Hermite moments thus have a nontrivial large N limit when q2/N is kept fixed. For

q �
√
N we have η → 0 so that only the nested contractions contribute, which give the

moments of a semi-circle. For q �
√
N we have to distinguish even and odd q. For even

q we have η → 1 so that all contractions contribute equally which gives the moments of a

Gaussian distribution while in the case of odd q we obtain η → −1 corresponding to the

moments of the sum of two delta functions located symmetrically about zero. In the latter

case, all scaled moments are equal to one (see eq. (C.9)).

To understand the corrections to the Q-Hermite moments we evaluate 1/N corrections

at fixed q and p,

M2p −MQH
2p

Mp
2

=
1

N
a1(p, q) +

1

N2
a2(p, q) + · · · . (3.3)

The Q-Hermite result is obtained when all crossings between contraction lines are treated

independently with each crossing contributing a factor η. Corrections of order 1/N occur

when two crossed contraction lines have one common index. Since this involves a single

crossing, this correction is the same for the exact result and the Q-Hermite result and we

thus have that

a1(p, q) = 0. (3.4)

Corrections to the Q-Hermite result occur when the crossed contracting lines can no

longer be permuted independently. Generally, this happens when intersection graphs have

closed loops, and all vertices in the closed loop have at least pairwise common indices.

If a pair of vertices does not have any common indices, they can be commuted or anti-

commuted resulting in a loop that is no longer closed and is thus given by the Q-Hermite

results. A closed loop of length k, thus differs by O(1/Nk−1) from the Q-Hermite result.

Therefore, for the O(1/N2) correction we only need to consider the triangular closed loops.

For a closed loop of three crossed contraction lines, say α, β and γ, let us consider the

crossed pair βγ with one common index and let the crossed pair αβ also have a common

index. This is a 1/N correction that is part of the Q-Hermite result, and thus contributes

as q2/N to leading order in 1/N . Deviations from the Q-Hermite result to this closed loop

occur when also the crossed pair αγ has a common index. Choosing this index of γ to be

one from α gives a second factor q/N . The index can either be among the indices shared

with β or not. We thus conclude that the 1/N2 corrections due to a triangular diagram

occur as

ηG − ηE ∼
q3

N2
. (3.5)

The proportionality factor in (3.5) can be obtained from the simplest triangular intersection

graph, whose value is referred to as T6, see figure 1 (c). This graph first occurs in the

calculation of the sixth moment and can be calculated by keeping track of the combinatorial

– 7 –
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factors [42] (see section 7 for more details). From the large N expansion of T6 and η we

then find

T6 − η3 = −(−1)q
8q3

N2
+O(1/N3). (3.6)

Therefore, this correction is 1/
√
N suppressed in the large-N limit with fixed q2/N . Since

for the lowest non vanishing order, the triangles in the intersection graphs contribute

independently, we arrive at the first main result of this paper:

ηG − ηE = −8q3

N2
(−1)qET +O(1/N3), (3.7)

where T is the total number of triangles that occur in the intersection graph ηG. This

tells us the total 1/N2 correction is obtained by counting the total number of triangles in

all intersection graphs. In appendix A we will prove (3.7) by a calculation of the 1/N2

corrections starting from an exact formula for all Wick contractions which will be derived

in section 4.

In the double scaling limit, the Q-Hermite result for the moments only depends on

q2/N . Therefore in this case the 1/N expansion is really in terms of this quantity only.

Corrections to a term of order (q2/N)k occur when we fix additional indices in a closed

loop. Choosing the remaining indices gives a combinatorial factor of the form (with m an

integer satisfying m� N) (
N

q

)−1(N −m
q − 1

)
∼ q

N
. (3.8)

For completeness we also give the first three terms of the 1/N expansion of the Q-

Hermite approximation of ηG which follows from the 1/N expansion of η. For a contraction

diagram with E crossings the we find

ηG ≈ ηE = (−1)Eq
(

1− 2Eq2

N
+ (2E2q4 − 4Eq3 + 2Eq2)

1

N2

)
+O(1/N3). (3.9)

4 Exact result for the contraction diagrams

In this section we derive an exact analytical expression for all contraction diagrams con-

tributing to the moments of the SYK model. We will use this result to prove (3.7) by an

explicit calculation of the 1/N2 corrections, which we defer to appendix A because this is a

tedious calculation. The results of this section can also be used to obtain exact analytical

results for low order moments and some examples are worked out in appendix E.

Since the phase factor c(G) that appears in the definition of ηG (see eq. (2.17)) is

dependent on the number of common elements in the index sets, it is natural to write

the combinatorics also in terms of intersections of sets. Although c(G) is determined by

intersections of pairs, the combinatorics will depend on intersections of arbitrary number

of sets, so we introduce the objects

cα1···αl := |α1 ∩ α2 · · · ∩ αl|, (4.1)

– 8 –
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α1 α2

α3

Red region has cardinality cα2α3

α1 α2

α3

Red region has cardinality dα2α3

Figure 3. Venn diagrams with three index sets. Each index set is represented by a circle, containing

q elements. The box is the set of all possible values an index can take, which has cardinality N .

The box is partitioned into eight regions.

which are the number of common indices in the vertices {α1, · · · , αl}, and

dα1···αl , (4.2)

which are the number of common indices in the vertices {α1, · · · , αl} that are not shared

with any of the other αk. By convention αi and αj cannot label the same vertex if i 6= j.

Essentially, the cα1···αk and dα1···αk are the cardinalities of certain regions in the Venn

diagram of {α1, · · · , αl}. Figure 3 illustrates the difference between cα1···αk and dα1···αk in

the case of three index sets which occur in the calculation of the sixth moment. By the

inclusion-exclusion principle, the two objects are related by

dα1···αl = cα1···αl − cα1···αl∗ + cα1···αl∗∗ − · · · , (4.3)

and conversely,

cα1···αl = dα1···αl + dα1···αl∗ + dα1···αl∗∗ + · · · , (4.4)

where stars in the subscripts indicate sums over the remaining indices, e.g.

cα1···αp∗∗ =
∑

αkαl /∈{α1,··· ,αp}

cα1···αpαkαl , (4.5)

and the same definition goes for the dα1···αp∗···∗. Eq. (4.4) implies that c(G) can be written

in terms of d’s, hence we can write ηG as(
N

q

)V
(−1)qEηG =

∑
{dαkαl}

∑
{dαkαlαm}

· · ·
∑

{dα1...αV }

(−1)c(G)M. (4.6)

The multiplicity factorM is the number of configurations that the index sets {α1, . . . , αV }
can take given the values of the dα1···αk . In general, a Venn diagram of V index sets is
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α1 α2

α3

q − dα1α2 − dα1α3

−dα1α2α3

q − dα1α2 − dα2α3

−dα1α2α3

q − dα1α3 − dα2α3

−dα1α2α3

dα1α2α3

dα2α3

dα1α2

dα1α3

N − [3q − (dα1α2 + dα2α3 + dα1α3)− 2dα1α2α3 ]

Figure 4. Venn diagrams with three index sets. There are eight regions, each labeled by its own

cardinality.

partitioned into 2V regions by the boundaries of the index sets, hence the multiplicity

factor is the number of ways to distribute N elements into 2V regions, each region with its

own cardinality. If the cardinality of each region is given by mi, then the multiplicity is

given by the multinomial factor

M =
N !∏2V

i=1mi!
. (4.7)

As an example, figure 4 explicitly shows the cardinalities of all eight regions partitioned by

the boundaries of three index sets.

Our final result for the contribution of a given contraction diagram is thus given by,

(−1)qEηG =

(
N

q

)−V ∑
{dαkαl}

∑
{dαkαlαm}

· · ·
∑

{dα1...αV }

(−1)c(G) N !

(N−V q+d2+2d3+3d4+· · ·)!

×
V∏
k=1

1

(q−dαk∗−dαk∗∗−·· ·)!
∏

1≤i<j≤V

1

dαiαj !

∏
1≤i<j<k≤V

1

dαiαjαk !
· · · 1

dα1α2···αV !
,

(4.8)

where

d2 :=
∑

1≤i<j≤V
dαiαj ,

d3 :=
∑

1≤i<j<k≤V
dαiαjαk

(4.9)

and so on. The expression

V q − d2 − 2d3 − 3d4 − · · · (4.10)
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p 1 2 3 4 5 6 7 8 9∑
i Ti 0 0 1 28 630 13680 315315 7567560 192972780∑

i(−1)EiTi 0 0 -1 -4 -10 -20 -35 -56 -84

Table 1. The sum (5.1) for even q and odd q up to 2p = 18.

that appears in the denominator of the first factor for the multiplicity, is the cardinality of

the union of all index sets, i.e. of all the circles in a Venn diagram like figure 4. One way

to see this is by noticing that the indices of the sets with cardinality dk are shared by k of

the αk and that k− 1 of them are not new. The expression (4.8) is the second main result

of this paper.

