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1 Introduction and summary

Five-dimensional superconformal field theories (SCFTs) have been studied extensively since

first concrete evidence for their existence has been presented in [1, 2]. They exhibit many

interesting phenomena, not the least of which is that they can not be treated consistenly

in conventional perturbative quantization schemes. This makes indirect methods, such as

their engineering in string theory and the AdS/CFT dualities, particularly valuable. Large

classes of 5d SCFTs can indeed be engineered in Type IIB string theory via (p, q) 5-brane

webs [3, 4], which describe gauge theory deformations of the 5d SCFTs and in the limit
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where the web collapses to a 5-brane intersection at a point, describe the SCFT itself.

In [5–7]1 supergravity solutions were constructed which are in one-to-one correspondence

with 5-brane intersections and which provide compelling candidates for holographic duals

to the SCFTs realized on such intersections. This allows to use the established tools of

AdS/CFT for quantitative analyses of the 5d SCFTs.

The space of 5d SCFTs that can be realized in Type IIB string theory can be extended

substantially by adding additional 7-branes into 5-brane webs [15], and many insights have

been obtained through the inclusion of 7-branes and in particular their associated branch

cuts [16–21]. This motivates a corresponding extension of the construction of supergravity

solutions. In [22] the construction of supergravity solutions has indeed been extended

to incorporate punctures with non-trivial SL(2,R) monodromy, signaling the presence of

additional 7-branes. However, while the map between supergravity solutions and 5-brane

webs appeared very clearly and naturally in the case without monodromy, where a given

5-brane intersection is entirely characterized by the charges of the external 5-branes, a

corresponding map is less automatic in the case with additional 7-branes. This is largely

due to the fact that 7-branes introduce a number of additional parameters, as we will review

shortly and in more detail in section 2, and the fact that the analysis of the supergravity

solutions is technically more challenging. This motivates further study of the solutions

with monodromy, to substantiate and clarify their interpretation.

The solutions in [22] are constructed in terms of two locally holomorphic functions

A± on the Riemann surface Σ, which is a disc or equivalently the upper half plane. The

differentials of these functions have common poles on the boundary of Σ, at which the

entire solution approaches that for a (p, q) 5-brane, as constructed in [23], with p − iq

identified with the residue at the pole. This facilitates the identification of the solutions

with (p, q) 5-brane webs. For solutions with monodromy, the differentials in addition

have a number of branch points in the interior of Σ with associated branch cuts, across

which the supergravity fields undergo a parabolic SL(2,R) transformation. The regularity

conditions for the supergravity solutions as constructed in [22] constrain each puncture

to lie on a curve in Σ. This leaves one real parameter in addition to the orientation

of the branch cut for a puncture with fixed monodromy. Adding a 7-brane into a 5-

brane web correspondingly adds new parameters. In addition to the orientation of the

branch cut, there is a choice of which face of the web the 7-brane is placed in. This

choice remains meaningful in the conformal limit and naturally turns into a continuous

parameter in a “large-N” limit, thus providing a potential brane web realization of the

supergravity parameter. One may wonder, however, whether a given puncture corresponds

to an isolated 7-brane in a certain face of the web, or whether 5-branes are attached to

it. Similarly, one may wonder whether solutions with punctures at different points in

Σ can be related by 7-brane moves with the associated Hanany-Witten brane creation

effect [24], or whether punctures at different points correspond to genuinely different brane

webs. An unambiguous brane web interpretation for the solutions constructed in [22] is

1Earlier work in the context of Type IIB can be found in [8–12], while solutions in Type IIA have been

discussed in [13, 14].
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therefore not immediately clear. In the present paper we will expand on the interpretation

of the solutions in [22] in several ways and address these questions. We will constrain

the monodromy around the punctures to realize the SL(2,R) transformation appropriate

for D7 branes for simplicity, but the results immediately generalize to other 7-branes by

globally conjugating with suitable SL(2,R) elements.

As a first step we will provide further support for the identification of the punctures

with 7-branes in section 3, by connecting the solutions with punctures and SL(2,R) mon-

odromy to a probe brane analysis. The strength of the SL(2,R) monodromy around a

given puncture is given in a precise way by the 7-brane charge at the puncture, and in the

limit where the monodromy transformation becomes infinitesimally close to the identity,

we expect to recover a solution without puncture but with an additional probe D7 brane

embedded into it. We will show that this is indeed the case. We will study warped AdS6

solutions without punctures, and derive the BPS equations for supersymmetric probe D7

branes wrapping AdS6×S2 in these solutions. The probe BPS equations are derived from

a κ-symmetry analysis, and we will clarify an important subtlety in this analysis which

arises due to the presence of non-trivial axion-dilaton backgrounds: the κ-symmetry condi-

tions of [25–27] are derived with a particular gauge fixing of the local U(1) in the covariant

formulation of the Type IIB supergravity field equations of [28, 29]. The analysis of the

supergravity BPS equations in [5–7, 22], on the other hand, was carried out with a different

gauge fixing. This has to be accounted for when using the expressions for the Killing spinors

of the warped AdS6 solutions in the κ-symmetry conditions, as we will explain in detail

in section 3.1. Once this subtlety is taken into account, we find that the BPS equations

for a probe D7 brane in a solution without monodromy, which constrain its location in Σ,

precisely reproduce the regularity conditions for a supergravity solution with puncture in

the limit in which the monodromy is infinitesimally close to the identity. This shows that

the puncture, in the probe limit, can indeed be identified with a probe D7 brane.

We will then turn to the solutions with punctures and finite monodromy, corresponding

to fully backreacted 7-branes, in section 4. A crucial point for a subsequent brane web

interpretation of our results is that we will consider families of solutions where the physical

5-brane charges are fixed, while the location of the puncture, the orientation of the branch

cut and the 7-brane charge are allowed to vary. We will in particular study the S5 partition

functions of the dual SCFTs, which can be conveniently extracted holographically from

the minimal surface computing the entanglement entropy of a ball-shaped region [30]. The

partition functions are expected to agree for supergravity solutions describing brane webs

that realize the same SCFT, and therefore provide crucial information for understanding

the brane web interpretation. In section 4.2 we will show that the partition functions are

generally invariant under changes in the orientation of a branch cut, provided that no poles

are crossed. This is consistent with the interpretation that solutions with the same 5- and

7-brane charges that differ only in the orientation of the branch cut describe the same dual

SCFT, as one would expect from the brane web picture.

In section 4.3, we will realize a family of solutions with 3 poles, two corresponding

to NS5 branes and one corresponding to D5 branes, and one puncture corresponding to
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D7 branes. Such a solution would not be possible without monodromy since the 5-brane

charges do not add to zero, but they can be realized in the presence of D7 branes. The

regularity conditions constrain the D7-brane puncture to lie on a curve in Σ which starts

at the D5 brane pole and ends between the two NS5 brane poles. Fixing the precise form of

the 5-brane charges, independently from the position of the puncture, leads to a non-trivial

relation between the charge of the 7-brane and the position of the puncture. This shows that

configurations with the same 5-brane charges but punctures at different locations are not

related by Hanany-Witten transitions. The 7-brane charge that is required to realize a given

set of 5-brane charges increases as the puncture approaches the boundary of Σ, and we show

that, as the puncture is moved onto the boundary, the solution reduces to a 4-pole solution

without monodromy, where the puncture with diverging charge produces the additional

pole with the appropriate 5-brane charge on the boundary of Σ. The computation of the

partition function, which can be given analytically up to a single function of one parameter

that we provide numerically, shows that it has a non-trivial dependence on the position of

the puncture on Σ. This further shows that solutions with the same 5-brane charges but a

puncture at different locations on Σ realize genuinely different dual SCFTs. As the puncture

is moved to the boundary of the disc, the partition function approaches that of a 4-pole

solution without monodromy, as expected from the limiting procedure discussed above.

In section 4.5 we will realize a family of 4-pole solutions with two NS5 poles, two

D5 poles and one D7-brane puncture. The D5 brane charges do not sum to zero and

such solutions could again not be realized without 7-branes. An interesting feature of

these solutions is that the branch cut associated with the puncture intersects the boundary

directly on one of the D5-brane poles. This has a natural interpretation in the brane web

picture as a branch cut going out to infinity within a stack of external D5 branes. The

puncture can be placed on a curve in Σ that connects the two D5-brane poles, and the D7-

brane charge that is required to realize a given set of 5-brane charges now depends on the

difference in D5-brane charge between the two D5-brane poles as well as on the location

of the puncture. The partition function can be given analytically up to two functions,

each of one parameter, that we provide numerically. The family of 3-pole solutions with

one puncture discussed in section 4.3 can be obtained as a special case from this family

of 4-pole solutions, where the residue at one D5-brane pole vanishes. Consistency of this

limit imposes a relation between the partition functions for the 3- and 4-pole solutions with

puncture, and we indeed find this relation to be satisfied. In general, the partition function

in the four-pole solution again is a non-trivial function of the location of the puncture for

fixed 5-brane charges, showing again that solutions with punctures at different points in Σ

describe different SCFTs.

Finally, in section 5 we will discuss the families of 3- and 4-pole solutions with fixed

5-brane charges and punctures in the context of a brane web interpretation for the super-

gravity solutions. We will use the dependence of the 7-brane charge on the location of the

puncture, the results on the partition functions, and the limiting procedures relating the

various families of solutions to clarify the identification of the supergravity solutions with

brane webs, and devise a consistent picture for their interpretation.
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1.1 Outline

The remainder of the paper is organized as follows. In section 2 we review the warped

AdS6 × S2 × Σ solutions with and without monodromy. In section 3 we study supersym-

metric probe D7 brane emeddings into the solutions without monodromy, and compare to

the solutions with monodromy. In section 4 we turn to the solutions with fully backre-

acted 7-branes, discuss the entanglement entropy of a ball-shaped region from which the

S5 partition function can be extracted, construct families of solutions with fixed 5-brane

charges and explicitly compute the partition functions. In section 5 we discuss the brane

interpretation of the results. In the appendices we derive the regularity conditions for the

case where one pole is at the point at infinity of the upper half plane, discuss the relation

of the BPS and the field equations for probe D7 branes, and provide explicit expressions

for the background 7- and 9-form field strengths.

