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1 Introduction

Following the construction of inflationary models with nilpotent superfields [1–4], in the

last two years there has been much interest in models for de Sitter supergravity, see [5–14]

and references therein.1 They are off-shell models for spontaneously broken local supersym-

metry obtained by coupling N = 1 supergravity to various nilpotent Goldstino superfields.

One of the reasons for the interest in such theories is that a positive contribution to the

cosmological constant is generated once the local supersymmetry becomes spontaneously

broken. For instance, if the supergravity multiplet is coupled to an irreducible Goldstino

superfield2 [7, 12, 15, 19, 20] (with the Volkov-Akulov Goldstino [21–23] being the only

independent component field of the superfield), a universal positive contribution to the

cosmological constant is generated, which is proportional to f2, with the parameter f set-

ting the scale of supersymmetry breaking. The same positive contribution is generated

by the reducible Goldstino superfields used in the models studied in [5, 6, 13]. There is

one special reducible Goldstino superfield, the nilpotent three-form multiplet introduced

in [11, 14], which yields a dynamical contribution to the cosmological constant.

Historically, the first off-shell model for de Sitter supergravity was constructed by

Lindström and Roček in 1979 [15]. They made use of the irreducible nilpotent chiral

Goldstino superfield proposed by Roček [16]. As shown in [12, 13], on the mass shell this

model is equivalent to the one advocated in [5, 6], which made use of the reducible nilpotent

chiral Goldstino superfield proposed in [17, 18].

Since we live in a universe dominated by dark energy and dark matter, and since dark

energy can be sourced by a small positive cosmological constant, it is remarkable that

spontaneously broken local supersymmetry provides a mechanism to generate a universal

1The terminology “de Sitter supergravity” was coined in [5].
2The notion of irreducible and reducible Goldstino superfields was introduced in [12].
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positive contribution to the cosmological constant, which is associated with the Goldstino.

As concerns the known candidates for dark matter (see, e.g., [24] for a review), the axion

field is among the most interesting ones. It is natural to wonder whether there exists a

constrained supermultiplet containing both the Goldstino and the axion. Such a super-

multiplet is proposed in this paper.

In the case of N = 1 supersymmetry, every known scalar Goldstino superfield X,

irreducible or reducible, obeys the quadratic nilpotency condition

X2 = 0 . (1.1)

These Goldstino superfields include: (i) the irreducible chiral scalar proposed in [16, 25];

(ii) the reducible chiral scalar of [17, 18]; (iii) the deformed complex linear scalar introduced

in [20]; (iv) the complex linear scalar of [26–28]; (v) the irreducible real scalar proposed

in [12]; (vi) the reducible real scalar of [13]. In the (v) and (vi) cases, there are actually

three nilpotency conditions [12, 13]:

V 2 = 0 , (1.2a)

V DADBV = 0 , (1.2b)

V DADBDCV = 0 , (1.2c)

where DA = (∂a, Dα, D̄
α̇) are the covariant derivatives of Minkowski superspace M4|4.3

The standard linear multiplet [29], which is described by a real scalar superfield G = Ḡ

constrained by D̄2G = 0, cannot be subject to any nilpotency condition in order to describe

a Goldstino superfield. The point is that the N = 1 tensor multiplet [30], for which G

originates as the gauge invariant field strength, has no auxiliary field. Therefore, the

constraint D̄2G = 0 has to be deformed if we wish to use a linear-type superfield to embed

the Goldstino into. In order to get a feeling for a suitable deformation, let us consider

the simplest model for spontaneously broken supersymmetry, realised in terms of a chiral

scalar Φ and its conjugate Φ̄, with action

SPM =

∫
d4xd2θd2θ̄ Φ̄Φ−

{
f

∫
d4xd2θΦ + c.c.