The general expression (4.8) is a sum over 2V −V −1 variables, which limits its practi-

cal applicability. However, it can be simplified in several cases. First, nested contractions,

which correspond to isolated vertices in an intersection graph, just contribute a multiplica-

tive factor of 1. So we do not need to include the sums over isolated vertices in (4.8), and

this reduces the number of sums for these diagrams. A second simplification occurs if parts

of an intersection graph are only connected by a single vertex (see appendix D). In that

case the graph factorizes and each part can be evaluated separately by the formula (4.8).

The 1/N corrections are controlled by the term(
N

q

)−V N !

(N − V q + d2 + 2d3 + · · · )!
∼ N−d2−2d3−···. (4.11)

in (4.8). Hence we have arrived at a convenient starting point for large N expansions.

5 1/N2 corrections to the moments

In section 3 we have seen that the 1/N2 corrections for each graph are given by the number

of triangles in an intersection graph. To obtain the 1/N2 corrections to the moments, we

have to find the total number triangles in all intersection graphs contributing to the moment

of a given order. If Ti is the number of triangles in an intersection graph Gi with Ei edges,

we have to evaluate

M2p −MQH
2p

Mp
2

= −8q3

N2

(2p−1)!!∑
i=1

(−1)qEiTi +O

(
1

N3

)
. (5.1)

In table 1 we give the numerical results up to 2p = 18. Both for even q and odd q

strikingly simple patterns emerge:

(2p−1)!!∑
i=1

Ti =
1

15

(
p

3

)
(2p− 1)!!, (5.2)

(2p−1)!!∑
i=1

(−1)EiTi = −
(
p

3

)
, (5.3)
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where Ti and Ei are the numbers of triangles and edges of the i-th intersection graph Gi.

These identities, which are one of the main results of this paper, will be proved in the

second part of this section. To order 1/N2, the moments are thus given by

M2p

Mp
2

=
1

(1− η)p

p∑
k=−p

(−1)kηk(k−1)/2
(

2p

p+ k

)
− (2p− 1)!!

(
p

3

)(
8q3

15N2

)
(5.4)

for even q and by

M2p

Mp
2

=
1

(1− η)p

p∑
k=−p

(−1)kηk(k−1)/2
(

2p

p+ k

)
+

(
p

3

)(
8q3

N2

)
(5.5)

for odd q.

The proof of (5.2) and (5.3) is based on the following simple idea: on the one hand,

the counting of the number of triangles occurring in intersection graphs contributing to

the 2p-th moment is a graph-theoretic quantity, which is independent of the SYK model

parameter q (except for the parity of q); on the other hand, the SYK model for q = 1

and q = 2 is exactly solvable, which means that for q = 1 and q = 2 we can obtain

(M2p − MQH
2p )/Mp

2 to order 1/N2 from the exact solutions. Then the proof follows by

matching both sides of equation (5.1).

We first consider the simpler case q = 1, where all moments are known analytically [61].

Since for q = 1

H =

N∑
α=1

Jαγα, (5.6)

we have

H2 =
N∑
α=1

J2
α1, (5.7)

and

H2p =

(
N∑
α=1

J2
α

)p
1. (5.8)

Since Jα is Gaussian distributed, 〈Tr(H2p)〉 can be easily calculated. In fact we can easily

recognize it as the p-th moment of χ2 distribution with N degrees of freedom and the result

is standard:

M q=1
2p

Mp
2

=
Γ
(
N
2 + p

)(
N
2

)p
Γ
(
N
2

) = 1 +
p(p− 1)

N
+

(
p4

2
− 5p3

3
+

3p2

2
− p

3

)
1

N2
+O(1/N3). (5.9)

For q = 1, the 1/N expansion of the Q-Hermite moments simplifies to

MQH,q=1
2p

Mp
2

=
∑
i

ηEi =
∑
i

(−1)Ei
(

1− 2Ei
N

+ (2E2
i − 2Ei)

1

N2

)
+O

(
1

N3

)
. (5.10)

The total 1/N2 term is thus given by

2

N2

∑
i

(−1)EiEi(Ei − 1) =
2

N2

d2

dη2

∑
i

ηEi

∣∣∣∣∣
η=−1

. (5.11)
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The second derivative can be calculated analytically (see appendix C) and is given by

2
d2

dη2

∑
i

ηEi

∣∣∣∣∣
η=−1

1

N2
= 12

(
p

4

)
1

N2
. (5.12)

Subtracting this from the exact q = 1 result, eq. (5.9) we find

M q=1
2p −M

QH,q=1
2p

Mp
2

= 8

(
p

3

)
1

N2
= −8× 13

N2

(2p−1)!!∑
i=1

(−1)EiTi. (5.13)

This proves (5.3).

For q = 2 there is no compact formula for the 2p-th moment, however we can still

compute the moments to 1/N2 from the exact joint probability distribution of the coupling

matrices. The computation is more involved and we give the derivation in appendix E,

here we only quote the final result:

M q=2
2p

Mp
2

= (2p− 1)!!

[
1− 8

3

(
p

2

)
1

N
+

8

9

(
p

2

)
(2p2 − 2p− 1)

1

N2

]
+O

(
1

N3

)
. (5.14)

Meanwhile the Q-Hermite result is given by

MQH
2p

Mp
2

=
∑
i

ηEi =
∑
i

(
1− 8Ei

N
+ (32E2

i − 24Ei)
1

N2

)
+O(1/N3). (5.15)

Again the 1/N2 sum can be computed using the techniques explained in appendix C:

1

N2

∑
i

(32E2
i − 24Ei) =

1

N2

32
d2

dη2

∑
i

ηEi

∣∣∣∣∣
η=1

+ 8
d

dη

∑
i

ηEi

∣∣∣∣∣
η=1


=

(2p− 1)!!

N2

(
8p4

9
− 16p3

15
− 76p2

45
+

28p

15

)
. (5.16)

We finally find

M q=2
2p −M

QH,q=2
2p

Mp
2

= −64

15
(2p− 1)!!

(
p

3

)
1

N2
= −8× 23

N2

(2p−1)!!∑
i=1

Ti. (5.17)

This proves (5.2).

6 Corrections to the spectral density

The moments, both for even q and odd q, satisfy Carleman’s condition and hence uniquely

determine the spectral density [62]. In the following two subsections we give the spectral

density corrections for the even q and the odd q cases.
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6.1 Spectral density for even q

We decompose the spectral density into the weight function ρQH(E) of the Q-Hermite

polynomials, determined by the Q-Hermite moments, plus a correction δρ(E) determined

by the 1/N2 correction to the moments,

ρ(E) = ρQH(E) + δρ(E). (6.1)

where ρQH(E) is given by [43, 60]

ρQH(E) = cN
√

1− (E/E0)2
∞∏
k=1

[
1− 4

E2

E2
0

(
1

2 + ηk + η−k

)]
, (6.2)

and for even q we have2

σ2 = M2 =

(
N

q

)
J2(q − 1)!

2qN q−1 ∼ 2−qJ2

q
N,

E0 =

(
4σ2

1− η

)1/2

∼

√
21−q

q3
JN.

(6.3)

We normalize ρQH(E) by ∫
ρQH(E)dE = 2N/2. (6.4)

This results in the normalization constant [60]

cN =
2N/2

πσ
(1 + η)

√
1− η

∞∏
k=1

1− η2k+2

1− η2k+1
. (6.5)

After performing a Poisson resummation and ignoring certain exponentially small (in N)

terms [43], the spectral density away from |E| = |E0| simplifies to

ρQH(E) = cN exp

[
2 arcsin2(E/E0)

log η

](
1− exp

[
− 4π

log η

(
| arcsin(E/E0)| −

π

2

)])
. (6.6)

From this we deduce that at large N ,

cN ∼
1

πσ
2N/2. (6.7)

It is simple to verify that the correction term

δρ(E) = −2N/2
q3σ5

90
√

2πN2

d6

dE6
exp

(
− E

2

2σ2

)
(6.8)

gives the moments (5.4) consistent with the normalization of the ρQH(E).