2 Review of warped AdS6 × S2 × Σ solutions

To fix notation we will provide a brief review of the warped AdS6 × S2 × Σ solutions to

type IIB supergravity without monodromy constructed in [6, 7], and of the extension to

incorporate punctures provided in [22]. The non-vanishing fields of type IIB supergravity

in the conventions of [28, 29] are the metric, the axion-dilaton scalar B and the complex

two-form Ĉ(2), where we introduced a hat to avoid confusion with the real R-R potential

C(2). With a complex coordinate w on Σ, which is taken to be the upper half plane, the

metric and the 2-form field are parametrized by scalar functions f2
2 , f2

6 , ρ2 and C on Σ as

follows,

ds2 = f2
6 ds

2
AdS6

+ f2
2 ds

2
S2 + 4ρ2dwdw̄ , Ĉ(2) = C volS2 , (2.1)

where volS2 is the volume form on S2 of unit radius. The solutions are expressed in terms

of two locally holomorphic functions A± and the following composite quantities

κ2 = −|∂wA+|2 + |∂wA−|2 , ∂wB = A+∂wA− −A−∂wA+ , (2.2)

G = |A+|2 − |A−|2 + B + B̄ , R+
1

R
= 2 + 6

κ2 G
|∂wG|2

. (2.3)

The explicit form of the functions parametrizing the metric is then given by

f2
6 =
√

6G
(

1 +R

1−R

)1/2

, f2
2 =

1

9

√
6G
(

1−R
1 +R

)3/2

, ρ2 =
κ2

√
6G

(
1 +R

1−R

)1/2

, (2.4)

where we used the expressions of [7] with c6 = 1. The function C parametrizing the complex

2-form field is given by

C =
4i

9

(
∂w̄Ā− ∂wG

κ2
− 2R

∂wG ∂w̄Ā− + ∂w̄G ∂wA+

(R+ 1)2 κ2
− Ā− − 2A+

)
, (2.5)

and the axion-dilaton scalar B is given by

B =
∂wA+ ∂w̄G −R∂w̄Ā−∂wG
R∂w̄Ā+∂wG − ∂wA−∂w̄G

. (2.6)
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These configurations solve the BPS equations for preserving sixteen supersymmetries, and

as shown in [31] also the equations of motion. A crucial ingredient for the κ-symmetry

analysis will be the form of the Killing spinors. We will use the Clifford algebra conventions

summarized in appendix A of [5]. The ten-dimensional Killing spinor ε is expanded in

terms of AdS6 × S2 Killing spinors χη1η2 and complex two-component spinors on Σ, ζη1η2 ,

as follows

ε =
∑

η1,η2=±
χη1η2 ⊗ ζη1η2 , (2.7)

and analogously2 C−1ε? =
∑

η1η2
χη1η2 ⊗ ?ζη1η2 , with ?ζη1η2 = −iη2σ

2ζ?η1−η2 . In a chirality

basis where σ3 is diagonal, we have

ζ++ =

(
ᾱ

β

)
, ζ−− =

(
−ᾱ
β

)
, ζ+− = iνζ++ , ζ−+ = iνζ−− . (2.8)

where ν ∈ {−1,+1} and, with f−2 = 1− |B|2,

ρᾱ2 = f(∂wA+ +B∂wA−) , ρβ2 = f(B∂w̄Ā+ + ∂w̄Ā−) . (2.9)

The action of the Clifford algebra elements on the Killing spinors that will be relevant for

the discussion of κ-symmetry are derived from the relation

(γ(1) ⊗ I2)χη1η2 = χ−η1η2 , (I8 ⊗ γ(2))χ
η1η2 = χη1−η2 , (2.10)

where γ(i) denotes the chirality matrices on the respective components of AdS6 × S2 × Σ

(see appendix A of [5] for more details). From these one concludes that

Γ01234567ε = −i
∑
η1η2

χη1η2 ⊗ ζ−η1−η2 ,

Γ67Γ01234567C−1ε? =
∑
η1η2

χη1η2 ⊗ ?ζ−η1η2 . (2.11)

2.1 Solutions without monodromy

The physically regular solutions without monodromy constructed in [6, 7] amount to a

particular choice of the locally holomorphic functions A± on the upper half plane, which

is given by

A±(w) = A0
± +

L∑
`=1

Z`± ln(w − p`) , (2.12)

where the p` are poles with residues Z`± in ∂wA±, that are restricted to be on the real

line. The constants A0
± are constrained by Ā0

± = −A0
∓. The residues are given in terms of

complex parameters sn that are constrained to lie in the interior of Σ as follows,

Z`+ = σ
L−2∏
n=1

(p` − sn)
L∏
k 6=`

1

p` − pk
, Z`− = −Z`+ . (2.13)

2To avoid confusion with the composite quantity B defined in (2.2), we will denote the charge conjugation

matrix by C throughout.
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For these solutions to satisfy the desired regularity conditions, the parameters appearing

in the locally holomorphic functions have to be constrained to satisfy

A0
+Z

k
− −A0

−Z
k
+ +

∑
`6=k

Z [`k] ln |p` − pk| = 0 , (2.14)

where Z [`k] ≡ Z`+Z
k
− − Zk+Z`−. The crucial feature for the identification of the solutions

with 5-brane webs is that the 2L − 2 free parameters of a solution with L poles can be

taken as the residues Z`+, subject to the constraint that
∑

` Z
`
+ = 0. Combined with the

observation that at each pole pm the solution turns into a (q1, q2)Q 5-brane solution, in the

conventions of [23], with

(q1 − iq2)Q =
8

3
Zm+ , (2.15)

this gives a direct identification of the supergravity solutions with 5-brane intersections.

2.2 Solutions with monodromy

We will now briefly review the construction to add punctures with monodromy to the

solutions without monodromy summarized above. We will exclusively focus on punctures

with D7-brane monodromy in this paper, and refer to [22] for the more general case.

Note, however, that with no restrictions on the residues at the poles on ∂Σ, the case

of punctures with generic (commuting) parabolic SL(2,R) monodromies can be obtained

straightforwardly from the results presented here by global SL(2,R) transformations. In

that sense the restriction to D7-brane monodromy is without loss of generality.

In addition to the parameters for the solutions without monodromy, a solution with

D7-brane punctures depends on the loci of the punctures, wi, i = 1, . . . , I , a real number

ni for each puncture and a phase γi specifying the orientation of the branch cut. From

this data one constructs a function f , which encodes the branch points and branch cut

structure, via

f(w) =

I∑
i=1

n2
i

4π
ln

(
γi
w − wi
w − w̄i

)
. (2.16)

With the help of this function and Y ` ≡ Z`+ − Z`−, the locally holomorphic functions for a

solution with monodromy are expressed as

A± = A0
± +

L∑
`=1

Z`± ln(w − p`) +

∫ w

∞
dz f(z)

L∑
`=1

Y `

z − p`
, (2.17)

again with Ā0
± = −A0

∓. The contour for the integration is chosen such that it does not

cross any of the branch cuts. The regularity constraints that the parameters have to satisfy

for the solutions with D7-brane monodromy are

0 = 2A0
+ − 2A0

− +
L∑
`=1

Y ` ln |wi − p`|2 , i = 1, · · · , I , (2.18)

0 = 2A0
+Yk− − 2A0

−Yk+ +
∑
` 6=k

Z [`,k] ln |p` − pk|2 + Y kJk , k = 1, · · · , L . (2.19)
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With Sk ⊂ {1, · · · , I} denoting the set of branch points for which the associated branch

cut intersects the real line in the interval (pk,∞), Jk is given by

Jk =
L∑
`=1

Y `

[∫ pk

∞
dxf ′(x) ln |x− p`|2 +

∑
i∈Sk

in2
i

2
ln |wi − p`|2

]
. (2.20)

The residues of the differentials of (2.17) at the poles are given by

Y`± = Z`± + f(p`)Y
` . (2.21)

It is these residues that translate to the charges of the external 5-branes and replace the

Z`+ in (2.15), resulting in

(q1 − iq2)Q =
8

3
Ym+ . (2.22)

3 Match to probe D7 branes and κ-symmetry

In this section we study probe D7 branes embedded into the solutions reviewed in section 2,

subject to the requirement that they preserve all bosonic and fermionic symmetries of the

background. This is motivated by the fact that the solutions with and without punctures

discussed in section 2 are both invariant under SO(2, 5)⊕ SO(3) and sixteen supersymme-

tries. The requirement to preserve the bosonic symmetries forces the D7-branes to wrap

the entire AdS6×S2 part of the geometry, and the entire embedding is therefore character-

ized by the point at which the D7-branes are localized in Σ. The choice of coordinates on

AdS6 is irrelevant for the analysis, and we will therefore leave it general. The worldvolume

metric induced by the string-frame background metric on the D7-brane reads

g = f̃6(w, w̄)2ds2
AdS6

+ f̃2(w,wb)2ds2
S2 , (3.1)

where the tilde denotes that the radii are in string frame. The pullback of the ten-

dimensional frame to the D7-brane, Ea, is given by

Em = f̃6ê
m , m = 0, . . . , 5 ,

Ei = f̃2ê
i , i = 6, 7 ,

E8 = E9 = 0 , (3.2)

where êm and êi denote the canonical frames for AdS6 and S2, respectively. The sym-

metry requirement constrains the field strength of the worldvolume gauge field, F , to be

proportional to the volume form of S2, and we can thus parametrize it as

F = K volS2 , (3.3)

where volS2 is the canonical volume form on S2 of unit radius and K is a real constant to

be solved for for each supersymmetric embedding.

