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1 Introduction

The entanglement entropy has played important roles to uncover dynamical aspects of not

only quantum field theories [1–6] but also gravitational physics through holography [7–9].

An ideal measure of correlation between two subsystems A and B is the entanglement

entropy SA(= SB) if the total system AB is a pure state |Ψ〉AB. Moreover, it coincides

with the amount of quantum entanglement based on an operational viewpoint of LOCC

(local operations and classical communication) [10]. For a review of the entanglement
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measures, refer to e.g. [11, 12]. This quantity is defined by the von Neumann entropy

SA = −Tr[ρA log ρA] of the reduced density matrix ρA = TrB|Ψ〉〈Ψ| for the subsystem A.

When the total system AB is described by a mixed state ρAB, the entanglement entropy

itself is no longer a correlation measure (for example, in general, we have SA 6= SB). In this

case, there are many known correlation measures denoted as E#(ρAB). The most tractable

quantity is the mutual information I(A : B) = SA + SB − SAB. Computations of mutual

information are clearly as easy as those of entanglement entropy and have been performed

by many authors.

Another interesting correlation measure is the entanglement of purification (EoP),

which is written as EP (ρAB), first introduced in [13]. By purifying the mixed state ρAB in

a larger system ABÃB̃, this quantity EP (ρAB) is defined by the minimum of the entan-

glement entropy SAÃ against all possible purifications. As is obvious from this definition,

when the total system AB is pure, EP (ρAB) just coincides with the entanglement entropy

SA(= SB). In this sense, we can regard the EoP as a generalization of entanglement entropy

to mixed states. It is also worth mentioning that the EoP has an interesting operational

interpretation in terms of LOq (local operations and a small amount of communication).

Recently, a holographic formula for the EoP has been proposed in [14, 15] (refer to [16]

for its generalization). The holographic EoP is given by the minimal cross-section of

entanglement wedge [17–19] and non-trivially satisfies the basic properties of EoP [13, 20].

When the total system AB is pure, then the holographic EoP is reduced to the holographic

entanglement entropy [8, 9] as expected.

Motivated by the simple holographic interpretation and by the interest from quantum

information-theoretic viewpoints, the purpose of the present paper is to explore calculations

of EoP in quantum field theories. In earlier works [15, 21, 22], the EoP was computed

numerically in spin systems assuming tensor network ansatz. In our paper, we would like

to numerically study a free scalar field theory with a lattice discretization as was done in

the very first studies of entanglement entropy [1, 2]. We will focus on the ground state of

a free scalar field theory in 1 + 1 dimension.

An important and new feature of the EoP calculations is that we need to minimize

the entanglement entropy against all possible purifications. At first sight, this looks almost

impossible. To overcome this problem, we make a crucial assumption that we can restrict

to gaussian wave functionals with minimal sizes in this purification procedure. This allows

us to explicitly figure out the numerical values of EoP. As we will explain below there

are numerical evidences that our ansatz might not be an approximation but also an exact

answer. However if without this argument, our numerical results can at least serve as upper

bounds of the correct EoP values.

We have to admit the fact that neither the EoP nor mutual information is appropri-

ate measures of quantum entanglement between A and B. This is because they are not

monotonically decreasing under LOCC. In fact, several quantities, such as entanglement of

formation [23], relative entropy of entanglement [24] and squashed entanglement [25, 26]

etc., have been defined and known to satisfy1 the basic properties of entanglement mea-

1The quantity called negativity [27, 28] is also an interesting correlation measure between two subsystems,
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sures for mixed states (see reviews [11, 12]). However, they always involve minimization

procedures, which are more complicated than the one for the EoP (refer to [30] for a Gaus-

sian ansatz for entanglement of formation). For computational difficulity of entanglement

measures refer to [31], where it has been established that they are NP-hard justifying that

EoP might be a good starting point even if it is not an entanglement measure. In this sense,

our analysis of EoP can be regarded as the first step toward computations of entanglement

measures of mixed states in field theories.

This paper is organized as follows. In section two, we will briefly review the definition

and properties of entanglement of purification (EoP) as well as its holographic counterpart.

In section three, we present our general strategy to numerically calculate the EoP in a free

scalar field theory. In section four, we will provide explicit numerical results of EoP. In

section five, we will study the behaviors of mutual information between various subsystems.

In section six, we will examine whether inequalities of monogamy and strong superadditivity

are satisfied or not in our examples. In section seven we summarize our conclusions and

discuss future problems.

2 Entanglement of purification and holographic dual

In this section, we briefly review the basics of the entanglement of purification, which

include the definition and information-theoretic properties of EoP. We also give a summary

of the recently conjectured holographic computation of EoP and its implications.

2.1 Definition of entanglement of purification and its properties

Let us consider a mixed state ρAB in a bipartite system AB. We can always purify this

mixed state by extending the Hilbert space from HA ⊗HB to HA ⊗HB ⊗HÃ ⊗HB̃ such

that the total state ρAÃBB̃ is pure and ρAB is embedded in it:

ρAÃBB̃ = |ΨAÃBB̃〉 〈ΨAÃBB̃| , TrÃB̃[ρAÃBB̃] = ρAB. (2.1)

Such a pure state |ΨAÃBB̃〉 is called a purification of ρAB. Note that a purification of a

given state ρAB is not unique and in general there are infinitely many ways to purify it.

The entanglement of purification (EoP) of ρAB is defined by minimizing the entangle-

ment entropy SAÃ(= SBB̃) over all possible purifications of ρAB [13]:

EP (ρAB) ≡ min
|ΨAÃBB̃〉:purifications of ρAB

SAÃ. (2.2)

Here SAÃ is the von Neumann entropy of ρAÃ = TrBB̃[|ΨAÃBB̃〉 〈ΨAÃBB̃|]. Thus the EoP

can be understood as a minimal amount of quantum entanglement between AÃ and BB̃

in the extended system.

which does not involve minimization procedures. However, this quantity does not satisfy all properties

required for entanglement measures. Also, it does not coincide with the (von Neumann) entanglement

entropy when the total system is pure. Moreover, it is natural to expect that this quantity will not have

a simple holographic dual in terms of a tractable geometric quantity in generic setups, especially in higher

dimensions. This is partly because it coincides not with the von Neumann (n = 1) but the Rényi entropy

at n = 1/2 when the system is pure. See also recent discussions in e.g. [29].
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The general properties of EoP are intensively studied in [20] (See also [13, 32]). We

briefly review a part of them. First, as we already noted in the introduction, the EoP itself

is not just a measure of quantum entanglement between A and B, but is a measure of

both classical/quantum correlations between them. In other words, EoP always vanishes

for all product states (ρAB = ρA ⊗ ρB) and is strictly positive for any non-product states.