For any fixed value of energy E, E/E0 is small since E0 ∼ N , and the leading behavior

of ρQH is given by

ρQH(E) ∼ 1

σ
2N/2 exp

(
− E

2

2σ2

)
, (6.9)

2The 2q factor in σ2 is to rescale the γ matrices to the Majorana convention {γi, γj} = δij .
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while the leading behavior of δρ is

δρ(E) ∼ − 1

N2σ
2N/2 exp

(
− E

2

2σ2

)
. (6.10)

This is indeed a small correction in the point-wise sense both for large N at fixed q and

in the double scaling limit in terms of the variable E/E0 � 1. Unfortunately, this is not

a small correction in the uniform sense, for example, if instead of a fixed E one looks at a

fixed value of the scaling variable x = E/E0, then for x close to 1, the correction term

δρ(E) ∼ 2N/2e−N/q
2

(6.11)

becomes exponentially larger than the leading term (6.6)

ρQH(E) ∼ 2N/2e−π
2N/4q2 . (6.12)

This prevents us from obtaining a meaningful correction to the free energy by integrating

δρ. This is indeed consistent with the fact that the SYK partition function is 1/N exact

in the low temperature limit [3, 29, 30, 43] where it is dominated by the spectral density

for E ≈ E0, so 1/N2 corrections in this region must be spurious.

6.2 Spectral density for odd q

For odd q, η < 0, but the expression (6.2) for the Q-Hermite spectral density is still

applicable. Following the steps of the even q calculation, it is straightforward to show that

for large N and away from the edge of the spectrum, the spectral density (6.6) is given

by [63]

ρQH(E) = cN cosh
π arcsin(E/E0)

log |η|
exp

[
2

arcsin2(E/E0)

log |η|

]
. (6.13)

The normalization constant can be determined from∫
dEρQH(E)dE = 2N/2. (6.14)

In the large N limit, the integral can be evaluated by a saddle point approximation. Using

that log |η| ∼ −2q2/N in this limit we find

cN = eN/2 log 2−Nπ
2/16q2 , (6.15)

which gives exactly the leading order 1/q2 correction to the zero temperature entropy [49].

In terms of units where the second moment is normalized to one, the correction to the

spectral density with moments given by (5.5) is equal to

δρ(x) =
2
N
2 q3

N2

[
5

2
δ(x2−1)+

3

2x

d

dx
δ(x2−1)+

1

x2
d2

dx2
δ(x2−1)− 1

6x3
d3

dx3
δ(x2−1)

]
. (6.16)

In terms of physical units with M2 = σ2 this can be written as

δρ(E) =
2
N
2 q3

N2

[
5

2
δ(E2 − σ2) +

3σ2

2E

d

dE
δ(E2 − σ2) +

σ4

E2

d2

dE2
δ(E2 − σ2)

− σ6

6E3

d3

dE3
δ(E2 − σ2)

]
. (6.17)
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Intersection graph

Value 1 η η2 T6

Multiplicity 5 6 3 1

Table 2. All the intersection graphs for the sixth moment.

So also for odd q we find that the 1/N2 correction to the spectral density is given by

derivatives of its large N limit.

Correction terms in the form of δ-functions are not strange to random matrix theory:

for example the 1/N correction of the Wigner-Dyson ensemble is proportional to δ-functions

at the edges of the semi-circle [16].

7 Exact calculation of the sixth and eighth moment

In this section we give exact results for the sixth and eighth moment. More details can be

found in appendix F.

The sixth moment was already calculated in [42]. All diagrams except for the right-

most contraction diagram in figure 1 coincide with the Q-Hermite result which allows the

application of Riordan-Touchard formula

(2p−1)!!∑
i=1

ηEi =
1

(1− η)p

p∑
k=−p

(−1)kηk(k−1)/2
(

2p

p+ k

)
. (7.1)

For the sixth moment the Q-Hermite result is given by

MQH
6

M3
2

= 5 + 6η + 3η2 + η3, (7.2)

while the exact sixth moment is given by

M6

M3
2

= 5 + 6η + 3η2 + T6, (7.3)

with

T6 =

(
N

q

)−2 q∑
k=0

q∑
m=0

(−1)q−k−m
(
N − 2k

q −m

)(
2k

m

)(
N − q
k

)(
q

k

)
. (7.4)

In table 2 we list all contributions to the sixth moment.

Again using the Riordan-Touchard formula we find the Q-Hermite result for the eighth

moment
MQH

8

M4
2

= 14 + 28η + 28η2 + 20η3 + 10η4 + 4η5 + η6. (7.5)

The exact result for the 8th moment is given by

M8

M4
2

= 14 + 28η + 28η2 + 12η3 + 8T6 + 2T44 + 8ηT6 + 4T66 + T8. (7.6)
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Intersection graph

Value 1 η η2 η2 η3 η3 T6 ηT6 T44 T66 T8

Multiplicity 14 28 4 24 4 8 8 8 2 4 1

Table 3. All the intersection graphs for the eighth moment.

It involves three new structures (see the intersection graphs in table 3). They are still simple

enough that they can be expressed as simple sums by inspection. However, they can also be

derived starting from the general formula (4.8) and we give two examples in appendix F.1.

The first structure corresponding to the square intersection graph (see table 3) is equal to

T44 =

(
N

q

)−3 q∑
k=0

q∑
r=0

q∑
s=0

(−1)r+s
(
N−q
k

)(
q

k

)(
N−2k

q−r

)(
2k

r

)(
N−2k

q−s

)(
2k

s

)
. (7.7)

The second structure corresponding to the square intersection diagram with one diagonal

(see table 3) only differs by an additional phase factor

T66 =

(
N

q

)−3 q∑
k=0

q∑
r=0

q∑
s=0

(−1)k+r+s
(
N−q
k

)(
q

k

)(
N−2k

q−r

)(
2k

r

)(
N−2k

q−s

)(
2k

s

)
. (7.8)

The most complicated diagram is the one with 6 crossings corresponding to the rightmost

graph in table 3. It is given by

T8 =

(
N

q

)−3 q∑
k=0

q∑
r=0

q+r∑
s=0

s∑
t=0

(−1)r+k+s+t
(
N−q
k

)(
q

k

)(
2k

s

)(
s

t

)(
N−2k

q+r−s

)(
q+r−s
q−r−t

)(
2r

r

)
.

(7.9)

The results for the sixth and eighth moment have been simplified using the convolution

property of binomial factors. For example, for T8 we initially obtain the result in the form

of an 8-fold sum. The general result gives an 11-fold sum which can be reduced to this

result as is worked out in detail in appendix F where we also list all contraction diagrams

contributing to M8.

The results for the moments are also valid for odd q, even for q = 1. We have checked

that the above expressions simplify to the q = 1 result in eq. (5.9) and are in agreement with

moments obtained numerically from the exact diagonalization of the SYK Hamiltonian.

In figure 5 and figure 6 we show the N dependence of the sixth and eighth moment,

respectively. We compare the exact result the Q-Hermite result to q = 1, 2, · · · , 8 and find

that the two are close in particular for even q, even for small values of N .

8 The nature of the Q-Hermite approximation and higher order

corrections

The results we have obtained are, at least superficially, contradictory. The 1/N2 correction

to the moments of the Q-Hermite approximation, one of the main result of the paper, does

not improve the spectral density in a uniform sense. At the same time the exact compuation
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Figure 5. The N -dependence of the sixth moment of the eigenvalue density of the SYK model for

q = 1, 3, 5, 7 (left) and q = 2, 4, 5, 8 (right). We compare the exact result (solid curve) to the

Q-Hermite result (dashed).

q = 1

q = 3
q = 5

q = 7

Exact

Q-Hermite

0 50 100 150 200 250
0

5

10

15

20

N

M8

q = 2

 q = 4

q = 6

q = 8

Exact
Q-Hermite

0 50 100 150 200 250
0

20

40

60

80

100

N

M8

Figure 6. The N -dependence of the eighth moment of the eigenvalue density of the SYK model

for q = 1, 3, 5, 7 (left) and q = 2, 4, 5, 8 (right). We compare the exact result (solid curve) to

the Q-Hermite result (dashed).

of low order moments (up to 8th moment), show that the Q-Hermite approximation gives

surprisingly accurate results even for relatively small N . Adding to this point, the 1/N2

correction we have obtained in this paper only improves the Q-Hermite for 2p� N/q2. At

small N , it actually makes the approximation worse than using Q-Hermite results alone

even for relatively small p.

All the above suggests that the Q-Hermite approximation should be understood as

a re-summed finite N result, which happens to be 1/N -exact in the large N expansion,

while the extra 1/N2 corrections from triangle counting are strictly asymptotic. However,

a resummation that is only 1/N exact does not imply that the Q-Hermite approximation

must be so accurate at finite N . To achieve further understanding let us expand the

Q-Hermite moments in powers of 1/N ,

MQH, even q
2p

Mp
2

= (2p−1)!!