– 8 –
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3.1 κ-symmetry and SU(1, 1)/U(1)

The supersymmetries preserved by a probe brane embedding are those generated by back-

ground Killing spinors ε that are compatible with the κ-symmetry condition

Γκε = ε , (3.4)

where Γκ is a projector that depends on the embedding and has been constructed in [25–27].

The condition will provide constraints on the background fields, that single out the locations

where probe branes can be added while preserving supersymmetry. The explicit expression

for Γκ is given by

Γκ =
1√

det(1 +X)

∞∑
n=0

1

2nn!
γj1k1...jnknXj1k1 . . . XjnknJ

(n)
(p) , (3.5)

where the γµ ≡ EaµΓa are the pullback of the background Clifford algebra generators to

the 7-brane worldvolume, Xi
j ≡ gikFkj , g is the metric induced on the worldvolume by

the string-frame background metric, and F is defined in terms of the worldvolume field

strength F and the background NS-NS two-form field B2 as

F = F −B2 . (3.6)

For J
(n)
(p) we will use the conventions for complex spinors as spelled out in section 2.2 of [32],

such that

J
(n)
(p) ε = i(−1)(p−1)/2

{
Γ(0)ε n+ (p− 3)/2 even

C
(
Γ(0)ε

)?
n+ (p− 3)/2 odd

, (3.7)

with Γ(0) given by

Γ(0) =
1

(p+ 1)!
√
− det g

εi1...ip+1γi1...ip+1
. (3.8)

We note in particular that Γκ is not a C-linear operator, which will play a role shortly.

A crucial subtlety in the formulation of the κ-symmetry conditions in the backgrounds

we are interested in arises due to the presence of non-trival axion-dilaton backgrounds. The

κ-symmetry conditions derived in [25–27] and the supergravity solutions in [5–7, 22] are

both formulated in terms of the physical axion and dilaton fields. This amounts to passing

from the formulation of type IIB supergravity in [28, 29], with linear SU(1, 1) action and

U(1) gauge symmetry, to gauge-fixed versions. In the notation used in section 2 of [5], the

covariant formulation in particular involves a complex one-form P , which is constrained by

Bianchi identities and transforms under the U(1) as

P → e2iθP . (3.9)

Crucially for the κ-symmetry analysis, the generators of (local) supersymmetries transform

under this U(1) as

ε→ eiθ/2ε . (3.10)

– 9 –
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Expressing P and Q in terms of physical fields was done in [5] by the following choice for P

P =
dB

1− |B|2
, B =

1 + iτ

1− iτ
. (3.11)

In contrast, as discussed in section 3 of [26], the expression used for the derivation of the

κ-symmetry condition is

Pκ =
dτ

τ̄ − τ
. (3.12)

These two choices are related by a U(1) transformation as follows

P = e2iθκPκ , e2iθκ =
1 + iτ̄

1− iτ
. (3.13)

Consequently, the background Killing spinors used in the κ symmetry condition have to

be transformed according to (3.10) to get the condition in the conventions used for the

supergravity solutions. Since Γκ is in general not a C-linear operator, this modifies the

condition in a non-trivial way. We multiply (3.4) by eiθκ/2, and may then state the con-

verted condition as follows: the supersymmetries preserved by a probe brane embedding

in the solutions of [5–7, 22] are those generated by Killing spinors compatible with

Γκε = ε , (3.14)

where Γκ is as given in (3.5) and

J
(n)
(p) ε = i(−1)(p−1)/2

{
Γ(0)ε n+ (p− 3)/2 even

eiθκC
(
Γ(0)ε

)?
n+ (p− 3)/2 odd

, (3.15)

with Γ(0) as given in (3.8) and ε in (3.14) referring to spinors in the supergravity conventions

of [5–7, 22]. We note that the phase eiθκ occured for similar reasons in the (re)definition

of the three-form field in [33].

3.2 BPS equations for D7-branes

We now turn to the specific case of probe D7 branes wrapping AdS6×S2. We identify the

NS-NS two-form field B2 and the R-R two-form potential C(2) with the real and imaginary

parts of the complex two-form parametrized by C as follows,

B2 + iC(2) = C volS2 . (3.16)

With the form of F in (3.3) we then have

F = F volS2 , F = K − Re(C) . (3.17)

The sum in (3.5) therefore terminates at n = 1. From (3.15) we have

J
(0)
(7) ε = −iΓ(0) , J

(1)
(7) ε = −ieiθκC

(
Γ(0)ε

)?
, (3.18)
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We have thus all the ingredients to explicitly evaluate the projection condition in (3.14).

For the particular embedding where the D7-branes wrap AdS6 × S2, we have

Γ(0) = Γ01234567 , (3.19)

where Γa are the ten-dimensional Clifford algebra generators, explicit indices 0, . . . , 5 are

frame indices on AdS6 and 6, 7 are frame indices on S2. Moreover,

1

2
γijXij = γ67X67 = Γ67f̃−2

2 F , (3.20)

where, following the notation in [7], the tilde on f2 denotes that it is the radius of S2 in

string frame. Finally, √
det(1 +X) =

√
1 + f̃−4

2 F2 . (3.21)

Using (3.19), (3.20), (3.21), as well as C2 = 1 and CΓa = (Γa)?C, we find

Γκε =
−i√
f̃4

2 + F2
Γ01234567

(
f̃2

2 ε+ eiθκFΓ67C−1ε?
)
. (3.22)

Noting that raising all indices in Γ01234567 produces a sign, and using (2.11), we thus find

that the projection condition (3.14), after multiplying by
√
f̃4

2 + F2, evaluates to∑
η1η2

χη1η2 ⊗
[
f̃2

2 ζ−η1−η2 + ieiθκF ? ζ−η1η2 −
√
f̃4

2 + F2ζη1η2

]
= 0 . (3.23)

In order for the embedding to not break any supersymmetry, the term in square brackets

has to vanish for all combinations of η1 and η2, and we thus arrive at

f̃2
2 ζ−η1−η2 + ieiθκF ? ζ−η1η2 −

√
f̃4

2 + F2ζη1η2 = 0 . (3.24)

Using the explicit parametrization in (2.8), we immediately find that the conditions are

not independent, but rather that imposing the equation to be satisfied for one combination

of η1 and η2 implies the remaining conditions.

3.3 Solutions

To solve the BPS equations (3.23), we fix η1 = η2 = +. With the spinors ζ in (2.8) and ?ζ

defined just above (2.8), the equation to solve becomes

f̃2
2

(
−ᾱ
β

)
− ieiθκF

(
β̄

α

)
−
√
f̃4

2 + F2

(
ᾱ

β

)
= 0 . (3.25)

We note that setting F = 0 does not lead to consistent solutions unless α = 0, and

we therefore assume F 6= 0 from now on. Taking the complex conjugate of the second

equation, the system we have to solve is(
f̃2

2 +

√
f̃4

2 + F2

)
ᾱ+ ieiθκFβ̄ = 0 ,(

f̃2
2 −

√
f̃4

2 + F2

)
β̄ + ie−iθκFᾱ = 0 . (3.26)
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Multiplying the second equation by (−i)eiθκF−1
(
f̃2

2 +
√
f̃4

2 + F2
)

, which is manifestly

non-zero if F 6= 0, reproduces the first equation. The two equations are thus not linearly

independent and we are left with only one complex or two real conditions. From either of

the two equations, and reality of f̃2 and F, we conclude that e−iθκᾱ/β̄ must be imaginary

or, more explicitly,

eiϑ =
ᾱβ

αβ̄
= −e2iθκ , (3.27)

where we recognized the combination of Killing spinor components as the phase eiϑ intro-

duced in section 4.3 of [5]. Eliminating the square root between the two equations in (3.26)

yields

2f̃2
2 ᾱβ̄ + iF

(
eiθk β̄2 + e−iθk ᾱ2

)
= 0 , (3.28)

which is a real equation once (3.27) is satisfied. The BPS equations are thus (3.27), which

determines the position of the D7 brane, and (3.28) which determines the flux as

F =
2if̃2

2 ᾱβ̄

eiθk β̄2 + e−iθk ᾱ2
. (3.29)

To evaluate the constraint on the position of the D7-brane in (3.27) more explicitly, we

follow through the changes of variables in eq. (4.22) and (4.27) of [5]. This yields

eiϑ =
eiψ − λR
1− eiψλ̄R

=
L̄ − λLR
L − λ̄RL̄

, (3.30)

where we used that eiψ = L̄/L (see (4.36) and (4.48) in [5]) to obtain the second equality.

Finally, using κ−L̄ = −∂wG as well as κ± = ∂wA± and λ = κ+/κ− we can state the

κ-symmetry condition (3.27) as

eiϑ =
∂w̄Ā−∂wG −R∂wA+∂w̄G
∂wA−∂w̄G −R∂w̄Ā+∂wG

!
= −1 + iτ̄

1− iτ
= −e2iθκ . (3.31)

This is one real condition on the complex position of the D7-brane in Σ, and we thus expect

a one-parameter family of solutions. We may evaluate this condition more explicitly by

using that, from the definition of B as B = (1 + iτ)/(1− iτ), we have

1 + iτ̄

1− iτ
=

1 +B

1 + B̄
. (3.32)

The condition in (3.31) can thus be reformulated as(
∂w̄Ā−∂wG −R∂wA+∂w̄G

)
(B + 1) +

(
∂wA−∂w̄G −R∂w̄Ā+∂wG

) (
B̄ + 1

)
= 0 . (3.33)

Using the definition of B in (2.6) as well as the explicit expressions for ∂wG and ∂w̄G in

terms of A± and ∂wA± that follow from the definitions in (2.2), this evaluates to

(1 +R)κ2
(
A+ + Ā+ −A− − Ā−

)
= 0 . (3.34)
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Since R ≥ 0 the first factor does not vanish. For κ2 → 0, the denominators in the original

equation (3.31), by which we have multiplied, vanish, and a more careful treatment is

needed. It shows that κ2 = 0 is actually not a solution. This leaves the case where the

combination of A± and their conjugates in the last factor of (3.34) has to vanish. The

latter condition, using Ā0
± = −A0

∓ and Z̄`± = −Z`∓, evaluates to

2A0
+ − 2A0

− +

L∑
`=1

(Z`+ − Z`−) ln |w − p`|2 = 0 . (3.35)

This is our final form for the κ-symmetry condition restricting the position of the probe

D7-brane. We discuss the field equations derived from the DBI action with Wess-Zumino

terms in appendix B, and have verified for several explicit examples that the BPS equations

imply the field equations.