}
, D̄α̇Φ = 0 , (1.3)

where f is a non-zero parameter of mass dimension +2. This theory possesses a dual

formulation described in [20]. Specifically, associated with (1.3) is the first-order model

S
(Σ)
first-order =

∫
d4xd2θd2θ̄

(
ŪU − ΣU − Σ̄Ū

)
, (1.4a)

−1

4
D̄2Σ = f , (1.4b)

in which U is a complex unconstrained superfield, and Σ is a deformed complex linear

superfield constrained by (1.4b). Varying (1.4a) with respect to Σ gives U = Φ, and then

the action (1.4a) reduces to (1.3). Therefore, the supersymmetric theories (1.3) and (1.4)

3A real scalar Goldstino superfield was briefly discussed in ref. [15] and later reviewed in [19]. However,

only the constraint (1.2a) was explicitly given in these publications.
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are equivalent. On the other hand, the auxiliary superfields U and Ū can be integrated

out from the action (1.4a) resulting with

SΣ = −
∫

d4xd2θd2θ̄ Σ̄Σ . (1.5)

The Goldstino superfield model of [20] made use of Σ subject to the holomorphic constraints

Σ2 = 0 , −1

4
ΣD̄2DαΣ = fDαΣ . (1.6)

There exists a different dual formulation for (1.3). Let us consider the following first-

order action

S
(G)
first-order =

∫
d4xd2θd2θ̄

(1

2
V 2 −GV

)
, (1.7a)

−1

4
D̄2G = f , Ḡ = G . (1.7b)

Here V is a real unconstrained superfield, and G is a deformed real linear superfield con-

strained by (1.7b). The supersymmetric theories (1.3) and (1.7) are equivalent. Indeed,

varying S
(G)
first-order with respect to G gives V = Φ + Φ̄, and then the action (1.7a) reduces

to (1.3). On the other hand, we can integrate out the auxiliary superfield V from S
(G)
first-order

to end up with

SG = −1

2

∫
d4xd2θd2θ̄G2 . (1.8)

It is easy to see that requiring the deformed real linear superfield G to obey the

quadratic nilpotency condition (1.1) does not allow us to eliminate the scalar field, G|θ=0,

contained in G. However, this becomes possible if we subject G to the cubic nilpo-

tency condition

G3 = 0 . (1.9)

The resulting supermultiplet contains only two fields, which are the Goldstino and the

axion, the latter being described in terms of a gauge two-form. In this paper we will

study the properties of this supermultiplet and its generalisations, including its couplings

to Yang-Mills supermultiplets and supergravity.

It should be pointed out that cubic nilpotency conditions have been discussed in the

literature [18, 31–34] for two N = 1 superfields, one of which is the nilpotent chiral scalar

X subject to the only constraint (1.1), as proposed in [17, 18]. Cubic nilpotency conditions

for a single N = 2 Goldstino superfield have been proposed in [13, 35, 36].

This paper is organised as follows. In section 2 we show how deformed real linear

superfields (1.7b) originate within a framework generalising the linear-chiral duality. Our

new nilpotent multiplet is described in section 3. Its couplings to a three-form multiplet, a

super Yang-Mills multiplet and three-form supergravity are presented in sections 4 and 5.

Finally, the appendix is devoted to some generalisations of the duality transformations

described above.
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2 A generalisation of the linear-chiral duality

We start by recalling the linear-chiral duality as described in [37]. Consider a general

two-derivative model for a self-interacting N = 1 tensor multiplet [30]

S[G] =

∫
d4xd2θd2θ̄F(G) , D2G = D̄2G = 0 , (2.1)

where G = Ḡ is the gauge-invariant field strength of the tensor multiplet, and F(x) is a

smooth function of a real variable x.4 The choice F(x) = −x2 corresponds to the free

tensor multiplet [30], while another choice F(x) = −x lnx corresponds to the so-called

improved tensor multiplet [38].