{
1− 2

3

(
p

2

)
q2

N

+

[
1

45

(
p

2

)
(5p2−p+12)q4− 4

3

(
p

2

)
q3+

2

3

(
p

2

)
q2
]

1

N2

}
+O

(
1

N3

)
, (8.1)
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and

MQH, odd q
2p

Mp
2

= 1 + 2

(
p

2

)
q2

N
+

[
p(p− 1)2(p− 4)

2
q4 + 4

(
p

2

)
q3 − 2

(
p

2

)
q2
]

1

N2
+O

(
1

N3

)
,

(8.2)

where we have used the expansion of η and the identities given in appendix C to perform

the sums
∑

i(−1)qEiEi and
∑

i(−1)qEiE2
i . Comparing this to the difference

M even q
2p −MQH, even q

2p

Mp
2

= − 8

15
(2p− 1)!!

(
p

3

)
q3

N2
+O

(
1

N3

)
, (8.3)

and
Modd q

2p −MQH, odd q
2p

Mp
2

= 8

(
p

3

)
q3

N2
+O

(
1

N3

)
, (8.4)

we observe that the Q-Hermite approximation is not only exact at order 1/N , but also

almost exact at order 1/N2 in the following sense:

• The Q-Hermite approximation captures the term q4/N2, which is the only term of

order 1/N2 that survives in the scaling limit N → ∞ with q2/N = constant. We

have already seen that this property holds to all orders in q2/N .

• Even for fixed q, the Q-Hermite approximation contains the dominant contribution

to moments, that is, the leading coefficients of 1/N2 in (8.1) and (8.2) go as p4q4,

while the corrections in (8.3) and (8.4) go as p3q3, and we have p4q4 � p3q3 already

for relatively small p and q.

The second property is also likely to hold to all orders in 1/N .

Note that in the truncated form of the Q-Hermite result (8.1), the corresponding

spectral density at each order is a Gaussian or a derivative of Gaussian with the same

distribution width, so is the spectral density of the extra correction (8.3). Therefore the

breakdown of the 1/N expansion for x = E/E0 ≈ 1 discussed at the end of section 6.1 is

really an artefact of the asymptotic nature of this expansion.

9 Conclusions and outlook

We have obtained analytically an exact expression for the moments of the q-body SYK

model. For any q, we have computed them explicitly up to 1/N2 order. One surprising

result of the calculation of the 1/N2 order is that it allows a simple and beautiful geometric

interpretation in the form of triangular loops of the intersection graphs. The 1/N correc-

tions which are part of the Q-Hermite approximation are also geometric in nature and are

given by the contribution from the edges. Our results can be generalized to higher orders

in 1/N . Preliminary results for the 1/N3 correction to the moments indicate they are also

characterized by the geometry of the intersection graphs in a simple manner. From a more

mathematical perspective, they generate a remarkable set of graph-theoretic identities. In

particular, the 1/N3 computation enumerates a particular linear combination of the last
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three geometric objects in table 3. It is one of the miracles of the SYK model that the 1/N2

and even higher order corrections can be calculated analytically. On top of this, given that

we have an exact expression for all contraction diagrams contributing to the moments, this

might be an indication that the moment problem of the SYK model is completely solvable.

In future work we hope to elaborate on this question.

The original motivation to carry out the moments calculation was to obtain a more

accurate description of the spectral density and also, closely related, to understand better

why the Q-Hermite approximation, which reproduces only the 1/N correction to the exact

moments of the SYK model, is so close to the numerical SYK spectral density at least for

even q. Even more remarkable is that the Q-Hermite spectral density exactly reproduces

the temperature dependence of the free energy of the SYK model to leading order in 1/q2

at all temperatures both for even and odd q. For the moment, we have at best partial

answers to these questions.

We have found that 1/N2 corrections to the moments, though exact, lead to a correc-

tion to the Q-Hermite spectral density which is only accurate sufficiently far away from the

tail of the spectrum. As the spectral edge is approached, it gives unphysical results. This

is indeed consistent with the fact that, close to the edge of the spectrum, the density is

1/N exact [29, 30, 64], so in this spectral region, the 1/N2 correction must be an artefact

of the asymptotic expansion in 1/N . In order to understand the reason for this unphysical

behavior we first note that the in large N limit at fixed q, η → (−1)q and the Q-Hermite

spectral density, the leading term of the expansion, tends to a Gaussian for even q and

to δ-functions for odd q. Interestingly, the 1/N2 correction to the spectral density can

be expressed in terms of derivatives of this large N limit of the spectral density which

strongly suggests that, in terms of a nonlinear σ-model for the spectral density, the 1/N

corrections are an expansion about the trivial saddle point. We expect that the spectral

edge of the Q-Hermite result is given by a non-trivial saddle point of this effective σ-model.

Indeed a similar effect is observed in the calculation of 1/N corrections to the semi-circle

law in random matrix theory [16]. It is not clear to us how to re-sum the asymptotic 1/N

expansion so that it yields a vanishing 1/N2 correction to the density close to the edge of

the spectrum. In fact, we would need an expansion to all orders in 1/N to do that. An

issue that further complicates the solution of this problem is the non-commutativity of the

large p (order of the moment) and the large N limit. The main contribution for moments

of order p� N/q2 comes from the edge of the spectrum, while when we first take the large

N limit the main contribution to the moments resides in the bulk of the spectrum. The

1/N2 corrections also share this nonuniform large N behavior.

Regarding the reason behind the unexpected close agreement between the Q-Hermite

density and the exact spectral density of the SYK model, we have found that the leading

1/N2 contribution in q to the 2p-th moment, which scales as p4q4/N2, is actually included

in the Q-Hermite result which helps explain why this approximation, with a difference from

the exact result that is also subleading in p, goes beyond its natural limit of applicability.

However, this does not help explain why the full exact 1/N2 correction to the density gives

worse results than the Q-Hermite approach such as spurious 1/N2 corrections to the density

close to the ground state. In future work we plan to address some of these problems.
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A Calculation of the 1/N2 corrections

The starting point is the general formula (4.8) for ηG, which we replicate here for easier

access of reading:

(−1)qEηG =

(
N

q

)−V ∑
{dαkαl}

∑
{dαkαlαm}

· · ·
∑

{dα1...αV }

(−1)c(G) N !

(N−V q+d2+2d3+3d4+· · ·)!

×
V∏
k=1

1

(q−dαk∗−dαk∗∗)!
∏

1≤i<j≤V

1

dαiαj !

∏
1≤i<j<k≤V

1

dαiαjαk !
· · · 1

dα1α2···αV !
.

(A.1)

We already argued in eq. (4.11) that the orders in 1/N is controlled by the term(
N

q

)−V N !

(N − V q + d2 + 2d3 + · · · )!
∼ N−d2−2d3−···.

Hence the following four cases contribute to the order of 1/N2:

• d2 = 0, dk≥3 = 0;

• d2 = 1, dk≥3 = 0;

• d2 = 2, dk≥3 = 0;

• d3 = 1, dk 6=3 = 0.

We will compute each of the cases and sum them up. Note the summation indices in (4.8)

are dαi1 ···αik , which involves all the k-vertex structures in an intersection graph G. For

example, the sum over dαi1αi2 involves summing over all edges that connect arbitrary two

vertices in G, and there are V (V − 1)/2 such edges. Hence, the edges we need to sum

over are more than just the edges of G itself, and to aid the forthcoming computation, we

complete the graph G by adding dashed lines between all vertices that are not connected

by a solid line. In graph theory this is known as the completion of a graph. In figure 7

we illustrate two examples of such graph completion. For a completed graph, we denote

by w0, w1, w2 the numbers of wedges with 0, 1 and 2 solid lines, and by n0, n1, n2, n3 the

numbers of triangles with 0, 1, 2 and 3 solid lines (see table 4), which will be useful for the

computations to come.
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−→

−→

Figure 7. Graph completion for a 3-vertex graph and 4-vertex graph. The resulting graphs have

edges between each pair of vertices. This is equivalent to the edge-2 coloring (i.e. that we use

two different colors to color a graph) of complete graphs (i.e. graphs where each pair of vertices is

connected by an edge).

Structure

number w0 w1 w2 n0 n1 n2 n3

Table 4. Definition of w0, w1, w2 and n0, n1, n2, n3.

A.1 Cases with dk≥3 = 0

In this case the general expression for contractions reduces to

(−1)qEηG =

(
N

q

)−V ∑
{dαkαl}

(−1)c(G) N !

(N − V q + d2)!

×
V∏
k=1

1

(q − dαk∗ − dαk∗∗ − · · · )!
∏

1≤i<j≤V

1

dαiαj !
, (A.2)

where

c(G) =
E∑
k=1

cαikαjk =
E∑
k=1

dαikαjk . (A.3)

Note the second equality of (A.3) holds because we are working with the particular case

dk≥3 = 0. To order 1/N2 we have three cases, d2 = 0, d2 = 1 and d2 = 2 which we will

analyze next.