3.4 Relation to backreacted solutions

The BPS condition for the probe D7-brane in (3.35) can be directly related to the regularity

conditions for the warped AdS6 solutions with monodromy in (2.18) and (2.19). The

regularity conditions in (2.18) and (2.19) constrain the parameters for solutions with an

arbitrary number of punctures and relative weights ni, and in particular also for the case

that we consider one puncture with n ≡ n1 infinitesimally small. To recover the probe

analysis, we take the residues of the seed solution, Z`±, as given (with the constraint that

they sum to zero) and determine the remaining parameters as formal power series in n

from the regularity conditions. The ansatz for the parameters is

A0
± = A0

±,0 + n2A0
±,2 + . . . , p` = p`,0 + n2p`,2 + . . . ,

wi = wi,0 + n2wi,2 + . . . . (3.36)

At zeroth order in n, the conditions in (2.19) then reduce to the regularity conditions

for a solution without monodromy, as given in (2.14). The conditions in (2.18), on the

other hand, reduce precisely to the form of the κ-symmetry condition in (3.35). This

independently supports the identification of the punctures with 7-branes.

4 S5 partition function with backreacted 7-branes

In this section we turn to solutions with fully backreacted 7-branes and study the sphere

partition functions of the dual SCFTs. We will focus on a class of 3-pole solutions and a

class of 4-pole solutions. Implications for the relation to 5-brane webs will be discussed in

section 5.

4.1 Sphere partition function

We now compute the sphere partition functions of the dual SCFTs for the class of 3-

pole solutions illustrated in figure 1(a). Since the SCFT is defined in odd dimensions,

the renormalized sphere partition function is expected to be equal, up to a sign, to the

finite part of the entanglement entropy for a ball-shaped region [30]. The computation
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of the entanglement entropy is technically simpler and we will therefore make use of this

relation. The entanglement entropy is computed holographically using the Ryu-Takayanagi

prescription [34], which in our case yields

SEE =
Area(γ8)

4GN
, (4.1)

where γ8 is the co-dimension two minimal surface in the 10-dimensional bulk anchored at

the boundary of Poincaré AdS6 at the location of the entangling surface. It wraps Σ and

S2 entirely. As shown in detail in [35], eq. (4.1) can be evaluated in terms of the data

characterizing the warped AdS6 solutions as

SEE =
1

4GN
VolS2 · J ·Area(γ4) , J =

8

3

∫
Σ
d2w κ2G . (4.2)

Area(γ4) is the area of the co-dimension two minimal surface in AdS6, anchored at the

entangling surface on the conformal boundary. This area is infinite and needs to be regu-

larized. The finite part for a ball-shaped region, which is the relevant term for computing

the sphere partition function, is given by

Arearen(γ4) =
2

3
VolS3 . (4.3)

VolS2 and VolS3 are the volumes of S2 and S3 of unit radius, respectively, and given by

VolS2 = 4π and VolS3 = 2π2. Let us now focus on the properties of J . There are two

different kinds of singularities that could potentially affect the evaluation of the integral:

the presence of poles on ∂Σ and the punctures inside Σ. As shown in [35], the integrand

of J close to a pole behaves as O(r| ln r|), with r a radial coordinate centered on the pole,

which is integrable. This leaves the puncture. As shown in [22], the asymptotic behavior

of κ2 and G near the puncture is given by

κ2 ≈ O(ln r) , G ≈ O(1) , (4.4)

where r is again a radial coordinate centered on the puncture. With an additional factor

of r coming from the measure of integration in radial coordinates, the integrand near the

puncture behaves as O(r| ln r|), and is again integrable. We note that both, G and κ2, are

single-valued functions. In addition, they both vanish at the boundary. We can thus use

the relation κ2 = −∂w̄∂wG and integration by parts to obtain

J =
8

3

∫
Σ
d2w |∂wG|2 . (4.5)

This saves an extra integration to obtain G and can thus be evaluated more efficiently.

The behavior of the entanglement entropy and thus the partition function under overall

rescalings of the charges can be obtained from a general scaling analysis, similar to the one

carried out in section 3 of [35] for solutions without monodromy. The new aspect here of

course is the presence of the punctures. From the explicit expression in (2.17), one can see

that A± transform homogeneously under the following rescaling of the charges

Z`± → aZ`± , ni → ni , a ∈ R . (4.6)
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That is, the 5-brane charges are rescaled but the 7-brane monodromies are unchanged.

The regularity conditions in (2.18), (2.19) are invariant if A0
± → aA0

± with the p` and wi
unchanged. We thus find a solution again but with A± → aA±. This implies ∂wG → a2∂wG
and thus

SEE → |a|4SEE . (4.7)

This scaling in particular holds for a ball-shaped region and therefore also applies for the

sphere partition function. For the case of no punctures this reduces to the scaling derived

in [35]. The punctures therefore do not alter the scaling behavior, provided that they are

not scaled with the 5-brane charges.

4.2 Dependence on branch cut orientation

In this section we will show that, for generic solutions, the partition function is invariant

under changes of the orientation of the branch cut, as long as no poles are crossed. More

specifically, we will establish two results. The first one is that varying the orientation

of the branch cut with fixed Z`+ does not change the partition function. Keeping the

Z`+ fixed, however, means that the actual 5-brane charges at the poles, given by the Y`+
via (2.22), change. The second result shows that this change amounts to an overall SL(2,R)

transformation, which leaves the puncture and the 7-brane charge invariant. One may

therefore compensate it with the inverse SL(2,R) transformation, under which the partition

function is, again, invariant. Together these results imply that the partition function is

invariant under changes of the orientation of the branch cut with fixed charges of the

external 5-branes, Y`+.

To show that the partition function is invariant under changes of the branch cut ori-

entation for fixed Z`+, we set up an infinitesimal shift of one of the γi as follows,

γi → γi(1 + iδγ) . (4.8)

Since γi is a phase, δγ is real. Under this change, we have

f(w)→ f(w) +
in2
i δγ

4π
. (4.9)

The locally holomorphic functions and their differentials transform as

∂wA± → ∂wA± +
in2
i δγ

4π
(∂wA+ − ∂wA−) ,

A± → A± +
in2
i δγ

4π
(A+ −A−) . (4.10)

One may have allowed for an additional shift in A± of order δγ, which could potentially

be required to solve the regularity conditions. We will now show that this transformation

without extra shift is the correct one to obtain a regular solution. The regularity conditions
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were given in (2.18), (2.19) and we repeat them here for convenience

0 = 2A0
+ − 2A0

− +
L∑
`=1

Y ` ln |wi − p`|2 , (4.11)

0 = 2A0
+Yk− − 2A0

−Yk+ +
∑
6̀=k
Z [`,k] ln |p` − pk|2 + Y kJk . (4.12)

The transformation of A± implies the following change in the constant part

A0
± → A0

± + δA0
± , δA0

± =
in2
i δγ

4π
(A0

+ −A0
−) . (4.13)

The last term on the right hand side in (4.11) is independent of γ, since Y ` is defined in

terms of the Z`±. The shift in the constants, δA± drops out in the difference A0
+ − A0

−,

and the equation is therefore satisfied to linear order in δγ. For (4.12), we note that Jk,

defined in (2.20), is manifestly invariant under infinitesimal changes in the orientation of

the branch cut, as long as no poles are crossed. We furthermore notice that the Y`± change

as follows,

Y`± → Y`± +
in2
i δγ

4π
Y ` . (4.14)

Together with (4.13) this shows that (4.12) is also satisfied to linear order in δγ. The entire

change due to the shift in the orientation of the branch cut is therefore captured by (4.10),

which may be written as an SL(2,R) transformation

A+ → uA+ − vA− , u = 1 + v ,

A− → −v̄A+ + ūA− , v =
in2
i δγ

4π
. (4.15)

Since G is invariant under SL(2,R) transformations, and the same is true for ∂wG, the

integrand in (4.5), which directly yields the partition function, is invariant under SL(2,R).

We have thus shown that the partition function is invariant under changes of the orientation

of the branch cut with fixed Z`+, as long as no poles are crossed.

Finally, we note that the transformation of the actual residues at the poles correspond-

ing to the physical 5-brane charges, as given in (4.14), corresponds precisely to the SL(2,R)

transformation in (4.15). Performing the inverse SL(2,R) transformation therefore yields

a solution with unmodified Y`+ but shifted orientation of the branch cut. In particular,

the 7-brane charge is invariant under this SL(2,R) transformation. The argument that the

integrand in (4.5) is invariant under SL(2,R) transformations again applies, and we have

thus shown that the partition function is invariant under changes of the orientation of the

branch cut, as long as no poles are crossed, while keeping the Y`+ fixed.