Moreover, EP (ρAB) coincides with the entanglement entropy SA(= SB) when ρAB is pure

(i.e. when there is no classical correlation between A and B). This fact allow us to regard

the EoP as a generalization of the entanglement entropy to a measure of correlation for

mixed states.

There are several inequalities that the EoP enjoys. For instance, the EoP is always

bounded from above by the von Neumann entropies, and from below by a half of the mutual

information:
I(A : B)

2
≤ EP (A : B) ≤ min{SA, SB}. (2.3)

Here we simply write EP (A : B) ≡ EP (ρAB). Similarly, the EoP satisfies the following

inequality for all tripartite states ρAB1B2 :

I(A : B1) + I(A : B2)

2
≤ EP (A : B1B2). (2.4)

The mutual informations on the left-hand side are based on the reduced density matrices

ρAB1 = TrB2 [ρAB1B2 ] and ρAB2 = TrB1 [ρAB2B1 ]. The EoP on the right-hand side measures

the correlation between A and B1B2.

In particular, if the ρAB1B2 is pure, the EoP satisfies the polygamy inequality:

EP (A : B1B2) ≤ EP (A : B1) + EP (A : B2). (2.5)

On the other hand, the reverse of (2.5) is called monogamy and the EoP sometimes satisfies

this for mixed states.2 We will discuss this more in section 6.

Furthermore, as expected to be true for any correlation measures, the EoP never

increases upon discarding ancilla for any states (sometime called as extensivity):

EP (A : B1B2) ≥ EP (A : B1). (2.6)

2.2 Holographic entanglement of purification

In [14, 15] the holographic counterpart of EoP was proposed in the context of the AdS/CFT

correspondence in the classical gravity limit. This is the entanglement wedge cross-section

denoted by EW (ρAB). It represents the minimal cross-section of entanglement wedge [17–

19] in the bulk AdS spacetime, refer to figure 1. This gives a generalization of the holo-

graphic formula of entanglement entropy [8, 9]. This EP = EW (or holographic entangle-

ment of purification) conjecture is supported by many facts, including the coincidence of

all properties discussed in the previous section, as well as the heuristic derivation based on

the tensor network description of the AdS/CFT correspondence. It has also an interesting

connection to the bit threads picture [34]. A generalization of this conjecture was also

discussed in [16] and the results further support it.

2Only special entanglement measures, such as the squashed entanglement, can always satisfy the

monogamy [33].
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𝚺∗   

Figure 1. Holographic entanglement of purification. The shaded region is the entanglement wedge

of the subsystems A and B in holographic CFTs (we take a constant time slice of global AdS). The

dotted lines are the minimal surface whose area gives SAB . The entanglement wedge cross-section

EW (A : B) is defined by the minimal area (divided by 4GN ) of codimension-2 surfaces which divide

the entanglement wedge into two parts. In this figure this minimal surface is denoted by Σ∗
AB and

EW (A : B) =
Area(

∑∗
AB)

4GN
.

A phase transition occurs for the holographic entanglement of purification when we

change the distance between A and B in holographic states. For example, in the Poincaré

AdS3 geometry which is dual to a 2d CFT on an infinite space, EW (A : B) can be explicitly

written as

EW (A : B) =

{
c
6 log

[
1 + 2l

d

]
, d < (

√
2− 1)l,

0 d > (
√

2− 1)l,
(2.7)

where c is the central charge of 2d CFT and d is the distance between A and B. We set

both the sizes of A and B to be l for simplicity. At the transition d∗ = (
√

2− 1)l the value

of the EoP jumps, thereby providing a non-zero gap: ∆EW = c
6 log[3 + 2

√
2]. We plot a

typical behavior near to the transition point in figure 2. Mutual information I(A : B) also

exhibits a phase transition [35] at the same point d∗ as described in the figure 2. However,

unlike EoP, the mutual information smoothly goes to zero.

The tensor network description [36–40] and the surface/state correspondence [41] give

us a heuristic understanding why EP = EW holds [14]. Refer to figure 3.

It also allows us to read off the properties of the mutual informations for A, B, Ã, B̃.

Let us consider them assuming a non-trivial situation EW (A : B) > 0. First, we observe

that SÃ is the area of Ã itself3 divided by 4GN . Then it immediately follows that I(Ã :

B̃) = SÃ + SB̃ − SÃB̃ = 0. On the other hand, I(A : Ã) = SA + SÃ − SAÃ will be UV

divergent because SA and SÃ are itself divergent. Note that the entanglement wedge cross

section EW (A : B) = SAÃ is always finite (assuming A ∩ B is empty). Thus subtracting

this term does not make I(A : Ã) finite. With the simple setup described above, it can be

written explicitly by

I(A : Ã) =
c

3
log

[
ld

ε2

]
, (2.8)

3The reader may worry about another possible choice of the minimal surface of SÃ which leads SÃ ≥
SA + EW (A : B). However, in such a case we always have the disjointed entanglement wedge, as easily

shown by I(A : B) ≤ I(A : BB̃) = SA − SÃ + EW (A : B) ≤ 0 (this phenomena is a generalization of a

property of entanglement wedge: A ∩B = ∅ ⇒ EA ∩ EB = ∅ [17]). So we don’t need to care about it.
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0.2 0.4 0.6 0.8 1.0

d

1

2

3

4

5

EoP

MI/2

Figure 2. The setup for the computation of the holographic EoP EW (A : B) in Poincaré AdS3

(the left picture), and the plots of EW (A : B) (the blue curve in the right picture) and half of

holographic mutual information I(A : B) (the orange curve in the right picture) as the functions

of the distance (d) between A and B. Both holographic EoP and mutual information show phase

transition behaviors, though only the EoP is discontinuous. We set c
6 = 1 and the size l = 1 with the

transition point d∗ =
√

2−1. After the phase transition, EoP and mutual information become zero.

  

   
   

  

   

Figure 3. A derivation of EP = EW based on the tensor network description of AdS space.

We regard AÃBB̃ as a new boundary of bulk spacetime defining an extended field theory. The

subsystems Ã and B̃, lying on the minimal surface used for computing SAB , are identified with

the ancilla system. The dashed lines denotes the minimal surfaces whose areas give SA or SB ,

respectively. Now we have to minimize the SAÃ and that is achieved by minimizing the cross-

section of the wedge and that surface is denoted by the thick green line.

where ε is the UV cutoff. After the phase transition, we get a constant I(A : Ã) = 2SA =
2c
3 log[ lε ]. We plot the I(A : Ã) after subtracting out 2SA in figure 4. Finally, I(A : B̃) is

finite in general as usual for the two subsystems separated from each other. Especially in

AdS3/CFT2, I(A : B̃) always vanishes because the conformal symmetry allows us to set

the subsystems in a symmetric way so that SA + SB̃ = SÃ + SB = SAB̃.