Case d2 = 0. The result (A.2) for a contraction diagram simplifies to

(−1)qEηd2=0
G =

N !(N − q)!V

(N − V q)!N !V
(A.4)

= 1− q2

N

(
V

2

)
+

1

2

q2

N2

(
V

2

)
− 1

3

q3

N2

(
V

2

)
(V + 1) +

1

2

q4

N2

(
V

2

)2

+O(1/N3).
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Case d2 = 1. In this case, among the
(
V
2

)
possible dαkαl we sum over, E of them occur

in the set of edges of G (solid lines in a completed graph) and they give c(G) = 1, while(
V
2

)
−E of them are not in this set of edges (dashed lines in the completed graph) and they

give c(G) = 0. So this case contributes to ηG by the following expression:

(−1)Eqηd2=1
G =

N !(N − q)!V

(N − V q)!N !V
q2

N − V q + 1

((
V

2

)
− 2E

)
=

[
q2

N
+

q2

N2

(
V q − 1− q2

(
V

2

))]((
V

2

)
− 2E

)
+O(1/N3). (A.5)

Case d2 = 2. When one of the dαkαl = 2 then either c(G) = 2 or c(G) = 0 and in both

cases the phase factor is equal to 1. This results in the contribution

(−1)EqηG =

(
V

2

)
N !(N−q)!V

(N−V q)!N !V
q2(q−1)2

2(N−V q+2)(N−V q+1)
=

(
V

2

)
q2(q−1)2

2N2
+O(1/N3),

(A.6)

The case with two of the dαkαl equal to 1 is more complicated because we have to

distinguish the case where they share a common index and the case where they do not. If

they do not share a common index the combinatorial factor apart from the phase factor is

N !(N − q)!V

(N − V q)!N !V
q4

(N − V q + 2)(N − V q + 1)
=

q4

N2
+O(1/N3). (A.7)

while when they share a common index we obtain

N !(N − q)!V

(N − V q)!N !V
q3(q − 1)

(N − V q + 2)(N − V q + 1)
=
q3(q − 1)

N2
+O(1/N3). (A.8)

The coefficient of the q4 term is the same in both cases which simplifies the counting. We

have
(
E
2

)
pairs of indices with c(G) = 2, E(

(
V
2

)
−E) pairs with c(G) = 1 and

(
V (V−1)/2−E

2

)
pairs with c(G) = 0. Summing over the {dαkαl} also including pairs that share a common

index, adding the −q3/N2 contribution from (A.8) which was not accounted for in the

previous counting, we obtain to order 1/N2

(−1)Eqηd2=2
G =

[(
E

2

)
− E

((
V

2

)
− E

)
+

(
V (V − 1)/2− E

2

)]
q4

N2
+ (−1)EqηwG, (A.9)

where we have separated the contribution of pairs that share a common index,

(−1)EqηwG = − q3

N2
(w0 − w1 + w2), (A.10)

because it combines naturally with the contributions that will be discussed in the next sub-

section. The w0, w1 and w2 are defined in table 4, they will give c(G) = 0, 1, 2, respectively,

and hence the signs in (A.10).

Summing all the terms with dk≥3 = 0, i.e. eqs. (A.4), (A.5) and (A.9), the result

simplifies to

(−1)Eqη
dk≥3=0
G = 1−2Eq2

N
+

{
2Eq2+

[
−2EV+2

(
V

3

)]
q3+2E2q4

}
1

N2
+
q3

N2
(−w0+w1−w2).

(A.11)
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A.2 Cases with d3 = 1

When d3 = 1 to order 1/N2 only the d2 = 0 terms contribute. The result for a contraction

diagram is then given by

(−1)Eqηd3=1
G =

N !(N − q)!V

(N − V q)!N !V

∑
{dαkαlαm}

(−1)c(G) q3

(N − V q + 2)(N − V q + 1)

=
∑

{dαkαlαm}

(−1)c(G) q
3

N2
+O(1/N3), (A.12)

where

c(G) =
E∑
k=1

cαikαjk =
E∑
k=1

dαikαjk∗ . (A.13)

The second equality of eq. (A.13) is true because we are working in the particular case

where dk 6=3 = 0, and we remind the reader that there is another summation implied by the

“∗” in the subscript. Either 0, 1, 2 or 3 of the edges of dαkαlαm can be part of the edges

that occur in c(G), and their total number are n0, n1, n2 or n3 respectively, as defined in

table 4. We thus obtain the contribution

(−1)Eqηd3=1
G =

q3

N2
(n0 − n1 + n2 − n3). (A.14)

Including the contribution of the wedges in eq. (A.10), the total q3/N2 contribution is

given by

(−1)Eq
(
ηd3=1
G + ηwG

)
=

q3

N2
(−w0 + w1 − w2 + n0 − n1 + n2 − n3). (A.15)

From the graphical interpretation of these quantities (see table 4), it is clear that

w0 = 3n0 + n1, w1 = 2n1 + 2n2, w2 = n2 + 3n3. (A.16)

The reason is that each wedge is contained in one and only one triangle, and the identities

follow by counting in each type of triangle how many wedges of different types occur. This

results in the simplification

(−1)Eq
(
ηd3=1
G + ηwG

)
=

q3

N2
(−2n0 + 2n2 − 4n3). (A.17)

We have the obvious identities [65]

n1 + 2n2 + 3n3 = (V − 2)E, (A.18)

n0 + n1 + n2 + n3 =

(
V

3

)
. (A.19)

The first identity can be seen as follows. If we have an edge, it can be combined with 0,

1, or 2 other edges to from a triangle with one solid edge, two solid edges, or three solid

edges, respectively. In total there are E(V − 2) possibilities to combine any edge with
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the remaining vertices, which gives the right hand side of this identity. The left-hand side

counts the same thing triangle by triangle. That is, a triangle with one solid edge occurs

once, a triangle with two solid edges is counted twice because each of the solid edges can

be taken as the starting point in E. For the same reason a solid triangle is counted three

times in (V − 2)E, and hence the identity. By subtracting the two identities we find

− n0 + n2 + 2n3 = (V − 2)E −
(
V

3

)
. (A.20)

The total contribution of the wedge and triangles can thus be written as

(−1)Eq
(
ηd3=1
G + ηwG

)
=

q3

N2

(
−8n3 + 2(V − 2)E − 2

(
V

3

))
. (A.21)

Adding the thus contribution to the dk≤2 contributions (see eq. (A.11)) we obtain

(−1)Eq
(
η
dk≤2

G + ηd3=1
G

)
= 1− 2Eq2

N
+ 2E

q2

N2
− 4E

q3

N2
+ 2E2 q

4

N2
− 8n3

q3

N2
. (A.22)

Comparing this to the Q-Hermite result, the 1/N2 correction simplifies to

(−1)Eq
(
η
dk≤2

G + ηd3=1
G

)
= (−1)EqηE − 8n3

q3

N2
+O(1/N3). (A.23)

This proves (3.7).

B Scaling limit of η

To obtain the large N double scaling limit of η at fixed q2/N we express η in terms of the

hypergeometric function as

η =

(
N

q

)−1(N − q
q

)
2F1(−q,−q,N + 1− 2q,−1). (B.1)

The double scaling limit of the binomial factor is given by(
N

q

)−1(N − q
q

)
≈
(

1− q

N

)q
∼ e−q2/N . (B.2)

The hypergeometric function u := 2F1(−q,−q,N + 1 − 2q, z) satisfies the differential

equation

z(1− z)
d2u

dz2
+ (N + 1− 2q + (2q − 1)z)

du

dz
− q2u = 0. (B.3)

In the double scaling limit this simplifies to

N
du

dz
− q2u = 0, (B.4)

which is solved by

u = ceq
2z/N . (B.5)

The constant is fixed to c = 1 by the requirement that η = 1 for z = 1. For z = −1 we

thus obtain the asymptotic double scaling limit

2F1(−q,−q,N + 1− 2q,−1) ∼ e−q2/N , (B.6)

and using eq. (B.2) this results in the scaling limit

η ∼ e−2q2/N . (B.7)
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C Edge counting from the Riordan-Touchard formula

To evaluate the 1/N and 1/N2 contributions to the Q-Hermite moments we need the sums

(2p−1)!!∑
i=1

(−1)qEiEi and

(2p−1)!!∑
i=1

(−1)qEiEi
2. (C.1)

They follow from the first and second derivatives of the Riordan-Touchard formula at η = 1

φp(η) :=

(2p−1)!!∑
i=1

ηEi =
1

(1− η)p

p∑
k=−p

(−1)kηk(k−1)/2
(

2p

p+ k

)
, (C.2)

where the sum is over all contractions for the 2p-th moment, and Ei is the number of

crossing for the i-th chord diagram. Below we will show that

φ′p(1) =

(2p−1)!!∑
i=1

Ei =
1

3

(
p

2

)
(2p− 1)!!, (C.3)