4.3 3-pole solutions with D5, NS5 and D7

We now turn to explicit solutions and start with a class of 3-pole solutions discussed already

in [22], where one of the external 5-brane stacks corresponds to D5 branes. The poles and
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overall normalization σ are chosen as

p1 = 1 , p2 = 0 , p3 = −1 , σ =
iN

s1
. (4.16)

The regularity conditions in (2.18) and (2.19) are satisfied by the choices

A0
+ = iN ln 2 +

1

2
J1 , wi = iαi , αi ∈ R+ , (4.17)

which in particular implies J1 = J3. This solves the regularity conditions for an arbitrary

number of punctures, but we will focus on the case of a single puncture with D7-brane

monodromy in the following. With α ≡ α1 and n ≡ n1 we thus have

f(w) =
n2

4π
ln

(
γ
w − iα
w + iα

)
, α ∈ R+ . (4.18)

With s = (s1 − 1)/(2s1), the residues are given by

Y1
+ = −iN [s + (s− s̄)f(p1)] , Y2

+ = iN , Y3
+ = iN [s− 1 + (s− s̄)f(p3)] . (4.19)

That is, the pole p2 corresponds to D5 branes, while the charges of the other two poles

depend on the position of the puncture, the orientation of the branch cut and the remaining

parameters.

We will solve for the parameters such that the residues take the form

Y1
+ = M , Y2

+ = iN , Y3
+ = −M . (4.20)

That is, a configuration with two poles corresponding to NS5 branes, one pole corresponding

to D5 branes and one puncture corresponding to D7 branes. The setup is illustrated in

figure 1(a). From Y1
+ = −Y3

+ and Y1
+ = M , we conclude, respectively,

(s− s̄) (f(p3)− f(p1)) = 1 ,

s + (s− s̄)f(p1) = im , m =
M

N
. (4.21)

Naively, Y1
+ = −Y3

+ and Y1
+ = M are two complex constraints on the five remaining

parameters n, α, s and γ. However, since f is imaginary on the real line, the first equation

in (4.21) is purely real, and we end up with three real constraints. We thus expect a two-

parameter family of solutions. Eq. (4.21) can be solved for s, which leaves only one real

constraint on the parameters associated with the puncture, n, α and γ. The solution for s

and the constraint are, respectively,

s = im(1− 2f(p1)) , f(p1)− f(p3) =
i

2m
. (4.22)

We note that, with this result for s, the zero s1 is in the upper half plane, as required,

if and only if m > 0. In the following we will investigate the dependence of the sphere

partition function of the dual SCFTs on the parameters associated with the puncture.
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Figure 1. On the left hand side a disc representation of the 3-pole solutions discussed in section 4.3.

The D7 brane can be placed on the horizontal diameter of the disc. On the right hand side a disc

representation of the 4-pole solutions discussed in section 4.5.

4.3.1 Branch cut orientation

We now discuss the orientation of the branch cut in more detail. From section 4.2 we know

that the partition function is independent of the choice of branch cut orientation as long

as no poles are crossed. This still leaves the option for solutions with the same 5-brane and

7-brane charges, but which can not be deformed into each other without having a branch

cut cross a pole.

Addressing this issue requires a careful treatment of the branch cuts, and to make that

explicit we rewrite the constraint on the right hand side of (4.22) as follows∫
C(p3,p1)

dz ∂zf(z) =
i

2m
, ∂zf(z) =

in2

4π

2α

z2 + α2
, (4.23)

where C(p3, p1) denotes a contour from p3 to p1 that does not cross the branch cut in f .

The choice of contour depends on whether the branch cut in f intersects the boundary

between p1 and p3 or not, and the choices are illustrated in figure 2. If the branch cut does

not intersect the boundary between p1 and p3, we can deform the contour to the segment

of the real axis connecting p3 to p1 without crossing the puncture. If, on the other hand,

the branch cut does intersect the boundary between p1 and p3, deforming the contour to

the segment of the real axis between p3 and p1 picks up the residue at the pole z = iα. We

thus find the following constraint

i

2m
= −2πiδγ Resz=iα(∂zf) +

∫ p1

p3

dxf ′(x) , (4.24)

where we defined δγ = 0 if the branch cut does not intersect the boundary between p3 and

p1, and δγ = 1 if it does. Evaluating the residue and the integral along the real line yields

π

2mn2
= −π

2
δγ + cot−1α . (4.25)

The left hand side is positive, in view of the fact that m > 0 is required for Im(s1) > 0.

The right hand side therefore has to be positive as well for a solution to exist. For α ∈ R+,
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Figure 2. Integration contours for the constraint in (4.23), depending on whether or not the

branch cut intersects the boundary in the interval (p3, p1).

however, we have 0 < cot−1α < π/2. The right hand side is therefore negative if the branch

cut intersects the boundary between p1 and p3, and the constraint can not be solved. The

remaining option is to have the branch cut intersect the boundary outside of the interval

(p3, p1), such that δγ = 0. In that case a solution to the constraint exists provided that

mn2 > 1, and it is given by

α = cot
( π

2mn2

)
. (4.26)

This solution is, in particular, independent of γ.

We thus find the following picture. Solving the regularity conditions for given 5-brane

charge assignment, encoded by the Y`+, and given 7-brane charge, encoded by n2, imposes

a ‘topological’ constraint on the orientation of the branch cut. In the sense that it fixes

between which poles the branch cut intersects the boundary, but not where exactly.

4.3.2 Fixed orientation of the branch cut

As shown in section 4.2, the partition function is invariant under changes in the orientation

of the branch cut, as long as no poles are crossed, and as shown in the previous section

the segment of the boundary in which the branch cut intersects intersects ∂Σ is fixed.

We now focus on the remaining dependence and keep the orientation of the branch cut,

parametrized by γ, fixed. We choose it to extend in the positive imaginary direction,

such that

γ = −1 , s1 =
i

2m
. (4.27)

This is compatible with the discussion in the previous section and the solution for α was

given in (4.26).

As independent parameters we take M , N and n2, while α is fixed by (4.26). To

exhibit the functional dependence of the partition function, it is convenient to extract the

overall scaling of the 5-brane charges. We analyze the partition function as a function of

m defined in (4.21), which is the ratio of NS5 and D5 charge, leaving N as the overall scale

of the 5-brane charges, and

n =
1

mn2
, (4.28)
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Figure 3. On the left hand side a plot of J0, which yields the partition function for the 3-pole

solutions via (4.29). On the right hand side similar plots for J1 and J2, which yield the partition

functions of the 4-pole solutions via (4.45).

which is inspired by the form of α in (4.26). The dependence of the partition function on

the overall scale of the 5-brane charges, given by N , is quartic, as shown in (4.7). Since

the location of the puncture depends on n only, the combination Y `f(w), which appears

in the definition of A± and Jk, is independent of m. The A± can therefore be split into

an m-independent part and a part linear in m. Organizing the terms in J according to

their m-scaling shows that only the linear part is non-vanishing, and we thus find that J
is given by a function of n multiplied by an overall factor of N2M2. Extracting also an

overall numerical factor, we parametrize it as

J = 224πζ(3)N2M2J0(n) . (4.29)

A plot of J0(n) is shown in figure 3(a). The entanglement entropy for a ball shaped

region, and thus the sphere partition function, is given by (4.2) with (4.3) and (4.29). The

normalization in (4.29) is chosen such that J0 = 1 reproduces the partition function of a

four-pole solution without monodromy, corresponding to an intersection of D5 and NS5

branes, as discussed in [35].

4.4 Turning a puncture into a pole

We now discuss how a 4-pole solution with D5 and NS5 branes can be recovered from the

3-pole solutions with D5 and NS5 branes and a puncture. To this end, we start from the

configuration with fixed orientation of the branch cut, as discussed in section 4.3.2. Recall

that we have three poles at

p1 = 1 , p2 = 0 , p3 = −1 , (4.30)

with residues given by

Y1
+ = M , Y2

+ = iN , Y3
+ = −M . (4.31)
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These residues could be realized by choosing the orientation of the branch cut as γ = −1,

and the position of the branch cut α related to the number of 7-branes at the puncture,

parametrized by n2, as in (4.26), such that

f(w) =
n2

4π
ln

(
iα− w
iα+ w

)
, α = cot

( π

2mn2

)
. (4.32)

We will consider this family of solutions as parametrized by the location of the branch

point, α, and study the limit α→∞. The relation on the right hand side in (4.32) can be

solved straightforwardly for n2 and we can then expand for large α, which yields

n2 =
πα

2m
+O(α−1) , f(w) =

iw

4m
+O(α−1) . (4.33)

In particular, to realize a family of solution with fixed Y`+ as given in (4.31), the number

of D7-branes at the puncture has to grow with α as the puncture is moved towards infinity

(which is a regular point of the boundary of the disc). Due to this growing behavior, the

function f remains non-trivial in the limit.

We will now show that, as α→∞, the differentials ∂wA± approach those of a 4-pole

solution, with the three poles on the boundary of Σ that were present already for finite

α, and an extra pole at infinity. The general form of the differentials for a solution with

monodromy can be obtained straightforwardly from (2.17), which yields

∂wA± =

L∑
`=1

Z`±
w − p`

+ f(w)

L∑
`=1

Y `

w − p`
. (4.34)

With the limiting behavior of f in (4.33) and expressing Z`± in terms of Y`± using the

definition in (2.21), we find

∂wA±
∣∣
α→∞ =

L∑
`=1

1

w − p`

(
Y`± − f(p`)Y

`
)

+
iw

4m

L∑
`=1

Y `

w − p`
. (4.35)

For the particular family of solutions we are considering here, we have Y 2 = 0 and Y 1 =

−Y 3. Straightforward evaluation then shows that the terms proportional to Y ` cancel and

the differentials reduce to

∂wA±
∣∣
α→∞ =

L∑
`=1

Y`±
w − p`

. (4.36)

That is, the differentials for a solution with poles at (4.30) with residues given in (4.31).