The holographic entanglement of purification also satisfies an inequality called the

strong superadditivity [14]. This property is not satisfied by the entanglement of purifi-

cation for generic quantum states. Therefore this property can be regarded as a special

property for holographic states. We will discuss this later in section 6.
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0.2 0.3 0.4 0.5 0.6 0.7 0.8
d

-4

-3

-2

-1

I(A:A
˜
)-2SA

Figure 4. The holographic mutual information I(A : Ã) subtracted by 2SA. We set c
6 = 1 and the

size l = 1. It monotonically increases if we do not care about the phase transition at d∗ =
√

2− 1.

3 Computing EoP in free scalar field theory

Here we present a general strategy to calculate the EoP in the ground state of a 1 + 1

dimensional free scalar field theory. We discretize the field theory on a lattice and compute

the EoP numerically. Our basic assumption is that since ground state wave functionals of

free field theories are Gaussian, the wave functionals which appear after the purifications

are also Gaussian. We also choose the minimal size ansatz. Under this assumption, we can

calculate the EoP from matrix computations as we will explain below.

3.1 Free scalar field theory and discretization

Consider a free massive scalar field theory in 1 + 1 dimension defined by the standard

Hamiltonian:

H0 =
1

2

∫
dx
[
π2 + (∂xφ)2 +m2φ2

]
. (3.1)

We consider its lattice regularization by identifying x = an, where a is the lattice spacing

and n = 1, 2, · · ·, N describes the position of each site (see e.g. [42–44]). We define the

discretized scalar field and its momentum at n-th site: φn = φ(na) and πn = a · π(na),

which satisfy the canonical quantization condition [φn, πn′ ] = iδn,n′ . We impose the periodic

boundary condition φn+N = φn and πn+N = πn.

Then the rescaled Hamiltonian H = aH0 reads

H =
N∑
n=1

1

2
π2
n +

N∑
n,n′=1

1

2
φnVnn′φn′ , (3.2)

where the N ×N matrix V is given by

Vnn′ = N−1
N∑
k=1

[
a2m2 + 2 (1− cos (2πk/N))

]
e2πik(n−n′)/N . (3.3)

The ground state wave function Ψ0 of this lattice scalar theory is computed as

Ψ0[φ] = N0 · e−
1
2

∑N
n,n′=1 φnWmnφ′n , (3.4)

– 7 –
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2

2

Figure 5. An example of the setup for our lattice model. We set N = 16 and took |A| = |B| = 2.

The distance d between A and B is d = 3. The complement of A and B, called C, consists of twelve

lattice sites.

where the matrix W is given by
√
V or more explicitly:

Wnn′ =
1

N

N∑
k=1

√
a2m2 + 2 (1− cos (2πk/N))e2πik(n−n′)/N . (3.5)

Note that W is a symmetric and real valued matrix. In the present paper, we will set

a = 1 by rescaling the definition of the mass parameter m. In our actual numerical

computations we will always choose N = 60 and consider five different masses m =

0.0001, 0.001, 0.01, 0.1, 1. A sketch for N = 16 can be found in figure 5.

3.2 Calculation of entanglement entropy

We will follow the analysis in [1, 42–44] of computation of entanglement entropy in free

scalar models. We decompose the Hilbert space Htot as Htot = HA ⊗HB by choosing the

subregion A and its complement B in a lattice system. The numbers of sites in A and B

are called |A| and |B|.
Consider a gaussian state |Ψ〉AB in Htot, which is in general written as follow:

ΨAB = NAB · exp

[
−1

2
(φA φB)

(
A B

BT C

)(
φA
φB

)]
. (3.6)

We define the matrix W and its inverse:

W =

(
A B

BT C

)
, W−1 =

(
D E

ET F

)
, (3.7)

where we have the obvious relations

AD +BET = BTE + CF = 1, AE +BF = BTD + CET = 0. (3.8)

Note that for physically acceptable quantum states, the wave function should be normal-

izable i.e. W should be positive definite.
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In this setup the entanglement entropy SA = SB = −Tr[ρA log ρA] is computed as

follows [1, 42–44]. First we compute the eigenvalues {λi} of the matrix Λ defined by

Λ = −E ·BT = D ·A− 1, (3.9)

which is positive definite. The entanglement entropy is then computed by the formula

SA = SB =

|A|∑
i=1

f(λi), (3.10)

where

f(x) = log

√
x

2
+
√

1 + x log

(
1√
x

+

√
1 + x√
x

)
. (3.11)

3.3 Calculations of EoP

Now we are in a position to present how to calculate the EoP: EP (A : B) = EP (ρAB)

defined by (2.2) for the ground state Ψ0 in our free scalar lattice model. We divide the

total lattice system into subregions A,B and C such that Htot = HA ⊗ HB ⊗ HC . We

defined their lattice sizes to be |A|, |B| and |C|. In this setp, we would like to compute the

EoP which measures a correlation between A and B.

First, we write the ground state wave functionals in the following form:

Ψ0[φAB, φC ] = N0 · exp

[
−1

2
(φAB, φC)

(
P Q

QT R

)(
φAB
φC

)]
. (3.12)

Note that the matrices P,Q,R are all real valued; P and R are symmetric matrices.

Then the reduced density matrix ρAB = TrÃB̃
[
|ΨAÃBB̃〉〈ΨAÃBB̃|

]
is obtained by in-

tegrating out C:

ρAB[φAB, φ
′
AB]

=

∫
DφCΨ∗0[φAB, φC ] ·Ψ0[φ′AB, φC ]

∝ exp

[
−1

2
(φAB, φ

′
AB)

(
P − 1

2QR
−1QT −1

2QR
−1QT

−1
2QR

−1QT P − 1
2QR

−1QT

)(
φAB
φ′AB

)]
. (3.13)

Our basic and crucial assumption is that the optimal purified state |ΨAÃBB̃〉 in each

setup, which minimizes SAÃ, is a gaussian state, described by the gaussian wave functional

ΨAÃBB̃[φAB, φÃB̃]

= NAÃBB̃ · exp

[
−1

2
(φAB, φÃB̃)

(
J K

KT L

)(
φAB
φÃB̃

)]
, (3.14)

where J and L are real symmetric matrices and K is a real matrix. For later use, we

introduce the matrix S:

S =

(
J K

KT L

)
. (3.15)

– 9 –
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Since the reduced density matrix ρAB should agree with (3.13), we find the following

two constraints:

J = P, KL−1KT = QR−1QT . (3.16)

With these constraints (3.16) imposed, we can calculate the entanglement entropy SAÃ =

SBB̃ from the total wave function ΨAÃBB̃ (3.14) and minimize its value against the pa-

rameters in K and L. This is our basic strategy to calculate the EoP.