φ′′p(1) =

(2p−1)!!∑
i=1

Ei(Ei − 1) =
1

90

(
p

2

)
(5p2 − p− 18)(2p− 1)!!, (C.4)

−φ′p(−1) =

(2p−1)!!∑
i=1

(−1)EiEi = −
(
p

2

)
, (C.5)

φ′′p(−1) =

(2p−1)!!∑
i=1

(−1)EiEi(Ei − 1) = 6

(
p

4

)
. (C.6)

The first two equalities were already shown in [57]. Here, we give the key ingredients of

the proof. We start from the following integral representation of φp,

φp(e
t) =

1√
2π

∫ ∞
−∞

e−x
2/2x2pH(x, t)pdx, (C.7)

where

H(x, t) =
2 sinh2(x

√
t/2− t/4)

x2 exp(t/2) sinh(t/2)
. (C.8)

This can be used to show that φp(1) = (2p− 1)!!. It also follows

φp(−1) =
1√
2π

∫ ∞
−∞

e−x
2/2(i sinh(x

√
πi+ 1)pdx = 1. (C.9)

To obtain the derivatives of φp(η) we expand H(x, t)p about t = 0,

H(x, t)p = 1− p
√
t

x
+
p(−3 + 6p− 6x2 + x4)t

12x2
+O(t3/2). (C.10)
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Then

lim
η→1

φ′p(η) = lim
t→0

e−t
dφ(et)

dt

=
1√
2π

∫ ∞
−∞

e−x
2/2x2p

p(−3 + 6p− 6x2 + x4)

12x2
dx

=
1

3

(
p

2

)
(2p− 1)!!.

(C.11)

This proves the first equality (C.3). The second equality (C.4) can be similarly proved.

The proof of the last two equalities (C.5) and (C.6) requires some more work. Using

the integral representation (C.7) of φp(η) we obtain

φ′p(−1) =

[
e−t

dφp(e
t)

dt

]
t=iπ

= − 1√
2π

∫ ∞
−∞

e−x
2/2

{
p
[
i sinh(

√
πix) + 1

]p−1 (
i cosh(

√
πix)

)( x

2
√
πi
− 1

2

)
−p

2

[
i sinh(

√
πix) + 1

]p}
dx

= − p√
π

∫ ∞
−∞

e−y
2

{[
i sinh(

√
2πiy) + 1

]p−1 (
i cosh(

√
2πiy)

)( y√
2πi
− 1

2

)
−1

2

[
i sinh(

√
2πiy) + 1

]p}
dy, (C.12)

where we have substituted x =
√

2y for the last equality. It is straightforward to show

I1,p :=
1√
π

∫ ∞
−∞

dye−y
2
[
i sinh(

√
2πiy) + 1

]p
= 1, (C.13)

I2,p :=
1√
π

∫ ∞
−∞

dye−y
2
[
i sinh(

√
2πiy) + 1

]p (
i cosh(

√
2πiy)

)
= −1, (C.14)

I3,p :=
1√
π

∫ ∞
−∞

dye−y
2
y
[
i sinh(

√
2πiy) + 1

]p (
i cosh(

√
2πiy)

)
= −
√

2πi

2
p. (C.15)

Hence,

φ′p(−1) = −p
(

1√
2πi

I3,p−1 −
1

2
I2,p−1 −

1

2
I1,p

)
=

(
p

2

)
, (C.16)

which proves (C.5).

To prove the last equality, we start with

φ′′p(−1) =

[
e−t

d

dt

(
e−t

dφp(e
t)

dt

)]
t=iπ

= φ′p(−1) +

[
d2φp(e

t)

dt2

]
t=iπ

=

(
p

2

)
+
d2φp(e

t)

dt2

∣∣∣∣
t=iπ

.

(C.17)

The second derivative can be expressed in terms of the integral representation (C.7) of

φp(η) as

d2φp(e
t)

dt2

∣∣∣∣
t=iπ

=
1√
2π

∫ ∞
−∞

dx e−x
2/2x2p

(
∂2t [H(x, t)p]

)
t=iπ

=
1√
π

∫ ∞
−∞

dy e−y
2
(
√

2y)2p
(
∂2t [H(

√
2y, t)p]

)
t=iπ

.

(C.18)
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After some tedious but straightforward manipulations, we get

d2φp(e
t)

dt2

∣∣∣∣
t=iπ

=

(
p

4
− p2

2

)
I1,p−1 +

p2

2
I2,p−1 −

(
p

4
− p2

2

)
I1,p

+ ei3π/4

(
p√
2π
−
√

2

π
p2

)
I4,p−1 + i

(
eiπ/4√

2π
p2 − ei3π/4

2
√

2π3/2
p

)
I3,p−1

+
ei3π/4√

2π
p2I4,p +

i

2π
(2p2 − p)I5,p−1 −

ip2

2π
I5,p

=
1

4
p(p− 4)(p− 1)2,

(C.19)

where we have used two additional integrals to obtain the last line.

I4,p :=
1√
π

∫ ∞
−∞

dye−y
2
y
[
i sinh(

√
2πiy) + 1

]p
= −
√

2πi

2
p, (C.20)

I5,p :=
1√
π

∫ ∞
−∞

dye−y
2
y2
[
i sinh(

√
2πiy) + 1

]p
=

1

2
−
(
p

2

)
πi. (C.21)

This proves (C.6).

D Cut-vertices and factorization

Since the subscript space of
(
N
q

)
elements is isotropic we can always fix one index and the

result of a diagram does not depend on this index. So summing over this index gives a

factor
(
N
q

)
.

We define a cut-vertex as a vertex that when it is cut, the graph becomes disconnected.

A graph without any cut-vertex is called a non-separable or a two-connected graph. If

we apply the reasoning of the first paragraph to a cut vertex, we immediately arrive at

the theorem

Theorem 1. If a graph G contains a cut-vertex, which separates G into subgraphs G1 and

G2, then

ηG = ηG1ηG2 .

As an example, the following graphs all contain one cut-vertex (drawn in red):

Theorem 1, for example implies,

ηG ηG1
ηG2(= η)

= ×
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E Moments for q = 2

In this appendix we calculate the moments M2p/M
p
2 to order 1/N2 for the q = 2 SYK model.

Since we are interested in large N asymptotics, it is immaterial whether N is even

or odd, and for technical simplicity we choose N to be even. The Hamiltonian for q = 2

model is given by

H = i
∑
i<j

Jijγiγj . (E.1)

This can be rewritten as [27]

H =

N/2∑
k=1

xk(2c
†
kck − 1), (E.2)

where xk are the positive eigenvalues of the antisymmetric matrices Jij , and ck, c
†
k are the

annihilation and creation operators for Dirac fermions. We have

〈Tr(H2p)〉 =

〈 ∑
{sk=±1}

N/2∑
k=1

skxk

2p〉
, (E.3)

where ∑
{sk=±1}

=
∑
s1=±1

∑
s2=±1

· · ·
∑

sN/2=±1
. (E.4)

Thus we can compute the ensemble average by averaging over the joint probability distri-

bution of anti-symmetric Hermitian random matrices [66, 67],

P (x1, . . . , xN/2)

N/2∏
l=1

dxl = ce−
∑
k x

2
k

∏
i<j

(x2i − x2j )2
N/2∏
l=1

dxl. (E.5)

Here c is a normalization constant, which we have chosen such that P (x1, . . . , xN/2) is

normalized to unity. Note that the joint probability distribution has the parity symmetry

xk → −xk for each individual variable, so we can we can restrict ourselves to the configu-

ration with only positive sk by compensating with an overall factor 2N/2. This results in

〈Tr(H2p)〉 = 2N/2

〈N/2∑
k=1

xk

2p〉
. (E.6)

In particular

〈Tr(H2)〉 = 2N/2

〈N/2∑
k=1

xk

2〉
= 2N/2

N

2
〈x21〉, (E.7)

where we have used 〈xk〉 = 0 and 〈x21〉 = 〈x22〉 = . . . = 〈x2N/2〉 because of the parity

symmetry and permutation symmetry of P (x1, . . . , xN/2). Hence,

M2p

Mp
2

=

〈N/2∑
k=1

xk

2p〉/(
N

2
〈x21〉

)p
. (E.8)
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To isolate the leading orders in 1/N we now need to analyze the terms in

〈N/2∑
k=1

xk

2p〉
=

∑
m1+···+mN/2=p

(2p)!

(2m1)!(2m2)! · · ·(2mN/2)!