However, since the sum over Y`± does not vanish, we also have a pole at infinity, with

residue given by3

Y4
±
∣∣
α→∞ = −

3∑
`=1

Y`± = −iN . (4.37)

3Solutions without monodromy and a pole at infinity have been discussed in more detail in [35].
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We can thus explain the limiting behavior of the partition function computed in sec-

tion 4.3.2: as α → ∞, we have n → 0. As explained below (4.29), the partition function

of a four-pole solution with D5 and NS5 poles with residues iN and M , respectively, is

recovered from (4.29) for J0 = 1. From figure 3(a) we indeed see that

lim
n→0
J0(n) = 1 , (4.38)

as we expect from the fact the the three-pole solution with puncture reduces to a four-pole

solution without puncture in that limit.

4.5 4-pole solutions with D5, NS5 and D7

In this section we discuss a class of 4-pole solutions where the physical 5-brane charges

correspond to D5 and NS5 branes. We will realize the residues as follows,

Y1
+ = M , Y2

+ = iN1 Y3
+ = −M Y4

+ = −iN2 . (4.39)

That is, an intersection of D5 branes and NS5 branes, where the D5 charge is not con-

served. The setup is illustrated in figure 1(b). To realize these residues while keeping the

expressions simple, it is convenient to move one pole off to infinity. We describe the details

of this procedure in appendix A. The regularity conditions in appendix A, with p4 → −∞,

can be solved by fixing the remaining three poles as

p1 = 1 , p2 = 0 , p3 = −1 , (4.40)

and the branch point and orientation of the branch cut as

γ = −1 , wi = iαi , αi ∈ R+ . (4.41)

Note that this implies that the branch cut intersects the boundary of Σ (of which the point

at infinity in the upper half plane is a regular point), directly on a pole. This turns out to

be of little consequence in this particular example, since the pole which is intersected by

the branch cut has a purely imaginary residue. In particular, the residue Y4
± is well defined

and there are no subtleties in formulating the regularity conditions. We will come back to

a more general discussion at the end of section 5. The choice in (4.41) immediately implies

f(p1) = −f(p3), and the branch point conditions (A.17) are satisfied if Ã0
+ = Ã0

−. Using

this relation, together with J̃1 = J̃3, in the remaining conditions (A.18) shows that they

reduce to just one condition fixing Ã0
+ to

Ã0
+ =

1

2
J̃1 − 4f(p3)M ln 2 . (4.42)

It remains to realize the residues (4.39) by an appropriate choice of s1, s2 and σ, together

with a relation between α and n. We choose

α = cot
(πq

2

)
, q =

∆N

n2M
, ∆N = N1 −N2 , (4.43)
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and the zeros s1, s2 as the two roots of the quadratic equation

0 = N2s
2 − 2iMs−N1 , (4.44)

while σ̃ = iN2. With (A.16) and (2.21), this indeed realizes the residues in (4.39). Note

that we need 0 < ∆N < n2M for the branch point to be in the upper half plane. Moreover,

for the zeros s1, s2 to be in the upper half plane, we need N2/M > 0 and N1N2 > 0. In

other words, M , N1 and N2 need to all have the same sign.

The quantity J which yields the entanglement entropy and thus the sphere partition

function via (4.2) can now be evaluated straightforwardly, and we parametrize it as follows

J = 224πζ(3)N2
1M

2

(
1− J1(q)

∆N

N1
+ J2(q)

(∆N)2

N2
1

)
. (4.45)

The functions J1(q) and J2(q) are shown in figure 3(b). This class of solutions allows for

some interesting limiting cases, which we will discuss now.

For N1 = N2 and n = 0, we expect the solution to reduce to a 4-pole solution without

monodromy. To realize this limit, we set n2 = x and N1 − N2 = x2, and then take the

limit x → 0+. Taking the limit in this way ensures that the branch point moves to +i∞,

as can be seen from (4.43). This eliminates the branch cut, as desired for recovering a

solution without monodromy. The partition function for the solution without monodromy

was discussed in [35], and we recover it straightforwardly from (4.45) since the term in the

round brackets reduces to 1.

ForN2 → 0, keeping all other parameters finite, we recover the 3-pole solution discussed

in more detail in section 4.3, with the parameters N1 → N , q → n. From eq. (4.44) one

can see that one of the zeros moves to +i∞ in this limit, annihilating the pole and thus

leading back to a 3-pole solution. The partition function has to reduce to the partition

function of the 3-pole solution in that limit, which amounts to the relation

1− J1(n) + J2(n) = J0(n) . (4.46)

The curves shown in figure 3(a) and 3(b) indeed satisfy this relation.

5 Implications for the brane web picture

As discussed in more detail in [6, 7], the AdS6 solutions without monodromy have a com-

pelling interpretation as supergravity description of 5-brane intersections. This clear in-

terpretation is facilitated by the very natural mapping between the parameters of the

supergravity solutions and the parameters fixing a 5-brane intersection: once the charges

of the external 5-branes are fixed, supersymmetry completely fixes an intersection, and

correspondingly a supergravity solution. With the introduction of punctures into the su-

pergravity solutions and 7-branes into the 5-brane picture, this mapping of parameters

becomes more involved. While there is still a clear relation of the supergravity parameters

to the brane charges in the string theory picture (the 7-brane charge is given directly by

n2 while the physical 5-brane charges are given by the Y`± via (2.22)), the process of en-

gineering a supergravity solution that realizes a given set of charges is more complicated.
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Moreover, a general analysis of the number of parameters alone is not sufficient anymore

to completely specify the map between supergravity solution and brane webs.

The partition functions of the dual SCFTs may be used to discriminate different in-

terpretations for the parameters of the supergravity solutions, since the partition functions

are expected to agree for solutions that describe physically equivalent brane webs which

realize the same SCFT. In the following we will discuss the mapping of parameters between

supergravity solutions and brane webs, and the results on the partition functions in that

context. As shown in [22], the number of free parameters for a solution with L poles and

I punctures is given by

2L− 2 + 3I . (5.1)

2L − 2 parameters naturally arise as a choice of residues, Z`+, of a seed solution, subject

to the constraint that they sum to zero. The three extra parameters per puncture corre-

spond to the 7-brane charge, the location of the branch point on a curve in Σ, and the

orientation of the branch cut. While the charge and orientation of the branch cut have a

clear interpretation in the brane web picture, the freedom to choose a location on Σ may

seem puzzling. A crucial point for the interpretation of the solutions is that, upon adding

punctures, the residues at the poles are modified and given by the Y`± in (2.21) instead

of Z`±, and that it is these modified residues that correspond to physical 5-brane charges.

To address the interpretation of the parameters associated with the puncture, we have for

that reason realized families of configurations with fixed Y`± in section 4.3.

In section 4.3.2 we discussed the case of two NS5 brane poles, one D5 brane pole

and one puncture. For fixed orientation of the branch cut and fixed Y`±, we found a

two-parameter family of solutions, where the 7-brane charge n2 and the location of the

puncture parametrized by α are related as given in (4.26), and the remaining parameter

is the orientation of the branch cut. Fixing a complete set of 5-brane and 7-brane charges

therefore entirely fixes the configuration, up to the choice of branch cut orientation. Upon

varying the position of the puncture one may keep either the 5-brane charges or the 7-brane

charge fixed, but not both. This picture is consistent with the parameter count in (5.1)

as follows. In the presence of 7-branes, the D5-brane charge is not necessarily conserved

at the intersection. Fixing the 5-brane charges given by Y`± in the presence of punctures

therefore fixes 2L− 1 parameters, instead of 2L− 2. For one puncture that leaves two free

parameters, corresponding to the 7-brane charge and the orientation of the branch cut.

For the case of more than one puncture, we expect relative motions of the punctures as

free parameters.

To better understand the remaining parameters for one puncture, we analyzed the

sphere partition function. At fixed 5-brane and 7-brane charges, we found that the partition

function does not depend on infinitesimal changes in the branch cut orientation – at least as

long as no poles are crossed. This is indeed consistent with the brane web picture: changing

the orientation of the branch cut in the example web shown in figure 4(a), without crossing

any external 5-branes, changes the web, which describes a deformation of the SCFT. But

it does not change the conformal limit, in which the web collapses to an intersection at a

point. This would indeed suggest that the partition function of the UV fixed point, which
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(a) (b) (c)

Figure 4. Figure 4(a) shows a possible 5-brane web corresponding to the class of supergravity

solutions illustrated in figure 1(a), with a puncture corresponding to two D7 branes. The brane

web shows a general deformation of the SCFT, not the fixed point. Figure 4(b) and 4(c) show two

options for 5-brane webs with the same external 5-brane charges but 7-branes in a different face of

the web. The web in figure 4(b) is related to the web in figure 4(a) by 7-brane moves, the web in

figure 4(c) is not.

is the theory described by the supergravity solution, should be independent of the precise

orientation of the branch cut as long as it does not cross poles, precisely as we found in

section 4.3.1.

The results on the partition function also allow for conclusions on the interpretation of

the position of the puncture. We assume that the location of the puncture on Σ corresponds

to which face of the web the 7-branes are located in, which naturally becomes a continuous

parameter in the “large-N” limit: with large numbers of external 5-branes, one finds a dense

grid of faces, and the choice of which face the 7-branes are placed in remains meaningful

in the conformal limit. One may then consider two options for supergravity solutions with

the same 5-brane charges but a puncture at different positions:

(i) They are related by literally moving 7-branes within the web, with the corresponding

Hanany-Witten brane creation of 5-brane prongs stretching between the 7-branes and

the 5-branes of the web.

(ii) They correspond to genuinely different brane webs, where the 7-branes are placed

in different faces, without 5-brane prongs stretching between the 7-branes and the

5-branes.

The two options are illustrated for a particular choice of 5-brane web in figure 4. In case (i),

one would expect the 7-brane charge to not vary as the location of the puncture is changed

while keeping the external 5-brane charges fixed, as is clearly borne out by figure 4(b).