Here the gaussian ansatz of the purified state (3.14) is just an assumption which we

cannot justify with any solid argument. However, it is natural to expect that the class

of gaussian wave functionals are closed in themselves and that we may have only to take

the minimization of SAÃ within this class. Indeed as we will present below, this ansatz

produces many reasonable results, being consistent with the general properties of EoP.

Even if our expectation fails, our “minimal gaussian EoP” provides at least a useful upper

bound of the actual EoP, which is defined by minimizations over all possible purifications.

3.4 Symmetry transformation

In our computation of EoP, we can identify a symmetry transformation of the matrices K

and L which do not change the value of SAÃ.

We take P and Q to be two non-degenerate matrices with the sizes |Ã| and |B̃|, respec-

tively. We also introduce related matrices P̂ (size |A|+|Ã|) and Q̂ (size |B|+|B̃|) defined by

P̂ =

(
I|A| 0

0 P

)
, Q̂ =

(
I|B| 0

0 Q

)
, (3.17)

where I|A|,|B| are the identity matrices.

The symmetry transformation is given by

J → J, K → K

(
P T 0

0 QT

)
, L→

(
P 0

0 Q

)
L

(
P T 0

0 QT

)
. (3.18)

To see if these transformations indeed do not change the entanglement entropy SAÃ, we

can look at the matrix W obtained by rearranging (J,K,L) as follows:

W =


JAA KAÃ JAB KAB̃

KÃA LÃÃ KÃB LÃB̃
JBA KBÃ JBB KBB̃

KB̃A LB̃Ã KB̃B LB̃B̃.

 ≡
(

A B

BT C

)
, (3.19)

where we decompose (J,K,L) based on the indices A, Ã, B and B̃ in an obvious way. The

sizes of the matrices A, B and C are (|A| + |Ã|) × (|A| + |Ã|), (|A| + |Ã|) × (|B| + |B̃|),
(|B|+ |B̃|)× (|B|+ |B̃|), respectively.

In terms of (A,B,C), the transformations are expressed as

A→ P̂AP̂ T , B → P̂BQ̂T , C → Q̂CQ̂T , (3.20)

D → (P̂ T )−1DP̂−1, E → (P̂ T )−1EQ̂−1, F → (Q̂T )−1FQ̂−1.
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Thus Λ = −E ·BT is mapped by the similarity transformation Λ→ (P T )−1ΛP T and thus

SAÃ, computed from the formula (3.10), does not change.

By using this symmetry, we can reduce the number of parameters in K and L which

we need to minimize to |Ã|2 + |B̃|2.

3.5 Minimal Gaussian ansatz

Even if we assume the Gaussian ansatz, still it looks hopeless to numerically calculate the

EoP because the sizes of matrices K and L can be infinite. Therefore we adopt a finite

size ansatz, especially the minimal size one given by |Ã| = |A| and |B̃| = |B|. We call this

the minimal Gaussian ansatz. This minimal ansatz is employed to produce our numerical

results of EoP, which will be presented in coming sections.

Even though we do not have a full justification of this ansatz, we have numerical

supporting evidence that this ansatz can give an exact answer: even if we start with larger

sizes of the purification spaces |Ã| > |A| and |B̃| > |B|, we will get back to the minimal

one |Ã| = |A| and |B̃| = |B| after the minimization, as we will present in the section 4.4.

In this minimal ansatz, we can reduce the matrix K into the following form by taking

advantage of the symmetry transformation (3.18):

K =

(
I|A| KAB̃

KBÃ I|B|

)
, (3.21)

which has 2|A||B| parameters. The matrix L is completely determined from K by the

constraint (3.16). Thus the numerical computation of EoP in our setup requires the mini-

mization of SAÃ over the 2|A||B| parameters.

In our explicit numerical analysis presented below we will focus on the cases (|A|, |B|) =

(1, 1), (1, 2) and (2, 2) with the total number of lattice sites N = 60.

4 Numerical results of EoP

Now we are prepared to present our numerical results of EoP in our free scalar theory.

We choose the total lattice size to be N = 60 and the subsystem sizes to be (|A|, |B|) =

(1, 1), (1, 2), (2, 2). We perform the numerical computation of EoP EP (A : B) for five

different scalar field masses m = 0.0001, 0.001, 0.01, 0.1, 1 (we set a = 1). We are interested

in how EP (A : B) depends on the distance d between A andB (refer to figure 5). We employ

the minimal Gaussian ansatz (3.21). Thus we have only to minimize SAÃ with respect to

the 2|A||B| parameters in KAB̃ and KBÃ as the matrix L is completely determined by K.

In the final subsection, we will present some evidence that supports the minimal ansatz.

4.1 Example 1: |A| = |B| = 1

Let us start with the smallest subsystems |A| = |B| = 1. In this case, we need to minimize

with respect to two real parameters KAB̃ = x1 and KBÃ = x2. In our explicit numerical cal-

culations, we always find x1 = x2 at any minimum points. This can be understood from the

obvious Z2 symmetry in the original system which replaces A with B and vice-versa. This

symmetry leads to the symmetry which exchanges (A, Ã)↔ (B, B̃) in the purified system.
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Figure 6. The plots of EoP (upper-left graphs) and a half of mutual information I(A : B) (lower-

left graphs) in the setup of |A| = |B| = 1 as a function of d, which is the distance between A and

B (we took 1 ≤ d ≤ 30). The right ones are obtained by taking the logarithms of the left ones. In

each graph, from the above to the bottom, the mass varies m = 0.0001, 0.001, 0.01, 0.1, 1.

Our numerical results of EoP and a half of the mutual information are plotted in

figure 6. Note that the former should always be larger than the latter as in (2.6) and this is

indeed true in our numerical results. As is clear from the graphs, both of EoP and mutual

information are monotonically decreasing as the distance Nd gets larger. As the mass gets

larger, both graphs change from the power law decay to the exponential decay, as naturally

expected.

We also plotted the values of x1 = x2 which minimize SAÃ in figure 7. It is intriguing to

notice that each graph has always a peak at d = 2. We can explain this behavior as follows.

When d = 2, A and B are the next to the nearest neighbor and there is a single lattice site,

called C, between A and B. It is clear that in the original wave functional, the entanglement

between A and C and that between B and C are both equally very strong. Therefore in

the purified state |Ψ〉AÃBB̃, we can expect that both Ã and B̃ are closely related to the

site C. This means that the correlation between A and B̃ and the one between B and Ã

get enhanced for d = 2. On the other hand, when d = 1 and d ≥ 3, a similar consideration

does not lead to any clear enhancement. Indeed the parameters KAB̃ = x1 and KBÃ = x2

are obviously responsible for these correlations. This explains the peak at d = 2.