We associate with (2.1) the following first-order model

S[K,Φ, Φ̄] =

∫
d4xd2θd2θ̄

{
F(K)− (Φ + Φ̄)K

}
, D̄α̇Φ = 0 . (2.2)

Here the dynamical variables are a real unconstrained superfield K, a chiral scalar Φ and

its complex conjugate Φ̄. Varying S[K,Φ, Φ̄] with respect to the Lagrange multiplier Φ

gives the equation of motion D̄2K = 0, and hence K = G. Then the second term in the

integrand (2.2) drops out, and we are back to the tensor multiplet model (2.1). Therefore,

the theories (2.1) and (2.2) are equivalent. On the other hand, we can vary (2.2) with

respect to K resulting in the equation of motion

F ′(K) = Φ + Φ̄ . (2.3)

Assuming that F(x) possesses a Legendre transform, this equation allows us to express K

as a function of Φ and Φ̄, and then (2.2) turns into the dual action

SD[Φ, Φ̄] =

∫
d4xd2θd2θ̄FD(Φ + Φ̄) , (2.4)

where FD is the Legendre transform of F . This supersymmetric nonlinear σ-model is a

dual formulation for the tensor multiplet theory (2.1).

There exists a variant realisation of the scalar multiplet known as the three-form

multiplet [39]. It is obtained by replacing the chiral scalar Φ with χ given by

χ = −1

4
D̄2U , Ū = U . (2.5)

Now, starting from the nonlinear σ-model (2.4), we may construct a theory of self-

interacting three-form multiplet

Sα[χ, χ̄] =

∫
d4xd2θd2θ̄FD(eiαχ+ e−iαχ̄) , (2.6)

for some parameter α ∈ R. Since the prepotential U in (2.5) is real, we cannot absorb the

phase factor eiα into χ, unlike the case of Φ. Let us make the same replacement, Φ → eiαχ,

in the first-order action (2.2), resulting with5

Sα[K,χ, χ̄] =

∫
d4xd2θd2θ̄

{
F(K)− (eiαχ+ e−iαχ̄)K

}
. (2.7)

4Following [29], G is called a real linear superfield.
5In the case F(K) ∝ K2, the first-order action (2.7) was considered in [40].
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This theory is equivalent to (2.6). However, varying the action (2.7) with respect to U

gives the equation

eiαD̄2K + e−iαD2K = 0 , (2.8)

which is equivalent to

D̄2K = ie−iαm, m = m̄ = const , (2.9)

for some real parameter m. This equation defines a deformed real linear multiplet.

3 New nilpotent multiplet

We consider a real scalar superfield G = Ḡ subject to a deformed linear constraint

− 1

4
D2G = µ̄ = const ⇐⇒ −1

4
D̄2G = µ = const , (3.1)

for some non-zero complex parameter µ. The general solution to this constraint is

G = ϕ+θαψα+ θ̄α̇ψ̄
α̇+θ2µ̄+ θ̄2µ+θσaθ̄Ha+

i

2
θ2∂aψσ

aθ̄− i

2
θ̄2θσa∂aψ̄−

1

4
θ2θ̄2�ϕ , (3.2)

where Ha is the Hodge-dual of the field strength for a gauge two-form,

∂aH
a = 0 . (3.3)

From the superfield action

S = −
∫

d4xd2θd2θ̄G2 (3.4)

we read off the component Lagrangian

L = −2|µ|2 − 1

2
∂aϕ∂aϕ− iψσa∂aψ̄ +

1

2
HaHa . (3.5)

The constant term in L indicates that a positive cosmological constant is generated once

the system is lifted to supergravity.

We also subject G to the cubic nilpotency condition

G3 = 0 . (3.6)

The top component of this constraint can be written in the form(
a− 1

4
ϕ�ϕ

)
ϕ =

1

2
b , (3.7a)

where

a = 2|µ|2 +
i

2
(ψσa∂aψ̄ − ∂aψσaψ̄)− 1

2
HaHa , (3.7b)

b = µψ2 + µ̄ψ̄2 −Haψσaψ̄ . (3.7c)