The field theory would remain unchanged as the location of the puncture is changed, and

the same would be expected for the S5 partition function of the SCFT described by the

web. In case (ii), one would expect the 7-brane charge that is required to keep the external

5-brane charges fixed to vary as the location of the puncture is varied, as is exhibited in

figure 4(c). The webs would describe genuinely different SCFTs and the partition functions

would be expected to differ. As we found in section 4.3.2, the charge has to be related to the

location of the branch cut in a non-trivial way, as is given in (4.26), to preserve the external
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(a) (b)

Figure 5. Starting from the web shown in figure 4(a) and moving the 7-branes out of the web

along their branch cuts produces 5-brane prongs stretching between the 7-branes and the 5-branes

of the web, with avoided intersections due to the s-rule shown as broken lines.

5-brane charges. Moreover, the dependence of the partition function on the remaining free

parameter is non-trivial, as can be seen explicitly from the plot in figure 3(a). Both of

these results are inconsistent with case (i), but are very well in line with option (ii). Our

results show that solutions with the same 5-brane charges but punctures at different points

in Σ describe genuinely different brane webs and dual SCFTs, and the webs in figure 4(a)

and 4(c) appear as natural brane web realizations of the solutions.

The parametrization of J , which yields the entanglement entropy for a ball shaped

region or equivalently the sphere partition function via (4.2), was chosen in (4.29) such that

J0 = 1 reproduces the partition function for a 4-pole solution with D5-brane poles and

NS5-brane poles with residues M and iN , respectively, as computed in [35]. One might

expect that a solution with 3 poles and a puncture is related to a solution with 4 poles and

no puncture via Hanany-Witten transitions: pulling the D7-brane out of the 5-brane web

produces a D5 brane whenever an NS5 brane is crossed, and one may suspect to get back

to a solution with no puncture but an extra pole in this way. This was described in detail

for an SU(2) web in [15]. However, for brane webs with large N and M , and a D7 brane

in a generic face of the web, we do not expect such a relation. The reason is illustrated in

figure 5: due to the s-rule [16, 24], which states that no two D5 branes ending on the same

7-brane can end on the same NS5 brane while preserving supersymmetry, one would create

avoided intersections in the process of pulling the D7 branes out of the web. These avoided

intersections remain even if the D7-branes are moved off to infinity, and this process does

therefore not lead back to a pure 5-brane web. This explains why the partition functions

for the supergravity solutions computed in section 4.3.2 do in general not agree with that

of a 4-pole solution without puncture.

However, as discussed in section 4.4, we can recover a 4-pole solution without mon-

odromy by moving the puncture along its branch cut towards the boundary of Σ, while

scaling up the 7-brane charge such that the physical 5-brane charges remain invariant. This

limiting procedure can be interpreted in the brane web picture as follows. For a given 7-

brane we can define the notion of a distance to the “boundary of the web” as the number of

5-branes that cross its branch cut. For example, for the 7-branes shown in figure 4(a), this

distance is 2. The limit discussed in section 4.4 can then be interpreted as increasing the
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(a) (b)

Figure 6. Starting from the web shown in figure 4(c), where the branch cut of each 7-brane

is crossed by only one 5-brane, and moving the 7-branes out of the web, produces a pure 5-brane

web with no avoided intersections. Vertically aligning the D7-branes in the web on the right hand

side with the external D5 branes turns the web into an intersection of D5 and NS5 branes. This

deformation corresponds to a change of the flavor masses; the conformal UV fixed point, which is

described by the supergravity solution, remains the same.

number of D7-branes while placing them in faces such that their distance to the “boundary

of the web” decreases. The transition from the web in figure 4(a) to the web in figure 4(c)

gives an example of one step in this limit. The external 5-brane charges are the same for

the two webs, but the distance to the “boundary of the web” is decreased from 2 to 1 in

going from 4(a) to 4(c), while the number of D7 branes is doubled. For a supergravity

solution with a puncture at a generic point on Σ, the distance to the “boundary of the

web” of the corresponding 7-branes will be a generic number greater than one. But as

the puncture is moved along its branch cut towards the boundary of Σ, this number de-

creases, until the 7-branes are eventually separated from the asymptotic region by only one

5-brane. Crossing this remaining 5-brane then produces 5-branes via the Hanany-Witten

effect, with no constraints from the s-rule and no avoided intersections. For the web in

figure 4(c) this step is shown in figure 6. The 7-branes may now be moved off to infinity

and we recover a pure 5-brane intersection. In this particular case that is an intersection

of D5 and NS5 branes. This gives a brane web explanation for the fact that the partition

function of a 3-pole solution with puncture agrees with the partition function of a 4-pole

solution without puncture in the limit of section 4.4.

Finally, we studied a class of 4-pole solutions in section 4.5, which provides a gen-

eralization of the 3-pole solutions. An interesting feature of these solutions is that the

branch cut associated with the puncture intersects the boundary directly at the location

of a pole. A natural interpretation in the brane web picture would be that the branch cut

is located within a stack of external 5-branes, and an example web is shown in figure 7.

In general, having a branch cut intersect a pole introduces subtleties in the supergravity

description: the residue Y`± of the corresponding pole receives a contribution that depends

on the direction from which the pole is approached (the part proportional to f in (2.21)).

While this extra contribution does not seem to obstruct the construction of regular su-

pergravity solutions,4 its interpretation is not entirely straightforward. One may wonder

4Since the combination of the regularity conditions associated with the remaining poles and those as-
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Figure 7. Brane web realization with the charges of a 4-pole solution with one puncture, as

discussed in section 4.5. The number of D5 branes on the left hand side is larger than the number

of D5 branes on the right hand side, corresponding to N1 > N2 in the supergravity solution.

whether it should be possible to resolve the 5-branes within a given pole in the super-

gravity approximation, i.e. whether there should be a parameter specifying between which

branes exactly the branch cut is located. For the special case of a stack of D5 branes,

one may move the branch cut within a given stack of branes without changing the brane

web, since the charge of D5 branes does not change as they cross a branch cut associated

with D7 branes. We leave a more detailed general discussion of this issue for the future,

and have focused on the case with an extra D5 brane pole intersected by the branch cut

in section 4.5. In this case the extra contribution to the residue drops out, since Y ` is

zero for a pole corresponding to D5 branes, and the web in figure 7 provides a natural

candidate brane web. As discussed in section 4.5, the partition function shows the correct

limiting behavior in the cases where one can formulate a clear expectation for its behavior:

the 3-pole solutions with puncture discussed previously can be obtained from this class of

solutions as the special case where the residue of the additional D5-brane pole vanishes,

while the limit where the residues at the two D5-brane poles become opposite equal leads

to a solution with vanishing monodromy at the puncture and thus to a 4-pole solution

without 7-branes. The partition function shows the expected behavior in these limits, but

generically is a non-trivial function of the parameters. The 7-brane charge again depends

non-trivially on the location of the puncture if the 5-brane charges are kept invariant, such

that the results are entirely in line with the more detailed discussion of the 3-pole solutions

and the conclusions drawn there.
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sociated with the branch points imply the regularity condition associated with the pole intersected by the

branch cut, one may simply drop the latter.
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A Regularity conditions with a pole at infinity

We will discuss the regularity conditions when a pole is moved to infinity. This has been

discussed in [35] for solutions without monodromy, and here we will extend this discussion

to the case with monodromy.

A.1 General reference point

A crucial difference compared to the case without monodromy is that the construction

of the holomorphic functions in (2.17) involves a reference point to define the integral.

This reference point was chosen as +∞, ensuring that it does not coincidence with a pole.

To keep the reference point away from poles as one of the poles is moved to infinity, the

expression for A± and the regularity conditions have to be generalized to a generic reference

point. To this end, we redefine the integration constants A0
± as

A0
± = Â0

± +

∫ ∞
x0

dzf(z)

L∑
`=1

Y `

z − p`
, (A.1)

where we assume that x0 is on the real line, with no branch cuts intersecting the real line

in (x0,∞) and no poles in (x0,∞). The expression for the holomorphic functions in (2.17)

becomes

A± = Â0
± +

L∑
`=1

Z`± ln(w − p`) +

∫ w

x0

dz f(z)

L∑
`=1

Y `

z − p`
. (A.2)

The regularity conditions still take the same form as (2.18), (2.19),

0 = 2Â0
+ − 2Â0

− +

L∑
`=1

Y ` ln |wi − p`|2 , i = 1, · · · , I , (A.3)

0 = 2Â0
+Yk− − 2Â0

−Yk+ +
∑
6̀=k
Z [`,k] ln |p` − pk|2 + Y kĴk , k = 1, · · · , L , (A.4)

but with A0
± replaced by Â0

±, and with Ĵk given by

Ĵk =

L∑
`=1

Y `

[
f(x0) ln |x0 − p`|2 +

∫ pk

x0

dxf ′(x) ln |x− p`|2 +
∑
i∈Sk

in2
i

2
ln |wi − p`|2

]
. (A.5)

Note that the first term in the square brackets drops out as x0 →∞ due to
∑

` Y
` = 0. It

will be convenient to rewrite this expression for Ĵk in a more natural form, analogous to

(3.46) of [22]. Namely,

Ĵk =

L∑
`=1

Y `
[
f(x0) ln |x0 − p`|+

∫ pk

x0

dw ln(w − p`)∂wf
]
− c.c. , (A.6)

where the integration contour is now chosen in the upper half plane such that it does not

intersect any branch cuts. This expression is obtained from (A.5) by reversing the steps

that were taken to get from (3.46) to (3.47) in [22].
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A.2 Moving a pole to infinity