〈
x2m1
1 x2m2

2 · · ·x2mN/2N/2

〉
(E.9)

that are leading orders in N . Again, because of the permutation symmetry of

P (x1, . . . , xN/2), the expectation values on the right-hand side of equation (E.9) only

depend on the partition of p into {m1,m2, · · · ,mN/2}. Therefore, given a partition with k

nonzero mi’s, {mi1 ,mi2 , · · · ,mik} (i1 < i2 < · · · < ik by convention), all the expectation

values of the form 〈
x
2mi1
j1

x
2mi2
j2
· · ·x2mikjk

〉
(E.10)

have the same value and this results in a multiplicity factor
(N/2
k

)
from choosing k-element

subsets of {x1, . . . , xN/2}. It is not too hard to convince oneself that〈
x
2mi1
j1

x
2mi2
j2
· · ·x2mikjk

〉/
〈x21〉p ∼ O(1), (E.11)

so we can isolate the leading terms in 1/N from the binomial factors
(N/2
k

)
, and there can

be more multiplicity factors from permuting the xj ’s in the same partition, but that does

not bring any factors of N . Now it becomes obvious that the leading terms which are

relevant to 1/N2 accuracy are associated with the largest multiplicity factors
(
N/2
p

)
,
(
N/2
p−1
)

and
(
N/2
p−2
)
. From equation (E.9), these are the terms

M2p =

(
N/2

p

)
(2p)!

2p
〈
x21x

2
2 · · ·x2p

〉
+

(
N/2

p− 1

)(
p− 1

1

)
(2p)!

2p−24!

〈
x41x

2
2 · · ·x2p−1

〉
(E.12)

+

(
N/2

p− 2

)[(
p− 2

2

)
(2p)!

2p−44!4!

〈
x41x

4
2x

2
3 · · ·x2p−2

〉
+

(
p− 2

1

)
(2p)!

2p−36!

〈
x61x

2
2 · · ·x2p−2

〉]
,

where the factors
(
p−1
1

)
,
(
p−2
2

)
and

(
p−2
1

)
come from permutations within a partition. The

rescaled moments are given by

M2p

Mp
2

=

(
N

2

)−p(N/2
p

)
(2p)!

2p
W1

W p
0

+

(
N

2

)−p(N/2
p− 1

)(
p− 1

1

)
(2p)!

2p−24!

W2

W p
0

+

(
N

2

)−p(N/2
p− 2

)[(
p− 2

2

)
(2p)!

2p−44!4!

W3

W p
0

+

(
p− 2

1

)
(2p)!

2p−36!

W4

W p
0

]
.

(E.13)

where the combinations Wk are defined by

W0 := 〈x21〉,
W1 :=

〈
x21x

2
2 · · ·x2p

〉
,

W2 :=
〈
x41x

2
2 · · ·x2p−1

〉
,

W3 :=
〈
x41x

4
2x

2
3 · · ·x2p−2

〉
,

W4 :=
〈
x61x

2
2 · · ·x2p−2

〉
.

(E.14)
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Before evaluating these averages we can already expand the prefactors to order 1/N2,

M2p

Mp
2

= (2p− 1)!!

{[
1− 2

(
p

2

)
1

N
+ (3p− 1)

(
p

3

)
1

N2

]
W1

W p
0

(E.15)

+
1

3

(
p

2

)[
2

N
− 4

(
p− 1

2

)
1

N2

]
W2

W p
0

+
4

N2

[
1

3

(
p

4

)
W3

W p
0

+
1

15

(
p

3

)
W4

W p
0

]}
+O

(
1/N3

)
.

The averages in (E.14) are Selberg-type integrals and they can be evaluated by using the

recursive relations developed in [68]. After some algebra we obtain

W0 =
N−1

2
,

W1 =

p−1∏
k=0

(
N

2
−p+k+

1

2

)
,

W2 =

(
N−p+

3

2

) p−2∏
k=0

(
N

2
−p+k+

3

2

)
, (E.16)

W3 =

(
N−p+

3

2

)(
N−p+

5

2

) p−3∏
k=0

(
N

2
−p+k+

5

2

)
,

W4 =

(
N+

1

2

)(
N−p+

5

2

) p−3∏
k=0

(
N

2
−p+k+

5

2

)
+

(
N

2
−p+2

) p−2∏
k=0

(
N

2
−p+k+

3

2

)
.

Hence, to the relevant orders, we have

W1

W p
0

= 1− 2

(
p

2

)
1

N
+

1

3

(
p

2

)
(3p2 − 7p− 4)

1

N2
+O

(
1

N3

)
,

W2

W p
0

= 2− (2p2 − 4p− 1)
1

N
+O

(
1

N2

)
,

W3

W p
0

= 4 +O

(
1

N

)
,

W4

W p
0

= 5 +O

(
1

N

)
.

(E.17)

Note that the each leading term is just the number of nested contractions when re-

expressing the Wk in products of TrJ2k to leading order in 1/N . Substituting the above

results into (E.15), we finally arrive at

M2p

Mp
2

= (2p− 1)!!

[
1− 8

3

(
p

2

)
1

N
+

8

9

(
p

2

)
(2p2 − 2p− 1)

1

N2

]
+O

(
1

N3

)
. (E.18)

F Calculation of the eighth moment

The sixth moment was already discussed in [42] and in this appendix we only quote the final

result. For the 8th moment we work out all contributions explicitly. Although originally

the combinatorics for the 8th moment were obtained by inspection, in several cases we also

show how they can be obtained from the general formula (4.8).
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Figure 8. The nested diagrams contributing to the 8th moment.

According to the Riordan-Touchard formula we have

(2p−1)!!∑
i=1

ηEi =
1

(1− η)p

p∑
k=−p

(−1)kηk(k−1)/2
(

2p

p+ k

)
. (F.1)

For p = 3 the right hand side is given by

15∑
i=1

ηEi = 5 + 6η + 3η2 + η3. (F.2)

Only the η3 term deviates from the exact result which is given by

M6

M3
2

= 5 + 6η + 3η2 + T6, (F.3)

where

T6 =

(
N

q

)−2 q∑
q1=0

q∑
l=0

l∑
m=0

(−1)q−q1−m
(
N − 2q + q1

q − l

)(
2q − 2q1

m

)(
N − q
q − q1

)(
q

q1

)(
q1

l −m

)

=

(
N

q

)−2 q∑
q1=0

q∑
m=0

(−1)q−q1−m
(
N − 2q + 2q1

q −m

)(
2q − 2q1

m

)(
N − q
q − q1

)(
q

q1

)
(F.4)

and

η =

(
N

q

)−1 q∑
r=0

(−1)q−r
(
q

r

)(
N − q
q − r

)
. (F.5)

For p = 4 the Riordan-Touchard formula yields

14 + 28η + 28η2 + 20η3 + 10η4 + 4η5 + η6, (F.6)

where the coefficient of ηE gives the number of diagrams with E crossings. For one and

two intersections the crossings can be commuted independently resulting in

ME=0
8

M4
2

= 14,

ME=1
8

M4
2

= 28η, (F.7)

ME=2
8

M4
2

= 28η2,

The diagrams corresponding to the contributions (F.7) are shown in figures 8 to 10.
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Figure 9. The diagrams with one intersection contributing to the 8th moment.

Figure 10. The diagrams with two intersections contributing to the 8th moment.

For E = 3 we have two different contributions. The first class of twelve diagrams is

shown in figure 11, where we can move the Γα to three consecutive pairs with equal indices

by three independent pair exchanges. The results of each of these diagrams is given by

η3. The second class of eight diagrams with three intersections contains a structure we

first saw in the calculation of the sixth moment (see figure 12). It is given by T6 [42], see

eq. (F.4) and we thus obtain

ME=3
8

M4
2

= 12η3 + 8T6. (F.8)

For E = 4 also two different classes of diagrams contribution to the eighth moment.

The two diagrams of the first class are shown in figure 13. The result depends on how
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Figure 11. Diagrams with three intersections contributing to the 8th moment as η3.

Figure 12. Diagrams with three intersections contributing to the 8th moment as T6.

Figure 13. Diagrams with four intersections contributing to the 8th moment as T44.

many gamma matrices the second and third contraction have in common. It is given by

T44 =

(
N

q

)−3 q∑
q1=0

q∑
l1=0

l1∑
m1=0

q∑
l2=0

l1∑
m2=0

(−1)m1+m2

(
N − q
q − q1

)(
q

q1

)(
N − 2q + q1

q − l1

)
×
(

2q − 2q1
m1

)(
q1

l1 −m1

)(
N − 2q + q1

q − l2

)(
q1

l2 −m2

)(
2q − 2q1
m2

)
.