4.2 Example 2: |A| = 1, |B| = 2

Next we proceed to the case |A| = 1, |B| = 2. The two sites in B are separately called B1

and B2. In this case we minimize SAÃ with respect to the four parameters (x, y, z, w) in
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Figure 7. The plots of the optimized values of the parameter x which give the minimum of SAÃ

in the setup of |A| = |B| = 1. In this graph, from the above to the bottom, the mass varies

m = 0.0001, 0.001, 0.01, 0.1, 1.
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Figure 8. The plots of EoP (upper graphs) and a half of mutual information I(A : B) (lower

graphs) as a function of d in the setup of |A| = 1, |B| = 2. The right ones are obtained by

taking their logarithms. In each graph, from the above to the bottom, the mass varies m =

0.0001, 0.001, 0.01, 0.1, 1.

the matrix K of the form (the indices of K are arranged in the order AB1B2 × ÃB̃1B̃2)4

K =

 1 0 x

y 1 0

z w 1

 . (4.1)

The results of EoP and a half of mutual information are plotted in figure 8. Qualitative

behaviors are very similar to the previous ones for |A| = |B| = 1. As follows from the

extensivity of EoP (2.6), the result for |A| = 1, |B| = 2 is larger than that for |A| = |B| = 1

with the same mass m and d.

We also plotted the values of (x, y, z, w) where SAÃ gets minimized in figure 9. As

the graphs show, the behaviors of x and z are similar to that of x in the previous case

4Here we have chosen a difference ansatz than (3.21) for our convenience. Both should give the same

results for EoP.
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Figure 9. The plots of the optimized value of the parameter x, y, z, w which gives the minimum

of SAÃ in the setup of |A| = 1, |B| = 2. In the first three graphs, from the above to the bottom,

the mass varies m = 0.0001, 0.001, 0.01, 0.1, 1. In the final graph the order is opposite.

|A| = |B| = 1. Since x (and z) here are related to the correlation between A and B̃2 (and

B2 and Ã), this is enhanced because there is only a single site between A and B2 (refer to

figure 5) in the same way as before. On the other hand, the values y and w are related to

the correlations which are rather suppressed by this effect.

4.3 Example 3: |A| = 2, |B| = 2

Next we proceed to the case |A| = |B| = 2. The two sites in A and B are separately called

A1, A2 and B1, B2 (refer to figure 5 again). Note that, constrained by the resources at our

disposal, this is the largest size of subsystems we consider in this paper for our convenience.

We expect this example can have some features of field theory limits more the than other

examples already discussed.

In this case we minimize SAÃ with respect to the matrix K of the form (the indices of

K are arranged in the order A1A2B1B2 × Ã1Ã2B̃1B̃2) given by:

K =


1 0 x y

0 1 z w

x′ y′ 1 0

z′ w′ 0 1

 . (4.2)

As we can also confirm numerically, the symmetry which exchanges A and B allows us to

set KAB̃ = KBÃ , or equally x = x′, y = y′, z = z′ and w = w′. Thus to calculate the EoP,

we need to minimize SAÃ against four parameters (x, y, z, w).

After this minimization, we obtain the results of EoP in figure 10. By comparing them

with previous ones, we can confirm the extensivity of EoP (2.6). Also both the EoP and

mutual information are again monotonically decreasing. As the mass increases, the power

law decay gets changed into an exponential decay. However, we now notice an important

difference between the EoP and the mutual information: the values of EoP at d = 1 and

d = 2 are almost the same, while those of the mutual information are different. This
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Figure 10. The plots of EoP (upper graphs) and a half of mutual information I(A : B)

(lower graphs) as a function of d in the setup of |A| = |B| = 2. The right ones are ob-

tained by taking their logarithms. In each graph, from the above to the bottom, the mass varies

m = 0.0001, 0.001, 0.01, 0.1, 1.

plateaux in the EOP qualitatively looks similar to what we observe in the holographic

EoP, where there occurs a phase transition (refer to figure 2). Indeed the phase transition

point is d∗ = (
√

2− 1)l, where l is the size of the subsystem A and B. In our example, we

took l = 2 and thus dc ∼ 1, which is consistent with the above behavior.

It is also intriguing to examine the behavior of parameters (x, y, z, w) at the minimum

points. They are plotted in figure 11. First of all, we note that w has a clear peak at d = 2

as in figure 7. The reason for this peak is the same as that of x in |A| = |B| = 1 case:

A2 get strongly correlated with B̃2 through the vacant site. This effect highly reduces the

correlation between A2 and B̃1 and thus the absolute values of z behave in an opposite

way. The behavior of x and y are roughly in the middle between these two. We also find

from our numerical data that as d gets larger, the four parameters get closer to each other

x ' y ' z ' w. This can be easily understood because when A and B are most separated,

all four possible correlations A1 −B1, A1 −B2, A2 −B1 and A2 −B2 should be strong in

the same magnitude.

4.4 Numerical evidences for minimal ansatz

In this section, we would like to present numerical evidence that the minimal ansatz (3.21)

discussed in sections 3.5, which was employed for all our numerical computations, is suf-

ficient to produce the correct EoP. We discuss this in details for |A| = |B| = 1 case first.

For the other two cases, the arguments will follow analogously.

For this case |Ã| = |B̃| = 1 is the minimal ansatz. Now we try to increase the

dimensions of this auxiliary Hilbert space. We consider |Ã| = |B̃| = 2. The matrix W
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Figure 11. The plots of the optimized value of the parameter x, y, z, w which gives the minimum

of SAÃ in the setup of |A| = |B| = 2. In the first graph, from the above to the bottom, the mass

varies m = 0.0001, 0.001, 0.01, 0.1, 1.

in (3.19) takes the following form ( elements are in the order AÃBB̃),

W =



JAA KAÃ1
KAÃ2

JAB KAB̃1
KAB̃2

KÃ1A
LÃ1Ã1

LÃ1Ã2
KÃ1B

LÃ1B̃1
LÃ1B̃2

KÃ2A
LÃ2Ã1

LÃ2Ã2
KÃ2B

LÃ2B̃1
LÃ2B̃2

JBA KBÃ1
KBÃ2

JBB KBB̃1
KBB̃2

KB̃1A
LB̃1Ã1

LB̃1Ã2
KB̃1B

LB̃1B̃1
LB̃1B̃2

KB̃2A
LB̃2Ã1

LB̃2Ã2
KB̃2B

LB̃2B̃1
LB̃2B̃2


. (4.3)