It holds that

b2 = aψ2ψ̄2 , b3 = 0 . (3.8)
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Equation (3.7a) is analogous to the one derived in [35] for the case of N = 2 → N = 1

spontaneous supersymmetry breaking. Therefore, eq. (3.7a) may be solved similarly to the

approach employed in [35]. Specifically, we have to look for a solution of the form

ϕ = Uψ2 + Ū ψ̄2 + Vaψσaψ̄ , (3.9)

with U and Va being some composites of the dynamical fields ψα, ψ̄α̇ and Ha. The point

is that it is the ansatz (3.9) which is consistent with the three lowest components of (3.6),

which are ϕ3 = 0, ϕ2ψα = 0 and ϕ2ψ̄α̇ = 0. Now it follows from (3.7a) that

ϕ2 =
ψ2ψ̄2

4a
=
( b

2a

)2
. (3.10)

This relation implies that the general solution of (3.7a) is

ϕ =
b

2a
+

b2

32a4
�b . (3.11)

The solution is well defined provided

a0 := 2|µ|2 − 1

2
HaHa 6= 0 . (3.12)

Making use of (3.11), the Lagrangian (3.5) turns into

L = −2|µ|2 +
b

8a
�
b

a
+

b2

64a5
(�b)2 − iψσa∂aψ̄ +

1

2
HaHa , (3.13)

modulo a total derivative. This Lagrangian depends on Ha in a highly nonlinear way.

However, all nonlinear contributions contain fermionic factors of ψα and ψ̄α̇. As a result,

it is possible to dualise the gauge two-form, described by its gauge-invariant field strength

Ha, into an axion S by considering the first-order model

Lfirst-order = L(H)−Ha∂aS , (3.14)

in which Ha is an unconstrained vector field, and L(H) stands for the Lagrangian (3.13).

4 Nilpotent tensor multiplet coupled to a three-form multiplet

The construction given in the pervious section admits a natural generalisation. The idea is

that the complex parameter µ in (3.1) may be viewed as the expectation value of a chiral

superfield. Therefore, a more general constraint is given by

− 1

4
D̄2G = Y , D̄α̇Y = 0 , (4.1)

for some background chiral superfield

Y(x, θ, θ̄) = eiθσaθ̄∂a
(
µ(x) + θαρα(x) + θ2F (x)

)
. (4.2)

Due to the identity

− 1

4

[
D2, D̄2

]
= i∂αα̇

[
Dα, D̄α̇

]
, (4.3)

– 6 –
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in order for G to contain a conserved vector field, Y has to be a three-form multiplet, which

means that locally

Y = −1

4
D̄2U , Ū = U , (4.4)

where U is a real but otherwise unconstrained prepotential. The only implication of the

representation (4.4) is that the auxiliary field F in (4.2) is not an arbitrary complex field,

but instead has the form

F = d+
i

2
∂ac

a , (4.5)

where d is a real scalar, and ca is the Hodge-dual of a gauge three-form. The general

solution to the constraint (4.1) is

G = ϕ+ θαψα + θ̄α̇ψ̄
α̇ + θ2µ̄+ θ̄2µ+ θσaθ̄ (Ha + ca)

+ θ2

(
ρ̄+

i

2
∂aψσ

a

)
θ̄ + θ̄2θ

(
ρ− i

2
σa∂aψ̄

)
+ θ2θ̄2

(
d− 1

4
�ϕ

)
, (4.6)

where Ha obeys the constraint (3.3).

As in the previous section, we impose the cubic nilpotency condition

G3 = 0 . (4.7)

The top component of this constraint can be written in the form(
â+ ϕ

(
d− 1

4
�ϕ

))
ϕ =

1

2
b̂ , (4.8a)

where

â = 2|µ|2 − ψ
(
ρ− i

2
σa∂aψ̄

)
−
(
ρ̄+

i

2
∂aψσ

a

)
ψ̄ − 1

2
(H + c)2 , (4.8b)

b̂ = µψ2 + µ̄ψ̄2 −
(
Ha + ca

)
ψσaψ̄ . (4.8c)