We now turn to moving a pole to infinity, starting from the formulation with arbitrary

reference point x0. To keep the integration constants Â0
± finite as the pole is moved, we

combine the limit with a further redefinition of the constants in A± as follows

pL → −∞ , Â0
± = Ã0

± − ZL± ln(−pL) , σ = − σ̃

pL
, (A.7)

where we have also redefined the overall renornalization of the residues such that the

expression in (2.13) has a finite limit as pL → −∞. In the sum in the last term of (A.2),

the ` = L term vanishes.5 With the redefinition of the integration constants in (A.7), the

expression for the locally holomorphic functions in (A.2) thus becomes

A± = Ã0
± +

L−1∑
`=1

Z`± ln(w − p`) +

∫ w

x0

dz f(z)
L−1∑
`=1

Y `

z − p`
, (A.8)

where we have dropped terms that vanish as pL → −∞. We now come to the regularity

conditions. The branch point conditions in (A.3) straightforwardly reduce to

0 = 2Ã0
+ − 2Ã0

− +

L−1∑
`=1

Y ` ln |wi − p`|2 , i = 1, · · · , I , (A.9)

as pL → −∞. Of the regularity conditions in (A.4), we only take the subset where k =

1, · · · , L − 1. This was justified in the case with no punctures since only L − 1 of the L

regularity conditions are independent, thanks to the fact that the residues sum to zero. In

the presence of punctures, the residues do not necessarily sum to zero anymore, and the

first L− 1 conditions in (A.4) do not imply the last one. However, as discussed in [22], the

combination of the first L−1 conditions in (A.4) with the branch point conditions in (A.3)

does imply the last condition in (A.4). This justifies dropping the k = L condition and we

only have to discuss the limit of

0 = 2Â0
+Yk− − 2Â0

−Yk+ +
∑
6̀=k
Z [`,k] ln |p` − pk|2 + Y kĴk , k = 1, · · · , L− 1 . (A.10)

With the substitution in (A.7), and dropping terms that vanish as pL → −∞, these

conditions evaluate to

0 = 2Ã0
+Yk− − 2Ã0

−Yk+ +
∑

6̀=k,`≤L−1

Z [`,k] ln |p` − pk|2

+ Y k
[
Ĵk − 2f(pk) ln(−pL)Y L

]
. (A.11)

5One can choose a contour such that |z − pL| < κ−1|w − pL| for some positive κ. Then 1/|z − pL| <
κ/|w−pL| along the entire contour, and the factor can be pulled out of the integral using the Cauchy-Schwarz

inequality. The remaining integral is bounded, and the combination therefore vanishes as pL → −∞ at

fixed w.
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It remains to evaluate the last term, noting that we only need Ĵk for k 6= L. We start

from (A.6), which has the advantage that the integration contour does not cross any branch

cuts. From (A.6) we straightforwardly find, as pL →∞,

Ĵk = J̃k + Y L

[
f(x0) ln(−pL) +

∫ pk

x0

dw ln(−pL)∂wf − c.c.

]
, (A.12)

where we defined

J̃k =

L−1∑
`=1

Y `
[
f(x0) ln |x0 − p`|+

∫ pk

x0

dw ln(w − p`)∂wf
]
− c.c. (A.13)

The integral in the square brackets in (A.12) can be evaluated straightforwardly, and noting

that f is imaginary on the real axis we thus find

Ĵk = J̃k + 2Y Lf(pk) ln(−pL) . (A.14)

The last line in (A.11) therefore reduces to Y kJ̃k.

In summary, we find that, for the pole pL moved to infinity, the locally holomorphic

functions are given by

A± = Ã0
± +

L−1∑
`=1

Z`± ln(w − p`) +

∫ w

x0

dz f(z)

L−1∑
`=1

Y `

z − p`
, (A.15)

with

Z`+ = σ̃

L−2∏
n=1

(p` − sn)

L−1∏
k 6=`

1

p` − pk
, Z`− = −Z`+ . (A.16)

The regularity conditions are given by

0 = 2Ã0
+ − 2Ã0

− +

L−1∑
`=1

Y ` ln |wi − p`|2 , i = 1, · · · , I , (A.17)

0 = 2Ã0
+Yk− − 2Ã0

−Yk+ +
∑

6̀=k,`≤L−1

Z [`,k] ln |p` − pk|2 + Y kJ̃k , k = 1, · · · , L− 1 , (A.18)

with J̃k given by (A.13). The contour can be deformed to the real line, which yields

J̃k =

L−1∑
`=1

Y `

[
f(x0) ln |x0 − p`|2 +

∫ pk

x0

dxf ′(x) ln |x− p`|2 +
∑
i∈S̃k

in2
i

2
ln |wi − p`|2

]
, (A.19)

with S̃k denoting the set of branch points for which the associated branch cut intersects

the real line in the interval (pk, x0).
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B Probe BPS vs. field equations

For the warped AdS6 solutions it was shown in [31] that the BPS equations imply the full set

of type IIB supergravity field equations, and this in particular includes the solutions with

monodromy. In this section we will derive the field equations for the probe D7 and verify

that they are satisfied for configurations solving the κ-symmetry conditions of section 3.3.

We follow the conventions of, e.g., [25, 36] for the brane effective action. Noting that

the dilaton in the conventions used in [5–7] is related to the usual definition by a factor 2,

that results in

SD7 = −T7

∫
d8ξe−2φ

√
− det (gab + Fab) + T7

∫
eF ∧

∑
q

C(q) , (B.1)

where g once again is the induced metric on the D7, as given in (3.1), and F was defined

in (3.6). C(q) denotes the RR gauge potentials of appropriate order.

The relevant RR potentials for the D7-brane are C(0) = χ, C(2) = Re(C) volS2 , C(6) and

C(8), where C(6) and C(8) are determined in terms of the lower RR potentials and B2 [37].

The symmetries of the background constrain them to take the form

C(6) = C6 volAdS6 , C(8) = C8 volAdS6 ∧ volS2 , (B.2)

where C6 and C8 are functions on Σ. Using this parametrization as well as (3.17) yields

eF ∧
∑
q

C(q) = [C8 + F C6] volAdS6 ∧ volS2 . (B.3)

Moreover, the DBI part of the action can be evaluated further to yield∫
d8ξe−2φ

√
− det (gab + Fab) = e−2φf̃6

6 VolAdS6

∫
S2

√
det
(
f̃2

2 ĝS2 + FvolS2

)
= e−2φf̃6

6 VolAdS6 VolS2

√
f̃4

2 + F2 (B.4)

where ĝS2 is the metric on S2 of unit radius while VolAdS6 and VolS2 denote the (regularized)

volumes of AdS6 and S2, respectively. We thus find the following effective action for the

D7-brane with our choice of embedding ansatz

SD7

T7 VolAdS6 VolS2

= − e−2φf̃6
6

√
f̃4

2 + F2 + C8 + C6F . (B.5)

We derive explicit expressions for C6, C8 and their field strengths in appendix C.

We now evaluate more explicitly the equations of motion resulting from the action

in (B.5). We start with the worldvolume gauge field which determines F via F = dA. The

action in (B.1) has no explicit dependence on A itself, such that the equation of motion

yields a conservation equation. As a result we have

−e−2φf̃6
6

F√
f̃4

2 + F2
+ C6 = −F0 , (B.6)
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where F0 is a real integration constant. We emphasize that F0 is a constant with respect

to the worldvolume coordinates, but can depend on the embedding. That is, it can vary

as the position of the D7-brane inside Σ is varied. Eq. (B.6) implies that F and C6 + F0

have the same sign, and the solution therefore is

F =
(C6 + F0)f̃2

2√
e−4φf̃12

6 − (C6 + F0)2
. (B.7)

We now turn to the equation for the embedding. It can be obtained from the reduced

action in (B.5) and reads

∂w

[
e−2φf̃6

6

√
f̃4

2 + F2 − C8 − C6F
]

= 0 . (B.8)

We note that K defined in (3.3) is to be considered as a scalar defined intrinsically on the

D7-brane worldvolume. In particular, it does not depend on the embedding function. We

therefore have, using (3.17), ∂wF = −∂w Re C. With the explicit expression for the R-R

potentials in (C.5), (C.6), the equation of motion therefore evaluates to√
f̃4

2 + F2∂w
(
e−2φf̃6

6

)
+ e−2φf̃6

6

∂wf̃
4
2 − 2F∂w Re C

2
√
f̃4

2 + F2
− if̃6

6 f̃
2
2∂wχ− F∂wC6 = 0 . (B.9)

We have verified for a number of examples that solutions to the BPS equations derived in

section 3.3 solve the field equations as well. We note that the equation for the worldvolume

gauge field (B.7) can be solved trivially by adjusting the integration constant F0, but that

the equation for the embedding in (B.9) is satisfied for given F is non-trivial.

C 7- and 9-form R-R field strengths

We will describe the explicit form of the field strengths for the six- and eight-form potentials,

following the conventions in [37]. With C(4) = 0, the relevant field strengths G(n) defined

in [37] are given by

G(1) = dC(0) , G(3) = dC(2) − C(0)dB2 , (C.1)

G(7) = dC(6) , G(9) = dC(8) − dB2 ∧ C(6) . (C.2)

G(1) and G(3) are determined directly by the supergravity fields, while G(7) and G(9) are

determined by

G(7) = − ? G(3) , G(9) = ?G(1) , (C.3)

where the dual is taken with respect to the string-frame metric. From these expressions

we conclude

dC(6) = ?
(
C(0)dB2 − dC(2)

)
, dC(8) = ?dC(0) + dB2 ∧ C(6) . (C.4)
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Using C(0) = χ, as well as (3.16) and (B.2), we find the more explicit expressions for the

derivatives of C6

∂wC6 = if̃6
6 f̃
−2
2 (χ∂w Re C − ∂w Im C) ,

∂w̄C6 = −if̃6
6 f̃
−2
2 (χ∂w̄ Re C − ∂w̄ Im C) , (C.5)

and for C8

∂wC8 = if̃6
6 f̃

2
2∂wχ+ C6∂w Re C ,

∂w̄C8 = −if̃6
6 f̃

2
2∂w̄χ+ C6∂w̄ Re C . (C.6)
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