We can easily see that the minimal ansatz is contained in this. We set some of the entries

to zero such that the W matrix takes the following form,

W =



JAA KAÃ1
0 JAB KAB̃1

0

KÃ1A
LÃ1Ã1

0 KÃ1B
LÃ1B̃1

0

0 0 LÃ2Ã2
0 0 LÃ2B̃2

JBA KBÃ1
0 JBB KBB̃1

0

KB̃1A
LB̃1Ã1

0 KB̃1B
LB̃1B̃1

0

0 0 LB̃2Ã2
0 0 LB̃2B̃2


. (4.4)

From this it is evident that, Ã2 and B̃2 do not remain entangled with the composite

A,B, Ã1, B̃1 system. One can then recover the previous results for EoP by setting KA,Ã1
=

KB,B̃1
= 1 and KA,B̃1

= KB,Ã1
= x, LÃ2,B̃2

= 0 and minimizing over the parameter x

regardless of the values of LÃ2,Ã2
, LÃ2B̃2

. ( LÃ2B̃2
= 0 makes Ã2 independent of B̃2 hence

the SAÃ1Ã2
naturally coincides with SAÃ1

.) Now we want to check that even if we start

from (4.3), minimization of SAÃ1Ã2
will demand that Ã2, B̃2 should decouple from the

A,B, Ã1, B̃1. To check this numerically we adopt the following strategy. For our case the

K matrix is the following,

K =

(
KAÃ1

KAÃ2
KAB̃1

KAB̃2

KBÃ1
KBÃ2

KBB̃1
KBB̃2

)
. (4.5)
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Then we set,

KAÃ1
= K0

AÃ1
+K1

AÃ1
,

KAB̃1
= K0

AB̃1
+K1

AB̃1
,

KBÃ1
= K0

BÃ1
+K1

BÃ1
,

KBB̃1
= K0

BB̃1
+K1

BB̃1
,

KAÃ2
= K0

AÃ2
+K1

AÃ2
,

KAB̃2
= K0

AB̃2
+K1

AB̃2
,

KBÃ2
= K0

BÃ2
+K1

BÃ2
,

KBB̃2
= K0

BB̃2
+K1

BB̃2
,

(4.6)

where superscript 0 denotes the minimal ansatz value. We varies all these terms with

superscript 1 around zero in some small steps and compute the corresponding values of

SAÃ1Ã2
. Also first of these two constraints in (3.16) fixes all J ’s. The second one fixes

some of the components of L’s. For |A| = |B| = 1 the matrix QR−1QT is 2× 2 symmetric

matrix. For our case the L matrix is,

L =


LÃ1Ã1

LÃ1Ã2
LÃ1B̃1

LÃ1B̃2

LÃ1Ã2
LÃ2Ã2

LÃ2B̃1
LÃ2B̃2

LÃ1B̃1
LÃ2B̃1

LB̃1B̃1
LB̃1B̃2

LÃ1B̃2
LÃ2B̃2

LB̃1B̃2
LB̃2B̃2

 . (4.7)

This is s a symmetric matrix and hence we will have 10 parameters. Using the con-

straints, KL−1KT = QR−1QT we can determine 3 of them. For our case we determine

LÃ1Ã1
, LÃ1B̃1

and LB̃1B̃1
. So we have total of 15 parameters (8 K’s and 7 L’s) and we

vary them around their minimal ansatz values in some smaller steps.5 From this we find

that the value of SAÃ1Ã2
is always greater than the minimal ansatz value obtained in the

previous section for all non trivial values of these extra parameters. So this shows that

our minimal ansatz is good enough to produce the correct EoP. We gave a sample plot

in figure 12 demonstrating this result. We choose d = 1, N = 60,m = 0.0001. Then we

set LÃ2Ã2
= LB̃2B̃2

= 0.01, LÃ2B̃2
= 10−7 + i where i is the parameter. Also we set,

K1
AÃ1

= K1
AB̃1

= K1
BÃ1

= K1
BB̃1

= 0,K1
AÃ2

= K1
AB̃2

= K1
AÃ2

= K1
AB̃2

= i. Lastly,

LÃ1Ã2
= LÃ1B̃2

= LÃ2B̃1
= LB̃1B̃2

= i. We vary i between −0.004 to 0.004 in the steps of

0.00007 and plot the SAÃ1Ã2
w.r.t. i. From this plot it is evident that SAÃ1Ã2

is greater

than the corresponding minimal ansatz value which is 2.85393.

Similarly we check this numerically for |A| = 1, |B| = 2 case also and confirm that the

minimal ansatz is sufficient to reproduce the correct EoP.

5We here note that inside this range sometimes it may happen that for some combinations of values of

some of the parameters of the matrix W , where the elements are in order A,B, Ã1Ã2, B̃1B̃2 doesn’t remain

positive definite. We exclude such combinations.
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Figure 12. The variation of SAÃ1Ã2
w.r.t. the parameter i corresponding to the bigger ansatz and

its shows that it is always greater than the corresponding value coming from the minimal ansatz.

5 Mutual information

In this section we compute various types of mutual information. As discussed in the

section 2.2, these different types of the mutual information have also interesting behaviors in

holographic computations. The analysis in this section will also serve as a good consistency

check for our previous results of EoP. Notice the following useful relations:

SAÃ =
1

2
I(AÃ : BB̃)

=
1

2
I(A : BB̃) +

1

2
I(Ã : BB̃)

≥ 1

2
I(A : B) +

1

2
I(Ã : B̃). (5.1)

Similarly we can prove

SAÃ ≥
1

2
I(A : B) +

1

2
I(A : B̃). (5.2)

These suggest that if we want to minimize SAÃ we need to make both I(Ã : B̃) and

I(A : B̃) small. Our holographic analysis in section 2.2 for the current setup, actually

predicts I(Ã : B̃)hol = I(A : B̃)hol = 0. Thus in the holographic EoP, the minimization

procedure is realized maximally. For non-holographic quantum states, we do not expect

such an extreme situation as is so in our results shown below. We also want to mention

that we confirmed the inequalities (5.1) and (5.2) against our numerical results.

5.1 Analysis of I(Ã : B̃)

We compute the mutual information between two subsystems Ã and B̃ in the auxiliary

Hilbert space. We plot I(Ã : B̃) for m = 0.0001, 0.001, 0.01 and 0.1 against the distance d

between A and B for |A| = |B| = 1 , |A| = 1, |B| = 2 and |A| = |B| = 2 in the figure 13

using the results obtained in the previous sections.

From figure 13, it is evident that irrespective of the size of A and B there is a slight

increase in I(Ã : B̃) around d = 2 and then it decreases monotonically. This is consistent

with our previous results for the values of parameters which minimize SAÃ (see e.g. figure 7).