As in the previous section, the lowest components of (4.7), ϕ3 = 0, ϕ2ψα = 0 and ϕ2ψ̄α̇ = 0,

imply that ϕ has to have the form (3.9). Now it follows from (4.8a) that

ϕ2 =
ψ2ψ̄2

4â
=

(
b̂

2â

)2

. (4.9)

This relation implies that the general solution of (3.7a) is

ϕ =
b̂

2â
− b̂2

4â3
d+

b̂2

32â4
�b̂ . (4.10)

As an example of the construction given, we can choose Y of the form

Y = µ+ g tr(WαWα) , (4.11)

where g is a real parameter, and Wα the covariantly chiral field strength of a Yang-Mills

supermultiplet. Essentially, we are in a position to recycle the classic results on Cher-

Simons couplings for linear multiplets, see, e.g., [41] for a review.
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5 Coupling to three-form supergravity

As is well known, every off-shell formulation for N = 1 supergravity can be realised as

N = 1 conformal supergravity coupled to a compensating multiplet (see, e.g., [42, 43] for

reviews). Different off-shell formulations correspond to choosing different compensators.

As reviewed in [43], conformal supergravity can be described using the superspace ge-

ometry of [44, 45], which underlies the Wess-Zumino approach [46, 47] to old minimal

supergravity [48, 49]. This requires to extend the supergravity gauge group to include

the super-Weyl transformations introduced in [50]. For the technical details, we refer the

reader to the textbook [43], see also the recent paper [51]. The notation and conventions

of [43] are used throughout this paper.

We start by reviewing the super-Weyl invariant formulation for three-form supergrav-

ity [52, 53], which was given in [54].6 The corresponding conformal compensator is a

three-form multiplet coupled to conformal supergravity. It is described by a covariantly

chiral scalar Π and its conjugate Π̄, with Π defined by

Π = −1

4

(
D̄2 − 4R

)
P , P̄ = P , (5.1)

where the scalar prepotential P in (5.1) is real but otherwise unconstrained.7 The compen-

sator Π has to be nowhere vanishing so that Π−1 exists. We postulate P to be super-Weyl

primary of weight (1, 1),

δσP = (σ + σ̄)P , (5.2a)

which implies that Π is also primary,

δσΠ = 3σΠ . (5.2b)

As follows (5.1), the prepotential P is defined modulo gauge transformations of the form

δLP = L ,
(
D̄2 − 4R

)
L = 0 , L̄ = L . (5.3)

The gauge parameter L is a covariantly real linear superfield.

The action for three-form supergravity is

SSG = − 3

κ2

∫
d4xd2θd2θ̄ E

{(
Π̄Π
) 1

3 − 1

2
mP

}
= − 3

κ2

∫
d4xd2θd2θ̄ E

(
Π̄Π
) 1

3 +
{m
κ2

∫
d4xd2θ E Π + c.c.

}
, (5.4)

where m is a real parameter, and E and E denote the full superspace and the chiral

subspace integration densities, respectively. By construction the action is invariant under

gauge transformations (5.3).

Complex three-form supergravity [48, 52, 55] is obtained by choosing the prepotential

P in (5.1) to have the form

P = Γ + Γ̄ , (5.5)

6This formulation has been used in recent publications [14, 51, 55].
7The operator ∆̄ := − 1

4

(
D̄2 − 4R

)
is the covariantly chiral projection operator introduced in [46, 47].
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where Γ is a covariantly complex linear scalar superfield constrained by(
D̄2 − 4R

)
Γ = 0 . (5.6)

Due to this constraint, the field strength (5.1) reads

Π = −1

4

(
D̄2 − 4R

)
Γ̄ . (5.7)

The general solution to the constraint (5.6) is known [42] to be

Γ = D̄α̇Ψ̄α̇ , (5.8)

where Ψ̄α̇ is an unconstrained spinor superfield defined modulo gauge transformations

δΛΨ̄α̇ = D̄β̇Λ̄(α̇β̇) , (5.9)

which leave Γ invariant. The super-Weyl transformation of Ψ̄α̇ is chosen to be [43]