=

(
N

q

)−3 q∑
q1=0

q∑
m1=0

q∑
m2=0

(−1)m1+m2

(
N − q
q − q1

)(
q

q1

)(
N − 2q + 2q1

q −m1

)
×
(

2q − 2q1
m1

)(
N − 2q + 2q1

q −m2

)(
2q − 2q1
m2

)
. (F.9)

The second class of eight diagrams has one intersecting contraction which can be removed

by a pair exchange, and three other contractions which have three intersections and con-

tribute as T6 (see figure 14). The total contribution of diagrams with four intersections is

thus given by
ME=4

8

M4
2

= 2T44 + 8ηT6. (F.10)

There are four diagrams with 5 intersections which are shown in figure 15. The contribution

of these diagrams cannot be decomposed into contributions we have seen before. The result
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Figure 14. Diagrams with four intersections contributing to the 8th moment as ηT6.

Figure 15. The diagrams with five intersections contributing to the 8th moment as T66 which is

a new type of contribution.

of each diagram is given by

T66 =

(
N

q

)−3 q∑
q1=0

q∑
l1=0

l1∑
m1=0

q∑
l2=0

l2∑
m2=0

(−1)q+q1+m1+m2

(
N − q
q − q1

)(
q

q1

)(
N − 2q + q1

q − l1

)
×
(

2q − 2q1
m1

)(
q1

l1 −m1

)(
N − 2q + q1

q − l2

)(
2q − 2q1
m2

)(
q1

l2 −m2

)
=

(
N

q

)−3 q∑
q1=0

q∑
m1=0

q∑
m2=0

(−1)q+q1+m1+m2

(
N − q
q − q1

)(
q

q1

)(
N − 2q + 2q1

q −m1

)
×
(

2q − 2q1
m1

)(
N − 2q + 2q1

q −m2

)(
2q − 2q1
m2

)
. (F.11)

The contribution of diagrams with five intersections to the eighth moment is thus

given by
Mk=5

8

M4
2

= 4T66. (F.12)

The most complicated diagram has six intersections, see figure 16. The result is

given by

T8 =

(
N

q

)−3 q∑
q1=0

q∑
q2=0

q1∑
m=0

2q−2q1∑
n=0

m∑
k=0

n∑
l=0

k∑
s=0

l∑
t=0

(−1)q1+q2+n+t
(
N−q
q−q1

)(
q

q1

)(
2q−2q1

n

)(
q1
m

)
×
(
m

k

)(
n

l

)(
N−2q+q1
q−k−l

)(
k

s

)(
l

t

)(
q−k−l
q2−s−t

)(
N−3q+q1+k+l

q−q2−(m−k+n−l)

)
. (F.13)

Using the convolution property of binomial factors, this can be simplified to

T8 =

(
N

q

)−3 q∑
q1=0

q∑
q2=0

2q−q2∑
n=0

n∑
t=0

(−1)q1+q2+n+t
(
N − q
q − q1

)(
q

q1

)(
2q − 2q1

n

)(
n

t

)
×
(
N − 2q + 2q1
2q − q2 − n

)(
2q − q2 − n
q2 − t

)(
2q − 2q2
q − q2

)
. (F.14)
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Figure 16. The only diagram with six intersections contributing to the 8th moment. This diagram

has not been encountered before and the result will be denoted by T8.

The contribution to the fourth moment with six crossings is thus given by

ME=6
8

M4
2

= T8. (F.15)

We have checked the above results in several ways. First, when the phase factor

is eliminated the contribution of each diagram evaluates to one. Second, the moments

agree with numerical result of the moments obtained from the eigenvalues of the SYK

Hamiltonian at finite N . Third, for q = 1 the results agree with the exact analytical result

in eq. (5.9).

In the next subsection we derive the result for T6 and T8 from the general formula (4.8).

F.1 Calculation of contributions to the moments starting from the general

formula

F.1.1 Calculation of T6

The result of the diagram (c) of figure 1 using the general formula (4.8) is given by

T6 =

(
N

q

)−3 ∑
a,b,c,p

(−1)a+b+cN !

(N − 3q + a+ b+ c+ 2p)!

× 1

(q − a− b− p)!(q − a− c− p)!(q − b− c− p)!a!b!c!p!

=

(
N

q

)−3 ∑
a,b,c,p

(−1)a+b+c
(
q − a− p

b

)(
q − a− p

c

)
× N !

(N − 3q + a+ b+ c+ 2p)!(q − b− c− p)!a!p!(q − a− p)!(q − a− p)!
. (F.16)

Using m = b + c as new summation variable after summing the first two binomials and

absorbing p in a this can be rewritten as

T6 =

(
N

q

)−3 ∑
a,m,p

(
2q−2a

m

)
(−1)a+mN !

(N−3q+a+m+p)!(q−m−p)!(a−p)!p!(q−a)!(q−a)!

=

(
N

q

)−3 ∑
a,m,p

(
2q−2a

m

)(
N−2q+a

q−m−p

)(
a

p

)
(−1)a+mN !

(N−2q+a)!a!(q−a)!(q−a)!
. (F.17)

After performing the sum over p we finally obtain

T6 =

(
N

q

)−2∑
a,m

(−1)a+m
(

2q − 2a

m

)(
N − 2q + 2a

q −m

)(
N − q
q − a

)(
q

a

)
, (F.18)

which is the result obtained in section 7.
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F.1.2 Calculation of T8

In this subsection we derive the result for the diagram T8 starting from the general re-

sult (4.8). We first change from the d representation to the c representation,

dab = cab − cabc − cabd + cabcd, dac = cac − cabc − cacd + cabcd,

dad = cad − cabd − cacd + cabcd, dbd = cbd − cbcd − cabd + cabcd,

dbc = cbc − cabc − cbcd + cabcd, dcd = ccd − cbcd − cacd + cabcd,

dabc = cabc − cabcd, dabd = cabd − cabcd,
dbcd = cbcd − cabcd, dacd = cacd − cabcd,
dabcd = cabcd. (F.19)

Then it can be expressed in terms of binomials as

T8 =

(
N

q

)−3∑
(−1)cab+cac+cad+cbc+cbd+ccd

(
N − q
q − cab

)(
q

cab

)
×
(

cab
cabc + cabd − cabcd

)(
cabc + cabd − cabcd

cabc

)(
cabc
cabcd

)(
cac − cabc
cacd − cabcd

)(
cbc − cabc
cbcd − cabcd

)
×
(

q − cab
cac + cad − cabc − cabd − cacd + cabcd

)(
cac + cad − cabc − cabd − cacd + cabcd

cac − cabc

)
×
(

q − cab
cbc + cbd − cabc − cabd − cbcd + cabcd

)(
cbc + cbd − cabc − cabd − cbcd + cabcd

cbc − cabc

)
×
(

N − 3q + cab + cbc + cac − cabc
q − cad − cbd − ccd + cabd + cacd + cbcd − cabcd

)
×
(

N − 2q + cab
q − cac − cbc + cabc

)(
q − cac − cbc + cabc

ccd − cacd − cbcd + cabcd

)
, (F.20)

where the sum is over the ca1···ak . Next, we change the summation variables according to

m1 = cabc + cabd − cabcd, (F.21)

m2a = cac + cad − cabc − cabd − cacd + cabcd, m2b = cbc + cbd − cabc − cabd − cbcd + cabcd,

s2a = cacd − cabcd, s2b = cbcd − cabcd, k2a = cac − cabc, k2b = cbc − cabc,

and keep the variables cab, ccd, cabc and cabcd, retaining the same number of variables. This

results in

T8 =

(
N

q

)−3∑
(−1)cab+ccd+m2a+m2b+s2a+s2b

(
N − q
q − cab

)(
q

cab

)(
cab
m1

)(
m1

cabc

)(
cabc
cabcd

)
×
(
q − cab
m2a

)(
m2a

k2a

)(
k2a
s2a

)(
q − cab
m2b

)(
m2b

k2b

)(
k2b
s2b

)(
q − k2a − k2b − cabc
ccd − s2a − s2b − cabcd

)
×
(

N − 3q + k2a + k2b + cab + cabc
q −m1 −m2a −m2b + k2a + k2b − ccd + cabc

)(
N − 2q + cab

q − k2a − k2b − cabc

)
. (F.22)

We can now perform the sums over the pairs {s2a, s2b}, {k2a, k2b} and {m2a,m2b} with

constant sum for each pair. Introducing the sums

s2 = s2a + s2b, k2 = k2a + k2b, m2 = m2a +m2b (F.23)
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as new summation variables we obtain

T8 =

(
N

q

)−3∑
(−1)cab+ccd+m2+s2

(
N − q
q − cab

)(
q

cab

)(
cab
m1

)(
m1

cabc

)(
cabc
cabcd

)
×
(

2q − 2cab
m2

)(
m2

k2

)(
k2
s2

)(
q − k2 − cabc
ccd − s2 − cabcd

)
×
(

N − 3q + k2 + cab + cabc
q −m1 −m2 + k2 − ccd + cabc

)(
N − 2q + cab
q − k2 − cabc

)
. (F.24)

This is equal to the result (F.13) which can be simplified to eq. (F.14).
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