For d = 2, there is a lattice point between A and B. As we have argued in the section 4.1,

– 18 –



J
H
E
P
0
4
(
2
0
1
8
)
1
3
2

● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■ ■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
5 10 15 20 25 30

d

0.5

1.0

1.5

2.0

 A
˜
: B
˜


●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

5 10 15 20 25 30
d

0.5

1.0

1.5

2.0

 A
˜
: B
˜


●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲
5 10 15 20 25

d

0.5

1.0

1.5

2.0

2.5

 A
˜
: B
˜


● 0.0001

■ 0.001

◆ 0.01

▲ 0.1

Figure 13. The left, central and the right one show I(Ã : B̃) for |A| = |B| = 1 , |A| = 1, |B| = 2

and |A| = |B| = 2 respectively, each for m=0.0001,0.001,0.01,0.1 indicated by different colors in

each of the plots.

this enhances the correlation between A and B̃ and the one between B and Ã gets enhanced

and this fact gets reflected in the increase of I(Ã : B̃) around d = 2. This further shows

consistency of our results for EoP. Non-vanishing values of I(Ã : B̃) deviates from the

holographic prediction and the argument of (5.1) implies that the minimization in our free

scalar field is not as optimal as the one in holographic CFTs.

5.2 Analysis of I(A : B̃)

Next, we compute the mutual information between A and B̃ and plot them against the

distance d between A and B.

From the figure 14, it is evident apart from a small hump around d = 2 I(A : B̃)

gradually decreases. We omit the details because its behavior and interpretation are very

similar to the previous one I(Ã : B̃).

5.3 Analysis of I(A : Ã)

Lastly, we compute the mutual information between A and Ã. We demonstrate this in the

plots below. Again we plot I(A : Ã) against the distance between A and B for different

mass. From the figure 15, it is evident that, I(A : Ã) rather increases for all the cases unlike

the previous ones. This qualitative agrees with the holographic results (see the right graph

of figure 4) if we remember that in our setup of the free scalar model, the sizes of subsystems

compete with the lattice spacing and also that we do not expect any phase transitions.

6 Violations of monogamy and strong superadditivity

In this section we study whether the inequalities of monogamy and strong superadditivity

are satisfied or not in our numerical computations. For a (bipartite) correlation measure
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Figure 14. The left, central and the right one show I(A : B̃) for |A| = |B| = 1 , |A| = 1, |B| = 2

and |A| = |B| = 2 respectively, each for m=0.0001,0.001,0.01,0.1 indicated by different colors in

each of the plots.
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Figure 15. The left, central and the right one show I(A : Ã) for |A| = |B| = 1 , |A| = 1, |B| = 2

and |A| = |B| = 2 respectively, each for m=0.0001,0.001,0.01,0.1 indicated by different colors in

each of the plots.
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E# (including EoP or mutual information), the monogamy inequality [45] for a tripartite

state ρAB1B2 is defined by

E#(A : B1B2) ≥ E#(A : B1) + E#(A : B2). (6.1)

The strong superadditivity for a 4-partite state ρA1A2B1B2 is defined by

E#(A1A2 : B1B2) ≥ E#(A1 : B1) + E#(A2 : B2). (6.2)

Note that if a measure E# satisfies the monogamy for all tripartite states, then it also

satisfies the strong superadditivity. These inequalities are regarded as desirable features of

measures of quantum entanglement for mixed states [33, 46].

It is known that the mutual information always satisfies the monogamy6 (and thus

the strong superadditivity) for holographic states [48]. Note that the monogamy of mutual

information is not satisfied for generic quantum states [48, 49], for example, in free scalar

and fermion field theories.

The holographic EoP always satisfies the strong superadditivity [14]. On the other

hand, it is known that the EoP does not always satisfy the strong superadditivity for generic

states [20, 32]. Therefore both monogamy of mutual information and strong superadditivity

of EoP will be useful to characterize holographic states of classical gravity duals.

6.1 Monogamy/polygamy

We define the ratio of the r.h.s./l.h.s. of (6.1) as

Rmon =
E#(A : B1B2)

E#(A : B1) + E#(A : B2)
. (6.3)

Note that the extensivity property (2.6) of both EoP and mutual information tells us the

ratios Rmon is always bounded from below: Rmon ≥ 1
2 . As the state gets more quantum

correlations, we expect this ratio increases. The lower bound Rmon = 1
2 occurs when the

state is classical.

We compute this ratio Rmon for both the EoP and mutual information (with A = A1

or A = A1A2, while each subsystem denotes a single site as in the previous section). We

plot this in figure 16 against the distance d between A and B.

It shows that the monogamy of EoP and that of mutual information are always violated

except the very massive case m = 1. It can also be seen that heavier mass makes the

state more monogamous. Note that, as we discussed in the section 2.2, EoP satisfies the

polygamy rather than the monogamy for any tripartite pure states. Hence it is natural to

observe the polygamous behavior of EoP for ordinary mixed states.

For the mutual information, the difference between r.h.s. and l.h.s. of (6.1), so called the

tripartite information I3(= r.h.s.− l.h.s.), was already computed in [49] for a free massive

scalar field theory. Their results show that as the mass goes to zero, I3 gets positively

6Please distinguish this from the strong subadditivity of entanglement entropy which should be true for

any quantum states. The latter is equivalent to the extensivity of mutual information. For holographic

states we can derive this property from a simple geometric argument [47].
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Figure 16. The ratio Rmon of the monogamy inequality of EoP (upper graphs) or mutual infor-

mation (lower graphs). Rmon < 1 means the violation of the monogamy. For all massless cases

m = 0.1, 0.01, 0.001, 0.0001 the monogamy is violated. For massive case m = 1 the monogamy

can be satisfied. Note that Rmon is always bounded from below by 1/2.

divergent i.e. the monogamy is maximally violated, which is because the zero mode φ0 of the

massless scalar leads to a classically maximally correlated state ρAB ∼
∫
dφ0|φ0〉〈φ0|. Our

numerical results of mutual information for our lattice free scalar model indeed reproduce

the same behavior.

The EoP shows a similar behavior for large d and this will be explained by the same

argument of the scalar field zero mode. The new feature of EoP is that there is a peak at

d = 2 in the ratio Rmod. This will be again explained by the strong quantum correlation

between A2 and B2 with the vacant site between A and B, as we already observed the

similar peaks in other quantities.

6.2 Strong superadditivity

Next we also define the ratio of (6.2) as

RSSA =
E#(A1A2 : B1B2)

E#(A1 : B1) + E#(A2 : B2)
. (6.4)

Note that the ratio has the lower bound RSSA ≥ 1
2 . The violation of strong superadditivity

is equivalent to RSSA < 1.