δσΨ̄α̇ =
3

2
σ̄Ψ̄α̇ , (5.10)

and this transformation law implies

δσΓ = (σ + σ̄)Γ (5.11)

We define a deformed covariantly linear multiplet to obey the constraint

− 1

4

(
D̄2 − 4R

)
G = fΠ + χ , D̄α̇χ = 0 , f = const . (5.12)

Here χ is a super-Weyl primary three-form multiplet, which means the following: (i) the

super-Weyl transformation of χ is

δσχ = 3σχ ; (5.13a)

and (ii) χ has the property

Im

∫
d4xd2θ E χ = 0 . (5.13b)

For instance, we can choose χ of the form

χ = g1 tr(WαWα) + g2W
αβγWαβγ , (5.14)

where g1 and g2 are real parameters, and Wα the covariantly chiral field strength of a

super Yang-Mills multiplet, and Wαβγ is the super-Weyl tensor [44, 45], see [43] for more

details. The non-zero parameter f in (5.12) is real (complex) provided the three-form

multiplet Π is real (complex). As in the rigid supersymmetric case, we subject G to the

nilpotency condition

G3 = 0 . (5.15)

The action for the nilpotent tensor multiplet is

SAG = −
∫

d4xd2θd2θ̄ EG2
(
Π̄Π
)− 1

3 (5.16)

The complete supergravity-matter action is S = SSG + SAG + SSYM, where SSYM denotes

the standard super Yang-Mills action in the presence of supergravity [46].
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A More duality transformations

In this appendix we discuss some generalisations of the duality transformations described

in section 1. As an extension of the chiral model (1.3), we consider

S =

∫
d4xd2θd2θ̄ Φ̄Φ−

{∫
d4xd2θΨΦ + c.c.

}
, D̄α̇χ = 0 , (A.1)

where Ψ is a background chiral superfield. This theory has a dual formulation that can

be obtained by making use of the first-order action (1.4a), in which Σ has to obey the

constraint8

− 1

4
D̄2Σ = Ψ , (A.2)

which is a deformation of (1.4b). The dual action has the form (1.5) with Σ constrained

according to (A.2). There exist dual formulations for chiral models that are obtained

from (A.1) by replacing the superpotential by the rule ΨΦ → ΨΦn, for an integer n > 2.

The dual actions are described in [57, 58] (such actions requires Φ to be nowhere vanishing).

A different duality transformation exists if the background chiral scalar Ψ in (A.1) is

a three-form multiplet,

Ψ = −1

4
D̄2U , Ū = U . (A.3)

Then the action (A.1) can be rewritten as an integral over the full superspace,

S =

∫
d4xd2θd2θ̄

{
Φ̄Φ− U(Φ + Φ̄)

}
. (A.4)

This action is obviously invariant under gauge transformations of the prepotential U of

the form

δLU = L , D̄2L = 0 , (A.5)

with the chiral scalar Ψ defined by (A.3) being a gauge-invariant field strength. Since the

action (A.4) depends on Φ and Φ̄ only via the combination Φ + Φ̄, the model naturally

possesses a dual formulation given in terms of a real linear superfield G, see section 2. The

dual action is

S = −1

2

∫
d4xd2θd2θ̄ (G+ U)2 . (A.6)

8Constraints of the form (A.2) were introduced for the first time by Deo and Gates [56]. In the context

of supergravity, such constraints were used in [7, 20] to generate couplings of the complex linear Goldstino

superfield to chiral matter.
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It is invariant under the gauge transformation (A.5) provided G transforms as

δLG = −L . (A.7)

The action (A.6) is constructed in terms of the gauge-invariant superfield G := G+U = Ḡ

obeying the constraints

− 1

4
D̄2G = Ψ , (A.8)

which is a deformation of (1.7b). The same model can be naturally obtained by considering

the first-order action (1.7a) in which G is subject to the constraint (A.8).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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