We plot this ratio RSSA for the EoP and mutual information in the same manner. The

results are essentially the same as that of monogamy. Except for the very massive case,

the strong superadditivity is staisfied and there is a peak at d = 2. Naturally this behavior

can be interpreted as that of the monogamy violation.
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Figure 17. The ratio RSSA of the strong superadditivity of EoP (left) or mutual information

(right). RSSA < 1 means the violation of the strong superadditivity. For almost all massless cases

m = 0.1, 0.01, 0.001, 0.0001 the strong superadditivity is violated, and for massive case m = 1

this can be satisfied. Note that RSSA is always bounded from below by 1/2.

7 Conclusions and discussions

In this paper, we calculated the entanglement of purification (EoP) EP (ρAB) for the ground

state of a 1 + 1 dimensional free scalar field theory. We assumed that the purified state

|Ψ〉AÃBB̃, which gives the minimum of entanglement entropy SAÃ, is described by a minimal

Gaussian wave functional. Thus our numerical results at least give upper bounds of the

actual EoP, defined by minimizing against all possible purifications. However, since ground

states of free field theories are given by Gaussian wave functionals, there is a chance that

our ansatz may provide the correct values of EoP. We presented numerical evidence that

justify our minimal ansatz |Ã| = |A| and |B̃| = |B|. However, we would like to leave for a

future problem the final answer to the question whether our ansatz can give exact results

for the EoP.

In our explicit computations, we focused on the three cases (|A|, |B|) = (1, 1), (1, 2)

and (2, 2) with the total lattice size N = 60. The subsystems A and B can be separated

by an arbitrary distance d and we studied the behavior of the EoP as a function of d.

Our results show that the EoP is monotonically decreasing when we increase the dis-

tance d. As we raise the mass of the scalar field, a power law decay is changed into

an exponential decay. These are consistent with the fact that the EoP is a measure of

correlation between A and B. We noted that the mutual information I(A : B) is also

monotonically decreasing as d increases. However, especially in the case of |A| = |B| = 2,

we found an interesting difference between the EoP and mutual information. The EoP

has a plateau for 1 ≤ d ≤ 2, while the mutual information does not. We argued that

this plateau is qualitatively analogous to the one in the holographic EoP, which is missing

for the holographic mutual information. It would be an intriguing future problem to con-

firm this behavior for a larger subsystem A, which will require more powerful numerical

computations with more sophisticated numerical algorithms.

We also studied more details of our computations such as the values of parameters

which specify purified states with the minimal SAÃ and the mutual informations for other

subsystems I(Ã : B̃), I(A : B̃) and I(A : Ã). We noticed that they are correlated in

interesting ways. In particular, some of the parameters and I(Ã : B̃) and I(A : B̃) take
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maximal values at d = 2. We argued that this behavior occurs because when there is an

empty site between A and B, the purified site Ã and B̃ are both strongly correlated with

that site. On the other hand, I(A : Ã) is a monotonically increasing function which is

similar to holographic calculations.

Moreover we examined whether the inequalities known as monogamy and strong su-

peradditivity are satisfied or not for our numerical EoP results. It is known that in general

these inequalities are not satisfied by EoP [20, 32]. On the other hand, in the holographic

EoP, the latter property turns out to be true [14]. In our analysis of the free scalar field

model, we found that either of them are violated for a broad range of masses, including

the massless limit. When the mass gets as large as the cut off scale, we found that both

monogamy and strong superadditivity are satisfied. This behavior is similar to that for

mutual information. Interestingly we observed a clear difference between them: only for

EoP, there is a enhancement of monogamy and strong superadditvity at d = 2. We inter-

preted this as the quantum correlation effect via an empty site which appears in several

other quantities studied in this paper.

It would be interesting to perform similar computations based on Gaussian assumptions

for other measures, especially those quantifies quantum entanglement, such as entanglement

of formation and squashed entanglement. It is also an obviously important future problem

to calculate the EoP in conformal field theories directly in the continuum limit as we usually

do in the replica method calculation of entanglement entropy.
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measure of entanglement, Phys. Rev. A 81 (2010) 032332 [arXiv:0906.0332].

[47] M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of

entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].

[48] P. Hayden, M. Headrick and A. Maloney, Holographic mutual information is monogamous,

Phys. Rev. D 87 (2013) 046003 [arXiv:1107.2940] [INSPIRE].

[49] H. Casini and M. Huerta, Remarks on the entanglement entropy for disconnected regions,

JHEP 03 (2009) 048 [arXiv:0812.1773] [INSPIRE].

– 27 –

https://doi.org/10.1093/ptep/ptv089
https://arxiv.org/abs/1503.03542
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.03542
https://doi.org/10.1103/PhysRevD.83.065002
https://doi.org/10.1103/PhysRevD.83.065002
https://arxiv.org/abs/1011.3760
https://inspirehep.net/search?p=find+EPRINT+arXiv:1011.3760
https://doi.org/10.1007/JHEP07(2012)100
https://arxiv.org/abs/1201.4865
https://inspirehep.net/search?p=find+EPRINT+arXiv:1201.4865
https://doi.org/10.1007/JHEP02(2014)033
https://arxiv.org/abs/1311.1643
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.1643
https://doi.org/10.1103/PhysRevA.61.052306
https://doi.org/10.1103/PhysRevA.61.052306
https://arxiv.org/abs/quant-ph/9907047
https://inspirehep.net/search?p=find+EPRINT+quant-ph/9907047
https://doi.org/10.1103/PhysRevA.81.032332
https://arxiv.org/abs/0906.0332
https://doi.org/10.1103/PhysRevD.76.106013
https://arxiv.org/abs/0704.3719
https://inspirehep.net/search?p=find+EPRINT+arXiv:0704.3719
https://doi.org/10.1103/PhysRevD.87.046003
https://arxiv.org/abs/1107.2940
https://inspirehep.net/search?p=find+EPRINT+arXiv:1107.2940
https://doi.org/10.1088/1126-6708/2009/03/048
https://arxiv.org/abs/0812.1773
https://inspirehep.net/search?p=find+EPRINT+arXiv:0812.1773

	Introduction
	Entanglement of purification and holographic dual
	Definition of entanglement of purification and its properties
	Holographic entanglement of purification

	Computing EoP in free scalar field theory
	Free scalar field theory and discretization
	Calculation of entanglement entropy
	Calculations of EoP
	Symmetry transformation
	Minimal Gaussian ansatz

	Numerical results of EoP
	Example 1: |A|=|B|=1
	Example 2: |A|=1, |B|=2
	Example 3: |A|=2, |B|=2
	Numerical evidences for minimal ansatz

	Mutual information
	Analysis of I(tildeA:tildeB)
	Analysis of I(A:tildeB)
	Analysis of I(A:tildeA)

	Violations of monogamy and strong superadditivity
	Monogamy/polygamy
	Strong superadditivity

	Conclusions and discussions

